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Abstract

Over the past decades, the field of quantum technologies has been developed from funda-
mental quantum mechanical experiments. The ability to control and manipulate physical
systems at the level of single quanta is at the heart of the modern-day quantum revolution,
enabling the use of quantum mechanical systems and phenomena for communication and
computation. In particular, quantum entanglement, and protocols based thereon, are key
ingredients for the real-world implementation of future quantum networks. In this thesis,
I concentrate on heralded single-photon sources as a key quantum technology for use in
quantum optics experiments, as well as the certification and distribution of photonic en-
tanglement in quantum networks.
The first part of this thesis focusses on single-photon sources as they become increasingly
important in quantum technologies. A benchmark for single-photon sources is presented,
which is based on the outcome of an autocorrelation measurement. From such a measure-
ment, the probability of the source to emit a single photon can be bounded, which is a
natural benchmark for the quality of the source. This is then experimentally demonstrated
using a heralded single-photon source. Further, an improved heralded single-photon source
is developed by replacing the original heralding detector by a photon-number-resolving de-
tector. In this way, multi-photon emissions are filtered out, leading to a reduction in the
heralded second-order autocorrelation function of (26.9± 0.1) %.
In the remainder of the thesis, I focus on the certification and distribution of photonic
entanglement for use in quantum networks. First, an improved entanglement witness for
genuine multipartite single-photon path entanglement is presented and demonstrated with
local measurements for an 8-partite state. In this way, large multipartite W states can
be certified through the estimation of only three observables. This has a vastly improved
scaling over previously developed entanglement witnesses or other protocols, such as state
tomography.
Following this, I discuss the implementation of two different protocols for the distribution
of entanglement at telecommunication wavelength. This is integral in overcoming the in-
herent loss present in optical fibres, which currently limits direct transmission distances.
The first protocol employs two weakly pumped non-degenerate photon-pair sources to her-
ald the distribution of single-photon path entanglement. By actively phase stabilising an
interferometer with arm length of 1 km, entanglement is distributed and certified by local
measurements at a heralding rate of 1.6 kcps.
The second protocol, in conjunction with on-demand single-photon sources, is proposed for
device-independent quantum key distribution and heralds the distribution of two polarisation-
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entangled photons. Here, a variant of the protocol is demonstrated, where four input pho-
tons originate from two degenerate down-converted photon pairs, and the state is charac-
terised after four-fold post-selection. The experimental challenges in this implementation
and the expected performances for the case of the heralded distribution of polarisation
entanglement are discussed.
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Résumé

Au cours des dernières décennies, le domaine des technologies quantiques s’est développé
à partir d’expériences fondamentales de mécanique quantique. La capacité à contrôler et
manipuler des systèmes physiques au niveau de quanta uniques est au cœur de la révolution
quantique moderne. Elle permet l’utilisation de systèmes et de phénomènes de mécanique
quantique pour la communication et le calcul. En particulier, l’intrication quantique et les
protocoles basés sur celle-ci sont des ingrédients clés pour la mise en œuvre dans le monde
réel de futurs réseaux quantiques.
La première partie de cette thèse se concentre sur les sources de photons uniques car elles
deviennent de plus en plus importantes dans les technologies quantiques. Un test pour les
sources de photons uniques est présenté. Il est basé sur le résultat d’une mesure d’autocor-
rélation. A partir d’une telle mesure, la probabilité que la source émette un photon unique
peut être bornée, ce qui donne un repère naturel pour la qualité de la source. Ceci est
ensuite démontré expérimentalement à l’aide d’une source de photons uniques annoncés.
En outre, une source de photons uniques annoncés améliorée est développée en remplaçant
le détecteur d’annonce d’origine par un détecteur à résolution du nombre de photons. De
cette manière, les émissions multiphotoniques sont filtrées, ce qui entraîne une réduction
de la fonction d’autocorrélation de second ordre annoncée de (26.9± 0.1) %.
Dans le reste de la thèse, je me concentre sur la certification et la distribution de l’in-
trication photonique pour une utilisation dans les réseaux quantiques. Tout d’abord, un
témoin d’intrication amélioré pour l’intrication "genuine" multipartite en chemin à photon
unique est présenté et démontré avec des mesures locales pour un état à 8 parties. De cette
façon, de grands états W multipartites peuvent être certifiés par l’estimation de seulement
trois observables. Cela a une mise à l’échelle considérablement améliorée par rapport aux
témoins d’intrication développés précédemment ou à d’autres protocoles, tels que la tomo-
graphie d’état.
Je discute ensuite de la mise en œuvre de deux protocoles différents pour la distribu-
tion d’intrication à la longueur d’onde des télécommunications. Ceci est essentiel pour
surmonter la perte inhérente aux fibres optiques, qui limite actuellement les distances de
transmission directe. Le premier protocole utilise deux sources de paires de photons non
dégénérés faiblement pompées pour annoncer la distribution d’intrication en chemin à pho-
ton unique. En stabilisant activement la phase d’un interféromètre avec une longueur de
bras de 1 km, l’intrication est distribuée et certifiée par des mesures locales à un taux d’an-
nonce de 1.6 kcps.
Le deuxième protocole, en conjonction avec des sources de photons uniques à la demande,
est proposé pour la distribution de clé quantique indépendante de l’appareil et annonce la
distribution de deux photons intriqués en polarisation. Ici, une variante du protocole est
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démontrée, où quatre photons d’entrée proviennent de deux paires de photons dégénérés
obtenues par conversion paramétrique descendante spontanée, et l’état est caractérisé après
une post-sélection quadruple. Les défis expérimentaux de cette implémentation et les per-
formances attendues pour le cas de la distribution annoncée de l’intrication en polarisation
sont discutés.
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1. Introduction

As quantum mechanics revolutionised physics a century ago, its applications are about to
revolutionise technology in the present. Allegedly, at the end of the 19th century, Lord
Kelvin stated: "There is nothing new to be discovered in physics now. All that remains
is more and more precise measurement". In the following decades, Einstein developed the
special and general theories of relativity [1, 2] and, together with Planck and Bohr, laid the
foundation of quantum mechanics [3–5]. In the mid 1920s, with Heisenberg’s uncertainty
principle and Schrödinger’s wave mechanics, modern quantum mechanics was born [6, 7].
This theory was so different from the known classical physics that it completely changed
the understanding of nature at its small scales and triggered new research and technological
developments.

The first quantum revolution, based on the understanding of quantum mechanics, lead to
devices such as the transistor, first demonstrated in the late 1940s by Bardeen, Brattain and
Shockley [8, 9], and the first laser built in 1960 by Maiman [10]. Clearly, those inventions
revolutionised computation and communication, and with that, all domains of technology.
Further technological advances allowed for probing and controlling systems at the quantum
level, often referred to as the second quantum revolution [11]. Investigating the usage of
such quantum systems for computing and communication tasks lead to the field of quantum
information. As it turns out, using quantum systems for computing allows for an algorithm
that can find the prime factors of an integer, which is the underlying problem of the used
RSA public-key cryptography protocol [12], exponentially faster than any currently known
classical algorithm [13]. Fortunately, quantum cryptography protocols offer a solution to
the threat posed by quantum computers and can guarantee information-theoretically secure
communication [14].

In 2022, Aspect, Clauser and Zeilinger were awarded the Nobel prize in physics "for experi-
ments with entangled photons, establishing the violation of Bell inequalities and pioneering
quantum information science". These ground-breaking experiments clearly confirmed that
quantum mechanics with its implications such as Bell nonlocality [15–18] or quantum tele-
portation [19, 20] not only is a beautiful theory, but also accurately describes physics.

First, in Sec. 1.1, we introduce the basic concept of quantum states and quantum entan-
glement to lay the basis for the theory sections in this thesis. Then, in Sec. 1.2, a brief
overview of the field of quantum communication is given, followed by the outline of this
thesis in Sec. 1.3.
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1. Introduction

1.1. Quantum states and entanglement

A quantum system is described by a wave function or quantum state. Mathematically, those
quantum states can be described as elements of a Hilbert space over the complex numbers,
that is an inner product space which is complete with respect to the norm defined by the
inner product. The simplest example of a quantum state is the quantum bit or qubit, the
quantum equivalent of the classical bit. In the Dirac notation, that is |ψ〉 = α |0〉+ β |1〉,
where α, β ∈ C are normalised coefficients such that |α|2 + |β|2 = 1, and |0〉, |1〉 are
orthogonal states of the system (〈0|1〉 = 0). A global phase factor eiδ multiplied to the
state does not have any physical effect. Therefore, a qubit state can be parametrised with
the two real angles θ ∈ [0, π] and φ ∈ [0, 2π)

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (1.1)

and graphically represented in the so called Bloch sphere, as shown in Fig. 1.1. This state
is called a pure qubit state, and for θ /∈ {0, π}, it is in a coherent superposition between
the two basis states |0〉 and |1〉.

In reality, qubits are usually subject to environmental noise and can decay (|1〉 → |0〉) and
loose their coherent superposition. This results in states that are statistical mixtures of
pure states, described by a density matrix. For example, the density matrix corresponding
to the pure state in Eq. (1.1) is ρ = |ψ〉〈ψ| and the fully mixed state at the origin of the
Bloch sphere is ρ = (|0〉〈0| + |1〉〈1|)/2. The purity of an arbitrary state ρ is defined as
P = tr

(
ρ2
)
with 1

d ≤ P ≤ 1, where d is the dimension of the Hilbert space on which the
state is defined. We note that all states on the surface of the Bloch sphere are pure states,
i.e. P = 1, and states inside the sphere are mixed, with the maximally mixed state at its
centre. The density matrix of a qubit state ρ is related to its Bloch vector ~v according to

ρ =
1

2
(1+ ~v · ~σ), (1.2)

x

y

z

Figure 1.1.: Bloch sphere representation of a qubit state |ψ〉.
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1.1. Quantum states and entanglement

where ~σ = (σx, σy, σz)
T is the vector of Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (1.3)

Physically, a qubit can be realised, for example, with nuclear spin states of an atom
{|↑〉 , |↓〉}, with the polarisation states of a photon {|H〉 , |V 〉} or with photon number
states, where |0〉 denotes the electromagnetic vacuum state and |1〉 the single-photon state.
We will encounter the two latter realisations in this thesis.

If we want to describe the state of not only one, but multiple quantum systems, the full
state space can be described by the tensor product space of the individual systems. As
the simplest example, let us consider a two-qubit state. In that case, the local Hilbert
spaces are spanned by the basis {|0〉 , |1〉} and the joint space is spanned by the basis
{|00〉 , |01〉 , |10〉 , |11〉}, where e.g. |10〉 = |1〉1 ⊗ |0〉2 is a tensor product of the basis states
of systems 1 and 2. If we have two systems in pure quantum states |ψ1〉 and |ψ2〉, then the
overall state is described by |Ψ〉 = |ψ1〉 ⊗ |ψ2〉, which is an example of a separable state.
However, multipartite quantum states can be non-separable or entangled, which is a purely
quantum-mechanical feature. An example of entangled two-qubit states are the four Bell
states

∣∣Φ±
〉

=
1√
2

(
|00〉 ± |11〉

)
,

∣∣Ψ±
〉

=
1√
2

(
|01〉 ± |10〉

)
, (1.4)

which are maximally entangled and also form a basis of the two-qubit state space. In
general, a state ρe of N systems, described by the Hilbert space H1 ⊗ · · · ⊗ HN , is called
entangled if it cannot be written as a convex combination of product states [21, 22]

ρe 6=
∑

i

pi ρ
(i)
1 ⊗ · · · ⊗ ρ

(i)
N , (1.5)

where
∑

i pi = 1. Moreover, an N -partite state ρs is said to be separable with respect to
a partition G1|...|Gm of {H1, ...,HN} if it can be expressed as [23]

ρs =
∑

i

pi ρ
(i)
G1
⊗ · · · ⊗ ρ(i)

Gm
. (1.6)

An N -partite state is called genuinely k-partite entangled if it cannot be written as a convex
combination of states, each of which is separable with respect to at least one partition
G1|G2|... of {H1, ...,HN} with |Gj | ≤ k − 1, for all j [24]. Further, an N -partite state is
genuinely entangled if it is genuinely N -partite entangled.

Given a state in an experiment that is supposed to be entangled, the question arises of how
one can certify the entanglement. One approach would be to experimentally reconstruct
the density matrix of the state via state tomography [25, 26]. This provides all information
about the state ρ. If a particular state |ψ〉 is desired, then with the reconstructed density

3



1. Introduction

separable entangled

Figure 1.2.: Schematic representation of the convex set of all separable states inside the
set of entangled states. The red line connects all the states ρ for which the expectation
value of the witness tr

(
ρ Ŵ

)
= 0.

matrix ρ, the fidelity of the target state |ψ〉 in ρ can then be calculated according to F =

〈ψ| ρ |ψ〉. While this approach can be useful to better understand the inner workings of the
system which generates the state, the measurement settings required for state tomography
scale exponentially with the number of parties. It can also be that it is not necessary to
know all information about the state, but enough to know whether entanglement is present.
Therefore, a more efficient and practical way to certify entanglement are entanglement
witnesses, which do not require knowledge about the density matrix of the state. An
observable Ŵ is called an entanglement witness, if its expectation value tr

(
ρsŴ

)
≤ 0

for all separable states ρs and tr
(
ρeŴ

)
> 0 for at least one entangled state ρe [27]. A

graphical representation of an entanglement witness is shown in Fig. 1.2. A simple example
of a witness for two-qubit states, targeted to detect the state |Ψ+〉, is

Ŵ =
∣∣Ψ+

〉〈
Ψ+
∣∣− 1

2
14 =

1

4
(σx ⊗ σx + σy ⊗ σy − σz ⊗ σz − 14), (1.7)

for further details on the construction see Sec. 6 in Ref. [27]. Given the Werner state ρ =

p |Ψ+〉〈Ψ+|+(1−p)14/4, this witness correctly detects the entanglement, i.e. tr
(
ρŴ

)
> 0,

for p > 1
3 . In general, for multipartite systems it is often challenging to find the optimal

witness that maximally separates the target state from the set of separable states.

1.2. Quantum communication

Quantum communication is the art of transferring a quantum state from one location to
another [28]. The task of distributing entangled states between two or more parties lies
at the heart of quantum communication. It enables applications such as quantum telepor-
tation, distributed quantum computing or device-independent quantum key distribution
(DI-QKD) [29]. Quantum key distribution (QKD), the art of distributing a secret key
between to distant parties by means of quantum states, in particular has immensely pro-
gressed during the past four decades since the invention of the first protocol by Bennett
and Brassard in 1984 [30]. Since future quantum computers represent a threat to the
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1.2. Quantum communication

security of currently applied classical cryptographic protocols [13], QKD protocols are of
great interest because they can guarantee information-theoretical security [14, 31]. State
of the art implementations of prepare and measure QKD protocols with weak coherent
states, employing the decoy method to prevent photon-number-splitting attacks, achieve
transmission distances through optical fibre over 420 km [32] and high secret key rates of
more than 60 Mbps over 10 km of fibre [33, 34]. Implementations of the newer twin-field
QKD protocol are experimentally more challenging since the optical phase in the fibre links
needs to be stabilised or kept track of [35]. Nevertheless, recent implementations of this
protocol are approaching the 1000 km fibre link distance [36–40].

When it comes to the distribution of bipartite entangled states, in recent years, distances
of over 190 km in optical fibre [41, 42] and over 1200 km via a satellite downlink [43] have
been demonstrated for polarisation-entangled photons with post-selection, i.e. by only
considering events as part of the state where both parties detected a photon. However, the
challenge remains to distribute high-fidelity entangled states over long distances, at high
rates and in a heralded way in order to make use of the entanglement. In matter systems,
the heralded entanglement distribution using single-photon schemes has been achieved
over short distances with atoms [44], quantum dots [45, 46] and nitrogen-vacancy (NV)
centres [47], in the latter system even for tripartite states [48]. Usually, higher fidelities
but lower entanglement generation probabilities are achieved with two-photon schemes [49–
52]. In this way, the seminal experiments demonstrating the loophole-free Bell inequality
violation [53] were realised in 2015 with NV centres over a distance of 1.3 km [54] (at about
the same time with the photonic demonstrations [55, 56]) and in 2017 with atoms [57].
Furthermore, the first experiments of DI-QKD, where a secret key is shared between two
parties based on the the violation of Bell’s inequality, were demonstrated in 2022 with
independently trapped strontium ions [58] and rubidium atoms [59]. However, in order
to increase the communication distance and to herald entanglement over long fibre links,
it is necessary for most matter systems to frequency-convert the travelling photons, since
usually their optical transitions are not at telecommunication wavelengths. In this way,
entanglement was recently distributed between two rubidium atomic ensemble quantum
memories [60], between two rear-earth-doped crystals [61] and between two single rubidium
atoms [62].

From all these experiments, it becomes clear that in order to distribute entanglement
over long distances, the carriers or constituents of the quantum state need to be photons
for the transmission part, and in the case of fibre networks, the photons need to be at
telecommunication wavelengths to reduce the transmission loss to 0.18 dB/km. Even so,
the direct transmission from a central source, which generates the entangled state, to
the distant parties is not an option due to transmission losses. In contrast to classical
communication, where optical amplifiers are applied to compensate for transmission losses,
they cannot be used when transmitting quantum states due to the no-cloning theorem [63].
Therefore, repeater protocols based on entanglement swapping need to be applied [64, 65].
In the context of photonic entanglement distribution, several interesting questions can be
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asked. Which physical system should be used to encode the qubit states? Which protocol
should be used for the distribution and what are the experimental challenges? For the
single-photon protocols, how can we certify the distributed single-photon entanglement
with local measurements? And how difficult is their implementation due to the phase
stability requirement? We will address these questions in this thesis. Moreover, as single-
photon sources are becoming increasingly important for various protocols and applications
in quantum technology, we will investigate how we can benchmark single-photon sources in
general and how already well established heralded single-photon sources can be improved.

1.3. Thesis outline

In Chapter 2, the theory and an implementation of a heralded single-photon source based on
spontaneous parametric down-conversion are described. Further, a benchmark for general
single-photon sources based on the outcome of a autocorrelation measurement is presented
and demonstrated, which gives a lower bound on the probability that the source emits
a single photon. Moreover, an improved heralded single-photon source is demonstrated,
where the heralding detector exhibits photon-number resolution which leads to an increase
in the single-photon purity of the heralded state.

In Chapter 3, the concept of single-photon path entanglement is presented and a scalable
entanglement witness to certify multipartite single-photon path-entangled states with local
measurements is introduced. This is followed by a section on the experimental implemen-
tation of the multipartite entanglement witness, where it is applied to certify 8-partite
entanglement. Further, a scheme to distribute and certify single-photon path entangle-
ment in a repeater-like architecture is demonstrated and the experimental challenges are
discussed.

In Chapter 4, a protocol to distribute polarisation-entangled photons is implemented with
probabilistic photon-pair sources and the experimental challenges and limitations are dis-
cussed. Together with deterministic single-photon sources that produce indistinguishable
photons, this protocol is a promising candidate for DI-QKD.

Finally, the results of this thesis are summarised in Chapter 5 and future research directions
are discussed.
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2. Single-photon sources

A photon is a single excitation of the electromagnetic field [66]. The concept of quantised
excitations of electromagnetic energy was first introduced by Planck in 1900 in his deriva-
tion of the black-body radiation law [3]. A few years later, in 1905, Einstein used photons
to explain the photoelectric effect [4]. It then took almost seven decades until the first
experimental demonstration of single-photon behaviour by Clauser in 1974 [67]. Further
development on a source of entangled photon pairs by Grangier, Roger and Aspect [18]
then lead to an experiment in 1986 where the source was explicitly used and characterised
as a source of single photons for the first time [68]. In the same year, the first demonstra-
tion of a single-photon source using spontaneous parametric down-conversion was achieved
by Hong and Mandel [69]. In the current development of quantum technologies, single-
photon sources play a key role [70]. Single photons are a non-classical resource which is
required for many quantum applications ranging from boson sampling [71–79] over the
generation of single-photon entangled states [80–83] and cluster states [84, 85] to protocols
for entanglement distribution [86, 87].

An ideal single-photon source is a fictional device which emits one (and only one) photon
in a single optical mode (pure quantum state) with unit efficiency at a well defined time
(deterministically) or upon request (on-demand). Furthermore, photons emitted at differ-
ent times are indistinguishable, that is identical in all their degrees of freedom – frequency
distribution, spatial mode, polarisation, momentum and emission time with respect to
the trigger. A real single-photon source never has unit efficiency and usually suffers from
multi-photon emissions. Further, the emitted state might not be in a spectrally pure state
and the emitted spectrum can vary from one emission to another or slowly drift over time.
Single-photon sources can be divided into two categories: heralded single-photon sources
(HSPS) and deterministic single-photon sources, however, the border between the two cat-
egories is blurred. In the first case, usually an optically nonlinear interaction is used to
generate a two-mode squeezed vacuum state where a detection in one mode heralds the
presence of a state close to a single-photon state in the other mode. Due to the spontaneous
nature of the nonlinear interaction, spontaneous parametric down-conversion (SPDC) or
spontaneous four-wave mixing, the time of the heralding detection is probabilistic. As the
pump power cannot be increased arbitrarily due to multi-pair emission, the probabilistic
nature limits the application of these sources to cases where only few photons are required
simultaneously. Therefore, deterministic single-photon sources are a crucial ingredient in
order to enable high-repetition rate multi-photon applications. These sources can be ob-
tained either by multiplexing heralded single-photon sources and pushing them into the
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2. Single-photon sources

quasi-deterministic regime [88], or by using isolated systems as single-photon emitters. In
the past two decades, enormous progress, in terms of photon extraction efficiency and indis-
tinguishability, has been made in the development of solid-state quantum dot single-photon
sources [89–92].

With the further development of these sources, it is important to have the right tools
in hand to characterise how they perform. The standard way of determining the single-
photon character of single-photon sources is to measure the second-order autocorrelation
function by carrying out a Hanbury Brown-Twiss experiment [70, 93]. This allows to
bound the multi-photon contribution in the state, however, does not give any information
on the efficiency of the source, which needs to be characterised separately. For many
applications it is essential for the source to fulfil both simultaneously, high efficiency and
low multi-photon emission. In this thesis work, we therefore develop and demonstrate a
benchmark that allows to extract a lower bound on the single-photon probability from an
autocorrelation measurement.

In this chapter, we start with presenting the concepts of heralded single-photon sources
based on spontaneous parametric down-conversion in Sec. 2.1. The experimental param-
eters of the used heralded single-photon source employing a periodically poled potassium
titanyl phosphate crystal are discussed in Sec. 2.2. Then we introduce the single-photon
source benchmark in Sec. 2.3, where we also show the link of the outcome of an autocor-
relation measurement to the Wigner negativity of the measured state. Finally, in Sec. 2.4
we show how to mitigate multi-photon emissions in a heralded single-photon source by
employing a photon-number resolving detector as a heralding detector. The articles that
resulted from this work are attached in P.3 and P.4.

2.1. Theory of heralded single-photon sources

2.1.1. Spontaneous parametric down-conversion

In a classical description, an electro-magnetic field will induce an electric polarisation when
interacting with a dielectric medium, since the charges are displaced from their equilibrium
positions. To the first order, this polarisation ~P = (P1, P2, P3)T is linear in the driving
electric field ~E = (E1, E2, E3)T , however, weaker non-linear terms can be present (see
Ch. 11.2 of Ref. [70])

Pi = ε0

(∑

j

χ
(1)
ij Ej +

∑

jk

χ
(2)
ijkEjEk +

∑

jkl

χ
(3)
ijklEjEkEl + ...

)
, (2.1)

where ε0 is the vacuum permittivity, χ(1) is the linear susceptibility, χ(2) and χ(3) are
the second- and third-order susceptibility tensors of the medium. The non-linear interac-
tion can therefore cause electro-magnetic waves with different frequencies to interact and
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Figure 2.1.: Spontaneous parametric down-conversion (SPDC) in a χ(2) non-linear
medium. (a) Energy conservation: the down-converted signal and idler photons must
conserve the energy of the pump photon. (b) Collinear quasi-phase-matching in a period-
ically poled crystal with poling period Λ.

frequency conversion can occur. Materials with broken inversion symmetry exhibit a non-
zero χ(2) which allows for spontaneous parametric down-conversion (SPDC), a three-wave
mixing process where a higher energy pump photon is converted into two lower energy
daughter photons, called signal and idler (lowest energy of the three). This is a paramet-
ric process, meaning that the energy levels of the interaction medium remains unchanged
before and after the down-conversion. The process must conserve energy and momentum,
as graphically shown in Fig. 2.1

~ωp = ~ωs + ~ωi, (2.2)
~kp = ~ks + ~ki, (2.3)

where ~ is the reduced Planck constant, ω is the angular frequency and ~k the wave vector
of the corresponding photon.

Since in a dielectric medium the refractive index n is dependent on the wavelength λ, and
therefore the wave number becomes |~k| = 2πn(λ)/λ, Eq. (2.3) referred to as the phase-
matching condition is usually not fulfilled. However, it can be achieved, for example, in a
birefringent crystal, where the refractive index is not only dependent on the wavelength, but
also on the polarisation and incident angle of the wave. There exist different types of phase-
matching: in type-0 phase-matching, the polarisation of all three photons is the same; in
type-I phase-matching, signal and idler photons have the same polarisation, but orthogonal
to the pump photon; in type-II phase-matching, signal and idler photons have orthogonal
polarisation, one parallel and one orthogonal to the pump photon. Another aspect of the
phase-matching condition is the orientation of the wave vectors. We now consider the case
of collinear phase-matching, that is, the pump, signal and idler photons’ wave vectors all
point in the same direction. By introducing alternating ferroelectric domains in the crystal
with a poling period Λ, the vector 2π~z/Λ is effectively added to the r.h.s. of Eq. (2.3). This
technique, known as quasi-phase-matching (see [94] and Ch. 11.4.1 of Ref. [70]), reduces
the conversion efficiency due to the remaining wave vector mismatch in each poled region,
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but allows for collinear phase-matching.

In a quantum-mechanical picture, the interaction Hamiltonian is given by (see Ch. 11.2 of
Ref. [70] for the full derivation)

ĤSPDC ∝ χ(2)

∫ L/2

−L/2
dzÊ(+)

p (z, t)Ê(−)
s (z, t)Ê

(−)
i (z, t) + h.c., (2.4)

where L is the interaction length and the field operators are defined as as

Ê(+)
x (z, t) = Ê(−)†

x (z, t) ∝
∫

dωx exp
(
i(kx(ωx)z − ωxt)

)
âx(ωx) (2.5)

with the photon annihilation operator âx(ωx). By calculating the state in the Schrödinger
picture and neglecting terms with more than two photons, one obtains

|ψ〉SPDC = exp
(
− i

~

∫ t

t0

dt′ĤSPDC(t′)
)
|0〉 (2.6)

≈ |0〉+ C

∫∫
dωsdωif(ωs, ωi)â

†
s(ωs)â

†
i (ωi) |0〉 (2.7)

with C ∝ EpL depending linearly on the pump field amplitude Ep and the interaction
length L. The important function here is f(ωs, ωi), known as the joint spectral amplitude
(JSA), and is defined by the pump envelope function α(ω) and the phase-matching function
φ(ωs, ωi) according to

f(ωs, ωi) = α(ωs + ωi)φ(ωs, ωi) = α(ωs + ωi) sinc

(
L

2
∆k(ωs, ωi)

)
, (2.8)

where ∆k(ωs, ωi) = kp(ωs + ωi) − ks(ωs) − ks(ωs) − 2π/Λ, and the sinc function comes
from the integration along the z-axis over the interaction length. We see that the length
of the crystal determines the width of the phase-matching function. Note that in our
case of a Ti:sapphire pump laser, the pump envelope function can be approximated by
α(ωs + ωi) = sech

(
(ωs + ωi − ωp) ln

(
3 + 2

√
2
)
/∆ωp

)
, where ∆ωp denotes the angular

frequency full width at half maximum (FWHM) of the pump power spectrum.

SPDC based heralded single-photon source

In the following, we want to investigate the case where SPDC is used for a heralded single-
photon source (HSPS) by detecting the photons in one mode and therefore heralding the
presence of a photon in the other mode. Here, we closely follow the derivation in [95]. To
simplify the calculations, we can rewrite the JSA as a sum of orthogonal modes

f(ωs, ωi) =
∑

k

√
λkqk(ωs)rk(ωi), (2.9)
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which is known as the Schmidt decomposition [96]. The Schmidt coefficients
√
λk are

positive real numbers and in case f(ωs, ωi) is normalised, they fulfil
∑

k λk = 1 and the
Schmidt modes qk(ωs) and rk(ωi) are orthonormal single-photon spectral functions. For
practical purposes, we assume the coefficients to be sorted, where λ1 ≤ 1 is the largest
one. By introducing the orthonormal states in the signal and idler subspaces

|qk〉s =

∫
dωqk(ω) |ω〉s , |rk〉i =

∫
dωrk(ω) |ω〉i , (2.10)

where 〈qk|qk′〉s = δkk′ and 〈rk|rk′〉i = δkk′ , we can rewrite the two-photon term in Eq. (2.7)

|ψ2〉SPDC =
∑

k

√
λk |qk〉s |rk〉i . (2.11)

We proceed by modelling the detector on the idler mode in the HSPS with a flat frequency
response by the projector

π̂i =

∫
dω |ω〉i 〈ω|i =

∑

k

|rk〉i 〈rk|i . (2.12)

The heralded state in the signal mode is then obtained by the Born rule and tracing over
the idler mode

ρs = tri

(
|ψ〉 〈ψ|SPDC (1s ⊗ π̂i)

)
=
∑

k

λk |qk〉s 〈qk|s . (2.13)

We note that if λ1 < 1, which corresponds to a non-factorable JSA as seen from Eq. (2.9),
this state is a mixed state of different spectral modes.

2.1.2. Spectral purity

In the case where a single photon is used in an application where it interferes with other
states, it is required to have a high spectral purity in order to achieve a high interference
visibility. For the heralded single-photon state ρs given in Eq. (2.13), the spectral purity
is defined by

P = tr
(
ρ2
s

)
=
∑

k

λ2
k. (2.14)

Clearly, P is independent of which of the two modes is used as the heralding mode, but
only depends on the JSA of the SPDC state. In order to obtain high-purity heralded single
photons, it is therefore crucial to engineer the JSA f(ωs, ωi) = α(ωs + ωi)φ(ωs, ωi) such
that it is as close as possible to a factorable function. In fact, it has been shown that
Gaussian pump envelope and phase-matching functions are the only functions that can
make the JSA seperable, i.e. λ1 = 1 [97].
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One possibility to increase the spectral purity of a heralded single photon is to spectrally
filter on the heralding mode before detection. In this way, non-factorable contributions to
the JSA can be filtered out, however, it comes at a price. Since spectral filtering acts at the
intensity level, it can destroy photon-number correlations between the two modes [95] and
additionally reduce the heralding rate. Another possibility, although more complicated, is
to directly shape the pump envelope function α(ω) by using pulse-shaping techniques [98]
as well as the phase-matching function φ(ωs, ωi) by group velocity matching and non-
linearity-shaping methods [95].

Experimentally, the spectral purity can be determined or bounded by different techniques,
discussed in Ref. [99]: scanning monochromator measurements, a variant of Fourier trans-
form spectroscopy, dispersive fibre spectroscopy, stimulated-emission-based measurement,
second-order autocorrelation measurement for one of the two photons, and two-source
Hong-Ou-Mandel interferometry.

2.1.3. Coupling efficiency

For many applications in quantum technology, it is important to keep the loss on the gener-
ated single photon low. For example, as we will see in Ch. 3, loss degrades a single-photon
path-entangled state and therefore reduces the shared correlations. Another example is
quantum cryptography based on the violation of a Bell inequality [15, 16], where a loophole
opens up if loss exceeds a certain threshold [100]. Here, we consider a pulsed photon-pair
source where the down-converted photons are deterministically separated and coupled into
single-mode optical fibre. One can divide the total system efficiency of the source into the
detection efficiency ηd, the transmission efficiency ηt and the coupling efficiency ηc. The
coupling efficiency ηc is the probability that one photon of the pair couples to the detected
mode given the other photon of the pair has coupled to the detected mode. Contrary to the
simpler loss contributions ηd and ηt, the coupling efficiency ηc is inherent to the quantum
state and has a more complex structure, see [101] for details.

In the regime where the pair generation probability per pump pulse psi ≪ 1 and noise
as well as dark counts are negligible, the rate of signal photon detections Rs, idler photon
detections Ri and coincidence detections Rsi can be approximated by

Rs = Rppsiηc,sηt,sηd,s, (2.15)

Ri = Rppsiηc,iηt,iηd,i, (2.16)

Rsi = Rppsiηc,sηt,sηd,sηc,iηt,iηd,i, (2.17)

where Rp is the pump rate, ηd the detection efficiency, ηt the optical transmission efficiency
and ηc the coupling efficiency, where the second subscript denotes the signal (s) or idler
(i) mode. Inversely, the coupling efficiencies can be calculated from the measured rates,
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the detection and transmission efficiencies according to

ηc,s =
Rsi

Riηt,sηd,s
, ηc,i =

Rsi
Rsηt,iηd,i

, ηc =
√
ηc,sηc,i, (2.18)

where we introduced the correlated-mode coupling efficiency ηc which is symmetric with
respect to signal and idler modes.

Experimentally, it is usually hard to accurately determine the transmission efficiencies and
furthermore those efficiencies also belong to the source and need to be included to asses the
actual performance of the source. Therefore, the experimentally more relevant heralding
efficiencies can be estimated from

ηh,s =
Rsi
Riηd,s

, ηh,i =
Rsi
Rsηd,i

, ηh =
√
ηh,sηh,i = ηc

√
ηt,sηt,i, (2.19)

where ηh is the symmetric heralding efficiency. Here, we only need the knowledge about
the detector efficiencies.

For completeness, we see that from the measured single and coincidence rates, we can
easily estimate the pair generation probability per pump pulse

psi =
RsRi
RsiRp

, (2.20)

in the case where double pairs are negligible, i.e. psi ≪ 1.

2.2. Heralded single-photon source based on PPKTP

In the past two decades, efforts have been made to understand and simulate the limitations
of SPDC sources as practical single-photon sources in terms of coupling efficiency and
spectral purity and the theoretical models were experimentally tested [101–108]. It has
been shown that for a plane wave pump, projecting the idler mode on a spatially Gaussian
state also leaves the signal in a Gaussian state, which is the fundamental spatial mode
of an optical fibre [107, 109]. Therefore, in this case it is theoretically possible to obtain
unit coupling efficiency hinting that it is favourable to work with weakly focused pump
beams. Nevertheless, it has been shown that also for tighter focused pump beams it is
possible to obtain high coupling efficiencies if the focal parameters of the collection modes
are chosen accordingly [102, 104]. The source used in Ch. 2 and 3 of this thesis is based
on the source discussed in [108] optimised for simultaneously high spectral purity and high
coupling efficiency. Before rebuilding the source for the experiment presented in Ch. 4, the
source parameters were optimised using a recently developed online simulation tool [110]
based on [101, 104] and further experimental changes have been made as described in the
following.
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Figure 2.2.: Changing the phase-matching condition by temperature tuning. The central
wavelength of the down-converted signal and idler photons is plotted as a function of the
set PPKTP crystal temperature for different pump wavelengths. The central wavelength
λ0 is obtained for each T from a Gaussian fit of the measured counts as function of the set
wavelength of the tunable grating filter in the path of the corresponding down-converted
photon. The horizontal black lines correspond to the central wavelengths of the DWDM
channels λCH39 = 1546.12 nm, λCH42 = 1543.73 nm and λCH45 = 1541.35 nm.

Source Phase-matching w0,p (µm) w0,s = w0,i (µm)

Ref. [108] 772.00 nm→ 1544.0 nm + 1544.0 nm 296 187
Ch. 2,3 771.85 nm→ 1541.3 nm + 1546.1 nm 296 187
Ch. 4 771.85 nm→ 1543.7 nm + 1543.7 nm 265 135

Table 2.1.: PPKTP source parameters. In Ch. 2 and 3 of this thesis, the same pump
waist w0,p and collections waists for signal (idler) w0,s(i) are used as in Ref. [108]. After a
setup rebuild, those parameters are changed for the experiment in Ch. 4.

The source employs a L = 30 mm long, 1 mm wide and 2 mm high periodically poled potas-
sium titanyl phosphate (PPKTP) bulk non-linear crystal with poling period Λ = 46.2µm

for type-II phase-matching. This crystal length leads to a JSA where the phase-matching
bandwidth is similar to the bandwidth ∆λp,FWHM = 0.4 nm of the Ti:sapphire pump laser
(Coherent Mira Optima 900-P pumped by a Coherent Verdi-V8) in the picosecond pulsed
configuration. The phase-matching condition can be changed by tuning the temperature
of the crystal, as shown in Fig. 2.2. For all the experiments, the phase-matching was cho-
sen such that signal and idler photons are compatible with the dense wavelength division
multiplexing (DWDM) grid defined by the International Telecommunication Union (ITU).
The pump and collection waists for the sources are given in Tab. 2.1.

We simulate the behaviour of the spectral purity and the coupling efficiency for our source
using the simulator from Ref. [110]. As shown in Fig. 2.3(a), the spectral purity is expected
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Figure 2.3.: Source parameter simulation for a pump wavelength of λp = 771.85 nm
using the online simulator from Ref. [110]. (a) Spectral purity as a function of the pump
bandwidth for the different phase-matching conditions and pump waists. For a pump waist
of w0,p = 265µm we use a collection waist of w0,s(i) = 135µm whereas for w0,p = 296µm
the collection waist is set to w0,s(i) = 135µm. (b) Coupling efficiency as a function of the
collection waist.

to reach P = 0.84 for a pump bandwidth of ∆λp = 0.39 nm. It is important to note that
in order to obtain accurate results for the purity when deducing it from a JSA simulation
or measurement, the span of the signal and idler frequencies has to cover many times the
phase-matching bandwidth in case of a sinc-shaped phase-matching function. If that is not
the case, an incorrectly high purity will be obtained, see Ref. [95] for the full discussion.
Further simulations show that in the case where a spectral top-hat filter is applied on the
heralding mode, the purity can be increased drastically. For a commercial 200 GHz DWDM
corresponding to a measured FWHM of 1.24 nm, a purity of P = 0.987 can be achieved,
where for a narrower 100 GHz DWDM P = 0.996 is possible. However, this comes at the
expense of a reduced heralding rate due to the filtering and the added loss. Commercially
available DWDMs have an insertion loss of typically 0.8 dB.

In Fig. 2.3(b), the dependence of the coupling efficiency as a function of the collection waist
is shown for the two pump waists used. For a pump waist of w0,p = 296µm, the maximal
coupling efficiency is ηc = 0.971 at a collection waist of w0,s(i) = 145µm. This value is
slightly different from the optimal collection waist reported in Ref. [108]. Therefore, we
change the target collection waist before rebuilding the setup for the experiment discussed
in Ch. 4. Moreover, since the maximal coupling efficiency only slightly decreases with a
tighter focus, we target a pump waist of w0,p = 265µm together with an optimal collection
waist of w0,s(i) = 135µm which should yield a coupling efficiency of ηc = 0.966. Compared
to the previous waists, this new settings increase the expected coincidence counts per
second at the same pump power by a factor of 1.39.

Apart from changing the pump and collections waist, further changes were made to the
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Source Phase-matching P ηh

Ch. 2,3 771.85 nm→ 1541.3 nm + 1546.1 nm 0.84 0.75(2)
Ch. 4 771.85 nm→ 1543.7 nm + 1543.7 nm 0.84 0.80(2)

Table 2.2.: PPKTP source characterisation. Spectral purity P and symmetric heralding
efficiency ηh. The uncertainty on ηh comes from the uncertainty of the detector character-
isation, see Supplemental Material of Ref. [111] for the setup characterisation.

source. In order to optimally couple a Gaussian mode into fibre and not to induce any
ellipticity, it is important that the mode travels through the exact centre of the focusing
lens. Therefore, the coupling mounts are changed, such that the fibre can be moved
independently of the lens after setting it such that the beam hits the same spot behind
the lens with and without it in the beam path. Another modification is made regarding
the fibres to which the photons are coupled. The previously used single-mode fibres with a
mode field diameter (MFD) of 9.5µm are replaced by thermally-expanded core fibres with
MFD of 19µm to make the coupling stages less sensitive to movements and potentially
increase the long-term stability.

The source is characterised in terms of spectral purity and heralding efficiency and the
values are given in Tab. 2.2. The spectral purity is deduced from a joint spectrum inten-
sity (JSI) measurement by measuring the signal-idler coincidence counts while sweeping
a 0.2 nm wide tunable grating filter (JDS Uniphase TB9) in the signal and idler path,
respectively. The heralding efficiency is calculated according to Eq. (2.19) from a mea-
surement of the single and coincidence count rates. An additional measurement of the
transmission efficiencies of the used optical components leads to the following values: half
the length of the PPKTP crystal 99.3 %, dichroic mirror 97.3 %, long-pass filter and col-
limation lens 98.4 %, polarising beam splitter (PBS) 96.4 % and three dielectric mirrors
all together 98.9 %. In total this amounts to 90.6 % transmission efficiency, excluding the
loss of the coupling lens and possible reflections at the air-fibre interface. Therefore, the
coupling efficiency of the modified source is ηc = ηh/ηt = (88± 2) %. The gap between
this number and the simulated maximal coupling efficiency ηc = 96.6 % for the chosen
parameters is most likely coming from the additional uncharacterised loss in the system as
well as experimental imperfections, which manifest in spatial mode deformations.

State-of-the-art SPDC sources based on PPKTP that are optimised for high symmetric
heralding efficiencies perform better and achieve ηh ≈ 84 % [112] and ηh ≈ 89 % (ηc ≈
95 %) [113], even for the generation of polarisation-entangled photons. To obtain similar
high values, the transmission losses of the elements in our source have to be reduced and
the alignment technique and precision further refined.
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2.3. Benchmarking single-photon sources

2.3. Benchmarking single-photon sources

In this section, we present and demonstrate a method to benchmark single-photon sources
from the experimental outcome of an autocorrelation measurement. From such a mea-
surement, the probability of the single-photon component can be lower-bounded, which
is natural benchmark for single-photon sources. Furthermore, if the state is in a single
optical mode, a relation between the single-photon probability and the Wigner-negativity
is derived and used to construct a witness and measure of Wigner-negativity. Here, the
experiment is performed using a HSPS, however, the method is general and applies to all
types of single-photon sources.

2.3.1. Autocorrelation measurement

The measurement apparatus we consider to benchmark an unknown photonic input state ρ
consists of a beam splitter (BS) followed by two non-photon-number-resolving detectors of
efficiency ηd. We describe the measurement with the two element positive operator-valued
measure (POVM) {E0, Ec} corresponding to a no-click (0) and click (c) outcome. In the
case the measurement acts on a single mode described by the bosonic annihilation and
creation operators â and â†, the POVM elements are given by (Ch. 2.3 of Ref. [70] and
[114])

E0 =

∞∑

n=0

(1− ηd)n |n〉〈n| = (1− ηd)â
†â, Ec = 1− E0. (2.21)

After the BS with power transmittance t and reflectance r, the four possible outcomes of
the two detector can be described by the POVM elements

E00 = (1− ηd)â
†â, Ec0 = (1− ηdt)â

†â − (1− ηd)â
†â, (2.22)

E0c = (1− ηdr)â
†â − (1− ηd)â

†â, Ecc = 1− E00 − Ec0 − E0c, (2.23)

where first (second) subscript corresponds to the detector after the reflected (transmitted)
output of the BS. Furthermore, the events where a fixed detector does not click are modelled
by the two POVM elements

E0_ = E00 + E0c = (1− ηdr)â
†â, (2.24)

E_0 = E00 + Ec0 = (1− ηdt)â
†â. (2.25)

Note that the case where the two detectors do not have the same efficiency ηdr 6= ηdt can
be accounted for by replacing r with r′ =

rηdr
tηdt+rηdr

, t with t′ =
tηdt

tηdt+rηdr
, and setting

η = rηdr + tηdt in the equations above.

With the described measurement, for any input state ρ, a probability vector with the
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2. Single-photon sources

corresponding outcome probabilities can be defined

~p = (p00, pc0, p0c, pcc) (2.26)

and further p0_ = p00 + p0c and p_0 = p00 + pc0.

2.3.2. Bounding the single-photon probability P1

From a measured probability vector ~p as in Eq. (2.26), we now want to bound the proba-
bility of having a single photon in ρ. For the sake of clarity, let us restrict to the case of
unit detection efficiency ηd = 1, a balanced beam splitter, i.e. r = t and assume that in
each round of the measurement, the same state ρ is produced. Let Pn = 〈n| ρ |n〉 be the
weight of the n-photon Fock state component of the measured state. We note that since
r = t, we have pc0 = p0c and because ηd = 1 we end up with E00 = |0〉〈0|. Therefore, we
know that p00 = P0 and from Eq. (2.24) we get p0_ =

∑
n Pn/2

n.

We now ask the question: what are the points (p0_, p00) that can be obtained by states ρ
which fulfil P1 ≤ P , for some parameter P ∈ [0, 1]?

First, we note that by definition p0_ ≥ p00 and the points (1, 1) and (0, 0) are attained
by the vacuum and the state with infinitely many photons, respectively. Thus, the line
p0_ = p00 is also attainable by mixtures of those states. For a fixed p00, the maximum
value of p0_ is then obtained by solving

pmax
0_ (p00, P ) = max

ρ

∑

n

Pn
1

2n
such that P1 ≤ P and P0 = p00. (2.27)

Since 1/2n is decreasing with n, the maximum is attained by saturating the values of Pn
starting with P0. Hence, we obtain

p0_ ≤ pmax
0_ (p00, P ) =

{
1+p00

2 for 1− p00 ≤ P
1+P+3p00

4 for 1− p00 > P
(2.28)

The set of possible values (p0_, p00) is thus included in a convex polytope with four vertices
QP = Polytope{(0, 0),

(
1+P

4 , 0
)
,
(

2−P
2 , 1− P

)
, (1, 1)}, as shown in Fig 2.4. The only non-

trivial facet of this polytope is the edge connecting
(

1+P
4 , 0

)
and

(
2−P

2 , 1 − P
)
which is

associated to the inequality 4p0_ − 3p00 − 1 ≤ P . Thus, without loss of generality, the
condition 〈1| ρ |1〉 ≤ P implies that the elements of ~p satisfy the linear constraint

P̂ T1 (~p) = 4p0_ − 3p00 − 1 ≤ P. (2.29)

Conversely, by measuring the pair (p0_, p00) and by computing the resulting value of P̂ T1 , we
can guarantee that for any value of P such that P̂ T1 > P the inequality 〈1| ρ |1〉 > P holds,
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Figure 2.4.: Graphical representation of the single-photon source benchmark. The set
of possible values (p0_, p00) for states satisfying P1 ≤ P and P0 = p00 is included in
the polytope QP with four vertices {(0, 0),

(
1+P

4 , 0
)
,
(

2−P
2 , 1 − P

)
, (1, 1)}, defined after

Eq. (2.28). Three polytopes are shown for the values P ∈ {0.1, 0.5, 1}. The points (1, 1),
(0.5, 0) and (0, 0) are attained by the states |0〉, |1〉 and |∞〉, respectively.

which means we get a lower bound on the probability that the source to be benchmarked
produces exactly a single photon.

Now we want to relax the initial assumptions. We consider the case where the beam
splitter has an unknown reflectance r and transmittance t = 1 − r and the two detectors
have different efficiencies ηdr and ηdt . In this case, the observed statistics are equivalent to
the case where the beam splitter has reflectance r′ =

rηdr
tηdt+rηdr

, transmittance t′ = 1 − r′
and two detectors with the same efficiency ηd = tηdt +rηdr . The measurement can therefore
be modelled by a loss channel with transmission efficiency ηd, an unbalanced beam splitter
with reflectance r′ and two unit efficiency detectors. We still have p00 = P0, but p0_ =

p00 + p0c and p_0 = p00 + pc0 are no longer the same. They are now given by p0_ =∑
n Pn(1 − r′)n and p_0 =

∑
n Pn(1 − t′)n and are therefore no longer directly connected

to the quantity
∑

n Pn/2
n. Nevertheless, we find the relation

∑
n Pn/2

n ≥ min(p0_, p_0).
In analogy to Eq. (2.29) we define

P̂ T1 (~p) = 4p0c + 3p00 − 1, (2.30)

P̂R1 (~p) = 4pc0 + 3p00 − 1 (2.31)

and conclude that the quantity

P̂1(~p) = min(P̂ T1 (~p), P̂R1 (~p)) (2.32)

is a benchmark for single-photon sources, without assumptions on the detector efficiencies
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2. Single-photon sources

and the balance of the beam splitter.

The analysis can be further extended to the experimentally relevant case where the detector
efficiencies and the splitting ratio of the beam splitter are characterised and not considered
to be part of the state. We assume upper bounds on the detection efficiencies ηdr(t) ≤ η̂dr(t)
and bounds on the beam splitter reflectance r ∈ [1− t̂, r̂]. In that case, Eqs. (2.30 - 2.31)
are replaced by

P̂ T∗1 (~p) = C1(t̂, η̂dt) p0c − C2(t̂, η̂dt , η̂dr) pcc, (2.33)

P̂R∗1 (~p) = C1(r̂, η̂dr) pc0 − C2(r̂, η̂dr , η̂dt) pcc, (2.34)

where the coefficients C1 and C2, defined as

C1(x, η) =
1

x η
, C2(x, η1, η2) =

1

x η1

(
2− x η1

2(1− x)η2
− 1

)
, (2.35)

(2.36)

have been optimised such that P̂ T∗1 (~p) and P̂R∗1 (~p) give the tightest bound on P . One can
then choose the best among the two bounds, giving rise to the benchmark

P̂ ∗1 (~p) = max{P̂ T∗1 (~p), P̂R∗1 (~p)} ≤ P1 (2.37)

for the single-photon probability, which takes the additional experimental knowledge into
account.

Multimode input state

Note that so far the derivation assumed the measurement to be performed on a single
optical mode, see Eqs. (2.21 - 2.25). In the case of a multimode state, where the mode k is
associated with the annihilation operator âk satisfying the commutation relation [âk, â

†
l ] =

δkl, the POVM elements are generalised to E0 =
⊗

k(1 − ηd)
â†kâk and Ec = 1 − E0,

where a detector does not click only if none of the modes triggers a detection. To the
multimode state %, one associates the distribution Pn of the total photon number operator
n̂ =

∑
k â
†
kâk. By assuming that the beam splitter and the detectors act identically on

all modes k, the measurement apparatus is only sensitive to the total photon number n̂.
Therefore, the POVM elements {E00, Ec0, E0c, Ecc} in the multimode case are still given
by Eqs. (2.22 - 2.23) when replacing â†kâk by n̂. We conclude that P̂1(~p) as in Eq. (2.32)
can readily be used to benchmark the probability that a multimode source emits a single
photon

P1 = tr
(
%
∑

k

â†k |0〉〈0| âk
)
. (2.38)
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2.3. Benchmarking single-photon sources

It is worth emphasising that a high P̂1(~p) for a multimode source does not guarantee that
the single-photon probability is high in any of the individual modes. The single-mode
character of the source therefore needs to be evaluated separately.

However, given a lower bound (1 − ε) on the probability that all the modes but one are
empty, i.e.

tr(% (11 ⊗ |0〉〈0|2 ⊗ · · · ⊗ |0〉〈0|N )) ≥ 1− ε, (2.39)

we can lower bound the single-mode single-photon probability by

P
[1]
1 = tr(ρ1 |1〉〈1|1) ≥ P1 − ε, (2.40)

since the maximal contribution to P1 from the other modes is ε. Here, ρ1 = tr2,...,N (%)

denotes the marginal state in the first mode.

2.3.3. Wigner negativity

In the case where the generated state can be assumed to be single-mode, we can relate the
measured value of P̂1(~p) to the non-classicality of the source. Concretely we show that the
knowledge of P1 can reveal Wigner-negativity [115], the strongest form of non-classicality
for a bosonic mode. Thus, if the measured state from a source is Wigner-negative, then
we know for sure that the source produces non-classical light.

The Wigner function is a representation of a single-mode state ρ defined by the following
quasi-probability distribution [116]

Wρ(β) =
2

π
tr
(
D(β)(−1)a

†aD†(β) ρ
)
, (2.41)

with the normalisation
∫

dβ2Wρ(β) = 1, whereD(β) = exp
(
βa† − β∗a

)
is the displacement

operator with a complex amplitude β. Applying Eq. (2.41) to a Fock state gives [117]

W|n〉〈n|(β) =
2(−1)n

π
exp
(
−2|β|2

)
Ln
(
4|β|2

)
(2.42)

where Ln is the Laguerre polynomial. Note that L1(x) = 1 − x and the following bound
on the Laguerre polynomials e−x/2|Ln(x)| ≤ 1, see e.g. Eq. (18.14.8) in [118], leads to a
bound on the Wigner function of Fock states |W|n〉〈n|(β)| ≤ 2

π .

Witness of Wigner-negativity

With the Eq. (2.42), the definition of the Laguerre polynomial L1(x) and the upper bound
on the Wigner function of Fock states, it can be seen that the Wigner function of any
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2. Single-photon sources

mixture of Fock states ρ =
∑
Pn |n〉〈n| satisfies

Wρ(β) = P1W|1〉〈1|(β) +
∑

n6=1

PnW|n〉〈n|(β) (2.43)

≤ 2

π

(
− P1e

−2|β|2(1− 4|β|2) + (1− P1)
)
. (2.44)

At the origin β = 0, we obtain Wρ(0) ≤ 2
π (1 − 2P1) which is negative if P1 >

1
2 . Hence,

if from the measurement of ~p one concludes that P̂1(~p) > 1
2 , then the measured state is

Wigner-negative, under the assumption that ρ is a single-mode state.

Measure of Wigner-negativity

To quantify the negativity of the Wigner representation of a given state ρ, we measure the
total quasi-probability for which the function Wρ(β) takes negative values [119], i.e.

NW (ρ) =

∫
dβ2 |Wρ(β)| −Wρ(β)

2
. (2.45)

The function NW (ρ) is non-increasing under Gaussian operations (see Appendix E in P.3),
which justifies its use as a measure of Wigner-negativity. With the use of Ineq. (2.44), we
show that

NW (ρ) ≥ F (P1) =





3(1−P1)(4w2+3)
8w + P1 − 2 for P1 >

1
2

0 for P1 ≤ 1
2

with w = w0

(√
e

2

1− P1

P1

)
,

(2.46)

where w0 is the principal branch of the Lambert W function. The function F (P1) is non-
decreasing and therefore, from the measurement of ~p, we get a lower bound P̂1(~p) on P1

which can be used to lower bound NW (ρ) ≥ F (P̂1(~p)). The bound in Ineq. (2.46) is tight
by construction in the ideal case NW (|1〉〈1|) = F (1) = 9

4
√
e
− 1 ≈ 0.36.

2.3.4. Experimental benchmark of the heralded-single photon source

We demonstrate the benchmark as well as the measure of Wigner-negativity by using
the HSPS presented in Sec. 2.1 and shown in Fig. 2.5. The PPKTP non-linear crystal
is pumped at a repetition rate of 76.2 MHz with a pair generation probability per pump
pulse of about 1× 10−3. The phase-matching condition is set such that λp = 771.85 nm→
1541.3 nm + 1546.1 nm.

In order to make sure that the heralded signal photon is in a spectrally pure state, we
filter the heralding idler photon with a 100 GHz DWDM corresponding to a central fil-
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Figure 2.5.: Experimental setup for the autocorrelation measurement to demonstrate the
benchmark for single-photon sources and the Wigner negativity of the heralded single-
photon state. A variable optical attenuator (JDS Uniphase MV47W) allows for adding
loss on the heralded signal photon corresponding to a transmission efficiency of ηT .

ter wavelength of 1546.1 nm with a measured FWHM of 0.6 nm. The spectral purity
of the heralded state is experimentally determined by a JSI measurement and is cal-
culated to be P =

∑
k λ

2
k = (98.59± 0.04) % where the largest Schmidt coefficient is

λ1 = (99.29± 0.02) %. These values are obtained from the Schmidt decomposition of a 2D
Gaussian fit to the measured JSI and the uncertainty is calculated with the Monte Carlo
method over 104 JSI samples assuming Poissonian count statistics. The polarisation pu-
rity is ensured by the fact that the signal and idler photons are deterministically separated
by a PBS with extinction ratio of about 103 (102) for the transmitted (reflected) port,
therefore a heralded signal photon detection in the wrong polarisation mode is expected to
occur with a probability of less than 10−5 since it is further suppressed by the polarisation
dependence of the MoSi superconducting nanowire single-photon detectors (SNSPD). Fur-
thermore, we assume that the spatial mode purity is guaranteed by coupling the photons
into single-mode fibre.

The total efficiency of the heralded signal photons is ηs,tot = 62 %, where the heralding
efficiency including the insertion loss of the fibre beam splitter is ηh,s = 70 % and the two
detectors have efficiencies ηdr,s = 92 % and ηdt,s = 85 %. For the calibration-dependent
benchmark, we upper-bound the detector efficiencies by (η̂dr,s , η̂dt,s) = (95 %, 88 %) and the
beam splitter coefficients by r̂ ∈ [0.49, 0.50]. The heralding idler photons have a lower total
transmission of 25 % due to spectral filtering and the lower detection efficiency ηdi = 75 %.

The source therefore produces high-purity signal photons at a heralding rate of 19.1 kcps.
In order to evaluate ~p = (p00, pc0, p0c, pcc) for the signal photons after the 50/50 beam
splitter, data are acquired for 200 s. The dark count probabilities of the used detectors for
the autocorrelation measurement per heralding detection are lower than 4× 10−7. In fact,
dark counts can be completely neglected in our experiment since the calculated corrections
to the benchmark are more than two orders of magnitude lower than the statistical noise.

The results of the measurement are graphically shown in Fig. 2.6 for different added atten-
uation on the signal photon to mimic lower heralding efficiencies. The numerical results
for the benchmark and the Wigner-negativity measure are given in Tab. 2.3. We see that
in the case of no added attenuation on the heralded single-photon state (ηs,tot = 62 %), we
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Figure 2.6.: Results of the measurement for the single-photon source benchmark. Four
polytopes are shown for the values P ∈ {0.25, 0.5, 0.75, 1}. The black crosses are measure-
ments for a heralded single photon undergoing different added attenuation corresponding
to transmission efficiencies of ηT ∈ {1.0, 0.83, 0.68, 0.51, 0.36, 0.19, 0.12, 0.034}.

ηs,tot P̂ T1 P̂R1 q̂α P̂ T∗1 P̂R∗1 q̂∗α n̂wα n̂w∗α

62% 0.561 0.678 0.554 0.658 0.683 0.677 0.0046 0.053
52% 0.460 0.573 0.453 0.544 0.573 0.566 0 0.0072
42% 0.376 0.465 0.369 0.444 0.466 0.459 0 0

Table 2.3.: Results of the measurement for the three highest transmission efficiencies ηs,tot

of the heralded single-photon state. The values for P̂ T1 and P̂R1 are calculated according to
Eqs. (2.30 - 2.31). For the finite statistics analysis we calculate the one-sided confidence
interval q̂α on P̂1 where a confidence level of 1 − α = 1 − 10−10 is applied throughout
this table. All the variables with a ∗ are calculated from Eqs. (2.33 - 2.34) which take
the detector efficiencies and beam splitter ratio into account. The measure of Wigner-
negativity n̂wα = F (q̂α) ≤ NW (ρ) is only positive for the highest transmission, since
q̂α <

1
2 for the cases where attenuation was added. This changes for n̂w∗α where detector

inefficiencies are taken into account. Remember that for a single photon, NW (|1〉〈1|) =
F (1) ≈ 0.36.
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estimate a single-photon probability of P̂1 = 0.561 and in the case where the detector effi-
ciencies are taken into account, this becomes P̂ ∗1 = 0.683. For the finite statistics analysis
(see Sec. 4 in P.3), we calculate the one-sided confidence intervals q̂α = 0.554 on P̂1 and
q̂∗α = 0.677 on P̂ ∗1 for a confidence level of 1− α = 1− 10−10.

Note that in order to make a conclusion about the Wigner negativity of the state, we
needed to assume a single-mode state which is not the case in the experiment. However,
we can estimate a lower bound on the spectrally single-mode single-photon component of
the state by taking the spectral purity into account, and obtain with the help of Ineq. (2.40)
P

[1]
1 ≥ P1 − (1− λ1 + 3σλ1) = P1 − 0.0076. The Wigner-negativity is then calculated from

this value corresponding to the spectrally single-mode state. As argued above, we assume
the state to be single-mode in all the other degrees of freedom.

2.3.5. Conclusion

Autocorrelation measurements are commonly used to check that a given source does not
emit more than one photon. Here, we showed that the statistics obtained from such a
measurement are actually richer and can be used to lower bound the probability that a
given source produces a single photon. This quantity is naturally a good benchmark for
single-photon sources, since it captures its quality and its efficiency simultaneously, both
crucial parameters of such a source. Further, we have shown that if the mode purity of a
source can be estimated, the single-photon emission probability can be used to quantify
the negativity of the Wigner function associated to the generated state.

Since the development of single-photon sources for quantum technology applications is
currently ongoing at a high pace, the analysis of the outcome of an autocorrelation mea-
surement presented here hopefully helps to assess these sources.

2.4. Improved heralded single-photon source

In this section, an improved HSPS is presented, where the heralding detector is a photon-
number-resolving (PNR) parallel SNSPD. In this source, a successful heralding detection
consists in a single-photon detection event with all higher-order detection events discarded.
In this way, the generated higher-order photon pairs, which would contribute to the her-
alded state in case of a threshold heralding detector, can be suppressed. In theory, such a
source, based on SPDC or spontaneous four-wave mixing, can achieve a heralding proba-
bility per pump pulse up to 25 %, limited by the thermal photon-number statistics of the
heralding state [88].
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Figure 2.7.: P-SNSPD used as a heralding detector. (a) Image of the four-pixel detec-
tor with a photosensitive area of 16µm × 16µm. (b) Oscilloscope traces of the amplified
electrical signal output by the P-SNSPD when photons are incident. The four different
amplitudes, corresponding to events where 1, 2, 3 and 4 pixels are triggered, can be dis-
criminated by selecting the threshold accordingly. Images are taken from Ref. [121].

2.4.1. Photon-number-resolving detector

The key ingredient to improve the heralded photon-number statistics of a single HSPS is
to have high transmission, coupling and detection efficiency for the heralding photon, as
well as the capability to distinguish a single photon from a higher-photon-number state.
Regarding the capability to correctly identify a certain photon-number state incident on
the detector, three different categories of detectors are found in the literature: threshold,
pseudo PNR and true PNR detectors. Ideal threshold detectors (sometimes referred to
as click, binary or non-PNR detectors) fire whenever there is one or more photons sent
to the detector. Ideal true PNR detectors can perfectly distinguish between all different
photon-number states. The pseudo PNR category lies in between, meaning that these
detectors have PNR capability, however, the detection mechanism inherently prevents them
to perfectly distinguish between all different photon-number states, even if the detector has
unit efficiency.

In our case, we use a four-pixel MoSi parallel superconducting nanowire single-photon
detector (P-SNSPD), as shown in Fig. 2.7(a) and described in Ref. [120]. As the names
suggests, the four pixels are electrically connected in parallel and signal is read out via a
single coaxial cable. Originally this detector was developed to achieve high count rates,
however, the amplitude of the readout signal is dependent on how many pixels clicked
in a detection event and thus this detector also exhibits photon-number resolution, see
Fig. 2.7(b) and Ref. [121] for the detector model and characterisation. Since more than
one photon can end up on the same pixel in a detection event, which would then be
only registered as a single-photon event, this detector falls in the category of pseudo PNR
detectors. In fact, this is true for all pixel detectors, but by increasing the number of pixels
and using designs where all the pixels have the same click probability, one can reach high
photon-number resolution.
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In order to characterise the P-SNSPD in terms of efficiency and PNR capability, we apply
the method described in Ref. [121] to determine the matrix of probabilities P, where the
element Pnm describes the probability that n out of N pixels click if an m-photon state is
incident on the detector. The characterisation method uses a coherent state with known
Poissonian photon-number statistics to reconstruct P from the measured output statistics.
For an ideal PNR detector, P = 1, i.e. the probability of detecting n photons when n

are incident is 1, otherwise P is an upper-triangle matrix where the columns sum up to
1. In theory, the column index m can take an infinite value, but in practice it can be
truncated to stop at a finite value M . An initial photon-number probability distribution
~p = (p0, ..., pM )T is then connected to the probability of an n-click detection event by
qn =

∑M
m=0 Pnmpm. By inverting the detector specific matrix P and measuring the output

distribution ~q = (q0, ..., qN )T , one can calculate the incident photon number distribution
~p = (p0, ..., pM )T . In our case for N = 4 andM = 9, we measured P11 = 84 %, P12 = 55 %,
P13 = 31 %, P14 = 17 % and P22 = 42 %.

For our application, it is only important that we can distinguish between m = 1 and m ≥ 2

photon events, i.e. we ideally want P0m = P1m = 0 for m ≥ 2. The most crucial element is
P22 since in a realistic HSPS p2 � p3, and therefore it is important to detect a two-photon
state with a high probability. In our case, P22 = 42 % is only limited to some extent by the
efficiency of the device since P 2

11 = 71 %. An important contribution to P12 comes from
the fact that a two-photon state has still a high probability, even if no photon is lost, to
only make one pixel click. The probabilities for a single photon to hit a certain pixel are
(0.526, 0.386, 0.061, 0.027), where the two higher efficiency ones correspond to the pixels in
the centre of the photosensitive area.

2.4.2. Theoretical model

The state generated by the SPDC process can be described in the photon-number basis by
a two-mode squeezed vacuum state (TMSV) [122]

|Ψ〉si =
√

1− λ2

∞∑

n=0

λn |nn〉si =
∞∑

n=0

√
µn

(µ+ 1)n+1
|nn〉si , (2.47)

where λ = tanh(r) with the squeezing parameter r and the mean photon number µ =

sinh2(r) = λ2/(1 − λ2). The marginal states of the signal (s) and idler (i) modes are
thermal states with photon-number probability distribution

pn =
µn

(µ+ 1)n+1
. (2.48)

To obtain analytical equations describing the single and coincidence detection probabilities
per pump pulse, we consider a configuration as shown in Fig. 2.8 and use the approach of
Ref. [123]. In this formalism, the TMSV state ρ = |Ψ〉〈Ψ|si can be expressed by a 4 × 4
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Figure 2.8.: Schematic representation of the theory model to calculate the single and
coincidence detection probabilities. The heralding mode of the two-mode squeezed vacuum
(TMSV) state is subject to loss, where the transmission efficiency is denoted by ηh. The
PNR detector Dh is then modelled by a cascade of beam splitters where the states in the
N output modes with normalised transmittance tk are detected by threshold detectors (h1

to hN ), corresponding to the individual pixels. The other mode of the TMSV state is sent
to a 50/50 beam splitter and further undergoes loss channels (ηa and ηb) before reaching
the threshold detectors a and b.

covariance matrix with µ as a single free parameter. Furthermore, the action of beam
splitters can be modelled by Gaussian unitary operations. The formalism additionally
allows modes to be traced out, and so we are able to model transmission loss on a given
mode by introducing an auxiliary mode, applying a beam splitter operation between the
two modes, and finally tracing out the auxiliary mode. Moreover, the formalism also
allows for calculation of the expectation value of a given Gaussian state after projection
onto vacuum. Therefore, we can model threshold detectors described by POVM elements
E0 = |0〉〈0| corresponding to a no-click outcome and Ec = 1 − |0〉〈0| to a click outcome.
To obtain a model for the P-SNSPD, we note that each of the N pixels of the detector
is a threshold detector. Thus, a physically intuitive model for the P-SNSPD consists of a
sequence of beam splitters, with splitting ratios corresponding to the characterised pixel
efficiencies, and N threshold detectors.

This model then allows the calculation of the probabilities per pump pulse to get a (single-
click) detection on one of the detectors: ph =

∑N
k=1 tr

(
ρ
(
1a⊗1b⊗Ec,hk

⊗E⊗(N−1)
0,h¬k

))
for

the heralding PNR detector Dh, pa = tr
(
ρ (Ec,a ⊗ 1b ⊗ 1⊗Nhk

)
)
for the threshold detector

Da and similarly for pb. Moreover, we can also obtain the coincidence probabilities pha,
phb, phab and pab between the corresponding detectors. In the case where we operate the
heralding detector in the threshold mode, i.e. we only discriminate at the lowest threshold
V1, we can use the same model with the number of pixels N = 1.

The explicit formulas for the calculated probabilities are given in Appendix A of P.4,
where we further assume the state to be in multiple Schmidt modes, and therefore account
for sources with a non-factorable JSA. With the help of these probabilities, which can
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2.4. Improved heralded single-photon source

be measured in a Hanbury Brown-Twiss experiment, we then approximate the heralded
second-order autocorrelation function by

g
(2)
h (0) ≈ phphab

phaphb
(2.49)

and the unconditional second-order autocorrelation function of the state after the 50/50
beam splitter according to

g(2)
unc(0) ≈ pab

papb
. (2.50)

We note that in the case where we have direct access to the photon-number probability
distribution pn of the state by measuring it with a PNR detector, one can also directly use
the definition of the second-order auto correlation function (see Ch. 2.2 of Ref. [122])

g(2)(0) =
〈n̂(n̂− 1)〉
〈n̂〉2 =

∑
n n(n− 1)pn(∑

n npn
)2 (2.51)

to calculate its value. An ideal single-photon state has g(2)(0) = 0 and a thermal state
gives g(2)(0) = 2.

2.4.3. Experiment

We perform two experiments, as schematically shown in Fig. 2.9. In the first one, the P-
SNSPD is used as the heralding detector of the HSPS and operated in the threshold as well
as in the PNR mode (ηd,h = P11 = 84 %). The heralded idler photons are sent to a 50/50
BS and detected by two MoSi threshold SNSPDs with efficiencies of about ηd,a = 85 % for
Da and ηd,b = 83 % for Db to determine g(2)

h (0) according to Eq. (2.50). We measure total
efficiencies of ηh,hηd,h = 63.5 %, ηh,aηd,ar = 31.5 % and ηh,bηd,bt = 29.0 % at low pump
power (µ ≈ 5× 10−4), where r (t = 1− r) is the power reflectance (transmittance) of the
BS. In the second experiment, we determine the unconditional g(2)(0) in the idler mode
by using the P-SNSPD to reconstruct the photon-number distribution pn and compare it
to the value obtained with the standard method of using a 50/50 BS and two threshold
detectors, see Eqs. (2.50 - 2.51).

In both experiments, we vary the power of the pump laser by means of a variable neutral
density filter (NDF) and therefore vary the mean photon number of the generated state,
see Eq. (2.47). In the first experiment, we want to show the full potential of the improved
HSPS and therefore do not spectrally filter, which would add loss and reduce the quality
of the heralded state. However, we measure the JSI of the generated state and determine
the Schmidt coefficients λk, which are taken into account in our model, see Appendix A
of P.4. The calculated purity amounts to P =

∑
k λ

2
k ≈ 0.84. In the second experiment

we additionally filter the idler mode with a DWDM in order to herald spectrally pure
photons and suppress leaking signal photons due to the extinction ratio of around 103 for
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Figure 2.9.: Experimental setup for the two performed experiments. (I) The heralding
signal photons are detected by the P-SNSPD while the idler photons are sent to a 50/50
BS and detected by threshold SNSPDs. (II) The idler photons are spectrally filtered by a
100 GHz DWDM at ITU channel 39 and detected by the P-SNSPD for the reconstruction
of the thermal photon number statistics. Electrical signals are represented by solid black
lines. BS, beam splitter; DWDM, dense wavelength division multiplexer; PBS, polarising
beam splitter; PPKTP, periodically poled potassium titanyl phosphate; P-SNSPD, paral-
lel superconducting nanowire single-photon detector; SNSPD, superconducting nanowire
single-photon detector; SPDC, spontaneous parametric down-conversion; TCSPC, time-
correlated single photon counting (ID Quantique ID900).

the transmitted port of the PBS which separates the signal and idler photons.

The results of the first experiment are shown in Fig. 2.10. The analysis is done for the case
where the P-SNSPD operates in threshold mode (all detections are considered heralding
events) or in PNR mode (only n = 1 click events are successful heralds). The mean photon
number µ is calculated from the measured probability of detecting a heralding photon,
ph, in the threshold configuration together with the characterised total efficiency of the
heralding photons ηh = ηh,hηd,h and the Schmidt coefficients λk obtained from a fit of
Eq. (2.50) to the corresponding measured data. The weighted average of the data for the
ratio shown in Fig. 2.10(b) is g(2)

h,thr(0)/g
(2)
h,PNR(0) = 1.368± 0.003 which is the factor by

which the heralding rate can be increased when switching from threshold to PNR heralding
mode while keeping a fixed g(2)

h (0)� 1. Inversely this corresponds to a reduction in g(2)
h (0)

of (26.9± 0.2) % for the same heralding rate. Note that in this demonstration, no spectral
filtering of the heralding photons has been performed, in order to show the maximum
achievable improvement in g(2)

h (0) with our PNR detector.

The results obtained in the second experiment, where the P-SNSPD is used to measure
the unconditional autocorrelation function on the idler mode, are shown in Fig. 2.11. The
values of g(2)

unc(0) ≈ 2 confirm the thermal nature of our source and the results between the
two measurement methods agree. The error bars for the measurement with the P-SNSPD
were calculated through a Monte Carlo method with 103 iterations. In each iteration,
the Poissonian input state used for the detector characterisation is randomly picked from
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Figure 2.10.: Results of experiment (I). (a) Heralded second-order autocorrelation function
as a function of the mean photon number µ. The blue points correspond to the case
where the P-SNSPD operates in threshold mode (thr.), whereas the red points show the
measurements for the PNR mode. The solid lines are obtained from the theoretical model
with the same purity as in the experiment, where the shaded areas mark the spectral purity
interval of ±4 %. The dashed lines show the behaviour for a source with purity P = 1.
(b) Ratio between the heralded second-order autocorrelation functions when the heralding
detector is operated in the threshold and the PNR configuration.

0.000 0.005 0.010 0.015 0.020
µ

1.85

1.90

1.95

2.00

2.05

2.10

g
(2

)
u

n
c(

0)

BS and two threshold SNSPDs

P-SNSPD

Figure 2.11.: Results of experiment (II). Unconditional second-order autocorrelation mea-
surement on the spectrally filtered idler mode of the SPDC source as a function of the
mean photon number µ. The red data correspond to the measurement with the P-SNSPD,
whereas the blue data are obtained with the standard method using a beam splitter and
two threshold detectors. The blue error bars are calculated from the counts by assuming
Poissonian statistics and the red errorbars are obtained from a Monte Carlo simulation.
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a Gaussian distribution centred at the set value of µ = 1 with a standard deviation of
σ = 0.05. In this way, the uncertainty of our characterisation setup is taken into account.
The obtained matrix P is then used to reconstruct the light input statistics pn from the
experimental photon-counting distribution measured by the P-SNSPD. As a last step in
each iteration, the value g(2)

unc(0) is computed from the reconstructed statistics according
to Eq. (2.51).

2.4.4. Discussion and outlook

The most important parameters for improving the HSPS are the PNR capability of the
detector and the total efficiency ηh, i.e. transmission through optical elements, coupling,
and detection efficiency of the heralding photons. As shown in Fig. 2.12, for a pure SPDC
source combined with an ideal PNR heralding detector (P = 1), the reduction in g(2)

h (0),
that is 1 − g(2)

h,PNR(0)/g
(2)
h,thr(0), reaches 100 % for ηh = 1. It achieves a value of 50 % for

ηh = 0.67 and surpasses 90 % for ηh = 0.95. For ηh = 0.635, as measured in our experiment,
a perfect PNR detector would achieve a reduction of 46.5 %, however, our reported value
of (26.9± 0.1) % lies significantly lower. This is due to the fact that the PNR capability of
the detector to correctly detect an incoming higher-photon-number state is still limited by
the non-resolvability of two photons hitting the same pixel. A 2-photon state, for example,
is correctly detected with 41.7 % probability, is missed because both photons hit the same
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Figure 2.12.: Calculation of the reduction in g(2)
h (0) as a function of the total efficiency

of the heralding photons ηh. The solid lines are obtained from the theoretical model for
a spectrally pure source with fixed µ = 10−3. For the 14- and 11- pixel PNR detectors,
we assume uniform light distribution across the pixels. We further compare our results
with the ones from Refs. [124, 125]. The crosses are calculated from the measured values
and the squares are obtained by assuming unit efficiency on the source side, i.e. the total
efficiency of the heralding photons is only limited by the single-photon detection efficiency
(ηh = P11).
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pixel with 28.7 % probability, and is missed due to the limited pixel efficiencies with 29.6 %

probability. If the light would be uniformly distributed over the 4 pixels, these probabilities
would be 52.8 %, 17.6 % and 29.6 %, respectively. In order to increase the PNR capability
of our P-SNSPD, the number of pixels needs to be increased while still maintaining good
amplitude discrimination of the electrical readout signal between different photon-number
detection events. Additionally, a uniform light distribution over the pixels could further
mitigate the problem and can be obtained by exploiting a detector design with interleaved
nanowires [126, 127].

Another important aspect of a HSPS is the spectral purity of the heralded photon, since
many single-photon applications relying on interference require high purity. The standard
approach of spectral filtering presents a viable solution also in the case of a PNR heralding
detector, given the insertion loss of the spectral filter is sufficiently low. Commercially
available narrow linewidth (2 nm FWHM) band-pass filters already have transmission effi-
ciencies of more than 90 % (Edmund Optics 12-514).

In our source, with increasing pump power we observe a decrease in purity due to spectral
broadening of the pump light caused by the non-linearity of the spatial mode cleaning fibre
(Coherent 780-HP, 9 cm long) before the PPKTP crystal. We take this into account in the
model by fitting Eq. (2.50) to the experimental data with the purity P as a fit parameter.
This issue could be solved by replacing the standard fibre for spatial mode cleaning by a
photonic crystal fibre, where nonlinear effects are largely suppressed.

Two similar implementations of an improved HSPS have recently been shown, where the
photon-number dependent slew rate of the readout signal of a single-meander SNSPD
is exploited [124, 125]. Compared to those sources, we achieve a larger improvement in
g(2)(0) mainly thanks to our high total efficiency, ηh, which is roughly twice as high as in
the other sources. Further, the short recovery time of our P-SNSPD (< 40 ns) allows the
source to be operated at a high pump repetition rate and therefore achieve significantly
higher heralding rates.

In the second experiment we showed that P-SNSPDs can perform g(2)(0) measurements
and therefore replace a beam splitter and two threshold detectors as used in the standard
method, hence simplifying the overall experimental apparatus.
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3. Detection and distribution of
single-photon path entanglement

Single-photon path entanglement is a fundamentally interesting concept first introduced
in the context of Bell non-locality [15] by Tan, Walls and Collet in 1991 [128] and fur-
ther investigated by Hardy in 1994 [129]. Although the proposed schemes to demonstrate
non-locality received criticism and objection [130–132], the striking underlying concept of
a single photon exhibiting entanglement was further explored theoretically [80, 133–141].
Experiments followed quickly, demonstrating quantum teleportation [142, 143] and en-
tanglement swapping based on single-photon entanglement [144]. With the development
of the displacement-based measurement for path-entangled states [114], implementations
that can be applied in a distributed scenario became possible. This lead to the demonstra-
tion of an entanglement witness [83], EPR steering [145] and the heralded amplification of
path-entangled states [146] using local measurements only.

Currently, single-photon path entanglement is a promising candidate for long-distance en-
tanglement distribution since there exist schemes which are more robust against transmis-
sion and detection loss compared to two-photon schemes [65]. Further applications for mul-
tipartite single-photon entangled states include quantum conference key agreement [147]
or, more exotically, improving the sensitivity of long-baseline telescopes [148, 149]. The
challenge in implementations of path-entangled states, however, is to fulfil the requirement
of optical phase stability. Another downside concerns the measurement: while it is simple
to access the z-basis with a single-photon detector, it is not straightforward to measure in
other bases.

In this chapter, an introduction to the generation and the displacement-based measurement
of single-photon path entanglement, which allows access to other measurement bases, is
given in Sec. 3.1. Furthermore, we introduce a scalable genuine multipartite entanglement
witness that employs the displacement-based measurement and can be applied in dis-
tributed scenarios. This is followed by the experimental detection of genuine multipartite
entanglement in Sec. 3.2, where we take advantage of the developed scalable entangle-
ment witness. Finally, in Sec. 3.3, a scheme with two weakly pumped photon-pair sources
is demonstrated to herald the distribution of bipartite single-photon path entanglement.
The phase-stability requirement is solved by phase-locking a fibre interferometer with arm
length of up to 1 km. In our implementation, the distance is mainly limited by the signal-
to-noise ratio of the heralding photons. The publications which resulted from this work
are attached in P.1 and P.2.
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3.1. Single-photon path entanglement

A single-photon path-entangled state corresponds to a single photon delocalised over two
or more spatial modes. The qubit state space is spanned by the vacuum and single-photon
Fock state, i.e. {|0〉 , |1〉}, and the parties correspond to the spatial modes, also referred to
as paths. For the bipartite case, this is one of the simplest entangled states to generate,
achieved by sending a heralded single photon on a 50/50 beam splitter (BS), as sketched
in Fig. 3.1. The resulting state in the Fock basis is given by

|ψ〉 =
1√
2

(â†1 + eiθ12 â†2) |0〉 =
1√
2

(
|1〉1 |0〉2 + eiθ12 |0〉1 |1〉2

)
, (3.1)

where â†1 and â†2 are the bosonic creation operators corresponding to the spatial output
modes of the BS and θ12 is the relative optical phase picked up by the photons in the
two paths. By adding more BSs, multipartite states can easily be generated in the same
manner. Therefore, single-photon path entanglement can be generated at the same high
rates as single photons can be created, and by using an HSPS, the state is heralded.

In the presence of loss, i.e. |1〉〈1| η−→ (1 − η) |0〉〈0| + η |1〉〈1|, the state will degrade. This
is due to the fact that the overall vacuum state |0〉〈0|1 ⊗ |0〉〈0|2 still lies within the state
space. The density matrix of the state given in Eq. (3.1) after local loss channels with
transmission efficiencies η1 and η2 is

|ψ〉〈ψ| ηa,ηb−−−→ ρ =
1

2




2− η1 − η2 0 0 0

0 η2 eiθ12√η1η2 0

0 e−iθ12√η1η2 η1 0

0 0 0 0



, (3.2)

where the standard Kronecker product is applied. Here, we see that the coherence terms
〈01| ρ |10〉 and 〈10| ρ |01〉 scale linearly with the transmission efficiency √η1η2, which is an
advantage over two-photon states (∝ η1η2).

Besides the simplicity of generating single-photon path-entangled states at high rates, it
is not straightforward to detect this type of entanglement. In the following, we discuss
the displacement-based measurement which allows access to bases other than the z-basis.

BS

path 1 path 2

Figure 3.1.: Generation of a single-photon path-entangled state by sending a single photon
to a 50/50 beam splitter (BS).
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We then discuss an entanglement witness that applies this measurement together with the
positive partial transpose (PPT) criterion. Further, an improved entanglement witness is
presented that can detect genuine multipartite entanglement in single-photon states in a
scalable way.

3.1.1. Displacement-based measurement

In order to have access to the coherence terms in a quantum state, it is necessary to
measure in a complementary basis. While this is easy for e.g. polarisation qubits, it is
not a straightforward task for single-photon states. However, it has been shown that local
displacement operations on a single-photon path-entangled state gives access to the state’s
coherence and can be used to test non-locality [138]. The displacement operation is realised
by interfering the input state with a coherent state on a highly imbalanced BS [150–152].
Here, we follow the description of the measurement presented in Ref. [114].

The displacement operator is defined by (see Ch. 2.3 in Ref. [122])

D̂(α) = exp
(
αâ† − α∗â

)
, (3.3)

where α = |α|eiδ is the complex displacement amplitude and â† and â are the creation and
annihilation operators. By acting on the vacuum state, this operator generates a coherent
state D̂(α) |0〉 = |α〉 = e−|α|

2/2
∑

n
αn
√
n!
|n〉 with mean photon number n̄ = |α|2. We further

describe unit efficiency click detectors with the POVM elements E0 = |0〉〈0| corresponding
to a no-click outcome and Ec = 1 − |0〉〈0| for a click outcome. To calculate the outcome
probabilities for a general input state ρ after undergoing a displacement operation D̂(α),
we apply the Born rule and obtain

p0 = tr
(
D̂(α)ρD̂†(α)E0

)
= tr

(
ρ D̂†(α)E0D̂(α)

)
, (3.4)

pc = tr
(
ρ D̂†(α)EcD̂(α)

)
= tr

(
ρ D̂†(α)(1− E0)D̂(α)

)
= 1− p0, (3.5)

where we used that the trace is cyclic. The POVM for the displacement-based measurement
is therefore given by

Pα0 = D̂†(α)E0D̂(α) = |−α〉〈−α| (3.6)

Pαc = D̂†(α)EcD̂(α) = 1− |−α〉〈−α| , (3.7)

where we used the property D̂†(α) = D̂(−α). Moreover, if we attribute the value +1 to
a no-click outcome and −1 to a click outcome, the observable of the displacement-based
measurement is given by

σα = Pα0 − Pαc = D̂†(α)(2 |0〉〈0| − 1)D̂(α) = 2 |−α〉〈−α| − 1, (3.8)

Note that for |α| = 0 this observable becomes the Pauli matrix for the measurement along
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Figure 3.2.: Bloch sphere representation of the POVM element Pα0 corresponding to the
no-click outcome. Here, α is assumed to be real, therefore the vector lies in the x-z plane.
The blue points mark the direction of the vector for increasing |α| from 0 to 2.5 in steps
of 0.1. The maximum component in the x direction is achieved for |α| = 1/

√
2 ≈ 0.7 and

the z component vanishes for |α| = 1.

the z-axis, i.e. σ0 = σz. This observable is the basis for what will follow to demonstrate
entanglement in single-photon path-entangled states.

In order to understand σα better, it is instructive to have a look at the POVM element
Pα0 in matrix form in the qubit subspace

Pα0 =

(
e−|α|

2 −α∗ e−|α|2

−α e−|α|2 |α|2 e−|α|2

)
=

(
e−|α|

2 −|α| e−|α|2−iδ

−|α| e−|α|2+iδ |α|2 e−|α|2

)
, (3.9)

which corresponds to a projector in the direction of

~n = e−|α|
2




−2 Re(α)

2 Im(α)

1− |α|2


 (3.10)

on the Bloch sphere with the probability (|α|2 + 1)e−|α|
2 , see Ref. [114] for details. A

graphical representation is given in Fig. 3.2.

With the help of Eq. (3.9) and a general single-photon input state

ρ =

(
sin2(ϕ) |d|e−iθ

|d|eiθ cos2(ϕ)

)
, (3.11)

where θ ∈ [0, 2π), ϕ ∈ [0, π2 ] and |d| ≤ | sin(ϕ) cos(ϕ)|, we can now explicitly calculate p0
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Figure 3.3.: Implementation of the displacement-based measurement. (a) Interfering
the input state ρin with a coherent state |γ〉 on an imbalanced beam splitter with power
reflectance r (transmittance t � r) implements a displacement operation with parameter
α =

√
rγ. The output is then detected by a click detector described by the POVM

{E0, Ec}. (b) The same measurement can be implemented in a tunable manner by using
orthogonal linear polarisation states (ρin,H and |γ〉V ) and rotating them with a half-wave
plate (HWP) before projecting onto horizontal polarisation by means of a polarising beam
splitter (PBS) or polariser.

from Eq. (3.4) and obtain

p0 = tr(ρPα0 ) = e−|α|
2(

sin2(ϕ) + |α|2 cos2(ϕ)− 2|α||d| cos(δ − θ)
)
. (3.12)

We see that this outcome probability varies as a function of the phase difference between
the displacement field (phase δ) and the coherence term of the single-photon state (phase
θ). Hence, the amplitude 2|α||d|, and thus information on the coherence, can be extracted
by measuring p0 and varying the phase of the displacement field, given the displacement
amplitude is well known.

There are still two open questions at this point: first, how can we perform such a displacement-
based measurement experimentally and second, is it enough to only consider the case of a
unit efficiency detector or do we need a more general POVM which replaces {E0, Ec}?

To answer the first question, we notice that by inputting a coherent state |γ〉 to a BS,
we have |α〉 = |√rγ〉 in the reflected output port, where r is the reflectance of the BS.
Therefore, by sending the input state ρin to the other input port and using a highly
imbalanced BS with t� r, the transmitted state is displaced, i.e. D̂(α)ρin,tD̂

†(α), as shown
in Fig. 3.3(a). The displacement-based measurement is then completed by detecting the
output mode with a click detector. An equivalent implementation, shown in Fig. 3.3(b), can
be obtained if the input state and the coherent state co-propagate in the same spatial mode,
but in different orthogonal linear polarisation modes. Using a half-wave plate (HWP) and
a polarising element, the two orthogonal input modes are projected on the same output
mode where the transmission can be tuned by rotating the HWP.

The second question can be answered twofold. Either, the non-unit detector efficiency ηd
is taken into account and treated separately by replacing {E0, Ec} with {(1 − ηd)â

†â,1 −
(1 − ηd)â

†â} as done in Sec. 2.3.1 and discussed in Ref. [114] or, more conservatively, the
detector inefficiency is considered as loss on the state. To see that this can be done, we
have a look at no-click outcome probability of a general input state ρa after undergoing
the displacement operation D̂a(α) = eαâ

†−α∗â followed by a loss channel with efficiency ηd.

39



3. Detection and distribution of single-photon path entanglement

We describe the loss channel by the beam splitter unitary operator Û = eξ(â
†ĉ−âĉ†), where

ĉ and ĉ† are the annihilation and creation operator of the auxiliary mode and ηd = cos2(ξ).
The no-click outcome probability then is

p0 = tr
(

trc{Û(D̂a(α)ρaD̂
†
a(α)⊗ |0〉〈0|c)Û †} |0〉〈0|a

)
(3.13)

= tr
(
ÛD̂a(α)(ρa ⊗ |0〉〈0|c)D̂†a(α)Û † |0〉〈0|a ⊗ 1c

)

= tr
(
D̂c

(
α
√

1− ηd
)
D̂a(α

√
ηd)Û(ρa ⊗ |0〉〈0|c)Û †D̂†a(α

√
ηd)D̂

†
c

(
α
√

1− ηd
)
|0〉〈0|a ⊗ 1c

)

= tr
(

trc{Û(ρa ⊗ |0〉〈0|c)Û †}︸ ︷︷ ︸
ρlossa

D̂†a(α
√
ηd) |0〉〈0|a D̂a(α

√
ηd)
)

where we used that the trace is cyclic, applied the definition of the partial trace in the
second and fourth lines and in the third line we made use of the proposition 3.35 1 in
Ref. [153]. The last line corresponds to first acting with the loss channel on the input
state ρa and then displacing the lossy state with a reduced displacement parameter α√ηd.
Thus, it is possible to keep the introduced POVM {E0, Ec} = {|0〉〈0| ,1−|0〉〈0|} describing
a unit-efficiency click detector and treating the detection loss as loss on the state before
the displacement operation.

3.1.2. Bipartite entanglement witness using the PPT criterion

Building upon the displacement-based measurement we construct an entanglement witness
which is then used in Sec. 3.3 to certify the bipartite entanglement of our path-entangled
state. To start with, we consider two spatial modes i = 1, 2, where we can measure the
observable σ(i)

αi as defined in Eq. (3.8). We then define the operator

Ŵ = σ(1)
α1
⊗ σ(2)

α2
= (Pα1

0 − Pα1
c )⊗ (Pα2

0 − Pα2
c ) (3.14)

and, by assuming that from experimental run to run the global phase of the displacement
parameters α1 and α2 are arbitrary (which we guarantee in our implementations), we
actually measure the phase-averaged observable

Ŵ =
1

2π

∫ 2π

0
dφ
(
eiφ

∑2
i=1 â

†
i âi
)
Ŵ
(
e−iφ

∑2
i=1 â

†
i âi
)

= Pα1α2
00 − Pα1α2

0c − Pα1α2
c0 + Pα1α2

cc ,

(3.15)

where we introduced the bipartite phase-averaged POVM elements Pα1α2
kl corresponding to

the outcome kl with k, l ∈ {0, c}. This phase-averaging puts all coherence terms between

1. As a consequence we have the relation eXeY e−X = eY +[X,Y ]+ 1
2!

[X,[X,Y ]]+... = eY +
∑∞

n=1
1
n!

[X(n),Y ],
where [X(n), Y ] = [X, [X, [. . . [X,Y ]] denotes the nested commutator where X occurs n times. In our
case of X = ξ(a†c − c†a) and Y = (αa† − α∗a), we obtain [X(2n), Y ] = (−ξ2)n(αa† − α∗a) and
[X(2n+1), Y ] = −ξ(−ξ2)n(αc† − α∗c). Together with the series definitions of sin(ξ) and cos(ξ) we
end up with eXeY e−X = ÛD̂a(α)Û

† = D̂c(−α sin ξ)D̂a(α cos ξ) and with cos(ξ) =
√
ηd the equality

ÛD̂a(α) = D̂c(α
√
1− ηd)D̂a(α

√
ηd)Û follows.
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basis states with different total photon number in Ŵ to 0.

In order to obtain an intuition about this observable, we have a look at its matrix repre-
sentation in the two-qubit subspace

Ŵqubit =




f(α1)f(α2) 0 0 0

0 f(α1)h(α2) g(α1)∗g(α2) 0

0 g(α1)g(α2)∗ h(α1)f(α2) 0

0 0 0 h(α1)h(α2)



, (3.16)

where we defined

f(α) = 2e−|α|
2 − 1, g(α) = 2αe−|α|

2
, h(α) = 2|α|2e−|α|2 − 1. (3.17)

Note that for the experimentally relevant case of |α| =
√

ln 2 ≈ 0.83 we simply have f(α) =

0, g(α) = α and h(α) = |α|2− 1. It becomes obvious that Ŵqubit is a natural candidate to
detect a single-photon path-entangled state, since the only remaining coherence terms are
the ones between |01〉 and |10〉. The expectation value when measuring the lossy bipartite
path-entangled state ρ introduced in Eq. (3.2) is then

tr
(
ρ Ŵqubit

)
=
(

1− η1

2
− η2

2

)
f(α1)f(α2) +

η2

2
f(α1)h(α2) +

η1

2
h(α1)f(α2)

+ 8

√
η1η2

2
|α1||α2|e−|α1|2−|α2|2 cos(θ12 − (δ2 − δ1)),

(3.18)

where we again defined α1 = |α1|eiδ1 and α2 = |α2|eiδ2 . We see that the last term (∝√
η1η2), which comes from the coherence terms in ρ, is varying as a function of the phase

term θ12 − (δ2 − δ1). This term can be probed by varying the phase difference between
the displacement parameters δ2 − δ1. It also becomes clear, that the coherence terms of
the state can only be fully retrieved if the difference between the path-entangled state’s
phase difference θ12 and the one of the displacement parameters δ2− δ1 does not fluctuate
during the measurement. If the state is generated directly by sending a single photon to
one or several BSs, the phase stability can be guaranteed by co-propagating the coherent
state used for the displacement operation in the orthogonal polarisation mode and then
implementing the measurement as depicted in Fig. 3.3(b).

In order to demonstrate entanglement, we use the Peres-Horodecki criterion [154, 155],
which states that if the bipartite state ρ is separable, then all the eigenvalues of its partial
transpose ρT1 are non-negative. This criterion is also referred to as the positive partial
transpose (PPT) criterion, where the partial transpose of a state ρ =

∑
ijkl cijkl |i〉〈j|1 ⊗

|k〉〈l|2 is defined as

ρT1 = (T ⊗ I)(ρ) =
∑

ijkl

cijkl(|i〉〈j|1)T ⊗ |k〉〈l|2 =
∑

ijkl

cjikl |i〉〈j|1 ⊗ |k〉〈l|2 . (3.19)

If ρT1 ≥ 0, it corresponds to a physical state, also referred to as the PPT state. In
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the case of a qubit-qubit or qubit-qutrit system, the PPT criterion is not only necessary
but also sufficient, i.e. if all eigenvalues ρT1 are non-negative, then ρ is separable [155].
Or formulated differently, if ρT1 has at least one negative eigenvalue, then ρ is entangled.
Using the observable Ŵ together with the knowledge of the diagonal elements of the density
matrix from a z-basis measurement, we can calculate the maximum expectation value for
a separable two-qubit state ρqubit

wppt = max
ρqubit

tr
(
ρqubitŴ

)
(3.20)

such that (i) (ρqubit)
T1 ≥ 0,

(ii) (ρqubit)ii = pii.

The condition (i) imposes the separability on ρqubit and (ii) ensures that we use all our
knowledge of the diagonal elements of the density matrix. This is equivalent to considering
an optimised witness constructed from all possible linear combinations of σ(1)

α1 ⊗σ(2)
α2 , σ

(1)
0 ⊗

σ
(2)
0 , σ(1)

0 ⊗ 1 and 1 ⊗ σ(2)
0 , which can detect more entangled states than a fixed linear

combination. If we restrict ourselves to qubit states, the probabilities pii are given by the
measured quantities p00 = p00, p11 = p0c, p22 = pc0 and p33 = pcc without displacement
fields. If the measured value of 〈Ŵ 〉 is larger than wppt, we can make the conclusion that
our qubit state is entangled, also referred to as a witness violation. Explicitly, the bound
is given by

wppt = p00 f(α1)f(α2) + p0c f(α1)h(α2) + pc0 h(α1)f(α2)

+ pcch(α1)h(α2) +
√
p00pcc (g(α1)g(α2)∗ + g(α1)∗g(α2)).

(3.21)

In an experiment, first we might encounter varying displacement amplitudes over the mea-
surement duration due to power drifts of the lasers which generate the displacement field.
Second, we must not assume that the state is a qubit state since, with a low probability,
the source might produce multi-photon states. The first problem is tackled by tracking the
displacement amplitude and taking this into account when calculating wppt according to
Eq. (3.20) which leads to w̃ppt ≥ wppt. To mitigate the effect, we choose the mean displace-
ment amplitudes such that ∂2wppt/∂α1α2 = 0 which is achieved for |α1| = |α2| ≈ 0.83.
Regarding the second point, we remove the assumption on the state dimension by exper-
imentally bounding the contributions from outside the qubit subspace and adding them
to the separable bound w̃ppt (for the derivation see Sec. III in the Supplemental Material
of P.1)

wmax
ppt = w̃ppt + p∗1 + p∗2

+ 4|α1||α2|e−|α1|2−|α2|2
√

2(|α1|4 + |α2|4)(p∗1 + p∗2)(1− p∗1 − p∗2)
(3.22)

where p∗i denotes the upper bound on the probability of having more than one photon in
mode i ∈ {1, 2}. The latter can be bounded in practice by measuring twofold coincidences
after a 50/50 BS or with a PNR detector. In the case of a 50/50 BS, we can calculate the
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twofold coincidence probability in mode i after the BS

p
(i)
coinc =

∞∑

n=2

(
1− 1

2n−1

)
p(i)
n ≥

1

2

∞∑

n=2

p(i)
n ⇒ p∗i = 2p

(i)
coinc ≥

∞∑

n=2

p(i)
n , (3.23)

where p(i)
n is the probability of having n photons in mode i before the 50/50 BS.

We can therefore make the conclusion that an arbitrary state ρ is entangled if the measured
expectation value of the witness is larger than the maximum PPT bound

wexp
ρ = pα1α2

00 − pα1α2
0c − pα1α2

c0 + pα1α2
cc > wmax

ppt . (3.24)

3.1.3. Analytical genuine multipartite entanglement witness

So far we have considered bipartite single-photon path-entangled states and discussed a
witness to detect this entanglement. Now we want to generalise this to multipartite single-
photon path-entangled states, that is an equal superposition of the photon being in one of
the N parties, which can be described by the W state [156]

|WN 〉 =
1√
N

N∑

i=1

|01, ..., 0i−1, 1i, 0i+1, ..., 0N 〉 . (3.25)

In Ref. [83], a fidelity-based entanglement witness of the form (2N |WN 〉〈WN | − 1) is pre-
sented and approximated by the operator

Ẑ =
N∑

m=1

(N − 2m)σ⊗m0 ⊗ 1⊗(N−m) + 4
N−2∑

m=0

σ⊗m0 ⊗ 1⊗(N−m−2) ⊗ σα ⊗ σα + sym., (3.26)

where "sym." includes all terms corresponding to permutations of parties. The separable
bound is then calculated by considering anN -qubit state ρqubit that has a PPT with respect
to a single party, i.e. (ρqubit)

T1 ≥ 0, and maximising the expectation values of the witness
over all such states. This maximisation problem can be solved efficiently with semi-definite
programming techniques, however, is still limited to a few tens of parties due to the size
of the 2N × 2N density matrix. Contributions from outside the N -qubit subspace need
to bounded and added to the separable bound, like in the two-qubit case. Further, the
number of measurements settings to estimate the phase averaged expectation value of Ŵ
scales quadratically (N2/2−N/2 + 1) with the number of parties N (1 setting for the first
term in Eq. (3.26) corresponding to σ⊗N0 and N(N−1)/2 settings for the rest). Especially,
the witness includes terms which require measuring two parties with displacement σα⊗σα
and the rest of the parties in the z-basis σ⊗N−2

0 which is not straightforward to implement
in the case the single-photon and coherent states co-propagate in orthogonal polarisation
modes.
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An improved multipartite entanglement witness

Here, we develop a witness to reveal genuine multipartite single-photon path entanglement
building upon the displacement-based measurement, that eliminates the shortcomings of
the witness in Ref. [83]. First, the measurement settings for our witness is reduced to
a constant number of 2 + the setting to estimate the probability of having two or more
photons in the state, which eases the experiment for many parties N enormously. Second,
the two measurement settings which are required are global measurements, that is, either
measuring all parties in the z-basis or with the displacement operation, but no combinations
thereof. Third and last, the separable bound is calculated analytically without the help of
the PPT criterion which is achieved by reducing the analysis to the subspace containing
one photon at maximum and bounding the contributions from outside this subspace. This
leads to an eigenvalue problem of an N × N matrix, which can be computed efficiently
and presents a vast improvement compared to the previous witness, where a semi-definite
programming problem for a 2N × 2N density matrix has to be solved.

As a multipartite extension of the bipartite operator given in Eq. (3.14), we see that

Ô~α =
∑

i 6=j
σ(i)
αi
⊗ σ(j)

αj
⊗ 1⊗(N−2)

¬{i,j} (3.27)

picks up all the coherence terms |0i, 1j〉〈1i, 0j | + h.c. in the state |WN 〉 and is therefore a
good candidate to witness the entanglement. Here, we introduced the vector describing the
local displacement parameters ~α = (α1, ..., αN ) and the term 1

⊗(N−2)
¬{i,j} which is the tensor

product of identity operators in all modes except modes i and j. Again, we consider the
experimentally relevant case where the displacement parameters are not phase-locked to
the input state and thus the displacement parameters are only defined up to an arbitrary
global phase eiφ~α, leading to the phase averaged operator

Ô~α =
1

2π

∫ 2π

0
dφ
(
eiφ

∑N
i=1 â

†
i âi
)
Ô~α
(
e−iφ

∑N
i=1 â

†
i âi
)
, (3.28)

which acts orthogonally on subspaces with different total photon numbers n = 〈∑N
i=1 â

†
i âi〉

and therefore we can write it as a direct sum Ô~α =
⊕∞

n=0 Ô
(n)
~α .

Since Ô~α = Ôn≤1
~α ⊕ Ôn≥2

~α is also sensitive to higher photon number contributions n ≥ 2,
which are not part of the target state, we need to make sure that such contributions in a
state cannot increase the expectation value of our witness. To this end, we define in mode
i the local projector on all states with two or more photons Π̂

(i)
n≥2 =

∑
n≥2 |ni〉〈ni| and the

POVM element En≥2 corresponding to the probability of having an outcome where n ≥ 2

detectors click when measuring in the z-basis. With Π̂n≥2 we further denote the projector
on all combinations of Fock states containing at least two photons in total and see that
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the following inequality holds

Π̂n≥2 ≤ En≥2 +

N∑

i=1

Π̂
(i)
n≥2. (3.29)

Hence, the term on the right-hand side, which can be experimentally accessed, upper-
bounds the probability of having n ≥ 2 photons in the state. For the expected state close
to |WN 〉, we have tr

(
ρ Π̂n≥2

)
≈ 0 and since the operator norm ||Ô~α|| ≤ N(N − 1) and

||Π̂n≥2|| = 1, we can bound

Ô~α −N(N − 1)Π̂n≥2 = Ôn≤1
~α ⊕ (Ôn≥2

~α −N(N − 1)Π̂n≥2)︸ ︷︷ ︸
≤0

≤ Ôn≤1
~α (3.30)

by an operator supported on a subspace with one photon at most. We now define our
witness

Ŵ~α = Ô~α +Mn≤1 −N(N − 1)Π̂n≥2 − µEn≥2 (3.31)

=
(
Ôn≤1
~α +Mn≤1

)
⊕
(
Ôn≥2
~α −N(N − 1)Π̂n≥2 − µEn≥2

)
(3.32)

(3.30)

≤
(
Ôn≤1
~α +Mn≤1

)
⊕ (−µEn≥2) = W̃~α, (3.33)

where µ is a positive real parameter that one can tune to penalise states which contain
more than one photon in total and Mn≤1 an operator in the sector with not more than
one photon which we define by

Mn≤1 = λ |0̄〉〈0̄| −
∑

i 6=j
f(αi)f(αj)

(
|0̄〉〈0̄|+

∑

k 6=i,j
|1k〉〈1k|

)
. (3.34)

Here, |0̄〉 denotes the vacuum state in all involved modes, |1k〉 = a†k |0̄〉 the state with one
photon in mode k and vacuum elsewhere, λ is another positive real parameter that one can
tune and f(α) the function as defined in Eq. (3.17). The operator Mn≤1 is chosen such
that

Ôn≤1
~α +Mn≤1 = λ |0̄〉〈0̄|+

∑

i 6=j

(
g(αi)g(αj)

∗ |1i〉〈1j |+ g(αi)
∗g(αj) |1j〉〈1i|

+h(αi)f(αj) |1i〉〈1i|+ f(αi)h(αj) |1j〉〈1j |
)
.

(3.35)

This expression picks up exactly the coherence terms in |WN 〉 and λ allows the optimisation
of the weight of the projection on the overall vacuum. Again, g(α) and h(α) are the
functions as defined in Eq. (3.17).

We note that in the experiment we can access Ŵ~α as defined in Eq. (3.31), whereas for the
calculation of the separable bound we make use of W̃~α from Eq. (3.33), which will simplify
the calculations enormously.

45



3. Detection and distribution of single-photon path entanglement

Calculation of the separable bound

We now calculate the biseparable bound, i.e. the maximum expectation value that our
witness takes on any biseparable state

wbisep = max
%bisep

tr
(
%bisep Ŵ~α

)
. (3.36)

where a general biseparable state is a mixture of product states on some bipartitions
(partitions of all modes into two groups G1 and G2). Explicitly, it is defined by

%bisep =
∑

G1|G2

p(G1|G2)ρG1|G2
, (3.37)

where the sum runs over all partitions G1|G2 of the N parties with G1∪G2 = {1, 2, . . . , N}
andG1∩G2 = ∅. The probabilities of different partitions are normalised

∑
G1|G2

p(G1|G2) =

1 and ρG1|G2
is a separable state with respect to the partition G1|G2. We note that

since the set of biseparable states is convex, the maximum value that an observable
takes on any biseparable state %bisep, including mixed states, is attained for a pure state
|Ψ〉 = |Ψ1〉G1

|Ψ2〉G2
on some partition. Together with Ineq. (3.33), we get

wbisep = max
G1,G2,|Ψ〉

〈Ψ| Ŵ~α |Ψ〉 ≤ max
G1,G2,|Ψ〉

〈Ψ| W̃~α |Ψ〉 . (3.38)

Since operator W̃~α is block diagonal, and its restriction to the sector with two or more
photons −µEn≥2 is negative, we can restrict the maximisation to states |Ψk〉Gk

which
contain one photon at most, that is without loss of generality

|Ψk〉Gk
= cos(θk) |0̄〉Gk

+ sin(θk)

|Gk|∑

i=1|ji∈Gk

v
(k)
i a†ji |0̄〉Gk

, (3.39)

where we introduced the parameter θk and the normalised vector ~v(k) ∈ C|Gk|. To simplify
the notation, lets define sk = sin(θk), ck = cos(θk), ~v(1) = ~v and ~v(2) = ~w. The biseparable
state can then be written as

|Ψ〉 = c1c2 |0̄〉+ s1s2

∑

i∈G1

∑

j∈G2

viwj |1i〉G1
|1j〉G2

+ s1c2

∑

i∈G1

vi |1i〉G1
+ c1s2

∑

j∈G2

wj |1j〉G2
.

(3.40)

By defining a vector ~L =
(
c1s2 ~w
s1c2~v

)
we end up with a compact expression for the upper
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bound on the expectation value that our witness can take for any biseparable state

〈Ψ| W̃~α |Ψ〉 = λc2
1c

2
2 − µs2

1s
2
2 + ~LT

(
Mw Mc

MT
c Mv

)

︸ ︷︷ ︸
M

~L

=

(
s2 ~w

c2~v

)T (
c2

1Mw − s2
1µ1 c1s1Mc

c1s1M
T
c Mv + c2

1λ1

)

︸ ︷︷ ︸
M(λ,µ,~α,θ1)

(
s2 ~w

c2~v

)
,

(3.41)

where λ and µ are the witness parameters as defined in Eqs. (3.31, 3.34). By arranging the
entries of the matrixM according to the defined bipartition (Mv corresponds to G1 andMw

toG2), we can explicitly write down the diagonal matrix elementsMii = 2
∑

k 6=i f(αk)h(αi)

and the off-diagonal elements Mij = 2g(αi)g(αj)
∗ with the functions f , g and h as defined

in Eq. (3.17). Finally, we can reduce Eq. (3.41) to a single parameter eigenvalue problem

〈Ψ| W̃~α |Ψ〉 ≤ w̃G1,G2 = max
θ1∈[0,2π]

(max eig(M(λ, µ, ~α, θ1))) (3.42)

and obtain the separable bound according to Eq. (3.38)

wbisep ≤ w̃bisep = max
G1,G2

(w̃G1,G2). (3.43)

Thus, if a state exceeds this bound, i.e. tr
(
ρ Ŵ~α

)
> w̃bisep, we can make the conclusion

that the state ρ can not be written in the biseparable form as defined in Eq. (3.37) and is
therefore genuinely multipartite entangled.

Estimating the witness

In reality, the displacement parameters ~α can fluctuate, e.g. due to power drifts and
fluctuations of the generating lasers, and the range needs to be experimentally bounded
~α ∈ A. This impacts the measured and calculated values in the following way. The
expectation value of the witness Ŵ~α on a state ρ depends on ~α directly through the term
Ô~α, which is obtained from the measurement with displacement on all modes, as well as
algebraically through the termMn≤1 where the knowledge of ~α together with the outcomes
of the measurement in the z-basis is needed. Furthermore, the separable bound calculated
from the maximum eigenvalue of the matrix M(λ, µ, ~α, θ1) also depends on ~α.

To ensure that those effects do not lead to false violations of the witness, we consider the
worst-case scenario for the bound

wmax
bisep = max

~α∈A

(
w̃bisep(~α)

)
. (3.44)
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3. Detection and distribution of single-photon path entanglement

Then, defining the operator W ~α, where Mn≤1 is replaced by M̄n≤1 = min~α∈A(Mn≤1(~α))

in the witness Ŵ~α as defined in Eq. (3.31), implies

Ŵ~α − wbisep ≥W ~α − wmax
bisep. (3.45)

To prove genuine multipartite entanglement in a state ρ, it suffices to show that, over all
measurement rounds with fluctuating ~α, the average expectation value of wexp

ρ = 〈W ~α〉
exceeds the constant wmax

bisep. In Appendix C of P.2, we show that 〈W ~α〉 can be estimated
by combining the average values of three different observables measured independently in
different runs of the experiment:

W ~α = Ô~α + Z −N(N − 1)Σn≥2 (3.46)

with

â Ô~α, as defined in Eq. (3.28), measured with displacement operations on all modes,

â Z = λ |0̄〉〈0̄| −∑i 6=j max{0,max~α∈A f(αi)f(αj)} |00〉〈00|ij − (N(N − 1) + µ)En≥2,
measured without displacement operations and one detector per mode, but with the
knowledge about the displacement amplitudes,

â Σn≥2 =
∑

i Π
(i)
ni≥2, measured on a single mode with a 50/50 BS and two detectors

(see Eq. (3.23)) or a PNR detector.

Finally, in Appendix D of P.2 we analyse the statistical significance of the observed violation
of the witness. To this end, we make use of Hoeffding’s theorem (1963) [157] to upper bound
the p-value for the null-hypothesis that the state ρ is biseparable.

Scaling of the improved multipartite witness

A few words are prudent on how the presented witness scales as a function of the number
of parties N . First, we stress that the witness only requires three measurement settings,
independent of N . In the case where PNR detectors are used, this could even be reduced
to two settings, one with displacement and one without. However, the displacement am-
plitude also needs to be known and bounded, which can be done in a separate additional
measurement setting. Still, this represents a vast improvement compared to the witness
in Ref. [83], which scales polynomially in N , and is in sharp contrast to state tomography,
which scales exponentially in N . That being said, state tomography fully reconstructs the
density matrix and can therefore not be compared with our entanglement witness in terms
of knowledge about the state.

Second, an important aspect which can limit the application of the witness to large N is the
computational resources needed for the calculation of the separable bound. Our method is
based on the computation of the maximum eigenvalue of an N ×N matrix, which scales
polynomially in N and can therefore be efficiently computed, for each bipartition of the N
parties in two groups. The number of bipartitions G1|G2 of a set of N modes is given by
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Figure 3.4.: Maximum number of parties Nmax for which the witness is still violated as
a function of η for a state ρη which is obtained by sending ρ = (|1〉〈1| + p |2〉〈2|)/(1 + p)
through a loss channel with transmission efficiency η. The scaling behaviour is shown
for input states ρ = (|1〉〈1| + p |2〉〈2|)/(1 + p) with p ∈ {0, 1× 10−3, 5× 10−3} that are
measured with detectors suffering from dark counts with probabilities per heralding event
of pdc ∈ {10−6, 10−5}.

the Stirling number of the second kind S(N, 2) = 2N−1 − 1 and scales exponentially with
N . However, if the displacement parameter on each mode αi can be assumed to be equal
for all the modes, the number of bipartitions to evaluate reduces to bN/2c.

Third and last, the question arises of how much experimental imperfections such as dark
counts or multi-photon contributions in the state affect the scalability of the witness.
Since for an increasing number of parties N , the probability of the single photon being in
one party decreases as 1/N , dark counts of the detectors become more important. Also,
multi-photon contributions reduce the expectation value of the witness through the terms
−N(N − 1)Π̂n≥2 − µEn≥2 and prohibit its violation if they become too important. In
order to quantify these effects, we calculate the maximum number of parties Nmax for
which we still see a violation of the witness given a state ρ = (|1〉〈1| + p |2〉〈2|)/(1 + p)

undergoing a loss channel with transmission efficiency η (leading to the state ρη) and
then input on a N -port BS. We assume that the detectors suffer from dark counts with
a probability of pdc per detection window (triggered by the heralding detection in the
case of a HSPS). The displacement operation is assumed to be identical on all modes
with amplitude |α| =

√
ln 2 ≈ 0.83. The result of this calculation as a function of the

transmission efficiency η of the state is shown in Fig. 3.4 for different values of p and pdc.
For details on the dark count model, see Appendix F in P.2. We see that for the simulated
values, our witness is able to detect genuine multipartite entanglement for a few tens of
parties.
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3. Detection and distribution of single-photon path entanglement

3.2. Local and scalable detection of genuine multipartite
single-photon path entanglement

Multipartite entangled states are not only conceptually fascinating, but lie at the heart of
quantum networks and are therefore potentially useful. In the case of single-photon path
entanglement, a multipartite entangled state could be distributed by giving each party a
weakly pumped photon-pair source and combining one mode from each party on a multi-
port BS at a central station, as schematically shown in Fig. 3.5(a). This would lead to a
state close to a |WN 〉 state as defined in Eq. (3.25). The goal here is to experimentally
certify such a state by means of local measurements on the state. To this end, we consider
a scenario as depicted in Fig. 3.5(b), where a heralded single photon is delocalised over 8
modes.

Apart from the simplicity of the generation, the question about certification of such a
state is more complicated, as discussed in Sec. 3.1.3. For an N -qubit state, the number
of measurement settings required to fully reconstruct the density matrix via quantum
state tomography scales exponentially with N . Therefore, this technique becomes quickly
experimentally infeasible. Furthermore, in our case of single-photon path entanglement,
one can not a priori assume that locally, the state is a qubit state. Thus, the certification
method needs to take into account that the state is in principle infinite dimensional.

In the past, experiments have been carried out where single-photon path-entangled states
are certified interferometrically by the recombination of the modes [81, 158]. In a real-
istic network scenario, this approach is not applicable any longer. A first experimental
certification of a tripartite state with local measurements was then presented in [83] as
discussed in the beginning of Sec. 3.1.3. Here, we demonstrate multipartite single-photon
path entanglement for 8 parties by means of the improved multipartite entanglement wit-
ness described in Sec. 3.1.3. Apart from the improvement on the theoretical side, we also
implement the displacement operation in an all-fibre configuration which leads to a com-

(b)(a)

S

!

S

S

!
HSPS S

Figure 3.5.: Heralded multipartite single-photon path entanglement. (a) Entanglement is
distributed between three parties, each holding a weakly pumped signal-idler photon-pair
source (S). The idler modes are combined on a three-port symmetric beam splitter (tritter)
and the detection of a single photon after this beam splitter projects the signal modes into
a single-photon entangled state. (b) Conceptual schematic of the state generation in the
experimental detection of genuine multipartite entanglement. A single photon generated
by a heralded single-photon source (HSPS) is split into multiple spatial output modes.
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3.2. Local and scalable detection of genuine multipartite single-photon path entanglement

pact and scalable setup. In principle, the number of modes could still have been increased
beyond 8, however, we were limited on the detector side by our 8 cryostat readout channels
for the high-efficiency SNSPDs.

3.2.1. Experimental setup

The setup for the demonstration of 8-partite single-photon path entanglement is shown
in Fig. 3.6. It can be grouped into four parts: HSPS, coherent state generation, path
entanglement generation, and measurement part as described in the following.

The HSPS based on type-II quasi-phase-matching in a PPKTP crystal is described in
Sec. 2.2. The pair creation probability per pump pulse is kept low at approximately
2.7× 10−3 to minimise double-pair emissions. In order to herald signal photons with high
spectral purity, we filter the heralding photons with a commercial 100 GHz DWDM at
channel 39 (= 1546.1 nm). Then, the heralding photons are detected by an InGaAs single-
photon avalanche diode (ID Quantique ID210) in gated mode with a detection efficiency of
around 20 %. The gate trigger signal is provided by the fast photodiode inside the pump
laser, so synchronising the detection and the state generation. In this way, we obtain a
heralding rate of 11.5 kcps whereof 0.6 kcps are attributed to dark counts, which effectively
adds loss to the heralded state.

To generate the coherent state with the same spectral and temporal properties as the signal
photon, we use difference frequency generation (DFG) between the pump and a seed laser in
a type-II periodically poled lithium niobate (PPLN) crystal. The seed laser is a distributed
feedback laser at λi = 1546.1 nm, emitting long pulses of around 0.7 ns, with the pump
laser photodiode used to trigger the seed laser. It is driven from well below to above the
lasing threshold in each cycle to randomise the phase of the coherent state. In order to
reach the required displacement amplitude, we amplify the pulses with an erbium doped
fibre amplifier (EDFA). Together with the pump pulses we then stimulate a DFG process
in the PPLN nonlinear crystal. After the crystal, we couple into single-mode optical fibre
and go through a motorised delay line (Newport MDL 560 ps) to fine-adjust the time delay
between the coherent state and the signal photon. Furthermore, to avoid saturation of
the detectors, we select the coherent state pulses by passing them through an electro-optic
intensity modulator (EOIM) with an extinction ratio of around 30 dB triggered by a 5 ns

gate upon successful detection of a heralding photon. Residual seed laser light is then
filtered with a 200 GHz DWDM at channel 45 (= 1541.3 nm).

For the entangled state generation, the heralded signal photon is input to a cascade of 50/50
BSs. The coherent state is input to the second port of the first 50/50 BS and co-propagated
with the single-photon state. This passively guarantees stability of the relative optical
phase for the later displacement. To ensure orthogonal polarisations between coherent and
single-photon states, manual paddle polarisation controllers (PC) are used before the first
50/50 BS.
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Figure 3.6.: Setup for the detection of genuine multipartite single-photon path entangle-
ment. The state produced by a heralded single-photon source is delocalised by a cascade of
50/50 fibre BSs to generate an 8-partite path-entangled state. Coherent states in orthog-
onal polarisation modes are co-propagated with the single-photon state to locally perform
displacement-based measurements. On each mode, the state is detected by a MoSi SNSPD
and time-correlated single photon counting (TCSPC) is used to obtain the 8-bit click/no-
click detection outcome. Electrical signals are represented by solid black lines.
BS, beam splitter; DFG, difference frequency generation; DM, dichroic mirror; DWDM,
dense wavelength division multiplexer; EDFA, erbium-doped fibre amplifier; EOIM,
electro-optic intensity modulator; EPC, electronic polarisation controller; PBS, polaris-
ing beam splitter; PC, polarisation controller; POL, polariser; PPKTP, periodically poled
potassium titanyl phosphate; PPLN, periodically poled lithium niobate; SNSPD, super-
conducting nanowire single-photon detector; SPAD, single-photon avalanche diode; SPDC,
spontaneous parametric down-conversion.
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3.2. Local and scalable detection of genuine multipartite single-photon path entanglement

The measurement part of the setup consist of fibre components (yellow box in Fig. 3.6),
which perform the displacement operation in the case where the coherent state is present
at the input, and high-efficiency MoSi SNSPDs (75 – 82 %). The implementation for the
displacement operation is a fibre version of the one shown in Fig. 3.3(b) and works as
follows. The incoming orthogonal states are aligned with a PC on the fast and slow optical
axes of the first segment of an electronic polarisation controller (EPC). This EPC (Phoenix
Photonics PSC) consists of three segments of polarisation maintaining fibre, where the
fibre in the middle is spliced at 45◦ with respect to the other fibres. In each segment, the
refractive index difference between the fast and slow optical axis can be tuned via ohmic
heating with a relative phase difference range of > 2π. In this way, with the first EPC
segment we can tune the relative phase between the coherent and single-photon states.
With the second and third EPC segments we choose the polarisation state such that we
get the desired displacement amplitudes. In theory, a very high transmission for the single-
photon state would be optimal. However, in practice we are limited by the polarisation
extinction ratio of the polariser (> 28 dB), and therefore set a normalised transmission
of 95 % (5 %) for the single-photon state (coherent state). Shutters in the bulk part of
the setup allow different measurement settings to be chosen: single-photon state only (z-
basis), single-photon and coherent states (α-basis) or only coherent state to determine the
displacement amplitudes.

Finally, the detector readout signals are discriminated by two clock-synchronised pro-
grammable time-to-digital converters (ID Quantique ID900). Conditioned on a successful
heralding detection (connected to the "Start" input), the time stamps for all input channels
are saved for the later evaluation of the 8-bit click/no-click outcomes.

3.2.2. Characterisation, alignment and measurement sequence

In order for the entanglement certification to work properly, several things need to be
characterised and aligned. Most importantly, the coherent state used for the displacement
operation needs to be as indistinguishable as possible from the single-photon state. The
indistinguishability in the spatial degree of freedom is guaranteed by the single mode optical
fibre, therefore only the spectral and temporal degree of freedom need to be characterised
and aligned. The wavelengths are chosen such that idler and signal photons generated in the
PPKTP crystal are centred in the ITU channels 39 and 45, respectively. We then choose
the phase-matching conditions in the PPLN crystal such that the same pump together
with the distributed feedback laser at the idler wavelength generates a coherent state at
the signal wavelength. We verify the spectral overlap by sweeping a 0.2 nm bandwidth
tunable grating filter (JDS Uniphase TB9) before the single-photon detector and compare
the spectra of the coherent state and the heralded single photon, as shown in Fig. 3.7(a).
From the Gaussian fits, the Hong-Ou-Mandel visibility due to the non-unit spectral overlap
is calculated to be 99.2 % (see Eq. (5.14) in [159]).

To make sure that the coherent and single-photon states are temporally aligned, we also
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(a) (b)

Figure 3.7.: Characterisation and alignment of the coherent state and the single-photon
state. (a) Spectral overlap. (b) Temporal alignment.
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Figure 3.8.: Schematic of the temporal setup alignment. BS, beam splitter; DFG, dif-
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(a) (b)

Figure 3.9.: Characterisation of the electronic polarisation controllers (EPC). (a) Induced
phase difference with the first segment of the EPC as a function of the applied voltage
to the ohmic heating element. The voltage is indicated in values of the 14-bit digital-to-
analog (DAC) converter of the control electronics. Low DAC values correspond to more
heating, which explains the saturation effect. A linear fit is applied to the data between
the DAC values 6000 and 15000. (b) Output polarisation on the Poincaré sphere for the
qualitative characterisation of the cross talk between EPC segments. The input light is
aligned on axis with the first segment, i.e. different settings for the first segment should
not alter the measured output state. The three different colours correspond to different
DAC values, which are set for the first segment and kept for 30 min. In between the three
settings, the second and third segments are fully swept (in 20 s) to see the direction of
polarisation change (2nd segment: left-right; 3rd segment: up-down), and then brought
back to the fixed DAC values of 16000 and 10000, respectively. Different temperatures on
the first EPC segment mainly influences the second segment and therefore we see the state
moving to the right.

stimulate a DFG process in the PPKTP crystal by splitting the seed laser output, as
shown in Fig. 3.8. The two coherent states, originating from DFG processes with the same
seed pulse in the PPKTP and PPLN crystals, are then combined on the first 50/50 BS
of the cascade in the same polarisation mode. In one of the 8 output modes, we measure
the output power with a power meter and calculate the interference visibility from the
observed minimum and maximum values over a 20 s interval. As shown in Fig. 3.7(b), by
changing the delay ∆t in the coherent state path we find and set the delay such that the
interference visibility is maximal.

Regarding the displacement-based measurement, we need to be able to locally control the
phase between the coherent and single-photon state (see Eq. (3.12)), which we achieve by
tuning the first segments of the EPCs and align the polarisation of the incoming states on
the fast and slow axes, as described above. In Fig. 3.9(a), we show the characterisation of
the induced phase difference as a function of the applied voltage (indicated in values of the
14-bit digital-to-analog (DAC) converter) to the ohmic heating element of the EPCs’ first
segments. This is measured with light input to the EPCs in a polarisation state which is
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Figure 3.10.: (a) Phase alignment between mode 1 and all seven other modes. The
single-photon state is displaced with |α| ≈ 0.83 and the first segments of the EPCs 2 - 7
are swept over their full range from 0 to 2π. Sinusoidal curves are fitted to the data for
expectation values of the pairwise correlators 〈σ(i)

αi ⊗ σ(j)
αj 〉 = p

αiαj

00 − pαiαj

0c − pαiαj

c0 + p
αiαj
cc .

(b) Same measurement without the presence of the single-photon state. (c) Measurement
of the displacement amplitude |αi| in mode i (1 min per point) during the data acquisition
for the entanglement witness. Error bars correspond to one standard deviation assuming
Poissonian count statistics.

split equally between the fast and slow axes of the EPCs’ first segments and a polarimeter
at the output. The EPCs are then operated in the linear regime (between DAC values
6000 and 15000) and the phase is calculated from the slope of the corresponding linear fit
function.

Our fibre implementation of the displacement operation is compact and can easily be scaled
up to more parties. However, the drawback of the chosen EPC is the thermal crosstalk
between adjacent segments. When changing the temperature of the first segment, for
example, not only the phase of the displacement, but also the amplitude is affected, as
shown in Fig. 3.9(b). Therefore, the settings have to be adjusted in an iterative way to
reach the final alignment. Enough waiting time has to be left in between iterations to
ensure that the device has reached a thermal equilibrium, which makes the full alignment
process slow (several tens of minutes to hours). This problem could be solved by using
piezo-actuated fibre squeezers instead.

The measurement results of the phase alignment are shown in Fig. 3.10(a). First, the
displacement amplitude is set to |α| ≈ 0.83 for all modes, corresponding to a heralded no-
click probability locally of p0 = e−|α|

2
= 0.5, by changing the temperature of the second

and third EPC segments. Then, we additionally input the single-photon state and sweep
the first segments of the EPCs 2 - 7 over the full range. The same measurement without
single-photon state at the input leads to the result shown in Fig. 3.10(b), where no phase-
dependence is observed, as expected. The phases are then aligned by setting the first
EPC segments such that the expectation values of the pairwise correlators 〈σ(1)

α1 ⊗σ(i)
αi 〉 are
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maximised.

After the alignment of the relative phases between the output modes, data for the witness
are acquired in 20 sequences of 5 min. Each sequence measures the displacement amplitudes
(1 min), as shown in Fig. 3.10(c), followed by the measurement of the state in the α-basis
and then in the z-basis (2 min). This leads to more than 27× 106 evaluations for the α-
and the z-basis, respectively. The observed drifts and fluctuations in the displacement
amplitudes reduce the violation of the 8-partite witness by 2.4 %. In order to estimate the
probability of having more than one photon locally, we additionally perform a heralded
autocorrelation measurement on one output mode by inserting a 50/50 BS before the
detectors and acquire data for 6 h corresponding to more than 365× 106 heralding events.

3.2.3. Results for a genuinely 8-partite entangled state

The results of the measurement on the 8-partite state are given in Fig. 3.11. From the
counts in the z-basis we deduce the normalised splitting ratio of the state, as shown in
Fig. 3.11(a). All the output modes have a normalised splitting ratio of (12.5± 0.8) %. The
probability of measuring in one or more clicks on all 8 detectors combined, conditioned on a
heralding event, is 26.8 %. Apart from the heralding efficiency of the source (75 %) and the
detector efficiencies (75 – 82 %), this is mainly due to the loss of the 50/50 BSs (∼ 0.5 dB

per BS) for the state generation, the EPC (∼ 0.8 dB), and the polariser (∼ 0.5 dB) used for
the displacement-based measurement, which amounts to a transmission efficiency of ∼ 52 %
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Figure 3.11.: Results for the measured 8-partite state. (a) Normalised probabilities of
detecting a photon in output mode i ∈ {1, ..., 8} from the measurement without displace-
ment (z-basis). (b) Witness violation wexp

ρ − wmax
bisep with the maximum p-value for each

fixed number of subsets indicated on top. The witness is applied to all possible different
subsets of n ∈ {2, ..., 8} out of 8 parties where the discarded parties are traced out. (c)
State efficiency 1− p0 where p0 is the probability of the overall vacuum component |0̄〉〈0̄|
for each subset of parties.
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p0 P 1
click P 2

click P 3
click p∗1 p∗

0.7319(1) 0.2678(1) 2.96(4) · 10−4 1.5(8) · 10−7 5.4(1) · 10−6 3.40(4) · 10−4

Table 3.1.: Measured probability for the overall vacuum contribution p0 and probabilities
Pnclick that n detectors click. Further, p∗1 is an upper bound on the probability of having
more than one photon locally in mode 1, and p∗ = 8p∗1 +

∑8
n=2 P

n
click is an upper bound

on the probability of having in total more than one photon in the state.

λ µ o z s wexp
ρ wmax

bisep p-value

8.29 151 2.5762 5.9915 -0.0024 8.565(4) 8.358 10−87

Table 3.2.: Evaluation of the 8-partite witness with parameters λ and µ according to
Eqs. (3.31) and (3.34). The mean values o, z and s are associated to the observables
Ô~α, Z and −N2(N − 1)Π

(1)
n≥2, respectively, where N = 8. As defined in Eq. (3.46), we

have wexp
ρ = o + z + s. Further, we calculate the biseparable bound wmax

bisep according to
Eq. (3.44), and the p-value for the null-hypothesis that the observed result is produced by
a separable state due to finite statistics.

per mode. Further details on the state characterisation and multi-photon contributions are
given in Tab. 3.1.

For the calculation of the witness described in Sec. 3.1.3, we consider all possible subsets
of n ∈ {2, ..., 8} out of 8 parties. For each subset, the expectation value and separable
bound of the n-partite witness are calculated, as shown in Fig. 3.11(b). We observe that
the witness violates the separable bound for all subsets. We further indicate the p-value
for the null-hypothesis that the observed result is produced by a separable state due to
finite statistics. The explicit calculation of the p-values is given in Appendix D of P.2. In
Fig. 3.11(c) we plot the probability (1− p0) of measuring in total one or more clicks on all
n detectors for all sets of n out of 8 parties. The fewer parties we consider, i.e. the more
parties we trace out, the lower the state efficiency becomes.

For each subset of modes, the witness is optimised such that the violation (wexp
ρ − wmax

bisep)
is maximised by tuning the parameters λ and µ, see Eqs. (3.31) and (3.34). The optimal
values depend on the overall vacuum component of the state as well as the multi-photon
components in the state. In the case of the 8-partite state, the optimal witness parameters
and the corresponding evaluated values are given in Tab. 3.2. To visualise the behaviour of
the witness as a function of λ and µ, the calculated witness violation for the state measured
in the experiment is shown in Fig. 3.12. Note that we defined our witness such that values
above 0 indicate the detection of entanglement. It becomes clear that especially λ, the
weight of the projector on the overall vacuum state in the witness, is a crucial parameter
to tune.
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3.2. Local and scalable detection of genuine multipartite single-photon path entanglement

Figure 3.12.: Witness violation as a function of the parameters λ and µ, defined according
to Eqs. (3.31) and (3.34), for the 8-partite state. Values greater than 0 indicate that
the entanglement is detected by the witness with the corresponding parameters. For the
evaluation, the parameters λ = 8.29 and µ = 151 are chosen.

3.2.4. Conclusion

We have demonstrated that the developed witness presented in Sec. 3.1.3 is well suited
for an efficient certification of multipartite single-photon path entanglement. Our demon-
stration was limited to 8-partite entanglement due to the 8 detector readout channels of
the cryostat, but in principle much larger states can be certified with our witness, see
Sec. 3.1.3. Not only has the calculation of the separable bound a favourable scaling with
the number of parties since it does not rely on semi-definite programming techniques, but
the number of measurement settings is also fixed to three. If PNR detectors are used, the
local multi-photon components can be directly estimated from the z-basis measurement,
which reduces the number of measurement settings to two. This makes it very practical
and thanks to the local measurements, it can be applied in a distributed scenario and
therefore possibly in future quantum networks.

Multipartite single-photon path-entangled states could be distributed at high rates in a
scheme where each party holds a photon-pair source and one photon of each pair is sent
to a central multi-port beam splitter which erases the which-path information. In this
way, local losses can be kept low and the added distance between parties only reduces
the heralding rate. In combination with quantum memories, such a scheme has potential
for applications relying on distributed W states [147–149]. As will become clear in the
next section, where such an implementation for the bipartite case is demonstrated, the
main experimental challenge in such a scheme is the need for phase stability in long fibre
links. To this end, lessons can be learned from an implementation where phase-sensitive
multipartite entangled states are distributed [48].

59



3. Detection and distribution of single-photon path entanglement

3.3. Heralded distribution of single-photon path
entanglement

As already mentioned in the previous section, single-photon path-entangled states can be
distributed by giving each party a weakly pumped photon-pair source and combining one
mode from each party on a multi-port BS at a central station. Based on the Duan-Lukin-
Cirac-Zoller (DLCZ) protocol [160], in 2007 Simon et al. proposed a bipartite version of this
scheme, combined with multimode quantum memories, to build a quantum repeater [161].
Compared to schemes where a two-photon entangled state is distributed, e.g. entangled in
the polarisation degree of freedom of the photons, this single-photon scheme has a more
favourable scaling with transmission loss. In the case of probabilistic photon-pair sources,
the heralding rate of the entanglement distribution also has a more favourable scaling
as a function of the pair creation probability, compared to two-photon schemes [65]. To
illustrate this, let’s consider a scenario as shown in Fig. 3.13, where two parties, Alice and
Bob, have the ability to generate a resource state and finally want to share an entangled
state. Given a transmission efficiency of η between Alice (Bob) and the central station,
and a pair creation probability of p for both sources, the heralding rate in the two-photon
scheme scales with (pη)2 because two pairs need to be generated and two photons need to
be transmitted to the central station. In the single-photon scheme, the scaling is ∝ pη,
since only one pair needs to be generated and transmitted. The downside of the single-
photon scheme, however, is the phase-stability requirement which can be experimentally
challenging.

Here, we demonstrate one part of the scheme proposed in Ref. [161], namely the heralded
distribution of photonic entanglement. We certify the heralded single-photon entangle-
ment by means of local displacement-based measurements and the entanglement witness
discussed in Sec. 3.1.2. This work has already been partially presented and discussed in the
PhD thesis of E. Verbanis in 2019 [162]. The therein described noise problems of the In-
GaAs single-photon avalanche diodes have been solved by replacing them with P-SNSPDs
and reducing the repetition rate of the experiment. In the following, a complete description
of the implementation is given, which does not require previous knowledge from Ref. [162].

BobAlice

S S

!

Central
sta�on

Figure 3.13.: Scheme for the heralded distribution of single-photon path entanglement.
Alice and Bob both hold a weakly pumped signal-idler photon-pair source (S). The idler
modes are combined on a beam splitter at the central station where the detection of a single
photon projects the signal modes into a single-photon entangled state shared between Alice
and Bob.
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Figure 3.14.: Schematic of the experimental setup with the relevant phases φ, ζ, χ and
ξ (see text). BS, 50/50 beam splitter; DM, dichroic mirror; HWP, half-wave plate; PBS,
polarising beam splitter.

3.3.1. Scheme with two photon-pair sources

We consider a scheme as shown in Fig. 3.14, where Alice and Bob each holds a weakly
pumped SPDC photon-pair source. Given a pair creation probability per pump pulse p� 1

for both sources, the generated state can be approximated by

|ψ〉 =
(√

1− p |00〉AA′ +
√
peiφA |11〉AA′

)
⊗
(√

1− p |00〉BB′ +
√
peiφB |11〉BB′

)
+O(p),

(3.47)

where |0〉 is the vacuum state, |1〉 the single-photon number state and φA(B) the phase
of the pump laser at Alice’s (Bob’s) source. The idler photons from each source are sent
to a 50/50 beam splitter at the central station, where they pick up a phase χA(B) on
their way. The bosonic annihilation operators of the modes after the beam splitter are
aÃ = 1√

2
(e−iχAaA′ + e−iχBaB′) and aB̃ = 1√

2
(e−iχAaA′ − e−iχBaB′) [161]. By neglecting

contributions from higher order pair creation probabilities O(p), a detection of a single
photon in mode Ã then projects the state of the signal photons of Alice and Bob after the
crystals into the single-photon path-entangled state

|ψ〉AB =
1√
2

(
|10〉AB + ei(θB−θA) |01〉AB

)
(3.48)

with the phase θA(B) = φA(B) + χA(B).

In order to certify the entanglement, we make use of local displacement-based measure-
ments. To this end, we generate coherent states by stimulating a DFG process in the
nonlinear crystals using seed pulses, temporally alternating with the SPDC processes that
generate the single-photon states. Before Alice’s (Bob’s) crystal, the seed pulses pick up
a phase ζA(B) and, therefore, the coherent states in mode A(B) after the crystal have a
phase φA(B) − ζA(B). Locally, the single-photon state and the coherent states are tempo-
rally combined in asymmetric Mach-Zehnder interferometers (MZI) with a delay equal to
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the time difference between the single-photon and coherent states (13.1 ns). We consider
the case where the single-photon state takes the long path and picks up a phase ξA(B),l,
whereas the coherent state acquires a phase ξA(B),s in the short path. To summarise, we
have the following phases in our scheme

â φA(B), the phase of the pump laser at the source,

â ζA(B), the phase of the seed laser at the source,

â χA(B), the phase picked up between the source and the central station,

â ξA(B),l(s), the phase from the crystal to the detector through the long (short) arm of
the asymmetric MZI,

which leads to the phases

â φA(B) + χA(B) + ξA(B),l for the single-photon state,

â φA(B) − ζA(B) + ξA(B),s for the coherent state.

As shown in Sec. VI of the Supplemental Material of P.1, in our scheme this leads to the
following phase stability requirement

ζA + χA + ξA,l − ξA,s = ζB + χB + ξB,l − ξB,s + const. (3.49)

Interestingly, this shows that the phases of the pump before the crystals φA and φB cancel
out since they contribute to the creation of both, the single-photon and the coherent states.
The phase stability requirement of Eq. (3.49) can be achieved by phase-locking the central
interferometer spanned by the seed laser such that

(ζA + χA) mod 2π = ζB + χB (3.50)

and the two asymmetric MZIs for the displacement-based measurement, either indepen-
dently such that

(ξA,l − ξA,s) mod 2π = 0, (ξB,l − ξB,s) mod 2π = 0 (3.51)

or, as we will see in our implementation, in a way that

(ξA,l + ξB,s) mod 2π = ξA,s + ξB,l. (3.52)

This stabilisation can be achieved by consecutively propagating laser pulses through both
asymmetric MZIs (in the opposite direction of the signal) at a repetition rate of f ≤ c

3∆`

with a duty cycle of < f∆`
c , where ∆` is the optical path length difference between the

long and short paths in the asymmetric MZIs. In this way, the pulses taking the long-short
and short-long paths will interfere and the detected signal amplitude can be used for the
phase-locking.
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3.3.2. Experimental implementation and characterisation

A schematic overview of the experimental implementation is shown in Fig. 3.15(a). We
use the same two nonlinear crystals as in Sec. 3.2 for type-II SPDC, pumped by a pulsed
laser (76 MHz repetition rate) at λp = 771.8 nm to create nondegenerate photons at λs =

1541.3 nm (signal) and λi = 1546.1 nm (idler). The photon pair creation probability per
pump pulse for each source is kept at p ≈ 3× 10−3 in order to keep the probability
of having double-pair emissions sufficiently low. Signal and idler modes are separated
after their generation at the PBSs and coupled into single-mode optical fibres. The idler
photons are then sent to a 50/50 BS and are spectrally filtered by a 100 GHz DWDM at
ITU channel 39. In this way, we ensure high-purity heralded signal photons and achieve
a spectral overlap of 99.9 % between idler photons originating from the two independent
sources, as shown in Fig. 3.16(a).

For the displacement-based measurement, the coherent state with the same spectral, tem-
poral and polarisation properties as the single-photon state is generated via DFG by stim-
ulating the nonlinear crystals with a pulsed distributed feedback seed laser at a wavelength
λi = 1546.1 nm and repetition rate 19 MHz. The seed laser is driven from well below to
above the lasing threshold each cycle to phase-randomise the coherent state. The repetition
rate of 19 MHz is chosen such that the state to detect is temporally separated by 39.4 ns

(= 1/(19 MHz) − 1/(76 MHz)) from the preceding (strong) coherent state, which ensures
that the used detectors (P-SNSPDs) have enough time to recover. To further reduce the
photon noise at the central station due to residual seed-pulse photons, and unwanted opti-
cal reflections, arriving before the heralding idler photons, a gate of 2 ns is generated by an
EOIM to temporally filter before the detector. The EOIM has an insertion loss of 5.0 dB

and an extinction ratio of 33 dB.

As shown in Fig. 3.15(b), the single-photon and the coherent states are temporally brought
to coincidence on Alice’s (Bob’s) side in an asymmetric MZI, where we use a 50/50 BS at
the input and the output BS is replaced by a PBS in order to fine-tune the displacement
amplitude. Subsequently, a PBS projects the single-photon and the coherent states into the
same polarisation mode. A fibre Bragg grating (FBG) with extinction ratio of ∼ 50 dB is
used to reject reflections from the locking laser at λr = 1559.0 nm (see below). Additionally,
the spectral overlap between single-photon and coherent states, as shown in Figs. 3.16(b-c),
is increased by locally filtering with a DWDM at ITU channel 45.

To fulfil the phase stability requirement, the central interferometer is phase-locked using
the residual seed laser pulses at the central station. A piezo-electric fibre stretcher (PZT)
with a half-wavelength voltage of Vπ = 0.18 V and an optical delay range of about 0.57 ps

(corresponding to an optical path length of 171µm) is actively controlled by a microcon-
troller (PJRC Teensy 3.2) such that the seed power at the second output port of the 50/50
BS, measured with a fast photodiode, is maximised. This makes sure that Eq. (3.50) is
fulfilled and at the same time minimises the seed power (in total 1.0µW) that is sent to
the heralding detector.
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Figure 3.15.: Schematic of the experimental implementation of the heralded distribu-
tion and certification of single-photon path entanglement. (a) Alice and Bob each hold
a weakly pumped nonlinear crystal, in which a signal-idler photon pair is generated with
low probability via SPDC. Additionally, every fourth pump pulse is overlapped with a
seed pulse at the idler wavelength to generate coherent states via DFG. The idler photons
are then sent to the central station and herald the entanglement distribution. The signal
photons and coherent states are kept by Alice and Bob, respectively, in order to perform
the displacement-based measurement. Photons are detected by three P-SNSPDs. (b) De-
tailed implementation of the displacement-based measurement on Alice’s and Bob’s side.
The separate single-photon and coherent states are temporally combined in asymmetric
Mach-Zehnder interferometers where the output beam splitters are replaced by PBSs. The
displacement takes place on subsequent PBSs where the single-photon and coherent states
are projected onto the same polarisation mode. A pulsed reference laser is used to lock the
relative phase difference which is picked up in the two interferometers.
BS, beam splitter; DFG, difference frequency generation; DM, dichroic mirror; DWDM,
dense wavelength division multiplexer; EOIM, electro-optic intensity modulator; EPC,
electronic polarisation controller; FBG, fibre Bragg grating; HWP, half-wave plate; ISO,
isolator; LC, liquid crystal; PBS, polarising beam splitter; PC; polarisation controller; PD,
photodiode; PID, proportional–integral–derivative controller; PPKTP, periodically poled
potassium titanyl phosphate; PPLN, periodically poled lithium niobate; P-SNSPD, parallel
superconducting nanowire single-photon detector; PZT, lead zirconate titanate (piezoelec-
tric); QWP, quarter-wave plate; SPDC, spontaneous parametric down-conversion.
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(a) (c)(b)

Figure 3.16.: Characterisation of the spectral overlap measured with a tunable grating
filter with a FWHM of 0.2 nm before the corresponding detector. (a) Spectra of the idler
photons at the central station originating from the PPLN crystal (Alice) and the PPKTP
crystal (Bob). (b) Coherent state (Cs) and single photon (Ph) spectra for Alice and (c)
for Bob.

Regarding the local measurements, we first note that in the common paths of the coherent
state and the single-photon state, their short temporal separation of 13.1 ns intrinsically
guarantees the phase stability since the phase changes occurring over this time scale are
negligible. To stabilise the phase in the asymmetric MZIs and fulfil Eq. (3.52), we inject
laser pulses at λr = 1559.0 nm of about 10 ns duration at a repetition rate of 19 MHz

travelling in the reverse direction to the signal, first through Alice’s asymmetric MZI, then
through Bob’s, as schematically shown in Fig. 3.15(b). The resulting signal is measured by
a fast photodiode and shows 50 % visibility interference fringes as a function of the phase
difference between the long-short and short-long paths in the asymmetric MZIs, which
is kept at a constant set point by controlling a piezo-actuated mirror in the long arm of
Bob’s asymmetric MZI. In this way, the phase difference of the displacement fields between
Alice and Bob can be set with a liquid crystal (LC; Thorlabs LCC1111T-C) in the locking
laser path before Bob’s asymmetric MZI. The LC allows us to induce a phase difference of
up to π between orthogonal linear polarisation states, see Fig. 3.17 for the corresponding
calibration measurement. The LC is aligned on-axis with the subsequent PBS in Bob’s
asymmetric MZI and therefore allows for selective retardation of the signal in the long arm
with respect to the signal in the short arm of Bob’s interferometer.

In order to demonstrate the feasibility of long-distance entanglement distribution, we ex-
tend the central interferometer arm lengths from initially l = 42 m to l = 1.0 km by
inserting two fibre coils. This change additionally requires active polarisation control be-
fore the 50/50 BS as well as active compensation of slow relative drifts in optical path
length between the two interferometer arms. Therefore, EPCs (Phoenix Photonics PSC)
are inserted after the fibre coils to minimise the seed power at the second output ports
of the fibre PBSs whose first output ports are connected to the polarisation maintain-
ing 50/50 BS at the end of the central interferometer. The slow relative optical length
drifts are compensated by actively setting ∆t3 with a motorised delay line (Newport MDL
560 ps) such that the voltage applied to the PZT is kept in range. In this way, we achieve
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(a) (b)

Figure 3.17.: Characterisation of the liquid crystal (LC) at a temperature of 40 °C.
The asymmetric MZIs are phase-locked, as shown in Fig. 3.15(b), and seed pulses at
19 MHz are sequentially sent through Alice’s and Bob’s MZIs in the forward direction.
The 50 % interference is then measured at Bob’s output. (a) Interference power P mea-
sured as a function of the voltage VLC applied to the LC for phase-locking with the PID
controller on the negative and positive slope of the interference fringe. The function
P = (Pmax+Pmin)

2 + (Pmax−Pmin)
2 sin(a1 + a2 exp(−a3 · (VLC)a4)) with parameters a1 to a4 is

fitted to the data. (b) Interference power as a function of the induced calibrated retardance
(a1 +a2 exp(−a3 · (VLC)a4))/(2π). [Negative lock: a1 = 5.96, a2 = 5.72, a3 = 0.555 V−1.35,
a4 = 1.35; positive lock: a1 = 6.68, a2 = −5.94, a3 = 0.576 V−1.32, a4 = 1.32].

long-term phase stabilisation as shown in Fig. 3.18 for a duration of 8 h.

The photons are detected by three MoSi P-SNSPDs optimised for short recovery times
and operated as click/no-click detectors, with efficiencies ηd > 60 % and full recovery times
τrec < 35 ns [120]. Those short recovery times make it possible to generate coherent states
at the rate of 19 MHz. Time correlated single-photon counting (ID Quantique ID900) is
used to register the events of a signal photon detected by Alice, by Bob, and coincidences
conditioned on the detection of an idler photon at the central station within a 400 ps

window with respect to the 19 MHz clock signal. In the α-basis, we monitor the displace-
ment amplitudes by tracking the detection rates caused by coherent states arriving 1 cycle
(52.5 ns) later than the expected signal photons.

Temporal setup alignment

The setup is temporally aligned by adjusting three different electronic and optical delays,
labelled ∆t1 - ∆t3 in Fig. 3.15(a). This is done in the following way.

First, the seed laser is replaced by a broadband light source (EXFO M2103) in the telecom
C-band with a FWHM of 50 nm. The motorised delay line at the central station is then
used to adjust ∆t3 such that the observed interference visibility after the 50/50 BS is
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Path 1 Path 2 locked

(a)

(c)

(b)

Figure 3.18.: Phase stabilisation of the central interferometer with arm length of l = 1.0 km
over a duration of 8 h. (a) Measured seed power at the 50/50 BS output port 1. The active
feedback on the piezo-electric fibre stretcher and the time delay feedback are turned on
after 1.2 min. Inset: during the initial 1.2 min, first path 1 of the interferometer is left
open only, then path 2, and afterwards both paths are opened leading to interference. (b)
Feedback voltage VPZT to the piezo-electric fibre stretcher. (c) Time delay feedback ∆t to
the motorised delay line to correct for large drifts in optical path length. This ensures that
VPZT does not reach the limit of its range.

maximised. The observed maximum visibility drops to half its value if ∆t3 is changed
by 0.25 ps, hence we achieve a precise alignment between the two arms of the central
interferometer.

Second, we inject seed and pump laser pulses and adjust the electronic delay ∆t1 of the
signal that triggers the seed laser pulses such that they overlap in the PPLN crystal on
Alice’s side. Therefore, DFG light can be observed at the signal wavelength λs in the
reflected port of the PBS after the crystal.

Third, the seed laser is replaced by a cw laser at the signal wavelength λs and its polari-
sation is rotated to vertical before combining it with the vertically polarised pump laser.
Thus, in both crystals we generate horizontally polarised DFG light pulses at the idler
wavelength λi which interfere at the central station. A motorised delay stage in Bob’s
pump path is used to change ∆t2 such that the observed interference visibility after the
50/50 BS at the central station is maximised. Because of the path length difference in
the pump + idler paths between Alice and Bob corresponding to 13.1 ns, the interfering
pulse on Bob’s side originates from a pump pulse that is generated one cycle earlier than
the one on Alice’s side. The alignment still works since consecutive pump pulses from the
Ti:sapphire laser are coherent.

In a similar fashion, the asymmetric MZIs on Alice’s and Bob’s side are aligned. To this
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end, the seed laser is switched to continuous-wave mode and coherent states at λs at a
repetition rate of 76 MHz are generated. On both sides, the interference visibility after the
second PBS is maximised by moving the coupling stage in the long arm of the MZI. After
these steps, the setup is temporally aligned. Changing the fibre length or optical path
length drifts in the central interferometer after the sources only require the repetition of
the first alignment step.

Local efficiencies

Local losses on the state will increase the vacuum component and therefore deteriorate
the distributed state. In our implementation, we additionally introduce losses on the
state in our implementation of the displacement-based measurement such that the required
amplitude of the coherent state for displacement is reduced. This is required as noise
caused by the seed pulses in the detector at the central station prevents us from generating
coherent states with much higher amplitudes. The total efficiencies of the photons for both

Source p ηtot,s ηtot,i Rh (cps)

PPLN (Alice) (2.3± 0.1)× 10−3 4.7 % 1.55 % 685
PPKTP (Bob) (3.2± 0.1)× 10−3 4.3 % 1.18 % 720

Table 3.3.: Characterisation of the pair creation probability per pump pulse p and the
total efficiency ηtot,s(i) for the signal (idler) photons including coupling, transmission and
detection efficiency measured in the full setup with 1 km of fibre in each arm of the central
interferometer. Additionally, the achieved heralding rate Rh for an effective pump rate of
19 MHz is given.

Element
Alice Bob

short long short long

50/50 BS (+ WPs) 48.5 % 43.1 % 44.1 % 40.4 %

1st PBS 97.0 % 96.3 % 95.9 % 95.3 %

2nd PBS 45.3 % 50.0 % 44.7 % 51.4 %

Fibre coupling 82.1 % 84.3 % 82.2 % 85.3 %

FBG 93.0 % 93.4 %

DWDM 94.5 % 88.0 %

Transmission 92.3 % 96.6 %

Detector 63 % 60 %

Total 8.9% 8.9% 7.4% 8.0%

Table 3.4.: Detailed characterisation of the efficiencies of the components in the asymmet-
ric MZIs as well as the transmission (due to fibre connectors) and detection efficiencies.
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crystals are given in Tab. 3.3 and a detailed characterisation of the efficiencies for the local
measurements in Tab. 3.4. The difference between the total efficiencies in Tab. 3.4 for the
long paths taken by the single-photon state and ηtot,s in Tab. 3.3 comes from the additional
loss on the photons due to filtering by the DWDMs and non-unit coupling efficiencies.

3.3.3. Results

Ameasurement of the bipartite entanglement witness discussed in Sec. 3.1.2 as a function of
the relative phase between Alice’s and Bob’s displacement operations is shown in Fig. 3.19.
After the relative phase is set to (θB − θA) = 0, counts were acquired in the α-basis for
1 h and subsequently in the z-basis for 2.5 h by blocking the coherent state in the short
paths of the asymmetric MZIs. From the click/no-click events recorded by Alice and Bob,
the corresponding joint probabilities are deduced, see Tab. 3.5. We separately determine
an upper bound on the probability of having more than one photon locally in a Hanbury
Brown-Twiss experiment for both Alice and Bob, see Eq. (3.23). Together with the joint
probabilities measured in the z-basis as well as the displacement parameter amplitudes used
in the α-basis measurement, we compute the maximal separable bound wmax

ppt according to
Eq. (3.22). The experimental value for the expectation value wexp

ρ of the witness Ŵ is
computed from the measured joint probabilities in the α-basis according to Eq. (3.24).

Figure 3.19.: Expectation value and PPT bound wmax
ppt of the entanglement witness as a

function of the relative phase (θB − θA) between the displacement measurements for Alice
and Bob with l = 1.0 km. Values of 〈Ŵ 〉 larger than wmax

ppt demonstrate entanglement. For
each phase setting, counts were acquired for 200 s in the α-basis with |α1| = 0.818+0.004

−0.003 and
|α2| = 0.830+0.006

−0.007 indicating the mean, maximum and minimum displacement amplitudes.
Error bars of the measured data represent 1 standard deviation.

69



3. Detection and distribution of single-photon path entanglement

l p00 p0c pc0 pcc p∗1 p∗2

42 m
z 0.96935(5) 0.01515(3) 0.01550(3) 0.0000052(6)

2.5(3)× 10−6 5.1(4)× 10−6

α 0.2715(2) 0.2504(2) 0.2393(2) 0.2388(2)

1.0 km
z 0.96142(5) 0.01881(4) 0.01977(4) 0.0000059(6)

3.2(4)× 10−6 1.25(8)× 10−5

α 0.2575(2) 0.2504(2) 0.2370(2) 0.2552(2)

Table 3.5.: Measured joint probabilities in the z- and α-basis for different fibre lengths
l in each arm of the central interferometer. The measured displacement amplitudes for
l = 42 m are |α1| = 0.804+0.010

−0.009 and |α2| = 0.819+0.003
−0.004, where for l = 1.0 km we measured

|α1| = 0.819+0.005
−0.007 and |α2| = 0.837+0.006

−0.007. The amplitudes |αi| are the mean amplitudes
for the α-basis measurement with bounds on the minimum and maximum obtained from
the counts in 10 s intervals during the 3600 s of measurement. The probabilities of having
more than one photon p∗1 on Alice’s side and p∗2 on Bob’s side are separately determined for
each experimental run. The errors on all probabilities correspond to 1 standard deviation.

l Rh (kcps) SNR wexp
ρ wmax

ppt k

42 m 1.4 12 0.0206(8) 0.0071(16) 5.6
1.0 km 1.6 5 0.0253(7) 0.0071(22) 6.2

Table 3.6.: Measured value wexp
ρ and calculated separable bound wmax

ppt of the entanglement
witness for fibres of length l in each arm of the central interferometer at an observed
heralding rate Rh and signal-to-noise ratio (SNR). The witness is violated by k = (wexp

ρ −
wmax

ppt )/(σmax
ppt + σexp

ρ ) standard deviations.
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For the analysis of uncertainties on the separable bound σmax
ppt and on the experimental

value of the witness σexp
ρ we assume the coincidence probabilities to be independent and

identically distributed (i.i.d.) random variables. The obtained results, as shown in Tab. 3.6,
certify a violation of the entanglement witness by more than 5 standard deviations at a
heralding rate of at least 1.4 kcps for fibre distances of l = 42 m and l = 1.0 km inserted
in each arm of the central interferometer. For l = 42 m we measure a signal-to-noise ratio
(SNR) for the heralding photons of 12, whereas this is decreased to 5 for l = 1.0 km. This
is due to noise caused by the strong seed laser pulses in the central interferometer. The
higher total heralding rate in the case of l = 1.0 km is therefore due to this elevated noise
contribution. The larger statistical significance of the result with l = 1.0 km compared to
l = 42 m is mainly attributed to a different alignment setting in the measurement MZIs
leading to an increase of the transmission on the entangled state (see p00 in the z-basis in
Tab. 3.5).

3.3.4. Discussion

The successful implementation of the scheme required to overcome several challenges, as
already described in Ref. [162]. One of them is the phase-locking of the central interferom-
eter, which we achieve by actuating a piezo-electric fibre stretcher such that the detected
power in the second output port of the central interferometer is maximised. In this way
we demonstrate stable operation for several hours even for an interferometer with 1 km

arm length. However, the variance of the phase noise is expected to increase linearly with
the length of deployed fibre which sets limits to the phase stability [163]. Nevertheless, re-
cent developments in twin-field QKD lead to demonstrations of phase-stabilised links over
several hundred of kilometres with phase stabilisation techniques from work on frequency
dissemination [164]. This shows that long-distance phase stabilised links are feasible.

Another challenge is noise caused by the seed laser leaking to the heralding detector which
is linked to the phase stability of the central interferometer. We measure a seed power of
about 500 nW in each arm before the BS at the central station, which corresponds to a
mean number of 2× 105 photons per pulse. This is opposed to roughly 5× 10−4 photons
per pulse in each arm for the single-photon state, given a pair generation probability per
pump pulse of 3× 10−3. The problem with those different power levels is that even tiny
reflections of the seed pulses that can occur in the setup might end up in the detection
window of the single-photon state and therefore decrease the SNR. In longer fibre links,
backward Brillouin scattered and forward reflected light might become a problem as well.
In our implementation, the reduction in SNR at the central station due to the seed pulses
is the main limiting factor which prevents us from generating higher intensity coherent
states. A solution would be to use higher pump power levels for the DFG than for the
SPDC. In this way, higher intensity coherent states could be produced while keeping the
seed power low.

In future implementations, where higher intensity coherent states can be tolerated, the
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Figure 3.20.: Local displacement operation. (a) Similar setup as the one used in our im-
plementation, where here the phase difference in the asymmetric MZI is stabilised locally.
(b) Possible improved setup where two 99/1 beam splitters (BS) increase the transmission
efficiency of the single-photon state (long path) towards the detector to 98 %. Polarisation-
maintaining fibres ensure that the single-photon and coherent state for displacement are
in the same polarisation mode. HWP, half-wave plate; PBS, polarising beam splitter;PD,
photodiode; PID, proportional–integral–derivative controller; P-SNSPD, parallel supercon-
ducting nanowire single-photon detector; PZT, lead zirconate titanate (piezoelectric).

implementation of the local displacement operations could be adapted such that losses
on the single-photon state are reduced. A possible variation of our implementation of
the displacement-based measurement is shown in Fig. 3.20(a). Note that here, the phase-
locking is done such that the phase difference in the asymmetric MZI is stabilised locally.
Even without any additional losses (see Tab. 3.4), the single-photon state transmission effi-
ciency is only 25 % due to the 50/50 BS and the PBS used for the displacement operation,
which reflects 50 % of the single-photon state (and therefore 50 % of the coherent state).
The setup could be improved and the single-photon state transmission efficiency increased
to for example 98 %, as shown in Fig. 3.20(b). This could be achieved by using two 99/1
BSs, where on each BS the single photon state is transmitted towards the detector with
99 %. A piezo-actuated mirror in the coherent state path is used for phase-locking and
a HWP and a PBS allow to set the displacement amplitude. Polarisation-maintaining
fibres ensure that the single-photon and coherent state for displacement are in the same
polarisation mode. The challenge with this implementation, however, would be that the
interference visibility of the signal for phase-locking is only 2 % which could make accurate
phase stabilisation more difficult. Moreover, another problem could be the strong coherent
state with more than 6× 103 photons per pulse on average, which takes the long path,
and arrives after the displaced single-photon state at the detector. It needs to be ensured
that this is not a problem for the detector and that it can recover fast enough to detect
the next incoming displaced state.

3.3.5. Conclusion and outlook

Single-photon quantum repeater schemes are promising for fibre-based long-distance entan-
glement distribution because of their favourable transmission loss scaling, their robustness
to memory and detector inefficiencies and the need for fewer resources than protocols based
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Figure 3.21.: Possible implementation of the scheme in a distributed scenario with dual-
core single-mode (SM) fibres. The additionally required active polarisation control is not
shown.

on two-photon detections [65]. We demonstrated the feasibility of such a scheme by ac-
tively stabilising the phase of an interferometer with arm lengths of 1.0 km and utilising
local displacement-based measurements for entanglement certification by means of an en-
tanglement witness. In our scheme the phase difference between the asymmetric MZIs also
needs to be stabilised, however, in a quantum repeater these asymmetric MZIs could be
replaced, and the displacement performed, by quantum memories [165, 166].

In principle, the scheme can be extended for real world applications by using two individual
pump lasers, adding fibre before the sources to distribute the seed pulses, and further
increasing the size of the central interferometer. Apart from the frequency-locking of the
pump lasers and the synchronisation of all the lasers, the main technical challenge in such
an implementation is the increase of phase noise in a larger central interferometer [163].
This would not only degrade the entanglement, but also increase the leakage of residual
seed laser photons towards the heralding detector. Our solution to suppress them with an
EOIM introduces unwanted loss on the heralding photons. Hence, a better solution would
be to develop a gated SNSPD for the central station.

Another problem in a real-world implementation would be the optical path length drift in
the central interferometer before the crystals. In our implementation, drifts mainly occur
in the added fibres after the crystals, therefore the feedback to ∆t3 at the central station
corrects for this and automatically ensures that the idler photons arriving at the central
station do not drift out of their coherence time. This would not be the case any more if
fibre is added before the crystals and drifts would be caused there as well. Thus, a more
complicated stabilisation scheme would be required. A possibly simpler solution for that
problem would be to distribute the seed from the central station through one core of a
dual-core fibre to Alice (Bob) and send back the idler photons and seed pulses through
the other core of the fibre, as shown in Fig. 3.21. Under the assumption that optical path
length drifts in the dual-core fibre are the same for both cores, they could be compensated
by delay lines at the central station which uniformly act on both cores of Bob’s fibre. The
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3. Detection and distribution of single-photon path entanglement

required phase and optical path length stability, as well as if the crosstalk between the two
cores is tolerable, would need to be investigated.

Despite all these challenges, one of the main advantages of this protocol is that the pair
sources can be designed such that they generate highly non-degenerate photons. In this
way, the local photons can be directly interfaced with quantum memories, whereas the pho-
tons which are sent to the central station are at telecommunication wavelength. This has
recently been demonstrated with two multimode praseodymium-doped solid-state quantum
memories [61]. The used type-I cavity-enhanced SPDC sources based on PPLN crystals
produce narrow-band photons at a wavelength of 606 nm for storage and at 1436 nm for
transmission, with the entanglement heralded at a rate of 1.4 kcps, similar to the rate in
our demonstration. Therefore, by further improving the heralding and memory efficiencies,
this scheme holds promise for the realisation of a high-rate quantum repeater.
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4. Distribution of polarisation entanglement

In the previous chapter, we discussed the heralded distribution of single-photon path entan-
glement with two weakly pumped photon-pair sources, based on the scheme of Ref. [161].
Another scheme for the distribution of entanglement would be the approach of Ref. [86]
where locally, single photons are input on imbalanced BSs with high reflectance r, as shown
schematically in Fig. 4.1(a). The modes with low transmittance t are then combined on
a 50/50 BS to perform a Bell state measurement (BSM), which leaves the modes a and b
in a single-photon entangled state. Although the scaling as a function of the transmission
distance is favourable for single-photon entanglement, the requirement of phase stability
and the difficulty of implementing distributed displacement-based measurements make real
world implementations of such a scheme challenging.

Alternatively, as shown in Fig. 4.1(b), a high-fidelity polarisation-entangled state can be
distributed between modes a and b by multiplexing the scheme in Fig. 4.1(a) for horizon-
tally and vertically polarised input photons and heralding upon a coincidence detection
of, for example, H in the first output port and V in the second output port at the BSM.
In combination with on-demand single photon sources, this scheme has been proposed
for photonic DI-QKD [87, 167]. However, experimentally it is hard to have highly imbal-
anced beam splitters with polarisation-independent splitting ratios, as required for a direct
implementation of this scheme.

A different approach which similarly generates polarisation-entangled states with PBSs
is schematically shown in Fig. 4.1(c). Four diagonally polarised photons are input to
PBSs and the BSM is realised with a type-II fusion gate, where HWPs are used to rotate
the PBS basis to 45°, i.e. diagonal polarisation states are transmitted and anti-diagonal
states reflected [169]. This scheme has been previously demonstrated with a SPDC source
in a double-pass configuration and 4-fold post-selection in a bulk setup [168], and more
recently with two local quantum memories based on rare-earth ion doped crystals [170].
In a similar fashion, a two-hierarchy entanglement swapping scheme has been shown [171].
Interestingly, in the two-hierarchy scheme, the noise terms present in the swapped state of
the one-hierarchy links (scheme in Fig. 4.1(c)) are filtered out by the connecting Bell state
measurement.

Here, we consider the scheme as presented in Fig. 4.1(d), where polarisation-entangled
states can be distributed in a heralded fashion. This can be seen as hybrid between the
schemes in Figs. 4.1(b) and (c) since locally we use PBSs, but the BSM is realised with
a BS to facilitate the alignment in a fibre implementation. In order to achieve a tunable
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Figure 4.1.: Different schemes for the distribution of entanglement with the correspond-
ing detection pattern (!) at the Bell state measurement (BSM). (a) Heralded distribution
of single-photon path entanglement with two single photons input on imbalanced beam
splitters (BS) and a 50/50 BS at the BSM, see Ref. [86]. (b) Heralded distribution of
a polarisation-entangled two-photon state by inputting two orthogonally polarised single
photons on each side, see Ref. [87]. Half-wave plates (HWP) at 22.5° are used to reduce
unwanted heralding events. (c) Generation of polarisation-entangled states by using po-
larisation beam splitters (PBS) and a type-II fusion gate for the BSM, see Ref. [168]. (d)
Heralded distribution of polarisation entanglement with linearly polarised states input to
PBSs and the BSM employing a 50/50 BS.
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4.1. A scheme for photonic polarisation entanglement distribution

effective imbalance between reflected and transmitted two-photon states, we consider lin-
early polarised input states which are biased from diagonal towards the horizontal and
vertical polarisation state, respectively.

4.1. A scheme for photonic polarisation entanglement
distribution

We now take a closer look at the scheme presented in Fig. 4.1(d) and calculate the heralded
state. The goal is to distribute a state close to a maximally polarisation-entangled state in
the spatial modes a and b upon a 2-fold coincidence detection at the Bell state measurement.
With â†m we denote the bosonic creation operator on mode m (polarisation and path, see
Fig. 4.1(d) for the labelling). For the first input PBS, we assume the following input-output
relations

â†HA → â†Ha, â†HA′ → â†Hc, (4.1)

â†V A → i â†V c, â†V A′ → i â†V a. (4.2)

Similarly, by replacing the spatial modes A → B, a → b and c → d, the relations for
the second input PBS are obtained. For the HWP in spatial mode c with its fast axis
set at an angle θc with respect to the horizontal axis (and similarly for d), we model the
input-output relations by (see p. 212 in Ref. [172])

â†Hc →
(

cos(2θc)â
†
Hc′ + sin(2θc)â

†
V c′

)
, (4.3)

â†V c →
(

sin(2θc)â
†
Hc′ − cos(2θc)â

†
V c′

)
. (4.4)

Furthermore, the input-output relations for the spatial modes of the 50/50 BS at the BSM
are given by [173]

â†c′ →
1√
2

(
â†e + i â†f

)
, â†d′ →

1√
2

(
i â†e + â†f

)
. (4.5)

We now start with the calculation of the state after the input PBS, where we consider
the single-photon polarisation state α |1〉H + β |1〉V input in the spatial mode A, and
β |1〉H + α |1〉V in the spatial mode A′. Here, we take α, β ∈ R with α2 + β2 = 1. By
applying the PBS transformation, the state in the spatial modes a and c is calculated to
be

(
αâ†HA + βâ†V A

)(
βâ†HA′ + αâ†V A′

)
|0̄〉 → αβ

√
2|Φ−〉

ac︷ ︸︸ ︷(
â†Haâ

†
Hc − â

†
V aâ

†
V c

)
|0̄〉

+ i
(
α2â†Haâ

†
V a + β2â†Hcâ

†
V c

)
|0̄〉

(4.6)
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and similarly for the spatial modes b and d. Here, |0̄〉 denotes the vacuum state on all
involved modes. We note that after post-selection of one photon in the spatial modes a
and one photon in mode c, this state is the Bell state |Φ−〉ac in polarisation. However,
without post-selection we have two additional terms corresponding to two orthogonally
polarised photons in each of the spatial modes a and c, respectively.

We now consider the case of θc = θd = 0° and calculate the final state. The terms after the
BSM that contain one photon in the mode V e and one in Hf (projecting on |Ψ−〉c′d′), are

â†V eâ
†
Hf

1√
2
α2β2

(
−

|Ψ−〉
ab︷ ︸︸ ︷

1√
2

(
â†Haâ

†
V b − â

†
V aâ

†
Hb

)
|0̄〉+ i√

2

(
â†Haâ

†
V a + â†Hbâ

†
V b

)
|0̄〉
)
. (4.7)

Besides the maximally polarisation-entangled state |Ψ−〉ab, we also have noise contribu-
tions corresponding to two orthogonally polarised photons in each of the modes a and b,
respectively. Additionally, terms with at least three photons in total in the modes V e and
Hf (and at least one photon in each mode) occur with probability α2β6 + 1

4β
8. All these

unwanted terms can still be suppressed by post-selecting on coincidence detections in a and
b. However, we note that by setting the HWPs in the spatial modes c and d to θ = 22.5°,
the last term in the expression (4.6) becomes

â†Hcâ
†
V c →

1

2

((
â†Hc′

)2 −
(
â†V c′

)2) (4.8)

and similarly for the spatial mode d. In this case, the part of the final state where we
detect one photon in the mode V e and one in Hf at the BSM becomes

â†V eâ
†
Hf

( 1√
2
α2β2

|Ψ−〉
ab︷ ︸︸ ︷

1√
2

(
â†Haâ

†
V b − â

†
V aâ

†
Hb

)
|0̄〉+1

2
β4â†Heâ

†
V f |0̄〉

+
1

4
αβ3

(
â†He

(
â†Ha + â†V a + iâ†Hb + iâ†V b

)
− â†V f

(
iâ†Ha − iâ†V a + â†Hb − â

†
V b

))
|0̄〉
)
.

(4.9)

We see that the coefficient of the term |Ψ−〉ab is 1√
2
α2β2, as is the case for the HWPs set

at θ = 0°. However, now we have one unwanted term with coefficient 1
2β

4 and 8 terms
with coefficient 1

4αβ
3 and therefore we can reduce their contribution to the heralded state

by setting α2 = (1 − β2) → 1. Also, we note that all the unwanted contributions lead
to detections in the modes He and/or V f and could therefore be reduced by heralding
only upon a 2-fold coincidence detection in the modes V e and Hf (excluding 3- and 4-fold
coincidences at the BSM). However, in the case of loss between the local parties and the
BSM, this only partially works because, for example, missing one photon in an event that
would lead to a 3-fold coincidence could lead to the 2-fold coincidence detection we are
looking for.

We now have a closer look at the outcome probability of the wanted output state |Ψ−〉ab.
The probability of having a coincidence detection in the modes V e and Hf together with
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(a) (b)

Figure 4.2.: Calculation of the outcome probabilities when four photons are input to
the first PBSs and no loss is present in the system. (a) Overall outcome probability as
a function of the HWP angle in the spatial modes c and d for diagonally polarised input
states, i.e. α = β = 1√

2
. The probability is shown for a heralding coincidence detection

in the modes V e, Hf and having the state |Ψ−〉ab in the modes a and b in blue. In red
is shown the probability of the heralding coincidence detection together with unwanted
other terms, also including zero/one photons in the spatial modes a and b. (b) Normalised
probability of heralding the state |Ψ−〉ab, without post-selection on coincidences in the
modes a and b, when detecting coincidences in the modes V e and Hf at the BSM. This
probability is shown for the two extremal HWP settings as a function of α2, which defines
the four input states.

the state |Ψ−〉ab in the modes a and b is 1
2α

4β4. However, there are other unwanted
terms which can lead to a coincidence detection in the modes V e and Hf , but do not
herald the state |Ψ−〉ab. As shown in Fig. 4.2(a), the probability of those terms varies as
a function of the angle of the HWPs in the spatial modes c and d. Note that here we
only consider the case where both HWPs have the same setting, since different settings
reduce the probability of heralding the state |Ψ−〉ab. For θ = 22.5°, those unwanted terms
are the ones in expression (4.9) (with probability 1

2α
2β6 + 1

4β
8) as well as contributions

with at least three photons in total in the modes V e and Hf that occur with probability
1
4α

2β6 + 1
16β

8. The normalised probability of heralding the state |Ψ−〉ab when detecting
coincidences in the modes V e and Hf without post-selection, i.e. without only considering
2-fold coincidence detections in the spatial modes a and b, is shown in Fig. 4.2(b). We
see that for HWP settings of θ = 22.5°, the probability of heralding the state |Ψ−〉ab
approaches unity for highly imbalanced input states, i.e. α2 = (1− β2)→ 1.

4.2. Implementation with photon-pair sources

The scheme described in the previous section is implemented with a bidirectionally pumped
photon-pair source based on degenerate SPDC. However, these sources generate photon
pairs probabilistically and suffer from multi-pair generation which so far have not been
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(b)(a)

Figure 4.3.: Expected performance for a lossless implementation of the scheme with SPDC
sources for different pair creation probabilities per pump pulse p. Here, a pump rate of
76 MHz is assumed and the HWPs in the modes c and d are set to θ = 22.5°. (a) Normalised
probability of heralding the state |Ψ−〉ab, without post-selection on coincidences in the
modes a and b, given a coincidence detection in the modes V e and Hf as a function of the
input state coefficient α2. (b) Four-fold coincidence detection rate in the modes V e, Hf ,
a and b, as a function of α2, with no loss.

considered. The first part of this section looks at the impact of double-pair generation on
the scheme along with the rate trade-off which must be considered for the experimental
implementation. In the remainder of the section, the actual experimental implementation
is presented.

4.2.1. Expected rates and limitations from double-pair contributions

We calculate the expected performance of the scheme presented in Fig. 4.1(d) for the case
where two weakly pumped photon-pair sources are used to generate the 4 input photons.
For this calculation, we assume a pump repetition rate of 76 MHz, as in the experiment. In
our model, each source emits a photon pair with probability p per pump pulse. Therefore,
with probability p2, a 4-photon state is generated. Contributions from one pair on each
side are taken into account as well as double pair contributions on Alice’s and on Bob’s
side, respectively. Furthermore, we consider events where one source emits a pair and the
other source emits a double pair, which occurs with probability 2p3 in total, and triple
pairs on either side. All other terms of order O(p4) are neglected for this calculation.

We then calculate the probability of having the state |Ψ−〉ab conditioned on a coincidence
detection in the modes V e and Hf . Here, we include all photon-number terms at the
BSM, i.e. up to 6 photons which lead to a coincidence detection. Shown in Fig. 4.3(a) is
this probability of heralding |Ψ−〉ab as a function of the input states. This is analogous
to Fig. 4.2(b), however, now with the inclusion of double pairs. Note that here, we only
consider the case where the HWPs are set to θ = 22.5°. Also, the calculation does not
include losses in the system, which would decrease the probability of having the state
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|Ψ−〉ab. The calculated probability shows a similar behaviour as in the case where no
double pairs are present (see Fig. 4.2(b)), however, the maximum achievable probability
is reduced to a value below 0.5, mainly due to one-sided double pair contributions, and
decreases with increasing pair creation probability p.

Additionally, we calculate the lossless 4-fold coincidence rate between the detectors in
the modes V e, Hf , a and b. In Fig. 4.3(b), this is shown for different pair creation
probabilities p as a function of the input state parameter α2. We see that for increasing
α2, which increases the probability of heralding the wanted state |Ψ−〉ab, the 4-fold rate is
drastically reduced and therefore, there is a trade-off between the rate and the probability
of heralding the correct state. In a realistic implementation, the rate is further reduced
due to non-unit heralding and detection efficiencies (ηh and ηd). To first order, multiplying
the calculated lossless rate by a factor (ηhηd)

4 gives an estimate of the rate that can be
expected in the experiment.

4.2.2. Experiment

The experimental implementation of our scheme is shown in Fig. 4.4. We use a PPKTP
nonlinear crystal with parameters as discussed in Sec. 2.2 for type-II SPDC. The crystal
is bidirectionally pumped by a picosecond pulsed laser (76 MHz repetition rate) at λp =

771.85 nm to create degenerate photons at λs = λi = 1543.7 nm. A delay stage in Alice’s
pump path allows one to induce a time delay ∆t between the pairs generated in opposite
directions. For both pump directions, the photon pair creation probability per pump pulse
is kept at p ≈ 3× 10−3 in order to keep the probability of having double-pair emissions
low. The orthogonal signal and idler modes are separated after their generation at the first
PBSs. After that, we prepare the linearly polarised initial states by means of HWPs before
they are input into the combining PBSs. There is a walk-off between the two orthogonally
polarised photons of around 4.5 ps due to the birefringence of the PPKTP crystal. This
is compensated for by positioning the combining PBSs such as to negate this by setting a
1.35 mm shorter path for the H photons than for the V photons.

Locally, on Alice’s and Bob’s side, we have a quarter-wave plate (QWP) and a HWP
followed by a PBS and two SNSPDs on each output mode in order to measure the state
in any basis. The other two modes are coupled into fibre and combined on a 50/50 fibre
BS at the central station. The three wave plates on Alice’s side before coupling into the
fibre allow for relative phase control between the modes Hc and V c, which suffices to
adjust the phase φ in the wanted part of the heralded state (|HV 〉ab + eiφ |V H〉ab). The
polarisation controllers are used for polarisation alignment by inputting light in the reverse
direction and measuring the polarisation state with a polarimeter in free space. Note that
the polarisation alignment must be such that the unitary transformation of the polarisation
state from Alice’s side to the 50/50 fibre BS is the same as for the one on Bob’s side. After
the BS at the central station, we spectrally filter with 200 GHz DWDMs at ITU channel
42 (1543.73 nm) in order to herald photons on Alice’s and Bob’s side with high spectral
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Figure 4.4.: Setup for the distribution of polarisation entanglement. The pulsed pump
laser bidirectionally pumps the nonlinear crystal to create degenerate photon pairs, which
are separated on each side by a PBS. The four photons are then recombined on subsequent
PBSs in linear polarisation states. One part of the state is kept locally, whereas the
other part of the state from each side is sent to the Bell state measurement at the central
station where we detect coincidences between detectors DV e and DHf . BS, beam splitter;
DM, dichroic mirror; DWDM, dense wavelength division multiplexer; HWP, half-wave
plate; PBS, polarising beam splitter; PC, polarisation controller; PPKTP, periodically
poled potassium titanyl phosphate; QWP, quarter-wave plate; SNSPD, superconducting
nanowire single-photon detector; SPDC, spontaneous parametric down-conversion.
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Figure 4.5.: Hong-Ou-Mandel (HOM) interference for all four combinations of photons
(HH, HV , V H and V V ) from Alice’s and Bob’s side sent to the 50/50 BS at the Bell
state measurement. The 4-fold coincidences between the two local heralding detectors
and the two detectors at the central station are recorded as a function of the delay ∆t in
Alice’s pump path. The visibilities V are calculated for all four HOM dips from a weighted
inverse Gaussian fit, where the weight of each data point is 1/σ under the assumption of
Poissonian count statistics with standard deviation σ.

purity. We then employ fibre PBSs to project on the horizontal and vertical polarisation
modes before detecting photons with SNSPDs. Due to the limited availability of detectors,
we only use two SNSPDs, one in the mode V e and one in Hf .

All SNSPDs used are MoSi single-meander detectors with detection efficiencies between
79 % and 90 %. When detecting directly after the fibre couplers in the spatial modes
c and d, without going through the BSM setup, the heralding efficiencies for all modes
are between 65 % and 75 % (including coupling and transmission efficiencies, excluding
detection efficiencies). The symmetric coupling efficiency is measured to be around 90 %,
whereas the transmission efficiencies through the optical elements are between 72 % and
83 %, depending on the path.

The impact of finite indistinguishability and spectral purity of the generated photons is
quantified by measuring their Hong-Ou-Mandel (HOM) interference, as shown in Fig. 4.5.
We send all four different combinations of horizontally/vertically polarised photons on
Alice’s and Bob’s side to the 50/50 BS at the Bell state measurement, with the other
photon of each pair detected locally. The wave plates on Alice’s side before coupling into
fibre are used to ensure that the polarisation of Alice’s photons match those of Bob at
the 50/50 BS. The 4-fold coincidences between the two local heralding detectors and the
two detectors at the central station (in the modes He and Hf for HH and V H photons,
or in the modes V e and V f for HV and V V photons) are recorded as a function of the
delay ∆t in Alice’s pump path. We observe HOM visibilities of around 97 % for all four
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Figure 4.6.: Measurement of the 2-photon coincidence counts in the modes V e and Hf ,
when sending H and V photons on Alice’s and Bob’s side to the central station, as a
function of the delay ∆t in Alice’s pump path.

combinations. Moreover, we see that the photons from different input paths are temporally
well aligned since all four HOM dips are centred around a delay of ∆t = 0 ps.

If the path length difference between Alice-BSM and Bob-BSM is changed, the temporal
alignment can be regained by HOM interference, as shown in Fig. 4.5. Another possibil-
ity for faster temporal alignment, used in the experiment, is to send on each side both
horizontally and vertically polarised photons to the central station and record 2-photon
coincidences in the modes V e and Hf , as shown in Fig. 4.6. Like this, a MZI is effectively
spanned between the BS in the pump path and the BS at the central station, hence the
coincidence counts depend on the phase difference between the two arms of the MZI if the
photons from both sides temporally overlap. We can therefore temporally align the setup
by setting the delay ∆t such that the interference visibility is maximised. We acquire 10
points per delay setting with an integration time of 1 s per point. The low maximum in-
terference visibility is attributed to phase fluctuations which occur over shorter time scales
than 1 s. Using shorter integration times would increase the visibility, however, it would
also lower the coincidence count rate and therefore increase the statistical error. For the
same number of delay settings ∆t, this measurement is five times faster than the one based
on HOM interference shown in Fig. 4.5.

4.2.3. Results

Using the previously described experimental arrangement, we measure the distributed en-
tanglement between Alice and Bob for a configuration where we input diagonally polarised
states, i.e. 1√

2

(
â†H + â†V

)
|0〉, on all four spatial input modes in order to achieve maxi-

mum count rates. We then characterise the entanglement by detecting 4-fold coincidences
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Figure 4.7.: Characterisation of the entangled state between Alice and Bob. Four-fold
coincidences between the detectors in the modes Ha, Hb, V e and Hf are recorded within
20 min as a function of the HWP setting on Bob’s side. The measurement is performed
for two different settings on Alice’s side corresponding to the projection on the horizon-
tal (blue) and diagonal (red) polarisation state. The visibilities V are calculated from a
weighted sinusoidal fit, where the weight of each data point is 1/σ under the assumption
of Poissonian count statistics with standard deviation σ.

between the BSM detectors (DV e and DHf ) and the local detectors on the transmitted
output ports of the PBSs (DHa and DHb). The coincidences as a function of the HWP
angle on Bob’s side are shown in Fig. 4.7 for two wave plate settings on Alice’s side, cor-
responding to the projection on horizontal and diagonal polarisation states, respectively.
For this measurement, we did not use any QWPs before the HWPs and the projecting
PBSs, since only projections on linear polarisation states are measured. Moreover, since
we measure 4-fold coincidences, we align the polarisation controllers at the central station
such that no effective HWP is implemented for simplicity, and therefore measure the state
given by the expression (4.7) .

In this way, we measure a mean 2-fold coincidence rate at the BSM of 3.0 kcps, however,
the rate fluctuates as a function of the phase difference in the two paths of the effective MZI
due to the interfering terms â†Hcâ

†
V c and â†Hdâ

†
V d, see Fig. 4.6. In the 4-fold coincidence

detections, those interfering terms drop out. The achieved maximum 4-fold coincidence
rate is (0.45± 0.02) cps and the measured visibilities are V = (92.4± 1.1) % and V =

(93.4± 1.3) %, respectively. This corresponds to a fidelity to the state |Ψ−〉ab of F ≥
(1 + 3V)/4 = (94.3± 0.8) %.

Further work towards a full implementation of the setup shown in Fig. 4.4 with imbalanced
input states (α > β) is currently ongoing.
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4.3. Discussion and outlook

We have demonstrated a scheme for the distribution of polarisation entanglement, where
the four input photons are separable in their polarisation degree of freedom. We achieve
visibilities of more than 92 % in both bases, limited by the non-unit spectral purity of the
photons, the different extinction ratios of the combining PBSs, as well as slight polarisation
and temporal misalignment in the setup. It remains to quantify the corresponding contri-
butions to the reduction in visibility and to estimate their impact on the scheme in the case
where the input polarisation states of the photons are imbalanced, i.e.

(
αâ†HA +βâ†V A

)
|0〉

and
(
βâ†HA′ + αâ†V A′

)
|0〉 with α > β (and the same input states on Bob’s side).

In order to achieve long-distance entanglement distribution with this scheme, several
changes have to be made. Most importantly, the probabilistic photon-pair sources based
on SPDC need to be replaced by deterministic single-photon sources which have reduced
double-pair generation issues. In this way high 4-photon generation rates can be achieved,
without compromising the photon-number purity of the generated input states. A promis-
ing platform to achieve this is represented by semiconductor quantum dot single photon
sources [89–91]. However, the challenge in such an implementation is to generate highly
indistinguishable photons. While the two input photons on each side can be extracted from
subsequently generated photons of the same quantum dot, photons produced by the two
distant quantum dot sources also need to show high indistinguishability. Recent progress
in the development of GaAs quantum dots lead to a HOM visibility of (90.9± 0.8) % for
the two photons originating from two remote quantum dots [92]. Thus, this platform
holds promise for the realisation of long-distance entanglement distribution. However, the
downside of most state-of-the-art quantum dot sources is that they need to by operated
at cryogenic temperatures, typically below 30 K, and that they emit photons which are
not at telecommunication wavelengths. Thus, frequency conversion to telecommunication
wavelengths is required for fibre-based long-distance entanglement distribution. Another
option for sources in the quasi-deterministic regime, which can generate highly indistin-
guishable telecom photons and work at room temperature, would be multiplexed SPDC
sources [174].

Furthermore, a real-world implementation for long-distance polarisation entanglement dis-
tribution might require active polarisation and optical path length stabilisation to correct
for slow drifts which could make photons from Alice and Bob arrive at the BSM outside
of their coherence time. Although a passively stable link over 192 km of submarine fibre
cables has been demonstrated for several hours [41], field deployed fibres are usually sub-
ject to changes of the refractive index as a function of temperature and, due to the stress
induced birefringence in the fibre, require active polarisation stabilisation [42, 175].
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This thesis has presented resources and protocols for applications in the rapidly developing
field of quantum technology. Specifically, we presented a tool to characterise single-photon
sources and showed how to improve heralded single-photon sources. Moreover, we ad-
dressed the problem of certification and distribution of photonic entanglement.

In the first part of this thesis, we presented a benchmark for single-photon sources based
on the outcome of an autocorrelation measurement, where a 50/50 beam splitter and
two click/no-click detectors are used. The commonly used measurement of the second-
order autocorrelation function gives information about the higher-order photon-number
probabilities with respect to the single-photon probability. However, in many applica-
tions, single-photon sources are not only required to have a low emission probability of
higher-order photon-number states, but also need to show a high efficiency. Therefore, the
single-photon probability P1 is a natural benchmark for such a source. We have shown
how to obtain a lower bound on the probability of having exactly a single photon in the
state, without assumptions on the beam splitter ratio or the detection efficiencies in the
measurement apparatus. The analysis is extended to the case where the detection effi-
ciencies and splitting ratio of the beam splitter are taken into account. In this way, the
source can be characterised independently of the measurement apparatus. Furthermore, if
the state is in a single optical mode or if the single-photon probability in one mode of a
multimode state can be lower bounded, we can use the single-photon probability to witness
and measure the Wigner negativity in the state, the strongest form of non-classicality. We
experimentally demonstrated our benchmark with a heralded single-photon source, where
the heralding idler photon is spectrally filtered to increase the spectral purity of the signal
photon. Without assumptions on the measurement apparatus, we obtain a lower bound
on P1 of 0.554 with a confidence level of (1− 10−10) and witness Wigner negativity. With
the imperfections of the measurement apparatus taken into account, the benchmark yields
a lower bound on P1 of 0.677. This benchmark will hopefully find use in the community
which develops single-photon sources, along with other established characterisation tools.

Second, we improved the heralded single-photon source by employing a photon-number-
resolving detector as the heralding detector, which filters out multi-photon heralding
events. The photon-number resolution is achieved thanks to a recently developed par-
allel SNSPD without electrical thermal crosstalk between adjacent pixels [120, 121]. In the
experimentally relevant low-squeezing regime, we achieve a reduction of the heralded g2(0)

of (26.9± 0.1) % compared to the case where we operate the detector in threshold mode.
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Inversely, this corresponds to an increase of the heralding rate by a factor of 1.368± 0.002

when the heralded g2(0) is kept at the same value as in the threshold heralding mode.
These values are achieved thanks to the high single-photon efficiency of the P-SNSPD of
84 % and the relatively high coupling and transmission efficiency of the heralding photons
of 75 %. Those parameters are crucial for further improving the source. Another crucial
parameter is the capability of the PNR detector to distinguish between a single photon and
all multi-photon input states. Compared to other demonstrations [124, 125], our 4-pixel
P-SNSPD is clearly limited in that regard, due to the limited number of pixels and the
adjacent pixel geometry which results in the two centre pixels receiving more light than
the two outer pixels. Therefore, further development of high-efficieny P-SNSPDs with a
large number of pixels in an interleaved geometry for uniform light distribution is required,
and is an active field of research. Nevertheless, we further demonstrated that our 4-pixel
P-SNSPD is capable of correctly reconstructing the incoming photon-number probability
distribution of the idler photons from the SPDC source, and in this way determine g2(0).
Therefore, this detector can be readily used in quantum optics experiments to measure the
g2(0) and replace the commonly used setup of a 50/50 beam splitter and two click/no-click
detectors.

We then moved to implementations of single-photon path entanglement, and developed an
entanglement witness to certify large multipartite states by means of local displacement-
based measurements. The witness presented is scalable since, experimentally, it only re-
quires the estimation of three observables and the problem of finding the separable bound
is reduced to an eigenvalue problem of N × N matrices, where N is the number of par-
ties. We experimentally certified an 8-partite single-photon path-entangled state, which
we generated by delocalising a heralded single photon over 8 spatial modes. We estimate
that with the heralding, transmission and detection efficiencies in our setup, our witness
can detect up to 23-partite states, limited by the probability of having more than one
photon in the heralded state. Compared to other methods where the certification of the
entanglement is achieved by recombination of the modes [81, 158], our witness is applicable
in a network scenario with distributed nodes. The heralded distribution of multipartite
single-photon path-entangled states could be realised in a star network topology, where
each party holds a weakly pumped photon-pair source and sends the idler photons to a
multi-port beam splitter at the central node. By erasing the which-path information and
phase-stabilising all the links in the network, a detection of a single photon at the central
node after the beam splitter would project the signal modes of the parties into a state
close to a multipartite single-photon path-entangled state. Such states could be useful for
protocols such as quantum conference key agreement [147] or sensing applications such as
increasing the resolution of long-baseline telescopes [148, 149].

In another experiment, we demonstrated the heralded distribution of single-photon path en-
tanglement, as described above, for the bipartite case. In this implementation, we achieved
a heralding rate of 1.6 kcps for phase-stabilised links of 1.0 km. This is realised by phase-
stabilising a Mach-Zehnder interferometer with 1.0 km long arms spanned by seed laser
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pulses which are used, together with the pump pulses, for the creation of the displacement
fields via difference frequency generation. Thanks to the fast recovery time (< 35 ns) of the
parallel SNSPDs [120], we were able to run the displacement field generation at a repetition
rate of 19 MHz. Another crucial feature of the parallel SNSPDs in this implementation is
their capability of tolerating relatively strong coherent light pulses, while nevertheless fully
recovering. This is required in our implementation for the heralding detector at the central
station as well as for the local detectors. There, the coherent state pulses, which take the
long path in the asymmetric MZI also arrive at the detectors and can be strong in an opti-
mised setup where the loss on the single-photon path-entangled state is reduced. However,
in a quantum repeater these asymmetric MZIs could be replaced, and the displacement
operation performed, by quantum memories [165, 166]. In the future, this scheme could
be used to distribute entanglement between two distant quantum memories, either as re-
cently demonstrated for a total fibre length of 75 m by employing cavity-enhanced SPDC
sources [61] or by using microring resonator-based photon-pair sources [176], which di-
rectly emit highly non-degenerate photon pairs. Therefore, the signal photons are tailored
to the absorption wavelength and bandwidth of the absorptive quantum memory, whereas
the idler photons are at telecommunication wavelength for long-distance transmission in
optical fibre.

Finally, we presented the experimental implementation of a scheme for the distribution of
polarisation-entangled photons. In order to generate the four input photons, we employ
a bidirectionally pumped type-II SPDC source and deterministically split the photons in
each pair with a PBS. With diagonally polarised input states, we achieve a maximum
4-fold coincidence rate (two detections at the Bell state measurement, one on Alice’s and
one on Bob’s side) of 0.4 cps and visibilities of over 92 %. As a next step, it would be
interesting to test the scheme for imbalanced input superposition states and quantify the
effects of experimental imperfections, such as limited PBS extinction ratio and non-unit
HOM interference visibility of the input photons, on the fidelity of the distributed state.
However, compared to α2 = 0.5 (given the input states in A and B: α |1〉H +

√
1− α |1〉V ),

the 4-fold coincidence rate for α2 = 0.8 will reduce to 41 %, for α2 = 0.95 to 3.6 % and for
α2 = 0.99 to 0.157 %. This poses a problem when using SPDC sources for the generation
of the photons, since 4 photons are created with probability p2, where p is the pair cre-
ation probability per pump pulse. Since the contribution of additional unwanted double
pairs scales with O(p3), p has to be kept low (p ≈ 3 × 10−3 in our experiment). There-
fore, deterministic single-photon sources will be required when using highly imbalanced
input superposition states (α2 ∼ 0.99) to herald the distribution of polarisation-entangled
photons.

Perspective

The generation of a single photon in a single optical mode is an outstanding task in
quantum optics, however is desirable for many protocols in quantum information. Heralded
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single-photon sources based on SPDC are an attractive solution: they can be operated at
room temperature and the wavelength of the generated photons is tunable. Combined
with high-efficiency photon-number-resolving heralding detectors, these sources can be
pushed into the quasi-deterministic regime, up to the theoretical limit for the heralding
probability per pump pulse of 25 % [88]. Superconducting transition-edge sensors have
shown detection efficiencies at telecommunication wavelength of 95 % [177] and even 98 %

at a wavelength of 850 nm [178] with excellent photon-number discrimination. However,
these detectors have recovery times on the order of microseconds, which would limit the
repetition rate of the source. Recently developed photon-number-resolving SNSPD arrays
recover much faster, on the time scale of nanoseconds, and have system detection efficiencies
of 78 % [179] or even 89.5 % [127]. With further development of those detectors, and
optimised SPDC sources, total efficiencies above 90 % (coupling, transmission and detection
of the heralding photons) are within reach which would improve the heralding rate by over
a factor of 5 while keeping the same low value for the heralded g(2)(0). In combination
with an adjustable delay line for the heralded photons [180, 181], deterministic single-
photon sources could therefore be realised using such platforms. For applications where
indistinguishable photons at telecommunication wavelengths are required, such sources
represent a viable alternative to single-photon sources based on semiconductor quantum
dots [174].

Sources which deterministically produce highly indistinguishable single photons could be
employed for the heralded distribution of high-fidelity entangled states using a proposed
scheme [87, 167]. Two-hierarchy entanglement swapping schemes, an example of which has
been experimentally demonstrated with probabilistic photon-pair sources [171], would also
benefit from deterministic single-photon sources to increase the heralding rate and thus,
high-fidelity entanglement could be distributed in a heralded manner. At this point, the
question about applications of distributed entanglement may arise. One application could
be to link quantum information processing devices, and therefore allow for distributed
quantum computing. With the entangled state as a resource, arbitrary qubit states can be
transferred via quantum teleportation, as recently demonstrated for two non-neighbouring
quantum nodes [182]. Another prominent application of distributed entanglement is device-
independent QKD, which has been experimentally demonstrated recently [58, 59]. This
presents the ultimate solution for the distribution of a secret key with minimal assumptions
on the system. However, real-world implementations are extremely challenging and it is
unclear if such schemes will ever find widespread use. If the devices can be trusted, standard
QKD protocols are much simpler to realise and nowadays achieve secret key rates of more
than 60 Mbps over a distance of 10 km of optical fibre [33, 34] and more than 6 bps over
400 km [32]. For long-distance fibre transmission, the more challenging implementations
of the twin-field QKD protocol achieve distances over 830 km [38, 40].

With all that being said, it is exciting to see the pace at which the field of quantum
technology is currently developing. Who knows what milestones are about to come and
which quantum technology will be part of our everyday life in the future.
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We report the experimental realization of heralded distribution of single-photon path entanglement at
telecommunication wavelengths in a repeater-like architecture. The entanglement is established upon
detection of a single photon, originating from one of two spontaneous parametric down-conversion photon
pair sources, after erasing the photon’s which-path information. In order to certify the entanglement, we use
an entanglement witness which does not rely on postselection. We herald entanglement between two
locations, separated by a total distance of 2 km of optical fiber, at a rate of 1.6 kHz. This work paves the way
towards high-rate and practical quantum repeater architectures.

DOI: 10.1103/PhysRevLett.125.110506

Sharing photonic entanglement over long distances is a
key resource for building a quantum communication
network [1,2]. In order to distribute entanglement to two
remote parties through optical fiber, quantum repeater
schemes provide a solution to overcome the direct
transmission loss [3]. The basic idea is to divide the whole
distance into elementary links in each of which entangle-
ment is independently established in a heralded way
between two quantum memories. Finally, successive
entanglement swapping operations between the links are
used to extend the entanglement over the whole distance.
Among the different quantum repeater schemes, those
using single-photon path entanglement [4], where a single
photon is delocalized into two modes, are promising
candidates for establishing such a network since they
require fewer resources as well as being less sensitive to
memory and detector inefficiencies compared to other
repeater schemes due to their linear, rather than quadratic,
loss scaling [5].
A proposed postselection-free approach for entangle-

ment distribution, based on the erasure of the heralding
photon’s which-path information, is a modification of
the Duan-Lukin-Cirac-Zoller (DLCZ) protocol [6] that
employs photon pair sources and multimode memories
[7]. A practical implementation of this scheme, however,
faces two major challenges. It requires first, stabilization
and control of the optical phase between the two parties,
and second, a practical implementation for entanglement
certification. Experiments overcoming both challenges by
employing individual matter qubits have been presented
with ions [8], quantum dots [9,10], and nitrogen-vacancy
centers [11]. However, in all those table-top demonstra-
tions, entanglement was heralded by a photon outside the
telecom band and thus will need to be frequency converted,

which will further complicate the management of phase in
the network. An approach combining an atomic ensemble
quantum memory at near-infrared wavelengths and
quantum frequency conversion to the telecom O-band
has recently been reported [12], however, the entanglement
was certified by recombining the entangled modes
(single-photon interference) which is not applicable in a
distributed scenario.
In this work we demonstrate a scheme for the heralded

distribution of single-photon path entanglement at telecom
wavelengths over a distance of 2 × 1.0 km of optical fiber,
in a quantum repeater-like architecture (see Fig. 1). The
detection of a single photon at the central station erases the
which-path information about which one of the two photon
pair sources it was emitted from, and heralds the distributed
entangled state. The fiber connecting Alice and Bob is part
of a phase stabilized interferometer. Another fiber (not
shown), between Alice and Bob, closes the interferometer
and is connected to a laser that is used to stabilize the
interferometer. Inspired by an entanglement witness [13]
using displacement-based photon detections [14], the

FIG. 1. Conceptual schematic of the experiment. A successful
detection of a photon at the central station, originating from one
of two photon pair sources, heralds the distribution of a single-
photon path-entangled state between Alice and Bob.
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distributed entanglement is measured locally and certified
by an entanglement witness that is robust to loss, and does
not make assumptions about the state itself.
Concept.—Each of the two spontaneous parametric

down conversion (SPDC) photon pair sources, held by
Alice and Bob, creates a two-mode squeezed vacuum state
with low photon pair creation probability per pump pulse
Ppair;A ¼ Ppair;B ≪ 1. Two modes, one from each source,
are combined on a 50=50 beam splitter at the central
station. By neglecting contributions from higher order pair
creation probabilities OðPpairÞ, the resulting state shared
between Alice and Bob, conditioned on the detection of a
heralding photon, can be written as

jψiAB ¼ 1ffiffiffi
2

p ðj10iAB þ eiðθB−θAÞj01iABÞ; ð1Þ

where j0i denotes the vacuum state, j1i the single-photon
number state, θAðBÞ ¼ ϕAðBÞ þ χAðBÞ with ϕAðBÞ the phase of
the pump before the source on Alice’s (Bob’s) side and
χAðBÞ the respective phase acquired by the photon traveling
from the source to the central station [see Ref. [7] for the
derivation of Eq. (1) and a more complete discussion].
The first conceptual challenge of this scheme is to prove
entanglement within the fj0i; j1ig subspace. This is
possible using photon detection techniques preceded by
weak displacement operations [14–19], as described in the
following.
Displacement-based measurement.—We introduce the

bosonic annihilation and creation operators ai and a†i with
i ∈ f1; 2g acting on the photonic modes on Alice’s (i ¼ 1)
and Bob’s (i ¼ 2) sides. We assume non-photon-number-
resolving detectors, that is, only two different measurement
results can be produced in each run. A “no-click” event is
modeled by a projection on the vacuum state j0ih0jwhereas
a “click” event corresponds to the projection into the
orthogonal subspace 1 − j0ih0j. If we attribute the outcome
þ1 to a no-detection and −1 to a conclusive detection,
the observable including the displacement operation
DðαiÞ ¼ eαia

†
i−α

�
i ai on mode i is given by

σðiÞαi ¼ D†ðαiÞð2j0ih0j − 1ÞDðαiÞ: ð2Þ

In the qubit subspace fj0i; j1ig, σðiÞ0 corresponds exactly to
the Pauli matrix σz on mode i. When α increases in
amplitude, the positive operator valued measure (POVM)
elements associated with outcomes þ1 get closer to
projections in the x − y plane of the Bloch sphere [14].
For α ¼ 1 (α ¼ i), these POVM elements are projections
along non-unit vectors pointing in the xðyÞ direction.
Entanglement certification.—Building upon the

displacement-based measurement, we now elaborate on
the theory behind the witness that we developed to
optimally certify path entanglement even in a lossy
environment. The certification of entanglement for the

state jψiAB requires access to the coherence terms
j01ih10j and j10ih01j as well as to the probabilities Pij
to have i photons on the first mode and j photons on the
second mode. A good entanglement witness for our state is
the observable

Ŵ ¼ σð1Þα1 ⊗ σð2Þα2 ; ð3Þ

which is phase averaged according to

Ŵ ¼ 1

2π

Z
2π

0

dϕ

 Y2
i¼1

eiϕâ
†
i âi

!
Ŵ

 Y2
i¼1

e−iϕâ
†
i âi

!
ð4Þ

to take into account that from experimental run to run, the
global phase of the displacement parameter is arbitrary.
Thus, the only remaining coherence terms in Ŵ are exactly
the desired ones between j01i and j10i.
In order to demonstrate entanglement we use the Peres-

Horodecki criterion [20] stating that separable two-qubit
states have a positive partial transpose (PPT). Considering
the observable Ŵ, we first compute its maximum expect-
ation value wppt (see Supplemental Material Sec. II [21]) for
separable two-qubit states ρqubit, i.e., ρqubit ≥ 0 and
trðρqubitÞ ¼ 1:

wppt ¼ max
ρqubit

trðρqubitŴÞ

s:t: ðiÞ ρT1

qubit ≥ 0;

ðiiÞ ρi;i ¼ Pii; ð5Þ

where ρi;i denote the diagonal elements of ρqubit. The
advantage of using this witness together with condition
(ii) rather than a fixed linear combination of observables as
done in Ref. [13] is that we use all our knowledge of the
diagonal elements of the density matrix. This is equivalent
to considering a witness constructed from all possible
linear combinations of σð1Þα1 ⊗ σð2Þα2 , σ

ð1Þ
0 ⊗ σð2Þ0 , σð1Þ0 ⊗ 1

and 1 ⊗ σð2Þ0 which can detect more entangled states. If we
restrict ourselves to qubit states, the quantities Pij are given
by the measured quantities Pnc;nc, Pnc;c, Pc;nc and Pc;c
without displacement fields where, for example, Pnc;c is the
joint probability of having a “no-click” event on the
detector on mode 1 and a “click” event on mode 2. If
the measured value of hŴi is larger than wppt, we can
conclude that our state is entangled.
To elaborate on the robustness of our witness, let us

consider the state ρη ¼ ð1 − ηÞj00ih00jAB þ ηjψihψ jAB
which corresponds to adding losses on the state jψiAB.
One can easily check that there always exist settings α1 and
α2 such that trðρηŴÞ > wppt for all efficiencies η different
than 0 (see Supplemental Material Sec. II [21]). This means
that Ŵ has the ability to detect entanglement for arbitrary
loss on the state. Note the fact that we considered detectors
with unit efficiencies is still a valid description of
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our measurement apparatus since one can transfer the
inefficiency of the detector to loss on the state (see
Supplemental Material Sec. IV [21]).
In practice, the amplitude of displacement operations

may vary from run to run which could lead to false witness
violations. To take into account those fluctuations,
we first bound them experimentally and then maximize
wppt accordingly, which leads to w̃ppt ≥ wppt (see
Supplemental Material Sec. III [21]). Note that in order
to reduce the impact of amplitude fluctuations we choose
the mean amplitudes such that ∂2wppt=∂α1∂α2 ¼ 0, which
in our case holds true for α1 ¼ α2 ≈ 0.83.
So far, we derived the maximum expectation value wppt a

separable two-qubit state can achieve. To remove the
assumption on the dimension and hence to obtain a
state-independent entanglement witness, we derive a
general bound for all separable states (see Supplemental
Material Sec. III [21])

wmax
ppt ¼ w̃ppt þ p�

1 þ p�
2

þ 2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�

1 þ p�
2Þð1 − p�

1 − p�
2Þ

q
; ð6Þ

where β ¼ 2α1α2e−ðα
2
1
þα2

2
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðα41 þ α42Þ
p

with αi ∈ Rþ and
p�
i denote upper bounds on the probabilities of having more

than one photon in mode i. The latter can be bounded in
practice by measuring twofold coincidences after a 50=50
beam splitter. We can thus conclude about entanglement in
an arbitrary state ρ if trðρŴÞ > wmax

ppt .
Experiment.—A schematic overview of the experimental

implementation is presented in Fig. 2. We use two non-
linear crystals as type-II SPDC sources pumped by a pulsed
laser at λp ¼ 771.7 nm to create nondegenerate photons at
λs ¼ 1541.3 (signal) and λi ¼ 1546.1 nm (idler). The
photon pair creation probability per pump pulse for each
crystal is kept at Ppair ≈ 3 × 10−3 in order to keep the
probability of having double-pair emissions sufficiently
low. Signal and idler modes are separated after their
generation at the polarizing beam splitters (PBS) and
coupled into single-mode optical fibers. The idler photons
are then sent to a 50=50 beam splitter (BS) and are
spectrally filtered by a dense wavelength division multi-
plexer (DWDM) with a 100 GHz passband (ITU channel
39). We therefore ensure high-purity heralded signal
photons and achieve a spectral overlap of 99.9% between
idler photons originating from the two independent sources
(see Supplemental Material Sec. VIII [21]). To reduce the
photon noise due to residual seed-pulse photons (see
below), and unwanted optical reflections, arriving before
the heralding idler photons, a gate of 2 ns is generated by an
electro-optic intensity modulator (EOM) to temporally
filter before the detector. The EOM has an insertion loss
of 5.0 dB and an extinction ratio of 33 dB.
In order to perform the displacement-based measurement

on the state shared between Alice and Bob, we generate a

coherent state with the same spectral, temporal, and
polarization properties as the single photon signal via a
difference frequency generation (DFG) process by
stimulating the nonlinear crystals with a pulsed distributed
feedback (DFB) seed laser at a wavelength λi ¼ 1546.1 nm
and repetition rate 19 MHz. The seed laser is driven from
well below to above the lasing threshold each cycle to
phase randomize the coherent state. For the implementation
of the displacement-based measurement (see Supplemental
Material Sec. VII [21]), the single-photon and the coherent
states are temporally brought to coincidence in an asym-
metric Mach-Zehnder interferometer (AMZI) followed by a
PBS to project the single-photon and the coherent states
into the same temporal and polarization modes, which
realizes the displacement operation [15]. We increase the
spectral overlap between single-photon and coherent states
by local filtering with DWDMs (100 GHz passband at ITU
channel 45).
To fulfill the phase stability requirement (see

Supplemental Material Sec. VI [21]), the central interfero-
meter is phase locked using the residual seed laser pulses at

FIG. 2. Simplified schematic of the experimental setup for the
heralded distribution and certification of single-photon path
entanglement. A periodically poled lithium niobate (PPLN)
and a periodically poled potassium titanyl phosphate (PPKTP)
bulk nonlinear crystal are pumped by a pulsed Ti:sapphire laser at
λp in the picosecond regime with a repetition rate of 76 MHz for
collinear type-II SPDC and seeded by a pulsed DFB laser at λi
with a repetition rate of 19 MHz for DFG. The idler photons are
sent to the central station and herald entanglement distribution.
The signal photons and coherent states are sent to Alice and
Bob, respectively, in order to perform the displacement-based
measurement. Photons are detected by three superconducting
nanowire single-photon detectors (SNSPD).
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the central station. A piezoelectric fiber stretcher (PZT)
with a half-wavelength voltage of Vπ ¼ 0.18 V and an
optical delay range of about 0.57 ps is actively controlled
such that the seed power at the second output port of the
50=50 BS, measured with a photodiode (PD), is maxi-
mized. Note that we do not require phase-coherent pump
pulses (see Supplemental Material Sec. VI [21]).
Additionally, and specific to our implementation of the
displacement-based measurement, the phase difference
between the AMZIs is stabilized (see Supplemental
Material Sec. VII [21]).
In order to demonstrate the feasibility of long-distance

entanglement distribution, we extend the central interfer-
ometer arm lengths from initially l ¼ 42 m to l ¼ 1.0 km
by inserting two fiber coils. This change additionally
requires active polarization control before the 50=50 BS
as well as active compensation of slow relative drifts in
optical length between the two interferometer arms.
Therefore, electronic polarization controllers (Phoenix
Photonics PSC) are inserted after the fiber coils to minimize
the seed power at the second output ports of the fiber PBSs
whose first output ports are connected to the polarization
maintaining 50=50 BS at the end of the central interfero-
meter. The slow relative optical length drifts are com-
pensated by actively setting Δt3 (see Fig. 2) with a
motorized delay line such that the voltage applied to the
PZT is kept in range. In this way, we achieve long-term
phase stabilization as shown in Fig. 3 for a duration of 8 h.
The photons are detected by three in-house-developed

MoSi superconducting nanowire single-photon detectors
(SNSPD) with efficiencies ηd > 60% and recovery times
τrec < 35 ns. Time correlated single-photon counting (ID
Quantique ID900) is used to register the events of a signal
photon detected by Alice, by Bob, and coincidences
conditioned on the detection of an idler photon at the

central station within a 400 ps window with respect to the
19 MHz clock signal. In the α-basis, we monitor the
displacement amplitudes by tracking the detection rates
caused by coherent states arriving 1 cycle (52 ns) later than
the expected signal photons.
Results.—A measurement of the witness as a function of

the relative phase between Alice’s and Bob’s displacement
operations is shown in Fig. 4. After the relative phase is set
to ðθB − θAÞ ¼ 0, counts were acquired in the α-basis for
1 h and subsequently in the z-basis for 2.5 h by blocking the
coherent state paths in the measurement interferometers.
From the “click”-“no-click” events recorded by Alice and
Bob, the corresponding joint probabilities are deduced (see
Supplemental Material Sec. IX [21]). We separately deter-
mined the probability of having more than one photon
locally in a Hanbury Brown–Twiss experiment for both
Alice and Bob. Together with the joint probabilities
measured in the z-basis as well as the displacement
parameter amplitudes used in the α-basis measurement,
we compute the estimator (see Supplemental Material
Sec. V [21]) for the maximal separable bound wmax

ppt
according to Eq. (6). The experimental value for the
expectation value wexp

ρ of the witness Ŵ is computed from
the measured joint probabilities in the α-basis by

wexp
ρ ¼ ðPnc;nc þ Pc;c − Pc;nc − Pnc;cÞjα1;α2 : ð7Þ

For the analysis of uncertainties on the separable bound
σmax
ppt and on the experimental value of the witness σexpρ we

assume the coincidence probabilities to be independent and
identically distributed (i.i.d.) random variables (see
Supplemental Material Sec. V [21]). The obtained results,
as shown in Table I, certify a violation of the entanglement
witness by more than 5 standard deviations at a heralding
rate of at least 1.4 kHz for fiber distances of l ¼ 42 m and

FIG. 3. Characterization measurement of the central interfero-
meter phase locking for l ¼ 1.0 km. The graph shows the
measured seed power at the 50=50 BS output port 1 over a
duration of 8 h. The active feedback on the piezoelectric fiber
stretcher and the time delay feedback are turned on after 1.2 min
(inset). During the initial 1.2 min, first path 1 of the interferometer
is left open only, then path 2, and afterwards both paths are
opened leading to interference.

FIG. 4. Expectation value and PPT bound wmax
ppt of the entangle-

ment witness as a function of the relative phase ðθB − θAÞ
between the displacement measurements for Alice and Bob with
l ¼ 1.0 km. Values of hŴi larger than wmax

ppt demonstrate entangle-
ment. For each phase setting, counts were acquired for 200 s in
the α-basis with α1 ¼ 0.818þ0.004

−0.003 and α2 ¼ 0.830þ0.006
−0.007 indicating

the mean, maximum, and minimum displacement amplitudes.
Error bars of the measured data represent 1 standard deviation.
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l ¼ 1.0 km inserted in each arm of the central interfero-
meter. The higher total heralding rate in the case of
l ¼ 1.0 km is due to an elevated noise contribution. The
larger statistical significance of the result with l ¼ 1.0 km
compared to l ¼ 42 m is mainly attributed to a different
alignment setting in the measurement AMZIs leading to an
increase of the transmission on the entangled state (see
Supplemental Material Sec. IX [21]).
Discussion.—Single-photon quantum repeater schemes

are promising for fiber-based long-distance entanglement
distribution because of their favorable transmission
loss scaling, their robustness to memory and detector
inefficiencies and the need for fewer resources than protocols
based on two-photon detections [5]. We demonstrated
the feasibility of such a scheme by actively stabilizing the
phase of an interferometer with arm lengths of 1.0 km and
utilizing local displacement-based measurements for
entanglement certification. In our scheme the phase differ-
ence between the AMZIs also needs to be stabilized (see
Supplemental Material Sec. VII [21]), however, in a
quantum repeater these AMZIs could be replaced, and the
displacement performed, by quantum memories [25,26].
In principle, the scheme can be extended for real world

applications by using two individual pump lasers, adding
fiber before the sources to distribute the seed pulses and
further increasing the size of the central interferometer. The
main technical challenge in such an implementation is the
increase of phase noise in a larger central interferometer
[27]. This would not only degrade the entanglement, but
also increase the leakage of residual seed laser pulse
photons towards the heralding detector. Our solution to
suppress them with an EOM introduces unwanted loss on
the heralding photons, however, a better solution would be
to develop a gated SNSPD for the central station.
In conclusion, we demonstrated the heralded distribution

of single-photon path entanglement in a repeater-like
architecture. For a fiber distance of 2 × 1.0 km inserted
in the central interferometer we achieve a heralding rate of
1.6 kHz and we certify a violation of the entanglement
witness by 6.2 standard deviations. These results highlight
the feasibility and challenges associated with realizing
DLCZ-like quantum repeater architectures.
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I. ENTANGLEMENT WITNESS

We consider a scenario where we have two protagonists, Alice and Bob, each of whom has a photonic mode labelled
1 and 2, respectively. We introduce the corresponding bosonic operators ai and a

†
i with i ∈ {1, 2}. We consider the

observable

Ŵ = σ(1)
α1
⊗ σ(2)

α2
(1)

where σ(i)
αi is realized on mode i with a single photon detector (non-photon-number-resolving detector) preceded by a

displacement operation D(α) = eαa
†
i−α∗ai . The explicit expression of σ(i)

αi is given by

σ(i)
αi

= D†(αi)(2|0〉〈0| − 1)D(αi) (2)

if one assigns the outcomes +1 when the detector does not click and −1 if it clicks. Moreover we consider the phase
averaging of our observable according to

Ŵ =
1

2π

∫ 2π

0

dφ

(
2∏

i

eiφa
†
iai

)
Ŵ
(

2∏

i

e−iφa
†
iai

)
. (3)

Additionally we perform measurements without displacement and thus have access to the probabilities Pnc,nc, Pc,nc,
Pnc,c, Pc,c, where for example Pnc,c is the probability that the first detector on mode 1 does not click and the second
one mode 2 clicks.

II. SEPARABLE BOUND IN QUBIT SPACE

We consider the qubit space {|0〉, |1〉} made with the vaccum and the single photon number state. We want to
find the maximum value of tr(ρsepqubitŴqubit) a separable 2-qubit state ρsepqubit can achieve. We use the Peres-Horodecki
criterion (also refered to as PPT criterion) stating that any two qubit state having a positive partial transpose (PPT
state) is separable and hence compute the maximum value of tr(ρsepqubitŴqubit) a PPT qubit state can achieve knowing
the diagonal elements of ρsepqubit. Let us note that Ŵ have a simple structure in this qubit space

Ŵqubit =



w00 0 0 0
0 w01 wc01 0
0 wc10 w10 0
0 0 0 w11


 . (4)

We can thus write

tr(ρsepqubitŴqubit) = w00P00 + w01P01 + w10P10 + w11P11 + wc01〈10|ρsepqubit|01〉+ wc10〈01|ρsepqubit|10〉 (5)

where Pij = 〈ij|ρsepqubit|ij〉 represents the probability to get i photons in mode 1 and j photons in mode 2.
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Furthermore, the positivity of ρsepqubit implies that |〈01|ρsepqubit|10〉| ≤ √P10P01. The positivity under partial transpose
imposes that |〈01|ρsepqubit|10〉| ≤ √P00P11. The condition “ρsepqubit is a PPT state” thus imposes that

tr(ρsepqubitŴqubit) ≤ w00P00 + w01P01 + w10P10 + w11P11 + (wc01 + wc10) ·min(
√
P00P11,

√
P10P01). (6)

We observe that the separable states maximizing the witness satisfy
√
P00P11 <

√
P10P01. Moreover, from eqs. (1)

and (3) one easily sees that (wc01 +wc10) = 8α1α2e
−α2

1−α2
2 is non-negative. To simplify the expression we thus relax

the separable bound using min(
√
P00P11,

√
P10P01) ≤ √P00P11. Computing all the coefficients w from Eqs. (1) and

(3) we obtain

tr(ρsepqubitŴqubit) ≤ wppt =
(

2e−α
2
1 − 1

)(
2e−α

2
2 − 1

)
P00

+ 8α1α2e
−α2

1−α2
2

√
P00P11

+
(

2α2
1e
−α2

1 − 1
)(

2α2
2e
−α2

2 − 1
)
P11

+
(

2α2
1e
−α2

1 − 1
)(

2e−α
2
2 − 1

)
P10

+
(

2e−α
2
1 − 1

)(
2α2

2e
−α2

2 − 1
)
P01.

(7)

where here αi ∈ R+ denote the displacement amplitudes. If the quantity V = (〈Ŵqubit〉 − wppt) is positive, we can
conclude that the measured state is entangled under the condition that it is a 2-qubit state.

To elaborate on the robustness of our witness with respect to losses on the state, let us consider the pure state

|Ψ+〉 =
1√
2

(|01〉+ |10〉). (8)

After traveling through a lossy channel with transmission η, this state becomes

ρη = (1− η)|00〉〈00|+ η|Ψ+〉〈Ψ+|. (9)

For such a state we have

V = 8α1α2e
−α2

1−α2
2
η

2
(10)

which is positive for all amplitude of the displacements. This means that Ŵ has the ability to detect entanglement
for arbitrary loss on the state |Ψ+〉. This statement can easily be generalized to every state of the form |ψ〉 =

(|01〉 + eiφ|10〉)/
√

2 by selecting the displacement parameters αi ∈ C in Eq. (1) accordingly. In the next section we
extend this witness to the case of an arbitrary Hilbert space.

III. SEPARABLE BOUND OUTSIDE THE QUBIT SPACE

A. Bound on wppt for displacement with fluctuating amplitudes

In practice, the amplitude of the displacement might fluctuate during the experiment. Averaging the amplitudes
for short times, we have access to a range of fluctuations α1 ∈ I1, α2 ∈ I2 with I1, I2 ⊂ R+. We thus simply consider

wppt ≤ max
α1∈I1,α2∈I2

((
2e−α

2
1 − 1

)(
2e−α

2
2 − 1

)
P00

+ 8α1α2e
−α2

1−α2
2

√
P00P11

+
(

2α2
1e
−α2

1 − 1
)(

2α2
2e
−α2

2 − 1
)
P11

+
(

2α2
1e
−α2

1 − 1
)(

2e−α
2
2 − 1

)
P10

+
(

2e−α
2
1 − 1

)(
2α2

2e
−α2

2 − 1
)
P01

)
.

(11)
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In the case where we do not restrict ourselves to qubits, we replace P00 and P11 by Pc,c and Pnc,nc. Furthermore we
replace P10 and P01 by (Pc,nc − p∗1) and (Pnc,c − p∗2) if the maximization in Eq. (11) gives negative terms in front
of P10 and P01 where p∗1 > p(n1 ≥ 2) is a bound on the probability to get strictly more than one photon in mode 1
and similarly for p∗2. If the maximization in Eq. (11) gives positive terms in front of P10 and P01, we replace them by
Pc,nc and Pnc,c, respectively. We thus get

wppt ≤ C1Pnc,nc + C2

√
Pnc,ncPc,c + C3Pc,c + max

(
C4(Pc,nc − p∗1), C4Pc,nc

)
+ max

(
C5(Pnc,c − p∗2), C5Pnc,c

)
, (12)

where C1, C2, C3, C4, and C5 come from the maximization in Eq. (11).

B. Bound on 〈Ŵ 〉 for separable state outside the qubit space

We consider the observable Ŵ represented by

Ŵ =

(
A B
B† C

)
(13)

and a state ρ of the form

ρ =

(
a b
b† c

)
, (14)

where a and A live in the two-qubit space HQ spanned by {|0〉, |1〉} and c and C live in a Hilbert space HC . We
define P2 as the trace of c so that the trace of a is equal to (1− P2). The parts are now arranged such that

tr(ρŴ ) = tr(aA) + tr(b†B + bB†) + tr(cC). (15)

We are interested in particular in the maximum expectation value of Ŵ a separable state can achieve. We treated
the part which belongs to the qubit space above. We thus only have to find tight upper bounds on the quantities
tr(b†B + bB†) and tr(cC) that any state ρ satisfies.

Let us first deal with the term tr(cC), we have

tr(cC) = tr
((

0 0
0 c

)
Ŵ

)
≤ P2||Ŵ ||1 = P2, (16)

where ||Ŵ ||1 is the maximal eigenvalue of Ŵ , bounded by one by definition. This settles the issue.

Next, consider the term tr(bB†). We start with the singular value decomposition of b

(
0 b
0 0

)
=

(
0 UDV †

0 0

)
=

L∑

i=1

di|ai〉〈ci|, (17)

where {|ai〉} and {|ci〉} are sets of orthonormal vectors on HQ and HC respectively, the singlular values di are
nonnegative real numbers, and L = min

(
dim(HQ), dim(HC)

)
= 4 in our case. Using Eq. (17) we can bound

|tr(bB†)| =
L∑

i=1

di|〈ci|B†|ai〉| ≤
(

L∑

i=1

di

)
bmax, (18)

where bmax is the maximal singular value of B†, or equivalently of B, it can be easily obtained from the definition of
the witness in Eq. (3), see later. It remains to upper-bound the term (

∑L
i=1 di).

To do so define a set of orthonormal states |ψi〉 ∈ HQ ⊕HC as

|ψi〉 = cos(θ)|ai〉+ sin(θ)|ci〉 (19)
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for some parameter θ. As
∑L
i=1 |ψi〉〈ψi| ≤ 1 we obtain the following inequality

1 ≥
L∑

i=1

〈ψi|ρ|ψi〉 = cos2(θ)

(
L∑

i=1

〈χiA|a|χiA〉
)

+ sin2(θ)

(
L∑

i=1

〈χiC |c|χiC〉
)

+ 2 cos(θ) sin(θ)

L∑

i=1

di. (20)

Finally, by rearranging the terms we get the desired bound

L∑

i=1

di ≤
1− cos2(θ)

(∑
i 〈χiA|a|χiA〉

)
− sin2(θ)

(∑
i 〈χiC |c|χiC〉

)

2 cos(θ) sin(θ)

≤ 1− cos2(θ)tr(a)− sin2(θ)tr(c)
2 cos(θ) sin(θ)

=
1− cos2(θ)(1− P2)− sin2(θ)(P2)

2 cos(θ) sin(θ)
(21)

for any value of θ. Minimizing the right hand side with respect to θ yields the final bound

L∑

i=1

di ≤
√
P2(1− P2). (22)

We thus have access to the two following inequalities in order to bound wppt,

tr(cC) ≤ P2, (23)

tr(b†B + bB†) ≤ 2
√
P2(1− P2)|bmax|, (24)

where P2 is the probability to have strictly more than one photon in at least one mode. For our witness, the phase
randomization kills all the terms in B except two, namely the photon-number preserving terms 2

√
2α1α

3
2|11〉〈02| and

2
√

2α3
1α2|11〉〈20|. We thus simply have

bmax = 2α1α2e
−α2

1−α2
2

√
2α4

1 + 2α4
2 (25)

for which we consider the maximum value in I1 and I2

β = max
α1∈I1,α2∈I2

(
bmax

)
. (26)

The last part is to find a bound on P2 one can measure in the experiment. One has the probabilities

P2 = p(n1 ≤ 1 ∩ n2 > 1) + p(n1 > 1 ∩ n2 ≤ 1) + p(n1 > 1 ∩ n2 > 1), (27)
p∗1 ≥ p(n1 > 1) = p(n1 > 1 ∩ n2 ≤ 1) + p(n1 > 1 ∩ n2 > 1), (28)
p∗2 ≥ p(n2 > 1) = p(n1 ≤ 1 ∩ n2 > 1) + p(n1 > 1 ∩ n2 > 1), (29)

where ni denotes the number of photons in mode i. If we sum the two last quantities, we end up with an upper bound
on P2

p∗1 + p∗2 ≥ 2p(n1 > 1 ∩ n2 > 1) + p(n1 ≤ 1 ∩ n2 > 1) + p(n1 > 1 ∩ n2 ≤ 1)

= P2 + p(n1 > 1 ∩ n2 > 1)

≥ P2. (30)

In practice p∗i can be obtained by measuring the probability of coincidence after a 50/50 beam splitter. All together
with the first part, this implies that if a state ρ obeys

tr(ρŴ ) > C1Pnc,nc + C2

√
Pnc,ncPc,c + C3Pc,c + max

(
C4(Pc,nc − p∗1), C4Pc,nc

)

+ max
(
C5(Pnc,c − p∗2), C5Pnc,c

)
+ p∗1 + p∗2 + 2β

√
(p∗1 + p∗2)(1− (p∗1 + p∗2))

(31)

then ρ is entangled.
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IV. NON UNIT DETECTION EFFICIENCY

We considered so far that the measurement are realized with non-photon-number-resolving detectors preceded by
displacement operations in phase space. As explained in the main text, we assign the outcome +1 to a no-detection
and −1 to a conclusive detection event. Given a state ρ in the mode 1 corresponding to the bosonic operators a1 and
a†1, the probability to get a outcome +1 (Pnc) using a displacement with argument α1 is given by

Pnc = tr(D†(α1)|0〉〈0|D(α1)ρ). (32)

In the case where the detector has a finite efficiency, we can model the detector inefficiency with a beam splitter
having a transmission η = cosϕ2, that is

Pnc = tr(D†(α1)U†|0̄〉〈0̄|UD(α1)ρ) (33)

with U = eϕ(a
†c−c†a), the auxiliary mode described by c and c†, being initially empty. The state |0̄〉 corresponds to

the projection onto the vacuum for both modes. Commuting the beam splitter and displacement operation leads to

Pnc = tr(U†D†(α1
√
η)|0̄〉〈0̄|D(α1

√
η)Uρ). (34)

This means that we can model the detection inefficiency as loss operating on the state that is measured if the amplitude
of the displacement operation is changed accordingly. Hence, the fact that we consider detectors with unit efficiencies
is still a valid description of our measurement apparatus where we do not need any assumptions on our state nor on
the efficiency of our detectors.

V. FINITE STATISTIC ANALYSIS

All quantities that are measured are frequencies. We make the i.i.d hypothesis. For N clicks on the heralded
detectors, na clicks on Alice detectors (and no clicks on Bob detector), nb clicks on Bob detectors (and no clicks
on Alice detectors) and nd double clicks, we take the following estimators Pc,nc = na

N , Pnc,c = nb

N , Pc,c = nd

N and
Pnc,nc =

(
1− na+nb+nd

N

)
. We proceed in the same way for the estimator of p∗1 and p∗2. The corresponding standard

deviations are

σc,c =

√
Pc,c(1− Pc,c)√

N
, σc,nc =

√
Pc,nc(1− Pc,nc)√

N
, σp∗1 =

√
p∗1(1− p∗1)
√
N

,

σnc,nc =

√
Pnc,nc(1− Pnc,nc)√

N
, σnc,c =

√
Pnc,c(1− Pnc,c)√

N
, σp∗2 =

√
p∗2(1− p∗2)
√
N

.

When the dependence of the witness with respect to the probabilities is linear, then the standard deviations can be
added straightforwardly. Let us focus on the terms

√
Pnc,ncPc,c. One cannot find an unbiased estimator for this term

but one can bound it by a linear quantity

√
Pnc,ncPc,c ≤

Pnc,ncPc,c + Pc,cPnc,nc

2
√
Pc,c Pnc,nc

. (35)

The same holds for the term
√

(p∗1 + p∗2) (1− (p∗1 + p∗2)) which we bound according to
√

(p∗1 + p∗2) (1− (p∗1 + p∗2)) ≤ (p∗1 + p∗2)− 2(p∗1 + p∗2)(p∗1 + p∗2) + (p∗1 + p∗2)

2
√

(p∗1 + p∗2) (1− (p∗1 + p∗2))
. (36)

Note that Ineq. (36) holds for (p∗1 + p∗2) ≤ 1
2 . The parts are now arranged such that an upper bound to the separable

bound can be estimated according to

wmax
ppt = C1Pnc,nc + C2

Pnc,nc Pc,c + Pc,c Pnc,nc

2
√
Pc,c Pnc,nc

+ C3Pc,c + max
(
C4(Pc,nc − p∗1), C4Pc,nc

)

+ max
(
C5(Pnc,c − p∗2), C5Pnc,c

)
+ p∗1 + p∗2 + 2β

(p∗1 + p∗2)− 2(p∗1 + p∗2)(p∗1 + p∗2) + (p∗1 + p∗2)

2
√

(p∗1 + p∗2) (1− (p∗1 + p∗2))
.

(37)
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With the assumption of independent measurements for each probability, the standard deviation of this estimator is
upper bounded by

σmax
ppt = C1σnc,nc + C2

σnc,nc Pc,c + σc,c Pnc,nc

2
√
Pc,c Pnc,nc

+ C3σc,c + |C4|(σc,nc + σp∗1 ) + |C5|(σnc,c + σp∗2 )

+ σp∗1 + σp∗2 + 2β
(σp∗1 + σp∗2 )− 2(σp∗1 + σp∗2 )(p∗1 + p∗2) + (p∗1 + p∗2)

2
√

(p∗1 + p∗2) (1− (p∗1 + p∗2))
.

(38)

In the same way, one can define an estimator for 〈Ŵ 〉

wexp
ρ = Pc,c + Pnc,nc − Pc,nc − Pnc,c (39)

and the standard deviation of this estimator

σexp
ρ = σc,nc + σnc,c + σc,c + σnc,nc. (40)

We then say that we observe a violation of our witness by k standard deviations if

wmax
ppt − wexp

ρ = k(σmax
ppt + σexp

ρ ). (41)

VI. PHASE LOCKING REQUIREMENT

In order to detect entanglement in a state of the form |ψ〉 = (|01〉 + eiφ|10〉)/
√

2, our witness makes use of dis-
placement operations on both modes (see Eq. (1)). For such a measurement, the joint coincidence probabilities Pij
will depend on optical phases acquired in the experimental setup. In the following, we will calculate the expected
joint probability P00 of having a no-click event in both modes for our experimental setup which will give rise to
a phase-locking requirement if we want to be able to detect entanglement. The calculation for joint probabilities
different than P00 would lead to the same requirement.

P00 = |〈00|ABD(α1)D(α2)|ψ〉AB |
2

=

∣∣∣∣〈00|ABD(α1)D(α2)
1√
2

(
ei(φA+χA+ξA,l)|10〉AB + ei(φB+χB+ξB,l)|01〉AB

)∣∣∣∣
2

=
1

2

∣∣∣ei(φA+χA+ξA,l)〈00|ABD(α1)|1〉A|α2〉B + ei(φB+χB+ξB,l)〈00|ABD(α2)|α1〉A|1〉B
∣∣∣
2

, (42)

where D(α1(2)) denotes the displacement operator acting on mode A(B) with displacement parameters α1(2) =

|α1(2)|ei(φA(B)−ζA(B)+ξA(B),s).

• φA(B) is the phase of the pump before the crystal,

• ζA(B) the phase of the seed laser before the crystal,

• χA(B) the phase picked up from the crystal to the central station,

• ξA(B),l(s) the phase from the crystal to the detector through the long (short) arm of the AMZI

on Alice’s (Bob’s) side as shown in Fig. 1. This leads us to

P00 =
1

2

∣∣∣ei(φA+χA+ξA,l)e−|α2|2/2〈−α1|1〉A + ei(φB+χB+ξB,l)e−|α1|2/2〈−α2|1〉B
∣∣∣
2

=
1

2

∣∣∣ei(φA+χA+ξA,l)e−(|α1|2+|α2|2)/2(−α∗1) + ei(φB+χB+ξB,l)e−(|α1|2+|α2|2)/2(−α∗2)
∣∣∣
2

=
1

2
e−|α1|2−|α2|2

∣∣∣ei(φA+χA+ξA,l)|α1|e−i(φA−ζA+ξA,s) + ei(φB+χB+ξB,l)|α2|e−i(φB−ζB+ξB,s)
∣∣∣
2

(43)

and setting |α| = |α1| = |α2| for simplicity yields

P00 =
1

2
|α|2e−2|α|2

∣∣∣ei(ζA+χA+ξA,l−ξA,s) + ei(ζB+χB+ξB,l−ξB,s)
∣∣∣
2

. (44)
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FIG. 1. Schematic of the experimental setup with the relevant phases. PBS, polarizing beam splitter; BS, beam splitter; DM,
dichroic mirror; λ/2, half-wave plate.

We note that the phases of the pump before the crystals φA and φB cancel out. In order to keep P00 constant, we
therefore require

ζA + χA + ξA,l − ξA,s = ζB + χB + ξB,l − ξB,s + const. (45)

This can be achieved by locking the central interferometer according to

(ζA + χA) mod 2π = ζB + χB + π (46)

and the two asymmetric Mach-Zehnder interferometers (AMZI) for the displacement-based measurement such that

(ξA,l + ξB,s) mod 2π = ξA,s + ξB,l + π. (47)

VII. EXPERIMENTAL SETUP: PHASE LOCKING OF THE MEASUREMENT INTERFEROMETERS

FIG. 2. (a) Simplified schematic of the experimental setup for the heralded distribution and certification of single-photon path
entanglement. (b) Detailed schematic of the implementation for the displacement-based measurement using two asymmetric
Mach-Zehnder interferometers (AMZI) with path difference corresponding to 13 ns. The phase-locking technique makes use of
a pulsed DFB laser at λr = 1559.0 nm with a repetition rate of 19MHz and pulse duration of about 10 ns.
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A schematic overview of the experimental implementation is presented in Fig. 2(a). To fulfill the crucial phase
stability requirement derived in Sec. VI, we need to phase-lock the central interferometer as described in the main
text, and specific to our implementation of the displacement-based measurement, the phase difference between the
AMZIs shown in Fig. 2(b).

We first note that in the common paths of the coherent state and the single-photon state, their short temporal
separation of 13 ns intrinsically guarantees the phase stability since the phase changes occurring over this time scale
are negligible. However, the phase has to be actively stabilized in the AMZIs which temporally bring the single-photon
and coherent states to coincidence. We therefore inject distributed feedback (DFB) laser pulses at λr = 1559.0 nm
of about 10 ns duration at a repetition rate of 19 MHz traveling in the reverse direction to the signal, first through
Alice’s AMZI, then through Bob’s, as schematically shown in Fig. 2(b). The resulting averaged signal shows 50 %
visibility interference fringes as a function of the phase difference between the long-short and short-long paths in the
measurement AMZIs, which is kept at a constant set-point by controlling a piezo-actuated mirror in the long arm of
Bob’s AMZI.

The phase difference of the displacement fields between Alice and Bob is scanned and set with a liquid crystal
(LC; Thorlabs LCC1111T-C) in the locking laser path before Bob’s AMZI. The LC is aligned with the subsequent
polarizing beam splitter (PBS) and therefore the signal in the long arm of Bob’s AMZI is selectively retarded with
respect to the signal in the short arm. In this way, the LC allows us to induce an additional relative phase between
the displacement fields on Alice’s and Bob’s side over a range of π. In order to suppress unwanted reflections of the
locking laser leaking to the detectors, we use fiber Bragg gratings (FBG) rejecting light at λr.

VIII. SPECTRAL OVERLAP AND TEMPORAL ALIGNMENT

FIG. 3. Normalized measured spectra and Gaussian fit of (a) idler photons from independent sources before the heralding
detector, (b) coherent state (Cs) and heralded signal photon (Ph) before Alice’s detector and (c) before Bob’s detector. All
spectra are measured with a tunable grating filter with a FWHM of 0.2 nm inserted before the corresponding superconducting
nanowire single-photon detector.

To ensure high-purity heralded signal photons, we spectrally filter the heralding idler photons [1] emitted from the
PPLN crystal on Alice’s side and from the PPKTP crystal on Bob’s side after the 50/50 beam splitter by using a
dense wavelength division multiplexer (DWDM) with a 100 GHz passband at ITU channel 39 (λ = 1546.12 nm). The
expected HOM visiblity due to finite spectral overlap between the idler photons (see Fig. 3(a)) assuming Gaussian
spectral distribution (see Eq. 5.14 in [2]) amounts to 99.9 %.

We also spectrally filter before Alice’s and Bob’s detectors with two DWDMs at channel 45 (λ = 1541.35 nm) and
achieve a spectral overlap between the single-photon and coherent states [3] used for the displacement operation of
more than 99 %, as shown in Figs. 3(b-c).

The fine temporal alignment of the central interferometer is achieved in the following way. First, the seed laser is
replaced by a low coherence white light source and the motorized fiber delay line ∆t3 (see Fig. 2(a)) is set such that
the observed interference visibility at the central station is maximized. Second, the white light source is exchanged
by a cw laser at the signal wavelength λs such that together with the pulsed pump laser, a coherent state at the idler
wavelength λi is created via difference frequency generation (DFG) in both crystals. The delay ∆t2 is then adjusted
such that again the observed interference visibility at the central station is maximized. Third, the pulsed seed laser
is put back in its place and the electronic delay ∆t1 is set such that pump and seed pulses overlap. This procedure
ensures temporal indistinguishability of the idler photons from the two independent sources at the central station.
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IX. RESULTS

The measured joint probabilities in the α- and z-basis as well as the local probability of having more than one
photon locally p∗i are given in Tab. I. In the case of l = 42 m of optical fiber inserted in each arm of the central
interferometer, we measured lower probabilities for Pc,nc and Pnc,c in the z-basis compared to the case of l = 1.0 km.
These probabilities are direct measures of the signal photon transmissions. The difference can be explained by the
realignment of the measurement AMZIs between the two experimental runs leading to an increase of the transmission
on the signal photons in the case of l = 1.0 km.

The results of the entanglement witness are given in Tab. II. We detect photons at the central station at a heralding
rate νh with the indicated signal-to-noise ration (SNR). The values for wexp

ρ are computed from the joint probabilities
in the α-basis. We further calculate the values for the PPT bound wppt according to Eq. 7, the bound including
fluctuations of the displacement amplitudes w̃ppt according to the RHS of Ineq. 11 and the bound with additional
contributions from outside the qubit space wmax

ppt according to the RHS of Ineq. 31.

For l = 42 m, we measured at two different displacement amplitudes. The theoretical values for the amplitudes of
the displacement parameters leading to the largest violation of our witness are α1 = α2 = 1/

√
2 ≈ 0.71, however, the

witness is more robust to experimental fluctuations of the displacement parameter amplitudes if ∂2wppt/∂α1∂α2 = 0,
which in our case holds true for α1 = α2 ≈ 0.83. This can be seen by comparing the difference between w̃ppt and wppt

for the two α-settings.

We observe lower SNR for larger α as well as for longer fiber. We suspect this elevated noise background to be
backward-scattered and forward-reflected Raman light that leaks through the DWDM before the heralding detector.
One solution to this problem might be additional spectral filtering, however, leading to lower transmission on the
heralding photons.

l α1 α2 Basis Pnc,nc Pnc,c Pc,nc Pc,c p∗1 p∗2

42m
0.720+0.014

−0.010 0.710+0.008
−0.008

z 0.96834(4) 0.01431(3) 0.01735(3) 0.0000044(5)

2.5(3)× 10−6 5.1(4)× 10−6α 0.3604(2) 0.2305(2) 0.2407(2) 0.1684(2)

0.804+0.010
−0.009 0.819+0.003

−0.004

z 0.96935(5) 0.01515(3) 0.01550(3) 0.0000052(6)

α 0.2715(2) 0.2504(2) 0.2393(2) 0.2388(2)

1.0 km 0.819+0.005
−0.007 0.837+0.006

−0.007

z 0.96142(5) 0.01881(4) 0.01977(4) 0.0000059(6)
3.2(4)× 10−6 1.25(8)× 10−5

α 0.2575(2) 0.2504(2) 0.2370(2) 0.2552(2)

TABLE I. Measured joint probabilities in the z- and α-basis for different fiber lengths l in each arm of the central interferometer.
The displacement parameter amplitudes αi are the mean amplitudes for the α-basis measurement with bounds on the minimum
and maximum observed values during the 3600 s of measurement. The probabilities of having more than one photon p∗1 on
Alice’s side and p∗2 on Bob’s side are separately determined for each experimental run by measuring the heralded g2(0). The
uncertainties on all probabilities are 1 standard deviations as calculated in Sec. V.

l νh (kHz) SNR α1 α2 wexp
ρ wppt w̃ppt wmax

ppt k

42m
1.4 18 0.720+0.014

−0.010 0.710+0.008
−0.008 0.0576(8) 0.0391(2) 0.0451(2) 0.0472(14) 4.8

1.4 12 0.804+0.010
−0.009 0.819+0.003

−0.004 0.0206(8) 0.0039(2) 0.0045(2) 0.0071(16) 5.6

1.0 km 1.6 5.0 0.819+0.005
−0.007 0.837+0.006

−0.007 0.0253(7) 0.0031(2) 0.0033(2) 0.0071(22) 6.2

TABLE II. Measured expectation value of the entanglement witness wexp
ρ and calculated separable bound wppt, including

fluctuations of the displacement amplitudes w̃ppt and additional contributions from outside the qubit space wmax
ppt for fibers of

length l inserted in each arm of the central interferometer at an observed heralding rate νh. The indicated heralding rate includes
noise that we observe with the indicated signal-to-noise ratio (SNR). The witness is violated by k = (wexp

ρ −wmax
ppt )/(σ

max
ppt +σexp

ρ )
standard deviations.
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How can a multipartite single-photon path-
entangled state be certified efficiently by
means of local measurements? We address this
question by constructing an entanglement wit-
ness based on local photon detections preceded
by displacement operations to reveal genuine
multipartite entanglement. Our witness is de-
fined as a sum of three observables that can be
measured locally and assessed with two mea-
surement settings for any number of parties
N . For any bipartition, the maximum mean
value of the witness observable over bisepara-
ble states is bounded by the maximum eigen-
value of an N × N matrix, which can be com-
puted efficiently. We demonstrate the applica-
bility of our scheme by experimentally testing
the witness for heralded 4- and 8-partite single-
photon path-entangled states. Our implemen-
tation shows the scalability of our witness and
opens the door for distributing photonic multi-
partite entanglement in quantum networks at
high rates.

1 Introduction
The generation, distribution and certification of en-
tanglement in multipartite quantum communication
networks is of increasing importance as the size and
complexity of networks grow beyond simple short-
distance point-to-point scenarios [1, 2]. In general,
multipartite entanglement enables applications such
as enhanced sensing [3, 4] or multi-user quantum com-
munication protocols [5, 6]. At the heart of the mat-
ter, the challenge is to find scalable solutions to realize
these applications, which still remain experimentally
feasible. On the one hand, the experimental limita-
tions of probabilistic multi-photon sources, especially
in terms of rates [7], represent fundamental obstacles
for entangled state generation. On the other hand,
for the state certification, the exponential scaling of
Anthony Martin: Current address: Université Côte d’Azur, CNRS,
Institut de Physique de Nice, Parc Valrose, F-06108 Nice Cedex 2,
France
Rob Thew: Robert.Thew@unige.ch

measurements in tomography as the number of par-
ties increases [8] makes it impractical already for a
small number of parties.

In the case of generation and distribution of entan-
glement already for quantum repeaters, a shift away
from photon-pair to heralded single-photon entangle-
ment provided significant scaling benefits even for
point-to-point communication schemes [9]. For exam-
ple, as shown in Fig. 1(a), the distribution of entan-
glement between two remote parties through optical
fiber can be realized efficiently by giving each party
a source emitting signal-idler photon pairs, combin-
ing the idler modes into a beam splitter at a cen-
tral station and placing two detectors at the output
of the beam splitter. A photon detection by one of
the two detectors heralds the sharing of a single pho-
ton between the signal modes – a single-photon path-
entangled state [10, 11]. Although the realization of
such schemes faces the challenge of active stabiliza-
tion of the phase between the two parties [12], work
addressing this issue has been reported [13–18], even
over longer distances in optical fiber [19, 20].

More interestingly, this approach can be efficiently
extended to the distribution of entanglement be-
tween multiple parties by simply replacing the two-
port beam splitter by a multi-port beam splitter, see
Fig. 1(b). This represents an efficient way of gen-

(a)

S S

!

(c)

S
!

(b)

S S

!

S

Figure 1: Heralded multipartite entanglement distribution.
(a) Entanglement is distributed between two parties, each
having a signal-idler photon pair source (S). The idler modes
are combined on a beam splitter and the detection of a sin-
gle photon after this beam splitter projects the signal modes
into a single-photon entangled state. (b) Generalization of
the scheme to tripartite states while keeping the local losses
low. The aim of this work is to clarify on how entanglement
can be detected in this setting. (c) Conceptual schematic
of the experiment. Entanglement is distributed among sev-
eral parties by locally splitting the signal mode into multiple
spatial output modes.

Accepted in Quantum 2022-03-15, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

10
4.

08
21

6v
3 

 [
qu

an
t-

ph
] 

 1
6 

M
ar

 2
02

2



erating a multipartite entangled state close to a W
state [21]:

|WN 〉 = 1√
N

N∑

i=1
|0, ..., 0, 1i, 0, ..., 0〉 (1)

with a single photon detection heralding its successful
distribution remotely. Here, |0〉 denotes the vacuum
state, |1〉 the single-photon number state and N the
number of parties. Applications of this class of dis-
tributed states include long-baseline telescopes that
can take advantage not only of a distribution over
long distances but also the multipartite setting [22–
24].

The certification of entanglement in such multipar-
tite quantum communication networks is extremely
challenging. Beyond tomography, even typical en-
tanglement witnesses require multiple settings per
party [25, 26], with the commensurate scaling that
quickly ensures their infeasibility. Others have used
certification techniques that require the recombina-
tion of optical modes [27, 28], which are impractical in
communication scenarios where local measurements
are required. These problems are further exacerbated
in a distributed setting, where noisy and lossy chan-
nels also need to be addressed.

Here we develop an entanglement witness tailored
to the W state, given in Eq. (1), to reveal genuine
multipartite entanglement (GME) without postselec-
tion. We assume that the measurement apparatus is
well characterized and that each party i holds a single
optical mode with an associated bosonic annihilation
operator ai. There are no further assumptions. In
particular, the photon number statistics are unknown
and we do not assume that the same state is pre-
pared in each run (i.i.d.). The witness is scalable as
it only requires two different measurement settings,
independently of the number of parties. Its applica-
bility is demonstrated using an experimental setup in
a configuration like in Fig. 1(c) where genuine 4- and
8-partite entangled states are heralded at high rates
and successfully verified.

2 Theory
To certify the GME of N -partite single-photon path-
entangled states, we build a witness using practical
single-photon detectors, i.e. non-unit efficiency and
non-photon number resolving. Such a detector can
be modeled as a loss channel with transmission η (the
detector efficiency) followed by a two-outcome mea-
surement that perfectly distinguishes the vacuum |0〉
from all the other Fock states of the detected mode.
In this model, the fixed loss can be interpreted as part
of the state preparation degrading its entanglement.
In the following, we therefore model the detector op-
erating on party i with the positive operator valued
measure (POVM) {Eic = 1 − Π(i)

0 , Ei0 = Π(i)
0 }, Eic

(Ei0) corresponding to the POVM element associated
to a click (c) (no-click (0)) event and Π(i)

0 = |0〉〈0| is
the projection on the vacuum. With such a detec-
tor, we thus have access to the weight of the vacuum
component for each party from the no-click events,
i.e. from tr(Ei0 ρ) where ρ denotes the N -mode state
produced in the actual experiment. By probing each
mode with such a detector, we can access the prob-
ability that more than one mode contain photons∑
n≥2 P

n
click, where P

n
click is the probability that n de-

tectors click. Let us define the POVM elements asso-
ciated with these probabilities as En≥2 and En. Note
that p0 = P 0

click = tr(|0〉〈0|⊗N ρ) is the probability
that the state contains no photons. Furthermore, by
probing the mode i with two such detectors after a
50/50 beam splitter, we can upper bound the proba-
bility that it contains more than one photon [26], that
is tr(Π(i)

ni≥2 ρ) with Π(i)
ni≥2 =

∑
ni≥2 |ni〉〈ni|. This al-

lows us to upper bound the probability that the N -
mode state ρ contains two or more photons, which we
write as an operator inequality

Πn≥2 ≤ En≥2 +
∑

i

Π(i)
ni≥2, (2)

where Πn≥2 is the projector on all the combinations
of Fock states containing at least two photons in total.
We then denote p∗ = tr((En≥2 +

∑
i Π(i)

ni≥2) ρ).
In order to implement measurements that are sen-

sitive to the coherence between different products of
Fock states, the party i can perform a phase-space
displacement operation D(αi) = eαia

†
i
−α∗i ai right be-

fore the detector [29]. As shown in Appendix A, the
loss after the displacement operation, i.e. the detec-
tor inefficiency, can be permuted with the displace-
ment by only adjusting the displacement amplitude
αi. This allows us to keep the POVM above and de-
fine a parametric family of local observables for each
party i ∈ {1, ..., N} [30]

σ(i)
αi

= D†(αi)(Ei0 − Eic)D(αi)
= D†(αi)(2|0〉〈0| − 1)D(αi)

(3)

by attributing the value +1 to a no-click and −1 to a
click event. In principle, asking each party to perform
such a measurement and combining the results allows
us to define a global observable

Ôα =
N∑

i 6=j
σ(i)
αi
⊗ σ(j)

αj
, (4)

where α = (α1, . . . , αN ). To simplify the experimen-
tal realization, we consider the case where the local
oscillators used by each party to perform the displace-
ment operations are not phase-locked to the input
state, so that the local displacements αi 7→ αie

iϕ are
only defined up to an arbitrary common phase ϕ, but
the phase differences between the parties are well con-
trolled and kept constant at zero. As a consequence,
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we measure the observable

Ôα = 1
2π

∫ 2π

0
dϕ e−iϕ

∑N

i=1
a†

i
ai Ôα eiϕ

∑N

i=1
a†

i
ai .

(5)
Because of the phase averaging, the operator Ôα =⊕∞

n=0 Ô
(n)
α acts orthogonally on different total photon

number subspaces n = 〈∑N
i=1 a

†
iai〉.

For displacement amplitudes chosen in the appro-
priate range [30], each two-body correlator σ(i)

αi ⊗σ(j)
αj

gathers the coherence |1i, 0j〉〈0i, 1j | + h.c.. This co-
herence is symptomatic of GME in the state |WN 〉,
making the observable Ôα a natural candidate to wit-
ness this entanglement. However, Ôα is also sensi-
tive to all higher photon number contributions, which
are difficult to characterize. A simple way to cir-
cumvent this problem is to subtract the observable
N(N − 1)Πn≥2 from Ôα. On the one hand, for our
state tr(Πn≥2 ρ) ≈ 0 and the expected value is not
affected much by the subtraction. On the other hand,
since ‖Ôα‖ ≤ N(N − 1), one can bound

Ôα −N(N − 1)Πn≥2 ≤ Ô(0)
α ⊕ Ô(1)

α (6)

by an operator supported on a subspace with at most
one photon.

We can now define the entanglement witness

Ŵα = Ôα −N(N − 1)Πn≥2 +Mn≤1 − µEn≥2, (7)

where Mn≤1 is an operator diagonal in the product
Fock basis and acting on the subspace with one pho-
ton at most, specified in Appendix B, and µ is a pos-
itive real parameter that one can tune. To show that
the witness can reveal GME, let us start by computing
the biseparable bound.

wbisep = max
%bisep

tr(Ŵα%bisep), (8)

i.e. the maximum value the witness takes on any
biseparable state. A general biseparable state is a
mixture of states that are product states for some bi-
partition (a partition of all modes into two groups).
Formally,

%bisep =
∑

G1|G2

p(G1|G2) ρG1|G2 . (9)

Here, the sum runs over all partitions G1|G2 of the N
parties where G1 ∪G2 = {1, 2, . . . , N} and G1 ∩G2 =
∅. The probabilities of different partitions sum up
to one

∑
G1|G2

p(G1|G2) = 1 and ρG1|G2 is a separa-
ble state with respect to the partition G1|G2. Since
the set of biseparable states is convex, the maximum
value that an observable takes on any biseparable
state %bisep, including mixed states,

wbisep = max
G1,G2,|Ψ〉

〈Ψ|Ŵα|Ψ〉, (10)

is attained for a pure state |Ψ〉 = |Ψ1〉G1
|Ψ2〉G2

on
some partition. Now, using Ineq. (6) we obtain a re-
laxation

wbisep ≤ max
G1,G2,|Ψ〉

〈Ψ|W̃|Ψ〉, (11)

W̃ = Ô(0)
α ⊕ Ô(1)

α +Mn≤1 − µEn≥2 (12)

which simplifies the maximization problem enor-
mously. Indeed, the operator W̃ is block diagonal,
with restriction to the sector with two or more pho-
tons −µEn≥2 that is negative. Thus, we can restrict
the maximization to states |Ψk〉Gk

which contain one
photon at most and write

|Ψk〉Gk
= v

(k)
0 |0〉Gk

+
|Gk|∑

i=1|ji∈Gk

v
(k)
i a†ji

|0〉Gk
. (13)

For a fixed partition, the product states can be
parametrized by normalized vectors v(1) and v(2),
that can be taken to be real without loss of gener-
ality. This leaves us with a N -parameter optimiza-
tion problem. In Appendix B, we show that for our
witness this maximization can be reduced to a single
parameter optimization

w̃G1,G2 = max
v(1),v(2)

〈Ψ|W̃|Ψ〉

= max
a∈[0,2π]

(max eig(M(λ, µ,α, a)))
(14)

of the maximum eigenvalue of a N × N matrix
M(λ, µ,α, a), which can be solved efficiently with
standard numerical tools. Here, λ (like µ) is a positive
real parameter of the witness that can be tuned. We
solve the optimization for all bipartitions to obtain a
relaxation of the biseparable bound for the witness Ŵ

wbisep ≤ w̃bisep = max
G1,G2

(w̃G1,G2). (15)

It remains to explain how we estimate the vio-
lation of the witness 〈Ŵα − w̃bisep〉 on the multi-
mode state ρ prepared in the experiment. In real-
ity, the amplitudes α of the displacements fluctu-
ate within some range α ∈ A that we characterize.
The operator Ŵα depends on these amplitudes both
"physically" via the observable Ôα, but also "alge-
braically" via the definition of the operator Mn≤1(α)
and the value for the biseparable bound w̃bisep(α).
To remove the second dependence, we consider the
worst-case scenario wmax

bisep = maxα∈A w̃bisep(α) and
M̄n≤1 = minα∈AMn≤1(α). Then, defining the op-
erator Wα, where we replace Mn≤1 by M̄n≤1 in the
witness (Eq. (7)), implies

Ŵα − wbisep ≥ Wα − wmax
bisep. (16)

To prove GME it suffices to show that the average
(over all rounds with fluctuating α) expected value
of 〈Wα〉 on ρ, which we call wmax

ρ , exceeds the con-
stant wmax

bisep. As argued in Appendix C, 〈Wα〉 can be
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Figure 2: Experimental schematic: A heralded single photon, incident on a cascade of 50/50 fiber beam splitters (BS), is
delocalized over spatial modes to generate an 8-partite path-entangled state. Weak coherent states in orthogonal polarization
modes are co-propagated with the single-photon state to locally perform displacement-based measurements. See main text for
details on the setup and notation.

estimated by combining the average values of three
different observables measured independently in dif-
ferent runs of the experiment. These are, Ôα mea-
sured with displacement operations, Z as defined in
Eq. (49) and measured without displacing and one
detector per mode, and Σn≥2 =

∑
i Π(i)

ni≥2 measured
on a single mode with a 50/50 beam splitter and two
detectors. Finally, in Appendix D we analyze the sta-
tistical significance of the observed violation of the
witness. We use Hoeffding’s theorem (1963) [31] to
upper bound the p-value for the null-hypothesis that
the state ρ is biseparable.

3 Experiment
The experimental setup is presented in Fig. 2. We use
a heralded single photon source (HSPS) employing a
periodically poled potassium titanyl phosphate (PP-
KTP) nonlinear crystal as a type-II spontaneous para-
metric down-conversion (SPDC) source. The crystal
is pumped by a Ti:Sapphire laser at λp = 771.7 nm in
the picosecond pulsed regime with a repetition rate
of 76 MHz to create nondegenerate photon pairs at
λs = 1541.3 nm (signal) and λi = 1546.1 nm (idler).
The pair creation probability per pump pulse is kept
at ppair ≈ 2.7× 10−3 in order to minimize the im-
pact of double-pair emissions. Signal and idler modes
are separated after their generation by a polarizing
beam splitter (PBS) and coupled into single-mode
fibers (SMF). By spectrally filtering the heralding
idler photon using a dense wavelength division multi-
plexer (DWDM) we ensure high-purity heralded sig-
nal photons.

Detection of one heralding photon by an InGaAs
single-photon avalanche diode (SPAD – ID Quantique
ID210) in gated mode with a detection efficiency of

around 20 % heralds the presence of a fiber-coupled
signal photon with a heralding efficiency of around
75 %. The heralded signal photon first encounters
a band-pass filter (BPF) with a passband between
1528 nm and 1565 nm in order to further remove resid-
ual pump light and is subsequently sent to a cascade of
50/50 fiber beam splitters (BS) where it is delocalized
to generate the targeted multipartite path-entangled
state. In this manner, we herald the entangled state
at a rate of 11.5 kcps where 0.6 kcps are attributed to
dark counts, which effectively adds loss to the state.

To generate the coherent state with the same spec-
tral and temporal properties as the signal photon
for the displacement-based measurement (see Ap-
pendix E), we stimulate a difference frequency gener-
ation (DFG) process in a type-II quasi phase-matched
periodically poled lithium niobate (PPLN) nonlinear
crystal [32]. To this end, the crystal is pumped by
the same laser pulses as the HSPS and seeded with
pulses at the same repetition rate originating from a
distributed feedback (DFB) laser at λi = 1546.1 nm.
The seed laser is driven from well below to above the
lasing threshold each cycle to phase randomize the
coherent state and in order to reach the required dis-
placement amplitude, we amplify the pulses with an
Erbium doped fiber amplifier (EDFA). We then cou-
ple the coherent state into SMF and further filter out
residual pump light with a BPF before adjusting the
time delay between the coherent state and the sig-
nal photon with a motorized delay line. Moreover, to
avoid saturation of the detectors (see below), we se-
lect the coherent state pulses by passing them through
an electro-optic (amplitude) modulator (EOM) with
an extinction ratio of ∼ 30 dB triggered by a 5 ns
gate upon successful detection of a heralding photon.
Residual seed laser light is filtered with a DWDM at
λs. The coherent state is then sent into the second
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N p0 p∗ wexp
ρ wmax

bisep p-value

4 0.6891(1) 4.36(5) · 10−4 2.993(2) 2.785 10−1952

8 0.7319(1) 3.40(4) · 10−4 8.565(4) 8.358 10−87

Table 1: Measured expectation values wexp
ρ and calcu-

lated separable bounds wmax
bisep of the N -partite entanglement

witness for states with vacuum contributions p0 and upper
bounds p∗ on the probability of having more than one photon,
see Ineq. (2). The p-value for the null-hypothesis that the
state ρ is biseparable is calculated according to Appendix D.

port of the first 50/50 BS where fiber polarization
controllers (PC) are used to ensure orthogonal polar-
izations between coherent and single-photon states.
The subsequent co-propagation passively guarantees
stability of the relative optical phase between the co-
herent and single-photon states.

In order to perform the local displacement opera-
tions in an all-fiber configuration, the coherent and
single-photon states are projected onto the same po-
larization mode using an in-line polarizer (ILP) pre-
ceded by a manual PC and a three-segment elec-
tronic polarization controller (EPC – Phoenix Pho-
tonics PSC). The first segment of the EPC allows for
the control of the relative phase between the coherent
and single-photon states (see Appendix E), whereas
the second and third segments are used to control the
displacement amplitude. In each spatial mode, the co-
herent state is set to have a mean photon number per
pulse of roughly 13 before the polarizer to achieve a
displacement amplitude of α ≈ 0.83. Drifts and fluc-
tuations in the displacement amplitudes during the
data acquisition are taken into account for the evalua-
tion of the witness (see Appendix E). The photons are
detected by eight in-house-developed MoSi supercon-
ducting nanowire single-photon detectors (SNSPD)
with detection efficiencies between 75−82 % [33].
Time-correlated single-photon counting (TCSPC) us-
ing two clock-synchronized programmable time-to-
digital converters (ID Quantique ID900) is then used
to register detections conditioned on a successful
heralding event.

After the alignment of the relative phases between
the output modes, data for the witness is acquired in
20 sequences of 5 min. Each sequence measures the
displacement amplitudes (1 min) and then ρ with and
without displacement (2 min each). Shutters in the
corresponding paths (see Fig. 2) are used to switch
between the measurements. In order to estimate the
probability of having more than one photon locally, we
additionally perform a heralded autocorrelation mea-
surement on one output mode by inserting a 50/50
BS before the detectors and acquire data for 6 h.

(a)

(b)

Figure 3: Results of the witness for N = 8. The witness
is applied to all possible different subsets of n out of N
parties where the discarded parties are traced out. The plots
show (a) the violation of the witness wexp

ρ −wmax
bisep with the

maximum p-value for each fixed number of subsets indicated
on top and (b) 1 − p0 where p0 is the probability of the
vacuum component for each subset of parties.

4 Results
The witness is measured for two different experimen-
tal configurations with N = 4 and 8 parties and the
separable bound is violated in both cases, as shown
in Tab. 1. In the case of N = 8 we have more loss
on the state, mainly due to the insertion loss of an-
other BS and the lower detection efficiencies of the
four additional SNSPDs.

For N = 8 we further analyze the data by con-
sidering all

∑N
n=2 (N

n) = 247 possible subsets of n ∈
{2, ..., N} out of N parties and calculating for each
subset the expectation value and separable bound of
the n-partite witness. The results are presented in
Fig. 3. It is expected for our state that all subsets
of parties show GME, however, these results suggest
that also for a high probability of having vacuum
for all parties p0, our witness is suitable to detect
GME. We attribute the fact that the witness viola-
tion wexp

ρ − wmax
bisep varies for different choices of the

same number of parties n to the difference in trans-
mission and detection efficiencies for different parties
(see Appendix E).

5 Discussion
Let us discuss the scalability of our witness with the
number of parties N . First, we emphasize that our
witness only relies on three measured quantities. Two
of them, the measurement of p0 and p∗, can be ob-
tained with a single setting per party corresponding
to no displacement. The last quantity is assessed with
a second setting using displacement operations. This
is in contrast with other methods where the overall
number of settings grows polynomially with N , and
in sharp contrast with techniques relying on state to-
mography where it grows exponentially with N . The
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Figure 4: Calculation of the witness violation wexp
ρ −wmax

bisep
as a function of the number of parties N for a state
ρ = (|1〉〈1| + p|2〉〈2|)/(1 + p) input to a N -port beam
splitter after undergoing a loss channel with transmission
η = 0.3. The two-photon probability p = 5× 10−3 is a
good approximation for the state generated in the experi-
ment. In this calculation, we assume a perfectly balanced
state and fix the displacement amplitude for the measure-
ment to α =

√
ln 2 ≈ 0.83 for each party, which is the most

robust to fluctuations in α.

second aspect is the computational resources required
to compute the biseparable bound. In our case, we
only need to compute the maximum eigenvalue of an
N ×N matrix for each bipartition of the N parties in
two groups. For any bipartition, the computational
complexity of constructing the matrix and comput-
ing its maximum eigenvalue scales much better than
the methods relying on a relaxation of a semi-definite
optimization over the biseparable states of N qubits
proposed earlier, e.g. [26]. Finally, the number of bi-
partitions to check grows exponentially 2N−1 − 1 if
all the amplitudes of displacement operations are dif-
ferent, however, this is reduced to bN/2c if all the
displacement amplitudes can be assumed to be equal
αi = αj . In our experimental implementation, this
could be achieved by actively stabilizing the power
of the coherent state before inserting it into the first
beamsplitter. Further, active control of the EPCs as
part of the local measurement setup would suppress
drifts in the displacement amplitudes.

In the experiment, the main limiting factor for the
demonstration of GME in large systems using the
presented witness are contributions to the state with
more than one photon in total, which we upper bound
by p∗. In order to estimate the maximum number
of parties N for which the witness still applies, we
calculate the expected witness violation for a state
ρ = (|1〉〈1| + p|2〉〈2|)/(1 + p) that undergoes a loss
channel with transmission η = 0.3 and is then equally
split into N modes, which is a good approximation
of the state created in the experiment. As shown in
Fig. 4, we see that the reduction of the probability
of generating a two-photon state increases the num-
ber of parties for which our witness is able to detect

GME. For a state similar to the one in the experiment,
this would allow for the demonstration of GME for up
to 23 parties. Furthermore, we show in Appendix F
that our witness can be directly used in the presence
of dark counts if one adds a term to the bisepara-
ble bound. We check that this does not affect the
demonstration of GME in our experiment and fur-
ther investigate the scalability under the presence of
dark counts.

6 Conclusion
The developed witness is well suited for efficient cer-
tification of multipartite single-photon path entangle-
ment in future quantum networks. Highly entangled
multipartite states could be distributed at high rates
in a scheme where each party holds a photon-pair
source and one photon of each pair is sent to a central
multi-port beam splitter that erases the which-path
information. In this way, local losses can be kept low
and the added distance between parties only reduces
the heralding rate. In combination with quantum
memories, such a scheme has potential for applica-
tions relying on distributed W states. The experi-
mental challenge in such a scheme, however, remains
the need for phase stability in long fiber links.
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A Non-unit detection efficiency
We considered that the measurements are real-
ized with non-photon-number-resolving detectors pre-
ceded by displacement operations in phase space. As
explained in the main text, we assign the outcome
+1 to a no-detection and −1 to a conclusive detec-
tion event. Given a state ρ in a single bosonic mode
with associated annihilation operator a and creation
operator a†, the probability Pnc to get an outcome +1
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using a displacement with argument α, is given by

Pnc = tra(D†(α)|0〉〈0|D(α)ρ). (17)

In the case where the detector has a finite efficiency,
we can model the detector inefficiency with a beam
splitter having a transmission η, that is

Pnc = tra
(
|0〉〈0|trc(Uη(D(α)ρD†(α))⊗ |0〉〈0|cU†η)

)

(18)
with Uη = eϕ(a†c−c†a) for η = cos2(ϕ), and the aux-
iliary mode described by c and c†, being initially
empty. Using UηD(α) = UηD(α)U†ηUη together with
UηD(α)U†η = Da(α√η)Dc(α

√
1− η), we end up with

Pnc = tra
(
D†a(α√η)|0〉〈0|Da(α√η)

· trc(Uηρ⊗ |0〉〈0|cU†η)
)
,

(19)

where the displacement on mode c has been traced
out. This means that we can model the detection inef-
ficiency as loss operating on the measured state if the
amplitude of the displacement operation is changed
accordingly. Hence, the fact that we consider detec-
tors with unit efficiencies is still a valid description
of our measurement apparatus, where we do not need
any assumptions on our state nor on the efficiency of
our detectors.

B Genuine multipartite entanglement
witness
Here we show how the calculation of the biseparable
bound of our witness can be reduced to an single pa-
rameter optimization of the maximum eigenvalue of a
N ×N -matrix. We start with the witness operator as
presented in Eq. (7)

Ŵ = Ôα +Mn≤1 −N(N − 1)Πn≥2 − µEn≥2, (20)

whereMn≤1 is an operator in the sector with not more
than one photon and En≥2 ≥ 0 is in the sector with
more than two photons. As argued in the main text,
all our observables are block diagonal with respect

to the total number of photons. In particular, Ôα =
Ôn≤1
α ⊕Ôn≥2

α . Furthermore, ‖Ôn≥2
α ‖ ≤ ‖Ô‖ = N(N−

1) implies Ôn≥2
α −N(N − 1)Πn≥2 ≤ 0 and

Ŵ = (Ôn≤1
α +Mn≤1)

⊕ (Ôn≥2
α −N(N − 1)Πn≥2 − µEn≥2)

≤ (Ôn≤1
α +Mn≤1)⊕ (−µEn≥2).

(21)

To find the biseparable bound consider biseparable
states of the form

|Ψ〉 = |Ψ1〉G1
|Ψ2〉G2

, (22)
defined over a bipartition given by two disjoint subsets
G1∪G2 = {1, . . . , N} of the N modes. The value that
the witness takes over these states reads

〈Ψ|Ŵ|Ψ〉 ≤ 〈Ψ|Ôn≤1
α +Mn≤1|Ψ〉

− µ〈Ψ|En≥2|Ψ〉.
(23)

As µ〈Ψ|En≥2|Ψ〉 is positive, to maximize the right-
hand side one can restrict the consideration to states
|Ψ1(2)〉 with one photon at most. Hence, without loss
of generality we take

|Ψk〉Gk
= v

(k)
0 |0〉Gk

+
|Gk|∑

i=1|ji∈Gk

v
(k)
i a†ji

|0〉Gk
. (24)

To compute the value of the witness on these states
we need the explicit form of the operators Ôn≤1

α and
Mn≤1. To compute Ôn≤1

α we use the restriction of
σα to the subspace with not more than one photon
{|0〉, |1〉}

σn≤1
α =

(
f(α) g(α)
g(α) h(α)

)
, (25)

where we assumed a real α and denoted

f(α) =
(
2e−α

2 − 1
)
, (26)

g(α) = 2αe−α
2
, (27)

h(α) =
(
2α2e−α

2 − 1
)
, (28)

see e.g. [30] for a derivation. For the product observ-
able restricted to the subspace of interest we obtain

(
σ(i)
αi
⊗ σ(j)

αj

)
n≤1

= f(αi)f(αj)|00〉〈00|i,j + g(αi)g(αj)
(
|01〉〈10|i,j + |10〉〈01|i,j

)

+ f(αi)h(αj)|01〉〈01|i,j + h(αi)f(αj)|10〉〈10|i,j ,
(29)

remark that here and in the following σ(i)
αi ⊗ σ(j)

αj refers to the phase-averaged operator. Adding the identity on
the remaining modes gives

(
σ(i)
αi
⊗ σ(j)

αj
⊗ 1¬{i,j}

)
n≤1

= f(αi)f(αj)
(
|0̄〉〈0̄|+

∑

k 6=i,j
|1k〉〈1k|

)

+
(
g(αi)g(αj)(|01〉〈10|i,j + |10〉〈01|i,j) + f(αi)h(αj)|01〉〈01|i,j + h(αi)f(αj)|10〉〈10|i,j

)
⊗ |0̄〉〈0̄|¬{i,j},

(30)
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with |0̄〉 denoting the vacuum state of all involved modes and |1k〉 = a†k|0̄〉 denoting the state with one photon
in mode k and vacuum elsewhere, and

Ôn≤1
α =

∑

i 6=j

(
σ(i)
αi
⊗ σ(j)

αj
⊗ 1¬{i,j}

)
n≤1

=
∑

i 6=j
f(αi)f(αj)

(
|0̄〉〈0̄|+

∑

k 6=i,j
|1k〉〈1k|

)
+
∑

i 6=j
g(αi)g(αj) (|1i〉〈1j |+ |1j〉〈1i|)

+
∑

i 6=j

(
h(αi)f(αj)|1i〉〈1i|+ h(αj)f(αi)|1j〉〈1j |

)
.

(31)

For Mn≤1 we chose

Mn≤1 = λ|0̄〉〈0̄| −
∑

i 6=j
f(αi)f(αj)

(
|0̄〉〈0̄|+

∑

k 6=i,j
|1k〉〈1k|

)
, (32)

with a positive real parameter λ that one can tune, such that

Ôn≤1
α +Mn≤1 = λ|0̄〉〈0̄|+

∑

i 6=j
g(αi)g(αj) (|1i〉〈1j |+ |1j〉〈1i|)

+
∑

i 6=j

(
h(αi)f(αj)|1i〉〈1i|+ h(αj)f(αi)|1j〉〈1j |

)
.

(33)

Finally for En≥2 we take the operators corresponding to the probability to find photons in more than one mode.
We rewrite v(1)

0 = ca and v(2)
0 = cb, where we use the short notation ca(b) = cos

(
a(b)

)
and sa(b) = sin

(
a(b)

)
,

such that v(1) =
(
ca

sav′
)
and v(2) =

(
cb

sbw′
)
with normalized v′ and w′ which leads to

|Ψ〉 = cacb|0̄〉+
∑

i∈G1

sacbv
′
i|1i〉+

∑

j∈G2

casbw
′
j |1j〉+

∑

i∈G1

∑

j∈G2

sasbw
′
jv
′
i|1i〉G1

|1j〉G2
, (34)

where |1j〉 stands for one photon in mode j and vacuum in all the other modes. We thus have by Eq. (23)

〈Ψ|Ŵ|Ψ〉 ≤ λc2ac2b − µs2
as

2
b + 2

(∑

i 6=j
g(αi)g(αj)LiLj + f(αi)h(αj)L2

j

)
, (35)

where L =
(
casbw

′

sacbv′
)
. We rewrite Eq. (35) in a matrix form

〈Ψ|Ŵ|Ψ〉 ≤ λc2ac2b − µs2
as

2
b +LT

(
Mw Mc

MT
c Mv

)
L. (36)

By arranging the entries of the matrix according to the defined bipartition, i.e. the block spanning the first |G2|
rows and columns describes the modes in G2, we can explicitly write down the matrix

(
Mw Mc

MT
c Mv

)
= 2




∑
i 6=1 f(αi)h(α1) g(α1)g(α2) · · · g(α1)g(αN )
g(α2)g(α1)

∑
i 6=2 f(αi)h(α2) · · · g(α2)g(αN )

...
...

. . .
...

g(αN )g(α1) g(αN )g(α2) · · · ∑
i6=N f(αi)h(αN )


 . (37)

We finally can write

〈Ψ|Ŵ|Ψ〉 ≤ λc2ac2b − µs2
as

2
b +

(
casbw

′

sacbv′

)T (
Mw Mc

MT
c Mv

)(
casbw

′

sacbv′

)

= λc2ac
2
b − µs2

as
2
b +

(
sbw

′

cbv′

)T (
c2aMw casaMc

casaM
T
c s2

aMv

)(
sbw

′

cbv′

)

=
(
sbw

′

cbv′

)T (
c2aMw − s2

aµ1 casaMc

casaM
T
c s2

aMv + c2aλ1

)(
sbw

′

cbv′

)

≤ max eig
(
c2aMw − s2

aµ1 casaMc

casaM
T
c s2

aMv + c2aλ1

)
= max eig (M(λ, µ,α, a)) ,

(38)
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where in the last line "max eig" denotes the maximum eigenvalue of the Hermitian matrix M(λ, µ,α, a).
The biseparable bound is thus given by the optimization

w̃bisep = max
G1,G2

wG1,G2 = max
G1,G2

max
a∈[0,2π]

max eig (M(λ, µ,α, a)) (39)

for well-chosen λ and µ. One notes that the optimization can be restricted to a ∈ [0, π2 ], as the trans-
formation (c2a, s2

a, casa) → (c2a, s2
a,−casa) only changes the sign of the off-diagonal blocks of the matrix

M →
(

1
−1

)
M

(
1
−1

)
which does not change its spectrum, as

(
1
−1

)
is an orthogonal matrix (basis

change).

C Measuring the witness
In this section, we explain how we estimate the ex-
pected value of the witness

Ŵα = Ôα +Mn≤1 −N(N − 1)Πn≥2 − µEn≥2 (40)

on the state ρ prepared in the experiment. It can
be estimated from two observables, the one with
displacement Ôα and one without Mn≤1 − N(N −
1)Πn≥2 − µEn≥2.

In our case, given the limited number of detectors
we actually use three different observables, because
we split Πn≥2 in two parts. To do so we note that
the probability that any N -mode state ρ contains two
or more photons satisfies Pn≥2(ρ) = tr(Πn≥2 ρ) ≤ p∗,
where

p∗ =
N∑

n=2
Pnclick +

N∑

i=1
p∗i . (41)

Here, Pnclick is the joint probability that n detectors
click and all the other detectors do not click when
measured without displacement and p∗i is an upper
bound on the probability of having two or more pho-
tons in mode i, that we associate to an observable
Π(i)
n≥2. The value for p∗i can be obtained in practice

by measuring the probability of coincidence after a
50/50 beam splitter in mode i. On the level of the
operators, we can write

Πn≥2 ≤ En≥2 +
N∑

i=1
Π(i)
n≥2 (42)

with two parts that we measure independently. For
the witness this implies

Ŵ ≥ Ôα +Mn≤1 − (N(N − 1) + µ)En≥2

−N(N − 1)
N∑

i=1
Π(i)
n≥2.

(43)

It is already clear how the observables Ôα and∑N
i=1 Π(i)

n≥2 can be measured, so let us now focus on
the remaining terms. First, we note that

−f(αi)f(αj)
(
|0̄〉〈0̄|+

∑

k 6=i,j
|1k〉〈1k|

)

≥ −max{f(αi)f(αj), 0}|00〉〈00|ij
(44)

because the probability that there is no photon in the
state or only one photon in some mode k 6= i, j, given
by the POVM element |0̄〉〈0̄|+∑k 6=i,j |1k〉〈1k|, is lower
than the probability that there is no photons in the
modes i and j given by |00〉〈00|ij . We thus obtain

Mn≤1 ≥ λ|0̄〉〈0̄| −
∑

i 6=j
max{f(αi)f(αj), 0}|00〉〈00|ij .

(45)

In the experiment we do not have full information on
the value ofα in a particular round, but rather a range
of possible values α = (α1, . . . , αN ) ∈ A. Therefore,
the following bound will be useful

Mn≤1 ≥ M̄n≤1, (46)

M̄n≤1 = λ|0̄〉〈0̄| −
∑

i 6=j
Fij |00〉〈00|ij , (47)

Fij = max
α∈A

max{f(αi)f(αj), 0}

= max{0,max
α∈A

f(αi)f(αj)}.
(48)

To summarize we have shown that

Ŵα ≥ Wα = Ôα + Z −N(N − 1)Σn≥2, (49)

Z = λ|0̄〉〈0̄| −
∑

i 6=j
Fij |00〉〈00|ij

− (N(N − 1) + µ)En≥2,

(50)

Σn≥2 =
N∑

i=1
Π(i)
n≥2. (51)

In the experiment the values of the observables Ô,
Z and Σn≥2 are measured independently. The ob-
servable Σn≥2 is independent of the displacement am-
plitudes α while Ôα is physically determined by α.
The observable Z is computed using the knowledge of
the range A of possible values α ∈ A for the coeffi-
cients Fij , while the underlying physical measurement
is performed without displacements.

To analyze the experimental data, we assume that
the state preparation is identical in each run of the
experiment, such that is the same N -mode state ρ is
prepared repeatedly. On the other hand, the displace-
ment amplitudes are subject to controlled fluctuations
α ∈ A, with the possible range A determined exper-
imentally, see Appendix E. Nevertheless, each round
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k can be associated to some (unknown) value αk. To
prove that the state is GME it is sufficient to show
that

1
n

n∑

k=1

〈
Ŵαk

− w̃bisep(αk)
〉
ρ
> 0 (52)

with 〈X〉ρ = tr(Xρ), since each αk yields a valid
GME-witness. By defining the worst-case bisepara-
ble bound

wmax
bisep = max

α∈A
w̃bisep(α), (53)

and using the bound (49), we can relax the GME con-
dition to

1
n

n∑

k=1

〈
Ôαk

+ Z −N(N − 1)Σn≥2 − wmax
bisep

〉
ρ
> 0,

(54)
where the left-hand side is a lower bound on
1
n

∑n
k=1

〈
Ŵαk

− wbisep(αk)
〉
ρ
.

Before analyzing the statistical significance of our
data, let us briefly sketch how GME can be guaran-
teed in the asymptotic limit n → ∞. Then the aver-
age values of the observables Z and Σn≥2 converge to
their expected values 〈Z〉 and 〈Σn≥2〉. Similarly, for
the random variables ok as the value of Ôαk

observed
in the round k (where it is measured), the observed
average converges to the average expected value

1
n

n∑

k=1
o(k) → 1

n

n∑

k=1
E(o(k)) = 1

n

n∑

k=1
〈Ôαk

〉ρ, (55)

by Hoeffding’s theorem (1963), see Appendix D.
Hence, Eq. (54) can be directly guaranteed from the
data. Note that in practice to estimate Σn≥2 we do
not measure Π(i)

n≥2 for each mode. Instead, we assume
that it has the same expected value for each mode,
such that

〈Σn≥2〉ρ = N〈Π(1)
n≥2〉ρ, (56)

and only estimate 〈Π(1)
n≥2〉ρ.

D Finite statistics analysis
In the experiment, three different measurements are
performed, to each of which we associate a random
variable. Let ok be the random variable given the
value of Ôαk

observed in the round k = 1, . . . , n (when
it is measured). Analogously, define zk associated to
Z (for k = 1, . . . ,m) and sk associated to −N2(N −
1)Π(1)

n≥2 (for k = 1, . . . , `). Note that all the variable
are independent, furthermore the variables zk and sk
are also identically distributed (for each k). From
the definition of the corresponding observables (their
spectrum) one directly sees that

ok ∈ [−N(N − 1), N(N − 1)], (57)

zk ∈ [−
∑

i6=j
Fij −N(N − 1)− µ, λ], (58)

sk ∈ [−N2(N − 1), 0], (59)

from which we define

∆o = 2N(N − 1), (60)

∆z = λ+
∑

i6=j
Fij +N(N − 1) + µ, (61)

∆s = N2(N − 1). (62)

For each type of observables we define the average as

ō = 1
n

n∑

k=1
ok. (63)

To analyze the statistical significance of our data,
we use the following theorem by Hoeffding (1963) [31]:
For any collection of independent random variables
x(1), . . . , x(n) with x(k) ∈ [ak, ak + ∆k] the following
bound holds

P
(
x− t ≥ E (x)

)
≤ exp

(
− 2n2t2∑n

k=1 ∆2
k

)

for x = 1
n

n∑

i=1
x(k).

(64)

To apply to our data consider the situation where
the observable ok ∈ [a, a + ∆o] are measured in n
rounds, zk ∈ [b, b + ∆z] are measured in m rounds,
and sk ∈ [c, c + ∆s] are measured in ` rounds, the
above theorem implies

P
(
o+ z + s− t ≥ E (o+ z + s)

)
≤ e−

2(n+m+`)2t2

n∆2
o+m∆2

z+`∆2
s .

(65)
Now consider any state ρbisep that is not GME. We
have shown that such a state does not violate the re-
laxed witness of Eq. (54). Thus, it gives rise to a
collection of random variables, described in the be-
ginning of the section, with

0 ≥
〈 1
n

n∑

k=1
Ôαk

+ Z −N(N − 1)Σn≥2 − wmax
bisep

〉
ρbisep

= E
(
o+ z + s− wmax

bisep
)

(66)

Then, by Eq. (65) the probability that the observed
averages satisfy

o+ z + s− wmax
bisep ≥ t, (67)

i.e. a fake violation exceeding t is observed due to
statistical fluctuation, is upper bounded by

exp
(
− 2(n+m+ `)2t2

n∆2
o +m∆2

z + `∆2
s

)
. (68)

Hence,

p = exp
(
−

2(n+m+ `)2(o+ z + s− wmax
bisep)2

n∆2
o +m∆2

z + `∆2
s

)

(69)

Accepted in Quantum 2022-03-15, click title to verify. Published under CC-BY 4.0. 10



N λ µ o z s n m ` wmax
bisep p-value

4 2.73 102 1.1525 1.8417 -0.0014 26747089 26755161 135905902 2.785 10−1952

8 8.29 151 2.5762 5.9915 -0.0024 27611104 27576602 365370348 8.358 10−87

Table 2: Evaluation of the witness for N parties with parameters λ and µ according to Eqs. (20) and (32). The mean values
o, z and s are associated to the observables Ôα, Z and −N2(N − 1)Π(1)

n≥2, respectively. The numbers n, m and ` indicate
the number of evaluations of o, z and s. Together with the biseparable bound wmax

bisep according to Eq. (53), the p-value is
calculated using Eq. (69). Note that in order to obtain a p-value of less than 10−10, in the case of N=4 it would suffice to
evaluate the observables n = m = ` = 4.9× 105 times, corresponding to a total integration time of less than 130 s, and for
N=8 it would require n = m = ` = 7.8× 106 evaluations which could be achieved in less than 2100 s.

Figure 5: Normalized measured spectra and Gaussian fit of
single-photon and coherent states. The spectra are measured
with a tunable grating filter with a FWHM of 0.2 nm inserted
before the SNSPD.

can be interpreted as the p-value associated to our
GME test. That is, p is an upper bound on the prob-
ability that a state ρbisep which is not GME produces
a fake violation of o+ z + s− wmax

bisep or higher.
For the corresponding values in the experiment, see

Tab. 2.

E Experimental methods and charac-
terization
To ensure high-purity heralded signal photons, we
spectrally filter the heralding idler photons emitted
from the PPKTP crystal by using a dense wavelength
division multiplexer (DWDM) with a 100 GHz pass-
band at λi = 1546.12 nm (ITU channel 39).

Besides high single-photon purity, the single-photon
and coherent states need to have a good spectral and
temporal overlap in order to perform the targeted dis-
placement operation. The measurement of the spec-
tral overlap is shown in Fig. 5. The expected Hong-
Ou-Mandel visibility due to the finite overlap of the
fitted Gaussians is 99.2 % [34].

The temporal alignment between the single-photon
and coherent states is done in the following way. The
seed laser is switched to continuous mode and, to-
gether with the pulsed pump laser, difference fre-
quency generation in both nonlinear crystals, PPKTP

(a)

(b)

Figure 6: Phase alignment between mode 1 (reference) and
all seven other modes. (a) The single-photon state is dis-
placed with α ≈ 0.83 and the first segment of the electronic
polarization controller is swept over its full range from 0 to
2π in each non-reference mode. Sinusoidal curves are fitted
to the data. (b) Same measurement without the presence of
the single-photon state.

Figure 7: Measurement of the displacement amplitudes |αi|
for each spatial output mode i during the data acquisition.
For each point, counts are acquired for 1 min.
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Figure 8: Normalized probabilities of detecting a photon
in output mode i ∈ {1, ..., N} in the measurement without
displacement.

N P 1
click P 2

click P 3
click p∗

1

4 0.3106(1) 3.21(4) · 10−4 1.5(8) · 10−7 2.89(5) · 10−5

8 0.2678(1) 2.96(4) · 10−4 1.5(8) · 10−7 5.4(1) · 10−6

Table 3: Measured probabilities Pnclick that n detectors click
in the case of preparing an N -partite state. Further, p∗

1 is
an upper bound on the probability of having more than one
photon locally in mode 1.

and PPLN, is used to generate coherent states at λs.
First-order interference is observed at one of the out-
put modes and the interference visibility is maximized
by adjusting the delay of the motorized delay line.

In order to set the relative phases between single-
photon and coherent states in each spatial mode, po-
larization is aligned with a polarization controller such
that it enters the first segment of the electronic po-
larization controller on-axis which therefore allows for
relative phase control locally, as shown in Fig. 6. The
phase is then set in each mode such that its relative
phase to the reference mode is zero.

After the phase alignment, data is acquired in in-
tervals, as described in the main text. The dis-
placement amplitudes are obtained by measuring the
coherent state in the absence of the single-photon
state and assuming Poissonian count statistics (see
Fig. 7). For the calculation of the expectation value
of the witness (see Eqs. (46) and (49)) and the bisep-
arable bound according to Eq. (53), all the values
α ∈ A = {(α1, . . . , α8) ∈ R8|αmin

i ≤ αi ≤ αmax
i }

are considered. Here, αmin
i (αmax

i ) denotes the min-
imum (maximum) value of αi on mode i during the
measurement shown in Fig. 7.

To determine the balance of the generated state,
the counts in each mode in the measurement without
displacement are normalized, as shown in Fig. 8. For
the measurement where N = 4, the mode balance is
25.0±1.5%, where for N = 8 a balance of 12.5±0.8%
is achieved.

The values for the probabilities Pnclick that n de-

tectors click when measuring the state are given in
Tab. 3. Note that the probability p0 indicated in
Tab. 1 are p0 = P 0

click = 1−∑n≥1 P
n
click.

F The effect of dark counts on the wit-
ness
Here we explain how the presence of detector dark
counts can be in included in our GME witness. We
will show that by adding a constant term 2N2(N −
1)pdc to the biseparable bound, the violation of this
shifted witness (exactly as described in the main text,
but with detectors subject to dark counts) allows one
to conclude that the measured state is GME. Before
we start, recall that a usual model of dark counts for
non-photon-number-resolving (NPNR) detectors is a
classical noise which changes the outcome "no-click"
to "click" with probability pdc. Thus, "turning on"
the dark counts on a detector modifies the click/no-
click probabilities to

(pdc0 , p
dc
c ) = ((1− pdc)p0, pdc p0 + pc). (70)

The starting point is to consider an experiment
where the expected value of the witness 〈Ŵdc〉 is esti-
mated as described in the main text, but with detec-
tors subject to dark counts. We now introduce a sim-
ple physical model that reproduces (almost) all the
statistics of this experiment, but involves detectors
without dark counts. To this end, consider a single-
mode quantum channel Sdc which does nothing with
probability 1 − pdc and replaces a single mode state
% with a very bright Fock state |M〉 with probability
pdc

Sdc : % 7→ Sdc[%] = (1− pdc)%+ pdc|M〉〈M |. (71)

The state Sdc[%] is then measured with the measure-
ment described in the main text. We now have to
distinguish between different measurements that we
treat separately. (1) The measurements of the wit-
ness and (2) the estimation of p∗. More precisely, we
need to distinguish measurements with one detector
per mode and g(2) measurements with two detectors
per mode.

In the case (1) all measurements involve a single
lossy NPNR detector per mode, sometimes preceded
by a displacement D(α). The probability distribution
of the outcomes of this measurement is a mixture of
two possibilities. With probability 1 − pdc the state
was unchanged and the measurement is performed on
the original state ρ leading to the click/no-click prob-
abilities (p0, pc). With probability pdc the measure-
ment is performed on the state |M〉, where we can
always choose M large enough such that in this case
a "click" outcome is observed with certainty pc = 1.
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The overall outcome probabilities are thus given by

(pdc0 , p
dc
c ) = (1− pdc)(p0, pc) + pdc(0, 1)

= ((1− pdc)p0, (1− pdc)pc + pdc)
= ((1− pdc)p0, pdcp0 + pc).

(72)

Hence, the N -mode state ρ̃ = S⊗Ndc [ρ] measured with
detectors without dark-counts reproduces the statis-
tics of the N -mode state ρ observed with detectors
subject to dark counts whenever only one detector is
used per mode.

Let us now consider the estimation of p∗, which is
an upper bound on the probability of having two or
more photons in the state. As defined in Eq. (41),
p∗ is composed of two contributions. The first term∑N
n=2 P

n
click is the probability to observe clicks on

more than two modes gathered with a single detector
per mode. Hence, for this term the above argumenta-
tion holds Pnclick+dc[ρ] = Pnclick[ρ̃]. The other term p∗i
is an upper bound on the probability of having two
or more photons in a single mode. This is measured
in a g(2) experiment – a single mode state % is split
on a 50/50 beam splitter, and each output is sent to
a NPNR detector. The probability that the two de-
tectors click pcc is bounded by the probability that %
contains two or more photons pcc ≤ p∗i ≤ 2pcc. And it
is precisely the estimated pcc, which is used to bound
p∗. Let us now analyze how this probability is affected
by dark counts. For a state % we have

pdccc = pcc + pdc(p0c + pc0) + p2
dcp00

= pcc + pdc(p0c + pc0 + p00)− pdcp00 + p2
dcp00

= pcc + pdc(1− pcc)− p00pdc(1− pdc).
(73)

Now let us analyze the effect of the channel Sdc on
this probability. For a state %̃ = Sdc[%] one has

p̃cc = (1− pdc)pcc + pdc

= pcc + pdc(1− pcc)
= pdccc + p00pdc(1− pdc)
≤ pdccc + pdc.

(74)

Hence, for the state ρ̃ we get an upper bound

p̃∗i ≤ p∗i + 2pdc, (75)

where p∗i is the quantity estimated in the experiment
with dark counts. Combining the above arguments
and using Eq. (41) it follows that

p̃∗ ≤ pdc∗ + 2Npdc (76)

with pdc∗ the p∗ estimated in the experiment with
dark counts, is a valid upper bound on two (and
more) photon contributions in the state ρ̃ = S⊗Ncd [ρ].

To summarize, the value of the witness estimated
on an N -mode state ρ with detectors subject to dark
counts

〈Ŵdc〉 = tr(Ŵdc ρ) = tr(Ŵ S⊗Ndc [ρ]) (77)

corresponds to the values of the original witness (with-
out dark counts) estimated on the state S⊗Ndc [ρ]. On
the other hand, the biseparable bound for the state
S⊗Ndc [ρ] satisfies

w̃max
bisep = wbisep + p̃∗N(N − 1)

≤ wbisep + pdc∗ N(N − 1) + 2N2(N − 1)pdc,
(78)

where we used Eq. (76). Here, wmax+dc
bisep = wbisep +

pdc∗ N(N − 1) is the biseparable bound estimated in
the real experiment (state ρ and dark counts). We
can thus conclude that observing

〈Ŵdc〉 − wmax+dc
bisep − 2N2(N − 1)pdc ≥ 0 (79)

implies that the state S⊗Ndc [ρ] is GME by our main
result. Since the channel S⊗Ndc describes noise acting
locally on each mode and cannot create entanglement,
the N -mode state ρ is also GME. This concludes
our argument showing that if the detectors used in
the experiment suffer from dark counts (that we did
not include in their mode), the procedure described
in the main text still allows to prove the GME
of the measured state, but the observed violation
〈Ŵdc〉 −wmax+dc

bisep has to exceed 2N2(N − 1)pdc. Note
that since 〈Ŵdc〉 − wmax+dc

bisep scales as N2 in general,
the penalty terms accounting for dark-count scales as
2Npdc.

In the experiment with N = 8, we measured
pdc = 1.16(29)× 10−6 for the detector with the
highest dark count rate. Therefore, the measured
witness violation of 〈Ŵdc〉 − wmax+dc

bisep = 0.207(4) is
reduced by 2N2(N − 1)pdc = 0.0010(3), which still
certifies GME with a p-value of 10−87.

For the analysis of the scalability of the presented
witness including detector dark counts, we consider a
heralded single photon generated by a SPDC source,
which state after heralding can be well approximated
by

ρ = 1
1 + p

(|1〉〈1|+ p|2〉〈2|) (80)

Since losses on the state commute with the beam split-
ter one can directly apply losses on ρ to account for
finite efficiency and obtain ρη, which transforms to
ρBSη after the N -mode beam splitters. The idea in
the following is to only consider the reduced density
matrix to two modes

σ{1,2} = tr{3,...,N}(ρBSη ), (81)
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Figure 9: Maximum number of parties Nmax for which
the witness is still violated as a function of η for a state
ρη. The scaling behavior is shown for input states ρ =
(|1〉〈1| + p|2〉〈2|)/(1 + p) with p ∈ {0, 1× 10−3, 5× 10−3}
that are measured with detectors suffering from dark counts
with probabilities per heralding event of pdc ∈ {10−6, 10−5}.

which we use to compute

S⊗2
dc [σ{1,2}] = (1− pdc)2σ{1,2}

+ pdc(1− pdc)(σ1 ⊗ |M〉〈M |+ |M〉〈M | ⊗ σ1)
+ p2

dc|M,M〉〈M,M |.
(82)

Since we consider a perfectly balanced beam splitter,
we can evaluate almost all the terms in Eq. (77) only
using S⊗2

dc [σ1,2], where the only assumptions we make
is that the 3-click events are always negligible over the
2-click events, which holds true for our state.

In Fig. 9, we show the maximum number of parties
Nmax, for which the value 〈Ŵdc〉−wmax+dc

bisep −2N2(N−
1)pdc is still positive, as a function of η for a state
ρBSη . In the calculation, the displacement amplitude
for the measurement is set to α =

√
ln 2 ≈ 0.83 for

each party, which is experimentally the most robust to
fluctuations in α. In the experiment, the probability
of heralding a two-photon Fock state is p ≈ 4.9× 10−3

and the detector with the highest dark count rate has
a dark count probability per heralding event of pdc =
1.16(29)× 10−6, which is approximated in the plot by
the line (p, pdc) = (5× 10−3, 10−6). We notice that in
this case for η > 0.05, we are able to detect GME for
more than N = 17 parties. We further note that for
higher dark count probabilities Nmax decreases, and
in the case of p = 0 the influence of dark counts can be
substantial. The witness could be improved by using a
different detector model including dark counts, which
we leave for further work.
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Here we argue that the probability that a
given source produces exactly a single pho-
ton is a natural quantity to benchmark single-
photon sources as it certifies the absence of
multi-photon components and quantifies the
efficiency simultaneously. Moreover, this prob-
ability can be bounded simply from an auto-
correlation measurement – a balanced beam
splitter and two photon detectors. Such a
bound gives access to various non-classicality
witnesses that can be used to certify and quan-
tify Wigner-negativity, in addition to non-
Gaussianity and P-negativity of the state pro-
duced by the source. We provide tools that can
be used in practice to account for an imperfect
beam splitter, non-identical and non-unit de-
tection efficiencies, dark counts and other im-
perfections, to take finite statistical effects into
account without assuming that identical states
are produced in all rounds, and optionally al-
low one to remove the detector inefficiencies
from the analysis. We demonstrate the use
of the proposed benchmark, non-classicality
witness and measure using a heralded single-
photon source based on spontaneous paramet-
ric down-conversion. We report on an average
probability that a single photon is produced
≥ 55% and an average measure of the Wigner
negativity ≥ 0.004 with a confidence level of
1− 10−10.

1 Introduction
Single-photon sources [1, 2] are key resources for quan-
tum communication [3], photonic quantum computa-
tion [4] or radiometry [5, 6]. Not all single-photon
sources are alike and to be scaled up, most applica-
tions require efficient sources of true single photons
(single-photon Fock/number states). The quality of
single-photon sources is usually quantified from an
auto-correlation measurement [7], that is, by sending
the photons to a balanced beam splitter and checking
that the ratio between the detected twofold coinci-
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Figure 1: Schematic representation of the measurement that
is considered to characterize an unknown photon source
which supposedly produces single photons. It is realized with
a beam splitter and two non-photon-number-resolving de-
tectors, as in a standard auto-correlation measurement. At
each round, each detector either clicks • or not ◦. By an-
alyzing the frequency of these events, the probability that
the source actually produces exactly a single photon can be
lower bounded. Furthermore, if a single radiation mode is
detected, various forms of non-classicality can be witnessed
and quantified.

dences and the product of singles vanishes, see Fig. 1
and the discussion in Appendix A. This ensures that
the source produces no more than one photon. The
result is, however, insensitive to loss as the efficiency
cancels out of the ratio. These two aspects – the ca-
pacity of a source to produce no more than one pho-
ton and its efficiency – are thus considered separately.
Both aspects are, however, important and are quan-
tified jointly by the probability that the source actu-
ally produces exactly a single photon. Characterizing
this probability is a direct and more complete way to
benchmark single-photon sources.

Interestingly, this probability can be bounded by
reconsidering the statistics of detector counts in an
auto-correlation measurement. This suggests a sys-
tematic way to benchmark the quality and quantify
the efficiency of single-photon sources, and to wit-
ness and quantify their quantum nature. To motivate
benchmarking single-photon sources by the probabil-
ity that the source actually produces exactly a sin-
gle photon, we provide a detailed analysis which in-
cludes a simple statistical tool to account for finite-
size effects without assuming that identical states
were produced in all rounds of the experiment. We
show how to include imperfections in the measure-
ments apparatus and how to remove the detector ef-
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ficiencies from the analysis to facilitate the use of the
proposed benchmark. An experimental demonstra-
tion is presented, illustrating the quality of heralded
single-photon sources based on spontaneous paramet-
ric down-conversion.

The auto-correlation measurement is also known
to be valuable for witnessing various forms of non-
classicality, including the non-positivity of the P-
distribution and quantum non-Gaussianity [8–10].
Here we show that for single-mode states or mea-
surements a bound on the single-photon probabil-
ity can be readily used to quantify the negativity of
the Wigner representation [7], the strongest form of
non-classicality, with respect to a measure proposed
in [11]. We apply this method to verify Wigner-
negativity in the reported experiments.

2 Measurement apparatus
The measurement apparatus we consider is similar
to the one used for the second order auto-correlation
measurement. It is a simple measurement consisting
of sending the photonic state to be measured (labeled
ρ) on to a beam splitter and recording the photon-
count correlations between the two outputs, see Fig. 1.
We consider that photon detections are made with
typical non-photon-number-resolving detectors. In
order to draw conclusions from such photon-counts,
we introduce a simple quantum model for such a
measurement setup. A non-photon-number-resolving
detector of efficiency η can be modeled with a two
element positive operator-valued measure (POVM)
{E•, E◦} corresponding to click (•) and no-click (◦)
outcomes. When the measurement acts on a single
mode characterized by bosonic operators a and a†,
the POVM elements take the following form

E◦ = (1− η)a
†a, E• = 1− (1− η)a

†a. (1)

This model describes a non-photon-number-resolving
detector, for which every incident photon can trigger
the detection event with probability η. The no-click
outcome then corresponds to the event where none
of the incident photons triggered a click, and occurs

with probability p◦ = tr ρ (1 − η)a†a, see e.g. [12].
From now on we assume that the detectors are accu-
rately described by Eq. (1) for some value of η. In
section 3.1.4 we will discuss how to account for small
deviation from this model.

When two such detectors are placed after a beam
splitter with reflectance r (transmittance t), it is
straightforward to see that the four possible outcomes
are given by the POVM elements

E◦◦ = (1− η)a
†a

E•◦ = (1− η t)a†a − (1− η)a
†a

E◦• = (1− η r)a†a − (1− η)a
†a

E•• = 1− E◦◦ − E•◦ − E◦•,

(2)

where the first (second) label ◦/• refers to the detector
after the reflected (transmitted) output of the beam
splitter, see Appendix B for a formal derivation. The
events where a fixed detector does not click are mod-
eled by the two POVM elements E◦ = E◦• + E◦◦ =
(1−η r)a†a and E ◦ = (1−η t)a†a. The corresponding
probabilities are labeled p◦ and p ◦. Note that the
case where the two detectors do not have the same
efficiency ηR 6= ηT can be accounted for by replacing
t with t′ = tηT

tηT+rηR , r with r′ = rηR
tηT+rηR , and setting

η = tηT + rηR in Eq. (2).

3 Benchmarking a single-photon
source
For simplicity, through the main part of this section
we will be considering the case of single-mode sources.
In section 3.3, we show that all the presented tools
also apply to multi-mode sources.

With the measurement we just described, any
single-mode state ρ incident on the beam splitter can
be associated with a probability vector

p = (p◦◦, p•◦, p◦•, p••) (3)

governing the occurrence of clicks. Our goal is to con-
struct an estimator P̂1(p) that relates this vector p to
the photon number statistics of the state and in par-
ticular to the weight of the single-photon component
P1 = 〈1| ρ |1〉. Directly lower bounding P1 is a natural
way to benchmark a single-photon source. In partic-
ular, it sets a bound on the trace distance between
the state ρ prepared by the source and an ideal single
photon |1〉

1
2 ‖ρ− |1〉〈1| ‖1 ≤ 1− P1, (4)

which can be readily used to bound the errors for
various applications of single-photon sources.

3.1 Measurement calibration independent
benchmark
We proceed step by step, considering first an ideal
measurement apparatus, then considering two iden-
tical non-unit detector efficiencies and finally focus-
ing on the most imperfect measurement, where we
consider an unbalanced beam splitter and two detec-
tors having different efficiencies. At this point we
only assume that the measurement is described by
the POVM in Eq. (2) for some parameters η, t and
r, that do not need to be known. The benchmark
that we will derive in this section is thus independent
of the calibration of the measurement apparatus. Fi-
nally, we show that by adding a small correction term
our benchmark can be applied in situations where the
POVM in Eq. (2) is only an approximate description
of the measurement apparatus.
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3.1.1 Ideal measurement apparatus

For clarity, we first assume that the source produces
an identical state ρ at each round, the detectors have
unit detection efficiency η = 1 and the beam splitter is
balanced t = r = 1/2. In this ideal case, the probabil-
ities p•◦, p◦• are equal, and p is described by two inde-
pendent real parameters. For convenience, we intro-
duce p• = p•◦+p◦• the probability to get exactly one
click. The probabilities that a given detector does not
click p◦ = p◦◦ + p◦• and p ◦ = p◦◦ + p•◦ are equal in
the ideal case and in particular p◦ = p ◦ = p◦◦+ 1

2p•.
This means that the probabilities of outcomes of the
measurement of interest can be fully captured by
(p◦ , p◦◦). Let

Pn = 〈n| ρ |n〉 (5)

be the weight of the n-photon Fock state component
of the measured state. For η = 1, the no-click events
can only come from the vacuum state E◦◦ = |0〉〈0|,
hence the probabilities (p◦ , p◦◦) can be linked to the
photon number distribution Pn. From Eqs. (2), one
gets p◦◦ = P0 and p◦ =

∑
n Pn

1
2n .

The question we ask now is very simple – what are
the values (p◦ , p◦◦) that are obtainable for states ρ
satisfying P1 ≤ P , for some parameter P ∈ [0, 1]?

First, we note that p◦ ≥ p◦◦ holds by definition.
Furthermore, the points (1, 1) and (0, 0) are attained
by the vacuum and the state with infinitely many pho-
tons, respectively. Thus, the line p◦ = p◦◦ is also at-
tainable by mixtures of aforementioned states. Then,
we look for the maximum value of p◦ =

∑
n Pn

1
2n for

a fixed p◦◦. We have to solve

p↑◦ (p◦◦, P ) = max
ρ

∑

n

Pn
1
2n

such that P1 ≤ P
P0 = p◦◦.

(6)

As (1/2)n is decreasing with n, the maximum is at-
tained by saturating the values of Pn starting with
P0. Hence, it equals

p◦ ≤ p↑◦ (p◦◦, P ) =
{

1+p◦◦
2 1− p◦◦ ≤ P

1+P+3p◦◦
4 1− p◦◦ > P

(7)

The set of possible values (p◦ , p◦◦) is thus included
in a convex polytope with four vertices QP =
Polytope{(0, 0),

( 1+P
4 , 0

)
,
( 2−P

2 , 1− P
)
, (1, 1)},

sketched in Fig. 2. The only nontrivial facet of
this polytope is the edge connecting

( 1+P
4 , 0

)
and( 2−P

2 , 1− P
)

which is associated to the inequality
4p◦ − 3p◦◦ − 1 ≤ P , and is given by the colored
lines in Fig. 2. Thus, without loss of generality, the
condition 〈1| ρ |1〉 ≤ P implies that the elements of p
satisfy the linear constraint

P̂T1 (p) = 4p◦ − 3p◦◦ − 1 ≤ P. (8)

0.0 0.2 0.4 0.6 0.8 1.0
min(p◦ , p ◦)

0.0

0.2

0.4

0.6

0.8

1.0

p ◦
◦

|0〉

|1〉
|∞〉

measurement

P = 0.25

P = 0.50

P = 0.75

P = 1.00

Figure 2: Representation of the polytopes QP (defined af-
ter Eq. (7)) containing all possible values (min(p◦ , p ◦), p◦◦)
associated to states % with 〈1| % |1〉 ≤ P . There are four
polytopes QP for the values P ∈ {0.25, 0.5, 0.75, 1}. The
physically possible region QP=1 is given by the black trian-
gle. The regions for P = 0.25, 0.5, 0.75 are given by the part
of the black triangle above the corresponding colored line.
The black crosses are measurements of (min(p◦ , p ◦), p◦◦)
for a heralded single photon undergoing different added at-
tenuation corresponding to transmission efficiencies of ηatt ∈
{1.0, 0.83, 0.68, 0.51, 0.36, 0.19, 0.12, 0.034}.

Conversely, by measuring the pair (p◦ , p◦◦) and by
computing the resulting value of P̂T1 , we can guar-
antee that for any value of P such that P̂T1 > P ,
〈1| ρ |1〉 > P holds, that is we get a lower bound on
the probability that the source to be benchmarked
produces exactly a single photon.

3.1.2 Identical non-unit efficiency detectors

To move away from the ideal case, we still consider a
perfectly balanced beam splitter and focus on a situa-
tion where non-unit efficiency detectors are used. We
consider the case where the detector efficiency η is
unknown. In the measurement setup shown in Fig. 1,
non-unit efficiency detectors can be modeled by taking
ideal detectors and placing a beam splitter with trans-
mission η before the balanced beam splitter. As a
consequence, observing a violation of Ineq. (8) proves
that the state produced by the single-photon source
and undergoing losses satisfies 〈1| % |1〉 ≥ P̂T1 (p). This
provides a valid benchmark even though the intrinsic
quality of the source is estimated with a lossy mea-
surement apparatus. It is interesting to note that for
any state ρ with P1 ≥ 2/3, the probability of the
single-photon weight P1 can only decrease with loss,
see Appendix C. Therefore, showing that P1 ≥ 2/3
with lossy detectors implies that the original state also
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satisfies P1 ≥ 2
3 . This is not the case when P1 < 2/3,

i.e. for specific states the single-photon weight P1 can
be increased by loss (an intuitive example is the two-
photon Fock state).

3.1.3 Unbalanced beam splitter and different non-unit
efficiency detectors

We now relax the assumptions that the beam split-
ter is balanced and the detector efficiencies are the
same, i.e. we consider the case with a measurement
performed with a beam splitter having an unknown
transmission t and reflection r = 1− t and two detec-
tors having different efficiencies labeled ηR and ηT .
In this case, the observed statistics would be equiva-
lently obtained with a beam splitter having a trans-
mission coefficient t′ = tηT /(tηT + rηR) and two de-
tectors with the same efficiency η = tηT + rηR, as
already mentioned below Eq. (2). This means that
the measurement can be modeled with a first unbal-
anced beam splitter with transmission coefficient η
corresponding to loss on the state to be characterized,
an unbalanced beam splitter with transmission t′ and
two detectors with unit detection efficiency. In this
case, the relation between p◦◦ and P0 is unchanged,
i.e. p◦◦ = P0. The probabilities p◦ = p◦• + p◦◦
and p ◦ = p•◦ + p◦◦ are however no longer the same.
They are now given by p◦ =

∑
n Pn(1 − r′)n and

p ◦ =
∑
n Pn(1−t′)n. Hence, the quantity

∑
n Pn

1
2n is

no longer directly related to the probability p. Never-
theless, it can be bounded from observable quantities,
as
∑
n Pn

1
2n ≥ min(p◦ , p ◦).

We introduce P̂R1 (p) which is defined analogously
to P̂T1 (p) by P̂R1 (p) = 4p ◦ − 3p◦◦ − 1. Using the
definition of p◦ and p ◦, we rewrite them in terms of
probabilities of disjoint events as

P̂T1 (p) = 4p◦• + p◦◦ − 1
P̂R1 (p) = 4p•◦ + p◦◦ − 1.

(9)

With this notation in hand, we conclude that the
quantity

P̂1(p) = min{P̂T1 (p), P̂R1 (p)} (10)

is a benchmark for single-photon sources, without as-
sumptions on the detector efficiencies and on the fact
that the beam splitter is balanced. This means that
from the outcome probabilities p of a usual auto-
correlation measurement, we can compute P̂T1 (p) and
P̂R1 (p), deduce their minimum P̂1(p) and guarantee
the tested source produces states with the weight
of the single-photon component satisfying P1 =
〈1| ρ |1〉 ≥ P̂1(p).

3.1.4 Dark counts and other imperfections

Finally let us briefly consider general passive detectors
described by a POVM

Ẽ◦ =
∑

n≥0
e◦(n) |n〉〈n| and Ẽ• =

∑

n≥0
e•(n) |n〉〈n| ,

(11)
where e◦(n)+e•(n) = 1. Consider combining two such
detectors in the g(2) setup, with the POVM {Ẽ◦/•}
performed on the transmitted mode and {Ẽ′◦/•} on
the reflected one. The resulting POVM elements for
a, b = ◦, • read

Ẽab =
∑

n≥0

n∑

k=0
PBS(k|n)

ea(k)e′b(n− k) |k, n− k〉〈k, n− k| .
(12)

with PBS(k|n) =
(
n
k

)
tkrn−k.

Now let us assume these detectors are not too differ-
ent from the textbook single-photon detector model
of Eq. (1). Concretely we assume that for some η, t
and r ∣∣tr

(
Ẽab − Eab

)
ρ
∣∣ ≤ ∆, (13)

where ρ can be any state susceptible to be prepared
in the experiment. In particular, consider the case
where both detectors satisfy

|e◦(n)− (1− η)n| ≤ δ
|e′◦(n)− (1− η′)n| ≤ δ′ (14)

for some η, η′, and all n on which the input state is
supported. For a = b = ◦ we then find |e◦(k)e′◦(n −
k)−(1−η)k(1−η′)n−k| ≤ δ+δ′+δδ′ in Eq. (12). Sim-
ilar inequalities hold for the other possible outcomes
◦• ,•◦ and ••, and lead to the bound of Eq. (13) with

∆ = δ + δ′ + δδ′. (15)

It follows that the probabilities p̃ =
(p̃◦◦, p̃◦•, p̃•◦, p̃••) observed with these detectors
described by {Ẽ◦/•} and {Ẽ′◦/•}, are close to the

probabilities p = (p◦◦, p◦•, p•◦, p••) that would have
been observed with textbook detectors, concretely

|p̃ab − pab| ≤ ∆. (16)

With the help of Eq. (9) it is then straightforward to
lower bound the value of the benchmark

P̂1(p) ≥ min{P̂T1 (p̃), P̂R1 (p̃)} − 5∆. (17)

given the coincidence probabilities p̃ observed with
any detectors abiding to Eq. (13).

Here, it is worth noting that the POVM model of
Eq. (1) does not account for dark counts. These can
be modeled by setting a nonzero click probability for
the vacuum e•(0) = pdc, implying |e◦(n)− (1−η)n| ≤
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δ = pdc. Then accordingly to Eqs. (15,17), to account
for the effect of dark counts one can use the bound

P̂1(p) ≥ min{P̂T1 (p̃), P̂R1 (p̃)} − 10 pdc, (18)

where we only took the leading order correction in
pdc, which is typically fairly small.

3.2 Measurement calibration dependent
benchmark
The benchmark we proposed relies on no assumption
on the characteristics of the beam splitter or the two
detectors used in the auto-correlation measurement.
This prevents a miscalibration of the measurement
apparatus that could result in an overestimation of
the quality of the single-photon source. Nevertheless,
as one would expect, the bound on the quality of the
tested source (see Eq. (10)) is reduced when using an
unbalanced beam splitter or inefficient detectors. We
now discuss a way to characterize the intrinsic qual-
ity of the source by making additional assumptions on
the measurement apparatus. The basic idea is to ex-
ploit estimations of different losses in photonic exper-
iments. In particular, we assume that the detector ef-
ficiencies ηR(T ) and the beam splitter reflectivity r are

bounded, that is ηR(T ) ≤ η̂R(T ) and r ∈ [1− t̂, r̂]. We
show in Appendix D that the condition 〈1| ρ |1〉 ≤ P
implies that the two following inequalities hold

P̂T∗1 (p) = C1(t̂, η̂T )p◦• − C2(t̂, η̂T , η̂R)p•• ≤ P,
P̂R∗1 (p) = C1(r̂, η̂R)p•◦ − C2(r̂, η̂R, η̂T )p•• ≤ P,

(19)

where the coefficients C1 and C2, defined as

C1(x, η) = 1
x η

C2(x, η1, η2) = 1
x η1

(
2− x η1

2(1− x)η2
− 1
) (20)

have been optimized such that P̂T∗1 (p) and P̂R∗1 (p)
give the tightest bound on P . Finally, one can choose
the best among the two bounds, giving rise to the
benchmark

P̂ ∗1 (p) = max{P̂T∗1 (p), P̂R∗1 (p)} ≤ P1 (21)

for the single-photon probability, which takes advan-
tage of the additional experimental knowledge.

Again we can account for deviations of the POVMs
{Ẽ◦/•} and {Ẽ′◦/•} describing the detectors form the

textbook model of Eq. (1), as quantified by Eq. (15).
Repeating the analysis of Sec. 3.1.4, we obtain the
bounds

P̂T∗1 (p) ≥ P̂T∗1 (p̃)− (C1(t̂, η̂T ) + |C2(t̂, η̂T , η̂R)|)∆
P̂R∗1 (p) ≥ P̂R∗1 (p̃)− (C1(r̂, η̂R) + |C2(r̂, η̂R, η̂T )|)∆.

(22)

To account for dark counts one may use ∆ = 2pdc.
Recall that here p̃ = (p̃◦◦, p̃◦•, p̃•◦, p̃••) is the vector of
probabilities observed with the real detectors, while p
gives the probabilities that would have been observed
with the textbook model and that are used in the
benchmark.

3.3 Multi-mode sources
We have so far considered sources emitting light in
a single mode, or equivalently that the emitted light
is filtered in all the auxiliary degrees of freedom so
that a single mode of light is detected. We will now
briefly consider the situation where the detected state
is multi-mode, each mode being associated to an an-
nihilation operator ak satisfying [ak, a†`] = δk`. The
no-click and click events for a multi-mode input are

associated to the POVM elements E◦ =
⊗

k(1−η)a
†
k
ak

and E• = 1 − E◦ – a detector does not click only if
none of the modes triggers a click. To a multi-mode
state ρ one associates the distribution Pn of the to-
tal photon number operator n̂ =

∑
k a
†
kak. Assuming

that the beam splitter acts identically on all modes,
the measurement apparatus is only sensitive to the
total number of photons n̂. That is, the POVM ele-
ments {E◦◦, E◦•, E•◦, E••} are given by Eq. (2) albeit
with a†a replaced by n̂, see Appendix B. We thus con-
clude that the quantities P̂1(p) and P̂ ∗1 (p) that have
been derived, can be readily used to benchmark the
probability that a multi-mode source emits a single
photon

P1 = tr
(
%
∑

k

a†k |0〉〈0| ak
)
. (23)

It is worth noting that a high P1 for a multi-mode
source does not guarantee that the single-photon
probability is high in any of the individual modes. As
a practical example, consider the multi-mode single-
photon state

% = 1
N

N∑

j=1
a†j |0〉〈0| aj . (24)

This state has exactly one photon in total n̂ = 1. Nev-
ertheless, it is not a good single-mode single-photon
state. The probability to find exactly one photon
in any single mode is only 1/N , therefore two such
states would only exhibit a limited two-photon in-
terference (bunching). In other words % is not a
pure single-photon state |1〉〈1|1, the degree of free-
dom that distinguishes between the different modes
is in a highly mixed states. Depending on the ap-
plication, the mode-purity (or single-mode character)
of the source may be either irrelevant (e.g. for some
quantum random number generators) if the interfer-
ence between different sources plays no role, or crucial
(e.g. quantum repeaters, boson sampling or photonic
quantum computation) if it is at the heart of the task.
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In Appendix G, we show that one can guarantee
that the source produces a single-mode state with
high P1 if it is reasonable to assume that the multi-
mode state is a product % =

⊗
k ρk. In general, how-

ever, the auto-correlation measurement is intrinsically
insensitive to the multi-mode characteristics of the
source, as illustrated by the example of Eq. (24). In
principle, it is possible to extract a single-mode state
from a multi-mode source by filtering the auxiliary
degrees of freedom, e.g. using a single-mode fiber for
spatial degrees of freedom and a spectral filter for fre-
quency domain. In any case, the mode-purity of the
detected state has to be verified with a different set
of measurements, e.g. via Hong-Ou-Mandel interfer-
ence [13] or based on a physical model of the source.
For example, in the case of a heralded single-photon
source, the spectral purity can be determined by mea-
suring the signal-idler joint spectral intensity [14], as
will be explained in Sec. 6.3.

A systematic analysis of the characterization of the
mode-purity of a source is beyond the scope of this
paper. Nevertheless, it is worth mentioning that with
the additional information on the multi-mode charac-
teristics of the source and the knowledge of the total
single-photon probability P1 it is possible to bound
the probability to find a single photon in the mode of

interest P
[1]
1 (denoted mode 1). In particular, given a

bound on the probability that all the modes but one
are empty tr %(11⊗|0〉〈0|2⊗· · ·⊗ |0〉〈0|N ) ≥ 1−ε, one
can conclude that

P
[1]
1 = tr |1〉〈1|1 ρk ≥ P1 − ε, (25)

since the maximal contribution to P1 from the other
modes is ε. Here, ρ1 = tr2,...,N % is the marginal state
of the first mode, which can in principle be filtered

from the source. A bound on P
[1]
1 can then be used

to, e.g., quantify the Wigner-negativity of the state
ρ1, see Sec. 5.

4 Finite statistics
In this section, we analyze finite size effects for the
benchmark.

We sketch an analysis to account for finite statis-
tics in any experiment aiming to evaluate P̂1(p), the
benchmark for single-photon sources derived in Sec. 3.
For a measurement round described by p we associate
a random variable XT that takes different real values
depending on the measurement result

XT =





3 (◦•)
0 (◦◦)
−1 (•◦) or (••)

(26)

This random variable satisfies E(XT ) = P̂T1 (p) in
Eq. (9) (here and further E denotes the expected value
of a random variable). Analogously, we define XR by

exchanging the role of the two detectors, such that it
satisfies E(XR) = P̂R1 (p).

In general, the source may prepare a different state
ρ(i) at each round, corresponding to different proba-
bilities p(i) of the measurement outcomes. This means
that in each round, we sample different random vari-

ables X
(i)
T and X

(i)
R , which are independent between

rounds given the sequence of states ρ(1), . . . , ρ(n) pro-
duced in the experiment. In this case, a reasonable
figure of merit is the average quality of the state pre-

pared by the source P̄1 = 1
n

∑n
i=1 P

(i)
1 where P

(i)
1

is the probability of the single-photon component of
the state ρ(i). Because the transmission and reflec-
tion coefficients of the beam splitter can be consid-

ered to be constant, either E(X(i)
T ) ≥ E(X(i)

R ) or

E(X(i)
T ) ≤ E(X(i)

R ) holds for all i. This means that
the average single-photon weight fulfills

P̄1 ≥ min{E(X̄T ),E(X̄R)}, (27)

where X̄T (R) = 1
n

∑n
i=1 X

(i)
T (R). Finally, we use the

Hoeffding 1963 theorem [15] to show that

q̂α = min{X̄T , X̄R} −
√

16 log(1/α)
2n (28)

is a one-sided confidence interval on P̄1 with con-
fidence α (see Appendix F). Precisely, with proba-
bility 1 − α the observed value of q̂α lower bounds
P̄1. It might be convenient to note that the quan-
tity min{X̄T , X̄R} of this confidence interval can be
computed using

min{X̄T , X̄R} = 4 min{n◦•, n◦•} − n◦• − n•◦ − n••
n

(29)
with e.g. n•• counting the number of outcomes ••.

Analogously, one can derive a one-sided confidence
intervals associated to the calibration-dependent
benchmark derived in Sec. 3.2. With very similar ar-
guments one can show that both

q̂(T )∗
α = C1(t̂, η̂T )n◦• − C2(t̂, η̂T , η̂R)n••

n

− (C1(t̂, η̂T ) + C2(t̂, η̂T , η̂R))
√

log(1/α)
2n ,

q̂(R)∗
α = C1(r̂, η̂R)n•◦ − C2(r̂, η̂R, η̂T )n••

n

− (C1(r̂, η̂R) + C2(r̂, η̂R, η̂T ))
√

log(1/α)
2n ,

(30)

where the functions C1 and C2 defined in Eq. (20)
are confidence intervals for P̄1. Since they are de-
rived from the same data, for a statistically mean-
ingful statement one has to chose parameter α be-
fore computing the confidence interval. On the other
hand, it is straightforward to see that

q̂∗2α = max{q(T )∗
α , q(R)∗

α } (31)
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is also a confidence interval at confidence level 1−2α.
See App. F for a detailed derivation.

5 Relation to the non-classicality of
the source
The data obtained from auto-correlation type mea-
surements are known to be valuable for witnessing
and quantifying various forms of non-classicality, in-
cluding the non-positivity of the P-function and quan-
tum non-Gaussianity [8–10]. We now show that the
knowledge of P1 in a single bosonic mode (as e.g.
provided by our benchmarks P̂1(p) and P̂ ∗1 (p)) can
reveal Wigner-negativity [16], arguably the strongest
form of non-classically for a bosonic mode. In par-
ticular, Wigner-negativity implies the non-positivity
of the P-function [17]. Similarly, it implies that the
corresponding state is non-Gaussian, as a Gaussian
state has a Gaussian (and thus positive) Wigner func-
tion1. Thus, demonstrating Wigner-negativity for a
light source brings evidence of its strong quantum na-
ture. Note that it has been shown recently that wit-
nesses of Wigner-negativity can be derived systemat-
ically using a hierarchy of semidefinite programs [19].
Our contribution is more specific and aims at witness-
ing Wigner-negativity simply and directly from P̂1(p)
or P̂ ∗1 (p) observed on a single mode.

5.1 Wigner-negativity witness
The Wigner function is a representation of a single-
mode state ρ in terms of the following quasi-
probability distribution [20]

Wρ(β) = 2
π

Tr(Dβ(−1)a
†aD†β ρ), (32)

with
∫

dβ2Wρ(β) = 1. Here, Dβ = ea
†β−aβ∗ is the

displacement operator with a complex amplitude β.
Applying Eq. (32) to a Fock state gives [17]

W|n〉〈n|(β) = 2(−1)n
π

e−2|β|2Ln
(
4|β|2

)
(33)

where Ln is the Laguerre polynomial. Note that
the following bound on the Laguerre polynomials
e−x/2|Ln(x)| ≤ 1, see e.g. Eq. (18.14.8) in [21], leads
to a bound on the Wigner function of Fock states
|W|n〉〈n|(β)| ≤ 2

π . Note also that L1(x) = 1− x.

With the help of Eq. (33), the upper bound on the
Wigner function of Fock states and the definition of
the Laguerre polynomial L1(x), it is easy to see that
the Wigner function of any mixture of Fock states

1In addition, Hudson’s theorem [18] tells us that any pure
state with a positive Wigner function is Gaussian.

ρ =
∑
pn |n〉〈n| satisfies 2

Wρ(β) = P1W|1〉〈1|(β) +
∑

n6=1
PnW|n〉〈n|(β)

≤ 2
π

(
−P1(1− 4|β|2)e−2|β|2 + (1− P1)

)
.

(34)

Focusing on the origin β = 0, we get Wρ(0) ≤ 2 1−2P1
π

which is negative if P1 is larger than 1
2 . Hence, if one

concludes from the measurement of p that P̂1(p) > 1
2 ,

one can conclude that the measured state is Wigner-
negative (recall that we assumed that the state ρ is
single-mode).

5.2 Wigner-negativity measure
A natural way to quantify the negativity of the
Wigner representation of a given state ρ is to mea-
sure the total quasi-probability for which the function
Wρ(β) takes negative values [11], i.e.

NW (ρ) =
∫

dβ2 |Wρ(β)| −Wρ(β)
2 , (35)

which is manifestly zero for states with a posi-
tive Wigner function. In the Appendix E we show
that NW (ρ) is non-increasing under Gaussian opera-
tions, which justifies its use as a measure of Wigner-
negativity. Note that with the help of Ineq. (34), we
show that NW (ρ) satisfies

NW (ρ) ≥ F (P1) =
{

3(1−P1)(4w2+3)
8w +P1 −2 P1 >

1
2

0 P1 ≤ 1
2

with w = w0

(√
e

2
1− P1
P1

)
,

(36)

where w0 is the principal branch of the Lambert
W function. The function F (P1) is non-decreasing.
Hence, from the measurement of p, we get a lower
bound P̂1(p) on P1 that can be used to lower bound
NW (ρ) using F (P̂1(p)). The bound (36) is tight by
construction in the ideal case NW (|1〉) = F (1) =

9
4
√
e
− 1 ≈ 0.36.

By computing F ′′(P1) ≥ 0 we show that the func-
tion F (P1) in Eq. (36) is convex. This property will
be used in the following section, where we discuss the
finite statistics effects.

2For a general state % =
∑

nm
cnm |n〉〈m| with Wigner func-

tion W%(β), one can always define the corresponding Fock state
mixture ρ =

∑
n
Pn |n〉〈n| with pn = cnn. Its Wigner function

reads Wρ(β) = Wρ(|β|) =
∫

dϕW%(|β|eiϕ) = 〈W%(|β|eiϕ)〉ϕ.
The two functions coincide at the origin Wρ(0) = W%(0). Fur-
thermore, Wρ can only be non-positive if W% is non-positive,
and NWρ ≤ NW% (introduced at the end of the section) follows
from |〈W (|β|eiϕ)〉ϕ| ≤ 〈|W (|β|eiϕ)|〉ϕ .
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5.3 p-value to witness Wigner-negativity
We now present the extension of finite statistics analy-
sis presented in Sec. 4 to the task of Wigner-negativity
detection and quantification.

First, let us now consider the witness of Wigner-
negativity discussed in Sec. 5.1, that is Wρ(0) ≥
0 =⇒ P̂1(p) ≤ 1/2, and quantify the statistical sig-
nificance of its contrapositive given the measurement
data. This can be done by computing the p-value as-
sociated to the hypothesis that the Wigner function
of the state is positive. As before, we consider the
general case where a different state ρ(i) may be pre-
pared at each run. Nevertheless, at each round the

bound Wρ(i)(0) ≤ 2
π (1 − 2P (i)

1 ) holds. Therefore, for
the sequence of states prepared in the experiment, the
average Wigner function at the origin satisfies

W̄ (0) = 1
n

n∑

i=1
Wρ(i)(0) ≤ 2

π
(1− 2P̄1), (37)

and is negative if P̄1 > 1
2 . Given some value of

min{X̄T , X̄R} recorded after n measurement rounds,
we show in Appendix F that for any collection of
n states with W̄ (0) ≥ 0, the probability that the
results are equal or exceed the observed value of
min{X̄T , X̄R} is given by

p-value ≤ exp
(
−2n

(
min{X̄T , X̄R} − 1

2
)2

16

)
, (38)

for min{X̄T , X̄R} > 1
2 . In other words, given the ob-

served value of min{X̄T , X̄R}, the probability that it
is coming from states that are Wigner-positive on av-
erage is bounded by the right-hand side of Ineq. (38).
In App. F one finds a bound on the p-value for the
calibration-dependent setting.

5.4 Confidence interval on the measure of
Wigner-negativity
Finally, the convexity of the function F (P1) in
Eq. (36) implies that the average Wigner-negativity

satisfies N̄W = 1
n

∑
iNW (ρ(i)) ≥ 1

n

∑
i F (P (i)

1 ) ≥
F (P̄1). Therefore, a confidence interval qα for P̄1

nwα = F (qα) (39)

is a one-sided confidence interval on N̄W , that is,
with probability 1−α, the average Wigner-negativity
as quantified by N̄W is lower bounded by nwα =
F (qα). This can be used both in the calibration-
independent n̂wα = F (q̂α) and calibration-dependent
n̂w∗α = F (q̂∗α) settings.

5.5 The crucial role of the single-mode hypoth-
esis
It is important to emphasize that the single-mode hy-
pothesis is crucial in order to relate P1 (or its esti-

mated value P̂1(p), P̂ ∗1 (p)) to Wigner-negativity. In
particular, the multi-mode single-photon state % of
Eq. (24) becomes Wigner-positive for N > 2. In sec-
tion 3.3 we have discussed how the single-mode char-
acter of the emitted radiation can be verified in prac-
tice. Here we merely recall that a bound of the form

P
[1]
1 ≥ P1 − ε, where P

[1]
1 is the single photon proba-

bility for a given mode, can be readily used to verify
Wigner-negativity. One simply has

nw[1]
α ≥ F (qα − ε)

p-value ≤ exp
(
−2n

(
min{X̄T , X̄R} − ε− 1

2
)2

16

)
,

(40)

if min{X̄T , X̄R} > 1
2 + ε, for Wigner-negativity of the

said mode.
It is worth mentioning that a possibility to ensure

that the detected radiation is single-mode is to per-
form homodyne measurements. In such a measure-
ment the incoming beam is mixed with a strong local
oscillator on a beam splitter, the intensity of the out-
put beams are then measured with linear detectors
and subtracted. Under the assumption that the local
oscillator is single-mode3 the obtained signal is only
sensitive to the single input mode identified by the
local oscillator. Photon number statistics, and P1 in
particular, can be reconstructed from the statistics of
a phase-averaged quadrature measurement [22], i.e. a
homodyne measurement with a phase-randomized lo-
cal oscillator. This offers the possibility to use our
bound on the Wigner-negativity NW (ρ) in Eq. (36)
with measurements that are guaranteed to pick up a
single mode.

6 Experiment
To demonstrate the feasibility of our tools, we exper-
imentally benchmark, witness and quantify the non-
classical nature of a heralded single-photon source [23]
that is optimized for high efficiency of the heralded
photon [24]. A periodically poled potassium ti-
tanyl phosphate (PPKTP) crystal is pumped by a
Ti:Sapphire laser at λp = 771.8 nm in the picosec-
ond pulsed regime with a repetition rate of 76 MHz to
create nondegenerate photon pairs at λs = 1541.3 nm
(signal) and λi = 1546.1 nm (idler) via type-II sponta-
neous parametric down-conversion (SPDC). The pair
creation probability per pump pulse is set to Ppair ≈
1.0× 10−3 and high-purity heralded signal photons
are ensured by spectrally filtering the heralding idler
photons using a dense wavelength division multiplexer

3Note that the situation where n modes a1, . . . , an are pre-
pared in coherent states |α1〉 |α2〉 . . . |αn〉 with fixed phase re-
lations, can be viewed as a coherent state of the mode ā =∑

k
akαk√∑
k
|αk|2

, plus n− 1 modes in the vacuum states.
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at ITU channel 39. From a joint spectral intensity
measurement [14], we estimate the spectral purity of
the heralded photon to be 98.59% ± 0.04%. In this
way, we herald signal photons at a rate of 19.1 kcps.

For the heralded auto-correlation measurement,
the signal photon is sent to a 50/50 fiber coupler
(AFW FOBC). All photons are detected by MoSi su-
perconducting nanowire single-photon detectors [25]
and time-correlated single-photon counting in a pro-
grammable time-to-digital converter (ID Quantique
ID900) is used to register the detection events. Data
are acquired for 200 s in order to evaluate p =
(p◦◦, p•◦, p◦•, p••) for the signal photons after the
50/50 beam splitter.

The dark count probabilities of the detectors we
used for the auto-correlation measurement are fairly
small, pdc ≤ 4 × 10−7, and can be completely ne-
glected. That is, the dark count corrections (≈ 4 ×
10−6) to the estimated values of the benchmark in
Eqs. (18,22) are more than two orders of magnitude
lower than the statistical noise, see Tables 1 and 3.

6.1 Calibration-independent benchmark
In a first step we apply our benchmark to the exper-
imental results without taking the splitting ratio of
the beam splitter and the detector efficiencies into ac-
count. The overall efficiency is 25 % for the herald-
ing idler photons and 62 % for the heralded signal
photons. In order to simulate a less efficient single-
photon source, we introduce loss by inserting a fiber
coupled variable attenuator (JDS Uniphase MV47W)
into the heralded photon path before the 50/50 beam
splitter and repeat the auto-correlation measurement
for eight different transmission efficiencies ηatt. Each
transmission efficiency leads to a value for the pair
(min(p◦ , p ◦), p◦◦) that is represented by a black cross
in Fig. 2. In the same figure, we represent the poly-
tope QP (defined after Eq. (7)) containing all possible
values (min(p◦ , p ◦), p◦◦) associated to states % with
〈1| % |1〉 ≤ P . Four polytopes are represented corre-
sponding to the values P ∈ {0.25, 0.5, 0.75, 1}. A mea-
surement result associated to a black cross lying out-
side a polytope QP is guaranteed to come from a state
with a single-photon component satisfying P1 > P .

ηs,tot P̂T1 P̂R1 q̂α=10−10

62 % 0.561(1) 0.678(1) 0.554
52 % 0.460(1) 0.573(1) 0.453
42 % 0.376(1) 0.465(1) 0.369

Table 1: Results of the measurement for the three highest
transmission efficiencies ηs,tot of the heralded single-photon
state. The values for P̂T1 and P̂R1 are calculated according
to Eq. (9). For the finite statistics analysis we calculate the
confidence interval q̂α ≤ P̄1 from Eq. (28) for the confidence
level 1− α = 1− 10−10.

Mode ηtot ηc ηf ηt ηd

Idler 25 % 80 % 50 % 83 % 75 %

Signal 62 % 80 % - R 43 % 92 %
T 44 % 85 %

Table 2: Characterization of the loss for idler (heralding)
and signal (heralded) modes. ηtot, total efficiency; ηc, fiber
coupling efficiency; ηf , spectral filter transmission; ηt, fiber
transmission including the insertion loss of the 50/50 fiber
coupler, connectors and telecom fiber isolators for further
pump rejection; ηd, detector efficiency.

For the measurements with the three highest trans-
mission efficiencies, we give the results of our bench-
mark in Tab. 1. We conclude for the highest trans-
mission for example, that the measured states have
on average a single-photon component with a weight
P̄1 ≥ 0.554 with a confidence level of 1− 10−10.

6.2 Calibration-dependent benchmark
To compute the value of the calibration-dependent
benchmark one needs to estimate the detector effi-
ciencies and the reflection/transmission coefficient of
the beam splitter. In order to characterize the de-
tectors, we use the standard method, see e.g. [25]
for a detailed description. For our setup we find
that the beam splitter coefficients are bounded by
r̂ ∈ [0.49, 0.50] and the detector efficiencies are up-
per bounded by (η̂R, η̂T ) = (0.95, 0.88). The upper
bounds for the detector efficiencies are obtained from
results of the measured detection efficiencies given in
Tab. 2 by adding three times the measurement un-
certainty of around 0.01, see Supplementary Material
of [25].

Under the assumptions that the (r̂, η̂R, η̂T ) belong
to these intervals, the values of P̂T∗1 (p) and P̂R∗1 (p) as
measured in our experiment are given in Tab. 3 for the
three highest transmission efficiencies. The confidence
interval q̂∗α ≤ P̄1 is also reported for a confidence level
of 1− α = 1− 10−10.

ηs,tot P̂T∗1 P̂R∗1 q̂∗α=10−10

62 % 0.658(1) 0.683(1) 0.677
52 % 0.544(1) 0.573(1) 0.566
42 % 0.444(1) 0.466(1) 0.459

Table 3: Results of the measurement including the imper-
fect beam splitter ratio with (1 − t̂, r̂) = (0.49, 0.50) and
the non-unit detection efficiencies by using the upper bounds
(η̂R, η̂T ) = (0.95, 0.88). The values for P̂T∗1 and P̂R∗1 are
calculated with Eq. (19). The confidence intervals q̂∗α ≤ P̄1
in the finite statistics analysis are calculated for a confidence
level of 1− α = 1− 10−10.
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6.3 Non-classicality of the source
As already mentioned, there is no guarantee that the
single-mode assumption is exactly satisfied in our ex-
periment, hence we have to estimate the mode pu-
rity of the source. We assume that the spatial mode
purity is guaranteed by coupling the photons into a
single-mode fiber. The polarization-purity is ensured
by the fact that the signal and idler photons are sep-
arated with a polarizing beam splitter. To estimate
the spectral purity, we apply the standard approach
that relies on a physical model of the source, which
we believe to properly describe the experiment. Pre-
cisely, we assume that the SPDC process responsible
for the generation of the photon pairs is of the form

HSPDC ∝
∫

dwsdwif(ws, wi)a†(ws)b†(wi),+h.c.,

(41)
where a(ws) and b(wi) are the frequency field-modes
of the signal/idler photons with [a(w), a†(w′)] =
[b(w), b†(w′)] = δ(w − w′). At low pumping power,
we reconstruct f(ws, wi) with a signal-idler joint spec-
tral intensity measurement. Via a 2D-Gaussian fit we
perform a singular value decomposition of f(ws, wi)
to rewrite the interaction in the form

HSPDC ∝
∑

k

√
λka

†
kb
†
k + h.c., (42)

where [ak, a†`] = [bk, b†`] = δk` now describe dis-
crete spectral modes. With this procedure the largest
Schmidt coefficient λ1 is computed to be λ1 =
0.992 92(18), where the standard deviation σλ1 =
1.8 × 10−4 is obtained from a Monte Carlo method
assuming Poissonian count statistics in the joint spec-
tral intensity measurement. Therefore, assuming that
the efficiency of the trigger detector is the same for
all idler modes, we obtain the leading order estimate

1− ε ≈ λ1 − 3σλ1 = 99.24%, (43)

of the probability that the modes ak≥2 are empty con-
ditional to the detection of an idler photon. This cor-
responds to the mode-purity of

∑
k λ

2
k ≈ 98.59%.

With the help of Eq. (25) we can take this into
account for the quantification of Wigner-negativity,
resulting in n̂wα=10−10 = 0.0046 for the case of no
added loss on the heralded single-photon state and no
assumptions on the calibration of the measurement
apparatus. The corresponding p-value and the re-
sults for the measurement-apparatus-dependent case
are given in Tab. 4.

7 Conclusion
Auto-correlation measurements are commonly used to
assess the quality and the quantum nature of single-
photon sources, that is, they are used to check that
a given source does not emit more than one photon

ηs,tot n̂wα=10−10 p-value n̂w∗α=10−10 p-value∗

62 % 0.0046 10−603 0.053 10−6420

52 % 0 × 0.0072 10−894

42 % 0 × 0 ×

Table 4: Wigner-negativity in our experiment for the three
highest transmission efficiencies ηs,tot of the heralded single-
photon state. The confidence interval on the measure of
Wigner-negativity n̂wα ≤ N̄W is obtained from Eq. (39) for
the confidence level α = 10−10, assuming the reduced single-
mode P [1]

1 as given in Eq. (25). Further, we give the p-value
according to Eq. (38) associated with the hypothesis that
the measured states are on average Wigner-positive. The
quantities with a ∗ are taking the detector efficiencies into
account and are obtained accordingly from Eqs. (19) and
(25).

and its emission is non-classical in the sense that its
P-distribution is non-positive or that its state is non-
Gaussian. We have shown that the statistics obtained
from these measurements is actually richer. They can
be used to lower bound the probability that a given
source actually produces a single photon. We ar-
gued that this probability is a good benchmark for
single-photon sources as it captures both its qual-
ity and its efficiency. Moreover, we showed that if
the mode purity of the source can be assessed the
lower bound on the single-photon emission probabil-
ity can be used to witness and quantify the negativ-
ity of the Wigner function, a stronger form of non-
classicality than the negativity of the P-distribution
and the non-Gaussianity. We have proposed practical
tools to benchmark single-photon sources and charac-
terize its Wigner-negativity this way. With this ma-
terial in hand, we hope that the community which
is developing single-photon sources could exploit the
statistics of their auto-correlation measurements in a
more enlightening way.
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A Auto-correlation function and auto-
correlation measurement
Here we briefly recall the definitions of the auto-
correlation function g(2). We will use the notation
introduced in Section 2, 3 and 3.1.1 of the main text,
and assume that the beam splitter is balanced and
the two detectors have equal efficiency, i.e. t = r = 1

2
in Eq. (2).

Historically [27], the auto-correlation function was
defined as the ratio

g(2) = 〈a
†2a2〉
〈a†a〉2 = 〈(a

†a)2〉 − 〈a†a〉
〈a†a〉2 (44)

and the efficiency of the source can be characterized
by the average number of photons it emits I = 〈a†a〉.
Then it is not difficult to see that the bound

P1 ≥ 2〈a†a〉 − 〈(a†a)2〉 = I − I2g(2) (45)

is a tight benchmark. To see this note that in the(
〈a†a〉, 〈(a†a)2〉

)
plane the quantity w = 2〈a†a〉 −

〈(a†a)2〉 measures the distance from the line con-
necting the points (0, 0) and (2, 4) corresponding to
Fock states |0〉 and |2〉. With w = 1 for the point
(1, 1) corresponding to the single-photon state |1〉. In
practice, one can not directly measure 〈(a†a)2〉 and
〈a†a〉, but can approximate these values by increas-

ing the loss artificially, as E• = a†a
2 η + O(η2) and

E•• = a†2a2

4 η2 + O(η3) for 1
η � a†a (recall that

E• = E•• + E•◦). Such an approach thus requires
a precise control of the efficiency η and is statistically
inefficient, since additional losses are introduced.

Alternatively [28], the auto-correlation function can
by directly defined as

g̃(2) = 〈E••〉
〈E• 〉〈E •〉

. (46)

The efficiency can also be characterized by probability
that a source produces a click Ĩ = 〈E•• + E•◦ + E◦•〉.
Given the two values g̃(2) and Ĩ it is then possi-
ble to reconstruct the full probability distribution
p = (〈E◦◦〉, 〈E•◦〉, 〈E◦•〉, 〈E••〉), since we assumed
〈E•◦〉 = 〈E◦•〉 so that p is defined by two param-
eters. As argued above the two functions coincide
g(2) = g̃(2) in the limit η → 0.

In both cases the auto-correlation measurements re-
lies on the setup of the Fig. 1. The measurement data
can thus be readily used to estimate p and compute
the benchmarks proposed in this paper.

To finish the discussion of the auto-correlation
functions we recall that both g(2) and g̃(2) are
witnesses of the non-classicality of the state ρ [28],
i.e. g(2), g̃(2) < 1 is only possible for states whose
P-function admits negative values. In fact, this
is true in a more general context, as given by the
following observation.

Observation. For any two binary POVMs {M•,M◦}
and {M ′•,M ′◦} measured at the two outputs of a beam
splitter (Fig. 1), the inequality

G(2) = 〈M• ⊗M ′•〉
〈M• ⊗ 1〉〈1⊗M ′•〉

< 1 (47)

is a witness of non-classicality (P-function taking
negative values), as long as the POVM element of
individual detectors are only functions of the number
of photons 〈n|M• |m〉 = δn,mp•(|n〉) and the click
probabilities are increasing functions of the photon
number p•(|n〉) ≥ p•(|m〉) for n ≥ m (and the same
for M ′•).

For the sake of completeness we prove the above
statement here. A coherent state splits into two coher-
ent states on a beam splitter |α〉 7→BS |

√
rα〉

∣∣√tα
〉
.

Hence for a coherent state

〈M• ⊗M ′•〉 =
〈√

rα
∣∣M•

∣∣√rα
〉 〈√

tα
∣∣∣M ′•

∣∣∣
√
tα
〉

= p•(
√
r|α|2) p′•(

√
t|α|2)

= 〈M• ⊗ 1〉〈1⊗M ′•〉
(48)

and G(2) = 1. Then for any mixture of coherent states
ρcl =

∫
d2αP(α) |α〉〈α| one finds

〈M• ⊗M ′•〉 =
∫
d2αP(α)p•(

√
r|α|2)p′•(

√
t|α|2).

(49)
To shorten the equations let us denote z = |α|,
f(z) = p•(

√
r|α|2), g(z) = p′•(

√
t|α|2), µ(z) =

2z
∫

dϕP
(
zeiϕ) and dµ(z) = dzµ(z) with

∫
dµ(z) =

1, such that

〈M• ⊗M ′•〉 =
∫

dµ(z)f(z)g(z)

=
∫

dµ(z)dµ(z′)1
2(f(z)g(z) + f(z′)g(z′)),

〈M• ⊗ 1〉〈1⊗M ′•〉 =
∫

dµ(z)f(z)
∫

dµ(z′)g(z′)

=
∫

dµ(z)dµ(z′) 1
2(f(z)g(z′) + f(z′)g(z)).

(50)

Without loss of generality consider z′ ≥ z, by
p•(|n〉) ≥ p•(|m〉) for n ≥ m it follows that f(z′) ≥
f(z) for z′ ≥ z (using the fact that a coherent state
has a Poissonian photon number distribution). Hence,
one can write

f(z′) = f(z) + ∆f ∆f ≥ 0
g(z′) = g(z) + ∆g ∆g ≥ 0

(51)

and

(f(z)g(z) + f(z′)g(z′))− (f(z)g(z′) + f(z′)g(z))
= ∆f∆g ≥ 0

(52)
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for each z and z′. Therefore the inequality is also true
for the integrals

〈M• ⊗M ′•〉 ≥ 〈M• ⊗ 1〉〈1⊗M ′•〉. (53)

Showing that G(2) ≥ 1 for any state with a positive
P-function. Notably, the same proof works if both
〈n|M• |n〉 and 〈n|M ′• |n〉 are decreasing functions of
n, e.g. if they are replaced with M◦ and M ′◦. The
above observation has been used to propose an exper-
iment where non-classicality of light would be demon-
strated by directly using human eyes as detectors [29].

B POVM corresponding to photon de-
tection preceded by a beam splitter
Since two single-photon detectors after a beam split-
ter cannot detect any coherence between Fock states
of an incoming state, we can consider a state ρ =∑
n
cn
n! (a†)n |0〉 〈0| an without loss of generality. The

state ρ arrives at a beam splitter with transmittance
t, the resulting state is (ignoring again the coherence
between the Fock states)

ρr =
∑

n,k

cn

(
n

k

)
(tk)(1− t)n−k |k, n− k〉 〈k, n− k| .

(54)

One can then compute the probability of the different
events for the state ρr, for example

P◦• = Tr(E◦ ⊗ E•ρr) = Tr(E◦ρr)− Tr(E◦ ⊗ E◦ρr)
(55)

where

Tr(E◦ ⊗ E◦ρr) =
∑

n

c2
n(1− η)n

n∑

k=0

(
n

k

)
tk(1− t)n−k

=
∑

n

c2
n(1− η)n

= Tr((1− η)a
†aρ)

and

Tr(E◦ρr) =
∑

n

c2
n

n∑

k=0

(
n

k

)
tk(1− t)n−k(1− η)k

=
∑

n

c2
n(1− tη)n

= Tr((1− tη)a
†aρ).

The resulting POVM is thus E◦• = (1 − tη)a†a −
(1− η)a†a.

Let us consider a two-mode state (general-
ization to n modes is straightforward) ρ =∑
n1,n2

cn1,n2
n1!n2! (a

†
1)n1(a†2)n2 |0〉 〈0| an1

1 an2
2 . The POVM

element corresponding to no-clicks after the beam

splitter on each mode now reads E(2)
◦ = E◦⊗E◦. The

state after the beam splitter is now

ρr =
∑

n1,k1,n2,k2

Cn1,k1,n2,k2

|k1, n1 − k1, k2, n2 − k2〉 〈k1, n1 − k1, k2, n2 − k2|
(56)

where Cn1,k1,n2,k2 =
(
n1
k1

)(
n2
k2

)
tk1+k2(1 −

t)n1+n2−k1−k2 . We focus on the event click on
the first detector and no click on the second

Tr(E2
◦ ⊗ E2

◦ρr)

=
∑

n1,n2

c2
n1,n2(1− η)n1+n2

n1,n2∑

k1,k2=0

(
n2
k2

)(
n1
k1

)
tk1+k2(1− t)n1+n2−k1−k2

=
∑

n

c2
n(1− η)n1+n2

= Tr((1− η)n̂ρ)

similarly

Tr(E2
◦ρr) = Tr((1− tη)n̂ρ). (57)

We retrieve that the POVM elements in the multi-
mode case are given by

E◦◦ = (1− η)n̂

E•◦ = (1− η t)n̂ − (1− η)n̂

E◦• = (1− η r)n̂ − (1− η)n̂

E•• = 1− E◦◦ − E•◦ − E◦•.

(58)

C The effect of loss on P1

We show here that the set of states ρ with P1 ≥ 2
3

is closed under losses. Consider a state ρ associated
with a single-photon component P1 = P . Let us apply
infinitesimal transmission losses η = 1−dε. After the
loss, the photon number distribution Pn = 〈n|ρ|n〉
reads

Pn(ε) = (1− ndε)Pn + dε(n+ 1)Pn+1. (59)

In particular,

d
dεP1 = −P1 + 2P2

≤ −P + 2(1− P )
= 2− 3P

(60)

which is negative for P ≥ 2/3.
On the other hand, there are states with P1 < 2/3

for which the single-photon probability can be in-
creased substantially by losses. Consider a channel
with transmission efficiency η and apply it to the state
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Figure 3: Consider the sate ρ = P1 |1〉〈1| + (1 − P1) |2〉〈2|,
which is transformed intro ρη by a loss channel of transmis-
sion η. Fro any P1 there is a value of η which maximize the
single-photon probability P1(ρη) after losses, see Eq. (62).
The blue line depicts maxη P1(ρη) as the function P1, and
the black line is simply P1. One sees that for this example
the single-photon component can be increased by losses if
P1 < 2/3, as illustrated by the shaded area. Conversely, we
show that for any single-mode state ρ′ with P1 ≥ 2/3, the
single-photon component can not be increased by losses.

ρ = P1 |1〉〈1|+ (1−P1) |2〉〈2|. This leads to a state ρη
having a single-photon component

P1(ρη) = ηP1 + 2η(1− η)(1− P1). (61)

This quantity is maximized at

max
η

P1(ρη) =
{

(2−P1)2

8(1−P1) P1 ≤ 2
3

P1 P1 >
2
3 ,

(62)

the maximum being depicted in Fig. 3 as a func-
tion of P1. To give a concrete example, for the ini-
tial ρ = 1

2 (|1〉〈1| + |2〉〈2|), the weight of the single-
photon component can be increased to P1(ρη=3/4) =
1/2+1/16 = 0.562 while for the Fock state ρ = |2〉〈2|,
it is possible to reach P1(ρη=1/2) = 1/2.

D Parameter dependent witness
We consider the case where the two detectors have
efficiencies ηT and ηR and the beam splitter has re-
flectance r and transmittance t (with t+ r = 1). For
an incoming Fock state |n〉 the probabilities of clicks
are given by

fn = p
|n〉
◦• = (1− ηRr)n − (1− ηT t− ηRr)n

hn = p
|n〉
•◦ = (1− ηT t)n − (1− ηRr − ηT t)n

gn = p
|n〉
•• = 1 + (1− ηRr − ηT t)n+
− (1− ηRr)n − (1− ηT t)n.

(63)

For a mixture of Fock states ρ =
∑
n Pn |n〉〈n| one

has

p◦• =
∞∑

n=1
Pnfn, (64)

from which we get

P1 = 1
f1


p◦• −

∑

n≥2
Pnfn


 . (65)

In order to set a lower bound on P1 we thus need to
upper bound the term

∑
n≥2 Pnfn. We also have

p•• =
∑

n≥2
Pngn. (66)

Therefore, to derive a benchmark for P1 we are look-
ing for a function f∗(p••) such that

f∗(p••) = max
p>0

∑

n≥2
Pnfn

s.t.
∑

n≥2
Pngn = p••

(67)

To find f∗(p••) we define qn = Pngn, so that the max-
imization can be rewritten as

f∗(p••) = max
∑

n≥2
qn
fn
gn

s.t.
∑

n≥2
qn = p••.

(68)

Using
∑
n qn

fn
gn
≤ (
∑
n qn)

(
maxn fn

gn

)
we see that the

solution of Eq. (67) satisfies

f∗(p••) ≤ p••
(

max
n≥2

fn
gn

)
. (69)

We prove right after that the maximum is achieved
for n = 2. By plugging

∑
n≥2 Pnfn ≤ f∗(p••) ≤ p•• f2

g2
in Eq. (65), we get the desired inequality

P1 ≥
1
f1

(
p◦• − p••

f2
g2

)
. (70)

The same bound holds with p•◦ instead of p◦• and
hn instead of fn. The right-hand side of these two
inequalities are a function of the observed probabili-
ties p and a lower bound on P1, hence defining two
benchmarks

P̂T∗1 (p) = 1
f1
p◦• −

f2
f1g2

p••,

P̂R∗1 (p) = 1
h1
p•◦ −

h2
h1g2

p••.
(71)

The best option is to consider the larger value of p•◦
and p◦•.

The proof of maxn fn
gn

= f2
g2

. To maximize the ratio
fn
gn

express it as

fn
gn

= (1− ηRr)n − (1− ηT t− ηRr)n
1− (1− ηT t)n − (1− ηRr)n + (1− ηRr − ηT t)n

= 1
1−(1−ηT t)n

(1−ηRr)n−(1−ηRr−ηT t)n − 1
.

(72)
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Manifestly, maximizing fn
gn

is equivalent to minimizing
1−(1−ηT t)n

(1−ηRr)n−(1−ηRr−ηT t)n . In other words we want to

show that for n ≥ 2 the fraction

1n − (1− x)n
yn − (y − x)n , (73)

with x = ηT t and y = 1− ηRr satisfying 0 < x < y <
1, is minimized at n = 2. However, it is enough to

show that the expression 1n−(1−x)n
yn−(y−x)n is increasing with

n. To do so, let us derive this quantity with respect
to n. We have

d
dn

1− (1− x)n
yn − (y − x)n = 1

(yn − (x− y)n)2

×
(

(1− x)n − 1) (yn log(y)− (y − x)n log(y − x))

− (1− x)n log(1− x)(yn − (y − x)n)
)
.

(74)

To show that it is positive we can omit the denomi-
nator (yn − (x − y)n)2. Labeling a = (1 − x)n, b =
yn, c = (y − x)n and noting that log

(
x

1
n

)
= 1

n log(x)
we get

d
dn

1− (1− x)n
yn − (y − x)n ≥ 0⇐⇒ f(a, b, c) ≥ 0,

with

f(a, b, c) = (a−1)(b log(b)− c log(c))−a log(a)(b− c).
(75)

It remains to show that the function f(a, b, c) is posi-
tive for a, b > c. Note that it is a decreasing function
of c, as

d
dcf(a, b, c) = (1− a)(log(c) + 1) + a log(a)

≤ (1− a)(log(a) + 1) + a log(a)
= 1− a+ log(a)
≤ 0

(76)

using a standard inequality for the logarithm log(a) ≤
1 − a. We can thus only verify the positivity of the
function for the maximal possible value of c. There
are, however, two possibilities a ≥ b and b > a. For
a ≥ b we set c = b and obtain

f(a, b, c) ≥ f(a, b, b) = 0. (77)

For b > a we set c = a and get

f(a, b, c) ≥ f(a, b, a)
= (1− b)a log(a)− (1− a)b log(b).

(78)

To show that the last expression is positive, we divide
it by (1− a)(1− b) to get

a

1− a log(a)− b

1− b log(b), (79)

and note that the function x
1−x log(x) is decreasing

( d
dx

x
1−x log(x) = 1−x+log(x)

(1−x)2 ≤ 0 by Eq. (76)). There-

fore, b ≥ a implies

a

1− a log(a)− b

1− b log(b) ≥ 0 =⇒ f(a, b, c) ≥ 0.
(80)

Hence, the fraction 1−(1−x)n
yn−(y−x)n is increasing with n and

attains its minimum at the boundary n = 2 of the
interval [2,∞). Therefore, fn

gn
is maximized at n = 2,

which concludes the proof.

E Wigner-negativity measure
For a single-mode state ρ, the Wigner function
Wρ(β) is a quasi-probability distribution satisfying∫

dβ2 Wρ(β) = 1. The negativity of the Wigner func-
tion (W (β) < 0 for some β ∈ C) is an important non-
classical feature of the state, as argued in the main
text. A natural way to quantify this negativity is to
measure the total quasi-probability where the func-
tion Wρ takes negative values, that is to compute

NW (ρ) =
∫

dβ2 |Wρ(β)| −Wρ(β)
2 . (81)

This intuitive quantity was introduced in [11]. We
now show that NW (ρ) is a good ”measure” of Wigner
negativity in the sense that it can not be increased by
Gaussian operations.

Pure Gaussian operations are displacements Dγ =
eγa

†−γ∗a, single-mode squeezing SMSg = e
g
2 (a†2−a2),

phase rotations eiϕa
†a, or combination thereof. Con-

sider a single-mode state ρ with its Wigner function
Wρ(β) and its Wigner negativity measure NW (ρ).
The effect of a displacement % = DγρD†γ on the
Wigner function is a mere translation in phase space
W%(β) = Wρ(β − γ), which does not affect the
Wigner negativity measure NW (ρ) = NW (%). The
same goes for a phase rotation, which merely trans-
form W%(β) = Wρ(βeiϕ). For a squeezing operation

% = SMSgρSMS†g, the Wigner function is transformed
as

W%(β) = Wρ(β̃) (82)

where β = β′ + iβ′′ and β̃ = egβ′ + e−giβ′′. This
implies for the Wigner negativity measure that

NW (%) = 1
2

∫
dβ2 (|W%(β)| −W%(β))

= 1
2

∫
dβ′ dβ′′

(
|Wρ(β̃)| −Wρ(β̃)

)

= 1
2

∫
e−gdβ̃′ egdβ̃′′

(
|Wρ(β̃)| −Wρ(β̃)

)

= 1
2

∫
dβ̃2 (|Wρ(β̃)| −Wρ(β̃)

)

= NW (ρ).
(83)
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Figure 4: A sketch of the function F (P1) in Eq. (89)
that lower bounds the Wigner-negativity of a state NW (ρ),
for P1 = 〈1| ρ |1〉 ∈ [0.5, 1]. Any single-mode state ρ
with single-photon probability P1 (or higher) has Wigner-
negativity NW (ρ) above the blue line, as illustrated by the
shaded area.

Hence, NW (ρ) is also unchanged by squeezing. More-
over, the quantity

NW (p1ρ1 + p2ρ2) ≤ p1NW (ρ1) + p2NW (ρ2) (84)

is manifestly convex as |p1W1(β) + p2W2(β)| ≤
p1|W1(β)| + p2|W2(β)|. Hence, NW (ρ) is non-
increasing under mixtures of pure Gaussian opera-
tions. We conclude that NW (ρ) is a reasonable mea-
sure of Wigner negativity.

Let us now show how the Wigner negativity mea-
sure of a given state can be related to the weight of
its single-photon component. The Wigner function
for an arbitrary Fock state |n〉 reads [17]

Wn(β) = 2(−1)n
π

e−2|β|2Ln
(
4|β|2)

)
, (85)

with |Wn(β)| ≤ 2
π since e−x/2|Ln(x)| ≤ 1 (Ln are La-

guerre polynomials). Hence, for any mixture of Fock
states ρ =

∑
Pn |n〉〈n|, we have

Wρ(β) = P1W1(β) +
∑

n 6=1
PnWn(β)

≤ − 2
π

(
P1(1− 4|β|2)e−2|β|2 − (1− P1)

)
.

(86)

For P1 ≥ 1/2, the Wigner function is negative in
the phase-space region with

(1− 4|β|2)e−2|β|2 >
1− P1
P1

⇐⇒

|β|2 < 1
4

(
1− 2w0

(√
e

2
1− P1
P1

))

︸ ︷︷ ︸
≡`(P1)

,

(87)

where w0(x) is the principal branch of the Lambert
W function. Eq. (87) defines a disk

disk(P1) =
{
β ∈ C

∣∣∣ |β|2 ≤ `(P1)
}

(88)

in phase-space centered at the origin, where the
Wigner function is negative. We can now compute
the integral over this region

NW (ρ) ≥
∫

disk(P1)
dβ2|Wρ(β)|

=
∫ √`(P1)

0
2πrdr |Wρ(r)|

≥ 4
∫ √`(P1)

0
rdr

(
P1(1− 4r4)e−2r2 − (1− P1)

)

= F (P1) =
3(1− P1)

(
4w2 + 3

)

8w + P1 − 2

with w = w0

(√
e

2
1− P1
P1

)
for

(89)

that is plotted in Fig. 4. Notably, for P1 = 1 the
bound becomes tight NW (|1〉) = F (1) = 9

4
√
e
− 1 ≈

0.36. To show that the function F (P1) is convex, one
computes

F ′′(P1) = 3w (4w (w + 2) + 5)
8 (1− P1)P 2

1 (w + 1) 3 , (90)

which is positive since w ≥ 0. In the main text, we
defined the function F (P1) continued on the whole
interval P1 ∈ [0, 1] by simply setting F (P1) = 0 for
P1 ≤ 1

2 . Obviously, the continued function remains
convex. Furthermore, at P1 = 1

2 the derivative of the
function F is zero F ′(1/2) = 0, and since F ′′(P1) ≥ 0
we can conclude that F (P1) is non-decreasing on the
whole interval.

F Finite statistics
Consider n independent random variables X(i) ∈ [a, b]
with its mean E(X̄) = E( 1

n

∑
X(i)). The Hoeffding

theorem [15] gives a simple bound on the deviation
of the observed average X̄ after n trails from the ex-
pected value E(X̄)

P
(
X̄ − t ≥ E(X̄)

)
≤ exp

(
− 2nt2

(b− a)2

)
. (91)

In our case, the observables X(i) takes values in the
interval [−1, 3] so that (b− a)2 = 16.

Let us now defined X(i) as the minimum of two
variables X(i) = min{X(i)

T , X
(i)
R } such that X̄ =

min{X̄T , X̄R}. We have for the probability

P
(
X̄ ≥ x

)
= P

(
X̄T ≥ x and X̄R ≥ x

)

≤ P
(
X̄T ≥ x

)
,P
(
X̄R ≥ x

)
.

(92)
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We now use P̄1 + t ≥ x = min{E(X̄T ),E(X̄R)} + t
such that

P
(
X̄ ≥ P̄1 + t

)
≤ P

(
X̄ ≥ min{E(X̄T ),E(X̄R)}+ t

)

(93)
and consider two cases.

If E(X̄T ) ≤ E(X̄R) we use

P
(
X̄ ≥ min{E(X̄T ),E(X̄R)}+ t

)

= P
(
X̄ ≥ E(X̄T ) + t

)

≤ P
(
X̄T ≥ E(X̄T ) + t

)

≤ exp
(
−2nt2

16

)
.

(94)

Otherwise, we do the same with X̄R. For both cases
we find that

P
(

min{X̄T , X̄R} − t ≥ P̄1

)
≤ exp

(
−2nt2

16

)
(95)

or equivalently

P
(

min{X̄T , X̄R} − t < P̄1

)
≥ 1− exp

(
−2nt2

16

)
.

(96)
Writing the last expression in the form

P
(
q̂α(X̄T , X̄R) < P̄1

)
≥ 1− α (97)

we find

q̂α(X̄T , X̄R) = min{X̄T , X̄R} −
√

16 log(1/α)
2n , (98)

the latter being a confidence interval for P̄1.

For the calibration-dependent benchmark, one nat-
urally defines the random variable

ZT =





C1(t̂, η̂T ) (◦•)
0 (◦◦) or (•◦)
−C2(t̂, η̂T , η̂R) (••)

(99)

for the quantity P̂T∗1 (p) of Eq. (19), with positive con-
stants C1, C2 ≥ 0 giving rise to the confidence interval

q̂T∗α = Z̄T − (C1(t̂, η̂T ) + C2(t̂, η̂T , η̂R))
√

log(1/α)
2n

(100)
on the average single-photon weight P̄1. Defining ZR
similarly (with detector’s roles exchanged) gives rise
to the confidence interval

q̂R∗α = Z̄R − (C1(r̂, η̂R) + C2(r̂, η̂R, η̂T ))
√

log(1/α)
2n ,

(101)
by exchanging the roles of the detectors. Both are
confidence intervals on P̄1, that is

P
(
q̂T (R)∗
α < P̄1

)
≥ 1− α. (102)

It follows that

P
(
max{q̂T∗α , q̂R∗α } < P̄1

)

= P
(
q̂T∗α < P̄1 & q̂R∗α < P̄1

)

= P
(
q̂T∗α < P̄1

)

− P
(
q̂T∗α < P̄1 & q̂R∗α ≥ P̄1

)

≥ P
(
q̂T∗α < P̄1

)
− P

(
q̂R∗α ≥ P̄1

)

≥ 1− 2α,

(103)

hence

q̂∗α = max{q̂T∗α/2, q̂
R∗
α/2} (104)

is also a confidence interval on P̄1 with confidence level
1− α.

Finally, let us discuss the witness of Wigner neg-
ativity. First, we label by Q the measured value of
min{X̄T , X̄R} after n measurement rounds and con-
sider the case Q > 1/2. Given that Wρ(i)(0) ≤
1
π (1−2P (i)

1 ) for each state, for any collection of states
that have a positive average Wigner function at the
origin W̄ (0) = 1

n

∑n
i=1 Wρ(i)(0) ≥ 0, the average

single-photon weight is P̄1 ≤ 1
2 . For such a collec-

tion we thus have

P
(

min{X̄T , X̄R} ≥ Q
)

≤ P
(

min{X̄T , X̄R} −Q ≥ P̄1 −
1
2

)

≤ P
(

min{X̄T , X̄R} −
(
Q− 1

2

)
≥ P̄1

)

≤ exp
(
−2n

(
Q− 1

2
)2

16

)

(105)

by virtue of Eq. (95). In other words, for any collec-
tion of states with W̄ (0) ≥ 0 the probability to get a
benchmark value exceeding the observation Q > 1/2
is upper bounded by

p-value ≤ exp
(
−2n

(
min{X̄T , X̄R} − 1

2
)2

16

)
. (106)

In the calibration-dependent setting with the same
argument, the p-value can be obtained analogously.
For any value Q and an ensemble of random variables

Z
(1)
T , . . . , Z

(n)
T such that P̄1 ≤ 1

2 one has

P
(
Z̄T ≥ Q

)

≤ P
(
Z̄T −Q ≥ P̄1 −

1
2

)

≤ P
(
Z̄T −

(
Q− 1

2

)
≥ P̄1

)

≤ exp
(
−2n

(
Q− 1

2
)2

(C1 + C2)2

)
.

(107)
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Hence, the hypothesis P̄1 ≤ 1/2 is associated to the
p-value

p-value ≤ exp
(
− 2n(Z̄T − 1

2 )2

(C1(t̂, η̂T ) + C2(t̂, η̂T , η̂R))2

)
,

(108)
where Z̄T is now the value of Z̄T = 1

n

∑n
i=1 Z

(i)
T ob-

served in the experiment. Exchanging the roles of the
detectors we also obtain

p-value ≤ exp
(
− 2n(Z̄R − 1

2 )2

(C1(r̂, η̂R) + C2(r̂, η̂R, η̂T ))2

)
.

(109)
Given the observed data (n◦◦, n•◦, n◦•, n••) both
bounds are valid statements about all collections of
states with P̄1 ≤ 1

2 . One can then simply choose the
most favorable bound, that is

p-value

≤ min
{

exp
(
− 2n(Z̄T − 1

2 )2

(C1(t̂, η̂T ) + C2(t̂, η̂T , η̂R))2

)
,

exp
(
− 2n(Z̄R − 1

2 )2

(C1(r̂, η̂R) + C2(r̂, η̂R, η̂T ))2

)}

(110)

where Z̄T = 1
n (C1(t̂, η̂T )n◦• − C2(t̂, η̂T η̂R)n••) and

Z̄R = 1
n (C1(r̂, η̂R)n•◦ − C2(r̂, η̂Rη̂T )n••).

G Multi-mode product states
We now consider multi-mode product states of the
form

% =
⊗

k

ρk, (111)

where the state of each mode ρ[k] is associated to a
probability vector p[k], as defined by the expected val-
ues of the operators in Eq. (2). For multi-mode states,
we do not have access to individual values of p[k]. In-
stead, a detector does not click if none of the modes
triggers a click. Hence, for the state %, the observed

probabilities satisfy p◦◦ =
∏
k p

[k]
◦◦ , p ◦ =

∏
k p

[k]
◦ ,

and p◦ =
∏
k p

[k]
◦ . Denote P

[k]
1 = 〈1| ρk |1〉 the

single-photon probability for the mode k. Under
the assumption that the beam splitter is balanced

p
[k]
◦ = p

[k]
◦ =

∑
n P

[k]
n

1
2n we will show in the next

section that

P̃T1 (p) = 1
2(12 p◦ − 9 p◦◦ − 4) ≤ max

k
P

[k]
1 . (112)

The case of unbalanced beam splitter is analogous
with the single-mode case, we introduce P̃R1 (p) which

is obtained from the definition of P̃T1 (p) (given in

Eq. (112)) by replacing p◦ by p ◦. Since either p
[k]
◦ ≥

p
[k]
◦ or p

[k]
◦ ≤ p[k]

◦ holds for all modes k, the minimum

of p
[k]
◦ and p

[k]
◦ is a lower bound on

∑
n P

[k]
n (λ) 1

2n . We
deduce that

max
k

P
[k]
1 ≥ P̃1(p) = min{P̃T1 (p), P̃R1 (p)}. (113)

Under the assumption that the source produces a
multi-mode product state % of the form given in
Eq. (111), we thus deduce that there is a mode k∗,
that can in principle be filtered out, such that the
corresponding state ρ[k∗] satisfies 〈1|ρ[k∗]|1〉 ≥ P̃1(p).

G.1 The proof of Eq. (112)
Consider a multi-mode product state % =

⊗
k ρk with

P
[k]
1 ≤ P in each mode. We label (p[k]

◦ , p
[k]
◦◦ ) the statis-

tics associated to ρk and (p◦ , p◦◦) the statistics asso-
ciated to ρ. For a balanced beam splitter, we have

(p[k]
◦ , p

[k]
◦◦ ) ∈ QP , with

QP = Polytope
{

(0, 0),
(

1 + P

4 , 0
)
,

(
2− P

2 , 1− P
)
, (1, 1)

}
.

The probabilities p◦ and p◦◦ satisfy

p◦ =
n∏

k=1
p

[k]
◦ ,

p◦◦ =
n∏

k=1
p

[k]
◦◦ .

(114)

Our first aim is to analyze the possible set of values
Q∞P = {(p◦ , p◦◦)} for all n from 1 to∞ and in partic-
ular, to show that Q∞P ⊂ QP for P ≥ 1

2 . Naturally,
we are interested in the extreme points of this set.

Eq. (114) is linear in all points (p[k]
◦ , p

[k]
◦◦ ), hence the

extreme points of Q∞P are obtained by combining the
vertices of QP .

Whenever a single vertex (p[k]
◦ , p

[k]
◦◦ ) = (0, 0) appears

in the product of Eq. (114), it results in (p◦ , p◦◦) =
(0, 0). Similarly, if the vertex (p[k]

◦ , p
[k]
◦◦ ) =

( 1+P
4 , 0

)

is chosen for at least one mode k, p◦◦ = 0 and

p◦ = 1+P
4
∏
j 6=k p

[j]
◦ ≤ 1+P

4 . This means that the
point (p◦ , p◦◦ = 0) remains inside the original poly-
tope QP . We can thus remember that (0, 0) and( 1+P

4 , 0
)

are points of Q∞P , but ignore these vertices
in the further construction. Analogously, all modes

with (p[k]
◦ , p

[k]
◦◦ ) = (1, 1) do not change the value of the

product, and we can also ignore this vertex. Hence,
the only products in Eq. (114) that are potentially
not in QP are of the form

(p◦ , p◦◦)n =
((

2− P
2

)n
, (1− P )n

)
(115)

for n ≥ 2. Let us first consider the point (p◦ , p◦◦)2.
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Figure 5: (Full line) Representation of P̂T↑1 (P ) as a function
of P (full blue line) and an upper-bound (dashed orange
line) given by a simple linear function of the form 1

3 + 2
3P ≥

P̂T↑1 (P ).

It remains inside QP if and only if

4p◦ − 3p◦◦ − 1 ≤ P

4
(

2− P
2

)2
− 3(1− P )2 − 1 ≤ P

P − 2P 2 ≤ 0

P ≥ 1
2 .

(116)

Naturally, if (p◦ , p◦◦)2 ∈ QP the next points
(p◦ , p◦◦)n are also in QP . Therefore, Q∞P ⊂ QP for
P ≥ 1

2 . This means that for any state of the form

% =
⊗

k ρk, with P
[k]
1 ≤ 1/2 ≤ P , 4p◦ −3p◦◦−1 ≤ P.

In order to extend the analysis to any value of P , we
would need to analyze Q∞P for a arbitrary P , which is
cumbersome. Instead, we analyze the maximal value
that P̂T1 (p) takes on Q∞P . We know that it takes its
maximum value on one of the vertices (p◦ , p◦◦)n, and
denote these values

P̂T1 (n) = 4
(

2− P
2

)n
− 3(1− P )n − 1, (117)

for n ≥ 1. Its maximal value in Q∞P is thus given by

P̂T↑1 (P ) = sup
p∈Q∞

P

P̂T1 (p)

= sup
n≥1

P̂T1 (n).
(118)

Let us now look at P̂T1 (n) as a function of a continuous
parameter n ∈ [0,∞), and compute its derivative

d

dn
P̂T1 (n) = 4Xn log(X)− 3Y n log(Y ) (119)

with X = 2−P
2 and Y = 1 − P . P̂T1 (n) admits a

unique local extremum d
dn P̂

T
1 (n) = 0 at

n∗ =
log
(

4 log(X)
3 log(Y )

)

log(X)− log(Y ) . (120)

Furthermore, one easily sees that P̂T1 (0) = 0,
P̂T1 (∞) = −1 and P̂T1 (1) = P and hence P̂T1 (n∗) is
the global maximum of the function.

Next, we recall that n can only take integer values.
Thus, the maximal value reads

P̂T↑1 (P ) = max{P̂T1 (bn∗c), P̂T1 (bn∗ + 1c). (121)

It is quite an irregular function, as can be seen
in Fig. 5. The boundary value P̂T↑1 (0) =
limP→0 P̂

T↑
1 (P ) = 1

3 can be computed analytically.
We show numerically that it is upper-bounded by a
simple linear function

P̂T1 (p) ≤ P̂T↑1 (P ) ≤ 1
3 + 2

3P, (122)

also can be seen in Fig. 5. By inverting the last in-
equality we find that

P̃T1 (p) ≤ P for

P̃T1 (p) = 3P̂T1 (p)− 1
2 = 1

2(12p◦ − 9p◦◦ − 4).
(123)

Therefore, for any value P such that P̃T1 (p) > P ,
we can conclude that at least one mode satisfies
maxk〈1|ρ[k]|1〉 > P .

G.2 Finite statistics
Here, in order to obtain a confidence interval we define
an independent random variable

YT =





4 (◦•)
−1/2 (◦◦)
−2 (•◦) or (••)

, (124)

with E(YT ) = P̃T1 (p). Similarly, we define YR by
exchanging the role of the two detectors and get
E(YR) = P̃R1 (p) with YT (R) ∈ [−2, 4]. The same exact
analysis as above yields a one-sided confidence inter-
val

q̃α(ȲT , ȲR) = min{ȲT , ȲR} −
√

36 log(1/α)
2n (125)

on the quantity maxk P [k]
1 averaged over all states

produced by the source. In the general multi-mode
case, the same quantity is a one-sided interval on

the quantity
∑
λ p(λ) maxk P [k]

1 (λ) averaged over all
states produced by the source.
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ber, Harishankar Jayakumar, Thomas Kauten,
Glenn S. Solomon, Radim Filip, and Gregor
Weihs. Efficiency vs. multi-photon contribution
test for quantum dots. Opt. Express, 2014. DOI:
10.1364/OE.22.004789.

[10] Ivo Straka, Ana Predojević, Tobias Huber,
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High-efficiency photon-number-resolving detector for improving heralded
single-photon sources

Lorenzo Stasi,1, 2, ∗ Patrik Caspar,1 Tiff Brydges,1 Hugo Zbinden,1 Félix Bussières,2 and Rob Thew1

1Department of Applied Physics, University of Geneva, CH-1211 Geneva, Switzerland
2ID Quantique SA, CH-1227 Geneva, Switzerland

(Dated: July 3, 2023)

Heralded single-photon sources (HSPS) intrinsically suffer from multiphoton emission, leading to a
trade-off between the source’s single-photon quality and the heralding rate. A solution to this prob-
lem is to use photon-number-resolving (PNR) detectors to filter out the heralding events where more
than one photon pair is created. Here, we demonstrate an improvement of a HSPS by heralding pho-
tons using a high-efficiency parallel superconducting nanowire single-photon detector (P-SNSPD)
with PNR power. Specifically, we show a reduction in the g(2)(0) of the heralded single photon by
(26.9± 0.1)% for a fixed pump power, or alternatively, an increase in the heralding rate by a factor
of 1.368±0.002 for a fixed g(2)(0). We also demonstrate that such a PNR device can reveal thermal
photon-number statistics of unheralded photons, which is enabled by our ability to construct its full
input-output response function. These results are possible thanks to our P-SNSPD architecture that
ensures non-latching operation with no electrical crosstalk, which are essential conditions necessary
to obtain the correct photon-number statistics and also faster recovery times, therefore enabling
fast heralding rates. These results show that our efficient photon-number-resolving P-SNSPD ar-
chitecture can significantly improve the performance of HSPSs and can precisely characterize them,
making these detectors a useful tool for a wide range of optical quantum information protocols.

I. INTRODUCTION

Over the past decades, there have been remarkable de-
velopments in the field of quantum technologies. In par-
ticular, photonic systems employing single photons have
been used in a variety of applications, ranging from quan-
tum communication and repeater protocols [1, 2] to lin-
ear optical quantum computing [3–5] and Gaussian boson
sampling [6–8]. A convenient and versatile tool to gen-
erate single photons are heralded single-photon sources
(HSPS) [9, 10]. They have the advantage of operating at
room temperature, are wavelength and bandwidth tun-
able, and can produce indistinguishable and pure pho-
tons [11–13].

The photon generation mechanism in HSPSs is, how-
ever, probabilistic and multi-photon events can also oc-
cur. Such events are undesired, leading to a decrease in
the single-photon fidelity [14]. Therefore, to minimize
their impact, HSPSs are often used in the low-squeezing
regime (µ≪ 1, where µ is the mean photon-pair number
per pump pulse). However, in such a regime the proba-
bility of emitting vacuum states increases, reducing the
generation rate of single photons.

A possible solution to this problem is to use a photon-
number resolving (PNR) detector as the heralding detec-
tor. In this way, it is possible to filter out events when
more than one photon is detected, therefore lowering the
multi-photon contribution in the heralded state. In prin-
ciple, such a scheme would allow one to work with a
higher µ, making it possible to increase the heralding
rate towards the theoretical limit of 25% of the pump

∗ Corresponding author: lorenzo.stasi@idquantique.com

rate [15].
Transition-edge sensors (TES), have shown to be able

to distinguish high numbers of photons with high proba-
bility [16, 17]. However, the long recovery time of several
microseconds precludes their application in high rate ex-
periments, limiting their operation to the hundreds of
kHz regime. In addition, TESs need ultra-low temper-
atures (< 100mK) which requires a complex cryogenic
system.

Recently, superconducting nanowire single-photon de-
tectors (SNSPD) have demonstrated few-photon PNR ca-
pability based on the signal’s slew rate [18] or on the am-
plitude of the voltage pulse when used in combination
with an impedance-matching taper [19]. Both methods
have been employed in recent experiments to improve
the heralded g(2)(0) measurement of HSPSs [20, 21]. In
the first approach, one can either fit the waveform’s ris-
ing edge or use a differentiating circuit to retrieve the
photon-number event, which requires detectors with very
low timing jitter. In the second scenario, the impedance-
matching taper acts as a kinetic inductive element, which
increases the recovery time of the overall detector, po-
tentially limiting its usage at high repetition rates. Ad-
ditionally, to be able to resolve photon-number states,
photons need to arrive with minimum delay between each
other, limiting light pulses to tens of ps [19].

A promising alternative technology is based on
SNSPDs in a parallel configuration (P-SNSPD) [22–24].
This consists of an array of several pixels (the single
SNSPD element) which are electrically connected in par-
allel. With respect to an array of independent pixels,
which would require one coaxial cable per pixel for the
read-out, a P-SNSPD requires only one, which is a prac-
tical advantage. In fact, information on the number of
pixels that clicked can be extracted directly from the sig-
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2

nal amplitude’s only, so a full digitalization and anal-
ysis of the trace or fast and precise electronics are not
necessary, which can ease the photon-number discrimi-
nation process. Hence, a P-SNSPD can be used with
any discriminator-based time-tagging device. In addi-
tion, the active detection area covered by the P-SNSPD
is the same as a single-meander SNSPD, resulting in pix-
els of shorter length that can recover faster thanks to the
lower kinetic inductance.

However, ensuring that a P-SNSPD operates correctly
is not a trivial task. In fact, many effects can occur which
would alter the experimental results: thermal crosstalk,
electrical crosstalk and latching. The common solution
is to operate the detector at a lower bias current to miti-
gate the thermal crosstalk and the current redistribution
effect that causes the electrical crosstalk (and possibly
latching). However, such a solution is not effective at
high count rates and, more importantly, it lowers the
system detection efficiency of the device, which is clearly
non-ideal for optimal operation of a HSPS. In order to
solve these problems altogether, we developed a novel
P-SNSPD design that can reach high detection efficiency
and high detection rate in a latch-free regime, while op-
erating the detector at the optimal bias current value.
Detailed information of this architecture can be found in
Ref. [23]. We also investigated the PNR performance of
our novel P-SNSPD design in Ref. [24], where the full in-
put-output response function of the detector is obtained
thanks to the development of a new analytical model
that describes the multi-photon detection probabilities.
Therefore, thanks to such developments, our P-SNSPD
can be used to measure photon-number statistics in high
repetition rate regimes.

Another important aspect regarding single-photon
sources is the characterization of their emission statistics.
More generally speaking, it is paramount to understand
if a particular quantum system may suffer from multi-
photon emission (as a thermal source does) and to quan-
tify it [25–27]. To this end, one needs a PNR detector
with a fully mapped input-output response function that
displays a clear distinction between the different gener-
ated signals in order to correctly assign each one of them
to the corresponding photon-count event (as a P-SNSPD
does). In fact, it is only in this way that it is possible
to correctly reconstruct the emitting light statistics of a
source.

This paper reports on the improvements to a HSPS
that can be achieved through the use of a high (> 80%)
single-photon-efficiency P-SNSPD, when used to distin-
guish multi-photon detection events. We first introduce
the theoretical tools that we use to describe the employed
source and the detectors. Then we conduct two exper-
iments, first we show the improvement from using the
P-SNSPD as a heralding detector as part of a HSPS with
regard to improving the g(2)(0) of the heralded single-
photon state. Second, we show that a P-SNSPD can
be used to correctly measure and reconstruct the ther-
mal statistics of the HSPS. We benchmark our result by

retrieving the unconditional g(2)(0) on a single spatial
mode. This result demonstrates that our P-SNSPD can
be used as a quantum metrology tool for source charac-
terization [25–27].

II. THEORY

The ideal state generated by a spontaneous parametric
down-conversion (SPDC) source is a two-mode squeezed
vacuum (TMSV) state described by [28]

|Ψ⟩si =
√
1− λ2

∞∑

n=0

λn |nn⟩si

=
∞∑

n=0

√
µn

(µ+ 1)n+1
|nn⟩si ,

(1)

where λ = tanh r with the squeezing parameter r and the
mean photon number µ = sinh2 r = λ2/(1 − λ2). Note
that the marginal states of the signal (s) and idler (i)
modes are thermal states with photon-number probabil-
ity distribution

pn =
µn

(µ+ 1)n+1
. (2)

A standard measurement to probe a SPDC source
is represented by the second-order autocorrelation func-
tion [28]

g(2)(0) =
⟨n̂(n̂− 1)⟩

⟨n̂⟩2 =

∑
n n(n− 1)pn(∑

n npn
)2 , (3)

where n̂ is the photon-number operator and pn the
photon-number probability distribution of the state. To
this end, two different measurements can be performed on
a SPDC source, unconditional and heralded g(2)(0). The
former is measured on one mode of the state and gives
information on the statistical nature of a source and on
the spectral purity of the generated photons. The latter
instead is measured on one mode given a heralding de-
tection on the other mode of the state and quantifies the
amount of multi-photon pairs that are generated from
the SPDC source.

First, we consider the scenario shown in Fig. 1(a), in
which the signal photon is sent to a P-SNSPD acting as a
heralding detector, Dh, and the idler photon is sent to a
50/50 beam splitter followed by two threshold SNSPDs,
Da and Db, which are only able to distinguish between
0 or at least one photon. In order to obtain analyti-
cal equations describing the single and coincidence detec-
tion probabilities per pump pulse, we use the approach of
Ref. [29]. In this formalism, the TMSV state ρ = |Ψ⟩⟨Ψ|si
can be expressed as 4× 4 covariance matrix with µ as a
single free parameter. Furthermore, the action of beam
splitters can be modeled by Gaussian unitary operations.
The formalism additionally allows modes to be traced
out, and so we are able to model transmission loss on
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a given mode by introducing an auxiliary mode, apply-
ing a beam splitter operation between the two modes,
and finally tracing out the auxiliary mode. Moreover,
the formalism also allows for calculation of the expecta-
tion value of a given Gaussian state after projection onto
vacuum. Therefore, we can model threshold detectors
described by positive-operator-valued measure (POVM)
elements E0 = |0⟩⟨0| corresponding to a no-click outcome
and Ec = 1 − |0⟩⟨0| to a click outcome. To obtain a
model for the P-SNSPD, we note that each of the N pix-
els of the detector is a threshold detector. Therefore, a
physically intuitive model for the P-SNSPD consists of
a sequence of beam splitters, with splitting ratios cor-
responding to the characterized pixel efficiencies, and N
threshold detectors (see Appendix A for further details).

To additionally take account of the non-unit spec-
tral purity of our source, we assume a multimode state
ρ = ϱ1 ⊗ · · · ⊗ ϱM . Here ϱk = |Ψ⟩⟨Ψ|k, as defined in
Eq. (1), describes a single Schmidt mode with mean pho-
ton number λkµ, where the Schmidt coefficients are nor-
malized such that

∑
k λk = 1. In the case of a SPDC

source, the Schmidt coefficients can be estimated by a
measurement of the joint spectral intensity [30]. In this
way, we obtain a model to accurately describe the ex-
pected single and coincidence detection probabilities per
pump pulse and the heralded g(2)(0)

g
(2)
h (0) ≈ phphab

phaphb
, (4)

where ph is the probability of a heralding detection, pha(b)
the probability of a coincidence detection between de-
tectors Dh and Da (Db), and phab the triple-coincidence
probability between Dh, Da, and Db. For details on the
derivation and the explicit formulas for the probabilities,
see Appendix A.

Similarly, the unconditional g(2)(0) on one spatial
mode of the TMSV state can be evaluated as

g(2)unc.(0) ≈
pab
papb

, (5)

where pa(b) is the probability of a detection on Da (Db)
and pab the probability of a coincidence detection be-
tween Da and Db. We note that in the case where we
have direct access to the photon-number probability dis-
tribution pn of the state, e.g. by measuring it with a PNR
detector, one can also use Eq. (3) to obtain g(2)unc.(0).

III. EXPERIMENT

In a first experiment, as illustrated in Fig. 1(a), we em-
ploy a P-SNSPD as the heralding detector in a HSPS and
assess its performance by measuring g(2)h (0) for different
pump power settings. We use the P-SNSPD in two dif-
ferent configurations: as a threshold detector, where all
the (n ≥ 1)-click events are considered as a (single) de-
tection, and as a PNR detector, where only (n = 1)-click
events are considered.

= 1541.3 nms = 1546.1 nmi= 771.8 nmp

s

i
P-SNSPD

PBS

Type II
SPDC

PPKTP
76 MHzplaser

Pump 

var. 
NDF

signal

idler

SNSPD

s

i

P-SNSPD

PBS
50/50

BS

signal

idler
SNSPDs

Dh

Db

Da

DWDM
CH 39

(a)

(b)

Figure 1. Experimental setups used for the two different
measurements of (a) heralded g(2)(0) and (b) unconditional
g(2)(0). A Ti:sapphire laser in the picosecond pulsed regime
at λp = 771.8 nm with a repetition rate of 76MHz is used
to pump a 30mm long periodically poled potassium titanyl
phosphate (PPKTP) bulk nonlinear crystal with poling pe-
riod Λ = 46.2µm. In this way, non-degenerate signal (λs =
1541.3 nm) and idler (λi = 1546.1 nm) photon pairs are gener-
ated via type-II SPDC, where the pump power can be varied
with a reflective variable neutral density filter (NDF). Signal
and idler photons are separated by a polarizing beam splitter
(PBS) and coupled into single-mode optical fibers. (a) The
heralding signal photons are detected by the P-SNSPD while
the idler photons are sent to a 50/50 beam splitter (BS) and
detected by threshold SNSPDs. (b) The idler photons are
spectrally filtered by a dense wavelength division multiplexer
(DWDM) channel 39 and detected by the P-SNSPD for the
reconstruction of the thermal photon number statistics.

Figure 2. Oscilloscope persistence traces of the electrical sig-
nals generated by the P-SNSPD (500 ps/div and 100 mV/div).
On the left, are reported the waveforms histograms corre-
sponding to each n-click event, taken from the vertical white
slice. The n-click events are discriminated by setting different
voltage thresholds on the time tagger.

In a second experiment, shown in Fig. 1(b), we re-
place the 50/50 beam splitter and the two standard
SNSPDs by a single P-SNSPD to reconstruct the photon-
number probability distribution. Using Eq. (3) we calcu-
late g(2)unc.(0) and compare it to the values obtained when
using the more standard method, where a 50/50 beam
splitter and two threshold detectors are used, via Eq. (5).
Here, we additionally filter the idler mode with a dense
wavelength division multiplexer (DWDM) in order to ob-
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tain spectrally pure photons and suppress leaking signal
photons due to the finite extinction ratio of the polar-
izing beam splitter which separates the signal and idler
photons.

The spectral purity of the heralded single photons
is characterized by a joint spectral intensity measure-
ment [30, 31] and was found to be ∼ 84%. For increas-
ing pump power, we observe a decrease in purity due
to spectral broadening of the pump light caused by the
non-linearity of the spatial mode cleaning fiber (Coher-
ent 780-HP, 9 cm long) before the PPKTP crystal. We
take this into account for our theory model by fitting
Eq. (5) to the experimental data with the purity P as a
fit parameter, see Appendix A.

The total efficiencies (including transmission, coupling
and detection efficiencies) are measured in the setup
shown in Fig. 1(a) at low pump power (µ ≈ 5 × 10−4)
using the method described in [32]. We obtain the val-
ues ηh = (Cha + Chb)/(Ca + Cb) = 0.6348(5), ηa =
2Cha/Ch = 0.6293(6) and ηb = 2Chb/Ch = 0.5809(6),
where C denotes the (coincidence) counts (conditioned
on the pump pulse in 1 ns window) on the corresponding
detectors within 3min of integration time. Note that the
efficiencies ηa and ηb do not include the 50/50 beam split-
ter. Dark counts are negligible (<100 counts per second
for all detectors) and do not affect the measurements.

The two standard threshold detectors are in-house de-
veloped single-pixel SNSPDs made from molybdenum
silicide (MoSi) and have system detection efficiencies of
about 85% and 83%, respectively. The P-SNSPD con-
sists of four adjacent MoSi pixels, where the amplitude
of the electrical readout signal is dependent on the num-
ber of pixels that click in the detection process. To avoid
electrical and thermal crosstalk between the pixels, we
employed the architecture developed in Ref. [23]. In or-
der to characterize the full input-output response func-
tion of the P-SNSPD, light with known statistics (Pois-
sonian with µ = 1, in our case) is sent onto the detector.
The photon-counting statistics are collected and, by em-
ploying the analytical model described in Ref. [24], one
can obtain the conditional probability matrix P. Its el-
ements Pnm denote the probabilities of registering an n-
click event when m photons are incident on the detector.
Therefore, an initial photon-number probability distribu-
tion pm leads to an n-click probability recorded by the
P-SNSPD of qn =

∑∞
m=0 Pnm pm. Even though m can

go to infinity, practically it is stopped at a finite value M .
Therefore, P has dimension (N +1)× (M +1), where N
is the number of pixels of the P-SNSPD. By inverting P,
the incident photon-number probability distribution pm
can be reconstructed from the detected click probability
distribution qn. In our case for N = 4 and M = 9,
we measured P11 = 84%, P12 = 55%, P22 = 42%,
P13 = 31% and P14 = 17% (the full P matrix can be
found in Appendix B). The time taken for a full recovery
of the efficiency after a detection is < 40 ns and is ob-
tained by measuring the probability distribution of the
time between two consecutive detections [24].

For the photon-number discrimination, the electrical
readout signal of the P-SNSPD is separated in two by a
coaxial power splitter and discriminated by a time con-
troller (ID Quantique, ID900) at two different voltage
thresholds, corresponding to a detection of n ≥ 1 pho-
tons and n ≥ 2 photons (see Fig. 2). In the second exper-
iment, where the photon-number probability distribution
is reconstructed, we also use a third discrimination level
corresponding to a detection of n ≥ 3 photons. The time
controller additionally takes the electrical pickup signal
from the pump laser and the readout signals from the
threshold SNSPDs. All detection events are taken within
a 1 ns time window with respect to the pump pulses to
reduce dark count contributions, and their timestamps
are saved for the data analysis.

IV. RESULTS

The results of the first experiment (see Fig. 1(a)),
where we use the P-SNSPD as the heralding detector for
the HSPS, are shown in Fig. 3. We calculate the mean
photon number µ from the measured probability of de-
tecting a heralding photon, ph, in the threshold configu-
ration together with the characterized total efficiency of
the heralding photons ηh and the Schmidt coefficients λk
obtained from a fit of Eq. (5) to the corresponding mea-
sured data (see Eq. (A1) in Appendix A). The values for
g
(2)
h (0) are calculated according to Eq. (4), where the blue

points correspond to the threshold configuration of the
P-SNSPD and the red points to the PNR configuration.
The solid lines are obtained from the theoretical model
described in Sec. II with the characterized total efficien-
cies ηh, ηa, ηb and λk as defined in Sec. III. The shaded
areas around the solid lines mark the regions with a dif-
ference in spectral purity of ±4% and the dashed lines
show the theory calculation for a spectrally pure source.

The ratio between the blue and the red data is
g
(2)
h,thr(0)/g

(2)
h,PNR(0) which is the factor by which the

heralding rate can be increased when switching from
threshold to PNR heralding mode while keeping a fixed
g
(2)
h (0) ≪ 1. In our experiment, we obtain 1.368± 0.002,

averaged across all µ values, which inversely corresponds
to a reduction in g(2)h (0) of 26.9(1)%. It should be noted
that, in this demonstration, no spectral filtering of the
heralding photons has been performed, in order to show
the maximum achievable improvement in g(2)h (0) with our
PNR detector.

As described in Sec. III, in the second experiment (see
Fig. 1(b)) we reconstruct the photon-number probability
distribution of one mode of the TMSV state by measuring
the click probability distribution with the P-SNSPD. We
then calculate g(2)unc.(0) using Eq. (3) and compare it to
the value obtained by the standard method using Eq. (5).
The results for different mean photon numbers are shown
in Fig. 4 and display g

(2)
unc.(0) ≈ 2 which confirms the

thermal nature of our source.
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Figure 3. Heralded second-order autocorrelation function as a
function of the mean photon number µ. The blue points cor-
respond to the case where the P-SNSPD operates in threshold
configuration (thr.), whereas the red points show the measure-
ments for PNR configuration. The solid lines are obtained
from the theoretical model with the same purity as in the
experiment, where the shaded areas mark the spectral purity
interval of ±4%. The dashed lines show the behavior for a
source with purity P = 1.
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Figure 4. Unconditional second-order autocorrelation mea-
surement on the spectrally filtered idler mode of the SPDC
source. The red data correspond to the measurement with
the P-SNSPD, whereas the blue data are obtained with the
standard method using a beam splitter and two threshold de-
tectors.

The error bars for the P-SNSPD were calculated
through a Monte Carlo method with 103 iterations. In
each iteration, to characterize P, the Poissonian input
state used for the detector characterization is randomly
picked from a Gaussian distribution centered at µ = 1
(the experimental value) with a standard deviation of
σ = 0.05. In this way, we take into account the un-
certainties of our characterization setup (see Ref. [24]
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This work
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Figure 5. Reduction in g
(2)
h (0) as a function of the total ef-

ficiency of the heralding photons ηh. The solid lines are ob-
tained from the theoretical model for a spectrally pure source
with fixed µ = 10−3. For the 14- and 11- pixel PNR detec-
tors, we assume uniform light distribution across the pixels.
The crosses are calculated from the measured values and the
squares are obtained by assuming unit efficiency on the source
side, i.e. ηh = P11.

for more details). The obtained matrix P is then used
to reconstruct the light input statistics pm of the SPDC
source from the experimental photon-counting distribu-
tion of the P-SNSPD. As a last step in each iteration, the
value g(2)unc.(0) is computed from the reconstructed statis-
tics using Eq. (3).

V. DISCUSSION

In order to improve the HSPS, the most important
parameters to optimize are the PNR capability of the
detector and the total efficiency of the heralding photons
ηh, i.e. transmission through optical elements, coupling
and detection efficiency [20]. As shown in Fig. 5, for a
pure SPDC source combined with an ideal PNR herald-
ing detector (P = 1), the reduction in g

(2)
h (0), that is

1 − g
(2)
h,PNR(0)/g

(2)
h,thr(0), reaches 100% for ηh = 1. It

achieves a value of 50% for ηh = 0.67 and surpasses 90%
for ηh = 0.95. For ηh = 0.635, as measured in our ex-
periment, a perfect PNR detector would achieve a reduc-
tion of 46.5%, however, our reported value of 26.9(1)%
lies significantly lower. This is due to the fact that the
PNR capability of the detector to correctly detect an in-
coming higher-photon-number state is still limited by the
non-resolvability of two photons hitting the same pixel.
Another possible cause is the non-unity efficiency of the
detector: it is possible that if two photons arrive on two
different pixels, only one is detected. In order to increase
the PNR capability of our P-SNSPD, the number of pix-
els needs to be increased while still maintaining good
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Table I. Comparison of different parameters between PNR SNSPDs used to improve a HSPS. The heralded single-photon rates
Rhsp are calculated from a fit to the measured data at µ = 0.005 and have been estimated for the other references. For Ref. [20],
we assume ηa and ηb equal to ηh, since their values were not reported.

Ref.
PNR

method P11 P12 P22

Full
recovery

time ηh

g
(2)
h (0)

reduction
Rhsp

(kcps)
Pump rate

(MHz)

[20] Slew rate 80-86 % — — < 100 ns 29.6 % 13 % 4.4 10

[21] Slew rate 71 % 45.8% 45.8% 100 ns 31.9% 20% 0.64 1

This work
Signal’s

amplitude 84 % 55% 42% < 40 ns 63.5% 26 % 146 76

amplitude discrimination of the electrical readout signal
between different photon-number detection events. In
addition, a uniform light distribution over the pixels can
be obtained by exploiting an interleaved design, which
reduces the probability of having more photons arriving
at the same pixel [33] (e.g. for the same single-photon-
detection-efficiency, the P22 would become 53 %). To give
more context, by exchanging our P-SNSPD with the re-
cently reported multi-pixel detector [34] composed of 14
interleaved pixels, the achievable g(2)h (0) reduction would
be 47 %.

Lastly, we show that P-SNSPDs can correctly recon-
struct the thermal statistics of an SPDC source thanks
to our access to the full P matrix and the clear dis-
tinction between each photon-count signal. To validate
our results, we retrieve the unconditional g(2)(0) values
via Eq. (3). As it can be seen from the results, the
g
(2)
unc.(0) obtained with the two different techniques match

very well, both in the absolute value and in the ampli-
tude of the error bars. This result demonstrates that
P-SNSPDs can effectively replace a 50/50 beam splitter
and two detectors used in the standard method, simplify-
ing the overall experimental apparatus. Hence, they can
for example be applied in protocols which require upper
bounds on the probability of having more than one pho-
tons in each spatial mode [2, 35]. It is important to note
that the approach does not rely on an accurate abso-
lute characterization of the P-SNSPD efficiency, keeping
the g(2)unc.(0) measurement efficiency-independent as in the
case of the more common-place method which uses two
detectors. However, this is not the case for the recon-
structed photon-number distribution, pn.

In Table I, and additionally in Fig. 5, we compare the
main results of this work with Ref. [20] and [21], which
also employ a PNR SNSPD to improve a HSPS. We re-
port a significant g(2)h (0) reduction thanks to the high
value of ηh in our experiment and the good P22 value of
the P-SNSPD. Furthermore, our heralded single-photon
rate (Rhsp) for a value of µ = 0.005 is over 30 times
higher than the rates reported in the previous works.
This result is mainly due to the high pump repetition
rate assisted by the fast detector recovery time that the
P-SNSPD can sustain in the operationally relevant low

squeezing regime. Increasing the number of pixels could
further improve the results we obtain, both in terms of
P22 and recovery time, which would reflect in a better
g
(2)
h (0) reduction and higher heralded single-photon rate.

VI. CONCLUSION

We have shown the benefit for a HSPS that a PNR
detector, such as a P-SNSPD, can bring when combined
with a SPDC source. Even though P-SNSPDs do not
possess perfect PNR capability, we already demonstrate a
significant reduction in the heralded g(2)(0) of 26.9(1)%,
compared to the threshold configuration. In addition,
the PNR capability of the P-SNSPD is not limited by
the timing jitter as in the case of a slew rate discrimina-
tion, or by super-short light pulses (tens of ps) as in the
impedance-matching taper approach. Lastly, to improve
our results further, the number of pixels of the P-SNSPD
need to be increased. In that case, not only a better
photon-number discrimination can be achieved, but also
an overall faster recovery time, thanks to the shorter me-
anders of the P-SNSPD structure. This result marks a
first step towards high-rate generation of single photons
which could be of use in repeater protocols [36]. We fur-
ther show the usefulness of our P-SNSPD for the task
of reconstructing the photon-number probability distri-
bution of pulsed light by measuring a thermal state. We
demonstrated that we can estimate g(2)(0) with a single
detector, which replaces a beam splitter and two thresh-
old detectors used in more common methods. Therefore,
such a PNR detector can be of great help in quantum
protocols, metrology applications, and source character-
ization.
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Appendix A: Theoretical model

We use a characteristic function based approach to
model our SPDC source and to derive the single and
coincidence detection probabilities [29]. We start with

the covariance matrix of a TMSV state and apply Gaus-
sian unitary operations corresponding to the action of the
beam splitters in our model as shown in Fig. 6. On each
mode, we apply a loss channel with the corresponding
transmittance ηa, ηb and ηh. Each detector is described
by a positive operator valued measure (POVM) with ele-
ment E0 = |0⟩⟨0|⊗M corresponding to a no-click outcome
and Ec = 1− |0⟩⟨0|⊗M corresponding to a click outcome
over all the spectral modesM . This leads to the following
detection probability of a detecting a heralding photon
per pump pulse

hN−1

hN

h2

h1
T1

T2

TN

TN−1

b

a

h

50/50

TMSV

b

a

Figure 6. Schematic representation of the theory model to calculate the single and coincidence detection probabilities. The
heralding mode of the two-mode squeezed vacuum (TMSV) state is subject to loss (ηh) and is then split into N modes before
being detected by threshold detectors (h1 to hN ) on each mode. The other mode of the TMSV state is sent to a 50/50 beam
splitter and further undergoes loss channels (ηa and ηb) before reaching the threshold detectors Da and Db.

ph =
N∑

k=1

trρ
(
1a ⊗ 1b ⊗ Ec,hk

⊗ E
⊗(N−1)
0,h¬k

)
=

N∑

k=1

(∏

m

1

1 + (1− Tk)ηhλmµ

)
−N

∏

m

1

1 + ηhλmµ
, (A1)

where {λm}Mm=1 denote the Schmidt coefficients (with
∑

m λm = 1) and Tk is the fraction of the light that reaches
pixel k of the heralding detector with

∑
k Tk = 1. Note that here and in the following, taking {Tk}Nk=1 models a

single-photon detection event on the P-SNSPD, but by setting N = 1 and T1 = 1 one obtains the behavior for the
detector in threshold configuration, i.e. detecting one or more photons.

Similarly to ph, we obtain the probability of a coincidence detection between the heralding detector Dh and detector
Da after the 50/50 beam splitter on the heralded mode

pha =
N∑

k=1

trρ
(
Ec,a ⊗ 1b ⊗ Ec,hk

⊗ E
⊗(N−1)
0,h¬k

)

= ph −
N∑

k=1

(∏

m

2

2 + [(1− Tk)(2− ηa)ηh + ηa]λmµ

)
+N

∏

m

2

2 + [(2− ηa)ηh + ηa]λmµ

(A2)

and the three-fold coincidence probability

phab =
N∑

k=1

trρ
(
Ec,a ⊗ Ec,b ⊗ Ec,hk

⊗ E
⊗(N−1)
0,h¬k

)

= pha + phb − ph +
N∑

k=1

(∏

m

2

2 + [(1− Tk)(2− ηa − ηb)ηh + ηa + ηb]λmµ

)

−N
∏

m

2

2 + [(2− ηa − ηb)ηh + ηa + ηb]λmµ
.

(A3)
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Figure 7. Measurement and theory model for the single and coincidence detection probabilities. The solid lines are obtained
from the theory model including the non-unit purity of our SPDC source whereas the dashed lines describe the behavior for a
pure source. (a) Probability of a heralding detection per pump pulse for the threshold and PNR configurations. (b) Detection
probabilities for detectors Da and Db. (c) Coincidence probability between detectors Dh and Da. (d) Coincidence probability
between detectors Dh and Db. (e) Coincidence probability for detections on Da and Db. (f) Triple-coincidence probability
between detectors Dh, Da and Db.

The detection probability of detector Da (and similarly for detector Db) is given by

pa =
N∑

k=1

trρ
(
Ec,a ⊗ 1b ⊗ 1⊗N

h

)
= 1−

∏

m

1

1 + ηaλmµ
(A4)

and the coincidence probability between detector Da and Db by

pab =
N∑

k=1

trρ
(
Ec,a ⊗ Ec,b ⊗ 1⊗N

h

)
= 1−

∏

m

2

2 + ηaλmµ
−
∏

m

2

2 + ηbλmµ
+
∏

m

2

2 + (ηa + ηb)λmµ
. (A5)

Those formulas are then used to calculate the theory values for the second-order autocorrelation functions according to
Eqs. (4) and (5). In Fig. 7, the theory model for all the different probabilities is shown together with the experimental
data.

For a spectrally pure source (i.e. λ1 = 1), the derived
formulas (A1-A5) simplify. In the case of non-unit spec-
tral purity P =

∑
λ2k < 1, but still P > 1

2 , we estimate P

by fixing two Schmidt coefficients λ1,2 = 1
2±
√

P
2 − 1

4 and

fitting g(2)unc.(0) ≈ pab/papb to the experimental value. In
our case, we find that the purity of the source decreases as
a function of µ, therefore a second-order polynomial is fit-
ted to the purity values obtained from g

(2)
unc.(0) to get the

function Pmeas.(µ) which is then used throughout in the
theoretical model. We attribute the decrease in purity

for increasing pump power to the nonlinearity of the spa-
tial mode cleaning fiber in our setup before the nonlinear
crystal. This behavior is confirmed by the measurement
of the pump spectrum as a function of pump power and a
simulation of the corresponding joint spectral amplitude
of the down-converted photon pairs [30, 37, 38].
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Appendix B: PNR characterization

Here, we report the results of the PNR characterization
of the four-pixel P-SNSPD and the full P matrix that we
obtain following the method described in Ref. [24]:

P =




1 0.161 0.026 0.004 0 0 0 0 0 0
0 0.839 0.557 0.312 0.170 0.093 0.051 0.028 0.015 0.008
0 0 0.417 0.600 0.640 0.619 0.576 0.526 0.478 0.433
0 0 0 0.084 0.183 0.269 0.338 0.392 0.432 0.463
0 0 0 0 0.007 0.019 0.035 0.054 0.075 0.096


 , (B1)

where each column indicates the number of photon sent
to the detector and each row the number of detected ones.

The single-pixel efficiencies are 3.48 %, 33.53 %,
41.25 % and 5.64%. Since the pixels are distributed one
next to the other, the outer ones are naturally less ex-

posed to light (due to the Gaussian beam profile of light
in single-mode fibers), thus displaying lower efficiency.
These values are used in the theoretical model to calcu-
late ηh and the normalized splitting ratios Ti.
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