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Distributional dominance criteria are commonly applied to draw welfare inferences about comparisons,
but conclusions drawn from empirical implementations of dominance criteria may be influenced by data
contamination. We examine a nonparametric approach to refining Lorenz-type comparisons and apply the
technique to two important examples from the Luxembourg Income Study database.

KEY WORDS: Distributional dominance; Lorenz curve; Robustness.

1. INTRODUCTION

This article addresses the issue of how practical comparisons
of income distributions can be founded on a sound statistical
and economic base when there is good reason to believe that the
data in at least one of the distributions are “dirty.” Dirt includes
the possibility of obvious gross errors in the data (such as arise
from coding or transcribing mistakes) and also other more in-
nocuous observations that in some sense do not really belong
to the income dataset. The problem is often handled prag-
matically; some empirical studies have concentrated on a sub-
set of the distribution delimited either by population subgroup
(e.g., taking-prime-age males only) or by arbitrarily excluding
some of the data in the tails (Gottschalk and Smeeding 2000).
Although this research technique seems sensible, the question
of whether it is appropriate remains open—“appropriateness”
here being understood in terms of the statistical properties of
the underlying economic criteria. This question matters because
the economic criteria are used explicitly or implicitly to make
normative judgments and perhaps policy recommendations.

Cowell and Victoria-Feser (2002) set the conditions under
which welfare judgments are valid with model contamination
(which includes the dirty data case) and concluded that second-
order rankings, such as Lorenz curves, are highly sensitive to
data contamination in the tail of the distributions. Starting from
this result, we propose a formalization of the practical but ad
hoc procedure of trimming with a family of ranking statistics.

In this article we develop the relationship between economic
ranking principles and statistical tools to derive a practical
method for making distributional comparisons in the presence
of data contamination. This method uses a family of dominance
comparisons based on the statistical concept of the trimmed
mean. The basic methodology is set out in Section 2. Consid-
erations of data contamination and their likely impact on the
estimates of statistics associated with distributional dominance
are discussed in Section 3. The application of these methods is
demonstrated in Section 4 using second-order dominance and
related Lorenz comparisons over time and between countries.

2. DISTRIBUTIONAL DOMINANCE WITH
“DIRTY DATA”

2.1 Informal Methods

Empirical studies of income distribution use informal rank-
ing criteria as a matter of routine. There are various good rea-

sons for doing so. They usually involve easy computations, and
they have a direct intuitive appeal; more important, they are
usually connected to deeper points that are particularly relevant
to applied welfare economists. Some prominent examples of
the informal approach are as follows:

• Pragmatic indices involving quantiles. These include the
semidecile ratio (Wiles 1974; Wiles and Markowski 1971)
and the comparative function of Esberger and Malmquist
(1972). An extreme example of the same type is the range,
literally the maximum income minus the minimum in-
come, but sometimes implemented in practice as a differ-
ence between extreme quantiles.

• The “parade of incomes” introduced by Pen (1971). This
provides a persuasive picture of snapshot inequality and of
the implications of an income distribution that is changing
through time (see, e.g., Jenkins and Cowell 1994).

• The use of distributive shares (sometimes known as quan-
tile shares).

The quantile method can be explicitly linked to formal wel-
fare criteria. For example, in Rawls’ work on a theory of justice
there is a discussion of how to implement his famous “differ-
ence principle,” which focuses on the least advantaged. To do
this, Rawls himself suggested that it might be interpreted rela-
tive to the median of the distribution (see Rawls 1972, p. 98).
So too can the distributive shares approach; changes in the rel-
ative income shares of, say, the richest and the poorest 10%
slices of the distribution can be directly interpreted in terms of
the principle of transfers (Dalton 1920).

2.2 A Formal Framework

Assume that the concepts of income and income receiver
have been well defined. An individual’s income is a number
x ∈ X, where X ⊆ R and R is the real line. Let F be the set
of probability distributions (distribution functions) with sup-
port X. An income distribution is one particular member F ∈ F.
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In this approach a statistic of any distribution F ∈ F is a func-
tional T(F); for example, the mean µ :F �→ R given by

µ(F) :=
∫

x dF(x). (1)

The properties of any functional T may play a role in both eco-
nomic and statistical interpretations. Of particular interest here
is the case where the range of T is a profile of values rather
than a single number as in the example of (1); T is then a family
of statistics. Individual family members may be of interest in
their own right; the behavior of the whole family when applied
to a pair of distributions F and G will provide important infor-
mation about distributional comparisons that is richer than that
provided by a single real-valued functional.

The basic distributional concept used here is a ranking, which
amounts to a partial ordering on the space of distributions F.
We use the symbol �T to denote the ranking induced on F by a
statistic T , from which a number of the concepts of strict domi-
nance, equivalence, and noncomparability are derived (see, e.g.,
Cowell and Victoria-Feser 2002). For example, T can be the
quantile function

Q(F;q) = inf{x|F(x) ≥ q} = xq (2)

with 0 ≤ q ≤ 1, which defines first-order dominance. The first-
order dominance criterion �Q is sometimes considered less
than ideal, and so it is of interest to consider the second-order
criterion (Cowell 2000). This is based on the cumulative income
functional,

C(F;q) :=
∫ Q(F;q)

x
x dF(x), (3)

with 0 ≤ q ≤ 1 and x := infX. By definition, C(F;0) = 0
and C(F;1) = µ(F). For a given F ∈ F, the graph of C(F,q)

against q describes the generalized Lorenz curve (GLC). The
relative Lorenz curve (Lorenz 1905) is obtained by standardiz-
ing C(F,q), the mean, that is,

L(F;q) := C(F;q)

µ(F)
, (4)

and the absolute Lorenz curve (Moyes 1987) by

A(F;q) := C(F;q) − qµ(F). (5)

The graph of L(F;q) against q is closely related to the first
moment function, that is, the function � :X �→ [0,1] defined
for any F ∈ F as �(x) = L(F;F(x)) = 1

µ(x)

∫ x y dF( y) (Kendall
and Stuart 1977). The (relative) Lorenz curve encapsulates the
intuitive principle of the distributional-shares ranking referred
to in Section 2.1. We examine the implementation of (3), (4),
and (5) in Section 4.

2.3 The Approach

To assume that data will automatically give a reasonable pic-
ture of the “true” picture of a distributional comparison would
obviously be reckless in the extreme. A prudent applied re-
searcher will anticipate that because of miscoding and misre-
porting and other types of mistakes, some of the observations
will be incorrect, and this may have a serious impact on dis-
tributional comparisons (Van Praag, Hagenaars, and Van Eck

1983). Obviously, if one had reason to suspect that this sort
of error were extensive in the datasets under consideration,
then the problem of distributional comparison might have to be
abandoned because of unreliability. But it is possible that there
might be a serious problem of comparison even if the amount of
contamination were small, so that the data might be considered
“reasonably clean.”

Let us briefly review a standard model of this type of prob-
lem. This approach is based on the work of Hampel (1968,
1974), Hampel, Ronchetti, Rousseeuw, and Stahel (1986), and
Huber (1981). Suppose that the “true” distributions that we
wish to compare are denoted by F and G, but because of the
problem of data-contamination we cannot assume that the data
we have at hand have really been generated by F and G. What
we actually observe instead of F is a distribution in some neigh-
borhood of F. An elementary case is one in which a mixture
distribution has been constructed by combining the “true” dis-
tribution F with a point mass at income z

F(z)
ε = [1 − ε]F + εH(z), (6)

where

H(z)(x) =
{

1 if x ≥ z
0 otherwise.

(7)

The degenerate distribution H(z) represents a simple form of
data contamination at point z; ε indicates the importance of
the contamination; the convex combination F(z)

ε is the observed
distribution, and F remains unobservable.

As we have noted, if ε is large, then we cannot expect to get
sensible estimates of income distribution statistics. But what if
the contamination were very small? To address this question
for any given statistic T , we use the influence function (IF),
given by

IF(z;T,F) := lim
ε→0

[
T(F(z)

ε ) − T(F)

ε

]
. (8)

Then, under the given model of data contamination (6), the sta-
tistic T is robust if the IF in (8) is bounded for all z ∈ X.

A more reasonable formalization is when H(z) is generalized
to any distribution H. In this case, all types of model deviations
and measurement errors can be considered as being included in
the mixture distribution. However, the formal study of the effect
of such model deviations on the statistic T would then become
impossible unless some structure were given to H. Moreover,
Hampel et al. (1986) showed that

sup
H

∥∥T
(
(1 − ε)F + εH

) − T(F)
∥∥ � ε sup

x
‖IF(x;T,F)‖,

which means that the reduction of H to H(z) does not reduce
the information on the bias of the statistic T under model devi-
ation, such as measurement errors. In other words, the IF gives
information on the behavior of T for any “contamination” dis-
tribution H.

Cowell and Victoria-Feser (1996, 2002) showed that most
inequality measures are nonrobust, but most poverty indices
with exogenous poverty lines are robust (see also Monti 1991).
However, the nonrobustness problem is more pervasive than
that which emerges in connection with inequality measures;
the same type of approach can be used to show that although
first-order dominance criteria are usually robust (for further
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discussion of the statistical implementation of first-order cri-
teria, see Ben Horim 1990; Stein, Pfaffenberger, and French
1987), second- and higher-order dominance criteria (and asso-
ciated ranking tools) are not (Cowell and Victoria-Feser 2002).
Moreover, Cowell and Victoria-Feser (2002) showed that the
worst bias on the second-order ranking statistics (as provided
by the IF) occurs when the contamination is in the tails of the
distribution. A case can then be made for adopting an approach
based on trimmed distributions. This approach certainly will not
prevent biases for any type of model deviation or measurement
error, but will guarantee that the largest potential biases are kept
under control.

3. ROBUST DISTRIBUTIONAL DOMINANCE

3.1 Trimmed Ranking Criteria

Because ranking criteria can be misleading in the presence of
data contamination, it is desirable to have a procedure that en-
ables one to control systematically for suspect values that may
distort distributional comparisons using second-order ranking
criteria. A natural approach would be to use an established tool
in the statistical literature, the “trimmed mean,” and extend the
idea to Lorenz curve analysis. The trimmed mean of distribu-
tion F with trimming parameter α is

X̄α(F) = 1

1 − 2α

∫ F−1(1−α)

F−1(α)

y dF( y)

= 1

1 − 2α

∫ 1−α

α

F−1(t)dt,

where α ∈ [0, 1
2 ) is the balanced trimming proportion. This es-

timator of location has intuitive appeal; one removes the αn
smallest and the αn largest observations in a sample of size n
and calculates the mean of the remaining observations. Note
that limα→.5 X̄α(F) = Q(F, .5); in the limiting case, as α ap-
proaches 50%, the trimmed estimate of the mean approaches
the median.

Likewise, consider trimmed Lorenz curves as estimators of
Lorenz curves. One must interpret the quantile and income-
cumulation functions (2) and (3). α-trimming the data means
that Q(F;q) ∈ (Q(F;α),Q(F;1 − α)) and thus q ∈ (α,1 − α).
However, it makes sense to consider a more general trimming
method that includes in particular the single-tailed trimming
case. Indeed, this case is appropriate when one can form an a
priori judgment about the nature of the contamination, for ex-
ample, when contamination is assumed to affect only the lower
tail of the distribution. Let α and 1 − ᾱ be the lower and up-
per trimming, and let α := α + (1 − ᾱ) be the total trimmed
amount. Then the α-trimmed generalized Lorenz, Lorenz, and
absolute Lorenz curves (see the similar concept of restricted
dominance, discussed in Atkinson and Bourguignon 1989) for
q ∈ (α,1 − ᾱ) are given by

cα,q := Cα(F;q) = 1

1 − α

∫ Q(F;q)

Q(F;α)

u dF(u), (9)

lα,q := Lα(F;q) = Cα(F;q)

Cα(F;1 − ᾱ)
, (10)

and

Aα(F;q) = (1 − ᾱ − α) · Cα(F;q) − Cα(F;1 − ᾱ) · (q − α)

(11)

[cf. (3), (4), and (5)]. From (9)–(11), we have that Cα(F;α) = 0,
Lα(F;α) = 0, Aα(F;α) = 0, and Lα(F;1 − ᾱ) = 1, Aα(F;
1 − ᾱ) = 0.

The IF’s of these trimmed Lorenz curves will be bounded
for all q because extreme values in the data are automatically
removed for all α,1 − ᾱ > 0. Trimmed Lorenz curves can be
thought of as Lorenz curves on a restricted sample in which
100α% of the bottom observations and 100(1 − ᾱ)% of the top
observations have been trimmed away. This practice is some-
times adopted in pragmatic discussions of inequality trends.
(See also the discussion of related issues by Howes 1996.)
Estimates can be obtained by replacing F with the empirical
distribution F(n)(x) = 1

n

∑n
i=1 H(xi)(x).

3.2 Confidence Intervals

When comparing distributions using ranking criteria, it is
also important to be able to provide confidence intervals for
the latter. Cowell and Victoria-Feser (2003) gave formulas for
several statistics, including ranking criteria for full and trimmed
samples. In particular, we have that the asymptotic covariance
of

√
nCα(F(n);q) and

√
nCα(F(n);q′) with q ≤ q′ is given by

ωqq′/(1 − α)2, where

ωqq′ := [
qQ(F;q) − αQ(F;α) − [1 − α]cα,q

]
× [[1 − q′]Q(F;q′) − [1 − α]Q(F;α) + [1 − α]cα,q′

]
− [

Q(F;q)[1 − α]cα,q − [1 − α]sα,q
]

+ Q(F;α)
[
(q − α)Q(F;q) − [1 − α]cα,q

]
, (12)

with sα,q := S(F;q) = 1
1−α

∫ Q(F;q)

Q(F;α)
u2 dF(u). For the Lorenz

curve ordinates, the asymptotic variance is

υqq′ = 1

(1 − α)2µ4
α

× [µ2
αωqq′ + cα,qcα,q′ωᾱᾱ − µαcα,qωq′ᾱ − µαcα,q′ωqᾱ],

with µα = Cα(F;1 − ᾱ). These covariances can be estimated
by their empirical counterpart (see Sec. A.1).

3.3 Choosing the Trimming Proportions

The sampling properties of the key distributional statistics
can provide a simple choice criterion. Let F̃α be the trimmed
distribution given by

F̃α(x) :=




0 if x < Q(F, α)

F(x) − α

1 − α
if Q(F, α) ≤ x < Q(F, ᾱ)

1 if x ≥ Q(F, ᾱ),

and let T be a statistic of interest. We consider the ratio of the
mean squared errors,

κ(α) := (T(F) − T̂(F))2 + var T̂(F)

(T(F) − T̂(F̃α))2 + var T̂(F̃α)
. (13)
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Indeed, there is no guarantee that T̂(F̃α) is a consistent estima-
tor of T(F), so that not only the variances, but also the poten-
tial bias of the statistics should be taken into account. (We are
gratefulul to two anonymous referees for pointing this out.)
The implied trade-off of robustness against efficiency enables
the researcher to make an informed choice about the extent of
trimming that may be reasonable in making distributional com-
parisons.

Now (13) clearly implies that this choice is conditional on
the specification of T . Which statistic would be appropriate?
It seems reasonable to require that this be one of second-order
distributional dominance, but this raises a further difficulty:
There is an uncountable infinity of statistics C(·;q), and select-
ing one or a few of these appears to be arbitrary. However, there
is a simple argument suggesting that one particular case is es-
pecially important. Not all values of q in the unit interval will
be relevant in computing efficiency under trimming; the very
process of trimming “nibbles away” some of the interval. If one
is interested in trimming of arbitrary size, then it seems to be
of particular interest to examine cases where T(F̃α) is well de-
fined for arbitrary α. In the case of a balanced trim, this implies
focusing attention on C(·; .5) or its relative Lorenz counterpart
C(·; .5)/µ(·).

κ(α) also depends on the underlying income distribution F.
For the purposes of illustrating the technique and to obtain an
idea of the efficiency losses involved, we used a number of ex-
amples of the Dagum type I distribution given by

f (x;β,λ, δ) = βδλ−βxβδ−1(1 + λ−1xδ)−(β+1). (14)

We have (see Kleiber and Kotz 2003) Q(F;q) = λ1/δ(q−1/β −
1)−1/δ and C(F;1) = λ1/δ�(β + 1/δ)�(1 − 1/δ)/�(β), which
were use to compute the theoretical values of T(F). Two ex-
amples are illustrated in Figure 1. From these two simulated
datasets, we computed the sampling variances for the trimmed
and untrimmed cases, with lower, upper, and balanced trims.

The results are illustrated in Figure 2, where the vertical axis
gives estimated values of κ(α) as defined in (13). One can see

(a) (b)

Figure 1. The Dagum Distribution: (a) (2, 2, 4); (b) (8, 4, 8).

(a) (b)

Figure 2. Efficiency Under Trimming for C(·, .5)/µ(·):
(a) Dagum(2, 4, 2); (b) Dagum(4, 8, 4). ( lower trim; upper
trim; balanced trim.)

that the estimated efficiency loss (or gain) depends on the un-
derlying model and the type of trim. For small trimming quanti-
ties, it is not very large; for larger trimming quantities, it can be
either quite large or reasonable. The efficiency loss is smaller
with lower trimming, which for more symmetric distributions
[like the Dagum(8,4,8)] can even be greater than 1! It is dif-
ficult to draw a general conclusion, however, and the results
presented here can provide at most a rough guideline.

4. EMPIRICAL APPLICATION

The trimming approach offers a practical tool for comparing
income distribution when one wants an explicit control for tak-
ing into account the influence of outliers. We use the analysis
of Section 3 to more carefully examine two aspects of conven-
tional wisdom concerning comparisons of income distribution.
In both cases the data are taken from the Luxembourg Income
Study (LIS) database and refer to real income per equivalent
adult distributed among individuals (see Sec. A.2).

4.1 Cross-Country Comparison: Sweden and Germany

The received wisdom suggests that 1980s Sweden was more
equal than Germany. But is this actually borne out by the
data, and if so, what are the implications for standard wel-
fare comparisons? To investigate this, we use data for Swe-
den 1981 and (West) Germany 1983. As shown in Figure 3,
we have FGERMANY �C FSWEDEN; the German income distri-
bution second-order (generalized Lorenz) dominates that for
Sweden. This conclusion is robust under trimming. But the
picture is different if we attempt to apply the criterion of ab-
solute Lorenz dominance. From the untrimmed data, we find
FSWEDEN ⊥A FGERMANY but under a very slight trimming of
both tails, it is clear that Sweden absolute Lorenz dominates
Germany FSWEDEN �A.005 FGERMANY (compare Figs. 4 and 5).
Currency units are 1981 U.S. dollars.

What of inequality? As Figure 6 shows, there is an ambiguity
for the raw data FSWEDEN ⊥L FGERMANY, which is due to a sin-
gle intersection of the relative Lorenz curves. Figure 7 depicts
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Figure 3. Generalized Lorenz Curves for Germany 1983 ( ) and Sweden 1981 ( ).

Figure 4. Absolute Lorenz Curves for Germany 1983 ( ) and Sweden 1981 ( ).

Figure 5. Absolute Lorenz Curves With .5% Balanced Trimming for Germany 1983 ( ) and Sweden 1981 ( ).

the truncation profiles, the position of the switchpoint (where
the relative Lorenz curves intersect) for two types of trim, ex-
pressed as functions of α − q∗∗(·) for the balanced two-tailed
trim (solid curve) and q∗(·) for the one-sided lower-tailed trim
(dotted curve). Denote the points where the truncation profiles
intersect the horizontal axis by α∗∗ and α∗. Then

q∗∗(0) = q∗(0) = .11,

q∗(α) = 0, α ≥ α∗ = .030,

and

q∗∗(α) = 0, α ≥ α∗∗ = .065.

We have FSWEDEN �Lα FGERMANY only if a trimming of 3% of
the observations is carried out on the lower tail (see Fig. 8), or
a balanced trimming of 6.5%. May we say that Sweden is less
unequal than Germany? Consider two points here.

First, we apply the analysis of Section 3.2 to compute con-
fidence intervals for the RLC of Germany 1983 and Sweden
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Figure 6. Relative Lorenz Curves for Germany 1983 ( ) and Sweden 1981 ( ).

Figure 7. Is Sweden More Equal Than Germany? ( , two tail; , one tail.)

Figure 8. Relative Lorenz Curves for Germany 1983 ( ) and Sweden 1981 ( ) With a 3% Bottom Trim.

1981 on 3% bottom-tailed trimmed samples. The results are
presented in Figure 9. The relative Lorenz dominance is indeed
significant, except for the first q. This result is not surprising,
because usually the sample sizes are large and thus the stan-
dard errors are small. If dominance is not significant, then this
should appear at the smallest or the largest q values.

Second, note the behavior of the truncation profiles. Both
q∗∗ and q∗ initially fall rapidly for α very close to 0 and there-

after decrease more gently. So the Lorenz comparison is cer-
tainly very sensitive to the presence or absence of the first few
observations (in either the one- or two-tailed case), but the is-
sue is clearly not just one of hypersensitivity to very small in-
comes. It seems unreasonable to suppose that the true picture is
of strict Lorenz dominance, in that at least 1,000 observations
would have to be discarded from the German data (n � 42,000)
for this conclusion to obtain.
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Figure 9. RLC of Germany 1983 ( ) versus Sweden 1981 ( ) With Confidence Intervals.

4.2 Inequality Over Time: The U.S. in the 1980s

Of course, the same technique may be applied to compar-
isons within one country but between two points in time. In
the United States, the conventional wisdom is perhaps even
sharper in its sketch of recent events; inequality rose over the
1980s (DeNavas-Walt and Cleveland 2002; Weinberg 1996).
Again, the fact is—perhaps surprisingly—that the raw data do
not reveal an unambiguous increase in inequality in the stan-
dard sense of relative Lorenz dominance. It may appear that this
is due principally to the presence of negative incomes in the
first centile group. As we will see, this is not quite the whole
story. Note first that FUS86 ⊥C FUS79; we do not have first- or
second-order distributional dominance (see Fig. 10; the gener-
alized Lorenz curves intersect at about q = .02, .85, etc.), but
FUS79 �A FUS86 (see Fig. 11). Again, monetary units are 1981
U.S. dollars. In addition, Figure 12 shows that FUS86 ⊥L FUS79.

The trimming procedure is more complex. The issue of neg-
ative incomes is disposed of by a very modest (<.5%) trim,
but there remains an issue of multiple intersections of the rela-
tive Lorenz curves at the bottom tail (with intersections between

q = .01 and q = .02 and q = .03 and q = .04). Figure 13 plots
q∗∗(α) and q∗(α) in this case. In view of the multiple intersec-
tions, these values are interpreted as the maximum switchpoint
between the two Lorenz curves for each value of α. We find that
α∗∗ = .06 and α∗ = .03. The outcome of the α-trimming pro-
cedure is interesting in that—in contrast to the Germany ver-
sus Sweden example—neither q∗∗(·) nor q∗(·) is monotonic.
After dropping some 300–350 observations (3%) in the single-
tailed trimming, or 600–700 observations (6%) in the two-tailed
trimming, one may then conclude that FUS79 �Lα FUS86 (see
Fig. 14). However, so much would have to be trimmed in either
case that again it appears unreasonable to suppose that the true
picture is one of strict Lorenz dominance.

There are some interesting points in common with the
Germany-versus-Sweden example. First, for values of α in the
range [0, .01], we find a relationship between the switchpoint
and α, which is clearly different from the relationship that
holds in the neighborhood of the points α∗∗ and α∗. Second,
the shape of the two-tailed trimming truncation profile closely
follows that of the one-tailed trimming. On multiplying by 1

2

Figure 10. U.S. 1986 ( ) Does Not Second-Order Dominate U.S. 1979 ( ).
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Figure 11. Absolute Lorenz Curves for U.S. 1979 ( ) and 1986 ( ).

Figure 12. Relative Lorenz Curves for U.S. 1979 ( ) and U.S. 1986 ( ).

Figure 13. Did Inequality Rise in the U.S.? ( , two tail; , one tail.)

the horizontal scale of the graph of q∗∗(·), we find that it lies
extremely close to that of q∗(·); dropping 2α% of the sample
in a two-tailed trimming has almost exactly the same impact
on the Lorenz intersection as dropping α% of the sample in a
lower-tailed trimming. Third, all of the action appears to come
from the lower tail. In the distributional comparisons reported
in Sections 4.1 and 4.2 we also carried out an upper-tailed ex-
periment; here the hypothesis is that the data contamination is

concentrated in the high incomes and can be interpreted as po-
tentially misreported data. However, in this case the ranking
results turned out to be insensitive to the trim.

5. CONCLUSION

Given that second-order distributional-dominance criteria are
known to be nonrobust, it is important to have practical meth-
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Figure 14. Relative Lorenz Curves for U.S. 1979 ( ) and U.S. 1986 ( ) With a 2% Bottom-Tailed Trimming.

ods of coping with the impact of potentially “dirty” data in ei-
ther tail of an income distribution. One-tailed or two-tailed (i.e.,
balanced) trimming provides an obvious way to extend the sim-
ple distributional-dominance criteria. In effect, the researcher
has the option of trading off efficiency of the distributional-
dominance statistic with robustness. In this way one can place
intuition about comparisons of empirical Lorenz curves on an
appropriate analytical foundation. Another approach would in-
volve trying to parameterize the upper or lower tail of the
income distribution using robust estimation. We treated this ap-
proach in an earlier article (Cowell and Victoria-Feser 2001).
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APPENDIX: ????

A.1 Computational Method

When using a database such as the LIS database, from which
the microdata cannot be recovered directly, LC or RLC with
confidence intervals at each chosen q can be computed follow-
ing this procedure:

1. Define the percentiles p (say p = 0, .01, .02, . . . ,1) and
trimming proportions α and 1 − ᾱ.

2. Extract the personal incomes and weights from the data-
base and sort the incomes and weights by incomes.

3. Define a new variable, empperc, composed of the cumu-
lative weights, and divide all elements by the maximum,
that is, the last element. Keep only the incomes and the
weights for which empperc is between α and ᾱ. This de-
fines the trimmed incomes, trinc, and weights, trwgt.

4. Define tottrwgt as the sum of all trwgt and define
nbtrinc as the number of elements in trinc.

5. Define a new variable, trempperc, composed of the cu-
mulative trwgt, and divide all elements by the maximum,
that is, the last element (and keep the value of the maxi-
mum of the cumulative trwgt in say totweight).

6. For each percentile p > 0, then do the following:

a. Select the elements of trinc and trwgt for which
trempperc is between p and the previous p; for exam-
ple, for p = .56, trempperc is between .56 and 0.55. Call
these trincp and trwgtp.

b. Define m1p as the sum of trincp·trwgtp divided
by tottrwgt, m2p as the sum of trincp·trincp·trwgtp di-
vided by tottrwgt, and xp as the maximum of trincp.

7. Define q = α + (1−α)p. Then for q > α, estimate cα,q by
the cumulative sum of the m1p, p ≤ q−α

(1−α)
and cα,α = 0,

and estimate sα,q by the cumulative sum of the m2p,
p ≤ q−α

(1−α)
and sα,α = 0. Note that µα = cᾱ .

The 95% confidence intervals for the GLC and the RLC are
(cq − 1.96ωqq; cq + 1.96ωqq) and (cq/µα − 1.96υqq, cq/µα +
1.96υqq), in which ωqq (and thus υqq) are estimated using the
estimates of cα,q and sα,q. Note that m1p and/or m2p can take
very large values depending on the measurement scale of the
incomes. For numerical reasons, may be useful to divide all in-
comes by a properly chosen quantity.

A.2 Data Specification

LIS permits comparison of different countries’ income distri-
butions based on consistent international definitions of income
and the income receiver. Accordingly, the same basic specifica-
tions were used for both the Germany and Sweden and the U.S.
1979 and U.S. 1986 comparisons in Section 4. The sample sizes
were as follows:

Germany 1983: 42,752

Sweden 1981: 9,625

U.S. 1979: 15,928

U.S. 1986: 12,600.

The income distributions were formed using the follow-
ing concept of equivalized incomes (Buhmann, Rainwater,
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Schmaus, and Smeeding 1988; Coulter, Cowell, and Jenkins
1992):

y = hhy

hhsizeα ,

where hhy is net family (unit) income after tax, hhsize is the
number of persons in the family unit, and α = .5. Each observa-
tion is given a weight, indwgt = hhsize ∗ hweight, to obtain dis-
tributions of income across individuals (Cowell 1984; Danziger
and Taussig 1979). The variable hweight is the family unit sam-
ple weight.

For calculating distributions for different years and in dollars,
the following data from the IMF Year Book 1994 were used:

1981 1983

Price-level consumption
Germany 106.3 115.6
Sweden 112.1 132.6

Dollar exchange rate
Germany 2.260 2.553
Sweden 5.063 7.667

[Received May 2003. Revised August 2005.]
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