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Abstract:

Background: Heart rate (HR), especially at nighttime, is an important 
biomarker for cardiovascular health. It is known to be influenced by 
overall physical fitness, as well as daily life physical or psychological 
stressors like exercise, insufficient sleep, excess alcohol, certain foods, 
socialization, or air travel causing physiological arousal of the body. 
However, the exact mechanisms by which these stressors affect the 
nighttime HR are unclear and may be highly idiographic (i.e., individual-
specific). A single-case or “n-of-1” observational study (N1OS) is useful 
in exploring such suggested effects by examining each subject’s 
exposure to both stressors and baseline conditions, thereby 
characterizing suggested effects specific to that individual. 
Objective: Our objective was to test and generate individual-specific 
N1OS hypotheses of the suggested effects of daily life stressors on 
nighttime HR. As an N1OS, this study provides conclusions for each 
participant, thus not requiring a representative population. 
Methods: We studied three healthy, nonathlete individuals, collecting the 
data for up to four years. Additionally, we evaluated model-twin 
randomization (MoTR), a novel Monte Carlo method facilitating the 
discovery of personalized interventions on stressors in daily life. 
Results: We found that physical activity can increase the nighttime heart 
rate amplitude, whereas there were no strong conclusions about its 
suggested effect on total sleep time. Self-reported states such as 
exercise, yoga, and stress were associated with increased (for the first 
two) and decreased (last one) average nighttime heart rate. 
Conclusions: This study implemented the MoTR method evaluating the 
suggested effects of daily stressors on nighttime heart rate, sleep time, 
and physical activity in an individualized way: via the N-of-1 approach. A 
Python implementation of MoTR is freely available. 
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Abstract
Background: Heart rate (HR), especially at nighttime, is an important biomarker for 
cardiovascular health. It is known to be influenced by overall physical fitness, as 
well as daily life physical or psychological stressors like exercise, insufficient sleep, 
excess alcohol, certain foods, socialization, or air travel causing physiological 
arousal of the body. However, the exact mechanisms by which these stressors affect 
the nighttime HR are unclear and may be highly idiographic (i.e., individual-
specific). A single-case or “n-of-1” observational study (N1OS) is useful in exploring 
such suggested effects by examining each subject’s exposure to both stressors and 
baseline conditions, thereby characterizing suggested effects specific to that 
individual.
Objective: Our objective was to test and generate individual-specific N1OS 
hypotheses of the suggested effects of daily life stressors on nighttime HR. As an 
N1OS, this study provides conclusions for each participant, thus not requiring a 
representative population.
Methods: We studied three healthy, nonathlete individuals, collecting the data for 
up to four years. Additionally, we evaluated model-twin randomization (MoTR), a 
novel Monte Carlo method facilitating the discovery of personalized interventions 
on stressors in daily life.
Results: We found that physical activity can increase the nighttime heart rate 
amplitude, whereas there were no strong conclusions about its suggested effect on 
total sleep time. Self-reported states such as exercise, yoga, and stress were 
associated with increased (for the first threetwo) and decreased (last one) average 
nighttime heart rate. 
Conclusions: This study implemented the MoTR method evaluating the suggested 
effects of daily stressors on nighttime heart rate, sleep time, and physical activity in 
an individualized way: via the N-of-1 approach. A Python implementation of MoTR 
is freely available. 

Keywords: auto experimentation; causal inference; endogeneity; longitudinal; 
nighttime heart rate; n-of-1 trial; resting heart rate; self-reporting; stress; 
wearables. 

INTRODUCTION

Background
The emergence and ubiquitous availability of personal miniaturized technologies, 
including self-tracking mobile and wearable devices, enable continuous, longitudinal 
data collection and facilitate “self-knowledge through numbers,” fulfilling the vision 
put forward by the “quantified-self” founders ((1,2)). Motivated individuals leverage 
these technologies, as well as self-reporting tools to track their behaviors, including 
those related to physical activity, sleep, alcohol consumption, foods, presence of 
psychological stress, air travels, or more ((3)). Additionally, these technologies 
enable capturing certain physiological signals like body temperature (temp), 
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respiration rate (RR), heart rate (HR), heart rate variability (HRV), or galvanic skin 
response (GSR) corresponding to the physical or psychological state of the individual 
((3,4)).
Individuals can track a single behavior at its simplest, and use their self-tracking 
data for self-experimentation, changing it in the desired direction, like walking more 
steps or sleeping enough. However, these technologies can also enable more 
complex interventions and, if paired with disciplined scientific approaches to data 
analysis, they can provide more robust personalized insights ((5,6)). They are also 
able to help detect or even predict health issues by the mean of more advanced 
measurements like an electrocardiogram (ECG) ((7)). When combining wearable 
ECG signals with artificial intelligence algorithms, illness prediction is possible ((8)), 
transforming these ubiquitous and accessible devices into a powerful source of self-
information.
This study employs an n-of-1 observational study (N1OS) design and integrates data 
from two different technological touchpoints: a consumer-grade behavior and 
physiology tracking device; and an electronic self-reporting tool. We use the data to 
characterize nonathlete individuals and test our main hypotheses on the correlation 
of daily stressors with nighttime HR, an important health concern in the context of 
cardiovascular health. The nighttime HR is specifically defined as a nighttime resting 
heart rate when the body returns to a baseline, and no daily-life stressors are 
present ((9)). We will sometimes use the term “correlation” interchangeably with 
the broader and more statistically accurate term “association” for ease of 
understanding. However, note that the statistical definition of “correlation” is 
narrower than is commonly meant; i.e., a non-linear statistical association or 
dependence is not a statistical correlation.
Additionally, we evaluate the analytic impact of model-twin randomization (MoTR) 
((10)) on our inferences and conclusions. MoTR (“motor”) is a new causal inference 
method that artificially emulates an n-of-1 randomized trial (i.e., the gold standard 
due to randomization) from the N1OS dataset. It does so by first modeling the 
outcome of interest as a function of the exposure of interest, along with an 
individual’s assumed recurring confounders (i.e., daily observed variables thought 
to influence or affect both the exposure and the outcome). MoTR then randomly 
shuffles (i.e., permutes) the exposures, which were originally only observed, thereby 
simulating an n-of-1 randomized trial. This allows us to infer more accurately a 
suggested effect of daily stressors beyond just correlation.
Note that this study is not a case report, an observational study of a single 
participant. Unlike a case report, which has limited internal validity ((11)), our 
study uses MoTR to improve the veracity of findings of possible causal effects. In 
this way, an N1OS enables the discovery of findings for a given individual that is 
hard to achieve with standard group-based observational study designs ((12)) — 
and MoTR adjusts these findings to suggest possible interventions. These causal 
inference methods also facilitate subsequent design and testing of the suggested 
effects in an n-of-1 randomized trial of these discovered effects.
The operational objective of this paper is to establish the feasibility of the N1OS 
design augmented with MoTR for generating and evaluating hypotheses about the 
idiographic (i.e., individual-specific) recurring average effect of an exposure (e.g., 
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daily stressors) on the self-tracked outcome of each participant (e.g., nighttime HR). 
The analogous nomothetic (i.e., group-level) effects in randomized controlled trials 
(RCTs) are called “average causal effects” or “average treatment effects” (ATEs).
We chose daily life stressors like physical activity, insufficient sleep, excess of 
alcohol consumption, certain foods, presence of psychological stress, air travels as 
the exposure variables because they have a profound and acute effect on several 
aspects of health in a short, as well as long-term, especially when repeated and are 
behaviors that may be commonly tracked on current consumer devices or via a 
minimum self-reporting efforts. The nighttime HR is our selected health biomarker 
because it is affected by daily stressors in nonathletes and is also an important 
outcome measure of cardiovascular health ((13–16)).
This hypothesis exploration is based on the relevant literature on the importance of 
managing daily life stressors for short-term and long-term health outcomes. The 
intentional choice of nonathletic individuals was with an eye for preventing a 
chronic disease involving the cardiovascular system. The additional objective was to 
evaluate the MoTR method for generating and testing such idiographic hypotheses, 
potentially facilitating personalized management of stressors in daily life. As a 
result, we demonstrate an observational study design and analysis plan to 
contribute to and help guide rigorous self-tracking and n-of-1 study designs.

N-of-1 Study Designs: Experimental and Observational
An n-of-1 study, also known as a single-subject or single-case study, is a scientific 
study focused on a single individual. Such studies are used to better understand the 
individual-specific effect of an intervention or association of exposure with an 
outcome, e.g., how behavioral changes in a specific person causally affect or 
associate with daily-life stressors and nighttime HR the following night. There are 
two types of n-of-1 studies.
An n-of-1 randomized trial (N1RT) is a randomized crossover design in which a 
participant acts as their baseline (i.e., control), and is randomly assigned to an active 
treatment over multiple treatment periods. For example, a participant may be 
randomized to the sequence of treatment period denoted ABBA, where A and B 
represent an active and baseline treatment, respectively ((12,17)). The N1RT design 
requires experimentation (i.e., comparing the intervention results with a baseline), 
and has been increasingly used in clinical trials and biomedical research. A related 
study design, the single-case experimental design (SCED), has been extensively 
applied in psychology and education ((5,18–21)).
The target quantity that can be inferred using an N1RT is a recurring average effect 
that (22) calls an “average period treatment effect” (APTE). In an N1RT, a period is 
defined as a recurring time interval during which a treatment or intervention is 
randomly assigned. Treatment levels are not required to change every period, but 
they must be randomized. For example, for intervention levels A and B each 
randomized twice with equal probability, the sequences ABBA, AABB, and BABA all 
have equal probability. The APTE is the n-of-1 analog to the population ATE of RCTs 
(defined above).
An n-of-1 observational study (N1OS) is a scientific study design involving a single 
individual without any structured randomization, akin to ecological or 

Page 5 of 53

https://mc.manuscriptcentral.com/dhj

Digital Health

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

epidemiological studies. While an N1RT generally carries more internal validity (i.e., 
cause-effect relationship) than an N1OS, the latter generally carries more external 
or ecological validity (i.e., generalizability to real-world situations) than an N1RT. 
The would-be “intervention” and “baseline” are derived from real-world data, 
without randomization of the individual to the condition ((23)).
In an N1OS, a period is defined as a recurring time interval during which an 
exposure is observed (e.g., a day after sleeping for a certain amount of time). As with 
N1RT treatments, exposure levels are not required to change every period; 
however, they are generally not randomized, being observed as they naturally 
occur. “Exposure” is the epidemiological term for the would-be randomized 
treatment in a corresponding N1RT design; i.e., we wish to infer a reasonable or 
plausible causal effect (i.e., APTE) of the exposure on the outcome that we would 
otherwise more definitively infer by randomizing the exposure.
N1OS designs offer several opportunities for health psychology and behavioral 
medicine; they can be used to describe changes in naturally occurring phenomena 
(e.g., behaviors) over time. They can also enable testing the hypotheses related to 
the relationships between variables, such as those specified in behavioral theories 
((24–27)). Furthermore, N1OS can be used to design highly personalized, data-
driven interventions based on the unique predictive relationships identified at the 
individual level ((28)).
Note that while causal inference methods for observational data like MoTR can 
actually help estimate possible treatment effects (which prediction/correlation 
methods generally cannot), none of these methods — not even MoTR — can 
definitively estimate an average causal effect. This is because estimating an APTE in 
an N1OS requires measuring all (or at least the strongest) treatment-effect 
confounders, and also correctly modeling the relationship between the exposure, 
outcome, and all confounders. These two strong assumptions highlight that “there is 
no free lunch” in trying to infer a causal effect without randomization. To 
convincingly estimate an APTE, the exposure must be manipulated or randomized; 
otherwise, these two crucial assumptions must hold — assumptions that generally 
cannot be tested simply by updating or trying new models using the same dataset 
(i.e., without manipulating the exposure directly to produce a new dataset).
At best, we can and will assume that we have observed the strongest (not 
necessarily all) confounders, and that our chosen model is reasonably correct (i.e., 
correctly approximates the “true” causal model). This relaxed assumption allows for 
bias, but is much more realistic. With our observational data, the most we can do is 
hope that our set of confounders is complete enough, and that our models are 
correct enough, to keep the true, unknown bias in estimating the APTE small.

Relationship to Longitudinal Studies
N1OS are related to longitudinal studies that use common statistical approaches like 
mixed- or random-effects modeling or generalized estimating equations. However, 
these two study designs differ fundamentally in their analytic goals concerning 
levels of inference.
In a longitudinal study, the analytic goal is to infer the average trend overtime over a 
group of participants, i.e., it is a nomothetic goal. However, repeated measurements 
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for each study participant may induce within-individual autocorrelation that 
reduces the overall information on the group-level trend. This may increase the 
variance of the trend estimator, which is a “nuisance” to reaching the goal; hence the 
common need to deal with statistical nuisance parameters” in longitudinal studies.
In an N1OS, the analysis goal is to infer a recurring average association over a set of 
repeated measurements within one participant; i.e., it is an idiographic goal. A 
group-level association may be useful as a starting point to help specify individual-
level a priori hypotheses or as a starting value in some iterative analytic approaches. 
However, the entire approach of conducting an N1OS assumes that the within-
individual average meaningfully differs from the group average — even, perhaps, 
for a large group of similar individuals.
Hence, N1OS a priori hypotheses ideally rely on the participant’s own experiences, 
opinions and beliefs, and their past self-tracked data if available. That is its core 
principle. If group-based findings in the scientific literature are deemed useful for 
structuring the idiographic a priori hypotheses, these can and should also be used. 
However, an N1OS by design privileges the participant’s own prior beliefs above any 
group-based findings — some of which may inform those prior beliefs. The process 
of each participant designing their own a priori hypotheses resembles prior 
elicitation in Bayesian modeling, but where the study participant is the “domain 
expert” of their N1OS.

Daily-Life Stressors: Exercise, Sleep, Alcohol and Food, Psychological Stress, Aircraft 
Travels, and Nighttime HR
The growing body of research indicates the importance of HR (including nighttime 
HR) as a prognostic factor and potential therapeutic target in populations at large 
((29)). The resting HR shows a clear circadian rhythm, being substantially higher 
during waking hours, but the variations are relatively small, between 10±6 
beats/min ((30)). Additionally, HR also changes with posture, being some 3 
beats/min higher in the sitting compared with the supine position ((31)).
In this work, the nighttime HR considered is specifically defined as HR while 
sleeping, when there are no daily life stressors ((9)). Research shows that although 
it may be difficult to define an optimal HR for a given individual, it seems desirable 
to maintain low nighttime HR ((29)). High nighttime HR has direct detrimental 
effects on the progression of cardiovascular diseases (CVD) ((32)). Studies have 
specifically found a continuous increase in the risk of CVD with nighttime HR above 
60 beats/min ((33–35)), which is very important, especially given the increasing 
prevalence of CVDs leading to premature deaths ((36,37)). When considering a 
desirable or optimal HR for an individual, demographic and measurement factors 
must also be considered. Namely, HR has been reported to decrease with age ((38)), 
although this has not been seen in all studies, and HR is higher in women than in 
men ((39)).
The nighttime HR is influenced by physical stressors experienced in the preceding 
day, like exercise or mental stress. On the one hand, research shows that higher 
overall activity level and athletic capacity leads to lower heart rate ((40,41)). A 
systematic meta-review by Reimers et al. shows that especially endurance training, 
yoga, and strength training conducted at least 2 times a week for at least 4 weeks 
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have shown decreases in heart rate ((42)). However, with acute exercise exertion 
like multiple hours of running or biking, the resulting nighttime HR is shown to be 
higher ((13,43)). Additionally, a systematic meta-review by Kredlow et al. shows 
that the overall activity levels and acute exercise have small beneficial effects on 
sleep duration ((44)). Additionally, nighttime HR is influenced by insufficient and 
variable time of sleep ((14)), excess alcohol, certain foods (e.g., greasy) ((15)), 
presence of psychological stress ((15,45–47)), or air travels decreasing oxygen 
saturation in the blood ((16)).
When considering the nighttime HR and factors influencing it, it is also important to 
understand their minimally important differences in their values, which may be 
considered as relevant from the clinical perspective. Concerning HR itself, the 
research focused mostly on evaluating changes in resting heart rate (measured 
when awake and calm) in longitudinal observational studies. Chen et al. ((48)) show 
that an increase of 1 BPM in 10 years was associated with a 3% higher risk for all-
cause death, 1% higher risk for CVD, and 2% higher risk for coronary heart disease. 
An increase of 5 BPM is associated with a higher risk of cardiovascular disease, 
heart failure, and overall all-cause mortality ((49)). A further increase of 10 BPM 
relates to an increased probability of mortality ((50)), while a resting HR above 60 
BPM increases this risk almost exponentially ((29)). Summarizing these findings, we 
consider minimally important differences in nighttime HR as 1 BPM from the clinical 
relevance perspective.
The research results are as follows when considering the minimally important 
differences in total sleep time (TST). Overall, it is recommended for an adult to sleep 
between 7-9 hours (h) a day ((51–53)). Furthermore, it is important to notice that 
most of the sleep-related variables in longitudinal observational studies are self-
reported ((54)). Sleeping less than 5 hours relates to an increase in the risk of 
chronic illness ((55)) while sleeping less than 6 h compared to 7-8 h was correlated 
with more fat accumulation ((56)). For patients with knee osteoarthritis, a cut-off 
point of 382 min (6.5h) of TST has been found important for their health; more 
sleep corresponded to better disease management ((57)). A decrease of total sleep 
time of 23 min or about 0.6 min per year for 36 years of follow-up has been assigned 
to effects of aging ((58)). Patients with poorer overall health were found to sleep 39-
46 min less than comparable healthy populations ((59)). Summarizing these 
findings, we consider minimally important differences in TST as 23 min from the 
clinical relevance perspective.
When considering the minimally important differences in steps and step length, the 
research results are as follows. A value of 121 steps/day has been indicated as a 
result of a minimally important change in physical intervention studies — RCTs 
evaluated via a systematic literature review ((60)). An increase in 226 daily steps 
has been found for one of the intervention groups (RCT) in a study involving CVD 
patients ((61)). Similarly, in an RCT with chronic obstructive pulmonary disease 
(COPD) patients, an improvement of 427 steps or deterioration of 456 steps a day 
has been found clinically significant for their health outcomes ((62)). In a similar 
study that value was 600 steps ((63)).
Overall research results show that walking an additional 1000 steps per day can 
help to achieve better health outcomes in cancer patients ((64)), in fibromyalgia 
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patients ((65)), and lower the risk of all-cause mortality in the general population 
((66)). For every increase of 2000 steps per day in the general population, the risk 
of chronic illness is decreased across multiple health outcomes ((67)). As for the 
stride length, there exist fewer research results linking it to the health outcomes in 
longitudinal studies, likely because of the challenge in its instrumentation to 
measure it accurately in daily life environments. Boyer et al. focused on the in-lab 
assessment of millimeter changes in stride length in the context of an assessment of 
the impact of injuries on patients’ mobility ((68)). Hannik et al. assessed stride 
length with 1-centimeter accuracy in the context of geriatric care ((69)), while 
Rampp et al. achieved 1.5 cm accuracy in a similar research context ((70)). From the 
clinical relevance perspective, we summarize these findings and consider minimally 
important differences in steps per day as 121, and stride length as 1 cm.

Organization of the Document
The remainder of our paper is organized as follows. We present our study design, 
the devices used and their accuracy, our hypotheses, and our analysis plan in the 
Materials and Methods section, particularly how to collect and analyze data across 
devices and time within the individuals contributing to this N1OS. We report our 
main findings in the Results section, along with findings that can better inform a 
future N1OS or even N1RT designs in the same context of managing stressors and 
health outcomes. We summarize our findings in the Discussion section and reflect 
on our findings and experiences in this study in the Conclusions section, indicating 
the potential future work areas.

MATERIALS AND METHODS
The section below presents the resources and methods applied while conducting 
the study. Hence, in the subsection “Study Design,” we present the description and 
organization of the different data types used, as well as general statistical principles 
and overall modeling approach. The subsection “Participants and Collected Data 
Summary” provides information about the three participants (IM, EJD, KW) and the 
mean values for all the exposure values. In the subsection “Accuracy of Sleep 
Duration, Steps, Distance, and Heart Rate Monitored with Fitbit and Apple Watch,” 
we discuss the validity of the wearable devices used to collect data. Finally, in the 
subsection “Statistical Analysis Plan,” we present our a priori hypotheses and the 
statistical planning of this research.

Study Design

Exploratory N1OS Study Goals and Approach
This is an exploratory N1OS. This is not a confirmatory study, which has the goal of 
replicating fairly well-known relationships between well-defined variables (i.e., 
testing/confirming discovered or formerly reproduced scientific hypotheses). 
Instead, the goal of this study is to characterize largely unknown relationships 
between variables that are not yet well-defined in the scientific literature; i.e., its 
goal is to suggest scientific hypotheses to be tested or be confirmed in future 
studies.
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With respect to our hypotheses, (71) investigated a number of these that we relied 
on in forming our a priori hypotheses in Subsection “A Priori Hypotheses”. True to 
our exploratory goals, these are broad in scope and do not specify exact quantities, 
but rather directions (e.g., increasing or introducing X causes Y to decrease). Rather, 
we created our a priori hypotheses based on both the findings of (71) and our own 
experiences and reflections.
This approach reflects the N1OS core principle mentioned in Section “Relationship 
to Longitudinal Studies”. The participant is also the study’s “principal investigator” 
and domain expert — the domain being their own past health history and 
experiences. Other information (e.g., the scientific literature) only serves to 
supplement their own understanding of this domain, how to create a priori 
hypotheses, and how to assess exploratory hypotheses.

Estimating Credibility and True Quantity Discernibility
In this study, we depart from common statistical practice in one important way that 
we hope improves our scientific communication. The term significant” is largely 
misunderstood as meaning “scientifically, clinically, or practically important”. 
Statistical significance is unrelated to scientific significance but has been 
ubiquitously misunderstood as meaning “significant”. This well-documented and 
long-standing phenomenon is called the “significance fallacy” ((72–75)), a key 
contributor to the replication crisis in biomedicine and psychology. Hence, leading 
statistical authorities have strongly recommended abandoning the phrase 
“statistical significance” entirely ((76–79)), necessitating a search for another 
phrase to describe the amount of statistical evidence in research findings.
Instead, we will proceed as follows. We will continue to describe a P value in terms 
of its “statistical significance”. However, we will describe its corresponding estimate 
in terms of “statistical discernibility”. For example, if an estimated effect of 2 has a P 
value of .001, we might describe the estimate as being statistically discernible for 
the true, unknown effect (or simply say the estimate is “discernible”). That is, there 
is sufficient statistical evidence that 2 is a statistically valid estimate of the true, 
unknown value. If that estimate of 2 had a P value of .83, we might say 2 is not 
statistically discernible as the true effect. (80) is an example of a publication that 
successfully used this lexical strategy.
Our hope in taking this approach is to avoid committing the common error of 
making scientifically unsupported claims (i.e., based on statistical qualities of an 
estimate, rather than on the size and direction of the estimate itself). For example, 
we might incorrectly claim that “there was a significant effect of getting more sleep 
on step count the next day, i.e., more sleep causes an increase of 2 steps (p=.001)”, 
when in fact the true finding is, “there was a discernible effect of getting more sleep 
on step count the next day; i.e., more sleep causes a credible increase of 2 steps 
(p=.001), but this small increase may not be practically significant.”

Modeling Approach
For each participant, we fit Granger models ((81)) over each participant’s analysis 
period (i.e., time frame of available data). These are the time series linear models fit 
by (71), combinations of which might together comprise a vector autoregression. 
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“Granger” refers to so-called “Granger causality”, which by causal inference 
definition is in fact only an association/correlation/prediction of one time series 
with another time series — not a causal effect of one time series on another, as we 
are attempting to estimate in this study. Predictors include lagged values of both the 
dependent variable (DV) and independent variables (IDVs). Our own DVs and IDVs 
resemble theirs, as detailed below. We will not fit any generalized additive models 
like they did, as they found that these did not perform notably better than their 
linear models.
We also included calendar-based control variables in our models, following the 
examples in (71) Table 1 (e.g., weekend indicator). To enforce temporal order 
needed to conduct causal inference, we made sure all model DVs occurred after 
their IDVs and control variables, i.e., generally no overlap in time is allowed between 
any model predictor and its corresponding outcome.

Participants and Collected Data Definition
The participants of this study were all its three authors, Igor Matias (IM), Eric J. Daza 
(EJD), and Katarzyna Wac (KW). The data were collected via self-reports and 
personal wearables used by all three authors (IM, EJD, KW) for different periods. 
Seventeen types of data are organized into three main categories: calendar-based 
(CB) control variables; self-reported (SR); and wearable-measured (WM). Table 1 
illustrates their splitting and main characteristics. Two main categories of 
hypotheses to test were defined according to the time frame of the available data:

 Type A hypotheses - included data from all three individuals (IM, EJD, KW) 
from 14 August 2020 until 8 January 2021 (148 days per person), with only 
WM data for the first two (IM and EJD), and with CB, SR, and WM for KW.

 Type B hypotheses - included data only from one participant (KW) from 13 
February 2017 until 13 August 2020 (1278 days), including CB, SR, and WM.

The CB data type is defined as follows. Weekend, a binary variable, with “1” for 
Saturday or Sunday and “0” for any other day of the week. Year, a discrete variable 
between “0” and “4”, representing the years of 2017, 2018, 2019, 2020, and 2021, 
respectively. Month, a discrete variable between “0” and “11” for every month of the 
year, chronologically ordered from January to December. Season, a discrete variable 
between “0” and “3”, representing “Summer”, “Autumn”, “Winter”, and “Spring”, 
respectively, according to the astronomical seasons.
For the WM category, we defined five variables as follows. Total sleep time (TST) is a 
continuous variable for the total seconds of sleep during the main nighttime sleep 
period, excluding naps. Steps per awake time (SAT) is defined as a daily average, 
calculated as the incremental steps that day divided by the seconds between the 
waking time and going to bed that night (akin to average daily walking speed). We 
used SAT instead of total steps per day, as the number of steps is dependent on the 
awake time each day. Step length is defined as a daily average (measured in meters), 
calculated as the total distance logged that day divided by the total number of steps. 
Nighttime HR is calculated as the average HR during that night’s sleep. Difference HR 
(DIF-HR) is defined as the difference between the maximum and the minimum heart 
rate registered during sleep that night after, and it helps characterize the maximum 
range in nighttime HR.

Page 11 of 53

https://mc.manuscriptcentral.com/dhj

Digital Health

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11

The third category, SR, included seven binary variables defined as follows. 
Socializing is defined as “1” when socializing in the evening (which in most cases 
implied eating-out, hence consumption of non-routine foods and potentially of 
moderate amounts of alcoholic drinks) and “0” otherwise. Yoga is defined as “1” 
when practicing yoga during the afternoon/evening and “0” when not. Exercise with 
“1” when any acute physical exercise was practiced during the day (e.g., gym 
session, running, or long biking). Fasting defined between “1” and “0” whether the 
participant fasted (since the dinner a day before, for a full day) or not, respectively. 
Tired/Sick/Stress is defined as “1” when having a tiring day, feeling sick, or 
experiencing high-stress levels during the day. Holiday (for Type A) or Vacations 
(for Type B) is positive when going on vacations or having a non-working day, such 
as a weekend. Short air travel is defined as “1” when traveling by air within the same 
continent during the daytime and “0” when not traveling or traveling for longer 
periods or nighttime. The SR variables were collected daily, using manual 
annotation of personal notes.

Table 1. Types of data used in the study. CB stands for "calendar-based," WM for 
"wearable-measured," and SR for "self-reported" control variables.

Variable CB WM SR Used for 
hyp. type(s)

Type Units/values

Weekend X A and B Binary 0 or 1
Year X B Discrete 0 to 4
Month X A and B Discrete 0 to 11
Season X A and B Discrete 0 to 3
TST X A Continuous Seconds
SAT X A Continuous Steps per second
Step length X A Continuous Meters
Nighttime HR X A and B Continuous Beats per minute
DIF-HR X A and B Continuous Beats per minute
Socializing X B Binary 0 or 1
Yoga X B Binary 0 or 1
Exercise X B Binary 0 or 1
Fasting X B Binary 0 or 1
Tired/Sick/Stress X B Binary 0 or 1
Holiday X A Binary 0 or 1
Vacations X B Binary 0 or 1
Short air travel X B Binary 0 or 1

Participants and Collected Data Summary
As defined above, the participants of this study were all its three authors: IM; EJD; 
KW. On the last day of the experiment (8 January 2021), IM was a 24-year-old male 
with a normal body mass index (BMI), EJD was a 41-year-old male with a normal 
BMI, and KW was a 41-year-old female with a normal BMI. All the participants were 
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healthy (i.e., no unusual medical history), not experiencing any notable work- or 
family-related stresses, nor disturbances or abnormalities in walking, sleeping, or in 
any cardiovascular aspects.
For the Type A hypotheses’ time frame, the mean value of SAT for IM, EJD, and KW, 
was 0.07 ± 0.03, 0.10 ± 0.05, and 0.22 ± 0.09 steps per second awake, respectively. 
In the same way, the mean value of TST for IM, EJD, and KW was 25854.55 ± 
3530.30 (7 hours, 10 minutes, 54.55 seconds ± 58 minutes, 50.30 seconds), 
28683.21 ± 5127.09 (7 hours, 58 minutes, 03.21 seconds ± 1 hour, 25 minutes, 
27.09 seconds), and 30358.39 ± 3232.53 (8 hours, 25 minutes, 58.39 seconds ± 53 
minutes, 52.53 seconds) respectively.
For both A and B hypotheses’ time frames (1426 days in total), the numbers of 
positive days for socializing were 369 (25.88%), 68 for yoga (4.77%), 125 for 
exercise (8.77%), 22 for fasting (1.54%), 150 for tired/sick/stress (10.52%), 280 for 
holiday (A) and vacations (B) combined (19.64%), and 117 for a short air travel 
(8.21%).

Accuracy of Sleep Duration, Steps, Distance, and Heart Rate Monitored with Fitbit and 
Apple Watch
All wearable measured (WM) data were collected using a Fitbit Charge 2™ (FC2), 
Charge 3™ (FC3), Charge 4™ (FC4) (Fitbit, Inc., San Francisco, CA, USA), and an Apple 
Watch (AW) Series 5™ (Apple Computer, Inc., Cupertino, CA, USA). All of them 
connect via Bluetooth™ to a smartphone, the last one (AW) only fully compatible 
with iOS™ devices. Within the Type A hypothesis’ time frame, IM used an AW Series 
5, EJD an FB3, and KW used an FC4. As for Type B’s time frame, KW used an FB2 
until 17 April 2020, changing to FB4 afterward. Although all devices can measure all 
the WM data this study needed, these devices use different sensors and components. 
It is therefore important to discuss the accuracy of each one of them.
As for sleep, because this study did not consider the sleep stages, we will only 
evaluate the accuracy of sleep total time assessment for the used devices. As 
validated by (82), FC2 overestimated TST by 9 minutes when compared with 
polysomnography (p < .05). In the same way, (83) compared FC3 and found an 
inverse conclusion, with an underestimation of TST of about 11 minutes. For FC4, 
studies of evaluation were not found. Last, AW (no version specified by the 
literature) overestimated TST by 4.65 minutes, as tested by (84).
As for the steps, when evaluating FC2 against an ActiGraph GT3X™, found an 
overestimation of 2451.3 ± 2085.4 steps per day by using the average over seven 
days of comparison, 32.2 ± 40.7% above the comparison measurement, with a 
correlation of r = 0.58, p = .02. By performing a 24 minutes exercise, at different 
speeds, (85) concluded about an error of 1.07 steps for the AW compared to the 
manual count obtained from video recordings, with a total error of 0.034% and a 
correlation of r = 0.96, p < .001.
The evaluation results for HR are as follows. To validate the HR measured with a 
FC2 and AW Series 3, (86) compared both to a gold standard electrocardiograph and 
found that both devices slightly underestimated HR across 24 hours. While sleeping, 
FC2 showed a mean absolute error (MAE) of 2.15 beats per minute (BPM) and mean 
absolute percentage error (MAPE) of 3.36%, where AW Series 3 had a MAE of 1.96 
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BPM (MAPE of 3.12%). (87) compared FC3 to other well-known wearable devices 
such as Polar H10™, and documented an underestimation of HR by 7 BPM by a FC3, 
although this study did not follow the same gold standard approach as the first one.
Finally, when evaluating the measurement of distance traveled during the day, (88) 
compared a Fitbit Charge(FC) device with others available at the time, placing FC 
among the best with a MAPE lower than 5.6%. (89) followed a similar approach and 
compared AW Series 4 with other brand’s devices, documenting that the overall 
MAPE <5% ranges from 0.9% to 4.1% only.

Statistical Analysis Plan

A Priori Hypotheses
We investigated a total of eleven a priori hypotheses of two types (A and B, defined 
in Subsection “Participants and Collected Data Definition”) and divided them into 
three groups. We tested an association between an exposure (i.e., IDV) and an 
outcome (i.e., DV) for each hypothesis. The exposures are SAT, TST, socializing, yoga, 
exercise, fasting, tired/sick/stress, vacations, and short air travel. The outcomes are 
TST, step length, DIF-HR, and nighttime HR.
All outcomes were log-transformed and treated as continuous variables. All 
exposures were treated as binary variables indicating the presence (enumerated as 
1) relative to the absence (enumerated as 0) of the exposure or as having a high (1) 
versus low (0) exposure value. We dichotomized continuous exposures in keeping 
with the traditional Neyman-Holland-Rubin potential-outcomes approach that 
compares average outcomes between only two treatment levels ((90–92)). We 
assigned a threshold for each exposure per participant to separate their high and 
low values. These thresholds were set as the observed per-participant mean value of 
the exposure over each participant’s entire analysis period (see Subsection 
“Participants and Collected Data Definition” for values).
After dividing all the hypotheses into two types (A and B), we assigned them to 
three different groups (Steps-TST, Diff-HR, Nighttime HR). The first group, Steps-
TST, included two hypotheses (H1 and H2) with TST and step length as outcomes. 
The second group, Diff-HR, included two other hypotheses (H3 and H4) in which the 
outcome was the DIF-HR. The third group, Nighttime HR, included the remaining 
seven hypotheses (H5, H6, H7, H8, H9, H10, and H11) having nighttime HR as the 
outcome.
Table 2 illustrates the splitting of the hypotheses across the two types (A, B) and 
three groups (Steps-TST, Diff-HR, Nighttime HR). In this paper, the Steps-TST 
hypotheses were more conjectural in nature (i.e., stemming from curiosity); in 
contrast, we had stronger prior beliefs about our remaining nine nighttime heart 
rate hypotheses (i.e., Diff-HR and Nighttime HR).
We specified the two Steps-TST hypotheses as follows. Hypothesis 1 (H1) was that 
an increase in SAT was associated with an average increase in TST the next night. 
Hypothesis 2 (H2) was that an increase in TST was associated with a longer average 
step length the day after.
We specified the two Diff-HR hypotheses as follows. Hypothesis 3 (H3) was that an 
increase in SAT was associated with an average decrease in DIF-HR. Hypothesis 4 
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(H4) was that socializing was associated with an average increase in DIF-HR 
afterward. As in Subsection “Participants and Collected Data Definition”, we define 
DIF-HR afterward as the difference between the highest and the lowest HR during 
the sleep period after the socializing event. For example, if the socializing refers to a 
social event in the evening of the day, the DIF-HR refers to the night that same day 
(recall this is defined while sleeping), after the evening ends.
We specified the seven Nighttime HR hypotheses as follows. Hypothesis 5 (H5) was 
that an increase in SAT was associated with an average decrease in nighttime HR the 
following night. We expected to have different levels of association for H3 and H5 
(outcome change being DIF-HR for the first and Nighttime HR for the other). 
Hypotheses 6-8 (H6 to H8) were that yoga, exercise, and fasting were all associated 
with an average decrease in nighttime HR the night after. Hypothesis 9 (H9) was that 
a tiring day, sickness, or high-stress levels during the day were collectively 
associated with an average increase in nighttime HR. Hypothesis 10 (H10) was that 
going on vacation was associated with an average increase in nighttime HR, as the 
possible sources of stress of vacations were distinct from those on non-vacation 
stressful days (i.e., due to different physical activities, different sleep hours, sleeping 
in a different bed, alcohol intake, traveling, among others). Hypothesis 11 (H11) was 
that short air travel would not be associated with a meaningful average change in 
nighttime HR.

Table 2. A priori hypotheses. TST stands for “total sleep time,” SAT stands for “steps 
per awake time,” and TSS stands for “tired/sick/stress.”

Hyp. Exposure Exp. 
change

Outcome Out. 
Change

Type Group

H1 SAT Increase TST Increase A Steps-TST
H2 TST Increase Step length Increase A Steps-TST
H3 SAT Increase DIF-HR Decrease A Diff-HR
H4 Socializing Presence DIF-HR Increase B Diff-HR
H5 SAT Increase Nighttime HR Decrease A Nighttime HR
H6 Yoga Presence Nighttime HR Decrease B Nighttime HR
H7 Exercise Presence Nighttime HR Decrease B Nighttime HR
H8 Fasting Presence Nighttime HR Decrease B Nighttime HR
H9 TSS Presence Nighttime HR Increase B Nighttime HR
H10 Vacations Presence Nighttime HR Increase B Nighttime HR
H11 Short air travel Presence Nighttime HR None B Nighttime HR

We also included variables in each model to account for suggested effect 
modification by the CB variables. These are specified as interaction terms between 
an IDV and each CB variable included in a model. We did so in case the average daily 
effect of an IDV on a DV might vary based on a CB variable. For example, in H1, 
suppose the effect of taking more steps increases average TST the following night in 
the Summer than in the Fall for IM. This might be because IM has fewer scheduled 
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early workdays in the Summer, allowing him to sleep longer after an active day with 
many steps, or even due to better weather conditions during Summer.

Causal Hypotheses via Model-Twin Randomization (MoTR)
Thus far, all hypotheses have been assumptions of statistical association or 
correlation, not causation. In this paper, we went further and employed the MoTR 
method to simulate an N1RT after adjusting for other assumed confounders. MoTR 
allows us to change these hypotheses of association to hypothesized effects that can 
be statistically tested.
MoTR is a Monte Carlo approach to estimating the APTE that works as follows. It 
takes as its input a model fit to a dataset, randomly shuffles the exposures (IDVs 
previously dichotomized as in Subsection “A Priori Hypotheses”), and then 
sequentially predicts the outcome (DV) for all time points (or “periods” in APTE 
parlance) in the study period. The average outcomes under high and low exposures 
are compared, yielding an APTE estimate with a P value (and, thereby, confidence 
interval). Because many random sequences of exposures are possible given the 
longitudinal datasets, MoTR repeats this procedure many times by randomly 
shuffling exposures differently each time. This creates multiple Monte Carlo 
simulation runs. The final mean APTE estimate and P value were reported once the 
APTE estimate stabilized (after a minimum of 1000 runs), or at run 10000 (to set a 
computational time limit on the MoTR algorithm), whichever occurred first. (See the 
Supplementary Materials and Formulas for details on these convergence criteria.)

Exploratory, Testing, and Confirmatory Phases
In general, we conducted four types of analyses. Exploratory A and Exploratory B 
analyses were first conducted as this was the main goal of our paper. We then 
proceeded to the Testing and Confirmatory phases. We conducted a few 
Confirmatory analyses based on loosely defined a priori hypotheses. This was done 
to demonstrate how to apply MoTR in a confirmatory study. These types were 
separated according to their input and main goal, as represented in Table 3 and 
Table 4.
We define lag as the number of days preceding the exposure day, including the 
exposure day, i.e., the day for which the DV was obtained for each hypothesis. The 
lag, therefore, defines the number of days for which the data has been acquired for 
DV. For example, using a lag of 2 days means the hypothesis considered data from 
the DV on the study day (t) and each of the two days before (t-1 and t-2), thus 
enabling the analysis of the variation of the DV before the exposure. There are 240 
hypotheses for Exploratory A, 140 for Exploratory B, 10 hypotheses for the Testing 
phase, and 24 for the Confirmatory phase. These are defined as follows:

 Exploratory A Phase - this phase was intended to explore the impact on 
analytic results of bigger lags (from 1 to 10 days), as well as the changes in 
DV produced by controlling for interactions within IDVs. It was applied to all 
Type A hypotheses (H1, H2, H3, H5) one at a time.

 Exploratory B Phase - similarly to the Exploratory A, this phase aimed at 
exploring the impact on analytic results of lags bigger than one day (lag from 
1 to 10 days), but on a longer period of days and only from one participant 
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(KW), non-overlapping with the respective participant’s data on Type A 
hypotheses. It was applied to all Type B hypotheses (H4, H6, H7, H8, H9, H10, 
H11) one at a time.

 Testing Phase - the goal of this phase was to assess the accuracy of using a 
model fitted on 1278 days of KW’s data (Type B time frame) to predict the 
148 days after (Type A time frame). Using the machine learning model fitted 
for KW’s data on the Exploratory B phase (one repetition for each of the Type 
B hypotheses), we predicted the DV values for each study day on the Type A’s 
data.

 Confirmatory Phase - this phase aimed to assess the suggested effect (or not) 
of each hypothesis’ IDV on the DV without using any lag bigger than 1 day 
(i.e., lag 1 only) nor using interactions within the IDVs as controls. It was 
applied to all Type A hypotheses (H1, H2, H3, H5) one at a time.

The Testing phase included several tasks as follows. (1) Using the model fit with 
data from part B of KW’s data during Exploratory B, we predicted the DV values of 
part A and added Gaussian noise to each prediction using the standard deviation 
(SD) of the model residuals from part B. (2) We estimated the association of the IDV 
with the DV, or naive effect estimate,“ by comparing the means of the noisy 
predicted DV values between high/low or present/absent exposure (and its t test P 
value) using the first method; hence, we refer to this as the “naive method.” (3) We 
also assessed the fit of that same model on KW’s data from part A, using the mean 
squared error (MSE) of its residuals. (4) Then we predicted the DV values (with 
noise, as before) of part A using the MoTR method, now calculating the hypothetical 
suggested effect of the IDV on the DV (and its t test P value).
In the end, we compared both the fit of the model on observed data in parts B and A 
measured as their MSEs and the difference between the naive effect estimate of the 
IDV in part A with its hypothetical suggested effect estimated using MoTR. We chose 
to compare model fit between parts B and A using the MSE rather than R-squared 
because this metric expresses the same qualitative information as the R-squared in 
how well the model explains random variation in the DV. However, the MSE also 
preserves the original scale of the DV, such that it conveys this added information 
that is masked when calculating the R-squared.
The dataset processing, programming language libraries used, and the original code 
used to deploy the MoTR method are described in the Supplementary Materials and 
Formulas at the end of this paper.
The data flow between hypotheses and phases is represented in Figure 1.
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Figure 1. Representation of the data flow between the different hypotheses and 
phases of the methods. The orange arrows represent the hypotheses pool used in 
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each phase (e.g., the Testing phase only considered the hypotheses selected by 
Exploratory B from the entire pool). (WM = wearable-measured, CB = calendar-
based, SR = self-reported, KW = Katarzyna Wac, EJD = Eric J. Daza, IM = Igor Matias).
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Table 3. Exploratory and Confirmatory phases planning.

Exploratory A
Controlling 
for

”Weekend,” ”Holiday,” ”Month,” interactions 
IDV*”Weekend,” IDV*”Holiday,” and 
IDV*”Month” (A-MONTH)

”Weekend,” ”Holiday,” ”Season,” interactions 
IDV*”Weekend,” IDV*”Holiday,” and 
IDV*”Season” (A-SEASON)

Days of lag 1 to 10 days 1 to 10 days 1 to 10 days 1 to 10 days 1 to 10 days 1 to 10 days
Participants KW EJD IM KW EJD IM
Hypotheses H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5

40 40 40 40 40 40
120 120

Total hyp.

240
Exploratory B

Controlling 
for

”Weekend,” ”Vacations,” ”Year,” ”Month,” 
interactions IDV*”Weekend,” IDV*”Vacations,” 
IDV*”Year,” and IDV*”Month” (B-MONTH)

“Weekend,” ” Vacations,” ”Year,” ”Season,” 
interactions IDV*”Weekend,” 
IDV*”Vacations,” IDV*”Year,” and 
IDV*”Season” (B-SEASON)

Days of lag 1 to 10 days 1 to 10 days
Participants KW KW
Hypotheses H4, 6, 7, 8, 9, 10, 11 H4, 6, 7, 8, 9, 10, 11

70 70Total hyp.
140

Confirmatory
Controlling 
for

”Weekend,” ”Holiday,” and ”Month” 
(C-MONTH)

”Weekend,” ”Holiday,” and ”Season” 
(C-SEASON)

Days of lag 1 1 1 1 1 1
Participants KW EJD IM KW EJD IM
Hypotheses H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5 H1, 2, 3, 5

4 4 4 4 4 4
12 12

Total hyp.

24
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Table 4. Testing phase planning. Refer to the Subsection “Results Selection Criteria” for details on the two criteria used.

Testing
Criteria MDE MBL
Controlling 
for

B-MONTH B-SEASON B-MONTH B-SEASON

Days of lag 6 10 10 6 10 4 3 4 3 3
Participants KW KW KW KW KW KW KW KW KW KW
Hypothesis H4 H6 H9 H4 H6 H9 H4 H9 H4 H9

3 3 2 2
6 4

Total hyp.

10
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RESULTS

Missing Data Imputation
Of all the 148 total days of data per person used in Type A hypotheses, TST, SAT, sleep 
HR, and DIF-HR was missing on 2 days (1.35%) for KW’s data and 4 days (2.70%) for 
IM’s data, with no missing data for EJD. From the 1278 days of data used in Type B 
hypotheses, TST was missing on 28 days (2.19%), SAT was missing on 46 days 
(3.60%), and sleep HR and DIF-HR were missing on 30 days (2.35%). We considered 
the data to be missing at random (93,94). The missing data were imputed using linear 
interpolation for the missing values only, keeping the original values that were not 
missing in the interval.

Results Selection Criteria
Although we calculated results for all lags (i.e., 1 to 10) for all the hypotheses in Table 
2, only the models with the most interesting results are presented in detail and 
discussed. Each Exploratory A and B hypothesis model included only one of 10 
possible lags, chosen using the following criteria. (The Confirmatory hypotheses had 
only one model each, with a lag of one day; hence, we report all their results, and no 
results selection was done for the Confirmatory hypotheses.)
We used the following two criteria to select models with the most interesting results.

 Most discernible effect (MDE) - We selected the model with the lowest P value 
after applying the MoTR method.

 MDE, best-fitting model, and largest confounding influence (MBL) - We selected 
the model that jointly met three criteria: the lowest P value after the MoTR 
method was applied (MDE); the smallest value of each model’s Akaike 
Information Criterion (AIC), Bayesian Information Criterion (BIC), and F 
statistic P value; and the largest value of the confounding influence, defined as 
the absolute difference between the mean differences in outcomes under the 
two different exposure levels (e.g., low and high), before and after applying 
MoTR. Please refer to the Supplementary Materials and Formulas section for 
results and discussion using this criterion.

MDE Criterion
The MDE criterion selects the model that produces the most statistically discernible 
suggested effect among all candidate models. The selected model has the greatest 
statistical evidence (i.e., lowest t test P value) that the there is a true mean difference 
in its predicted noisy outcomes between the two IDV levels (e.g., low/high exposure), 
after following the MoTR procedure to randomize the IDV. Recall that randomizing the 
IDV makes this mean difference an estimate of a suggested causal effect of the IDV on 
the DV—not just an association or correlation between IDV and outcome.
Note that the model selected using the MDE criterion does not necessarily produce the 
largest estimated suggested effect. The correct interpretation is that the selected 
model has the most statistical evidence for the existence of an effect of the IDV on the 
DV, which may be large or small. However, it can only ever be a suggested effect; the 
model may or may not resemble the true data-generating model needed to calculate 
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the true, unknown effect (if any). Recall that this is the main limiting assumption of the 
MoTR method, and indeed, of all models used in causal inference for observational 
studies (wherein the exposure or IDV was never randomized).

Procedure
After the first round of model selection, we still had 16 results for the Exploratory A 
phase (i.e., eight for MDE and eight for MBL), and 28 for Exploratory B (i.e., 14 for MDE 
and 14 for MBL). Thus, we performed a second round of selection of results.
In this second round, for each hypothesis, we selected the model with both P ≤ .05 and 
an estimated suggested effect higher than the minimally important difference in the 
outcome from the clinical perspective (defined in Subsection “Daily-Life Stressors: 
Exercise, Sleep, Alcohol and Food, Psychological Stress, Aircraft Travels, and Nighttime 
HR”) and at the same time higher than device’s error as defined in Subsection 
“Accuracy of Sleep Duration, Steps, Distance, and Heart Rate Monitored with Fitbit and 
Apple Watch”. Therefore, we consider a suggested effect of at least 11 minutes (660 
seconds) for TST, at least 0.035 (KW and EJD) or 0.039 (IM) meters for step length (i.e., 
5% of the mean from all three individuals), and at least 2 BPM for heart rate data. 
These inclusion criteria are summarized by Table 5.
Following the second round’s selection above described, applying the MDE criterion 
resulted in the inclusion of results for H1 and H3 (only from IM’s data) for the 
Exploratory A phase, and results for H4, H6, H7, and H9 for Exploratory B (KW’s data). 
MBL resulted in the inclusion of results for H1 and H3 (only from IM’s data) for the 
Exploratory A phase and results for H4 and H9 for Exploratory B (KW’s data).

Table 5. Results inclusion criteria: minimally important difference in 
exposure/outcome considered. TST stands for total sleep time, and HR stands for heart 
rate.

DV Minimum effect of IDV on the DV

TST 660 seconds (11 minutes)
Step length — KW 0.035 meters
Step length — EJD 0.035 meters
Step length — IM 0.039 meters
HR 2 BPM

Exploratory Phases Results Using MDE Criterion

Table 6. Selected results from Exploratory A and Exploratory B phases using MDE 
criterion. Time values are in the format “minutes:seconds.”

Exploratory 
A

Controlling for A-MONTH A-SEASON
Lag 2 days 1 day

H1 IM’s data

IDV effect on DV + 21:26.901 -18:21.077
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t test P value .026 .027
Controlling for A-MONTH A-SEASON
Lag 1 day 6 days
IDV effect on DV + 5:61 BPM + 2.53 BPM

H3 IM’s data

t test P value < .001 .057
Exploratory 
B

Controlling for B-MONTH B-SEASON
Lag 6 days 6 days
IDV effect on DV + 2.84 BPM + 4.99 BPM

H4 KW’s data

t test P value .004 .002
Controlling for B-MONTH B-SEASON
Lag 10 days 10 days
IDV effect on DV + 4.58 BPM + 10.90 BPM

H6 KW’s data

t test P value .051 .020
Controlling for B-MONTH B-SEASON
Lag 2 days 1 day
IDV effect on DV + 3.36 BPM + 2.523 BPM

H7 KW’s data

t test P value .051 .016
Controlling for B-MONTH B-SEASON
Lag 10 days 9 days
IDV effect on DV - 4.00 BPM - 6.63 BPM

H9 KW’s data

t test P value .001 .001

Exploratory A - Suggested Effect of SAT on TST (H1)
For H1, only IM’s data yielded results with a t test P value below .05 and a suggested 
effect greater than 660 seconds (11 minutes). KW’s data led to P values higher than .10 
and EJD’s higher than .23, thus being discarded.
Following the selection process previously described Table 6 presents the metrics of 
the lag with the lowest t test P value for each type of control. When controlling for A-
MONTH, the lowest t test P value was .026 for 2 days of lag, measuring a suggested 
effect of 1286.901 seconds more (+ 21 minutes and 26.901 seconds) on TST when IM’s 
number of steps per awake time was higher than his daily mean. When controlling for 
A-SEASON, the lowest t test P value was .027, very similar to the one controlling for A-
MONTH, for 1 day instead of 2, for which the suggested effect has the opposite 
meaning, that is, when IM’s steps per awake time value are above mean it results in a 
decreased TST of - 1101.077 seconds (- 18 minutes and 21.077 seconds), instead of a 
positive suggested effect as before.
Because of this inverse suggested effect, while controlling whether for month or 
season (the only difference between A-MONTH and A-SEASON), Table 7 presents the 
direct comparison of the two selected results with its correspondence (labeled as “not 
selected”) on the other control type, that is, the results using the same lag size. 
Although the correspondent lags do not surpass the minimum 660 seconds for being 
plausible, we can still confirm that the positive/negative suggested effect stays the 
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same when controlling for A-MONTH (always positive) or A-SEASON (always 
negative). These results will be further discussed in the later sections of this article.

Table 7. Comparison of the selected results for H1 (Exploratory A), using MDE 
criterion, with its correspondents (same days of lag) on the other control type. Time 
values are in the format “minutes:seconds”.

Controlling for A-MONTH A-SEASON
Lag 2 days 2 days (not selected)
IDV effect on DV + 21:26.901 - 6:26.480

IM’s data

t test P value .026 .037
Controlling for A-MONTH A-SEASON
Lag 1 day (not selected) 1 day
IDV effect on DV + 6:34.288 - 18:21.077

H1

IM’s data

t test P value .048 .027

Exploratory A: Suggested Effect of SAT on DIF-HR (H3)
Like for H1, for H3, only IM’s data yielded results with a t test P value below .05, this 
time with a suggested effect higher than 2 BPM. KW’s data led to P values higher than 
.07 and EJD’s higher than .20, thus being discarded.
Like the last stated hypothesis, Table 6 presents the metrics of the lag with the lowest t 
test P value for each type of control. Although the t test P value when controlling for A-
SEASON is slightly above .05, we still consider it. Thus, whether controlling for A-
MONTH or A-SEASON, when IM’s steps per awake time value are above the daily mean, 
the difference between the highest and the lowest HR during sleep increases (5.61 
BPM controlling for A-MONTH with 1 day of lag, 2.53 BPM controlling for A-SEASON 
with 6 days of lag).

Exploratory B: Suggested Effect of Socializing on DIF-HR (H4)
While for the Exploratory A phase, we screened all the results from all three data 
sources (KW, EJD, and IM), the only data used for the Exploratory B phase came from 
KW, as previously described in this article.
For the first selected results, that is, for the suggested effect of socializing on nighttime 
HR, the lowest t test P value was obtained when considering 6 days of lag for both 
control types. The suggested effect was positive in both controls when KW’s data 
reported the existence of socializing, increasing the nighttime HR after by 2.84 BPM 
(controlling for B-MONTH) and 4.99 BPM (controlling for B-SEASON), as shown by 
Table 6.

Exploratory B: Suggested Effect of Yoga on Nighttime HR (H6)
Like for H4, for the hypothesis of yoga affecting the nighttime HR (H6), the results 
showed a positive suggested effect with 10 days of lag on both control types, as 
detailed by Table 6.When controlling for B-MONTH, yoga exercise affects the HR 
during sleep after in + 4.58 BPM and + 10.90 BPM when controlled for B-MONTH and 
B-SEASON, respectively. Like for H3 above, we considered the value when controlling 
for B-MONTH even with a P value slightly above .05.
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Exploratory B: Suggested Effect of Exercise on Nighttime HR (H7)
As in Table 6, the suggested effect of exercise on nighttime HR was positive as the 
suggested effect of yoga. While controlling for B-MONTH, we found a positive 
suggested effect of 3.36 BPM with 2 days of lag. Controlling for B-SEASON allowed us 
to reveal a possible positive effect of 2.52 BPM with 1 day of lag.

Exploratory B: Suggested Effect of Tired/Sick/Stress on Nighttime HR (H9)
Inversely to socializing, yoga, and exercise, the presence of a tired/sick/stress state 
during the day of KW revealed a negative suggested effect on the average nighttime 
HR, with 10 days of lag and 9 days of lag while controlling for B-MONTH and B-
SEASON, respectively, as shown by Table 6. The strongest suggested effect was found 
while controlling for B-SEASON with - 6.63 BPM of change, compared with - 4.00 BPM 
when controlling for the other type.

Table 8. Comparison of the a priori hypotheses and the results obtained using the MDE 
criterion. For H1 there were different results when controlling for A-MONTH 
(increase) and A-SEASON (decrease). TST stands for “total sleep time,” SAT stands for 
“steps per awake time,” and TSS stands for “tired/sick/stress.”

A priori Results with MDE
Hyp. / 
participant

Exposure Exp. 
change

Outcome Out. 
change

Out. 
change

Result

H1/IM SAT Increase TST Increase Inc./Dec. Inconclusive
H3/IM SAT Increase DIF-HR Decrease Increase Not 

supported
H4/KW Socializing Presence DIF-HR Increase Increase Supported
H6/KW Yoga Presence Nighttime 

HR
Decrease Increase Not 

supported
H7/KW Exercise Presence Nighttime 

HR
Decrease Increase Not 

supported
H9/KW TSS Presence Nighttime 

HR
Increase Decrease Not 

supported

Table 8 presents a comparison between the a priori hypotheses from both phases 
Exploratory A and B and the results obtained following the MDE criterion.

Testing Phase for the Results Using MDE Criterion
Table 9. Testing phase’s results for the hypotheses selected using the MDE criterion. 
MSE stands for “mean squared error.”

Controlling for B-MONTH B-SEASON
Lag 6 days 6 days 
R2 in B 0.312 0.290
MSE in B 0.001 0.001

H4 KW’s data

IDV effect on DV 0.12 BPM 0.12 BPM
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(naïve method)
t test P value 
(naïve method)

.885 .885

R2 in A - 0.143 - 0.078
R2 in B - R2 in A 0.455 0.368
MSE in A 0.001 0.001
MSE in B - MSE in A 0.000 0.001
IDV effect on DV (MoTR) - 0.43 BPM - 0.72 BPM
t test P value (MoTR) .221 .224
Controlling for B-MONTH B-SEASON
Lag 10 days 10 days
R2 in B 0.291 0.281
MSE in B 0.001 0.001
IDV effect on DV 
(naïve method)

- 1.23 BPM - 1.23 BPM

t test P value 
(naïve method)

.082 .082

R2 in A - 0.364 - 0.598
R2 in B - R2 in A 0.655 0.879
MSE in A 0.001 0.001
MSE in B - MSE in A 0.000 0.000
IDV effect on DV (MoTR) - 1.50 BPM - 2.27 BPM

H6 KW’s data

t test P value (MoTR) .670 .660
Controlling for B-MONTH B-SEASON
Lag 10 days 4 days
R2 in B 0.302 0.283
MSE in B 0.001 0.002
IDV effect on DV 
(naïve method)

- 1.35 BPM - 1.31 BPM

t test P value 
(naïve method)

.134 .141

R2 in A 0.014 - 0.090
R2 in B - R2 in A 0.288 0.373
MSE in A 0.001 0.001
MSE in B - MSE in A 0.001 0.001
IDV effect on DV (MoTR) - 1.31 BPM - 0.89 BPM

H9 KW’s data

t test P value (MoTR) .576 .422

As described in the Subsection “Exploratory, Testing, and Confirmatory Phases”, the 
Testing phase was intended to assess the accuracy of the models fitted with part B of 
KW’s data (from Type B time frame) for predicting data from part A (from Type A time 
frame). Because the models used were selected according to the two criteria used 
(MDE and MBL), this first subsection presents the results only for the models obtained 
from the results chosen using MDE (H4, H6, H7, and H9). Table 9 shows the metrics for 
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the hypotheses H4, H6, and H9. The testing phase could not be applied to H7 because 
KW’s data did not include any positive values for Exercise in part A of the data.

Suggested Effect of Socializing on DIF-HR (H4)
The difference between the MSE of the model in B and the MSE in A is almost null for 
both control types (B-MONTH and B-SEASON). However, the suggested effect of IDV 
and t test P value between the naive method and the MoTR method requires additional 
attention. The t test P value is notably smaller (approximately four times) when using 
the MoTR method, even though it is always above .05. When measuring the suggested 
effect of Socializing on DIF-HR, the biggest value is obtained when controlling for B-
SEASON and using the MoTR method (-0.72 BPM). However, none of the calculated 
suggested effects is above the minimum suggested effect defined in Table 5, and we 
obtain a positive impact when using the naive method. In contrast, it is negative if we 
consider the MoTR method.

Suggested Effect of Yoga on Nighttime HR (H6)
The suggested effect of yoga on nighttime HR is negative whether we consider the 
naive method or the MoTR method, always being less than the minimum suggested 
effect defined in Table 5 except when controlling for B-SEASON and using the MoTR 
method. The model fitted has an MSE of 0.001 in part A and part B, being this fitting 
difference virtually non-existent. However, the t test P value is always higher than .05, 
making all the results not statistically discernible — the naive method gave lower P 
values than the MoTR.

Suggested Effect of Tired/Sick/Stress on Nighttime HR (H9)
Like the H6, the suggested effect of tired/sick/stress on nighttime HR was always 
below the minimum suggested effect defined in Table 5, being approximately the same 
between the naive method and the MoTR method when controlling for B-MONTH. The 
suggested effect was smaller when controlling for B-SEASON while using the MoTR 
method, although the lag differed between the two control types. The MSE differed in 
approximately 0.001 between the two processes.
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Figure 2. Scatter plot comparing the observed (original) with the predicted DV values 
for H6, controlling for B-SEASON with 10 days of lag. Result selected using MDE 
criterion.
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Figure 3. Scatter plot comparing the observed (original) with the predicted DV values 
for H9, controlling for B-MONTH with 10 days of lag. Result selected using MDE 
criterion.

In Table 9, note that the R-squared values for part B are positive for both H9 
controlling for B-MONTH, and for H6 controlling for B-SEASON. This makes sense 
because the outcomes are predicted using the model fit to the same data in each case. 
However, while the R-squared value is positive for part A for H9 controlling for B-
MONTH, the R-squared is negative for part A for H6 controlling for B-SEASON. This is 
because the R-squared formula (see Supplementary Materials and Formulas) relies on 
the empirical overall mean of the observed outcomes in the target dataset in which 
predicted outcomes are calculated.
To elaborate, predicted outcomes are created using a model fit to a dataset with a 
certain empirical mean (e.g., part B). If the empirical mean of the new target dataset 
(e.g., part A) differs from the original dataset’s empirical mean, then the R-squared 
value calculated using predictions calculated using the original model can be negative. 
The mean of the predicted values will resemble that of the original dataset’s outcomes, 
while the new dataset’s overall mean outcome will not. Such a difference in empirical 
means between the target dataset’s predicted and observed values is shown between 
the two example cases mentioned above in 
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Figure 2 and 

Figure 3.

Confirmatory Phase Results
Table 10. Confirmatory phase’s results for all the studied hypotheses. Time values are 
in the format “minutes:seconds.”

Controlling for C-MONTH C-SEASON
IDV effect on DV - 13:35.953 - 8:54.645

KW’s data

t test P value .142 .153
Controlling for C-MONTH C-SEASON
IDV effect on DV + 00:22.307 - 00:19.555

EJD’s data

t test P value .512 .538
Controlling for C-MONTH C-SEASON
IDV effect on DV - 23:24.859 - 16:25.250

H1

IM’s data

t test P value .027 .022
Controlling for C-MONTH C-SEASON
IDV effect on DV + 0.014 meters + 0.006 meters

KW’s data

t test P value .014 .683
Controlling for C-MONTH C-SEASON
IDV effect on DV - 0.002 meters - 0.002 meters

EJD’s data

t test P value .543 .655
Controlling for C-MONTH C-SEASON
IDV effect on DV - 0.003 meters - 0.006 meters

H2

IM’s data

t test P value .442 .460
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Controlling for C-MONTH C-SEASON
IDV effect on DV - 517.69 BPM + 9.20 BPM

KW’s data

t test P value .116 .169
Controlling for C-MONTH C-SEASON
IDV effect on DV + 1.92 BPM - 0.59 BPM

EJD’s data

t test P value .472 .482
Controlling for C-MONTH C-SEASON
IDV effect on DV + 1.66 BPM + 0.72 BPM

H3

IM’s data

t test P value .290 .128
Controlling for C-MONTH C-SEASON
IDV effect on DV - 2.23 BPM + 2.99 BPM

KW’s data

t test P value .126 .168
Controlling for C-MONTH C-SEASON
IDV effect on DV + 0.26 BPM + 1.75 BPM

EJD’s data

t test P value .558 .520
Controlling for C-MONTH C-SEASON
IDV effect on DV - 0.09 BPM - 0.06 BPM

H5

IM’s data

t test P value .017 .017

As shown in Table 10, most of the results obtained during the Confirmatory phase are 
not statistically discernible at the .05 level of statistical significance. Hence, the data we 
have cannot infer any conclusions about 19 of these 24 hypotheses reliably.
Nevertheless, if we apply the same filtering criteria defined in subsection “Results 
Selection Criteria”, we can only use one group of results. That is the H1 using IM’s data, 
showing a negative suggested effect of the SAT (when greater than daily average) in 
the TST of - 1404.86 seconds (- 23 minutes and 24.86 seconds) and - 985.25 seconds (- 
16 minutes and 25.25 seconds), while controlling for C-MONTH and C-SEASON, 
respectively.
We also focus on the result obtained for H3 with KW’s data while controlling for C-
MONTH, as the suggested effect obtained with the MoTR method is impossible to 
obtain in real life (- 517.69 BPM). The most plausible explanation for this result is that 
we used noise simulation for every MoTR implementation, with a value randomly 
generated out of a normal distribution, with the mean being the mean value of the data 
with which the model was fitted previously. By doing so, this specific simulation 
occasionally generated too many outliers or one extra distant outlier that increased 
the noise inputted in one or more simulations. It is important to mention that this 
simulation was repeated during the results-making process, so we could be sure this 
was not caused by any code or compiler error — this was possible because MoTR 
implementation has a fixed initial seed for all the randomly generated values.

DISCUSSION

Discussion of the Results Using MDE Criterion
From all the a priori hypotheses from the Exploratory A phase, only the results of two 
were included following the inclusion criteria defined in Subsection “Results Selection 
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Criteria”, and both results were based on the IM’s data (H1 and H3). One of these 
hypotheses, H3, was not supported. The other, H1, was supported when controlling for 
A-MONTH but not supported when controlling for A-SEASON. That may tell us that the 
month to which the data is referring influences the suggested effect of SAT on the TST. 
A possible explanation for that is that the data used by this type of hypothesis (A) 
includes a total of six months (August to January) and a total of three seasons 
(Summer, Autumn, and Winter), for which Summer and Winter are only represented 
by approximately one and two months, respectively. In contrast, Autumn is fully 
represented with three months of data. If we assume the month influences the 
outcome being studied (TST), then we might be looking at a version of Simpson’s 
Paradox ((95)), in which the effect size of every month is lost when we combine them 
into seasons, thus explaining why we get a positive suggested effect when controlling 
for all the months, but we get a negative suggested effect when we control for the 
season, that is, a combined version of the months. According to this paradox, the 
correct result is given when controlling A-MONTH. That is, the hypothesis can be 
supported. Additionally, this observed difference might be caused by different 
distributions of physical activity—steps—throughout the daytime, which may depend 
on the season or weather conditions, for example.
From the Exploratory B phase, only H4 was supported, showing that KW’s socializing 
events could positively have affected the DIF-HR. The difference between the 
maximum and minimum heart rate registered during the following sleep period 
increased. The biggest suggested effect was obtained with six days of lag, that is, 
considering the history of the past six days. That means that the KW’s DIF-HR values 
are dependent on the days before. A possible cause of that is that socialization 
happened at a weekend day (6th day), with a stressful proceeding week, in which DIF-
HR was slightly higher than usual mean DIF-HR; the socialization event resulted in the 
following DIF-HR notably higher than usual. In the case of days with usual DIF-HR, 
followed by one day of socialization, the resulting nighttime DIF-HR may not be 
notably higher than usual; the body metabolizes" well socialization exposure. All the 
other hypotheses (H6, H7, and H9) were not supported, for which the MoTR method 
always revealed the contrary change on the outcome variables compared to the initial 
hypotheses. Although, if we compare the results using MoTR with the suggested effect 
direction shown by the original data (cf. Table 11), H7 and H9 are supported by the 
original data and not by MoTR. A possible cause is that the MoTR method meticulously 
evaluates the causation between the IDV and DV variables, while the original data can 
give false conclusions about that causation.
When looking at the results selection criteria, there might have been some results 
being discarded erroneously because the minimum suggested effect definitions (cf. 
Table 5) were considered as the highest possible device error according to the 
literature. Because multiple devices were used to collect the data, there is a possibility 
that some of the data originating from a more accurate device still got rejected 
according to the minimum value inclusion thresholds defined in this study.

Table 11. Comparison between the outcome change previewed by the a priori 
hypotheses, obtained by the results selected using the MDE criterion, and the change 
observed using the naive method for H4, H6, H7, and H9 (note: only applies to 
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participant KW). Refer to Table 8 for details on the Hypotheses. For all the hypotheses, 
the naive method resulted in the same suggested effect direction, whether controlling 
for B-MONTH or B-SEASON.

A priori Results with MDE Results with naïve method
Hypothesis Outcome change Outcome change Outcome change

H4 Increase Increase Decrease
H6 Decrease Increase Increase almost always 

(decrease with 10 days of lag)
H7 Decrease Increase Decrease
H9 Increase Decrease Increase

The main goal of the Testing phase was to test if the model used in MoTR could be 
used in future data, that is, data in which the model would have never been 
trained/fitted. To this analysis, we assessed two results: (1) the model fitting; (2) the 
model estimates for the new data. Firstly, as shown in Table 9, the R-squared in A 
values were almost always negative except for H9 controlling for B-MONTH. That 
means that the estimates of the model for the new data (part A) were shifted from the 
actual original new data (original values of part A), thus revealing that even with the 
model being accurate in estimating the new data values, adjustments must be made to 
obtain them in the right range of values. The smallest differences between the R-
squared in B and the R-squared in A are for H9 (controlling for B-MONTH and B-
SEASON) and H4 (controlling for B-SEASON), all having a difference below 0.400. 
These three results were selected based on an arbitrary decision of including half of 
the total amount of results, although this can be shifted to suit the researcher’s needs. 
Second, to evaluate the model estimates for the new data, we should compare the 
direction of the suggested effect measured by MoTR in the new data with the result 
shown in Table 8. Picking only the H4 and H9 selected as previously detailed, the IDV 
suggested effect on DV for H4 was a decreasing of the DV, that is, the contrary 
direction of the suggested effect estimated by the model for the type B data (in which it 
was trained). A note should be made about the direction of the suggested effect 
calculated using the naive method for the H4, which increases the DV identically to the 
results in data of type B. For H9, both the naive and the MoTR methods estimated a 
negative suggested effect of IDV, that is, a decreasing of the DV, consistent with the 
results in type B data. However, all the P values of H4 and H9 testing phase results 
were higher than .05, making those results not statistically discernible.
From the fourth and last phase of results, the Confirmatory, only the H2 and H5 were 
supported, although for different participants (H2 for KW and H5 for IM) and never 
with a discernible result, that is, always with a suggested effect estimated below the 
minimum suggested effect inclusion criteria (cf. Table 5 - 0.035 meters for KW’s step 
length and 2 BPM for all heart rate values).
Because this is an observational study and not an interventional one, no causality can 
be strongly concluded but only hypothesized, using the presented MoTR method to do 
so.
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Potential Unobserved Confounding Variables
Additionally, there is a possible explanation for not obtaining any statistically 
discernible result for KW’s nor EJD’s data on the Exploratory A phase. Because the 
used data of type A was collected from 14 August 2020 until 8 January 2021 (cf. 
Subsection “Participants and Collected Data Definition”), the lockdown due to the 
COVID-19 pandemic may have been a confounder that this study did not account for. 
Three types of behavior occurred with the three participants: KW had a relatively 
active daily life, walking to work every day as usual; EJD was in lockdown for 
approximately half of the data collection time; IM was in lockdown during almost all 
the days of data collection. That may help justify why EJD’s data did not show the 
needed consistency for the results to be statistically discernible. As for KW’s data, 
although she did not stop the normal daily physical activity involved in commuting to 
work every day, there may have been context changes influencing the measurements 
made during that period, and for which this study did not account for, like for example 
changes in social interaction, travels, or in exercise patterns.
Finally, we acknowledge some possible confounders that this study did not account for 
when applying the methods. The country where KW lived in might have impacted her 
data, as in study period B (February 2017 – August 2020) she was moving every few 
months between Denmark, Switzerland, and the United States of America (mostly 
during Summer), that have had influenced her overall lifestyle patterns, the sleep and 
steps taken per day and exercising, but also patterns of nutritional intake that 
influences the metabolism and hence the HR patterns. For EJD’s and IM’s data, it is 
possible that external factors might have influenced the collected data in addition to 
lockdown, namely alcohol intake, late meals, and visual and psychological stimulation 
(e.g., watching movies, working until late, mobile devices used before or in bed) that 
were not measured and can influence HR levels and the TST.

Applicability of the Method
The N-of-1 Observational Study method presented here provides a new tool to 
interpret self-collected data and correlate it with daily-life stressors. Specifically, the 
MoTR method is presented as a new tool to assess potential causality using intensive 
longitudinal data ((96–98)). 
One use case of the MoTR method is to help develop N1RTs for diagnosis or 
intervention/treatment. After applying it to data, researchers can use this method to 
select findings with the largest statistically discernible differences from the naive. That 
will indicate possible confounding variables that can change decisions on a future 
intervention. Finally, MoTR can also help discuss a possible intervention plan by 
analyzing the highest potential causality between intensive longitudinal data and the 
outcome expected to be affected during a study.
Thus, this novel method is intended to be used with one’s data. However, the best 
practice would be to (a) use occasional self-screening mental health questionnaires 
and (b) work with a health expert to analyze the data and conclude about them.

Conclusions and Future Work Areas
Self-tracking devices are nowadays very common and used for a multitude of 
purposes. Most of those are used to track sleep, heart rate, and physical activity data 
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only to enable a generic self-perception of one’s daily behaviors and state of the body. 
They are a ubiquitous, simple, and useful tool to conclude about the individual’s 
behavior patterns. Additionally, if used longitudinally, they can also enable the 
acquisition of the datasets that can further help understand how certain behaviors and 
external factors (such as stressors) impact the physiology and functioning of the body.
Therefore, this study implemented the MoTR method evaluating the suggested effects 
of daily stressors on nighttime heart rate, sleep time, and physical activity in an 
individualized way: via the N-of-1 approach. For one of the three participants (IM), we 
found that physical activity can increase the nighttime heart rate amplitude, whereas 
there are no strong conclusions about its suggested effect on total sleep time. For one 
of the other participants (KW), socializing, yoga, and self-reported exercise were 
associated withmay have  increased the nighttime heart rate. On contrary, being 
tires/sick/stressed (a self-reported state) may have decreased the nighttime heart 
rate, which decreased when the participant self-reported being tired/sick/stressed.
Our study had the following limitations. The interval of collection of data of type A 
might have been too short to accurately evaluate the suggested effect of the selected 
IDVs (approximately only five months long, under changing seasons and variable 
COVID-19 conditions). There were only self-reported and wearable-collected data 
daily, thus losing any detail that an intra-day sampling might have provided. The data 
regarding physical activity—steps—had no detail of the moment of the day. Thus, the 
results in this paper only focus on the possible effect of the aggregate total number of 
steps rather than the steps taken during, for example, the morning, afternoon, or night 
periods. This might also have caused the differences between the two groups of 
control data when estimating the effect of SAT on TST. The self-reported (except 
stress) data were coded by the user (KW) at the moment of this study deployment 
(early/mid-2021), possibly containing a bias based on unclear calendar notes/events 
for 2017-2020. Specifically, when collecting stress data, KW did not account for its use 
in this study, using it asmomentary week-to-week management of health and 
work/life balance. Thus, a minimal bias is also expected in this data. The lockdown 
during the COVID-19 pandemic might have influenced the measured suggested effects 
of the IDV’s, especially for one of the three participants (IM) who was in an almost full 
lockdown during the collection period for data of type A. For example, this lockdown 
might have interfered with the participant's sleep-wake regimen before its start. 
Additionally, many other confounders likely influenced the variables measured in both 
types of data (self-reported and wearable-collected).
Future studies shall focus on collecting, analyzing, and modeling intraday data for the 
hypotheses stated during this study. A longer data collection period would be 
beneficial too. We will also assess multilevel models for this same approach. Data 
collected before the COVID-19 lockdown could help understand this paper's suggested 
effects by comparing the conclusions before and after that moment. Finally, a 
randomized control trial should also be conducted to test the causality of variables 
suggested by the methods presented here.
Additionally, in a future study, rather than using the AIC, BIC, and F statistic to perform 
model selection in order to meet the MBL criterion (cf. Subsection ”Results Selection 
Criteria” and SUPPLEMENTARY MATERIALS AND FORMULAS), we may instead apply 
k-fold cross-validation. For example, we might conduct leave-one-out cross-validation 
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by first calculating each model’s predicted residual sum-of-squares (PRESS) statistic 
(99), and then selecting the model with the highest PRESS statistic. We would then fit 
this model on all training data and use its estimated coefficients to predict values in 
any new (i.e., test) dataset.
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SUPPLEMENTARY MATERIALS AND FORMULAS
The dataset generated and analyzed during this study is available upon reasonable 
request from the Yareta repository, the research data repository of Geneva’s Higher 
Education Institutions.
The organization of the dataset was done using Microsoft Office Excel software.
The analysis code in Python language (100) is available at 
https://gitfront.io/r/IgorMatias3/E34WEsuwBnrR/MoTR-python/ (to be replaced by 
a public repository when article accepted for publication).
The following Python language packages were used, aside from its standard libraries. 
NumPy ((101)), Pandas ((102)), Scikit-Learn ((103)), Matplotlib ((104)), and SciPy 
((105)).

Stopping Rule
Let  index each Monte Carlo simulation run corresponding to a randomly shuffled 𝑗
exposure vector. Let  represent the true, unknown APTE, and let  represent the 𝜇 𝑌𝑗
statistically consistent (i.e., unbiased with larger and larger samples) APTE estimate 
we calculate at run  from our data, with true sample-to-sample variance  𝑗 𝜎2 = 𝑉(𝑌)
and standard deviation .𝜎
Consider the model and the data used to fit the model as fixed. Specifically, suppose  𝑌𝑗
randomly varies only due to the random shuffling, conditional on the data and 
corresponding model parameters or metrics. Then the set of  values are identically 𝑌𝑗
and independently distributed.
Let  represent the estimator for  defined as the empirical mean of all the 𝑌𝑘 =

1
𝑘∑𝑘

𝑗 = 1𝑌𝑗 𝜇

 values for runs  through , with true variance 𝑌𝑗 𝑗 = 1 𝑘 𝑉(𝑌𝑘) =
1
𝑘2∑

𝑘
𝑗 = 1𝑉(𝑌𝑗) =

1
𝑘𝑉(𝑌𝑗) =

. Hence, the standard error of the estimator is . Because we do 
𝜎2

𝑘 𝑆𝐸(𝑌𝑘) = 𝑉(𝑌𝑘) =
𝜎
𝑘

not know , the true standard deviation of , we will estimate it using the sample 𝜎 𝑌
standard deviation of the  APTE estimates, denoted  with corresponding estimated 𝑘 𝜎𝑘

standard error .𝑆𝐸(𝑌𝑘) =
𝜎𝑘

𝑘
We defined the stopping rule using the empirical quantity .For a 𝑎𝑐𝑣𝑘𝑆𝐸(𝑌𝑘)/|𝑌𝑘|
sufficiently long time series, Slutsky’s theorem can be used to show that  𝑎𝑐𝑣𝑘

approaches the true, unknown absolute coefficient of variation  — a quantity (
𝜎
𝑘)/|𝜇|

that standardizes the between-sample variation in APTEs based on the APTE size. We 
used the absolute value of  because we wished to make standard comparisons based 𝜇
on APTE size, not direction.
Furthermore,  approaches zero as  increases because the numerator  𝑎𝑐𝑣𝑘 𝑘

𝜎
𝑘

approaches zero. Hence, this quantity could potentially stabilize within finite 
computing time as the number of MoTR simulation runs increased, provided the true 
variance  was finite. It could also be applied across a range of APTE sizes and 𝜎2

variances thanks to its standardizing property. We chose it for this reason, and 
arbitrarily defined  as indicating stability of APTE estimates by run .𝑎𝑐𝑣𝑘 < 0.5 𝑘
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The final stopping rule had two conditions or criteria. We stopped the MoTR runs 
when one of the following two conditions were met: (1)  and , or 𝑘 ≥ 1000 𝑎𝑐𝑣𝑘 < 0.5
(2)  (to set a computational time limit on the algorithm).𝑘 = 10000

R-squared Calculation
Let  denote observed outcome , and  denote the corresponding predicted 𝑌𝑖 𝑖 = 1,…,𝑛 𝑌𝑖

outcome. Let  denote the empirical overall mean outcome of the target 𝑌𝑛 = ∑𝑛
𝑖 = 1𝑌𝑖

dataset. The R-squared formula is .𝑅2 = 1 ― ∑𝑛
𝑖 = 1(𝑌𝑖 ― 𝑌𝑖)/∑𝑛

𝑖 = 1(𝑌𝑖 ― 𝑌𝑛)
To calculate the R-squared values, the following Python code was used.

r_squared = 1 - sum((y-yhat)**2) / sum((y-numpy.mean(y))**2)

Here, y and yhat represent  and , respectively. numpy.mean is the empirical mean 𝑌𝑖 𝑌𝑖
function from the Numpy library.

Results Selection Using the MBL Criterion

Results Using the MBL Criterion
The MBL criterion selects the model that has the most statistical evidence for a 
suggested effect, fits the original observed data best, and estimates a suggested effect 
that differs most from its corresponding naive effect estimate. It is a way to distinguish 
correlation from causation by quantifying findings of correlation with those of 
causation, comparing them, and selecting the model with the greatest difference 
between the two.
The MBL criterion itself consists of three sub-criteria, including the MDE criterion for 
identifying the model with the most statistically supported evidence of a suggested 
effect (a finding that can be interpreted in terms of causation). However, the MDE 
procedure does not directly compare this effect estimate with the naive effect estimate 
simply calculated by comparing the mean observed outcomes between the two IDV 
levels (a finding that can only be interpreted in terms of correlation/association).
Hence, the MBL criterion requires that two other sub-criteria be met when selecting a 
final model. The first is the “best-fitting model” sub-criterion, the “B” in MBL. Of all 
candidate models, the model that meets this sub-criterion explains the most variation 
in the outcome, measured using three goodness-of-fit metrics: AIC, BIC, and the 
omnibus F test P value.
The second is the “largest confounding influence” sub-criterion, the “L” in MBL. Of all 
candidate models, the model that meets this sub-criterion shows the largest difference 
in size between the naive effect estimate and the MoTR effect estimate. That is, of all 
candidate models, it has the largest absolute difference between the mean differences 
in outcome under low and high exposure, before and after applying MoTR.
Note that the magnitude of the three quantities used in each sub-criterion can vary 
greatly across both criteria and models. Hence, to be able to simultaneously compare 
all three values for each model with the three values of any other model, we needed to 
first standardize all three quantities. To do so, for each quantity, we divided the raw 
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value (e.g., MDE P value) by the difference between the minimum and maximum raw 
values of all candidate models. This ensured that all three sub-criteria used 
standardized values ranging from 0 to 1.

Exploratory Phases Results Using MBL Criterion
Table 12. Selected results from Exploratory A and Exploratory B phases using MBL 
criterion. Time values are in the format “minutes:seconds.”

Exploratory 
A

Controlling for A-MONTH A-SEASON
Lag 3 days 1 day
IDV effect on DV + 17:47.047 -18:21.077

H1 IM’s data

t test P value .034 .027
Controlling for A-MONTH A-SEASON
Lag 1 day 2 days
IDV effect on DV + 5:61 BPM + 1.02 BPM

H3 IM’s data

t test P value < .001 .093
Exploratory 
B

Controlling for B-MONTH B-SEASON
Lag 3 days 3 days
IDV effect on DV + 2.65 BPM + 5.64 BPM

H4 KW’s data

t test P value .009 .002
Controlling for B-MONTH B-SEASON
Lag 4 days 3 days
IDV effect on DV - 4.17 BPM - 6.79 BPM

H9 KW’s data

t test P value .002 .001

Exploratory A: Suggested Effect of SAT on TST (H1)
Like the MDE criterion results, only IM’s data provided statistically discernible results 
for the H1.
As presented by Table 12, the suggested effect of SAT above the daily average on the 
TST was positive when controlling for A-MONTH and negative when controlling for A-
SEASON. These selected results show the same as using the MDE criterion, although 
the selected lag is different when controlling for A-MONTH.
Like for the MDE criterion, Table 13 shows the comparison between the same-lag 
results for the results above, as the two lag levels are not the same. Like for the first-
used criteria, the inverse suggested effect of sleep depending on the control used is 
still present when considering another number of days as lag.

Table 13. Comparison of the selected results for H1 (Exploratory A), using MBL 
criterion, with its correspondents (same days of lag) on the other control type. Time 
values are in the format “minutes:seconds”.

H1 IM’s data Controlling for A-MONTH A-SEASON
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Lag 3 days 3 days (not selected)
IDV effect on DV + 17:47.047 - 4.58.967
t test P value .034 .054
Controlling for A-MONTH A-SEASON
Lag 1 day (not selected) 1 day
IDV effect on DV + 6:34.288 - 18:21.077

IM’s data

t test P value .048 .027

Exploratory A: Suggested Effect of SAT on DIF-HR (H3)
For the third hypothesis, Table 12 shows the selected lags according to the MBL 
criterion. Compared to the other used criteria, only when controlling for A-SEASON we 
find a different result, this time being the suggested effect approximately double and 
with a higher P value, which makes this selection not statistically discernible.

Exploratory B: Suggested Effect of Socializing on DIF-HR (H4)
The selected results for H4 differ from those obtained with the MDE criterion in the 
number of days for lag (6 days for the first criteria and 3 for this). Nevertheless, the 
suggested effect is approximately the same across both criteria. As presented by Table 
12 the suggested effect measured is slightly less and higher when controlling both for 
B-MONTH and B-SEASON, respectively.

Exploratory B: Suggested Effect of Tired/Sick/Stress on nighttime HR (H9)
For the final selection of results according to the MBL criterion, hypothesis H9, the 
suggested effect of a state of tired/sick/stress on nighttime HR is negative like 
observed on the results from the first criteria.
The suggested effect increased in both controlling cases, although the MBL criterion 
led us to 4 and 3 days of lag instead of 10 and 9 like MDE, respectively, for B-MONTH 
and B-SEASON controls.

Table 14. Comparison of the a priori hypotheses and the results obtained using the 
MBL criterion. For H1 there were different results when controlling for A-MONTH 
(increase) and A-SEASON (decrease). TST stands for “total sleep time,” SAT stands for 
“steps per awake time,” and TSS stands for “tired/sick/stress.”

A priori Results with MBL
Hyp. / 
participant

Exposure Exp. 
change

Outcome Out. 
change

Out. 
change

Result

H1/IM SAT Increase TST Increase Inc./Dec. Inconclusive
H3/IM SAT Increase DIF-HR Decrease Increase Not 

supported
H4/KW Socializing Presence DIF-HR Increase Increase Supported
H9/KW TSS Presence Nighttime 

HR
Increase Decrease Not 

supported
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Table 14 presents a comparison between the a priori hypotheses from both phases 
Exploratory A and B and the results obtained following the MDE criterion.

Testing Phase for the Results Using MBL Criterion
Table 15. Testing phase’s results for the hypotheses selected using the MBL criterion. 
MSE stands for “mean squared error.”

Controlling for B-MONTH B-SEASON
Lag 3 days 3 days 
R2 in B 0.309 0.284
MSE in B 0.002 0.002
IDV effect on DV 
(naïve method)

0.14 BPM 0.14 BPM

t test P value 
(naïve method)

.872 .872

R2 in A - 0.171 - 0.127
R2 in B - R2 in A 0.480 0.411
MSE in A 0.001 0.001
MSE in B - MSE in A 0.001 0.001
IDV effect on DV (MoTR) - 0.53 BPM - 0.64 BPM

H4 KW’s data

t test P value (MoTR) .370 .366
Controlling for B-MONTH B-SEASON
Lag 4 days 3 days
R2 in B 0.297 0.260
MSE in B 0.002 0.002
IDV effect on DV 
(naïve method)

- 1.31 BPM - 1.32 BPM

t test P value 
(naïve method)

.141 .138

R2 in A - 0.111 - 0.086
R2 in B - R2 in A 0.408 0.346
MSE in A 0.001 0.001
MSE in B - MSE in A 0.001 0.001
IDV effect on DV (MoTR) - 1.41 BPM - 0.67 BPM

H9 KW’s data

t test P value (MoTR) .409 .380

This second subsection presents the results only for the models obtained from the 
results chosen using MBL (H4 and H9). Table 15 shows the metrics for both 
hypotheses.

Suggested Effect of Socializing on DIF-HR (H4)
When considering MDE selection criteria, the results of using the models selected 
using MBL show an almost null difference between the MSE in B and A. The t test P 
value is also notably smaller when applying the MoTR method (approximately 2.5 
times) and always above .05. The suggested effect of the IDV is also positive when 
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applying the naive approach and negative when using the MoTR. None of the 
calculated suggested effects is higher than the minimum suggested effect defined in 
Table 5.

Suggested Effect of Tired/Sick/Stress on Nighttime HR (H9)
The fitting of the model in parts B and A considering H9 is almost similar between the 
naive method and the MoTR, like it was shown for the selected results using the MDE 
criterion. Similarly, the suggested effect of IDV is also negative and very close to the 
calculated for the chosen models with the MDE criterion. The t test P value is always 
higher than .05 and lower when applying the naive method, like the results selected 
with the other criteria.

Discussion of the Results Using MBL Criterion
From all the a priori hypotheses from the Exploratory A phase, only the results of two 
were included following the inclusion criteria defined in Subsection “Results Selection 
Criteria”, and both results were based on the IM’s data (H1 and H3), just like for the 
MDE criterion. As for MDE, one of these hypotheses, H3, was not supported, and the 
other, H1, was supported when controlling for A-MONTH but not supported when 
controlling for A-SEASON. The possible meaning and explanation for this are the same 
as for the first criterion and are described in the previous subsection. According to that 
explanation, the correct result is given when controlling A-MONTH, thus the 
hypothesis can be supported.
From the Exploratory B phase, only H4 and H9 were included following the MBL 
criterion. From those, only H4 was supported, showing that KW’s socializing events 
could positively have affected the DIF-HR. The difference between the maximum and 
minimum heart rate registered during the following sleep period increased. The 
biggest suggested effect was obtained with three days of lag that is, considering the 
history of the past three days (compared to six days of lag when using the MDE 
criterion of selection). That means that the KW’s DIF-HR values are dependent on the 
days before. A possible cause of that would be the same as for the selected results 
using the other criterion (MDE). The other hypothesis (H9) was not supported, for 
which the MoTR method revealed the contrary change in the outcome variables 
compared to the initial hypotheses. Although, if we compare the results using MoTR 
with the suggested effect direction shown by the original data (cf. Table 16), H9 is 
supported by the original data and not by MoTR. A possible cause is that the MoTR 
method meticulously evaluates the causation between the IDV and DV variables, while 
the original data can give false conclusions about that causation. This also occurred 
with the results using the MDE criterion for H9.

Table 16. Comparison between the outcome change previewed by the a priori 
hypotheses, obtained by the results selected using the MBL criterion, and the change 
observed using the naive method for H4 and H9 (note: only applies to participant KW). 
Refer to Table 14 for details on the Hypotheses. The naive method resulted in the same 
suggested effect direction, whether controlling for B-MONTH or B-SEASON.

A priori Results with MDE Results with naïve method
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Hypothesis Outcome change Outcome change Outcome change

H4 Increase Increase Decrease
H9 Increase Decrease Increase

As for the results of the Testing phase selected using the MDE criterion, we assessed 
two results: (1) the model fitting; (2) the model estimates for the new data. Firstly, as 
shown in Table 15, the R-squared in A values were always negative. That means that 
the estimates of the model for the new data (part A) were shifted from the actual 
original new data (original values of part A), thus revealing that even with the model 
being accurate in estimating the new data values, adjustments must be made to obtain 
them in the right range of values. The smallest difference between the R-squared in B 
and the R-squared in A is for H9 controlling for B-SEASON, with a difference below 
0.400. This threshold (0.400) was selected to match the same used when analyzing the 
results selected using the MDE criterion. Second, to evaluate the model estimates for 
the new data, we should compare the direction of the suggested effect measured by 
MoTR in the new data with the result shown in Table 8. Picking only H9 selected as 
previously detailed, both the naive and the MoTR methods estimated a negative 
suggested effect of IDV, that is, a decrease of the DV, consistent with the results in type 
B data. However, all the P values of H9 testing phase results were higher than .05, 
making those results not statistically discernible.
As previously stated in Subsection “Discussion of the Results Using MDE Criterion”, 
this is an observational study and not an interventional one, no causality can be 
strongly concluded but only hypothesized, using the presented MoTR method to do so.
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