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1 RESUME EN FRANÇAIS 
 

 L’immunité innée est un système immunitaire ancestral qui constitue une première ligne 

de défense lorsque des microbes ou des particules étrangères pénètrent dans l’organisme. Afin 

de neutraliser et d’éliminer ces « envahisseurs », deux principales stratégies ont été 

développées chez les mammifères : une voie soluble et une voie utilisant certains récepteurs 

exprimés à la membrane des monocytes/macrophages, des neutrophiles, des cellules 

endothéliales et autres. 

 

 La première voie implique des protéines solubles comme les protéines de liaison du 

mannose, des lipopolysaccharides, les protéines amyloïde sérique et C-réactive, les protéines 

du complément ainsi que certaines enzymes (lysozymes). Ces molécules sont spécialisées 

dans la reconnaissance de divers carbohydrates et lipides présents dans les microorganismes. 

Cette capacité de reconnaissance rend ces protéines efficaces pour attaquer et tuer les 

organismes pathogènes. Ce processus de neutralisation et de destruction se déroule de manière 

directe en induisant l’opsonisation de ces microbes par les cellules phagocytaires ; ou 

indirecte, en les présentant à d’autres cellules.  

 

 La seconde voie est caractérisée par des récepteurs (CD14, scavengers, mannose) 

présents à la surface de diverses cellules, capables de détecter spécifiquement les molécules 

étrangères. Après reconnaissance, les récepteurs internalisent ces molécules ou microbes à 

l’intérieur des cellules, qui les détruisent et les éliminent de l’organisme. En plus de cette 

fonction de clairance, certains récepteurs comme le CD14 peuvent médier l’activation des 

cellules après avoir lié des ligands bactériens. En effet, l’endotoxine ou LPS 

(lipopolysaccharide) détachée de la membrane externe des bactéries Gram-négatif a été 

proposé comme étant l’un des activateurs cellulaires les plus puissants au travers du récepteur 

CD14. La molécule de LPS se compose principalement d’une chaine polysaccharidique et 

d’une partie lipidique. La chaine polysaccharidique constitue la partie immunogénique de la 

molécule et peut varier en longueur, ce qui caractérise le sérotype de chaque bactérie Gram-

négatif. La partie lipidique nommée « lipid A » correspond à la portion cytotoxique du LPS 

reconnue par la LBP, une protéine de la phase aigue présente dans le plasma, ainsi que par le 

récepteur CD14. Ce dernier est ancré par une ancre glycosylphosphatidyl inositol (GPI) au 

niveau du feuillet externe de la double couche lipidique de la membrane plasmique. Il y a plus 
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de 10 ans, le CD14 a été découvert comme étant un récepteur capable de médier les effets du 

LPS sur les cellules de mammifères. Le transfert du LPS sur le CD14 s’effectue par le biais de 

la LBP capable de monomériser le LPS à partir d’agrégats de molécules LPS. Après la liaison 

du LPS au CD14, les cellules sont activées et le LPS est internalisé dans les cellules afin 

d’être détoxifié, puis éliminé. Il existe aussi une forme soluble du CD14 (sCD14) présente 

dans le plasma et les fluides biologiques. Ce CD14 soluble est également capable de lier le 

LPS avec l’aide de la LBP. Ainsi, le complexe LPS-sCD14 peut activer des cellules 

dépourvues de CD14 membranaire en se liant probablement à un co-récepteur présent à la 

surface de la cellule. La principale voie activée est celle de NF-κB. Ce facteur de transcription 

est retenu dans le cytoplasme par un inhibiteur naturel le I-κB qui se lie au NF-κB. Lorsque la 

voie des I-κB kinases est activée, I-κB est phosphorylé et dégradé par le système 

ubiquitine/protéasome. Le NF-κB libéré peut ainsi se diriger à l’intérieur du noyau et se fixer 

sur les sites de liaison NF-κB des promoteurs de gènes codant pour des médiateurs impliqués 

dans le processus inflammatoire. Dans les monocytes/macrophages, la voie des « mitogen-

activated protein kinase » (MAPK) est également activée par le LPS. Cette voie de 

signalisation intracellulaire inclut les voies des kinases « extracellular signal-regulated 

kinase» (ERK), « c-Jun N-terminal kinase » (JNK) et p38. Cette activation cellulaire mène à 

la libération de médiateurs biologiques (cytokines, chemokines,etc...) qui vont initier la 

réaction inflammatoire. Une telle réaction est essentielle pour activer le système de défense 

qui peut ainsi neutraliser et détruire les bactéries et les molécules bactériennes comme le LPS 

et procéder à la cicatrisation des tissus. Cependant, la production de ces médiateurs 

proinflammatoires doit être étroitement contrôlée et doit rester locale. En effet, une 

surproduction de médiateurs inflammatoires dans la circulation sanguine pourrait entrainer 

une réaction inflammatoire systémique, un phénomène typique du choc induit par 

l’endotoxine ou encore appelé « choc septique ». Les causes d’un tel dérèglement restent pour 

le moment inconnu, mais pourrait impliquer des composantes génétiques, biochimiques, 

physiologiques et environnementales qui prédisposeraient certaines personnes à ce type de 

choc. Chaque année le syndrome septique provoque la mort de 200’000 personnes seulement 

aux Etats-Unis. Actuellement, les traitements disponibles pour le choc septique restent limités 

et sont principalement des mesures empêchant l’aggravation des symptômes et des traitements 

de soutien des organes défaillants. Le LPS a été caractérisé comme étant une molécule 

puissante capable de reproduire un syndrome similaire à celui du sepsis après injection à des 

animaux. Sa reconnaissance par les cellules immunitaires a été depuis largement étudiée. Une 
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meilleure compréhension des mécanismes cellulaires et moléculaires sous-jacents à la 

pathologie du sepsis pourrait mener à la découverte de nouvelles cibles thérapeutiques. Il 

s’avère qu’une des étapes critiques de la pathogénèse du syndrome septique est la 

reconnaissance des bactéries ou des produits bactériens tels que le LPS par les cellules de 

l’hôte. C’est pourquoi nous avons souhaité dans cette thèse approfondir la compréhension des 

mécanismes intimes qui interviennent lors de l’intéraction de l’endotoxine avec la cellule 

humaine. Nous nous sommes également intéressés à une autre molécule de bactéries Gram-

négatif : la toxine aérolysine d’Aeromonas hydrophila, dont la liaison avec une ancre GPI de 

récepteurs de surface comme le CD14 est le point de départ d’effets cellulaires délétères 

irréversibles.  

 

 Comme mentionné précédemment, après avoir lié le CD14, le LPS est internalisé par les 

monocytes/macrophages, une étape importante pour la détoxification et l’élimination du LPS 

de l’organisme. Durant plusieurs années, l’internalisation du LPS a fait l’objet de nombreuses 

investigations. Cependant des questions sont restées en suspend à savoir par quelle voie le 

LPS est internalisé, si le CD14 internalise le LPS ou alors si ces deux molécules internalisent 

indépendemment. Dans cette thèse, nous avons tenté de répondre à ces interrogations. La 

question du rôle éventuel de l’ancre GPI du CD14 dans la localisation du récepteur à la 

membrane, dans l’activation des cellules induite par LPS, et dans l’internalisation du LPS a 

également été abordée. Afin de mener ces investigations, nous avons utilisé une lignée 

cellulaire humaine de promonocytes nommée THP-1 transfectée avec un plasmide contenant 

le gène sauvage du CD14 (wtCD14), ou un gène codant pour une forme transmembranaire 

chimérique du CD14 (tmCD14). Utilisant les propriétés de flotabilité différentielle des 

gradients de sucrose permettant la séparation de domaines membranaires dont la composition 

lipidique varie, nous avons pu montrer que les deux formes (wt et tm) de CD14 se 

retrouvaient dans différents domaines membranaires. Le tmCD14 a été localisé dans des 

domaines membranaires où se retrouvaient d'autres protéines transmembranaires, tandis que 

le wtCD14 se trouvait concentrer dans des domaines membranaires riches en lipides de type 

sphyngomyéline et cholesterol (« lipid rafts »). L’ancre GPI du CD14 semble donc importante 

pour cibler la localisation du récepteur dans des zones biochimiquement spécifiques de la 

membrane. Une analyse ultrastructurelle a pourtant permis de déterminer que les deux formes 

de CD14 étaient préférentiellement concentrées au niveau de microvillosités ou replis de la 

membrane plasmique. Ces études de microscopie électronique ont également indiqué que le 

CD14 était internalisé par la voie de la macropinocytose, un processus ressemblant 



 12

étroitement à celui de la phagocytose qui permet « l’ingestion » de bactéries opsonisées par la 

cellule. Cette voie d’endocytose du CD14 est apparue être différente de la voie classique 

d’internalisation des récepteurs comme celle des vésicules recouvertes de clathrine (clathrin-

coated pits). Cette voie d’internalisation du CD14 nous a semblé d’autant plus surprenante 

qu’il était plutôt attendu que le CD14 internaliserait par la voie des cavéoles. Il est reconnu 

dans la littérature que beaucoup de protéines ancrées par des GPI sont concentrées dans des 

domaines riches en lipides eux-mêmes fortement associés à des stuctures membranaires telles 

que les cavéoles. De plus, nous avons pu montrer que ni la cinétique d’internalisation du 

CD14, ni la voie par laquelle il a été internalisé n’étaient modulées par la présence du ligand 

LPS ou par le type d’ancrage du CD14 à la membrane. Par conséquent, le CD14 semble être 

internalisé de façon constitutive en une vingtaine de minutes. A 37°C, les replis membranaires 

enrichis en CD14 ont fusionné pour former de larges vésicules, qui se sont aplatis. Puis, ces 

vacuoles plates se sont condensées pour donner des structures de type endosome, puis phago-

lysosome. A chaque étape décrite précédemment, les grains d’or qui marquaient la présence 

de récepteurs CD14 se sont retrouvés associés à ces structures internes de la cellule. 

L’internalisation du LPS radiomarqué s’est effectuée parallèlement à celle du CD14. Les 

études de microscopie confocale ont confirmé la co-localisation du LPS et du CD14 à la 

surface de la cellule et dans les compartiments endosomaux. De plus, l’utilisation de 

cytochalasine D, un agent empêchant la polymérisation de l’actine et par conséquent 

inhibiteur spécifique de la macropinocytose, a bloqué l’internalisation du LPS et du CD14. 

Cependant, l’activation cellulaire n’était pas inhibée, ce qui tend à indiquer que les processus 

d’internalisation et d’activation cellulaire induits par le LPS, ne sont pas directement couplés. 

Des études similaires d’autres équipes ont confirmé ce dernier point, ainsi que l’implication 

du CD14 dans l’internalisation du LPS, deux sujets soumis à de nombreuses controverses. En 

effet, certains auteurs ont publié que le LPS et le CD14 internalisent de façon séparée et que 

l’activation cellulaire s’effectue après l’endocytose du LPS. D’autre part, il est possible que le 

LPS n’internalise pas uniquement par macropinocytose, mais également par d’autres voies. 

Kitchens et al. ont montré que le LPS pouvait être endocyté par la voie d’invaginations non-

recouvertes d’un manteau qui dirigeraient ensuite le LPS dans des compartiments autres que 

les endosomes contenant la transferrine. Une petite fraction du LPS entrerait également via 

des vésicules recouvertes de clathrine.  

 

 La réponse au LPS n’implique pas seulement les cellules d’origine myéloide comme les 

monocytes et les macrophages, mais également les cellules endothéliales et épithéliales. Les 
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cellules épithéliales ne servent pas uniquement de barrière physique, mais elles participent 

aussi activement au maintien, au renouvellement et à la défense des surfaces de l’organisme. 

Les cellules épithéliales intestinales sont en permanence en contact direct avec des bactéries et 

des produits bactériens. Le foie constitue également un haut lieu d’interaction avec les 

bactéries lors d’infections. Par conséquent, ces types de cellules épithéliales ont dû 

développer des stratégies de défense et de reconnaissance permettant la discrimination entre 

les bactéries pathogènes et les bactéries appartenant à la flore de l’hôte. En effet, la 

reconnaissance de microorganismes potentiellement pathogènes ou de molécules bactériennes 

comme le LPS par ces cellules est fondamentale pour initier la réponse de défense de 

l’organisme. Nous avons donc souhaité étudier la réponse au LPS de certaines lignées de 

cellules épithéliales comme les HepG2 (foie), les T84 (colon) et les SW620 (colon). En 

premier lieu, nous avons investigué l’expression protéique du CD14 et la production de CD14 

soluble par ces cellules. Il a été montré que beaucoup de cellules épithéliales répondent au 

LPS d’une façon dépendante du CD14 soluble. Pour mieux comprendre l’activation de ces 

cellules par le LPS, nous avons étudié ces cellules dans différentes conditions. Ces conditions 

correspondent aux cellules stimulées par LPS ou d’autres agents pour comparer les réponses, 

en présence de sérum (FCS= apport de LBP et de CD14 soluble) ou de LBP recombinante 

(pas d’apport de CD14 soluble). Ces cellules épithéliales testées dans les conditions décrites 

précédemment étaient transfectées ou non par le wtCD14 (ancré par le GPI). En plus de 

l’activation cellulaire par LPS, nous avons investigué l’effet de cette transfection du wtCD14 

sur l’internalisation du LPS par ces cellules. En utilisant des techniques de RT-PCR et de 

Western blot, nous avons déterminé les niveaux d’expression du CD14 au niveau de l’ARN 

messager (m) et de la protéine elle-même dans les cellules transfectées ou non. Nous avons pu 

déterminer que les cellules SW620 non transfectées exprimaient le CD14 sous forme 

d’ARNm, de protéine et à un moindre niveau produisaient du CD14 soluble. Les cellules T84 

et HepG2 semblaient exprimer le CD14 que très faiblement. Dans les cellules HepG2, le 

CD14 cellulaire n’a pas été détecté et très peu de CD14 soluble a été produit. Après 

transfection avec le gène du wtCD14, les trois types cellulaires CD14(+)-SW620, CD14(+)-

T84 et CD14(+)-HepG2 ont exprimé de manière importante le CD14 aux niveaux ARNm, 

cellulaire et soluble. Le CD14 soluble détecté pourrait provenir du CD14 membranaire libéré 

dans le milieu de culture après un clivage enzymatique. Afin d’étudier la réponse au LPS de 

ces cellules épithéliales, nous avons dans un premier temps mesuré la production d’IL-8 dans 

les surnageants par ELISA. Nous avons montré qu’en présence de sérum, (apport exogène de 

CD14 soluble et de LBP) les cellules CD14(+)-SW620 ainsi que les cellules rsv-SW620 
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(cellules contrôles transfectées avec le vecteur vide) ont produit des doses d’IL-8 croissantes 

en fonction de l’augmentation de la concentration de LPS. En présence de LBP uniquement 

(pas de CD14 soluble disponible), seules les CD14(+)-SW620 ont répondu au LPS, suggérant 

que le CD14 présent à la membrane a joué son rôle de récepteur au LPS et a permis 

l’activation des cellules comme pour les monocytes/macrophages. En revanche, dans les 

mêmes conditions de stimulation, les deux autres types cellulaires HepG2 et T84, transfectées 

avec le wtCD14 ou le vecteur vide, n’ont pas produit d’IL-8 après stimulation avec le LPS. 

Pourtant, ces cellules tout comme les SW620 ont été capables de produire de l’IL-8 en 

réponse à d’autres agents stimulateurs de la voie NF-κB tels que le phorbol 12-myristate 13-

acetate (PMA), le TNF-α ou l’IL-1β. Afin de confirmer cette non-réponse des cellules HepG2 

et T84 au LPS, nous avons investigué l’activation cellulaire au niveau du facteur de 

transcription NF-κB. Après stimulation avec le LPS, aucun NF-κB n’a été détecté dans les 

extraits nucléaires de cellules CD14(+)-HepG2 et CD14(+)-T84 alors que cela a été le cas 

pour les cellules de la lignée myéloide CD14(+)-THP-1 utilisées comme cellules contrôles. 

En revanche, le NF-κB a été activé dans ces cellules épithéliales stimulées avec d’autres 

agents comme le TNF-α et le PMA. Le PMA stimule la voie du NF-κB en activant 

directement la protéine kinase C qui va mener à la phosphorylation du I-κB et par conséquent 

à sa dégradation. Afin d’activer le facteur de transcription NF-κB, le TNF-α  et l’IL-1 

stimulent des voies de signalisation très similaires à celles induites par LPS. Les différences 

ne peuvent résider que dans des molécules membranaires exprimées différentiellement entre 

les différents types cellulaires, et activées très proximalement après contact avec l’endotoxine. 

Ainsi, la non-réponse au LPS des cellules épithéliales HepG2 et T84 en présence de CD14 

soluble ou après surexpression du CD14 dans ces cellules suggère que le CD14, bien que 

nécessaire, n’est pas suffisant pour induire un signal. Cette observation ainsi que les données 

obtenues au cours de notre étude nous ont amené à penser que ces cellules étaient déficientes 

en une ou plusieurs molécule(s) impliquées de façon très proximales dans la voie de 

signalisation du LPS. Cette molécule manquante pourrait bien être une protéine 

transmembranaire responsable de la transmission du signal induit par LPS depuis l’extérieur 

vers l’intérieur de la cellule. En raison du type d’ancrage du CD14 (lipide non-

transmembranaire), il a souvent été questionné comment le CD14, après avoir lié le LPS, 

pouvait transmettre le signal vers l’intérieur de la cellule. Plusieurs hypothèses ont été émises 

à l’issue de certains travaux. Cependant, l’hypothèse qui tend à revenir le plus souvent est 

celle d’une protéine additionnelle transmembranaire impliquée dans la signalisation du LPS. 
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 Récemment, cette dernière hypothèse s’est vérifiée avec la découverte du « Toll-like 

receptor 4 » (TLR4) humain, une protéine transmembraire impliquée dans la réponse des 

cellules au LPS. Des observations chez la mouche drosophile des mécanismes de défense 

anti-bactériens et anti-fongiques induits par Toll et 18-wheeler respectivement, deux 

récepteurs transmembranaires, sont à l’origine de cette découverte. Ce sont des techniques de 

bioinformatique telle que la génomique comparative qui ont permis de faire le lien entre la 

mouche et l’homme, pourtant éloignés par des millions d’années d’évolution. Depuis, dix 

membres de cette nouvelle famille de « Toll-like receptors » ont été clonés. Ces récepteurs 

semblent révolutionner l’idée d’une non-spécificité dans la reconnaissance des molécules 

étrangères par le système immunitaire inné. En effet, il a été montré que le TLR2 

reconnaissait plus spécifiquement les molécules issues de bactéries Gram-positif, mais 

également certains sérotypes de LPS (TLR2 a été initialement décrit comme étant le récepteur 

au LPS). Le TLR3 serait spécialisé dans la reconnaissance des ARN double brins viraux. Le 

TLR5 reconnaît la flagelline provenant des flagelles bactériens. Le TLR9 est spécialisé dans 

la reconnaissance de l’ADN bactérien et viral (motifs CpG). La fonction de certains membres 

de la famille TLR, comme le TLR10, n’est pas encore connue précisément. Cependant, il 

apparaît que l’hétérodimérisation de certains TLRs (TLR2/TLR1 ou TLR2/TLR6) augmente 

la spécificité en permettant à la cellule de discriminer différentes lipoprotéines. Il a été 

également montré que le TLR4 doit s’associer à une molécule accessoire, le MD-2 pour être 

fonctionnel. Cette protéine ne possède aucune ancre transmembranaire et la manière dont elle 

se lie au TLR4 reste encore indéterminée. Ce complexe MD-2/TLR4 est capable de 

reconnaître et de lier le LPS. Les TLRs, comme le CD14, possèdent des domaines riches en 

leucine au niveau de la partie extracellulaire, ce qui pourrait favoriser des interactions 

protéine-protéine. Il est possible d’imaginer et même très probable que le CD14 lie le LPS et 

que le récepteur TLR4/MD-2 reconnait et interagit avec ces deux molécules pour former un 

hétérocomplexe, point de départ du signal LPS vers l’intérieur de la cellule.  

 

 Les types cellulaires les plus importants dans la reconnaissance et l’élimination des 

bactéries ou des produits bactériens tels que le LPS sont les macrophages et les cellules 

dendritiques. Ces cellules peuvent également induire et orienter la réponse immunitaire 

secondaire en sécrétant des cytokines spécifiques et en présentant un antigène aux 

lymphocytes. Le macrophage et la cellule dendritique dérivent d’un précurseur commun, le 

monoblaste/promonocyte, lui-même issu d’une cellule myéloïde souche. Au cours des étapes 
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de différenciation, les cellules myéloides peuvent acquérir ou perdre des fonctions diverses et 

spécifiques selon la variation d’expression de molécules intracellulaires, de récepteurs de 

surface et de leur localisation tissulaire. Dans le contexte de notre sujet, il a été observé que 

les cellules myéloides répondent différemment au LPS en fonction de leur état de 

différenciation. De nombreuses études illustrent cette observation. Par exemple, les 

promonocytes acquièrent la réponse au LPS après différenciation en monocytes. En revanche, 

les cellules dendritiques perdent la réponse au LPS après maturation. Avec la découverte 

récente des TLRs et de la molécule MD-2, nous étions intéressés d’investiguer si les 

variations dans les réponses au LPS pouvaient être éventuellement attribuées à une expression 

différentielle du CD14 et des TLRs dans les cellules myéloides à différents stades de 

différenciation. Dans un premier temps, pour mener cette étude nous avons utilisé une lignée 

de cellules promonocytaires THP-1 transfectées avec le gène sauvage du CD14 

(CD14(+)THP-1). Ces cellules qui expriment à la base un taux élevé de CD14 (dû à la 

transfection), TLR2 et TLR4 au niveau de la surface membranaire, ont été traitées 72 heures 

avec différents agents de différenciation : la 1,25 (OH)2 vitamine D3 (D3), l’acide rétinoïque 

(AR) ou l’interféron γ (IFNγ). Seul l’IFNγ était capable d’augmenter l’expression du TLR4 

alors que les niveaux d’expression des autres molécules de surface n’étaient pas 

significativement modifiés par le processus de différenciation. Aucune correlation entre 

l’expression des TLRs et la magnitude de la réponse des CD14(+)THP-1 au LPS n’a pu être 

établie à l’issue du dosage de cytokines sécrétées telles que l’IL-6 et l’IL-8. Utilisant des 

anticorps monoclonaux spécifiques, nous avons pu montré que les cellules CD14(+)THP-1 

non-différenciées répondaient au LPS d’une manière prédominante TLR2-dépendante. Par 

contre, les cellules différenciées perdaient partiellement cette dépendance TLR2, et 

répondaient au LPS d’avantage via TLR4. En bloquant les deux récepteurs, le signal induit 

par LPS était complètement abrogé, suggérant que TLR2 et TLR4 étaient impliqués dans la 

réponse au LPS. Cette acquisition de la réponse au LPS via TLR4 pourrait être corrélée à 

l’apparition de l’expression d’ARNm du MD-2 dans les cellules différenciées. Ces résultats 

suggèrent que le MD-2 nouvellement exprimé, rendrait le TLR4 fonctionnel, ce qui 

expliquerait cette modification dans la TLR-dépendance de la réponse au LPS dans les 

cellules CD14(+)THP-1 différenciées. Ayant réalisé des expériences similaires avec les 

cellules du sang complet ou avec des macrophages alvéolaires, nous avons observé une 

réponse au LPS exclusivement dépendante du TLR4. Pourtant, TLR4 apparaît être faiblement 

exprimé à la surface des monocytes et des macrophages alvéolaires. Les monocytes expriment 

fortement le CD14 et un peu moins le TLR2, tandis qu’environ dix fois moins de TLR2 et 
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CD14 sont présents à la surface des macrophages alvéolaires. Cependant, ces deux types 

cellulaires expriment l’ARNm du MD-2 à un niveau relativement plus important que celui 

obtenu dans les CD14(+)THP-1 différenciées. Avec ces résultats, il est possible d’imaginer 

que l’association des deux molécules MD-2 et TLR4 rendrait le récepteur TLR4 très 

performant pour transmettre le signal induit par LPS et par conséquent ceci ne nécessiterait 

pas une importante expression de surface du TLR4. 

 

 Dans un deuxième temps, nous avons mené une étude sur les cellules dendritiques 

(DCs). Cette cellule établit un lien clé entre l’immunité innée et adaptative. Durant une 

infection tissulaire, les DCs détectent la présence d’antigènes microbiens, participent à 

l’inflammation locale, migrent vers les organes lymphoïdes et se transforment en cellules 

professionnelles de la présentation de l’antigène au lymphocyte. Utilisant un modèle de DCs 

cultivées in vitro et dérivées de monocytes humains, nous avons analysé les niveaux 

d’expression de certains TLRs, du MD-2 et du CD14 ainsi que la réponse de ces cellules au 

LPS. Nous avons montré que la réponse des DCs au LPS variait de façon importante durant le 

processus de différenciation et de maturation de ces cellules. Les niveaux de réponse 

cellulaire au LPS étaient étroitement corrélés aux niveaux d’expression du CD14, TLR4 et 

MD-2, tous étant des composants clés du récepteur au LPS. En effet, les DCs immatures 

dérivées des monocytes sanguins maintiennent leur sensibilité au LPS et expriment encore le 

CD14 et le TLR4 à la surface de leur membrane, même si comparée aux monocytes cette 

expression est diminuée. A l’opposé, les DCs qui deviennent matures après un traitement avec 

du LPS ou des cytokines pro-inflammatoires comme l’IL-1β et le TNF-α, perdent 

l’expression de surface du CD14 et du TLR4, ainsi que la capacité de répondre au LPS. 

Utilisant des anticorps spécifiques, nous avons déterminé que les DCs immatures répondent 

au LPS en partie via le TLR4. Le TLR2 ne semble pas impliqué dans l’activation des DCs par 

LPS. Par conséquent, ces résultats suggèrent qu’une ou plusieurs autres molécules de surface 

pourraient jouer un rôle dans la transmission du signal LPS dans les DCs immatures. Il est 

intéressant de noter que nous n'avons détecté la présence d’ARNm du TLR3 qu'exclusivement 

dans les DCs immatures et à un plus faible niveau dans les DCs matures. Tous ces résultats 

suggèrent que le « pattern » et les niveaux d’expression des récepteurs microbiens dans les 

DCs gouvernent leur fonction effectrice telle que la capture et le « processing » de l’antigène 

versus la présentation de l’antigène.  
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 Au cours de cette thèse, nous avons pu constater le rôle primordial du CD14 dans la 

reconnaissance et l’internalisation du LPS ainsi que sa participation à l’activation cellulaire 

par LPS. A de nombreuses reprises, la question de la fonction de l’ancre GPI par laquelle le 

CD14 est inséré dans la membrane a été soulevée. Hormis son rôle dans la localisation du 

CD14 dans les domaines riches en lipides, aucune fonction particulière de cette ancre n’a été 

trouvée dans l’activation cellulaire induite par LPS. Il est possible que le système d’ancrage 

GPI soit important pour d’autres fonctions de signalisation. Il a été montré que de nombreuses 

toxines comme la toxine α de Clostridium speticum, la leishporine de Leishmania 

amazonensis ou la leukotoxine de Pasteurella haemolytica sont capables de médier des 

actions mortelles en se liant à l’ancre GPI de protéines de surface. Nous nous sommes 

intéressés à l’une de ces toxines, l’aérolysine sécrétée par Aeromonas hydrophila, une bactérie 

Gram-négatif présente dans les environnements aqueux et à l’origine de maladies 

gastrointestinales, de pneumonie, de méningite et également de sepsis chez l’humain. 

L’aérolysine qui se lie à des ancres GPI, heptamérise pour former un pore dans la membrane 

plasmique. Par conséquent, la cellule perforée gonfle en se remplissant d’eau et éclate sous la 

pression. L’aérolysine ainsi que certaines toxines comme la toxine α, la leukotoxine 

possèdent des similarités importantes dans leur séquence et leur mode d’action. Il a été montré 

que la leukotoxine, une toxine formant également des pores, induit l’élévation de calcium 

intracellulaire et active le facteur de transcription NF-κB dans les leukocytes et les plaquettes 

de ruminants. A l’issue de cette activation, des cytokines pro-inflammatoires sont produites 

par les cellules. Il a été ultérieurement montré que l’activation du NF-κB est dépendante de 

l’élévation de calcium induite par la leukotoxine. Tout comme la leukotoxine, l’aérolysine 

augmente le calcium intracellulaire des granulocytes. Dans notre étude, nous étions intéressés 

d’investiguer si l’aérolysine peut également activer le NF-κB et induire la sécrétion de 

protéines pro-inflammatoires qui pourraient être impliquées dans l’inflammation observée lors 

des infections avec l’Aeromonas hydrophila. En utilisant le récepteur CD14 ancré par le GPI, 

nous souhaitions étudier un nouveau mécanisme d’action d’une molécule de bactérie Gram-

négatif autre que le LPS. Pour réaliser une partie de l’étude, nous avons utilisé la lignée de 

cellules promonocytaires "THP-1" transfectées de façon stable avec un plasmide encodant une 

protéine fluorescente verte (GFP) sous le contrôle du promoteur de l’interleukine-8 (pIL-

8/GFP-THP-1). Afin d’augmenter l’expression de surface du CD14 ancré par le GPI, les 

cellules ont été traitées 72h avec de la 1,25 (OH)2 vitamine D3. Après exposition avec 

l’aérolysine des cellules pIL-8/GFP-THP-1 différenciées, nous avons montré que ces cellules 
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sécrétaient de l’IL-8 de façon dépendante de la concentration d’aérolysine et du temps de 

traitement. Des observations similaires ont été effectuées avec la protéine GFP produite au 

niveau intra-cytoplasmique de ces cellules, indiquant que le promoteur de l’IL-8 placé en 

amont de la séquence codant pour la GFP a été activé par des facteurs de transcription. 

Utilisant la technique classique de la « E-selectin luciferase reporter assay », nous avons 

déterminé que le traitement de cellules HEK 293 avec l’aérolysine est associé à l’activation 

des cellules de façon dépendante du NF-κB. De plus, cette activation cellulaire est 

considérablement augmentée par la surexpression (après transfection) à la surface de protéines 

ancrées par le GPI telles que le CD14, le CD55 et une version GPI de la GFP construite par 

biologie moléculaire. Ces protéines qui possèdent l’ancre GPI ont toutes servi de récepteurs à 

la toxine. Afin d’exclure la possibilité que l’activation cellulaire observée soit dûe au choc 

osmotique induit par l’aérolysine, nous avons incubé les cellules dans un milieu de plus en 

plus hypo-osmolaire. Aucune activation n’a été observée, mettant ainsi hors de cause le 

gonflement des cellules lors du choc osmotique induit par l’aérolysine. La liaison de 

l’aérolysine à l’ancre GPI semble donc être une étape critique pour l’induction d’un signal 

pro-inflammatoire par les cellules. Il est intéressant de noter que le cross-linking du CD14 

avec des anticorps provoque l’apparition d’un flux de calcium intra-cytoplasmique, 

phénomène n’ayant jamais été observé lors d’une situation physiologique comme par exemple 

avec le LPS. En revanche, cette mobilisation de calcium ne se produit pas lors du cross-

linking du CD14 dont la région GPI a été remplacée par une partie transmembranaire. Suite à 

toutes ces observations concernant l’aérolysine et l’ancre GPI, il est tentant d’imaginer que 

l’héptamérisation de l’aérolysine ait induit un cross-linking du récepteur sur lequel la toxine 

est liée et que les ancres GPI intéragissant les unes avec les autres génèrent un signal 

permettant l’augmentation de calcium. En utilisant des inhibiteurs spécifiques, il serait 

intéressant de déterminer si certaines protéines tyrosine kinases ou phospholipase C sont 

impliquées dans cette élévation du calcium intracellulaire comme il a été montré dans d’autres 

études. De plus, l’hypothèse d’un lien entre l’augmentation de calcium et l’activation du NF-

κB que nous avons observé, est émise et reste à être démontrée. Toutes les observations 

effectuées lors de cette étude sont importantes au regard du rôle pathogénique éventuel de 

l’aérolysine en tant que molécule pro-inflammatoire en plus de son rôle de molécule 

cytotoxique. La question d’un nouveau mécanisme cellulaire qui engendrerait un signal pro-

inflammatoire est également soulevée à l’issue de cette étude sur l’aérolysine. 
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 Cette thèse apporte de nouvelles connaissances dans le domaine de l’immunité innée. 

La reconnaissance des molécules bactériennes comme le LPS par les cellules de l’immunité 

primaire est une étape critique pour le déroulement des évènements de défense et dans 

certains cas peut être à l’origine de la pathogénèse du sepsis. Une meilleure compréhension de 

ce phénomène permettrait de soulever petit à petit l’interrogation qui porte sur l’origine de 

cette pathologie en déterminant les cibles thérapeutiques les plus pertinentes pour le 

développement de nouveaux médicaments ou traitements. Il est également important de 

comprendre les mécanismes qui régissent l’internalisation et la détoxification du LPS, 

évènements critiques de l’élimination de cette molécule hautement activatrice. Dans cette 

thèse, nous avons déterminé que le récepteur CD14 après avoir lié le LPS, l’internalise par la 

macropinocytose, une voie d’endocytose qui ressemble étroitement à la phagocytose. 

L’ancrage GPI du CD14 ne semble pas influencer la voie par laquelle le CD14 et le LPS sont 

internalisés ainsi que leur cinétique d’internalisation. En revanche, ce type d’ancrage localise 

le CD14 à la membrane dans des domaines spécifiques riches en lipides. Inhibant 

spécifiquement l’internalisation du LPS et du CD14, il nous est apparu que l’activation 

cellulaire n’était pas bloquée, suggérant que l’internalisation du LPS et l’activation des 

cellules induite par LPS sont des processus régulés différemment. L’étude menée avec les 

cellules épithéliales également impliquées dans la défense de l’organisme, nous a permis de 

montrer que le CD14 exprimé à la surface de certains types de cellules n’était pas suffisant 

pour induire une activation lors d’un traitement avec LPS. La conclusion de cette étude a 

soulevé l’hypothèse qu’une ou plusieurs molécule(s) très proximale(s) à la membrane 

devaient être impliquée(s) dans la signalisation du LPS, et qu’elles étaient absentes dans ces 

types cellulaires. Cette hypothèse s’est révélé être exacte par la suite avec la découverte 

fascinante des récepteurs « Toll » et notemment avec l’identification du TLR4 humain, une 

protéine transmembranaire directement impliquée dans la voie de signalisation du LPS. 

Depuis environ 3 ans, quasi chaque membre de la famille des récepteurs Toll a trouvé comme 

ligand une molécule ou une famille de molécules microbiennes. Des études ont depuis montré 

que la réponse au LPS de différents type de cellules pouvait varier selon leur état de 

différenciation. En analysant le « pattern » d’expression de ces nouveaux récepteurs au niveau 

de cellules myéloides à différents stades de différenciation et parallèlement la réponse de ces 

cellules au LPS, nous avons souhaité déterminer si ces récepteurs étaient impliqués dans les 

variations de réponse à l’endotoxine. Nos résultats ont révèlé que les promonocytes 

différenciés en monocytes/macrophages avaient acquis une réponse au LPS de plus en plus 

dépendante du récepteur TLR4 et que cette observation pourrait être corrélée avec l’apparition 
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de l’expression du MD-2, une molécule accessoire indispensable au bon fonctionnement de 

TLR4. Des expériences menées avec des cellules primaires telles que les monocytes sanguins 

et les macrophages alvéolaires humains ont indiqué que ces cellules répondaient au LPS de 

façon totalement TLR4-dépendante et exprimaient le MD-2. En ce qui concerne la 

différenciation des monocytes circulants en cellules dendritiques immatures, puis matures, il 

nous est apparu que les cellules perdaient leur capacité de réponse au LPS après maturation et 

que cette perte corrélait avec la disparition de l’expression de surface du TLR4 et du CD14. 

Cette observation est en accord avec le fait que la cellule dendritique immature en présence 

d’une molécule étrangère telle que le LPS est capable de s’activer et de la « phagocyter », 

alors qu’après maturation cette cellule perd ces fonctions, mais acquiert la capacité de 

présenter l’antigène aux lymphocytes. En résumé, notre étude montre que la modulation de 

l’expression du CD14, du MD-2 et de certains TLRs comme le TLR4, au cours de la 

différenciation des cellules myéloïdes semble être un facteur déterminant de la variation de 

réponse de ces cellules au LPS. Suite à la découverte de ces nouvelles molécules, les TLRs, 

de nombreuses interrogations sont soulevées à savoir : i) si comme le CD14, les TLRs sont 

présents à la surface dans des domaines riches en lipides ou bien s’ils sont recrutés dans ces 

domaines lorsque le ligand bactérien est lié au CD14 afin d’agir avec le complexe. Comme 

récemment montré par Triantafilou et al., cette dernière hypothèse semble se vérifier pour le 

TLR4 recruté dans ces microdomaines, en présence du LPS [5] ; ii) si d’autre(s) molécule(s) 

interviennent comme chaine(s) supplémentaire(s) du complexe récepteur au LPS, comme il a 

été suggéré dans une étude récente ; iii) si le TLR4/MD-2 participent à l’internalisation du 

LPS ; iiii) si le « pattern » d’expression des TLRs au niveau des monocytes et d’autres 

cellules se modifie durant les différentes étapes de la pathologie du sepsis comparé à un état 

non pathologique ; iiiii) si des mutations éventuelles au niveau des gènes codant pour les 

TLRs pourraient rendre des individus plus susceptibles à développer un sepsis. Il a été en effet 

récemment montré que des polymorphismes de TLR4, mais pas de CD14, seraient associés à 

un risque accru aux infections induites par les bactéries Gram-négatif [6]. 

 Dans toutes nos études, il est apparu que le CD14 était une molécule pivot dans la 

reconnaissance du LPS, son internalisation et l’activation cellulaire probablement en 

établissant un lien essentiel entre le ligand LPS et le complexe TLR4/MD-2. Ces processus 

constituent un mécanisme important d’interaction des cellules de l’hôte avec une molécule 

bactérienne comme LPS et pourraient être à l’origine de certaines dérégulations menant à une 

pathologie telle que le sepsis. Dans cette thèse, nous étions intéressés d’étudier un mécanisme 

d’action différent d’une autre molécule bactérienne : l’aérolysine de Aeromonas hydrophila 
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également à l’origine de pathologies septiques et gastrointestinales. Cette toxine bactérienne 

entre en contact avec les cellules en se liant à l’ancre GPI des protéines de surface comme le 

CD14. Utilisant des cellules qui expriment le CD14 ancré par un GPI, nous avons investigué 

l’action de l’aérolysine au niveau des cellules. Nous avons montré pour la première fois que 

l’aérolysine liée à l’ancre GPI induisait un signal pro-inflammatoire via l’activation du facteur 

de transcription NF-κB, ce qui conduisait à la production de cytokines comme l’IL-8. 

Cependant, nous avons déterminé que cette activation cellulaire observée n’est pas dûe au 

gonflement des cellules induit par le choc osmotique résultant de la formation de pores à la 

membrane après l’heptamérisation de l’aérolysine. Les perspectives de cette étude soulèvent 

de nombreuses questions concernant la génèse de ce signal pro-inflammatoire induit par 

l’aérolysine, à savoir: i) si en plus de son rôle de localisation de protéines dans des domaines 

spécifiques de la membrane, l’ancre GPI éventuellement en se « cross-linkant » lors de 

l’heptamérisation de la toxine pourrait être capable d’activer la voie de signalisation 

intracellulaire du NF-κB et peut-être d’autres voies; ii) si l’aérolysine après avoir liée l’ancre 

GPI entre en contact avec ou est transférée à une autre molécule qui pourrait être impliquée 

dans l’induction du signal ; iii) si l’insertion dans la membrane du canal formé après 

l’heptamérisation de l’aérolysine ne pourrait pas provoquer une perturbation de la membrane 

plasmique qui serait à l’origine de l’activation. Il a été monté que les domaines lipidiques 

dans lesquels sont ancrées les protéines GPI agissent comme des plateformes pour concentrer 

l’aérolysine à la surface cellulaire. Cependant, le rôle de ces domaines lipidiques dans 

l’activation des cellules par l’aérolysine reste à être déterminé [7]. Concernant les molécules 

impliquées dans la voie de signalisation, la question d’un lien éventuel entre l’activation du 

NF-κB que nous avons observée et l’augmentation de calcium intracellulaire mesurée dans les 

granulocytes lors d’un traitement avec l’aérolysine, est également posée. Ainsi, cette toxine 

bactérienne, en plus d’induire des effets cytolytiques délétères, semble déclencher une 

réponse immunitaire primaire qui pourrait s’additionner à celle induite par l’endotoxine 

présente dans la bactérie. Comme pour le LPS, une meilleure compréhension des mécanismes 

d’action de l’aérolysine permettront de trouver de nouvelles solutions thérapeutiques à ces 

pathologies sévères voire mortelles. 
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2 GENERAL INTRODUCTION 
 

 

2.1 Innate immunity 

 

 The non-adaptive or innate immunity is defined as immune mechanisms that are “hard-

wired” in the genome and can be modified by evolution, but not by the experiences of the 

individual such as that observed in “adaptive” immunity, which requires gene rearrangements. 

When microorganisms invade human or other mammal tissues, immediate host immune 

defenses occur to fight against these non-self “invaders”. These reactions involve elements of 

the non-adaptive immunity that are “ready-to-go” and do not require an induction by signal-

response mediators. These “actors” of innate immunity are essential to rapidly distinguish 

microbes from non-self, and to activate host defenses. Different strategies are used to 

neutralize and eliminate microbes.  

 

 

2.1.1 Soluble pathways 

 

 Soluble proteins present in the plasma and body fluids recognize and attack pathogenic 

organisms by detecting surface expressed carbohydrate or lipid moieties that are usually not 

found in the normal host. These proteins carry out specific functions, recognizing molecular 

targets that are found in a wide range of different microorganisms. This strategy enables the 

innate immune system to immediately recognize many pathogens as chemically foreign even 

if they have never been encountered before. It also helps to minimize the risk that these 

proteins might inadvertently attack host tissues (table 1).  
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Table 1: Mediators involved in soluble pathway of host defenses. 
CRP: C-reactive protein; SAP: Serum amiloid protein; MBP: Mannose binding protein; C3: Complement factor 
3; LBP: Lipoplysaccharide-binding protein; BPI: bactericidal/permeability-increasing protein; sCD14: soluble 
CD14. All these molecules are produced by the liver. 
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These soluble proteins usually:  

  - can display a direct microbicidal activity 

  - opsonize microbes or foreign particles which are phagocytosed by macrophages 

  - present efficiently these molecules to receptors present at the surface of effector cells 

 

Some of these soluble mediators are: 

 Enzymes that can directly injure or kill microbial pathogens. A prototypical example of 

such an enzyme is the lysozyme. It attacks the peptidoglycan of the weakened bacterial cell 

wall and renders the bacteria vulnerable to osmotic lysis [8]. 

 

 The Mannose-binding protein (MBP) a lectin that binds mannose sugar residues 

commonly found at the exposed ends of glycoprotein or glycolipid side chains from bacterial 

outer membranes, viruses and parasites [9]. 

 

 The serum amyloid protein P and the C-reactive protein which bind a subset of 

carbohydrates and lipids dysplayed by many types of bacteria [10, 11]. In contrast to 

enzymes, binding of these latter proteins has little direct effect on pathogen but greatly 

increases opsonization, thus enhancing the capture and the destruction by specialized hosts 

cells [12]. 

 

 The lipopolysaccharide (LPS)-binding protein (LBP) and the soluble form of leukocyte 

cluster differentiation antigen 14 (CD14), two human serum proteins, are specialized in the 

binding of LPS, a unique bacterial surface molecule found in the outer membrane of Gram-

negative bacteria. The complexes LPS-soluble CD14 (sCD14) are then recognized by 

receptors on the surface of endothelial cells (ECs), neutrophils, monocytes/macrophages and 

other human cell types, which facilitates the binding and destruction of Gram-negative 

bacteria. At the same time, binding of LPS to cell surface receptors activates cells to secrete 

various cytokines responsible for triggering a wide array of immunologic responses that will 

be described later in this document [13].  

 

 The complement system represents a group of serum proteins called “complement 

factors” which display an elaborate and important type of antimicrobial defense [14]. Most of 

these proteins have proteinase activities and their activation occurs through a cascade. When 

the first protein is proteolytically cleaved, it gets activated and catalyzes further cleavage and 
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activation of a different protein of the complement and so on. When complement becomes 

activated on the surface of the pathogen, it leads to several distinct types of host protective 

effects: 

   - makes pores in the membrane of the pathogen. 

   - opsonizes bacteria that are internalised and killed by host cells. 

   - chemoattracts leukocytes. 

 

 Throughout life, most of these soluble proteins are expressed in the serum in relatively 

small amounts under normal conditions. But, they can increase as much as 1000-fold during 

serious infections, as part of a coordinated protective reaction called the acute-phase 

response. The liver is responsible for the synthesis of more than a dozen serum proteins that 

participate in antimicrobial defense. This synthesis occurs when hepatocytes are exposed to 

cytokines such as interleukin (IL)-6, IL-1 or tumor necrosis factor alpha (TNF-α) released 

locally or into the bloodstream by other host cells [15]. Interestingly, one of the most potent 

inducers of these cytokines and hence the acute phase response is the bacterial molecule, LPS.  

 

 

2.1.2 Receptor pathways 

 

 A newly recognized set of receptors present on effector cells such as 

monocytes/macrophages, neutrophils and ECs have evolved to recognize pathogen-associated 

molecular patterns (PAMPs), a wide variety of conserved surface microbial structures 

described in the Table 1. This recognition leads to the initiation of an innate immune response 

and/or clearance of bacteria and their products. 

 

 Scavenger receptors (SRs) and the mannose receptor are prototypical examples of 

“clearance” receptor for bacteria and bacterial products [16, 17]. Scavenger receptors display 

affinities for cell wall components of both Gram-negative and Gram-positive bacteria such as 

polysaccharides as well as fordextrans, polyribonucleotides, acetylated and oxidized low-

density lipoprotein (LDL) [18, 19]. All these ligands have in commun a polyanionic moiety. 

The mannose receptor also binds exogenous sugar-bearing particles [20-22]. These receptors 

are very efficient to “detoxify” the extracellular milieu, but ligation of “foreign molecules” 

does not activate host cells.  
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 The CD14 receptor exhibits properties similar to those of the receptors described above. 

CD14 is a pattern recognition receptor since it binds ligands originating from various 

microbial pathogens [23], is able to internalise some of these molecules, and has been shown 

to participate in bacteria phagocytosis [24]. In addition to these characteristics, CD14, 

expressed mainly on myeloid cells, mediates the activation of these effector cells [25]. 

Mediators such as cytokines, chemokines produced by effector cells are messengers, which 

allow the communication between cells and thus inform the environment of the presence of 

non-self “invaders”. Ligation of bacterial products with CD14 leads to an “inflammatory 

reaction” which allows the host organism to rapidly fight against microbes and further 

orientate the adaptive immune response [26, 27]. 

 

 

2.2 Inflammation 

 

 In the second century AD, the Roman encyclopaedist Aulus Celsus described the four 

cardinal signs of inflammation: rubor (redness), calor (heat), tumor (swelling) and dolor 

(pain). This description of inflammation was the result of a direct observation without 

understanding of the underlying mechanisms which lead to this state. Many types of 

mechanical, chemical or microbial insult of a solid tissue are followed by an inflammatory 

reaction. Inflammation is in essence a protective response, to get rid of the initial cause of cell 

injury (e.g. microbes, toxins) as well as the consequences of such injury (e.g. necrotic cells 

and tissues). Without inflammation, infections would go unchecked, wounds would never 

heal, and injured organs might remain permanent festering sores. Inflammation and repair 

may also be potentially harmful. Systemic inflammation has led to a massive increase in 

microvascular permeability, and a movement of fluid and leukocytes from the blood into the 

extravascular space, which helps to localize and eliminate altered cells, foreign particles, 

microorganisms or antigens.  

 

 

2.2.1 The environment where a local inflammatory reaction occurs 

 

 The inflammatory response occurs in the vascularized connective tissue, including 

plasma, circulating cells, blood vessels, and cellular as well as extracellular constituents of 

connective tissue. The circulating cells include neutrophils, monocytes, eosinophils, 
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lymphocytes, basophils and platelets [28]. The connective tissue cells are the mast cells, 

which surround blood vessels; the connective tissue fibroblasts; and occasional resident 

macrophages and lymphocytes [29]. The extracellular matrix consists of the structural fibrous 

proteins (collagen, elastin), adhesive glycoproteins (fibronectin, laminin, nonfibrillar collagen, 

tenascin and others), and proteoglycans [30]. The basement membrane is a specialized 

component of the extracellular matrix consisting of adhesive glycoproteins, elastin and 

proteoglycans [31]. 

 

 

2.2.2 Leukocytes involved in the host defense 

 

 Different types of leukocytes are involved in the host defense, but three cell types have 

prominent roles. Neutrophils and monocytes-macrophages, both phagocytes act primarily by 

engulfing, killing and digesting bacteria, as well as cellular debris [32]. Lymphocytes (γδ cells 

and NF lymphocytes) cooperate with phagocytic cells, but are more involved in the adaptive 

arm of the immunity [33].  

 

• Neutrophils: 

 The polymorphonuclear neutrophil known as the main “warrior” in the host defense to 

bacteria is a terminally differentiated leukocyte. It is characterized by a multilobular nucleus, 

by the presence in the cytoplasm of storage granules containing bactericidal agents and 

lysosomal enzymes important to kill and digest engulfed microorganisms [34]. Enzymes are 

produced at different stages during neutrophil differentiation in the bone marrow. The types 

of enzymes that can be found in granules are myeloperoxidases (catalyse the hypochlorous 

acid formation by combining hydrogen peroxide with chloride ions), oxidases (convert 

molecular oxygen into highly reactive oxygen species, which spontaneously dismutates to 

form hydrogen peroxide), lysosomal enzymes (digest internalised particles present in 

lysosomes), lactoferrin (inhibits bacterial growth by chelating iron), gelatinases (digest basal 

membrane of vessels during diapedesis), defensins (antimicrobial peptides which kill by 

permeabilizing bacterial and fungal cell membranes), nitric oxide (NO), a soluble, highly 

labile, free radical gas converted to other products, such as peroxynitrite, which are highly 

toxic to bacteria, yeasts, viruses and other pathogens) [35-41]. 

 



 29

 Neutrophils represent roughly 2/3 of circulating white blood cells. If these cells do not 

encounter any stimulus, they are programmed to die by apoptosis in 12-24 hours. At 

inflammatory foci, neutrophils adhere to vessels in a process called “margination” which 

takes place in 3 phases: 

1) selectin-mediated phase: 

P-selectin and E-selectin on the surface of activated ECs bind to neutrophil surface 

mucins which bear carbohydrate side chains [42, 43]. L-selectin constitutively 

expressed on neutrophils binds to its target mucins on activated ECs. This adhesive 

contact between neutrophils and the blood vessel is not very strong allowing neutrophils 

to roll along the endothelium pushed by the force of the blood flow [44]. 

2) chemoattractant-mediated phase: 

Chemotactic factors are produced by stimulated endothelium but also by cells in the 

injured tissue. Some of them such as chemokines (soluble proteins which adhere to ECs 

and extracellular matrix) diffuse from this region into the blood forming a gradient of 

concentrations through the tissues with its peak at the site of injury. Thus, chemotactic 

factors signal the presence of an infected region to neutrophils and induce changes in 

the conformation of integrins on the leukocyte surface, enabling them to bind to specific 

glycoprotein ligands on the endothelium [45-47].  

3) integrin-mediated phase: 

The previous phase leads to a stable long lasting molecular contact that prevents further 

movement of the neutrophil and cause it to flatten out at the surface of the endothelium. 

Once attached, the neutrophil can transmigrate into the extracellular tissue and move to 

the infected region (transmigration), a phenomenon that is favored by a gradient of 

chemotactic molecules such as IL-8, ENA-78 and GRO-alpha. The latter mediators will 

also activate neutrophils and enhance natural defense mechanisms such as the 

production of enzymes, oxygen radicals and phagocytosis [48].  

 

 At the site of infection, neutrophils start the recognition of “non-self” bacteria and 

cellular debris, and the process of phagocytosis. Macromolecules are taken up into the cell 

through a receptor-mediated endocytosis mechanism, and phagocytosis for larger particles 

such as bacteria [34]. To enhance phagocytosis, certain particles need to be covered by 

opsonins. Phagocytosed particles are localized in phagosomes which then fuse with lysosomal 

granules emptying their contents into the lumen. Then, killing and digestion of 
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microorganisms with antibacterial agents and multiple enzymes (see details of action above) 

occur [49].  

 

 Neutrophils are very effective at killing bacteria, at engulfing and digesting cellular 

debris as well as exogenous particules. However, a defense system based solely on 

neutrophils would have significant limitations. Neutrophils can for example not eradicate 

dangerous agents such as proteinaceous toxins, viral particules and other types of potentially 

injurious agents, because these molecules generally do not bind to the neutrophil surface. 

Neutrophils have only a limited repertoire of possible responses (phagocytosis and 

intracellular or extracellular degranulation) [50].  

 

• Monocytes-Macrophages : 

 The monocyte, a large circulating white blood cell (12-20 µm) with a kidney-shaped 

nuclei and a fairly abundant cytoplasm, is produced by the bone marrow and is then released 

into the blood circulation. The monocyte has a large number of lysosomes which contain a 

similar array of enzymes as those found in the neutrophil (see above). Circulating monocytes 

represent only 1 to 6 % of all nucleated blood cells. These cells circulate for one day and then 

migrate into nearly all tissues and serosal cavities, where they reside permanently. They 

become tissue macrophages and act as “sentinel” cells, sensing the environment (timelife: 2-4 

months). They may be called with more specific names according to the tissue where they 

have migrated. The largest macrophage reservoir is the hepatic Kuppfer cells, for example. 

The mechanisms by which monocytic cells select their tissue residence under normal 

conditions remain largely unknown [51].  

 

 Blood monocytes are attracted to injured or infected sites through steps identical to 

those described for neutrophils. Through their large array of receptors, monocytes sense their 

environment and can readily detect chemotactic factors and microbial molecules. In response 

to the latter and to other factors present in the local microenvironment, monocytes undergo 

morphological and functional changes to become tissue macrophages. Tissue macrophages 

also sense their environment through an extensive array of receptors on their surface and by 

using pinocytosis. The different receptors found at the surface of macrophages which are 

involved in self/non-self recognition and uptake of particles are: the mannose receptor, CD14, 

scavenger receptors, receptors for complement, for immunoglobins and for opsonins which 

coat particules and allow their phagocytosis by a “zippering” mechanism [16, 52-54]. 
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 The nature of stimuli recognized by these receptors which can result in macrophage 

activation, can be quite heterogenous. Known stimuli are microorganisms (bacteria, virus, 

yeast), various particules, bacterial LPS and other soluble bacterial molecules, host tissue 

breakdown products, complement fractions, enzymes from the blood coagulation, and various 

cytokines. Activated macrophages increase their metabolic rate, mobility and phagocytic 

capacities which render them more efficient at killing and digesting pathogenic 

microorganisms. After activation, many new proteins such as the inducible form of the NO-

synthase are synthesized. This latter enzyme increases the production of NO which plays an 

important role in microbicidal functions [55]. The macrophage also secretes a large variety of 

biologically active substances into the surrounding environment such as enzymes, cytokines, 

complement components, coagulation factors, reactive oxygen species, etc. To date about one 

hundred of these products have been identified. Some products are generated specifically 

upon the stimulus, whereas other are synthesized as part of a generalized response. The role of 

some of these secreted factors are to attract other nearby tissue macrophages and blood 

monocytes. 

 

 The macrophage is one of the pivotal cell type of innate immunity not only because of 

its “sentinel” role, but also because it acts as an important link between innate and acquired 

immunity. Indeed, macrophages control lymphocyte functions in two ways: 1) by secreting 

TNF-α, IL-1 and IL-18, pro-inflammatory cytokines which control lymphocyte proliferation, 

differentiation and effector function; and 2) by processing and presenting antigen to 

lymphocyte [56]. Through these two types of regulatory interactions with lymphocytes, the 

macrophage plays a crucial role in initiating and coordinating nearly all types of acquired 

immune responses [33].  

 

 

2.2.3 Cytokines and chemokines 

 

 Cytokines are molecules of cellular communication that influence the growth and 

activities of other cell types during an inflammatory situation [57, 58]. In order to facilitate 

the understanding of this manuscript, the prominent cytokines and chemokines involved in the 

inflammatory and immune response to pathogens that will be discussed later, are described 

here. 
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TNF-α and IL-1 are major pro-inflammatory cytokines typically secreted by macrophages 

stimulated with endotoxin, immune complexes, toxins and physical injury. Typical target cells 

include endothelial and epithelial cells, leukocytes and fibroblasts, and are responsible for 

inducing systemic acute-phase reactions. By acting on endothelium, they induce the synthesis 

of adhesion molecules and mediators such as “secondary” cytokines, chemokines, growth 

factors, ecosanoids and NO. TNF-α causes the aggregation and the priming of neutrophils, 

leading to an increased response of these cells to other mediators. TNF-α also stimulates 

neutrophils to release proteolytic enzymes, thus contributing to tissue damage in certains 

situations. The acute-phase response induced by both cytokines leads to fever, loss of 

appetite, the production of slow-wave sleep, the release of neutrophils into the circulation, the 

release of adrenocorticotropic hormone (ACTH) and corticosteroids, and particularly with 

regard to TNF-α, the hemodynamic effects of septic shock: hypotension, decreased vascular 

resistance, increased heart rate and decreased blood pH [59, 60]. 

 

IL-8 is a chemokine secreted by activated macrophages, ECs, and other cell types in response 

to TNF-α, IL-1 or directly in response to bacterial products [61, 62]. IL-8 is responsible for 

the activation and the chemotaxis of neutrophils. It has limited activity on monocytes which 

are more responsive to chimiotactic signals triggered by other chemokines such as the 

monocyte chemotactic protein-1 (MCP-1) [63].  

 

IL-6 is secreted by leukocytes, endothelial, epithelial and fibroblastic cells after a bacterial 

stimulation or in response to TNF-α and IL-1. This cytokine activates hepatocytes which 

produce acute phase proteins during an inflammatory reaction. Like TNF-α, plasma IL-6 is 

also considered as a prognostic marker in sepsis. 

 

The granulocyte macrophage-colony stimulating factor (GM-CSF) is a glycoprotein of 

144 aa secreted by endothelial and fibroblastic cells, activated T lymphocytes and monocytes. 

GM-CSF amplifies the inflammatory response by increasing the production of IL-1 and TNF-

α by macrophages. It can also activate neutrophils and eosinophils. Moreover, this cytokine 

has a role as a growth factor by maintaining the survival and by stimulating the proliferation 

and the differentiation of myeloid progenitors (neutrophils, monocytes, eosinophils) [64].  
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2.2.4 Endotoxin as a model activator of innate immunity: from acute 

inflammation to Gram-negative septic shock 

 

 After the description of the principal actors involved in the inflammatory reaction in the 

previous section and to remain focused on our topic of interest, we will limit here our 

description to the scenario of an inflammatory process induced by Gram-negative bacterial 

microorganisms. The entry of Gram-negative bacteria in tissue is followed by a rapid 

dilatation of small blood vessels in and around the infected tissue. This vasodilatation of the 

capillaries, arterioles or venules occurs within a few minutes and leads to a local increase of 

the blood flow. During this process, ECs lining some of these vessels actively retract away 

from one another to create temporary microscopic pores [65]. This results in an increased 

permeability of the post-capillary wall, allowing protein-rich fluid from the plasma to diffuse 

through the gaps into the extracellular space of the surrounding tissue [66, 67]. Two processes 

induce the vasodilatation in the injured site: 1) a spinal reflex which causes relaxation of 

arteriolar smooth muscles [68, 69]; 2) vasoactive mediators such as histamine, prostaglandins 

produced in part by mast cells present in connective tissues [70]. This local release of 

vasoactive mediators and other substances produce swelling, redness, heat and pain at the 

involved site. These local effects constitute the pattern of host response known as acute 

inflammation, a rapid phenomenon which will last minutes, several hours, or a few days. The 

increased local blood supply helps to improve delivery of oxygen, nutrients, platelets, and 

clotting factors to the infected region, which in turn helps to stabilize damaged tissues and 

facilitates wound healing and repair. Moreover, the vascular fluid that leaks into the tissues 

can immediately dilute or dissolve bacteria present in the tissue. This fluid also carries with it 

antimicrobial proteins from the serum, thereby helping to deliver non-specific defensive 

factors rapidly to the site of infection. 

 

 Some of these serum proteins such as the lipopolysaccharide-binding protein (LBP) 

opsonize Gram-negative bacteria through their interaction with LPS, a major component of 

the outer membrane of these bacteria [71]. Soluble LPS is also readily complexed by LBP 

[72]. When tissue macrophages present locally encounter minute amounts of LPS, it is 

detected by the receptor CD14, a central component of the innate immunity. The interaction 

of LPS and CD14 results in the activation of tissue macrophages which produce pro-

inflammatory cytokines such as TNF-α and IL-1 [73]. Then, LPS, together with TNF-α and 
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IL-1 diffuse in the neighbouring tissue where they in turn activate the ECs lining capillaries. 

These cells express high levels of certain surface adhesion molecules such as E-selectin and 

P-selectin, as well as intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1) [74]. These newly expressed adhesion molecules markedly increase 

the affinity of ECs for leukocytes, an essential step in attracting and capturing these cells to 

the site of infection. Granulocytes such as neutrophils and monocytes bound to ECs then 

transmigrate to the site of infection guided by chemokine gradients [75]. There, their role is to 

engulf as many bacteria as they can to kill them and to prevent their multiplication. This 

process is accompanied by the synthesis of cytokines which alert surrounding cells of the 

presence of pathogenic invaders. This is an essential, first line of defense, but has to be strictly 

controled. Once the inflammatory reaction has succeeded in neutralizing the injurious 

stimulus, it should end with restoration of the site of acute inflammation to normal. This 

resolution is the usual outcome when the infection is limited or short-lived, and when there 

has been little tissue destruction and the damaged parenchymal cells can regenerate. 

Resolution involves neutralization or spontaneous decay of the chemical mediators, with 

subsequent return of normal vascular permeability, cessation of leukocytic infiltration (death 

largely by apoptosis of neutrophils) and finally removal of edema fluid and protein 

leukocytes, foreign agents, and necrotic debris from the site. Lymphatics and phagocytes play 

a definite role in these events [76]. In case of substantial tissue destruction, healing occurs by 

connective tissue replacement produced by activated fibroblasts [77]. All the events described 

above correspond to a required and normal situation to fight against bacteria. In some 

situations, acute inflammation becomes uncontroled and pathologic. An overactivation of the 

system may result in the release of excessive amounts of pro-inflammatory mediators. 

Localized, this may lead to chronic inflammation when the acute inflammatory response 

cannot be resolved, owing either the persistance of the bacteria or to some interference in the 

normal process of healing. But if this overactivation is systemic, a global activation of ECs 

may ensue leading to leakness of the capillaries. This set the stage for a catastrophic drop in 

blood pressure, multi-organ dysfunction and other symptoms of septic shock [78]. A better 

understanding of this pathology in its intimate mechanisms is the central interest of this 

manuscript. 

 

 

2.3 Sepsis 
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 Despite recent progress in antibiotics and critical care therapy, human sepsis is still 

associated with a high mortality rate. In the USA, the incidence of severe sepsis and septic 

shock has been estimated to be 750,000 cases per year, with mortality rates ranging from 30% 

to 50% [79]. In the most severe patients with septic shock, mortality rates raise to 60-70%. 

Sepsis triggered by Gram-negative bacteria represents 45-60 % of bacterial infections. It is 

now admitted that bacteria themselves have little toxic effects in comparison with other 

infectious processes, but the host immune response induced to fight against bacteria seems 

“disproportionate”. Different stages in “the sepsis syndrome“ are correlated with the degree of 

severity of the pathology and are defined by a combination of clinical signs and symptoms. 

SIRS is described as a systemic inflammatory response syndrome, which usually precedes 

bacterial infection. It corresponds to a condition in which the patient is “activated” with 

systemic inflammatory signs, but not yet infected. Systemic inflammation may be caused by 

different conditions, such as multiple trauma or pancreatitis, which are predisposing factors 

for the development of sepsis. Sepsis is defined as a SIRS with a documented infection. 

Septic patients display several physiological disturbances such as fever or hypothermia, 

tachycardia, tachypnoea, leukocytosis or leukopenia [80]. Patients with severe sepsis are 

defined as sepsis patients with one or more organ dysfunction. Patients with septic shock are 

defined as severe sepsis patients with refractory hypotension leading to septic shock [80]. 

Twenty to 50% of patients with sepsis eventually evolve into a septic shock [81, 82].  

 

 The concept of septic shock as being a consequence of a systemic “over-inflammation” 

induced by infection was essentially based on animal models of endotoxinemia or systemic 

infections with injections of important amounts of bacterial products or bacteria. The idea was 

that multiple organ failure resulted from the systemic spreading of pro-inflammatory 

mediators from the infected organ. In animal models, important concentrations of circulating 

pro-inflammatory cytokines such as TNF-α or IL-1β have been measured. Importantly, 

different therapeutic agents blocking these cytokines were tested and significantly decreased 

lethality [83-85]. Meanwhile, no beneficial effects of treatments with cytokine inhibitors were 

observed in septic models with a local inflammation when the insult was a local infection (as 

opposed to systemic infection), such as peritonitis or pneumonia [86-88]. To cite a few, 

steroidal and non-steroidal anti-inflammatory molecules, monoclonal antibodies against 

bacterial endotoxin, TNF receptor I and II, antagonists of IL-1 receptor or platelet activating 

factor (PAF) failed in the treatment of sepsis [89-94, 95, Dhainaut, 1998 #426]. One of the 

reasons for these successive failures was that the “pro-inflammatory” concept leading to 
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sepsis may have been wrong. New concepts based on several clinical studies have taken into 

account the “notion of compartimentalization” of inflammation, and not only the 

concentration of cytokines in blood, but also their bioactivity (measured with bioassays), 

which better reflects the “degree of inflammation” in the systemic compartment [96]. It 

appeared that in infected tissues the inflammation is important and necessary to trigger 

cellular reactions, which aim at preventing the expansion of infection, and then induce healing 

and remodeling of injured tissues. At the same time, in the blood compartment, high 

concentrations of TNF-α and IL-1β were measured, but no inflammatory bioactivities could 

be detected [97]. Not only no pro-inflammatory but important anti-inflammatory activities 

were measured in plasma from septic patients, due to high amounts of anti-inflammatory 

molecules such as IL-4, IL-10 (inactivate leukocytes), IL-1 receptor antagonist and soluble 

TNF receptor I and II [98]. It is likely that this anti-inflammatory reaction is induced by a 

small amount of pro-inflammatory cytokines or bacterial products, which reached the blood 

compartment after diffusion from the infected tissue through vessels of increased 

permeability. It is probably deleterious for the organism to have a circulating pro-

inflammatory state, and the aim of a dominant systemic anti-inflammatory response might be 

to concentrate inflammatory cells to the injured organs [96]. 

 

 Whatever the exact sequence of events during sepsis, every thing starts with the 

recognition of bacterial molecules by molecules and cells from the host. This manuscript will 

focus on how bacterial products and especially LPS (or endotoxin), the most potent inducer of 

pro-inflammatory mediators in Gram-negative sepsis, interacts and activates 

monocytes/macrophages, endothelial and epithelial cells, cells of the innate immunity. The 

ultimate goal of this behaviour is the recognition of key bacterial and host molecules that 

could be targeted in the therapy of sepsis. 

 

 

2.4 Principal actor-molecules involved in endotoxin-induced cell activation and 

internalization 

 

 

2.4.1 Gram-negative bacteria 
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 Gram-negative bacteria, with a few exceptions, share fundamental properties of cell-

wall assembly: the presence of a structurally and functionally complex outer membrane, an 

inner cytoplasmic membrane, and an interjecting thin layer of peptidoglycan [99]. The 

bilayered outer membrane is organized asymmetrically. In the outer layer, pointing to the 

outside, LPS (or endotoxin) is the dominating constituent, whereas the inner layer is 

composed of proteins and phospholipids [100]. 

 

 

2.4.2 LPS 

 

 LPS (or endotoxin) is exclusively synthesized by Gram-negative bacteria. This 

molecule is essential for the growth, the integrity and the shape of bacteria [101]. LPS from 

different Gram-negative bacteria share a common architecture in that they all consist of a 

polysaccharide chain directed out from the surface, covalently linked to a lipid component, 

named lipid A [101]. This latter moiety carries the endotoxic feature of the molecule and is 

anchored into the hydrophobic phase of the outer membrane. Lipid A is composed of a 

disaccharide carrying two phosphoryl groups and four hydroxy-fatty acids on two of which 

are linked two secondary acyl groups. When the secondary acyl chains are removed by the 

enzyme acyloxyacyl hydrolase in intracellular acidic compartments of mammalian host, the 

lipid A looses its endotoxic effects. 

 

 The polysaccharide chain, the immunogenic moiety of the molecule, is linked to the 

disaccharide of the lipid A and is characterized by the core oligosaccharide and the O-specific 

chain. The core is composed of 3-deoxy-D-manno-octulosonic acids (Kdo), heptoses and 

hexopyranoses. The O-specific chain is made of several repeating units of two to eight distinct 

glycosyl residues which lead to the polysaccharide chain formation of variable lengths and 

define the bacteria species. Molecular weights of LPS range from 2-3 kDa for “rough” LPS 

(Re595 S. minnesota mutant) corresponding to the minimal structure found in growing 

bacteria and 20 kDa for LPS from “smooth” Gram-negative bacteria, harbouring long 

polysaccharidic chains 
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 The interest for biological effects of LPS came from the observation that striking 

parallels existed between the biological activities of LPS in animals injected with LPS and 

those observed in patients with Gram-negative sepsis [102, 103]. A most remarkable feature 

of LPS is its capacity to elicit the nearly entire spectrum of host effector molecules. With 

regard to its effects in the mammalian body, LPS exibits two features: i) a highly diversified 

pattern of immediate pathophysiological activities including fever, hypotension, changes in 

leukocytes counts, and disseminated intravascular coagulation, ii) a more delayed effects, 

such as the induction of antibodies being specific for defined LPS structures but also for other 

antigens [104]. LPS is known to interact with both humoral and cellular systems of the host. 

LPS binds to specific proteins such as LBP, high- and low-density lipoproteins. 
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2.4.3 LBP 

 

 LBP is a 60 kDa glycoprotein present in normal plasma at concentration of 3 to 7 

µg/mL. During inflammation or sepsis, serum levels of this acute phase protein can raise up to 

50 to 100-fold [105, 106]. The mature protein contains four cysteines, five potential 

glycosylation sites and appears to be highly conserved since for example human and rabbit 

LBP share 69 % sequence identity [72]. LBP is principally produced by the liver, but also in 

smaller amounts by the lung or other tissues [107]. Tobias et al. identified this protein in 

human serum in 1985 [108] and showed that the specificity of LBP was directed towards the 

hydrophobic lipid A portion of LPS [109]. Its affinity was measured to be 10-9 M for both 

smooth and rough forms of LPS [110] with a 1:1 LPS-LBP stoichiometry [111]. The principal 

function of LBP is to dissociate LPS aggregates into LPS monomers and deliver it 

catalytically to the receptor CD14. A mutant form of LBP made of residues 1-197 showed 

that LBP still binds LPS, but fails to transfer it to CD14 [112]. Thus, the LPS binding activity 

is contained within the amino-terminal half of LBP and the CD14 interaction site resides in 

the carboxyl-terminal half of LBP. Other studies based on site directed-mutagenesis and 

peptide blocking allowed to determine that the LPS-binding domain is located in the amino 

acid (aa) portion 89-97 of LBP [113]. LBP facilitates the interaction of LPS with CD14 by 

two basic processes: i) LBP acts as an opsonin for LPS-bearing particles enhancing the 

interaction with CD14 [71], and ii) LBP enables cells to respond to extremely low LPS 

concentrations via a CD14-dependent way [72]. LBP seems to also play a role in LPS 

internalization as shown by Gegner et al. with the identification of LBP antibodies that can 

prevent LPS endocytosis, but not cell activation [114].  

 

 LBP belongs to a family of lipid transferases structurally similar proteins that include 

bactericidal/permeability-increasing protein (BPI), cholesterol ester transfer protein (CETP), 

and phospholipid transfer protein (PLTP) [115-117]. With its capacity to transfer lipids, LBP 

mediates LPS detoxification by involving other proteins than CD14. LBP catalyses movement 

of LPS monomers to lipoproteins such as HDL, LDL and VLDL present in plasma [118-120]. 

These lipoproteins by retaining LPS prevent binding of LPS to CD14 and thus neutralize 

noxious effects of LPS [121]. Moreover, this process was demonstrated to increase LPS 

clearance [122]. This, in consequence, leads to diminished production of pro-inflammatory 

cytokines [123]. Animal studies with infusion of lipoproteins or hyperlipoproteinemia in 
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mice, demonstrated their “protective” role against endotoxemia or severe Gram-negative 

infection [124, 125]. 

 

 

2.4.4 CD14 

 

 

2.4.4.1 Discovery of CD14 and its expression in tissues 

 

 CD14, first described as a leukocyte cluster differentiation (CD) antigen, is a 55 kDa 

glycoprotein expressed at the surface of monocytes, macrophages and to a lower extend on 

neutrophils. Human monocytes express ~ 105 CD14 molecules whereas expression on 

neutrophils is much lower (~ 3.103 receptors/cell) [126]. Its expression on B cells has been 

reported [127, 128], however, it is generally accepted that normal B cells are CD14-negative. 

CD14 was originally identified as a myeloid differentiation antigen, present on mature cells 

but absent on myeloid precursors. Its expression has also been correlated with various forms 

of malignant myeloid leukemias, and has been used in establishing diagnosis.  

 

 In situ hybridization experiments revealed extramyeloid expression of CD14 messenger 

(m)RNA in many tissues such as uterus, adipose tissue, lung [129], tracheal epithelial cells 

[130] and hepatocytes from LPS-treated [131]. This expression was either constitutive or 

inducible in response to inflammatory stimuli. 

 

 In 1988, CD14 complementary (c) DNA was cloned and mapped to chromosome 5 into 

a region (5q 23-31) that encodes for other growth factors and receptors such as IL-3, GM-

CSF, macrophage-colony stimulating factor (M-CSF), platelet-derived growth factor (PDGF) 

receptor, and the β-adrenergic receptor. The CD14 gene was located within the “critical 

region” that is frequently deleted in certain myeloid leukemias [132]. The gene contains two 

exons separated by one 88-bp intron. The first exon only codes for the first aa methionine. 

The genomic structure and the mRNA analysis do not provide any evidence of exons coded 

domains or alternative splicing mechanisms. 

 



 41

 The primary sequence of CD14 in different species revealed a considerable amount of 

conservation. Human CD14 shares about 65 % similarity with the orthologs in mouse, rat, 

rabbit and bovine [105, 133-135]. 

 

 

2.4.4.2 Biochemical properties of CD14 

 

 The human protein consists of 375 aa residues from which a 19 aa signal peptide is 

cleaved in the endoplasmic reticulum [136]. The sequence ends with a 21 aa hydrophobic 

domain and lacks the characteristic basic residues of a stop transfer domain. CD14 has been 

demonstrated to be anchored into the cell membrane surface by a glycosylphosphatidyl-

inositol moiety. CD14 can be cleaved with a phosphatidyl-inositol specific phospholipase C 

treatment. CD14 has four potential N-linked glycosylation sites and in addition bears O-

linked carbohydrates. Carbohydrates account for 20 % of the total molecular weight of the 

protein [137]. No functional properties have been associated with the sugars. The human 

CD14 also contains 10 leucine-rich repeats located between residues 86 and 329 [138]. These 

repeats are supposed to mediate protein-protein interactions, however no clear funtion has 

been assigned to these domains in CD14. 

 

 The key role of CD14 in the binding and in the increase of cell responsiveness to LPS 

was recognized in 1990 for the first time [139]. Recognition of LPS by CD14 requires LBP, 

an acute-phase serum reactant (described above) [110, 139, 140]. LPS-LBP complexes bound 

to CD14 leads to the formation of a large ternary complex as shown by Gegner et al. [114]. 

CD14 is also present in plasma as a soluble protein at concentrations of 1-2,5 µg/mL [141]. In 

several clinical situations such as psoriasis [142], sarcoidosis [143], systemic lupus 

erythematosus [144], HIV infection [145], patients suffering from polytrauma and burns 

[146], septic patients with multi-organ failure [147], acute respiratory distress syndrome 

(ARDS) [148], plasma sCD14 concentration can increase. This protein can be considered as a 

marker of chronic and acute inflammation and viewed as an acute phase protein, although its 

role in these diseases is not yet understood. Pugin et al. have first described the essential role 

of sCD14 in LPS-induced activation of some non-CD14 bearing cells such as ECs and in 

some epithelial cells [149]. The mechanism by which sCD14 activates these cells will be 

further detailed in next sections. The protease-induced shedding of membrane CD14 

(mCD14) from the surface of activated monocytes was first reported to be the source of 
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sCD14 [150]. Later, Bufler et al. provided evidence that sCD14 may also be produced by a 

protease-independent mechanism [151]. Indeed, the generation of a low-molecular-mass form 

of sCD14 was described as a process involving endocytosis followed by exocytosis [152]. 

Another way to produce sCD14 is when the synthesis of a glycosylphosphatidylinositol (GPI) 

anchor may be leaky and therefore a fraction of the sCD14 is directly secreted; or when minor 

forms of a lower molecular weight are not completely glycosylated [137]. 

 

 To better understand interactions between LPS and CD14, different types of 

experiments were performed to map epitopes of CD14 essential for LPS binding and LPS-

induced cell activation. This information will be detailed in further sections. CD14 does not 

only bind soluble LPS but also whole Gram-negative bacteria and a variety of ligands derived 

from different biological sources. This raises the question of whether these molecules interact 

with the same binding site on CD14. It was shown that the integrity of region 39-44 was 

important for recognition of both Gram-negative Escherichia coli and Gram-positive Bacillus 

subtilis bacteria [153, 154]. Kusunoki et al. found that deletion of residues 57-64, which 

eliminates LPS binding also abrogates CD14-dependent responses to Staphiloccocus aureus 

molecules [155]. Finally, by using monoclonal antibodies Dziarski et al. demonstrated that 

conformational binding sites on CD14 for soluble peptidoglycan and LPS are partially 

identical and partially different [156]. Together, these data suggest that the domain by which 

different molecules are recognized by CD14 is at least similar if not identical. However, the 

common pattern shared by all these ligands and how it fits into the binding site of CD14 has 

not yet been defined. Further studies using X-ray crystallography or NMR techniques are 

required to finally solve this problem.  

 

 

2.4.4.3 Other ligands of CD14 

 

 The search for CD14 ligands other than LPS has revealed that CD14 can bind diverse 

structures derived from both microbes and animal hosts. Beta 1-4-linked polyuronic acids 

from bacteria, fungi, and oxidized cellulose was described as the first non-LPS ligands [157]. 

The notion of “pattern recognition receptor” for CD14 was first mentioned by Pugin et al. 

when they showed that CD14 recognized soluble peptidoglycan from Gram-positive cell 

walls, and mycobacterial lipoarabinomannan [23]. The evidence for the involvement of CD14 

in mediating cell activation in response to bacterial agonists other than LPS came from the 
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following observations: 1) the presence of mCD14 enhanced CD14-bearing cell responses to 

Gram-positive cell walls and mycobacterial lipoarabinomannan by 30- to 300-fold; 2) cell 

responses could be inhibited with anti-CD14 antibodies; 3) Gram-positive cell walls activated 

non-CD14 bearing cells in a sCD14-dependent manner; and 4) direct binding of these new 

ligands to sCD14 could be demonstrated [23]. As for LPS, LBP also enhanced cellular 

responses to lipoarabinomannan (LAM) [158]. Various groups have now confirmed these 

results and identified additional putative CD14 ligands originating from bacteria and yeasts as 

shown in the table 1. 

 

 Soluble peptidoglycan, the basic structural component of bacterial cell walls, has been 

shown to bind and activate cells through CD14 [159]. Studies with synthetic muramyl 

dipeptides (MDP) have shown that these peptidoglycan subunits are the minimal structures 

required for binding to CD14 [159]. Dziarski et al. found that soluble peptidoglycan binds to 

sCD14 and mCD14, whereas MDP monomers do not [156]. MDP binds to CD14 only when 

the MDP is polymerized, aggregated, or immobilized on a solid support. Although CD14 

appears to have a broad ligand binding specificity for certain microbial polymers, its inability 

to bind a variety of other polymers such as dextrans and heparin indicates that it is not a 

general receptor for polysaccharides and others biological polymers [156]. 

 

 Lipoteichoic acids (LTA) from Gram-positive bacteria have also been reported to 

stimulate cell reponses by inducing NO and IL-12 production by a mechanism that is 

enhanced by CD14 [160, 161]. However, other investigators claimed that highly purified LTA 

binds sCD14 but has no stimulatory activity.  

 

 Isolated membrane lipoproteins and synthetic lipopeptides based on the structures of 

lipoproteins stimulate nuclear factor-kappaB (NF-κB) and cytokine production in phagocytes 

and ECs by mechanisms that are enhanced by mCD14 and sCD14, respectively [162]. 

 

 Recent studies show that the ligand-binding specificity of CD14 is not restricted to 

“non-self” microbial structures. Indeed, it has been shown that both sCD14 and LBP can act 

as transfer proteins for certain host-derived phospholipids [163, 164]. Phosphatidylinositides 

and phosphatidylserine bind to mCD14 in a LBP-dependent manner. mCD14 has also be 

involved in the binding and the phagocytosis of apoptotic bodies [165]. During cell apoptosis, 

phosphatidylserine is externalised and can be recognized by mCD14. In contrast to microbial 
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molecules, self structures that are recognized by CD14 and LBP are non-stimulatory. This 

raises the possibility that CD14 and LBP have physiologic roles apart from microbial 

recognition. 

 

 

2.5 General problematic 

 

 This thesis is composed of three chapters. Each chapter is introduced and a specific 

detailed problematic is raised. As previously mentioned, an important step in the pathogenesis 

of sepsis is the recognition of bacterial molecules and particularly in the context of this thesis, 

endotoxin by innate immune cells and the LPS response of these cells. In order to better 

understand these phenomena, we were interested in studying LPS interactions with the cell 

surface of myeloid and epithelial cells. Studies of the chapter 1 consisted in investigating the 

mechanisms by which LPS-induced cell activation and internalization. Furthermore, the 

question of a possible role of CD14 in such mechanisms was raised. In several studies, LPS 

response has been shown to be modulated in myeloid cells at different steps of differentiation. 

Subsequently, we hypothized in the chapter 2, that CD14 and new receptors of innate 

immunity: Toll-like receptors (introduced in this chapter) could be involved in such LPS 

response modulation. Throughout this thesis, the role of the GPI-anchor of CD14 was raised 

in processes of cell activation, LPS internalization, but also in cellular mechanisms mediated 

by another bacterial molecule, the aerolysin from Aeromonas hydrophila introduced in the 

chapter 3 and responsible also for septic and gastrointestinal pathologies. In order to perform 

all these studies, biochemical, cellular and molecular approaches were used. 
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3 CHAPTER I : LPS-CD14 induced-cell activation and 

internalization  
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3.1 Introduction 

 

 

3.1.1 Endotoxin-induced cell activation 

 

 Mechanisms of activation of CD14-bearing cells and non CD14-bearing cells by LPS 

will be detailed in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic view of the activation of CD14-bearing cells 
(monocyte/macrophage) and non CD14-bearing cells (endothelial and some 
epithelial cells) by LPS. 
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3.1.2 LPS stimulation of CD14-bearing cells 

 

 The GPI-anchored mCD14 is present at the surface of myeloid cells such as monocytes, 

macrophages, neutrophils and basophils. The first evidence that mCD14 was a receptor for 

LPS and had a pivotal role in LPS-induced cell activation, came from studies by Wright et al. 

Antibody-blocking experiments demonstrated that CD14 interacted with LPS complexed with 

LBP and that this complex activated cells [139]. Crosslinking experiments performed by 

Tobias et al. clearly confirmed that LPS directly associated with mCD14 in macrophages and 

with sCD14 in the serum [54, 149]. Investigations from various groups further demonstrated 

the pivotal role of mCD14 in mediating cellular activation by LPS. Lee et al. showed that 

70Z/3 pre-B cells poorly responsive to LPS increased their sensitivity to this bacterial 

molecule by two orders of magnitude after transfection with the gene encoding for the 

membrane form of CD14 [166]. Importantly, it was shown that in patients with paroxysmal 

nocturnal hemoglobinuria (PNH), which hematopoietic cells are devoid of GPI-linked 

proteins including CD14, macrophages did not respond to LPS. This response was restored 

only when sCD14 was added to cells [167, 168]. It was also shown that CD14 knock-out mice 

were highly resistant to shock induced either by LPS or living Gram-negative bacteria [169]. 

The ability of CD14-deficient mice peripheral blood mononuclear cells to respond to LPS was 

partially restored through the addition of recombinant sCD14 to this assay [169]. In contrast, 

overexpression of human CD14 in transgenic mice rendered these mice hypersensitive to 

LPS, as evidenced by their increased susceptibility to endotoxic shock [170]. Taken together, 

these results indicate that mCD14 clearly plays a central role in LPS-induced cell activation 

and that myeloid cells can also respond to LPS through a sCD14-dependent pathway which 

acts independently of mCD14. With respect to mCD14-bearing cells, sCD14 appears to play a 

dual role as either an activator or inhibitor of LPS-mediated activation. At high 

concentrations, sCD14 dampen the responses of CD14-bearing cells to LPS. For example, 

recombinant sCD14 could inhibit the oxidative burst in isolated human monocytes [171], the 

TNF-α release in whole blood [172], the priming of neutrophils [173] and could protect mice 

from LPS-induced lethality [174]. Using various concentrations of LPS, sCD14 and mCD14, 

Haziot et al. showed that LPS-induced signal transduction mediated by mCD14 was more 

efficient than that mediated by sCD14 [169]. 

 

 The mechanism by which LPS activates myeloid cells is not perfectly understood, even 

if several clues have been discovered. Like other membrane phospholipids, LPS is a 
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amphiphilic molecule that exists in an aggregated form in aqueous environments such as 

tissue culture media or plasma. LBP acts as an opsonin or a lipid transfer protein, catalytically 

transferring LPS monomers from aggregates including bacterial membranes to acceptor 

molecule such as CD14 [111, 114, 140]. By dramatically accelerating the binding of LPS 

monomers to CD14, LBP enhances the sensitivity of cells to LPS [175]. Additional studies 

have shown that LBP transfers LPS not only to cell surface CD14 but also to lipoproteins 

such as high density lipoproteins (HDL), and it may facilitate transfer of LPS from CD14 into 

cell membranes by lipid exchange [175, 176]. CD14 is anchored by a GPI that does not cross 

the membrane lipid bilayer. Consequently, it was questioned how the signal could transduce 

through the plasma membrane when the ligand LPS binds to CD14. Several hypothesis were 

raised: 1) when the ternary complex CD14-LPS/LBP is formed, it could associate with 

(an)other(s) transmembrane protein(s) that could play the role of signal transducer molecule, 

2) LPS is inserted into the phospholipid bilayer either by membrane or soluble CD14 and this 

results in a packing geometry that perturbs the membrane and subsequently triggers cellular 

activation [176, 177], and 3) CD14 engaged by its ligand interacts in the membrane lipid 

bilayer via its GPI tail with a protein, and this interaction leads to transmembrane signaling. 

 

 The second hypothesis may somewhat be supported by a study by Joseph et al. These 

authors proposed that after integration of LPS into the membrane it mimics the second 

messenger function of ceramide and stimulates cells by interaction with a ceramide-activated 

kinase [178]. This second scenario may also be indirectly supported by the observed effects of 

certain pharmacological agents on LPS-mediated signaling [177, 179]. Whether LBP and 

CD14 actually transfer LPS into the phospholipid bilayer of an intact cell, and whether this 

action would result in cellular activation, has yet to be established. The last hypothesis was 

addressed by converting GPI-anchored CD14 to a transmembrane form by constructing 

mutants of CD14 [180]. This conversion of CD14 would uncouple the receptor-mediated 

signal in the third model, but would not affect signal transduction in the first hypothesis. 

CD14 mutant was constructed to contain either a sequence coding for the C-terminal 

transmembrane peptide portion of tissue factor or part of the decay accelerating factor (DAF) 

receptor containing the GPI-attachment site of DAF. 70Z/3 cells transfected with these 

different CD14 constructions responded normally to LPS, indicating that the anchoring 

system was irrelevant for cell activation [180]. Several studies supported the first hypothesis. 

Cells devoid of CD14 have little or no response to LPS, except at high doses (micromoles 

instead of nanomoles) [181]. This suggested a CD14-independent cell activation and the 
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involvement of protein(s) other than CD14. C3H/HeJ or C57BL/10ScCr mice are non-

responsive to LPS, however they normally express CD14 [182, 183], raising the hypothesis of 

another key component required for LPS sensibility. Moreover, it has been shown that the 

anti-human CD14 monoclonal antibody, 18E12 was capable of blocking LPS-induced cell 

activation without preventing LPS binding to CD14 [180]. Finally, the addition of sCD14 to 

CD14-negative cells from PNH patients restored cell sensitivity to LPS. It is therefore likely 

that this antibody binds to an epitope of CD14 important for an interaction between CD14 and 

the putative transducing molecule. Consequently, CD14 was thought to be an important 

ligand-binding unit of a multiple chain receptor complex [184]. Furthermore, it is known that 

lipid IVa, a precursor of LPS lacking two acyl chains, acts as an LPS antagonist for human 

cells and as an LPS agonist for mouse cells [185]. Although both of these actions are 

mediated by CD14, the heterologous expression of mouse or human CD14 does not alter 

cellular responses to lipid IVa which remain species specific [185]. These findings 

demonstrate that the species specific effect must be mediated by a cell-signaling component, 

other than CD14, that effectively discriminates between LPS and lipid IVa. Altogether, these 

results are evidence for at least one accessory molecule for CD14. Several candidates have 

been presented as putative accessory molecules of CD14 and will be further described. 

 

 

3.1.3 LPS stimulation of non CD14-bearing cells 

 

 ECs contribute significantly to the pathophysiologic events leading to Gram-negative 

sepsis. In fact, the vascular endothelium itself actively participates in organ inflammation by 

expressing chemokines, cytokines and adhesion molecules. The ability of LPS to directly 

activate ECs has been recognized for almost two decades. Early studies revealed that human 

ECs cultured in vitro display increased procoagulant activity, expression of tissue factor 

adhesiveness in response to LPS [186, 187]. Subsequently, it was shown that a variety of cell 

surface adhesion molecules are strongly expressed in response to LPS including endothelial-

leukocyte adhesion molecule-1 (ELAM-1), ICAM-1 and VCAM [188-190]. In addition, ECs 

were found to release the cytokines IL-1, IL-8, IL-6 as well as to activate NF-κB upon 

treatment with LPS [191, 192]. In contrast to the responses observed using human cells, a 

pronounced LPS-mediated cytotoxic effect was observed on bovine EC morphology and 

metabolism leading to increased permeability of the endothelial layer [193]. Importantly, a 

number of studies revealed that this injurious effect of LPS required the presence of serum 
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and could be completely blocked by an anti-CD14 monoclonal antibody [194]. Meanwhile, 

ECs were found not to express any measurable cell surface mCD14, which could explain this 

finding. The factor in serum responsible for mediating responses of ECs to LPS was found to 

be the soluble form of the receptor CD14 [149, 195]. This discovery was demonstrated by the 

loss of responsiveness through immunodepletion of sCD14 from normal serum and by the 

acquisition of LPS responsiveness through the addition of recombinant sCD14 to serum-free 

media [149, 196, 197]. Thus, an exceptionally unusual feature of CD14 is its ability to 

mediate LPS-induced activation of cells as a membrane receptor and as a soluble co-factor 

depending on the cell types.  

 

 Interestingly, the ability of sCD14 to mediate LPS-induced cellular activation is not 

restricted to ECs. LPS can also activate cells from epithelial origin by inducing IL-8 synthesis 

in colonic epithelial cell lines (SW620, HT29), IL-6 in epithelial-like astrocytoma cell line 

(U373), bronchial or tracheal epithelial cells [130, 149, 198], gingival fibroblasts, human 

vascular smooth muscle cells and peripheral blood dendritic cells [199-201]. 

 

 This response is greatly enhanced by the co-factor LBP [149]. In the absence of LBP, 

the binding of LPS by sCD14 is kinetically a low process. Biochemical and biophysical 

studies have revealed that LBP catalyses the formation of sCD14-LPS complexes [140, 202]; 

first, by binding to LPS monomers from aggregates and second, by delivering LPS to sCD14 

present in the plasma. Then, the complex sCD14-LPS would bind to an as yet unknown 

receptor present on non CD14-bearing cells. This hypothesis is supported by studies of 

several groups who have directly examined the physical association between sCD14 and 

whole cells. One of these groups found a specific cell surface binding of radiolabeled sCD14 

to human umbilical vein endothelial cells (HUVECs) in the absence of LPS [203]. It was also 

shown that sCD14 associates with several cell types in a LPS-dependent manner. This process 

is slow to reach the equilibrium and requires high concentrations of LPS [204]. One important 

drawback of this latter work is that the iodinated sCD14 used in these experiments was not 

able anymore to activate cells in the presence of LPS. When sCD14 was radiolabeled with 

another technique and shown to be functional, sCD14 was not able to bind to any cell type 

neither in a LPS-dependent nor in a LPS-independent manner [205]. Altogether, these results 

indicate that a putative receptor for sCD14 is either of low cell-surface abundance or has a 

low affinity for sCD14. 
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3.1.4 Intracellular signaling pathways 

 

 LPS stimulation of monocytes results in the activation, translocation and binding of 

numerous transcription factors to promoters of LPS-inducible genes. Typically, these genes 

encode for inflammatory mediators such as cytokines (TNF-α, IL-1, GM-CSF…) and 

chemokines (IL-8, MCP-1), but also receptors (tissue factor, IL-2 receptor α), transcription 

factors (p50, c-Rel, Egr-1…), inhibitors (I-κB) and others such as the inducible NO-synthase. 

LPS-responsive cis-acting DNA promoter elements have been characterized in the 5’ flanking 

region of many of these genes [reviewed by 206]. Many transcription factors involved in LPS 

signaling are activated by dimerization and by phosphorylation through different intracellular 

pathways. To date, the I-κB kinase (IKK)/NF-κB pathway as well as mitogen-activated 

protein kinase (MAPK) pathways, which include the extracellular signal-regulated kinase 

(ERK)-, the c-Jun N-terminal kinase (JNK)- and the p38-pathway were shown to be 

implicated in this stimulation process. Most studies have used dominant-negative mutants, 

knock-out mice or specific inhibitors of intracellular molecules to study these signaling 

pathways. 
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 In epithelial and ECs, LPS-induced signaling pathways are less well known than those 

unraveled in monocytes, but in virtually all cells, the transcription factor NF-κB is activated. 

The pattern of signaling pathways activated by LPS depends on tissue or organ cells originate 

from. This may serve as the basis for a differential response of tissues or organs depending on 

the microbial stimuli and the function of organs. 

 

 

Figure 3: LPS activation of different signaling pathways and transcription 
factors in monocytes [adapted from 2]. 
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3.1.4.1 The IKK/NF-κB pathway 

 

 It has now been well established that phylogenetically conserved signaling mechanisms 

in innate immunity providing an immediate cellular reaction to LPS utilize the NF-κB 

pathway in the first-line of defense. The NF-κB pathway is not only restricted to innate 

immunity, but plays important roles in the adaptive immune system, in the protection against 

apoptosis and in the cell cycle [207, 208]. NF-κB family members contain a conserved DNA 

binding and dimerization domain called the Rel homology domain. Mammalian cells contain 

five NF-κB subunits: RelA (p65), c-Rel, RelB, p50 and p52, which form various hetero- and 

homo-dimers. The p50 and p52 subunits which lack transactivation domains, are produced by 

processing of precursor molecules of 105 kDa and 100 kDa, respectively. NF-κB has been 

shown in numerous studies to be activated by LPS in monocytic cells [209]. Intracellular 

signaling pathways mediating this activation have remained unknown for many years. 

Recently, second messengers were identified as mediators of NF-κB activation in response to 

LPS. In “resting” situation, the p50-p65 dimer is retained in the cytoplasm by its natural 

inhibitor, inhibitor-kappa B (I-κB). After LPS stimulation, NF-κB translocates into the 

nucleus after I-κB is phosphorylated by the two kinases IKKα and β, and degraded by the 

ubiquitin-proteasome pathway  [210]. These kinases form a large multiprotein complex with a 

scaffold protein called NEMO (IKKγ) [211]. Some studies have suggested that IKKβ rather 

than IKKα was required for LPS activation of NF-κB in THP-1 monocytic cells [212]. The 

IKKs themselves might be activated through phosphorylation by an upstream kinase(s). 

Candidates for this kinase include NF-κB inducing kinase (NIK) and MAPK ERK kinase 

kinase 1 (MEKK1). Both kinases can activate NF-κB through phosphorylation and activation 

of the IKKs [213-215].  

 

 It appears that to be fully activated, NF-κB needs to translocate into the nucleus, but 

also needs to be transactivated. Transactivation requires p65 phosphorylation. The p65 

subunit of the dimer is phosphorylated by the phosphatidyl inositol 3 kinase (PI3K)-Akt 

signaling pathway [216]. By activating the DNA polymerase, this phosphorylation enhanced 

p65-mediated transcription without affecting I-κB degradation, nuclear translocation or the 

ability of NF-κB to bind to DNA. To date, the kinases which directly phosphorylate the 

transactivation domains of p65 and c-Rel have not been identified.  
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3.1.4.2 The MAPK pathways 

 

 Tyrosine phosphorylation of proteins including the src tyrosine kinase family members 

p53/56lyn, p58/64c-fgr is rapidly induced after LPS stimulation of monocytes/macrophages 

[217, 218]. LPS also activates isoforms of protein kinase C (PKC) as well as G-proteins (Gi 

and transducin) whose activity can be blocked by pertussis toxin in a mouse macrophage line 

[219]. These and other signaling molecules may play a role in the LPS-induced activation of 

the MAPK cascades composed of a MAPK, MAPK kinase, (MAPKK) and a MAPKK kinase 

(MAPKKK) [206]. 

 

 

3.1.4.2.1 The ERK pathway 

 

 In monocytic cells, ERK1/2 were shown to be phosphorylared on their TEY motif after 

LPS treatment. It has been suggested that LPS stimulation of tyrosine kinases led to the 

activation of the MAPK ERK kinase (MEK)-ERK1/2 pathway in a Raf1-dependent manner 

[220]. It has been shown that Ras and c-Raf, two upstream signaling molecules were 

implicated in MEK MAPK pathway in LPS induction of TNF-α expression [221]. The use of 

specific inhibitors of MEK in monocytes, revealed a reduction of LPS induction of several 

inflammatory cytokines (IL-1, IL-8, TNF-α), prostaglandin E2 [222] and of the tissue factor 

gene as recently shown [unpublished data reviewed by 2]. One of the downstream targets of 

the MEK-ERK1/2 is Elk1 [223-225]. After phosphorylation of its C-terminal domain, this 

transcription factor changes its conformation. This promotes its assembly with other factors to 

form an active ternary complex ready for inducing transcription. 

 

 

3.1.4.2.2 The JNK pathway 

 

 Another MAP kinase pathway rapidly activated by LPS is the JNK pathway as 

demonstrated in monocytic THP-1 cells and RAW 264.7 cells [226]. Upstream protein 

kinases such as m p21-activated kinase (PAK) 3, hPAK1 and germinal center kinase (GCK) 

trigger a phosphorylation cascade which leads further downstream to the activation of 

MAPKK kinases: MEKK1, MEKK4 and MUK/DLK/ZPK [227-232]. Both stimulated MAPK 
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kinases MKK4 and MKK7 are then direct activators for JNK, also known as the stress-

activated protein kinase (SAPK) 1 [233, 234]. Two isoforms of JNK (54 and 46 kDa) are 

known and they contain a typical TPY motif in their kinase domain that is required for 

activation [235]. These JNK proteins act on various transcription factors as downstream 

targets. They can phosphorylate c-Jun, ATF-2 and Elk-1, which heterodimerize and then 

regulate the expression of various inflammatory genes by binding to specific responding 

elements of their promoters [236]. 

 

 

3.1.4.2.3 The p38 pathway 

 

 p38 was first recognized as a novel MAPK activated by LPS in 70Z/3 cells by the group 

of Ulevitch [237]. LPS treatment of monocytes/macrophages is rapidly followed by the 

activation of upstream signaling molecules such as Cdc42, PAK and Rac1 which in turn 

activate the p38 pathway [227, 238, 239]. Then, MAPKKKs including protein kinase RNA-

regulated (PKR), TAK1 and others, MAPKKs such as MKK3, MKK6 and possibly MKK4 

are activated through kinase phosphorylation cascades [240-243]. These latter activated 

kinases phosphorylate p38, which itself can phosphorylate several transcription factors (ATF-

2, Elk-1, CHOP, MEF2C, Sap1a), and downstream kinases [244-247]. Subsequently, these 

enzymes trigger the phosphorylation of other transcription factors such as CREB and ATF-1 

[225]. The implication of p38 in the LPS signaling has been further demonstrated by the use 

of highly specific inhibitors of p38α,β belonging to pyridinyl imidazole compounds  such as 

SB203580 [248]. The inhibitory effect of these molecules is attributed to binding of the drug 

to the ATP binding pocket in the kinase domain [249]. 
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3.1.5 Binding, internalization and clearance of endotoxin 

 

 As stated above, LPS not only binds to cell surface to specific receptors resulting in the 

activation of cells, but is also rapidly internalised by the cell for detoxification [114, 250, 

251]. Numerous techniques have been used to study LPS binding, uptake and distribution in 

various cell types. Direct methods include LPS labeled with radioactive isotopes such as 125I, 
131I, 3H, 51Cr, 14C [252-254] and LPS directly linked to markers such as horseradish 

peroxidase (HRP), fluorescent molecules, uranyl acetate, biotin or colloidal gold particles. 

Indirect methods involve specific antibodies against polysaccharide regions or lipid A of LPS 

and a secondary antibody linked to a marker probes [255]. Experiments using electron 

microscopy, fluorescence and confocal microscopy, optical microscopy, flow analysis 

cytometry sorting (FACS) and radioactivity could be performed with “tagged” LPS or 

antibodies raised against LPS. 

 

 To prevent misunderstanding in the next sections, the following terms are defined as : 1) 

LPS binding corresponds to the quantity of ligand attached to the cell surface ; 2) LPS 

internalization or endocytosis takes into account the amount of ligand that goes into cells, but 

not the LPS bound at the plasma membrane ; 3) LPS uptake takes into account both LPS 

bound and internalised. 

 

 

3.1.5.1 Binding of LPS 

 

 Binding of LPS to plasma membranes is the essentiel step for interaction between 

endotoxin and cells. The LPS-cell interaction triggers a cascade of cellular activities including 

uptake of LPS and synthesis of cytokines by macrophages [72]. Endotoxin may bind to the 

plasma membrane as molecules, aggregates (micelles) and complexed with LBP [109, 250, 

256]. The interaction of endotoxin with the cell surface occurs either “specifically” by binding 

to receptors, “non-specifically” by interacting with membrane constituents other than 

“specific” receptors or through its insertion into the lipid bilayer [256, 257]. 

 

 



 57

3.1.5.1.1 Specific binding of LPS  

 

 

3.1.5.1.1.1 Binding of LPS to CD14 

 

 Pioneer work on LPS binding to CD14 was performed by Couturier et al. using 3H-

labeled LPS. It was shown that in the presence of serum, LPS could bind to monocytes in a 

dose-dependent, saturable, and displaceable fashion. This specific binding of LPS was 

demonstrated to occur through the CD14 molecule. This was evidenced by the ability of 

monoclonal antibodies (mAb) and of F(ab')2 fragments of mAb directed against specific 

epitopes of CD14 to inhibit the binding of 3H-LPS to cells, and by the lack of LPS binding to 

CD14-deficient cells from patients with PNH [258]. One year later, Heumann et al. found 

similar results by using fluorescein-labeled LPS and the MY4 anti-CD14 mAb and by 

enzymatically removing CD14 from monocyte surface. In addition, the LBP-dependent 

binding of LPS to CD14 was further established by using serum depleted of LBP with anti-

LBP antibodies [259]. A more formal proof that CD14 was a receptor for LPS came from 

studies by Tobias et al. Crosslinking of LPS to cell membranes expressing high levels of 

CD14 (THP-1 cells differentiated with the 1,25 (OH)2 vitamin D3), identified only one band 

corresponding to mCD14. This was determined by a characteristic molecular weight on SDS 

PAGE, and by immunoprecipitation with CD14 mAbs. Labeling of mCD14 was totally 

dependent on the addition of LBP, and could be inhibited by an excess of « cold » LPS and by 

anti-CD14 mAbs blocking LPS-CD14 binding (28C5, 3C10), but not by the anti-CD18 mAb 

IB4 [260]. Kinetics studies indicated that LPS binding to mCD14 on monocytes occured 

within 1 minute and that few minutes of exposure to physiological concentrations of LPS 

were sufficient to activate monocytes [261]. Studies using 3H-labeled LPS binding to human 

CD14 expressed on Chinese hamster ovary cells and on a human monocytic cell line (THP-1), 

indicated that LPS binding occurred within 10 min, and was relatively unaffected by 

temperature over the range of 4-37 °C. Quantitative binding assays were performed at 10 or 

37 °C, using cells depleted of ATP to prevent LPS internalization. At 10°C, the apparent 

dissociation constant of human CD14 for LPS was 2.7.10-8 M in CHO cells and 4.9.10-8 M in 

THP-1. At this temperature, the molar ratio of LPS bound per CD14 was 20:1, and this ratio 

was 8:1 at 37°C very different from an expected 1:1 stochiometry [262]. It was hypothesized 

that the leucine-rich repeats of CD14 might represent multiple binding sites for LPS 

molecules or that CD14 bound small aggregates [262]. This idea of mutiple LPS binding sites 
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was also raised by Kitchens et al. In their studies, it was demonstrated that in addition to its 

ability to compete with LPS for binding LBP and CD14, deacylated LPS potently antagonized 

LPS-induced cell activation at an unknown site distal to the LPS binding site of CD14 [263]. 

Troelstra et al. confirmed that LPS binding to monocytes was enhanced by serum or LBP for 

LPS concentrations up to 100 ng/mL, and that LPS binding was completely CD14 dependent. 

For LPS concentrations exceeding 100 ng/mL, binding was still partially CD14 dependent, 

but became serum and LBP-independent. Moreover, they showed that association of LPS with 

monocytes was shown to be totally saturable [264]. The non-CD14-dependence of LPS when 

used at high concentrations was confirmed by several groups [265, 266]. 

 

 Studies using mutants of soluble CD14 have demonstrated that the N-terminal half (152 

aa) of the molecule was sufficient for binding of LPS and for promoting cell responses [267, 

268]. Results from experiments using protease protection and CD14 mutagenesis suggested 

that amino-acids containing regions 9-13 and 57-64 are critical for LPS binding and may 

contribute to a three-dimensional structure corresponding to the LPS-binding domain of 

human CD14 [267, 269]. A common feature of many LPS-binding molecules including LBP, 

BPI protein, the Limulus anti-LPS factor and polymyxin B is the presence of positively 

charged amino acids which are thought to interact with negatively charged phosphate groups 

contained in the lipid A moiety of LPS [113, 270-273]. Four basic positively charged amino 

acids are present in the region 67-75 of human CD14, and this raised the question whether 

this region may also participate in LPS binding. Although a peptide derived from this region 

was able to interact with LPS, it appeared that the basic region between residues 67-75 was 

not essential for the recognition of LPS by human CD14 (Menzel and Stelter, unpublished 

observations). Other studies showed that residues 7-10 of the receptor were necessary for 

LPS-induced cellular activation but not for LPS binding [267]. A second region between aa 

91-101 had also a role in the signaling of LPS. It was finally demonstrated that the integrity of 

region 39-44 was crucial for serum-dependent binding of LPS to human CD14, suggesting 

that LBP could interact with CD14 in this region. An alanine substitution in this region 

abrogated LPS and E. coli binding to CD14 [153]. Taken together, these studies suggested 

that LPS binds CD14 via different epitopes contained within the first 152 aa of the protein. 

Interestingly, different LPS (from E. coli versus P. gingivalis) may have distinct binding sites 

on CD14. For example, a point mutation at E47 still enabled binding of E. coli LPS, but 

abrogated P. gingivalis LPS binding to CD14 [274]. The most recent study on the subject 

brought evidence that several different hydrophilic regions of the amino-terminal region of 
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CD14 were involved in LPS binding. Epitope-mapping studies revealed that these hydrophilic 

regions are located on one side of the protein surface. These studies suggest that CD14 uses a 

charged surface in a manner similar to the macrophage scavenger receptor to “capture” LPS 

ligands and to present them to other components of the innate host defense system [275]. 

 

 

3.1.5.1.1.2 LPS-binding receptors other than CD14 

 

 Several reports have suggested the existence of LPS receptors other than CD14. Some 

of these proteins interacting with LPS have been considered as having a role in LPS signal 

transduction. A specific receptor for LPS should be specific, show saturable and reversible 

binding, and high affinity for the ligand [276]. According to this definition, various receptors 

for lipid A, LPS, LPS-LBP complex or LPS-sCD14 complex were proposed in different cell 

types including monocytic cells, epithelial and endothelial cells. 

 

 A 80 kDa protein able to bind different serotypes of LPS in the presence of sCD14 and 

LBP, was isolated from the human monocytic cell line Mono-Mac-6 [277]. This 80 kDa 

protein has been identified as the DAF/CD55, a GPI-anchored protein present on a large array 

of cell types. The significance of these observations remains to be established [278].  

 

 Using biochemical approaches, two proteins of molecular weight 70 kDa and 80 kDa 

interacting with LPS and peptidoglycan on the surface of cells expressing or not CD14 were 

identified and designated as LPS/LTA associated proteins (LAP)-1 and LAP-2 proteins, 

respectively. LPS binding to LAP-1 and -2 was shown to be dependent on serum. It was also 

found that after 1 hour, LPS bound to two new LAP proteins termed as LAP3 and LAP4 

[279]. Immunoaffinity chromatography and peptide mass fingerprinting techniques identified 

LAP1, 2, 3 and 4 proteins as the heat shock protein (HSP70), the HSP90α, the chemokine 

receptor CXCR4 and the growth differentiation factor (GDF) 5, respectively [279]. Further 

work is needed to determine whether these proteins play a role in LPS-induced cell activation. 

 

 Another receptor candidate for sCD14-LPS is the 216 kDa protein structure which 

specifically binds iodinated sCD14 only when LPS is present [204]. This 216 kDa structure 

was detected on monocytes, endothelial and epithelial cells. However, the primary structure of 

the 216 kDa protein has not been determined yet.  
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 Other candidates showing affinity for LPS include proteins of 18 kDa on 70Z/3 pre-B 

cell line; of 38-40 kDa on mouse lymphocytes, macrophages, splenocytes, J774.1 and 70Z/3 

cells; and of 95-96 kDa, which have been identified by a variety of experimental approaches 

[280-283]. 

 

 One of the well-characterized receptors displaying affinity for LPS is the leukocyte 

integrin CD18 [284]. All three members of the CD18 family (CD11a/CD18, CD11b/CD18 

and CD11c/CD18) are capable of binding LPS and participate in the phagocytosis of bacteria. 

However, in patients with leukocyte adhesion deficiency (LAD)-1 (point mutation in CD18 

gene), leukocytes were still able to produce cytokines and superoxide anion in response to 

LPS, strongly suggesting that CD18 was not essential for mediating cellular response to LPS 

[285, 286]. Interestingly, both the CD11b/CD18 protein complex and the complement 

receptor (CR) 3, have been recently shown to associate with CD14 in the presence of serum or 

LBP on the surface of neutrophils [287]. In chinese hamster ovary (CHO) cells, CR3 was 

shown to facilitate LPS-induced NF-κB translocation presumably by presenting LPS to 

downstream signal transducer [288]. 

 

 Scavenger receptors (SR) are a family of cell surface glycoproteins able to bind 

modified lipoproteins (mLDLs) such as oxidised and acetylated LDLs [289]. Analysis of 

macrophage SR function quickly highlighted their broad ligand binding capacities. Among 

various ligands interacting with SRs, pathogens such as Gram-negative bacteria were found to 

bind to SRs through recognition of LPS [18, 290]. These receptors fall into a broad family of 

transmembrane multidomain proteins classified into six subgroups based on their proposed 

tertiary structure [291]. In vitro studies demonstrated the ability of the SR of the class A (SR-

A) to bind LPS and suggested a role of this SR in LPS clearance [18]. Supporting this, 

Haworth et al. showed that SR-A deficient mice were more sensitive to LPS than littermates. 

Indeed, these mice have a higher mortality than controls and produce more pro-inflammatory 

mediators like IL-6 and TNF-α. The underlying mechanism by which SR-A protects against 

endotoxic shock has not been determined, though this mechanism may include SR-A-

mediated removal of excess LPS from the circulation, making it unavailable to CD14 [292]. 
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3.1.5.1.2 Non-specific binding of LPS 

 

 LPS, an amphiphilic molecule with a lipid moiety, can easily binds to various 

cytomembranes in a non-receptor mediated (non-specific) way [250]. This process occurs via 

the high affinity of lipid A for the plasma membrane phospholipids [256]. Both smooth LPS 

and rough LPS were shown to attach to human monocytes in perpendicular or parallel 

orientation [250]. This non-specific binding often leads to “solubilization” of LPS lipid into 

the plasma membrane [293]. Insertion of lipid A into bilayers of the plasma membrane causes 

membrane perturbation and results under particular experimental conditions in membrane 

disruption [250]. More recently, Schromm et al. showed that LBP known to disaggregate LPS 

aggregates, can also transport LPS monomers directly into the host cell membrane [266]. 

Interestingly, sCD14 is also capable of transfering LPS to membrane of cells such as 

monocytes or neutrophils. It appeared that LPS preferentially interacts with particular classes 

of lipid such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, and 

sphingomyelin [176]. Another study revealed that monomeric LPS was shuttled from mCD14 

into the plasma membrane and trafficked within the cell independently of mCD14 [294]. It 

has been suggested that the insertion of endotoxin molecules into the lipid matrix may also be 

a prerequisite for the activation of host cells, but would not be sufficient [295]. Some authors 

have suggested that there may be a link between LPS internalization and cell activation, 

although only scarce evidence exists to support this theory [177, 296]. It has also been 

supported that LPS inserted into membranes could directly interact with DAF (CD55), the 

purinergic receptors P2X7 and ion channels [278, 297, 298]. 

 

 

3.1.5.2 Uptake / internalization and clearance 

 

 

3.1.5.2.1 Uptake / internalization of LPS 

 

 When Gram-negative bacteria invade the body, they release a significant amount of LPS 

in the surrounding milieu. Then, how the body gets rid of this highly potent inflammatory 

inducer? In the next sections, different endocytosis pathways in mammalian cells will be 

decribed. These pathways represent possible mechanisms of LPS internalization.  
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3.1.5.2.1.1 Different internalization / endocytosis pathways in mammalian cells  

 

 Mammalian cells have evolved with a variety of mechanisms to internalise small 

molecules, macromolecules and particles, and target them to specific intracellular organelles. 

Collectively, these processes are called “endocytosis”, a term proposed by de Duve in 1963 

[299]. The ultrastructural analysis of endocytosis enabled to shed light onto different 

endocytosis pathways that can be distinguished by the size and the morphology of endocytic 

vesicles, the association of these vesicles with different molecular machineries, their 

regulation modes, and their functions. Under its broad definition, endocytosis includes various 

methods of uptake of extracellular material by cells, including phagocytosis (or “cell eating”), 

(macro)pinocytosis (or “cell drinking”), clathrin-dependent receptor-mediated endocytosis 

and clathrin–independent endocytosis [1]. In order to further better define the mechanisms by 

which LPS is internalised, the following section is devoted to the different internalization 

pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4: Different endocytosis pathways in mammalian cells. From Lamaze, 
Current Opinion Cell Biol (1995) [1].  
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3.1.5.2.1.1.1 Clathrin-coated pit endocytosis 

 

 Receptor-mediated endocytosis via coated pits is a shared pathway used for the 

internalization of a variety of ligand-receptor complexes, a very efficient way to clear 

molecules from the cell surface. The coated pits and vesicles were first described in mosquito 

oocytes in 1964 [300]. Clathrin-coated pits are ~110-150 nm invaginated plasma membrane 

structures, and are covered by a coat that corresponds to a basketlike structure essentially 

made of clathrin [301, 302]. Some receptors are constitutively concentrated in coated pits, but 

others are recruited to these structures after ligand binding [303-306]. Specific targeting of 

most receptors to coated pits results from interactions between recognition (internalization) 

motifs in their cytoplasmic domains with intracellular proteins (assembly or adaptor proteins) 

contained in the clathrin coat [307, 308]. The coat proteins assemble in the cell surface as 

planar structures that later gain curvature, forming invaginated pits [309]. This process of 

vesicle budding is ATP-dependent [310]. After coated pits are pinched off from the plasma 

membrane, their traffic between endocytic compartments can be directed by many of the 

“internalization motifs” [311]. 

 

 

3.1.5.2.1.1.2 Nonclathrin-mediated endocytosis 

 

 

3.1.5.2.1.1.2.1 Phagocytosis 

 

 Large particles and microorganisms (typically > 0,5 µm) are internalised in a receptor- 

and actin-dependent, and clathrin-independent mechanism [312]. Particles that are 

endocytosed by this mechanism may be directly recognized by receptors on the cell surface, 

or may be recognized after opsonization by “opsonins”, which are frequently proteins from 

the complement and immunoglobins [313]. Phagocytosis involves the extension of 

pseudopods around the particle to be engulfed, with a sequential recruitment of cell surface 

receptors to interact with proteins or opsonins on the surface of the particle. As a result, 

pseudopods extend only as far as its surface has ligand to bind the receptors, in a way 

analogous to the teeth of a zipper [314, 315]. The extension of pseudopods requires a 
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reorganization of the actin cytoskeleton underlying the region of plasma membrane that 

contacts the particle, and this occurs as a response to intracellular signals following receptors 

cross-linking on the cell surface [316]. The two advancing sleeves of the pseudopods finally 

fuse, engulfing the particle and forming the phagosome which then matures into a 

phagolysosome, where degradation of the ingested particle starts [317]. During periods of 

high phagocytic activity, up to 40% of the plasma membrane may be internalised in 15 min 

[318]. In mammals, phagocytosis is carried out primarily by the so-called “professional 

phagocytes”, which include neutrophils, monocytes and macrophages as well as other cells of 

myelogenic lineage such as microglia in the brain [319, 320]. 

 

 

3.1.5.2.1.1.2.2 Non-clathrin coated pits, smooth invaginations, and surface tubules 

for entry into macrophages (STEMs) 

 

 The biochemical and functional properties of noncoated invaginations (average 

diameter ~95 nm) are not well understood. Indeed, the best evidence for non-clathrin coated 

pit endocytosis comes from the observation that bulk membrane internalization and the uptake 

of fluid-phase markers continue even after cells have been specifically treated to inhibit 

clathrin-mediated internalization [321-325]. A novel type of non-clathrin coated pit 

endocytosis via STEMs has been observed in macrophages [326]. It was shown that these 

surface-connected invaginations of ~250 nm in diameter and 1 µm or more in length can 

sequester large multivalent β-very-low-density lipoprotein (VLDL) particles. These latter are 

delivered from the STEMs to late endosomes and lysosomes [327]. 

 

 

3.1.5.2.1.1.2.3 Caveolae 

 

 Caveolae are uniform omega- or flask-shaped membrane invaginations that are 

considerably smaller than clathrin-coated pits (50-80 nm diameter) [328]. The cytoplasmic 

surface of caveolae is often decorated with a coat composed of delicate filaments arranged in 

striations, consisting in part of the membrane protein VIP21/caveolin [329-331]. Caveolae 

contain high concentrations of certain lipids such as cholesterol, sphingomyelin, and 

glycolipids, as well as GPI-anchored proteins and various signaling molecules such as 

members of the Src-family kinases and GTP-binding proteins [332-336]. Caveolae are present 
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in a variety of cell types (smooth muscle cells, fibroblasts, adipocytes, ECs and many 

epithelial cells) and are thought to be involved in potocytosis, endocytosis, transcytosis, and 

signal transduction [337-340]. Potocytosis is proposed to be an alternate mechanism for the 

concentration and delivery of small molecules directly to the cytoplasm, bypassing the 

classical endosomal/lysosomal pathway. Transcytosis is a process that aimed at transporting 

selected (macro)molecules through cells. 

 

 

3.1.5.2.1.1.2.4 Macropinocytosis 

 

 Macropinocytosis is another type of nonclathrin-mediated endocytic pathway [341]. 

This process is characterized by macropinosomes which are formed primarily from ruffles 

that are themselves made by bands of outwardly directed actin polymerization that result in 

planar folds or circular, cup-shaped extensions of the cytoplasm. These ruffles often close off 

to form vesicles of heterogeneous size, which are sometimes as large as 5 µm in diameter. In 

addition to the ingestion of large amounts of plasma membrane, this route accounts for the 

non-selective uptake of large volumes of fluid. Macropinocytosis closely resembles 

phagocytosis, involving actin-assisted membrane extensions that ultimately fuse and pinch off 

as intracellular vesicles. However, pseudopod extension in macropinocytosis is independent 

of the “zippering” mechanism of phagocytosis, suggesting that the two processes are 

regulated differently [317].  

 

 

3.1.5.2.2 Clearance and detoxification of LPS 

 

 To be neutralized, LPS has to be internalised in order to be detoxified inside the cell. 

Hepatic Kuppfer cells as well as hepatocytes were shown to play a major role in such 

functions in vivo and in vitro [252, 342]. Lung macrophages were also involved in the 

elimination of endotoxin [343]. In macrophages, lipid A was shown to be converted to a less 

toxic precursor-like molecule via removal of non-hydroxylated fatty acids by acyloxyacyl 

hydrolases, which work best at acid pH [344, 345]. This enzymatic reaction termed as 

deacylation, occurs over several hours and can be inhibited by agents that reduce lysosomal 

(endosomal) acidification, suggesting that LPS moves at least transiently into an acidic 

intracellular compartment [251]. Deacylated LPS (or lipid IVa) has been shown by Kitchens 
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et al. to lack cell-activating properties [346]. The ingested LPS is also modified by enriching 

the lipid content, by shortening the length of O-antigen, and by dephosphorylation of the lipid 

A moiety [254, 347]. All of these molecular modifications are believed to be implicated in 

LPS detoxification. Detoxified LPS may then be excreted by exocytosis or retained by 

macrophages in larger micelles [254]. 

 

 

3.1.6 Problematic 

 

 As previously mentioned LPS activates cells via CD14 and is further internalised into 

cells. The fate of LPS after its binding to the plasma membrane has raised the interest of many 

researchers. Indeed, LPS endocytosis leads to the detoxification and clearance of endotoxin, 

an important step to neutralize this potent pro-inflammatory molecule. This function is 

principally ensured by monocytes/macrophages. Before CD14 was characterized as a receptor 

for LPS, several microscopic studies had been carried out with labeled antibodies against LPS 

or labeled LPS to follow the bacterial molecule. Kang et al. observed that LPS inserted into 

the plasma membrane of macrophages, perturbed and then disrupted the membrane. This 

disruption facilitated massive migration of LPS bilayers into the cytoplasm by passive 

diffusion. LPS entering cells via this mechanism often appears as large aggregates in the 

cytoplasm without a surrounding limiting membrane. Kang et al. proposed that massive 

ingestion of LPS and destruction of cytomembranes may cause the death of cells [250]. It is 

important to note that these experiments were done with very high concentrations of LPS 

(~100 µg/mL), which hardly reflect "physiologic" situations in which macrophages usually 

encounter nanograms or picograms of LPS. Other mechanisms for LPS uptake by monocytes 

and macrophages are absorptive pinocytosis and phagocytosis. In addition to human 

monocytes, phagocytosis of biotin-LPS was also observed in human natural killer (NK) cells 

and platelets [255, 348]. Human monocytes are able to ingest bulks of LPS by phagocytosis at 

multiple sites when they are exposed to extremely high doses of LPS (50-100 µg/mL). 

Following LPS endocytosis, LPS have been localized in pinocytic vesicles, phagocytic 

vacuoles and phagosomes in human macrophages. The ingested LPS has also been found in 

association with the endoplasmic reticulum, the outer nuclear membrane, mitochondria, the 

Golgi apparatus, and also free in the cytoplasm and nucleoplasm of human monocytes. The 

phagocytic vacuoles and phagosomes containing LPS often display peroxidase and acid 
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phosphatase activities [250]. McGivney et al. have shown that LPS enhances lysosmal 

enzyme activity possibly by direct action on the subcellular constituents [349].  

 

 Electron microscopic studies on CD14 internalization were performed with the anti-

CD14 RoMo-1 monoclonal antibody early after its identification. Endocytosed CD14 

followed a pathway similar to that of receptor-mediated endocytosis, a process known for a 

variety of ligands such as cell nutrients, growth factors, hormones and others [350]. Despite 

these studies on LPS and CD14 internalization, many questions remain opened. In the first 

part of this chapter, we have investigated the question of LPS and CD14 internalization 

pathway in monocytic cells. We were first interested in the localization of CD14 at the cell 

membrane, that could bring a hint in the determination of internalization pathways. Moreover, 

since CD14 has been characterized to be the receptor for LPS, the question of its participation 

in LPS internalization arose, and if so, whether both molecules were associated and trafficked 

together within the cell. By transforming the GPI anchor of CD14 into a transmembrane tail, 

we explored the possible role of the GPI anchor of CD14 in the targeting of CD14 at the cell 

membrane, in LPS-induced cell activation, and also in LPS internalization. In addition to 

these interrogations, we raised the question of a possible relationship between LPS-induced 

cell activation and LPS internalization by using specific inhibitors of internalization 

pathways. 

 

Myeloid cells are not the only cells interacting with microorganisms. Endothelial and 

some epithelial cells such as intestinal and liver cells are in direct contact with bacteria and 

bacterial products. These cells might have develop different immune strategies to protect 

themselves and their environment. For the professional phagocytic cells classically considered 

to be the primary mediators of innate immunity, distinction between commensal and 

pathogenic microbes is not particularly important. Indeed, any microbe that breaches the outer 

host defensive barriers by a pathogen-specific or opportunistic mechanism to reach these 

phagocytes is likely to be identified hazardous to its host. However, epithelial cells that line 

mucosal surfaces being on the front line of host defense, also play an active role in innate 

immunity particularly by secreting chemokines and other immune mediators in response to 

pathogenic microbes. Since some mucosal surfaces such as the intestinal epithelium are 

normally densely colonized by a wide variety of microbes, the ability to distinguish the 

occasional pathogen from the sea of commensals presents an important challenge. These 

epithelial cells may have develop a powerful recognition strategy that would discriminate 
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commensal bacteria from pathogens. The liver is also an important site of host-microbe 

interaction when infections occur. In addition, hepatocytes and Kupffer cells clear bacterial 

molecules such as LPS from the blood streaming through the liver. To interact with and 

discriminate between pathogenic molecules, intestinal cells as well as hepatocytes may have 

develop a powerful strategy of recognition. CD14 is a pattern recognition receptor able to 

bind an array of microbial molecules such as LPS. Human epithelial cells were shown to 

respond to LPS via a soluble CD14-dependent manner [149]. However, the expression and 

release of CD14 by these so-called CD14-negative cells have not been studied in detail. In the 

second part of this chapter, we investigated CD14 expression at molecular and cellular levels 

in different colonic and hepatocytic cell lines. Moreover, to better understand interactions 

between LPS and epithelial cells, the role of CD14 in LPS-induced cell activation and LPS 

internalization was also questioned in these cells. 
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3.2 Part I: «CD14-dependent endotoxin internalization via a macropinocytic 

pathway» 
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Gram-negative bacterial endotoxin (a lipopolysaccha-
ride (LPS)) specifically binds to CD14, a glycosylphos-
phatidyl inositol (GPI)-anchored surface myeloid glyco-
protein. This interaction leads to cell activation, but it
also promotes LPS internalization and detoxification. In
this work, we investigated the route of LPS and CD14
internalization and the relevance of CD14 GPI anchor in
the endocytic pathway. In promonocytic THP-1 cells
transfected with a GPI or a chimeric integral form of
CD14, we showed by differential buoyancy in sucrose
density gradients that these two forms of CD14 were
sorted to different plasma membrane subdomains. How-
ever, both forms of CD14 associated preferentially with
the same surface microfilament-enriched microvilli or
ruffles. Electron microscopic studies indicated that
CD14 internalized via macropinocytosis, a process re-
sembling that of phagocytosis, different from “classical”
receptor-mediated endocytic pathways, such as clath-
rin-coated pits or caveolae. With cell warming, the
CD14-enriched ruffles fused and formed large vesicles.
Later, these vacuoles made stacks and condensed into
phago-lysosomes. CD14 was specifically associated with
all of these structures. Radiolabeled LPS internalization
paralleled CD14 internalization. Confocal microscopic
studies confirmed the co-localization of LPS and CD14
both at the cell surface and in endosomal compartments.
The microfilament-disrupting, macropinocytosis block-
ing agent cytochalasin D inhibited LPS and CD14 inter-
nalization but did not prevent LPS-dependent activa-
tion, indicating that these two processes are dissociated.

Clearance of bacteria and bacterial molecules, predomi-
nantly performed by macrophages, is an important feature of
bacterial immunity and requires specific recognition and endo-
cytic pathways (1, 2). A prototypic example of a bacterial mol-
ecule with profound effects on mammalian cells is the Gram-
negative lipopolysaccharide (LPS),1 or endotoxin (3). Various
macrophage cell surface molecules can bind LPS (4), including
scavenger receptors (5) and CD14 (6). However, in CD14-posi-

tive cells, LPS internalization is almost completely dependent
on the presence of CD14 and is not inhibited by scavenger
receptor ligands (7). CD14, a 55-kDa glycoprotein, has been
recognized as a surface myeloid differentiation marker (8) and
the LPS receptor (9). Engagement of CD14 by complexes of LPS
and LPS-binding protein, as well as other bacterial ligands
leads to cell activation (9, 10). The mechanism of transmem-
brane LPS signal transduction remains to be unraveled (11).
CD14 also exists in a soluble form, and complexes of LPS and
soluble CD14 activate CD14-negative cells, such as endothelial
and epithelial cells (12).

Apart from cell activation, membrane-bound CD14 plays
other important roles: it mediates LPS internalization (7, 13,
14), as well as Gram-negative bacteria and mycobacteria phag-
ocytosis (15, 16). LPS internalization by myeloid cells is a
critical step for its detoxification. After endocytosis, LPS is
biologically deactivated by a specific enzyme (acyloxyacyl hy-
drolase) present in phagocytic granules (17).

Glycosylphosphatidyl-inositol (GPI)-linked molecules are
sorted to plasma membrane subdomains, rich in sphyngomy-
elin, cholesterol, receptors, and other signaling molecules (18–
20). In epithelial cells, these plasma membrane domains cor-
respond morphologically to noncoated pits and vesicles, known
as caveolae (19). Caveolae have been implicated in GPI-linked
receptor-mediated endocytosis (19, 21, 22). CD14 is naturally
attached to macrophage and polymorphonuclear neutrophil
plasma membranes via a GPI moiety (23, 24). CD14 association
with particular membrane subdomains, routes of LPS and
CD14 internalization remain to be elucidated.

In this study, we found that LPS and CD14 internalized via
a macropinocytosis independently of “classical” receptor-medi-
ated endocytic pathways, such as clathrin-coated pits or caveo-
lae. The modification of the GPI-anchored CD14 into an inte-
gral protein did not significantly affect rates and pathways of
receptor-ligand internalization, and CD14 endocytosis did not
seem to be regulated by its ligand, LPS. Finally, cytochalasin D
inhibited LPS endocytosis but did not prevent LPS-dependent
cell activation.

MATERIALS AND METHODS

Cells—Wild type CD14 cDNA or a chimeric cDNA construct of CD14
attached to the transmembrane portion of human tissue factor were
used to transfect a human promonocytic, CD14-negative, THP-1 cell
line, as described elsewhere (15, 25). Stable transfectants expressed
either a GPI-anchored CD14 (wtCD14-THP1 cells) or a transmembrane
form of CD14 (tmCD14-THP1 cells). Cells transfected with the empty
vector (pRc/RSV) served as control cells (25). Transfectants were cul-
tured in suspension in RPMI 1640 medium containing penicillin and
gentamicin antibiotics, 10% fetal bovine serum, and 0.5 mg/ml G418
(Geneticint), all from Life Technologies, Inc. CD14 expression in
wtCD14-THP1 and tmCD14-THP1 cells was 2 3 106 and 2 3 105 CD14
molecules/cell, respectively (25).

Membrane Targeting of CD14—Membrane targeting of CD14 was
assayed using sucrose density gradient according to published methods
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(26). Briefly, 2 3 107 wtCD14-THP1 and tmCD14-THP1 cells were lysed
for 20 min at 4 °C in a lysis buffer containing anti-proteases (TNE (25
mM Tris-HCl, 150 mM NaCl, 5 mM EDTA) plus 1 mM phenylmethylsul-
fonyl fluoride, 2 mg/ml leupeptin, 200,000 IU/ml aprotinin), and 1%
Triton X-100 or 1% Triton X-100 1% plus 60 mM octylglucoside (26). Cell
lysates were then homogenized (8 strokes, Dounce homogenizer), and 2
ml of an 80% sucrose solution was added to 2 ml of cell lysates. A 7.5-ml
5–30% linear sucrose gradient was layered onto the 40% sucrose/cell
lysate mixture, and tubes were ultracentrifuged (Beckman SW41 rotor)
at 39,000 rpm at 4 °C for 18 h. One-ml fractions were collected from the
bottom of the tubes. Proteins in each fractions were precipitated in 10%
trichloroacetic acid, resuspended in 23 SDS-polyacrylamide gel electro-
phoresis sample buffer containing 5% b-mercaptoethanol, boiled for 5
min, and separated using a 12% acrylamide SDS gel. Proteins were
then electrotransferred onto a nitrocellulose membrane. CD14 was
detected by Western blot using a goat anti-human CD14 antibody (from
R. J. Ulevitch, The Scripps Research Institute, La Jolla), protein G-
horseradish peroxidase (Bio-Rad), and ECL (Amersham Pharmacia
Biotech). In some experiments, cell membrane proteins were detected
by dot-blot (27): proteins contained in 2–20 ml of the sucrose density
gradient fractions (non-trichloroacetic acid-precipitated) were diluted
in 200-ml TNE buffer and transferred onto nitrocellulose by filtration
(Bio-Rad DotBlot™ apparatus). Membrane proteins were detected by
Western blot using specific monoclonal antibodies, a secondary goat
anti-mouse IgG-HRP conjugate (Santa Cruz Biotechnologies, Santa
Cruz, CA), and the ECL detection system (27). Murine monoclonal
antibodies to human membrane proteins used in this dot-blot assay
were 28C5 (anti-CD14, a gift from D. Leturcq, RW Johnson Pharmaco-
logical Institute, San Diego), MEM 154 (anti-CD16), MEM 48 (anti-
CD18), MEM 102 (anti-CD48), MEM 118 (anti-CD55), and MEM 43/5
(anti-CD59). Antibodies of the MEM series were characterized and
donated by V. Horejsi, Prague, Czech Republic (28). In other experi-
ments, GPI-rich membrane subdomains were isolated without deter-
gent, using a combination of mechanical homogenization of cells, mem-
brane sonication, successive Percoll™ (Amersham Pharmacia Biotech)
and Optiprep™ (Nycomed Pharma, Oslo, Norway) gradients, as de-
scribed elsewhere (29), and assayed by dot-blot for CD14 (see above).

Immunoelectron Microscopy—THP-1 transfectants were sequentially
incubated for 2 h at 4 °C with 0.3 mg/ml of biotinylated 63D3 mono-
clonal antibody (a noninhibitory anti-CD14 monoclonal antibody, not
interfering with LPS binding site) (ATCC, Rockville, MD) and for 1 h at
4 °C with a 1:10 dilution of streptavidin coupled to 10 nm colloidal gold
particles (ANAWA, Wageningen, The Netherlands) in phosphate-buff-
ered saline/bovine serum albumin 1% buffer. After two washes in 4 °C
phosphate-buffered saline, cells were warmed and kept 5 or 20 min in
a 37 °C water bath in the presence or in the absence of 2 mg/ml Esch-
erichia coli K12 LCD25 LPS (List Biological Laboratories Inc., Camp-
bell, CA)/10% fetal bovine serum. Cells were then fixed for 30 min at
20 °C with 2.5% glutaraldehyde diluted in pH 7.4 phosphate buffer,
dehydrated, and processed for electron microscopy as described else-
where (30). Thin sections were examined in a Philips electron micro-
scope 301, and gold particles were quantitatively analyzed. For each
time point studied, 450–800 gold particles from more than 50 cells were
analyzed from cells expressing either wt- or tmCD14. Gold particles
were scored in terms of their association with cellular structures, such
as microvilli or membrane ruffles, the inner leaflet of macropinosomes
(vesicular structures), endocytic vesicles (clathrin-coated pits/vesicles),
and lysosome-like organelles. The percentage of membrane surface
represented by ruffles or microvilli was determined on randomly pho-
tographed pictures of wtCD14-THP1 cells (231.4 6 11 mm of plasma
membrane length on each micrography; n 5 57) and tmCD14-THP1
cells (256.7 6 12.6 mm; n 5 50) at an initial magnification of 3 7200 as
described previously (31).

LPS Internalization—One hundred ng/ml [3H]LPS (biosynthetically
tritiated E. coli K12 LCD25 LPS, List Biological Laboratories) (32),
preincubated for 15 min at 37 °C with fetal bovine serum, were added to
the cells for various times. In some experiments, the microfilament-
disrupting agent cytochalasin D (Sigma) (3 mM), or the phosphoinosit-
ide-3 kinase inhibitor wortmannin (Calbiochem, San Diego, CA) (1 mM)
were added to the cells 30 min prior to the addition of LPS (33, 34). After
various times of LPS incubation, cells were washed and treated at 4 °C
with 200 mg/ml Pronase (Boehringer Mannheim) for 1 h (35, 36). Su-
pernatants and cells were separated by centrifugation and transferred
into scintillation liquid. Radioactivity was measured in a scintillation
counter to determine cell-bound and internalized (Pronase-resistant,
cell-associated) counts. Internalization was defined as the percentage of
counts resistant to Pronase relative to the total counts (cell-associated
counts before the Pronase treatment). Cell viability during the experi-

ment was tested using the Live/Dead™ Eukolight viability kit (Molec-
ular Probes, Leiden, The Netherlands), according to the manufacturer’s
protocol.

Confocal Laser Microscopy—wtCD14- and tmCD14-THP1 cells pre-
incubated for 30 min in the presence or in the absence of 3 mM cytocha-
lasin D (Sigma) were labeled with 60 mg/ml biotinylated 63D3 anti-
CD14 monoclonal antibody and 30 mg/ml streptavidin-Texas red
(Molecular Probes) at 4 °C for 45 min. After washing, 1 mg/ml fluores-
ceinated (FITC) LPS (donated by P. S. Tobias, The Scripps Research

FIG. 1. A, distribution of wt- and tmCD14 in sucrose density gradient
of THP-1 cell lysates. CD14 was detected in fractions by Western blot.
Recombinant soluble CD14 (rsCD14) was used as a positive control. B,
comparison of the distribution of wt- and tmCD14 with various other
GPI and transmembrane proteins in sucrose density gradient of THP-1
cell lysates.

TABLE I
Association of wt- and tm-CD14 with plasma membrane structures

using morphometrical studies of electron microscopy and immunogold
labeling of CD14

Membrane
surface found as

microvilli or
ruffles

Gold particles
associated with

microvilli or
ruffles

CD14
enrichment on
microvilli or

rufflesa

% %

wtCD14-THP1 cells 37 6 2.2 54.9 6 0.8 1.48 3 6 0.07
tmCD14-THP1 cells 37.7 6 2.1 45.9 6 0.4 1.22 3 6 0.06

a CD14 enrichment on microvilli or ruffles was calculated as the ratio
of the percentage of gold particles associated with microvilli or ruffles
over the percentage of membrane surface found as microvilli or ruffles.
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Institute, La Jolla, CA) in 10% normal human serum was added, and
cells were put at 37 °C for 1 or 30 min. Cells were then chilled, washed,
and fixed in Tris/glycerol/polyvinyl alcohol mounting solution. Speci-
mens were examined with a Zeiss confocal laser fluorescence inverted
microscope (LSM 410, Carl Zeiss, Oberkochen, Germany) using simul-
taneous lasers with excitation wavelengths of 543 and 488 nm for red
and green, respectively, and detection using red and green narrow band
filters. Cells were observed through an oil plan-neofluar 3 63/1.3 ob-
jective. The best plan of section was optimized through optical
sectioning.

Cell Activation—Cytoplasmic protein tyrosine phosphorylation by
LPS (200 ng/ml) in the presence or absence of 3 mM cytochalasin D (1 h
pretreatment) was assayed using a 4G10 phosphotyrosine Western blot
(Upstate Biotechnology), as described elsewhere (25). In similar exper-
iments, LPS-induced nuclear factor-kB activation was assessed using
classical electromobility shift assay of nuclear proteins (25). Interleu-
kin-8 was measured by enzyme-linked immunosorbent assay (Endogen,
Cambridge, MA) in conditioned supernatants from THP-1 transfectants
treated for 7 h with various concentrations of LPS, with or without 3 mM

cytochalasin D (25).

RESULTS

Membrane Targeting of CD14 and Surface Events—Using
sucrose density fractionation of Triton X-100 cell extracts, we
observed that the GPI form of CD14 (wtCD14) and the trans-
membrane CD14 chimera (tmCD14) were targeted to different
membrane subdomains, as indicated by their differential buoy-
ancy in the sucrose gradient. The Triton X-100-extracted
wtCD14 floated in low sucrose density fractions, previously

recognized as GPI-rich domains, whereas tmCD14 remained in
the 40% sucrose solution (Fig. 1A). Octylglucoside known to
disrupt GPI-rich domains solubilized wtCD14, which was re-
covered in the 40% sucrose density fractions (Fig. 1A), whereas
the buoyancy of tmCD14 was not modified by this detergent. In
Triton X-100 lysis buffer, wtCD14 co-localized in low sucrose
density fractions with other GPI-anchored proteins (CD16,
CD48, CD55, and CD59), but tmCD14 remained in the high
sucrose density fractions, along with the transmembrane CD18
protein (Fig. 1B). Nondetergent isolation of low-density GPI-
rich domains (29) showed that CD14 was enriched at least 100
times in these domains as compared with tmCD14, as deter-
mined by serial dilutions of GPI-rich domains of wt- and
tmCD14-THP1 cells in the dot-blot assay (data not shown).
This latter experiment indicated that the separation by buoy-
ancy of wt- and tmCD14 was not an artifact due to the presence
of detergents. Taken together, these experiments demon-
strated that the GPI anchoring was responsible for targeting
CD14 to GPI-rich, lipid-rich plasma membrane subdomains,
whereas tmCD14 was sorted into other membrane domains,
where most integral proteins are found. LPS treatment did not
modify the distribution pattern of wt- or tmCD14 in the sucrose
density fractions (not shown).

CD14 from 1,25-(OH)2 vitamin D3-differentiated THP-1 cells
(CD14-positive THP-1 cells) (6), human monocytes, and epithe-
lial cells (COS and HepG2) transfected with GPI-CD14 was

FIG. 2. Representative electron mi-
crography showing the association of
wtCD14 (gold particles) with mac-
ropinocytic structures in transfected
THP-1 cells. CD14-associated gold parti-
cles are indicated by arrows. At 4 °C, the
bulk of CD14-associated gold particles
was found on cell surface protrusions
(likely membrane ruffles or microvilli)
(A). When the temperature was shifted to
37 °C to allow endocytic process to occur,
membrane ruffles merged (B) and formed
large vesicular structures (vs) organized
in stacks (C and D). CD14-associated gold
particles were found enclosed in these ve-
sicular structures after 5 min at 37 °C (C
and D). Clathrin-coated pits (cp) were ob-
served budding off from these cisternae,
but no significant labeling was found as-
sociated with these structures (D). After
20 min at 37 °C, CD14-associated gold
particles were retrieved in vesicular
structures deeper in the cytoplasm near
the nucleus (N) or in lysosome-like struc-
tures such as multivesicular bodies (mvb)
(E and F), which suggests that gold-con-
taining cisternae stacks have matured
into lysosome-like structures. Similar cell
structures and pattern of gold labeling
was observed in tmCD14-THP1 cells. Ar-
rows indicate immunogold-labeled CD14
particles.
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found in the same sucrose density fractions as wtCD14 origi-
nating from transfected THP-1 cells (not shown), indicating
that GPI-CD14 targeting to lipid-rich domains was independ-
ent of the cell type tested.

We next determined wt- and tmCD14 association with
plasma membrane structures using electron microscopy and
immunogold labeling of CD14. The THP-1 cell plasma mem-
brane was found to be very convoluted, with 37% of the mem-
brane surface found as microvilli or ruffles (Table I). CD14
immunogold labeling at 4 °C indicated that wtCD14, and to a
lesser extent tmCD14, associated preferentially with mem-
brane microvilli or ruffles, with enrichment factors of CD14 on
these structures of 1.483 and 1.223, respectively (Table I and
Fig. 2). Very little, if any, wt- or tmCD14 localized in clathrin-
coated pits. We did not observe clear caveolar structures in
THP-1 cells. No immunogold CD14 labeling was observed in
RSV-control THP1 cells.

LPS and CD14 Internalization—Co-localization of LPS and
CD14 at the plasma membrane level was assessed by confocal
laser microscopy and dual LPS and CD14 fluorescent labeling.
After 1 min of incubation at 37 °C, Texas red-immunolabeled
CD14 and FITC-LPS co-localized exclusively at the membrane
surface in both THP-1 transfectants (Fig. 3). No fluorescent
labeling was detectable in control RSV cells. We next addressed
whether LPS and CD14 co-localized during the process of en-
docytosis using confocal laser microscopy. After 30 min of cell
warming, both LPS and CD14 internalized and were found to
be co-localized in intracellular endocytic compartments (Fig. 3).
LPS internalization patterns and rates were assessed using a
classical internalization protocol. Cells were put at 37 °C in the
presence of [3H]LPS and serum for various times and then
chilled and treated with Pronase. Cell-associated counts after
Pronase treatment were considered internalized. Association of
[3H]LPS with THP1 transfectants was entirely dependent on
the presence of CD14, because RSV control cells did not show
significant [3H]LPS binding. In addition, in experiment not

shown here, anti-CD14 monoclonal antibodies specifically
blocking [3H]LPS binding to CD14 (28C5 and 3C10, ATCC)
prevented [3H]LPS binding and internalization. In wt- and
tmCD14-THP1 cells, [3H]LPS binding (defined as 3H counts
released by Pronase) was rapid and plateaued after 5–10 min
(not shown). [3H]LPS was internalized with similar rates (;2%
per min) in both THP1 transfectants. A plateau of internaliza-
tion (maximal internalization of ;45%) was reached after
30–60 min in wtCD14-THP1 cells (Fig. 4). In tmCD14-THP1
cells, although initial internalization rates were quite similar
to those measured in wtCD14, internalization did not quite
reach a plateau after 120 min (;70% internalization at 120
min; Fig. 4).

Rates and routes of wt- and tmCD14 internalization were
studied using immunoelectron microscopy. After immunolabel-
ing of CD14 at 4 °C, THP1 transfectants were warmed at 37 °C
for various times. Gold-labeled CD14, mainly present at the
surface of microvilli or ruffles, localized in macropinocytic ves-
icles after 5 min, forming large endocytosed vacuoles organiz-
ing in stacks (Figs. 2 and 5). After 20 min, CD14 was found
deeper in the cytoplasm in denser endosome-like or lysosome-
like structures (Figs. 2 and 5). These pictures are typical of
macropinocytosis. CD14 internalization route was identical in
wt- and tmCD14-THP1 cells. Very similar rates of CD14 inter-
nalization were found in both THP-1 transfectants (Figs. 4 and
5). Only tmCD14 internalized more and was found more asso-
ciated with endosome-like or lysosome-like structures than
wtCD14-THP1 cells (75 versus 45% internalization at 20 min,
respectively) (Figs. 4 and 5). These findings are in accordance
with what was found in the LPS internalization assay, with
similar rates of LPS and CD14 internalization in both assays
(Fig. 4). All of this strongly suggested a common pathway of
LPS and CD14 internalization. In experiments not shown here,
LPS treatment of THP-1 transfectants did not significantly
influence rates or routes of CD14 internalization.

Effect of Macropinocytosis Inhibitors on LPS and CD14 In-

FIG. 3. Representative confocal microscopy images of wt- and tmCD14-THP1 cells incubated with 1 mg/ml FITC-LPS (green) and
Texas red-antibody labeled CD14 (red). After labeling at 4 °C, cells were warmed at 37 °C for 1 and 30 min in the presence or in the absence
of the microfilament-disrupting agent cytochalasin D. It is shown here that LPS and CD14 co-localized (yellow) at the plasma membrane and in
endosomal compartments in both wt- and tmCD14 transfectants. LPS and CD14 internalization was blocked by cytochalasin D.
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ternalization—The actin filament disrupting agent cytochala-
sin D markedly decreased [3H]LPS internalization in both
wtCD14- and tmCD14-THP1 cells, with a maximum effect ob-
served at 3 mM cytochalasin D concentration (Fig. 4). In confocal
microscopy, cytochalasin D clearly prevented FITC-LPS and
Texas red-CD14 internalization (Fig. 3). Phosphoinositide-3
kinase has been implicated in macropinocytosis (34). In exper-
iments not shown here, the phosphoinositide-3 kinase inhibitor
wortmannin decreased [3H]LPS internalization by 30%. Impor-
tantly, these inhibitors had no effect on cell viability at the
concentrations tested.

LPS Activation of Cells—As previously shown (25), LPS
treatment of wt- and tmCD14-THP1 cells induced rapid phos-
phorylation of p38 mitogen-activated protein kinase, NF-kB
activation, and IL-8 secretion (Fig. 6). Although cytochalasin D
had a profound inhibitory effect on LPS internalization, it
modified neither LPS-induced p38 mitogen-activated protein
kinase phosphorylation nor NF-kB activation. Importantly,
LPS internalization and activation was assayed within the
same time frame, i.e. 30–45 min (Fig. 6). IL-8 secretion occur-
ring 7 h after LPS treatment was markedly increased by the
treatment of cytochalasin D. These results strongly suggest
that LPS internalization (blocked by cytochalasin D) and LPS
activation (unaffected or increased by cytochalasin D) of cells
are separate events.

DISCUSSION

Herein, we show that LPS is internalized via a CD14-de-
pendent macropinocytic process resembling that of phagocyto-
sis. This endocytotic pathway has been proposed as an efficient
route for nonselective endocytosis of solute macromolecules, as
well as for invasion by some pathogenic bacteria, such as Sal-
monella thyphimurium (37, 38). Macropinocytosis has also
been described for receptor-mediated endocytosis (22, 38), such
as complement receptors CR1 (30) and CR3 (39), involved in
phagocytosis by human neutrophils. Macropinocytosis requires
the development of cytoplasmic projections or membrane ruf-
fles in a microfilament-dependent mechanism (40). After ruf-
fles form, they merge and close into large intracellular vesicles,
termed macropinosomes. These endocytic vesicles then orga-
nize in stacks, interact with other intracytoplasmic compart-
ments, and evolve into dense phagolysosome-like structures. In
our work, immunogold-labeled CD14 was preferentially local-
ized on membrane ruffles or microvilli. Upon cell warming,
CD14 was found specifically associated with all the macropi-
nosomal and the phagolysosomal structures described above.
Interestingly, before CD14 was recognized as the LPS receptor,
Kang et al. (41) described in electron microscopic studies that
LPS endocytosed through a phagocytotic, pinocytotic mecha-
nism in human monocytes, very similar to the process de-
scribed in the present work. Similar findings were reported
with murine macrophages (42). These authors showed that
LPS-gold particles were found in deep labyrinthic invagina-
tions of the plasma membrane and with coated pits budding off

FIG. 4. Kinetics of LPS internalization (100 ng/ml 3H-LPS) in
wtCD14-THP1 cells (upper panel) and tmCD14-THP1 cells (low-
er panel) (2 3 106 cells/experiment), in the presence (closed
circles) or in the absence (open circles) of cytochalasin D. Per-
centage of LPS internalization was defined as the Pronase-resistant cell
associated counts relative to the cell-associated counts before Pronase
treatment. Data presented here are the mean of three independent
experiments performed in duplicate.

FIG. 5. Cellular localization and kinetics of CD14 internaliza-
tion in wt- and tmCD14-THP1 cells at 37 °C, derived from elec-
tron microscopic studies. Gold-labeled CD14 was associated with
the following structures: plasma membrane (open bars), stacks and
vacuolar structures (hatched bars), and multivesicular bodies or lyso-
some-like structures (filled bars). It is shown here that with time, CD14
progressively moves from the plasma membrane to deeper cytoplasmic
compartments in both wt and tm-CD14 transfectants. The kinetic of
tmCD14 sorting to lysosomal-like structures was more rapid that for
wtCD14. Results are expressed as mean 6 range of two experiments.
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these invaginations. We did not find CD14-gold particles in
coated pits or vesicles. To reconcile these data, one might argue
that CD14 passes LPS onto a second molecule internalized via
coated pits. Interestingly, cross-linked CD55, another GPI-an-
chored receptor, internalized via a similar pathway, and was
found to be associated with the same endocytic compartments
(35). LPS internalization has also been studied by confocal
microscopy by two different groups: in monocytes (13) and in
neutrophils (43). These authors found that fluorescent LPS was
rapidly internalized (within 5 min), in a CD14-dependent man-
ner. In our work, we showed that FITC-LPS and Texas red-
CD14 co-localized both at the cell membrane and in endosomal
compartments.

Macropinocytosis requires actin polymerization, and this
process is sensitive to cytochalasins (44). In confocal micros-
copy experiments, we found that both LPS and CD14 endocy-
tosis were abrogated by cytochalasin treatment of cells (Fig. 3).
In a protease-based internalization assay, cytochalasin D
markedly decreased LPS internalization (Fig. 4). The incom-
plete inhibition of LPS internalization by cytochalasin D in our
Pronase assay could possibly indicate a transfer of LPS into a
protease-resistant compartment (insertion of LPS into the
plasma membrane, for example). This could explain why we did

not observe LPS internalization in cytochalasin D-treated cells
by confocal microscopy, yet some LPS remained cell associated
after protease application. Wortmannin, a phosphoinositide-3
kinase inhibitor known to inhibit macropinocytosis (33, 34) and
CD14-dependent phagocytosis of E. coli (15) decreased [3H]LPS
internalization by 30% but had a less pronounced effect than
cytochalasin D. LPS treatment of CD14-positive cells did not
influence the rate or the route of CD14 endocytosis, as if this
CD14-dependent uptake was not regulated by the ligand.

Cytochalasin D had a profound inhibitory effect on LPS
internalization, probably by blocking the microfilament forma-
tion necessary for macropinocytosis. In contrast, this substance
did not block LPS activation of cells (p38 mitogen-activated
protein kinase phosphorylation and NF-kB activation) within
the same time frame, indicating a dissociation between LPS
internalization and activation, as suggested by others (5, 7, 14).
Cytochalasin D enhanced LPS-induced IL-8 production by
THP-1 transfectants. This could be explained either by a sen-
sitization of cells due to the cellular deformation induced by a
microfilament disrupting agent (45), by a posttranslational
effect of the drug, or by a prolonged time for ligand-receptor
interactions at the surface of the cell. In the latter situation,
our findings may indicate that LPS internalization could be a
process aimed at down-regulating the activating effects of LPS.

We postulate that CD14 molecules present on macrophage
membrane projections sense the extracellular milieu and bind
LPS when they encounter it. Part of the LPS may be trans-
ferred to a protease-resistant membrane molecule/structure or
simply be inserted into the lipid bilayer. Bound LPS and CD14
are then internalized in a ligand unregulated manner by mac-
ropinocytosis, a process not related to cell activation.

It also makes sense that the LPS internalization pathway
resembles that of bacterial phagocytosis, because LPS is the
most abundant ligand at the surface of Gram-negative bacte-
ria. Cells of the innate immunity system may well have evolved
with identical mechanisms for engulfment of bacteria and bac-
terial products (15). It was recently recognized that CD14 was
the receptor for bacterial ligands other than LPS, originating
from Gram-positive bacteria, mycobacteria, and yeasts (10). It
was proposed that CD14 was a polyspecific receptor for nonself,
conserved bacterial molecules, mediating innate immune re-
sponses upon ligand binding (10). Whether or not these non-
LPS ligands internalize in a CD14-dependent manner, and by
routes similar to that of LPS, remains to be determined.

The role of CD14 GPI anchoring has always puzzled inves-
tigators. In the present work we showed that GPI anchoring
sorted CD14 to lipid-rich plasma membrane subdomains,
where other GPI-anchored receptors are found. Modifying the
anchoring system into a transmembrane-type protein sorted
CD14 into “integral protein subdomains.” It has been postu-
lated that GPI-anchored molecules specifically associated with
caveolae, or non-clathrin-coated pits (19). We did not find
caveolar structures in promonocytic THP-1 cells, and clearly,
gold-labeled CD14 was not associated with such structures.
This is congruent with a previous report by Wang et al. (46).
These authors found that tritiated LPS associated with low-
density, lipid-rich THP-1 membrane fragments in the absence
of visualized caveolae (46). Similar findings were reported for
lymphocytes (47). This strongly suggests that GPI lipid-rich
membrane domains are entities distinct from the morphologi-
cal structure known as caveolae (46, 47). A transmembrane
chimeric CD14 construct was found to be targeted to different
subdomains, as assessed by detergent solubility and differen-
tial buoyancy of sonicated membrane extracts. Neither the
different anchoring systems nor their membrane localization
affected the rate and the route of the ligand-receptor complex

FIG. 6. Effect of cytochalasin D on LPS-induced p38 mitogen-
activated protein kinase phosphorylation, NF-kB activation,
and IL-8 secretion. A, upper gel, phosphotyrosine Western blot of
cytoplasmic lysates of THP-1 transfectants treated with LPS, cytocha-
lasin D (Cyto D), or both for 30 min. The phosphorylated p38 band is
indicated by an arrow. Lower gel, electromobility shift assay of nuclear
proteins from THP-1 transfectants treated as above for 45 min. The
complex of activated NF-kB protein and the 32P-radiolabeled NF-kB
DNA oligoprobe is indicated by an arrow; n.s., nonspecific band. B, IL-8
secretion by wtCD14-THP1 cells (circles), tmCD14-THP1 cells
(squares), and RSV cells (triangles). Cells were treated with LPS in the
presence (filled symbols) or in the absence (open symbols) of cytochala-
sin D for 7 h. Data shown here are a representative experiment, and
points are means 6 S.D. of triplicates.
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endocytosis. No difference in rates of LPS-binding and LPS-de-
pendent function was found in wt- versus tmCD14 transfec-
tants (Fig. 6) (25, 48). The absence of association of tmCD14
with clathrin-coated pits and vesicles during the process of LPS
internalization was somewhat surprising. This might suggest
that tmCD14 associated early in its biosynthesis with another
molecule responsible to keep it outside of coated pits. This
contrasts with another system where a transmembrane form of
the natural GPI-anchored folate receptor was targeted to clath-
rin-coated pits (21). The only difference observed between the
two CD14 anchoring systems was the calcium mobilization
induced by anti-CD14 cross-linking, present only in GPI but
not in transmembrane CD14 cells (25), findings of unknown
relevance.

In conclusion, our data demonstrate that in monocytic cells,
LPS and its receptor CD14 internalize through macropinocy-
tosis, a pathway independent of coated pits or caveolae. Mac-
ropinocytosis resembles that of phagocytosis in several aspects,
in particular in its requirement for intact microfilaments and
formation of large vesicles. The natural GPI anchoring system
of CD14 seems irrelevant in the internalization of the complex
ligand-receptor, and LPS does not regulate the internalization
of its receptor CD14. LPS internalization and cell activation
are dissociated events.
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Note Added in Proof—Data published by Kitchens and Munford (49)
after this manuscript was submitted indicate that LPS is internalized
by a constitutive mechanism, compatible with our findings of a mac-
ropinocytic pathway.
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3.3 Part II: «CD14 expression in epithelial cells is not sufficient for LPS-induced 

cell activation» 
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Abstract 

 

Human epithelial cells were shown to respond to lipopolysaccharides (LPS) via soluble 

CD14. However, the expression and release of CD14 by these so-called CD14-negative cells 

have not been studied in detail. Liver and intestinal epithelial cells are in close contact with 

bacteria and bacterial products such as LPS, and might be involved in innate immune host 

defense. Using three human intestinal and liver epithelial cell lines, SW620, T84 and HepG2, 

we studied CD14 expression as well as LPS-response and –endocytosis in these cells. 

Colonic-T84 and hepatocytic-HepG2 appeared to poorly expressed CD14 gene and protein, 

whereas CD14 expression was found to be significantly higher in colonic-SW620 cells. These 

latter cells could be activated by LPS in the presence of serum, which contained soluble 

CD14. In contrast , T84 and HepG2 cells did not respond at all to LPS in same conditions. 

Following this observation, we investigated the effect of wild type human CD14 gene 

transfection on these cells. All cells highly expressed CD14 at molecular and cellular levels. 

CD14(+)-SW620 cells were still responsive to LPS. To the opposite, CD14(+)-T84 and 

CD14(+)-HepG2 cells did not produce any IL-8 under LPS stimulation. This result was 

confirmed at the NF-κB level. However, all cells were activated under stimulation with other 

agonists such as TNF-α or phorbol 12-myristate 13-acetate (PMA), which stimulated the NF-

κB pathway. Although some of cells were non-responding to LPS, all cells could internalise 

LPS with similar rates. In conclusion, our study demonstrated that some epithelial cells could 

naturally express the CD14 gene and protein. HepG2 and T84 cells appeared to be resistant to 

LPS stimulation. Following the CD14 overexpression, both cell types did not restore their 

LPS sensitivity, suggesting that these cells are deficient in (a) molecule(s) of the proximal 

LPS-dependent signaling pathway. Despite this observation, all cells were able to internalise 

LPS, suggesting that LPS internalization and LPS signaling are separate processes. 
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Introduction 

 

Gram-negative bacterial endotoxin specifically binds to CD14, a glycosylphosphatidyl 

inositol-anchored surface glycoprotein of myeloid cells. Binding of LPS to membrane CD14 

of monocyte / macrophage induces secretion of various pro- and anti-inflammatory mediators, 

and also promotes LPS internalization and deacylation (1-4). CD14 also exists in a soluble 

form present in plasma and biological fluids (5). Endothelial cells and some epithelial cell 

lines have been shown to also respond to LPS via a soluble CD14-dependent manner (6). 

Indeed, epithelial cells not only serve as a physical barrier, but they also actively participate in 

the maintenance, renewal and defense of their surfaces (7). Some studies raised the idea that 

these cells may also play important roles in host responses to LPS during sepsis (8, 9). 

Epithelial cells can be activated by an indirect pathway via cytokines produced by LPS-

stimulated myeloid cells or as previously mentioned, directly by LPS via the soluble CD14 

(10-13). Activation of epithelial cells occurs via the production of cytokines such as IL-6 and 

TNF-α, chemokines such as IL-8 and MCP-1, complement regulatory proteins, and in some 

cases via the expression of antibiotic peptide genes (10, 11, 14, 15). Actually, host recognition 

of pathogenic microorganisms, molecules such as LPS or the complex LPS/sCD14 requires 

probably specific receptors in these cells and is fundamental to induce a defense response. 

CD14 expression in epithelial cells remains unclear. Although, epithelial cells are often 

considered as CD14 negative-bearing cells, some authors discovered CD14 gene and protein 

expression in epithelial cells from trachea, lung, uterus and intestine (15-17). Some epithelial 

cells such as intestinal cells are directly in contact with bacteria and bacterial products such as 

LPS. Likewise, hepatocytes in close proximity with blood due to their role in molecules 

metabolisation, can encounter LPS during bacterial infections. These cells might have develop 

some specific characteristics to protect themselves and organs against bacteria and LPS 
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pathogenicity. They might also be able to discriminate between harmful pathogens and 

antigens which are beneficial, such as food proteins or commensal bacteria present in gut. 

Little is known about interaction, response and internalization of LPS in these cells. Using 

different human colonic (SW620, T84) and liver (HepG2) epithelial cell lines, we first 

determined the synthesis of CD14 and studied LPS responsiveness in these cells. We found 

that little cellular and soluble CD14 was produced by T84 and HepG2 cells, but that CD14 

was significantly higher expressed in SW620 cells. Interestingly, these latter cells could be 

activated by LPS in the presence of serum, whereas, in same conditions, T84 and HepG2 cells 

were unresponsive. Subsequently, we investigated the effect of human CD14 gene 

transfection of these cells on LPS-responsiveness and -internalization. Despite the high 

expression of CD14, CD14(+)-HepG2 and CD14(+)-T84 cells still remained unresponsive to 

LPS. Furthermore, these latter cells, as well as CD14(+)-SW620 cells, could however 

internalise endotoxin with similar rates. 
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Materials and methods 

 

 

Cell culture and transfections. 

Human epithelial SW620 and T84 (colorectal adenocarcinoma cells), HepG2 

(hepatocellular carcinoma cells) cell lines (ATCC) and promonocytic THP-1 cell line were 

transfected with a plasmid encoding for the wild type human CD14 gene or with the empty 

vector pRc RSV. Human CD14 protein expressed were anchored by a glycosylphosphatidyl 

inositol at the membrane surface of cell lines (CD14(+)-SW620, -T84-, -HepG2). or the 

empty vector pRc RSV (rsv) served as control cells. Transfected T84, HepG2 and SW620 cell 

lines were maintained in DMEM and THP-1 cells in RPMI 1640 (Gibco). Both medium 

contained penicillin and gentamicin antibiotics, 10% fetal bovine serum and 0.5-1 mg/mL 

G418 (Geneticin ®) all from Life Technologies, Inc. PBMC were obtained from buffy coat by 

centrifugation over Ficoll-Hypaque (Amersham Pharmacia Biotech). For all experiments, 

CD14(+)- and rsv-THP-1 cells were used as a positive and negative control respectively. 

 

 

CD14 mRNA expression determined by RT-PCR. 

Total mRNA was extracted from cells using a RNeasy mini kit (Qiagen). To remove 

any DNA contamination, the samples were treated with 2 µg/mL RNase free DNase I 

(Boehringer, Mannheim) for 1 h at 37°C. Samples were purified and the RNA concentration 

of each sample was determined. One µg of RNA was reverse-transcribed for 1 hour at 37°C 

with Superscript reverse transcriptase (RT, 200 U/µl; Life Technologies, Inc.). The cDNA 

products were diluted in 100 µl of water. RT-PCR was performed with 10 µl of RT product, 

0.2 µM specific primers for CD14 mRNA, 80 µl of reaction mix (10 mM Tris pH=8, 50 mM 



 83

KCl, 2.5 mM MgCl2 and 200 µM for each dNTP) and 2.5 U Taq polymerase (Core kit, 

Qiagen). PCR was performed for 35 or 40 cycles at 95°C (60 s, melting), 62°C (60 s, 

annealing), and 72°C (90 s, extension ; addition of 2 s of extension  time per cycle). Fifteen µl 

of PCR samples were run on a 1.8 % agarose gel, visualised by UV light and photographed. 

The expected size of this PCR product corresponding to CD14 was 1,140 bp. 

 

 

Detection by Western blot of soluble CD14 in conditioned supernatants or cellular 

CD14 of lysed cells. 

i) Soluble CD14. At 80 % of confluence, cells were washed and maintained 24 hours in 

serum free DMEM or RPMI 1640. Supernatants were centrifuged to remove any cells 

remaining. Further, 15 mL of supernatant were concentrated to 0.2 mL in ultrafree centrifugal 

filter (Millipore).  

 

ii) Cellular CD14. Cells were detached with PBS containing 5 mM EDTA, washed 

twice in TBS and treated with 500 µL of lysis buffer (20 mM TBS / EDTA 2 mM ; 10 % 

glycerol ; 1% triton X-100, anti-proteases : 1 mM PMSF, 1 µg/mL leupeptin, 200 U/mL 

aprotinin ; and 60 mM octylglucoside ) for 1 hour at 4°C. Lysates were centrifuged at 13,000 

rpm for 10 min and supernatants were kept at 4°C.  

 

Immunoprecipitation was performed with two different anti-human CD14 monoclonal 

antibodies (10 µg/mL) for 4 h at 4°C. 75 ul of protein G agarose beads (Sigma) were added 

and the tubes were shaken overnight. Beads were centrifuged and washed five times with 

TBS, resuspended in SDS-PAGE sample buffer (0.5 M Tris-HCl pH 6.8 ; 10% glycerol ; 10% 

SDS ; bromophenol blue) and boiled for 5 min. After removal of beads by centrifugation, 50 
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µL of supernatant was subjected to SDS-PAGE followed by an electrotransfer procedure to a 

nitrocellulose membrane. Human CD14 was detected with biotinylated polyclonal antibodies, 

G protein-Horseradish peroxidase conjugate (Bio-Rad) and enhanced chemiluminescence 

(ECL ; Amersham Life Science). A film was exposed different times and analysed by 

scanning densitometry. 

 

 

Interleukin-8 production. 

Twenty four hours prior the experiment, SW620, T84 and HepG2 transfectants were 

trypsinised, washed and distributed in microtiter plate (110,000 cells/well) in DMEM or 

RPMI 1640 medium supplemented with 5% FBS / antibiotics without geneticin. The 

following day, cells were washed and incubated (15 hours ; 37°C) in RPMI 1640 medium 

containing 0.5 mg/mL human serum albumin (HSA) and various concentrations of phorbol 

12-myristate 13-acetate (PMA) or LPS (O111:B4) in the presence of either lipopolysaccharide 

binding protein (LBP ; 2.5%) or FBS (5%). Interleukin-8 was measured by ELISA (Endogen, 

Cambridge, MA) in conditioned supernatants. 

 

 

NF-kappa B activation. 

Cells were cultured without geneticin 24 hours prior the experiment. Cells were washed 

and maintained in RPMI 1640 medium with 3% fetal bovine serum for 3 hours at 37°C in the 

incubator. Cells were then incubated in RPMI 1640 medium / 3% FBS containing 1 µg/mL E. 

Coli O111:B4 or K12 LCD 25 LPS, 10 ng/mL recombinant TNF-α or 2 µg/mL PMA for 30 

or 60 minutes. After the stimulation, cells were rapidly chilled on ice, washed twice with cold 

PBS pH 7.3, mechanically removed and transferred into Eppendorf tubes. Nuclear extracts 
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were then prepared as described elsewhere (18). Nuclear proteins were used for 

electrophoretic mobility shift assay (EMSA). Nuclear proteins (8 to 10 µg) were added to 12 

µL of a binding buffer containing 5 mM Hepes pH 8.5, 5 mM MgCl2, 50 mM DTT, 0.4 

mg/mL poly(dI-dC), 0.1 mg/mL sonicated double-stranded salmon sperm DNA, 10% glycerol 

and 20-50 fmoles of 32P-labeled NF-κB oligonucleotide probe (30,000-50,000 cpm) 

(Promega, 5’-AGTTGAGGGGACTTTCCAGG-3’) and incubated for 10 minutes at room 

temperature. Samples were migrated on a non-denaturing 5% acrylamide gel made in Tris-

glycine-EDTA buffer. The gel was further transferred onto Whatman paper, dried and 

subjected to autoradiography. 

 

 

3H-LPS internalization. 

Twenty ng/mL 3H-LPS (biosynthetically tritiated E. Coli K12 LCD25 LPS, List 

Biological Laboratories), preincubated 5 min at 37°C with 2% LBP, were added to the 

CD14(+)-cells for various times (0 to 2 hours). Cells were centrifuged and washed with ice-

cold RPMI 1640 medium. Cells were then treated with 0.02% proteinase K (Boehringer 

Mannheim GmbH, Germany) for 1 hour at 4°C. Supernatants and cells were seperated by 

centrifugation, and transferred into scintillation liquid. Radioactivity was measured in a 

scintillation counter to determine cell-bound and internalised (proteinase resistant, cell 

associated) counts. Internalization was defined as the percentage of counts resistant to 

proteinase K relative to the total counts (cell-associated counts before the proteinase K 

treatment). 
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Results 

 

 

RT-PCR. 

RT-PCR technique was performed in order to determine the mRNA expression of CD14 

in human epithelial cell lines. To validate the RT-PCR, three control were done. First, 

amplification of total RNA without reverse transcription was achieved to insure the absence 

of contaminating genomic DNA (not shown). Second, water was used as substrate in PCR to 

investigate the presence of any contaminating DNA. Third, the hybridization specificity of 

primers for human CD14 gene was verified by amplifiying cDNA originating from mouse 

3T3 fibroblast cell line that does not express any CD14 mRNA. In all cases, no amplification 

of DNA was seen (fig.1). cDNA of PBMC was used as a positive control to amplify CD14 

cDNA after the reverse transcription of mRNA. On the gel, we observed a band 

corresponding to a fragment of 1140 bp expected size for the CD14 cDNA. At the same level, 

intense and slight band were present on the gel for CD14- and rsv-transfected cells 

respectively (fig.1). For rsv-SW620 cells, the band was more intense than those for other rsv-

transfected cells. 
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Figure 1. Detection by RT-PCR of human CD14 mRNA in different cell 
lines. Epithelial cell lines HepG2, T84, SW620 and the monocytic cell line  
THP-1 were transfected with a plasmid encoding for the CD14 gene 
(CD14(+)) or with the empty vector (rsv). The size of the CD14 cDNA
transcript was 1140 bp as estimated with DNA markers (M). CD14 cDNA of 
peripheral blood monocytic cells (PBMC) was used as a positive control. H2O 
and cDNA of 3T3 mouse fibroblasts served as negative controls.
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Western blot of CD14. 

i) Cellular CD14. Using Western immunoblotting technique, we determined the 

presence of CD14 in SW620, T84, HepG2, THP-1 cell lines. The CD14 protein expression 

was significantly higher in SW620 cells than in other cells. Recombinant human CD14 was 

used as positive control and was observed migrating at roughly 55 kDa in all experiences. In 

all cell types transfected with cDNA encoding for the glycosylphosphatidyl inositol anchored 

CD14, we observed a strong signal of immunoreactive protein (fig.2). A more intense signal 

was detected in THP-1 and SW620 cells. Cells transfected with the CD14 cDNA produced 

immunoreactive CD14. Cells transfected with the empty vector (rsv-SW620, -T84, -HepG2, -

THP-1) also produced CD14, however to a lesser extent (fig.2). 

 

ii) Soluble CD14 (sCD14). The presence of sCD14 was determined by immunoblotting 

technique in conditioned supernatants of cells cultured 24 h in serum free medium. Positive 

control was ascertained by using recombinant human CD14 as in figure 2. Bands 

corresponding to immunoreactive sCD14 generated by CD14(+)-transfected cells were 

intense. The band corresponding to sCD14 originated from rsv-HepG2 cells was less intense 

(fig.2).  

Measurement of soluble CD14 by ELISA nevertheless revealed the presence of sCD14 

in supernatants of all cell types, but to different concentrations according to rsv- (low 

concentrations) and CD14(+)-transfected cells (high concentrations) (Data not shown). The 

fact that no sCD14 was detected by Western blot in T84 and SW620 rsv-transfected cells 

could be explained by a greater dilution of sCD14 in supernatants. This could be due to 

volume of culture medium/number of cells ratio greater than that obtained with rsv-HepG2 

cells. 
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Figure 2. Detection by Western blot of soluble (s) or cellular (c) CD14 in
different epithelial cells. Different cell types were transfected with the empty 
vector (rsv) or the plasmid encoding for the CD14 gene (CD14(+)). 
Recombinant human (rh) CD14 as well as transfected THP-1 cells were used 
as a positive control. The rhCD14 size was determined to be 55 kDa. Bands 
corresponding to immunoreactive sCD14 and cCD14 of different cell types 
were found to migrate at the same level than to that of the recombinant human
CD14.



 90

 

Interleukin-8 production. 

In order to test the responsiveness of these epithelial cells, we incubated cells with 

various concentrations of LPS or PMA in the presence of either 5% FCS or LBP. After 15 h 

stimulation, IL-8 was measured in conditioned supernatants by ELISA. HepG2, T84 and 

SW620 cell types produced large amounts of IL-8 in a dose-dependent manner in response to 

PMA stimulation. After LPS treatment, only SW620 cells released IL-8 in a dose-dependent 

manner. In the presence of 5% FBS (containing soluble CD14), CD14(+)-SW620 and rsv-

SW620 cells synthesized equivalent amounts of IL-8 (fig.3). In contrast, rsv-SW620 cells 

produced very little amount of IL-8 compared to CD14(+)-SW620 cells in the presence of 

LBP. Surprisingly, no IL-8 was secreted by HepG2- and T84-transfected cells after LPS 

stimulation in the presence of either FBS or LBP (fig.3). Similar results were found for these 

cells, even at LPS concentration of 10 µg/mL (data not shown). All cells stimulated with 

TNF-α (0 to 10 ng/mL) and IL-1β (0 to 2 ng/mL) produced IL-8, except T84 cells which 

appeared to be resistant to the IL-1 treatment (data not shown).  
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Figure 3. Effect of LPS or PMA treatment on IL-8 production in different 
epithelial cells. IL-8 secretion was assessed by ELISA in conditioned 
supernatants of transfected epithelial cell lines treated with LPS (open 
symbols) or PMA (closed symbols) in the presence of either FBS or LBP for 
15h. CD14(+) expressing cells were represented by squares and rsv cells
(transfected with the empty vector) by triangles.
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NF-κB activation. 

To confirm the non-responsiveness of HepG2 and T84 cell lines to LPS, we 

investigated whether nuclear factor (NF) kappa-B was activated. After stimulation with LPS, 

TNF-α or PMA, CD14(+)- and rsv-transfected cells were lysed. Nuclear proteins were 

extracted and an electrophoretic mobility shift assay (EMSA) was performed with the nuclear 

extracts (fig.4). In both cell types, a band corresponding to activated NF-κB was visualised on 

the gel after TNF-α and PMA stimulations for rsv- and CD14(+)-transfected cells. In contrast, 

no NF-κB activation was observed after LPS stimulation in these epithelial cells. In contrast, 

NF-κB was activated after LPS stimulation in CD14(+)-THP-1 cells used as a positive control 

(fig.4). In any case, cells treated with medium only, used as a negative control, did not 

produce any NF-κB activity. Therefore, LPS did not activate NF-κB in CD14(+)-HepG2 and -

T84 cells. 
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Figure 4. Effect of several inflammatory  mediators on NF-κB activation 
in T84 and HepG2 cells measured by electromobility shift assay. Cells 
were either transfected with the empty vector (rsv) or a plasmid encoding for 
the CD14 gene (CD14(+)) and treated with LPS, TNFα or PMA. Nuclear 
proteins from each preparation were isolated 60 min following cell stimulation 
and added to a mixture containing a 32P-radiolabeled DNA oligoprobe specific  
for the NF-κB binding site. Binding of NF-κB to DNA oligoprobe reduces the 
electromobility of the DNA oligoprobe in the gel compared to that of an 
unbound DNA oligoprobe. Bands corresponding to activated NF-κB proteins 
complexed with 32P-radiolabeled DNA oligoprobe are detected by 
autoradiography and indicated by an arrow NF-κB ; n.s., non-specific band. 
CD14(+)-THP-1 cells treated with LPS were used as a positive control.
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LPS internalization in epithelial cell lines. 

After studying LPS-responsiveness of various human epithelial cells, we performed a 

protease-based internalization assay to investigate whether these cells could internalise LPS. 

At 37°C, LPS was rapidly internalised in the first 5 minutes with similar rates for CD14(+)-

transfected epithelial cell types (fig.5). LPS internalization reached a plateau at 30-40 min 

after incubation of cells with LPS at 37°C. By using an anti-CD14 monoclonal antibody 3C10 

with CD14(+)-transfected epithelial cells, LPS internalization was partially inhibited (20-

30%) (Data not shown). 
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Figure 5. Kinetics of LPS internalization in different CD14-transfected 
epithelial cells. CD14(+)-HepG2 (closed square), CD14(+)-T84 (closed 
circle), CD14(+)-SW620 (open diamond) transfected epithelial cells were 
incubated with 3H-LPS (20 ng/mL) at 37°C. Percentage of internalization was 
defined as the proteinase K-resistant cell associated counts relative to the cell-
associated counts before proteinase K treatment. A logarithmic regression was 
calculated with data of each epithelial cell type. Logarithmic regression curves
are represented by a continuous line for CD14(+)-HepG2, a dotted line for 
CD14(+)-SW620 and a pecked line for CD14(+)-T84.
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Discussion 

 

In this study, we investigated CD14 expression, LPS-responsiveness and -endocytosis 

in intestinal and liver cells. Epithelial cells are considered as CD14-negative cells. Our data 

demonstrated that some of these cells actually express CD14 at a transcriptomic and 

proteomic levels, but with different degree of expression depending on the cell types. Indeed, 

HepG2 and T84 cells were found to express little CD14. A study by Nanbo et al. supported 

our results obtained with HepG2 cells (19). In contrast, Wang et al. reported that HepG2 cells 

do not express CD14 (20). This discrepancy might be explained by a variation in CD14 

expression found in different HepG2 cell lines, with a very low CD14 expression to the limit 

of detection as suggested by Nanbo et al. We showed that intestinal SW620 cells expressed 

significantly higher CD14 compared to HepG2 and T84 cells. In the presence of serum 

containing soluble CD14, SW620 cells produced IL-8 after LPS treatment. Similar results 

using these cells were obtained by Schuerer-Maly et al. (21). Moreover, Pugin et al. had 

previously demonstrated that the LPS activation of SW620 cells was dependent on soluble 

CD14 (6). Despite CD14 expression, LPS stimulation in these cells, in the presence of LBP 

alone induced a weaker response compared to that obtained with the serum. Such a difference 

could be explained either by an insufficient expression of CD14 at the cell surface, or by 

differential efficiencies of LPS/LBP and LPS/sCD14 complexes to bind the cell surface of 

SW620 cells. Similarly to Schuerer-Maly et al., we found that T84 cells were not responsive 

to LPS in the presence of either serum or LBP (21). We found that HepG2 cells behaved in a 

very similar way as T84 cells, and could not be activated by LPS under similar conditions. In 

contrast, other investigators reported that HepG2 cells could be activated by LPS i) by 

producing LBP and up-regulating their own CD14 expression (19); ii) by inducing the 

expression of diverse pro-inflammatory factors such as TNF-α and IL-6 (22). To explain this 
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discrepancy, we could suggest that the low level of CD14 expression or a gene mutation that 

could have occurred in our HepG2 cell line might have altered the LPS response of these 

cells.  

 

By transfecting human CD14 gene in epithelial cells, we were interested in investigating 

whether the increase of CD14 expression in these cells could restore the LPS responsiveness 

of LPS-resistant cells. Interestingly, CD14(+)-SW620 cells had the same degree of LPS 

response in the presence of serum compared to that of “CD14-negative” cells, but greatly 

increased their response to LPS in the presence of LBP alone. This result suggested that 

CD14(+)-SW620 cells used CD14 present at the cell membrane when no soluble CD14 was 

available. In contrast, the expression of CD14 by transfection in T84 and HepG2 cells was not 

sufficient to restore LPS responsiveness. However, both cell types could be activated at the 

NF-κB level and produced IL-8 after stimulation with other agonists such as TNF-α or PMA. 

Similar results were obtained with IL-1β in HepG2 cells, but not in T84 cells which were not 

activated by IL-1. PMA was shown to stimulate the NF-κB pathway directly through the 

activation of protein kinase C (23). Whereas the starting point of TNF-α or IL-1-induced NF-

κB cascade activation corresponds to specific receptors localised at the cell membrane, as 

CD14 for LPS (24, 25). The divergence of results obtained with LPS and those obtained with 

IL-1 or TNF-α led us to suggest that at least some of the most proximal components of the 

TNF-α, IL-1 and LPS signaling cascades were unique to each pathway. This would indicate 

that LPS-unresponsive cells, CD14(+)-HepG2 and -T84, could be deficient in (a) molecule(s) 

of the proximal LPS-dependent signaling pathway. The non-responsiveness of CD14(+)-T84 

to LPS and IL-1 rather suggests that either i) T84 cells are devoid of IL-1 receptor in addition 

to this “lacking LPS-signaling molecule”, or ii) LPS- and IL-1-induced NF-κB pathway have 

in common a missing or non-functional signaling molecule. 
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While CD14 clearly initiates the process of LPS-induced cellular activation, a 

mechanistic description of the molecular events that occur subsequent to LPS binding to 

CD14 remains elusive. CD14 is a GPI-linked protein with no known signaling motifs. Thus, it 

does not seem likely that CD14 actually effects a transmembrane signaling event. Strong 

evidence supports a model in which complexes of CD14 and LPS signal cells through 

interactions with a distinct signal-transducing molecule(s) (26-30). Eventual candidates that 

could be proposed for this role, would be i) the newly-discovered transmembrane protein 

TLR2 described to confers responsiveness to bacterial LPS (31, 32) or ii) TLR4, involved in 

the defectiveness of LPS response in C3H/HeJ and C57BL/10ScCr mice following a 

deleterious mutation in the TLR4 gene (33).  

 

As shown in our study, rsv-HepG2 and -T84 cells also do not respond to LPS via the 

soluble CD14 receptor. Several studies on the role of sCD14 in the activation of endothelial 

and epithelial cells have suggested that a CD14/LPS complex might form a ternary complex 

with an as yet unidentified signal-transducing molecule with transmembrane and cytoplasmic 

signaling domains (6, 34, 35). Observations on LPS-unresponsiveness of rsv-HepG2 and -T84 

cells as well as the other results raised the idea that a molecule involved in the proximal LPS 

signaling cascade would miss or would not be functional anymore. We hypothesized that this 

essential molecule could correspond to the “receptor” of the sCD14/LPS complex mentioned 

above. 

 

Internalization of bacteria in epithelial cells is extensively studied since this mechanism 

can be the starting point of bacteria invasion beyond the epithelial barrier (36). However, little 

is known about endocytosis of LPS in epithelial cells. LPS internalization is an important 

process that leads to LPS detoxification by the deacylation of lipid A, the cytotoxic part of the 
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LPS molecule (3). LPS endocytosis has been in major part investigated in monocytic cells. In 

these latter cells, LPS has been shown to be internalised by CD14-dependent and independent 

pathways (37, 38). Using our CD14-overexpressed transfected epithelial cell lines, we were 

interested to investigate LPS internalization. All cell types were able to internalise LPS 

despite the unresponsiveness of some of these cell types to LPS. This observation suggested 

that LPS signaling and LPS endocytosis were separate processes, as concluded by other 

investigators (37, 39, 40). By using an anti-CD14 monoclonal antibody 3C10 with CD14(+)-

transfected epithelial cells, LPS internalization was partially inhibited (20-30%) (Data not 

shown). This result supported the concept that part of LPS internalization is CD14 dependent 

and part of it is not. One mechanism that could support the latter is the transcytosis of LPS 

from the apical surface of polarized intestinal epithelial cells to the basolateral pole as 

described by Beatty et al. (41). Another possibility would be that LPS is transferred from 

CD14 to another membrane component which would endocytose endotoxin molecules into 

cells. 

 

In this study, we demonstrated that some epithelial cell lines can express, at different 

levels, CD14 gene and protein. The epithelial T84 and HepG2 cells were found to be 

unresponsive to LPS. In both cell types, overexpression of CD14 did not restore 

responsiveness to LPS. This suggested that these cells were deficient in (a) molecules(s) of 

the proximal LPS recognition/signaling pathway, such as a transmembrane signaling 

molecule, for example. In contrast, all CD14-transfected cells were able to internalise LPS, 

thus suggesting that LPS internalization and signaling were separate processes. 
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4 CHAPTER II : Response to endotoxin during cell differentiation: 

involvement of newly discovered Toll-like receptors 
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4.1 Introduction 

 

 

4.1.1 Discovery of Toll-like receptors (TLRs) 

 

 The "Toll story" begins in the fruit fly Drosophila, which like all insects is very 

resistant to microbial infections despite the lack of an adaptive immune system. The protein 

Toll (which means "great" in German) was first described as a type I transmembrane protein 

that controls the dorso-ventral patterning of the fly [351]. Its homolog 18-Wheeler (18W) is 

also required for morphogenesis [352]. Aside from their role in embryogenesis, Toll and 

18W, which belong to a recently extended Toll protein family (Toll-3 to -8) [353] are also 

involved in the fly immunity. When activated through Toll and 18W, cells from the fat body 

generate an anti-microbial response with the secretion of anti-fungal and anti-bacterial 

peptides such as attacin and drosomycin [354, 355]. An essential step in the activation of such 

responses in Drosophila seems to be the activation of a proteolytic cascade that produces 

peptidic ligands such as Spätzle, a ligand for Toll. Common features are found in the different 

Toll members. The extracellular regions contain multiple leucine-rich repeats (LRR) and 

carboxy-terminal cysteine-rich domains. The cytoplasmic tails display domains that share 

striking homology with the mammalian type 1 IL-1 receptor [356]. Moreover, signaling 

through Toll parallels the signaling pathway induced by the IL-1 receptor in mammalian cells: 

IL-1 receptor signals through the NF-κB/I-κB pathway and similarly Toll through 

intracellular proteins Dorsal and Cactus, homologous to NF-κB and I-κB, respectively [357, 

358]. Remarkably, the intracellular DRgN protein of plant or the N-protein encoded by the 

tobacco-virus-resistance gene, are also similar to Toll in that it contains both a Toll signaling 

domain and a LRR domain [359]. Thus, it appears that the immune response mediated by Toll 

and its homologs represents an ancient host defense mechanism conserved throughout the 

evolution [358]. Using the sequence profiles of the Toll/IL-1 receptor signaling domains (TIR 

domain), basic local alignment search tool (BLAST) searches were performed and allowed to 

identify a matching sequence in the expressed sequence tags (ESTs) database of the National 

Center for Biotechnology Information (NCBI). The first human Toll (hToll), later termed as 

Toll-like receptor (TLR) 4 was cloned in 1997 [360]. A chimeric mutant of hToll (CD4 

ectodomain fused to the human Toll intracellular domain) was found to constitutively activate 
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the NF-κB pathway and to induce the pro-inflammatory IL-1, IL-8 and the co-stimulatory 

B7.1 genes [360]. 

 

 In 1998, five new human Toll-like receptors were discovered and named TLR1 to TLR5 

[4, 361]. Subsequently, a sixth TLR (TLR6) was cloned and characterized in human and 

mouse [362]. Recently, sequences of four new TLRs have been registered in Genbank, but for 

the moment only little information on TLR7 to 10 exits. RP105, a murine B-cell protein, also 

belongs to this large family of TLRs and was actually cloned before these receptors were 

known. TLRs are mapped to different chromosomes and their primary structure remains well 

conserved. As for Drosophila Toll, they are type I transmembrane proteins, with highly 

homologous regions in the extracellular portion (LRRs), and in the intracellular part (TIR 

domain). Interestingly, similar LRR are also found in CD14. The TIR similarity suggests that 

TLR proteins may activate cells through similar signaling pathways. This intracytoplasmic 

tail plays a pivotal role to transduce signal since mutations detected in this portion result in a 

complete loss of function [183, 363, 364]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Structure of Toll-like receptors from human, drosophila and plant 
compared with the structure of the human IL-1 receptor, human CD14 and the 
intracellular signaling molecule MyD88 (Adapted from [3, 4]). 
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4.1.2 Ligands for TLRs 

 

 Janeway and co-workers had hypothesized that the innate immune system can sense 

invading pathogens by virtue of nonclonal pattern recognition receptors that interact with 

microbial structures and deliver a danger signal to the host cells [365, 366]. There is 

increasing evidence that TLR proteins may serve this purpose. TLR4 was reported to function 

as the signal transducer for LPS-dependent activation of cells. Details on the involvement of 

these receptors in LPS signaling will be further discussed. Recent data suggest that TLR2 and 

TLR4 can recognize a variety of microbial products. Experiments using cells from a natural 

knock-out chinese hamster for TLR2, specific monoclonal antibodies to TLR2, and cells 

transfected with the TLR2 cDNA, showed that the receptor TLR2 recognized components 

from various microbial pathogens which can induce cell activation in a TLR2-dependent 

manner. These microbial molecules include peptidoglycan and lipoteichoic acid from Gram-

positive bacteria [367-369], lipoarabinnomannan from mycobacteria [370, 371] and zymosan 

from fungi [372]. Lipoproteins from pathogens such as Gram-negative bacteria, Gram-

positive bacteria, mycobacteria and spirochetes are also TLR2 ligands [373-378]. Some of 

these lipoproteins and lipopeptides have been shown to be potent stimulators by inducing NF-

kB activation and cytokines production in monocytes/macrophages [373, 375, 379]. It was 

observed that some of these molecules could induce cell apoptosis [373]. It was recently 

published that TLR2 needed to associate with TLR6 to discriminate between different 

microbial lipopeptides or to detect the specific pattern of peptidoglycan or a modulin secreted 

from staphylococcus aureus [380, 381]. In addition to LPS, live Mycobacterium tuberculosis 

can activate cells via TLR4, but independently of LBP and membrane-bound CD14 [371]. 

Lipoteichoic acid from Staphylococcus aureus appeared to be a ligand for TLR4 that could 

stimulate cells [382]. Interestingly, the heat-shock protein 60 (HSP60) that has been suggested 

to elicit a danger signal to the innate immune system and to induce the production of pro-

inflammatory mediators by macrophages, would be the first known protein ligand for TLR4, 

and the first known endogenous TLR agonist [383]. Taxol, an anti-tumoral agent that displays 

a LPS-mimetic activity in murine cells but not in human cells, was described to mediate cell 

activation through the complex TLR4/MD-2 [384]. The description and the role of MD-2 will 

be further detailed. 
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 TLR9 has been involved in the recognition of bacterial CpG DNA through the 

generation of TLR9-deficient mice [385]. In these mice, the cellular response to CpG 

including B cell proliferation, macrophage production of inflammatory cytokines and 

dendritic cell maturation was shown to be abolished.  

 

 Recent investigations showed that TLR5 was responsible for the recognition of 

flagellin, a monomeric constituent of bacterial flagella, a polymeric rod-like appendage 

extending from the outer membrane of bacteria. The interaction of flagellin and TLR5 leads to 

cell activation [386, 387]. 
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4.1.3 Binding of LPS to TLR2 and TLR4 

 

 As mentioned before, TLR2 and TLR4 have been recently identified to play a major 

role in LPS signaling. Although, interactions of LPS with these receptors remain not very well 

understood, some data have already been published. In experiments using a soluble form of 

the TLR2 extracellular domain, 3H-labeled LPS could bind to TLR2 and could be displaced 

from the receptor by cold LPS, but not by deacylated LPS. The Kd was estimated at 500-700 

nM and was considered rather low, suggesting that the kinetics of association were slow 

[388]. To be functional, TLR4 associates with a non-transmembrane coreceptor, MD-2. 

Interactions between LPS and this complex were studied using a chemically modified, 

radioiodinated LPS containing a covalently linked UV light-activated cross-linking group 

(125I-ASD-Re595 LPS). It was found that LPS cross-linked to TLR4 and MD-2 only when co-

expressed with CD14. Soluble MD-2 was recently shown to bind highly purified rough LPS 

derived from Salmonella minnesota and Escherichia coli with an apparent Kd of 65 nM 

[389]. These data strongly suggest that LPS binds to or is in close proximity to the three 

proteins, assembled in a multichain receptor complex [390]. The involvement of CD14, TLR4 

and MD-2 in LPS-mediated cellular activation has been previously detailed. 

 

 

4.1.4 Role of TLRs in LPS signaling 

 

 CD14 has been recognized for many years as a major receptor mediating LPS effects on 

macrophages, monocytes, and neutrophils [139]. Numerous studies have also suggested that 

CD14 alone was not able to induce a signal and should act by associating with (a) distinct 

transmembrane signal transducing protein(s). 

 

 In 1998, two groups independently reported that TLR2 could function as a signaling 

receptor for LPS in the presence of CD14 [388, 391]. These investigators described that 

human embryonic kidney (HEK) 293 epithelial cells stably transfected with a human TLR2 

expression plasmid could respond to LPS in the presence of CD14 and LBP, as judged by the 

activation of a reporter gene under the control of the NF-κB-dependent ELAM-1 promoter. It 

is important to notice that micromolar concentrations of LPS were necessary to induce a cell 

response in 293 cells, whereas mouse or human macrophages respond to nanomolar or 
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subnanomolar concentrations of endotoxin. However, deletion mutants of TLR2 lacking the 

most C-terminal 13 aa of the intracellular portion failed to mediate LPS responsiveness in this 

assay [392]. It was later demonstrated that in fact TLR2 was not a receptor for LPS itself, but 

for lipoproteins contaminating LPS preparations [393]. 

 

 Rather than TLR2, TLR4 was subsequently identified as the LPS-signaling receptor. In 

1998, Beutler and co-workers mapped the Lps locus of LPS resistant C3H/HeJ and identified 

TLR4 as a candidate gene [394]. The same year, they showed that a point mutation in the 

TLR4 gene was responsible for the long known LPS hypo-responsiveness of the C3H/HeJ 

mouse. They also showed that a TLR4 deletion mutation was responsible for the LPS non-

responsiveness of C57Bl/10ScCr mouse. In C3H/HeJ mice, a single missense mutation within 

the intracellular TLR4 coding sequence changing a proline into a histidine residue was 

identified. C57Bl/10ScCr mice do not express TLR4 mRNA [183, 364, 395]. The creation of 

a TLR4 knock-out mouse by Takeushi et al. further demonstrated the critical role of TLR4. 

These mice were non-responsive to LPS. TLR2 knock-out mice were in contrast perfectly 

responsive to LPS, but deficient in their response to Gram-positive cell wall components 

[362]. Mutations in the extracelullar domain of human TLR4 were found to be associated with 

endotoxin hyporesponsiveness [396]. Work from Chow et al. indicated that transfection of 

human TLR4 into LPS non-responding human cells restored LPS response [397]. To support 

the idea that TLR4 played an important role in cell stimulation by LPS, a soluble form of 

mouse TLR4 was constructed that inhibited LPS-induced signaling [398]. The first 

demonstration of a physical contact between LPS and TLR4 was suggested by genetic 

complementation [399]. Pivotal studies by Miyake and colleagues showed that TLR4 alone 

was not fully functional, but required an additional protein to confer LPS responsiveness of 

cells identified as MD-2. This protein lacks a membrane anchoring system, but physically 

associates with the extracellular portion of TLR4 [400-402]. MD-2 is homologous to MD-1, a 

protein associated with RP105, a murine TLR [403]. Interestingly, a point mutation in a 

conserved region of MD-2 abolished endotoxin-induced signaling. This point mutation 

corresponded to the change of a cysteine (C) for a tyrosine (Y) aa at position 95. It was further 

hypothesized that MD-2 affected the conformation of the extracellular domain of TLR4, 

possibly inducing a change in its affinity for LPS or functioning as a ligand for TLR4 [404]. 

As shown by UV light-activated cross-linking experiments, LPS was in close proximity to 

each of these proteins of the putative LPS receptor complex. Important biochemical studies 

have shown that LPS was transferred from CD14 to TLR4 and MD-2 [390]. Interestingly, 
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Viriyakosol et al. reported that recombinant human MD-2 was able to bind to LPS, but in a 

LBP- and CD14-independent manner. LBP actually competed with MD-2 for LPS. Soluble 

MD-2 enhanced the biological activity of LPS in TLR4-transfected Chinese hamster ovary 

cells but inhibited LPS activation of U373 astrocytoma cells and of monocytes in human 

whole blood. Thus, MD-2 is a genuine LPS-binding protein and could play a role in 

regulation of cellular activation by LPS depending on its local availability [389]. Recently, 

another study revealed that MD-2 was secreted as a large polymeric soluble protein by normal 

and MD-2-transfected cells. The soluble form of MD-2 was found to efficiently confer LPS 

sensitivity to TLR4 by binding to it with high affinity. [405]. It was also demonstrated that 

TLR4-mediated activation of NF-κB by LPS required N-linked glycosylations of human MD-

2 found at asparagine(26) and asparagine(114) [406]. The amino-terminal ectodomain of 

human TLR4 was also found to contain 9 N-linked glycosylation sites. Interestingly, TLR4 

mutants carrying substitutions in Asparagine (526) or Asparagine (575) failed to be 

transported to the cell surface. Moreover, a reduction in the LPS-induced cell activation could 

be observed when TLR4 mutants lacked three or more N-linked glycosylation sites, but this 

reduction was partially reversed with the co-expression of CD14. This suggests that the 

functional integrity of the LPS receptor depends both on the surface expression of at least 

three proteins, CD14, MD-2, and TLR4, and on N-linked sites of both MD-2 and TLR4, 

essential in maintaining the functional integrity of this receptor [407].  

Human MD-2 was also found to confer on mouse TLR4 species-specific LPS recognition as 

supported by experiments performed with lipid IVa or Salmonella lipid A [408, 409]. As 

reported before, CD14 helped the complex TLR4/MD-2 to sense and signaled the presence of 

LPS. Interestingly, membrane phospholipids such as phosphatidylserine and 

phosphatidylinositol recognized by CD14 as ligands, could act as LPS antagonists in the 

signaling via TLR4/MD-2 [401]. Using a MD-2 knock-out mouse, Nagai et al. study has 

comfirmed the essential role of MD-2 in LPS-recognition by TLR4, and also revealed that 

MD-2 regulates the intracellular distribution of TLR4 [410]. Very recently, it has been found 

that an 82-amino-acid region of human TLR4, hypervariable across species, would be 

involved in LPS recognition by discriminating different P. aeruginosa LPS structures [411]. 

 

 TLR4 is not only involved in LPS-signaling in monocytes/macrophages, but also in 

endothelial and epithelial cells. As a matter of fact, Faure et al. indicated that LPS activated 

NF-κB through TLR4 in cultured human dermal ECs. It was proposed that TLR4 and TLR2 

differentially expressed in ECs, might have important implications in the participation of 
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vascular ECs in innate immune defense mechanisms against various infectious pathogens. 

[412]. In other cells such as intestinal epithelial cell lines expressing TLRs, LPS was shown to 

activate distinct signaling pathways [413]. Finally, decreased expression of TLR4 and MD-2 

correlated with intestinal epithelial cell protection against dysregulated pro-inflammatory 

gene expression in response to LPS [414]. 

 

 MD-2 does not only regulate TLR4 function, but also seems to influence TLR2 activity. 

In one study, MD-2 transfection enabled TLR2-positive cells to respond to LPS and enhanced 

TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall 

components [415]. As indicated above, although repurification of LPS eliminated signaling 

through both human and murine toll-like receptor 2 [393], TLR2 may play a role in some 

LPS-signaling. As published by Werts et al., leptospiral LPS which has a different structure 

compared with enterobacterial LPS, activated cells through a TLR2-dependent mechanism 

[416]. Moreover, it was shown that the upregulation of TLR2 gene expression in 

macrophages induced NF-κB activation in response to peptidoglycan and high concentration 

of LPS [417]. Another group found that P. gingivalis LPS exhibited potent TLR2, rather than 

TLR4, agonist activity to elicit gene expression and cytokine secretion in murine 

macrophages and transfectants. More importantly, TLR2 stimulation by this P. gingivalis LPS 

preparation resulted in differential expression of a panel of genes that were normally induced 

by Escherichia coli LPS [377]. 

 

 

4.1.5 LPS-induced signaling cascades from TLR4 

 

 Since TLR4 has been found to be involved in LPS signaling, the LPS-induced 

intracellular signaling cascade leading to NF-κB activation has been deeply studied and 

subsequently described in more detail. 
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 In the presence of LPS, TLR4 recruits MyD88, an intracytoplasmic molecule [418]. 

MyD88 bound to the receptor interacts through its death domain with IL-1 receptor-associated 

kinase (IRAK) [419]. This serine/threonine kinase is phosphorylated and subsequently 

interacts with the TNF-α receptor associated-factor (TRAF) 6 [420]. Experiments performed 

with dominant-negative mutants of MyD88, IRAK and TRAF6 showed an inhibition of LPS-

induced NF-κB activation in monocytic cells, suggesting an involvement of these intracellular 

molecules in the signaling pathway [421]. The NF-κB inducing kinase (NIK) is further 

activated by the transforming growth factor β-associated kinase 1 (TAK1), a kinase that is 

Figure 6: LPS activation of different signaling pathways and transcription 
factors in monocytes. TLR4/MD-2 interact with the LPS-LBP/CD14 complex 
and TLR4 transduces the LPS signal from the outside to the intracytoplasmic 
compartment (adapted from [2]). 
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itself activated by TRAF6 linked to TAK1 by an adapter protein called TAB2 [422, 423]. In 

parallel, MEKK1 is directly phosphorylated by TRAF6. These two kinases are coupled to 

each other by a protein called “evolutionarily conserved signaling intermediate in Toll 

pathways” (ESCIT) [424]. This adapter protein is specific for the Toll/IL-1 pathways and is a 

regulator of MEKK1 processing. IKKs are then activated and phosphorylate I-κB. Free in the 

cytoplasm, NF-κB translocates into the nucleus. 

 

 

4.1.6 Problematic 

 

 Some of the most important tissue cell types in the recognition and elimination of 

bacteria and bacterial products are the monocyte/macrophage and the dendritic cell (DC). 

Another important common feature of these cells is that they participate in the activation of 

the adaptive immune system, by secreting specific cytokines and by presenting antigen to 

lymphocytes. The macrophage and the DC are derived from a common precursor, the blood 

monocyte. During haematopoiesis, the monocyte originates from the monoblast/promonocyte, 

itself differentiated from the myeloid stem cell. During differentiation steps, myeloid cells can 

acquire or loose specific and diverse functions according to the expression variation of 

intracellular molecules, cell surface receptors and also to their tissue localization. In the 

context of our topic, it has been observed that myeloid cells at various stages of differentiation 

respond differently to LPS. As an example, Martin et al. demonstrated that promonocytes 

acquired responsiveness to LPS during their maturation into mononuclear phagocytes. It was 

concluded that the maturation of the response to LPS was dependent in large part on the 

acquisition of CD14 on the cell surface [425]. In contrast, LPS response was shown to be lost 

when immature DCs were differentiated into mature DCs [426]. Several studies have also 

reported that LPS responses could vary in primary monocytes versus macrophages. Gessani et 

al. have demonstrated that the differentiation of human monocytes to macrophages led to an 

enhanced LPS response in terms of a progressive increase of IL-6/TNF-α production and the 

acquisition of an IFNβ-mediated antiviral state. These authors suggested that this enhanced 

response to LPS was largely CD14-independent [427]. Another study revealed that LPS-

induced signals were greatly potentiated by an elevated intracellular calcium in 

undifferentiated monocytic cells, but not in the differentiated state of these cells [428]. With 

the recent discovery of TLR and MD-2 proteins involved in LPS-induced cell activation, we 
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were interested to investigate whether these variations of LPS-induced cell responses could be 

attributed to a differential expression of CD14 and TLRs in myeloid cells at various stages of 

differentiation. In the first part of this chapter, the expression of these receptors as well as the 

cell response to LPS has been analyzed in promonocytic cells differentiated with different 

agents. In order to compare, similar experiments were performed with human primary tissue 

macrophages. In the second part of this chapter, our study focused on similar experiments 

done during the differentiation of human circulating blood monocytes into immature DCs, 

further transformed into mature DCs.  
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4.2 Part I: «Myeloid cell responses to endotoxin during cell differentiation. 

Dependence on Toll-like receptor-2, -4, and MD-2 expression» 
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Abstract 

 

Myeloid cells develop a strong response to LPS during the process of cell 

differentiation. In a model of human THP-1 cell differentiation, we investigated the role of 

surface molecules implicated in LPS signaling as potential regulators of cell responses to 

LPS. Promonocytic THP-1 cells expressing high basal levels of CD14, TLR2 and TLR4 were 

subjected to a 72 hr-treatment with various differentiating agents: 1,25 (OH)2 vitamin D3 

(D3), retinoic acid (RA) or γ-interferon (γ-IFN). Only γ-IFN increased TLR4 expression, 

whereas the levels of other surface molecules were not significantly modified by the 

differentiating agents. A correlation between expression of the TLRs and the magnitude of 

THP-1 cell response to LPS, as assessed by the secretion of IL-6 and IL-8, could not be 

established. Using specific mAbs we showed that undifferentiated THP-1 cells responded to 

LPS predominantly in a TLR2-dependent way, whereas cells differentiated with D3, RA or γ-

IFN partially lost this TLR2-dependence. Blocking both TLR2 and TLR4 abrogated LPS 

responses in differentiated cells. MD-2 mRNA was upregulated in response to all 

differentiating agents. Differentiated primary human monocytes and alveolar macrophages, 

which express high levels of surface TLR2 and MD-2 mRNA, and low levels of TLR4, 

responded to LPS essentially in a TLR4-dependent manner.  In all cases, the anti-CD14 mAb 

was the most efficient cytokine blocker in myeloid cells treated with LPS. We conclude that 

the surface molecules implicated in LPS signaling vary according to the level of cell 

differentiation. From TLR2-dependent progenitors, myeloid cells evolve progressively into 

cells that are TLR4/MD-2-dependent upon differentiation. 
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Introduction 

 

Toll-like receptors (TLR) belong to a new and growing family of receptors of the innate 

immunity [1-5]. Two members, TLR2 and TLR4 are preferentially expressed by myeloid cells 

[6], and have been shown to mediate cell activation in response to various bacterial 

molecules. These include Gram-negative bacterial endotoxin [7-13], Gram-positive 

peptidoglycan, teichoid acids, mycobacterial lipoarabinomannan, and bacterial lipoproteins 

[14-18]. Interestingly, expression of MD-2, a TLR4-associated protein, is required for 

efficient LPS responses [19-21].  

 

Little is known about the expression of TLRs and related proteins in human primary 

cells and cell lines, in particular during the process of myeloid cell differentiation. This latter 

process is complex and involves numerous genes [22, 23]. The dependence of TLRs and 

related protein(s) on the function of differentiated myeloid cells is unknown. We hypothesized 

that the pattern of TLR2, TLR4 and MD-2 expression was modulated during myeloid cell 

differentiation, and that those molecules accounted for differential responses to LPS. Using a 

classical model of promonocytic THP-1 cells differentiation [24-26], we show here that the 

LPS sensitivity acquired during cell differentiation correlates with the expression of MD-2 

mRNA. A similar expression of TLR2 and TLR4 expression was found in undifferentiated 

and in differentiated THP-1 cells. However, undifferentiated cells responded to LPS 

predominantly in a TLR2-dependent manner, whereas differentiated THP-1 cells as well as 

primary human monocyte/macrophages responded in a TLR4-dependent way, possibly in 

correlation with MD-2 expression. 
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Materials and Methods 

 

 

 Cells 

 Human CD14 cDNA cloned in a pRc/RSV vector (Invitrogen, San Diego, CA) was 

used to transfect the human promonocytic, CD14-negative, THP-1 cell line (ATCC, 

Rockville, MD), as described elsewhere [26, 37]. Stable transfectants expressed high levels of 

GPI-anchored CD14 (CD14(+)THP-1 cells) were maintained in RPMI 1640 medium 

supplemented with 10% fetal bovine serum (FBS), 10 U/mL penicillin, 10 µg/mL gentamicin, 

and 0.5 mg/mL G418 (Geneticin®), all from Life Technologies Ltd., Paisley, Scotland (= 

« culture medium »). Human alveolar macrophages (AMs) were obtained by bronchoalveolar 

lavage of lungs removed from patients with lung cancer as described [38], washed and 

resuspended in the culture medium. Whole blood obtained by venipuncture of healthy donors 

was heparinized (10 U/mL endotoxin-free heparin, Liquemine®, Roche Pharma, Basel, 

Switzerland), diluted 4-fold with RPMI 1640 medium and distributed in Eppendorf tubes for 

stimulation experiments. 

 

 

 Cell differentiation and stimulation 

 CD14(+)THP-1 cells were differentiated with 10-7 M 1,25 (OH)2 vitamin D3, (D3, 

Roche Pharma, Basel, Switzerland), 1 µM retinoic acid (RA, Sigma, St Louis, MO), or 500 

U/mL γ-interferon (γ-IFN, Boehringer Ingelheim, Basel, Swizerland) for 72 hr. Cells were 

then collected by centrifugation and resuspended in RPMI 1640 medium containing 2 % FBS, 

10 U/mL penicillin, 10 µg/mL gentamicin at the concentration of 106 cells/mL. Hundred µL 

of this cell suspension was distributed in each well of a 96 well-plate. Differentiated and 
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undifferentiated CD14(+)THP-1 cells, AMs and diluted whole blood were preincubated for 45 

min with the following mouse monoclonal antibodies (mAb), all at a final concentration of 5 

µg/mL: anti-human (h) CD14 mAb (28C5) [32], anti-hTLR2 mAb (2392, kindly provided by 

P.J. Godowski, Genentech Inc. South San Francisco) [12], anti-hTLR4 mAbs (HTA125 or 

HTA405) [21, 39], and an irrelevant isotype control mouse IgG1 mAb (Sigma). All mAbs 

were tested in a dose range of 5 to 20 µg/mL. The 5 µg/mL dose of anti-TLRs and anti-CD14 

mAbs induced a maximal inhibition, consistent with saturation of the inhibitory effect. 

CD14(+)THP-1 cells were then stimulated at 37°C with 100 ng/mL 0111:B4 E. coli LPS (List 

Biological Laboratories Inc., Campbell, CA). AMs and diluted whole blood were stimulated 

with LPS concentrations ranging from 0.1 to 10 ng/mL. Controls included treatment with 10 

ng/mL phorbol-12-myristate 13-acetate (PMA, Sigma) and treatment with culture medium 

only. The stimulation time was 14 hr for CD14(+)THP-1 cells, 6 hr for diluted whole blood 

and 7 hr for AMs. In some experiments, other anti-TLR4 mAbs (HTA414, HTA1216) and 

another anti-TLR2 mAb (TL2.1 mAb, a kind gift from T. Espevik, Norway) were tested for 

their capacity to inhibit LPS responses. Conditioned supernatants were collected by 

centrifugation, and interleukin (IL)-6 and IL-8 were assayed by ELISA, using commercially 

available antibody pairs, as described elsewhere [38]. Independent experiments in duplicates 

or in triplicates were repeated at least 3 times with the same conditions. 

 

 

 Flow cytometry analysis  

 To analyze the surface expression of Toll-like receptors and CD14, CD14(+)THP-1 

cells were incubated with saturating concentrations (2 µg/mL) of the following murine mAbs: 

anti-hTLR2 (2392), anti-hTLR4 (HTA125), and anti-hCD14 (63D3, ATCC). The mAbs were 

incubated with cells in HBSS buffer (Sigma) containing 0.3% BSA (Sigma) and 0.05% NaN3 
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(= “FACS medium”) for 45 min at 4°C. To assess the differentiation stage of THP-1 cells, 

cells were also stained with an anti-human intercellular adhesion molecule (ICAM)-1 mAb 

(R&D systems, Minneapolis, MN) [27, 28], and an anti-human HLA-DR mAb (Dako A/S, 

Denmark) [25]. Cells were washed once with FACS medium and incubated with 5 µg/mL 

secondary phycoerythrin-conjugated goat anti-mouse IgG (Anawa, Wangen, Switzerland) for 

45 min at 4°C. After one wash, cells were resuspended in 0.5 mL FACS medium, and 

analyzed by flow cytometry using the FL2 channel (FACScan, Becton Dickinson). The 

specificity of the anti-TLR2 and anti-TLR4 mAbs was assessed by FACS using human 

embryonic kidney (HEK) 293 cells expressing either TLR2 or TLR4. Stable HEK 293 

transfectants were produced using complementary DNA for Flag-tagged TLR2 and TLR4, 

kindly provided to us by C. Kirschning, Tularik Inc. South San Francisco, USA. Anti-TLR2 

mAb recognized only TLR2-expressing cells and anti-TLR4 only TLR4-expressing cells. 

Levels of expression measured with these anti-TLRs mAbs were comparable to those 

measured using an anti-Flag (Sigma) mAb (data not shown).  

 

 

 RNA preparation and RT-PCR analysis of TLR2, TLR4, and MD-2 

 Differentiated and undifferentiated CD14(+)THP-1 cells, human primary AMs and 

whole blood-derived monocytes were lyzed in 1 mL of Trizol® (Life Technologies). Total 

RNA was extracted using the classical phenol/chloroform method and treated with RNase-

free DNAse I (Roche Diagnostics GmbH Mannheim, Germany). Two µg of total RNA was 

reverse transcribed using an oligo(dT) primer (Roche) and M-MLV transcriptase (Life 

Technologies). PCR was performed using Taq polymerase (Roche) and specific primers 

designed for human TLR2 (5’ – GCC AAA GTC TTG ATT GAT TGG – 3’, sense; and 5’ – 

TTG AAG TTC TCC AGC TCC TG – 3’, antisense), human TLR4 (5’ – CAT GCC TGT 
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GCT GAG TTT GAA T – 3’ sense; and 5’ – TCC TGC CAA TTG CAT CCT GTA C – 3’ 

antisense), human MD-2 (5’ – TTC CAC CCT GTT TTC TTC CA – 3’ , sense; and 5’ – TAG 

GTT GGT GTA GGA TGA CA – 3’ , antisense) and GAPDH (5’ – GGT CAT CCA TGA 

CAA CTT TG – 3’ , sense ; and 5’ – CTA CAT GGC AAC TGT GAG GA – 3’ , antisense) 

for 32 cycles (for TLR2, TLR4, and MD-2) and 25 cycles (GAPDH) at 94°C for 1 min, 61°C 

(TLR2 and TLR4) or 55°C (MD-2 and GAPDH) for 1min, 72°C for 1 min 30. PCR products 

were electrophoresed on ethidium bromide-containing 1,5 % agarose gels, and imaged using a 

classical imaging system. 
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Results 

 

 

 Surface markers in THP-1 cells 

 In contrast to their parental CD14 negative THP-1 cells, CD14-transfected THP-1 cells 

(CD14(+)THP-1 cells) respond to LPS [26]. These CD14(+)THP-1 cells allowed us 1) to 

study the effect of differentiating agents on both the cell surface expression of various 

markers, 2) to compare LPS responses between differentiated and undifferentiated cells, and 

3) to address the dependence of the surface receptors for the endotoxin-induced cell 

activation. The surface expression of TLR2 and TLR4 in CD14(+)THP-1 cells was 

determined by flow cytometry (FACS) using anti-TLRs mAbs. As shown in Fig. 1, we found 

that undifferentiated CD14(+)THP-1 cells expressed significant levels of both TLR2 and 

TLR4. The level of expression of these two receptors was equivalent to that measured in 

native (untransfected) THP-1 cells (not shown). Whereas 3 day-treatment of CD14(+)THP-1 

cells with 1,25 (OH)2 vitamin D3 (D3) did not modify the expression of TLR2 and TLR4, the 

exposure of these cells to retinoic acid (RA) for 72 hr induced a small but consistent decrease 

in the surface expression of these molecules. Treatment of CD14(+)THP-1 cells with γ-IFN 

for 3 days induced an upregulation of TLR4. Surface expression of CD14, under the control 

of a constitutive viral RSV promoter, was unchanged after exposure to D3, and mildly 

decreased after RA and γ-IFN treatment. To control for the effect of the differentiating agents, 

we tested other surface molecules: intercellular adhesion molecule (ICAM)-1 expression 

increased with all differentiating agents (γ-IFN = RA > D3) [27, 28], and as expected, MHC 

class II molecules were specifically upregulated by γ-IFN [25], (Fig. 1). These surface marker 

controls indicate that the phenotype of differentiated CD14(+)THP-1 was that expected for a 

given differentiating agent. 
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Figure 1. Flow cytometry analysis of the surface expression of TLR2, 
TLR4, CD14, MHC class II (MHC II), and ICAM-1 molecules in native  
CD14(+)THP-1 cells and in cells differentiated with 1,25 (OH)2 vitamin D3
(D3), retinoic acid (RA) and γ -interferon (γ -IFN). Cells were labeled with 
mAbs specific for each antigen or an irrelevant isotype control (C). A.u., 
arbitrary units.
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 The expression of TLR2, TLR4 and CD14 was also determined in human primary blood 

monocytes and in human alveolar macrophages (AMs). As shown in Fig. 2, panel A, 

monocytes expressed high surface levels of TLR2, and lower levels of TLR4. AMs expressed 

low levels of TLR2 and TLR4 by FACS, but FACS analyses of these cells was made difficult 

by the autofluorescence of alveolar macrophages recovered from patients who smoked. 

However, TLR2 and TLR4 mRNAs were easily detected by RT-PCR in AMs from 3 different 

donors (Fig. 2, panel B). 
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Figure 2. Panel A. Flow cytometry analysis of the surface expression of 
TLR2, TLR4, CD14, and MHC class II (MHC II) molecules in circulating 
human monocytes and in primary human alveolar macrophages. Cells 
were labeled with mAbs specific for each antigen or an irrelevant isotype
control (C). A.u., arbitrary units.
Panel B. mRNA expression of TLR2 and TLR4 assessed by RT-PCR in
untransfected HEK 293 cells (293), in human TLR2-transfected HEK 293 
cells (293-TLR2), in TLR4-transfected HEK 293 cells (293-TLR4), and in 
human alveolar macrophages from 3 different donors.
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 LPS responses in differentiated THP-1 cells 

 Undifferentiated CD14(+)THP-1 cells and CD14(+)THP-1 cells treated 3 days with 

various differentiating agents did not produce IL-8 in the absence of a stimulus. They 

responded to a 14 hr treatment with 100 ng/mL LPS as shown in Table I. CD14 expression of 

THP-1 cells acquired by cell transfection induced LPS responsiveness. The treatment with γ-

IFN and D3 markedly increased the production of IL-8 in response to LPS, whereas RA 

treatment only marginally enhanced LPS-induced IL-8 secretion. The blocking effect of the 

anti-CD14 mAb on LPS-induced IL-8 secretion was maximal (> 90%) in undifferentiated 

CD14(+)THP-1 cells (Fig. 3). This effect was less pronounced in differentiated cells (40-70% 

inhibition of IL-8 secretion). Similar results were obtained with anti-TLR2 mAbs (Fig. 3), 

coming from two different sources (results not shown with TL2.1 anti-TLR2 mAb). The LPS 

response of undifferentiated cells seemed to be highly dependent on TLR2 and CD14. 

However, once differentiated, the dependence on CD14, TLR2 and TLR4 was found to be 

roughly equivalent (Fig. 3). The greatest “TLR4-dependence” was observed in cells 

differentiated with retinoic acid. In all cases the addition of both anti-TLR2 and anti-TLR4 

mAbs at the same time abrogated LPS-induced IL-8 secretion. The anti-TLRs and CD14 

mAbs did not modify CD14(+)THP-1 cell responses when cells were stimulated with PMA 

instead of LPS (data not shown). 
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Table I. LPS- and PMA-induced IL-8 secretion (mean ± SEM) in CD14(+)THP-1 cells 

differentiated for 72 hours with various agents. 

 

 LPS-induced IL-8 
secretion (ng/mL) 

PMA-induced IL-8 
secretion (ng/mL) 

CD14(-)THP-1 cells 0  

Undifferentiated 
CD14(+)THP-1 cells 7.8 ± 3 36 ± 7 

1,25 (OH)2 vitamin D3 - 
CD14(+)THP-1 cells 63 ± 2 77 ± 14 

Retinoic acid – 
CD14(+)THP-1 cells 9.5 ± 1 74 ± 3 

γ-interferon – 
CD14(+)THP-1 cells 19.3 ± 7 47 ± 16 
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Figure 3. Effect of various monoclonal antibodies (α−hCD14, α−hTLR2, 
α−hTLR4 or irrelevant control (C) mAbs) on LPS-induced IL-8 response 
in undifferentiated CD14(+)THP-1 cells, and CD14(+)THP-1 cells 
differentiated with 1,25 (OH)2 vitamin D3 (D3), retinoic acid (RA) or γ-
interferon (γ-IFN). Cells were treated for 14 hr with 100 ng/mL of 0111:B4 E. 
coli LPS.  Results represent 3 independent experiments done in duplicates, and 
are expressed as % of LPS response (mean ± SEM), where 100 % corresponds 
to the condition with LPS but without antibodies.
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Figure 3. Effect of various monoclonal antibodies (α−hCD14, α−hTLR2, 
α−hTLR4 or irrelevant control (C) mAbs) on LPS-induced IL-8 response 
in undifferentiated CD14(+)THP-1 cells, and CD14(+)THP-1 cells 
differentiated with 1,25 (OH)2 vitamin D3 (D3), retinoic acid (RA) or γ-
interferon (γ-IFN). Cells were treated for 14 hr with 100 ng/mL of 0111:B4 E. 
coli LPS.  Results represent 3 independent experiments done in duplicates, and 
are expressed as % of LPS response (mean ± SEM), where 100 % corresponds 
to the condition with LPS but without antibodies.
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 LPS responses in human whole blood and primary alveolar macrophages  

 We next tested LPS responses in human whole blood and in primary human alveolar 

macrophages. In whole blood, the produced cytokines and chemokines come essentially from 

activated monocytes. As shown in Fig. 4, LPS-induced IL-6 and IL-8 secretion in whole 

blood and by AMs was primarily dependent on CD14, since anti-CD14 mAbs almost 

abrogated the response. Among the TLR mAbs tested on these models, only TLR4 mAbs had 

a marked inhibitory effect. Anti-TLR2 mAbs had either little or no effect on LPS-induced cell 

responses. The simultaneous addition of anti-TLR2 and TLR4 also had much less effect than 

that observed with CD14(+)THP-1 cells. The anti-TLRs and CD14 mAbs did not modify the 

whole blood and alveolar macrophage responses when cells were stimulated with PMA 

instead of LPS (data not shown). 
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Figure 4. Effect of anti-hTLRs and anti-hCD14 mAbs on LPS-induced IL-
6 and IL-8 secretion in whole human blood and in human primary 
alveolar macrophages. LPS alone (closed squares), α−hCD14 (open 
triangles), α−hTLR2 (open circles), α−hTLR4 (closed circles), αhTLR2 + 
αhTLR4 (open diamonds). Results are expressed as mean cytokine levels ± 
SEM. These results represent the mean values obtained in 2 donors in each 
condition. This is one representative experiment out of three similar 
experiments.
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 MD-2 expression during cell differentiation 

 MD-2 is required for efficient TLR4-dependent LPS activation of cells [19-21]. Here, 

we show by RT-PCR that MD-2 mRNA was differentially expressed in myeloid cells at 

various stages of differentiation. Undifferentiated CD14(+)THP-1 cells did not express 

detectable levels of MD-2 mRNA in the experiment shown in Fig. 5. In other experiments not 

shown here, a faint band corresponding to the amplified MD-2 PCR product could be 

detected. In all experiments, differentiation of CD14(+)THP-1 cells with 1,25 (OH)2 vitamin 

D3, retinoic acid, and γ-interferon consistently increased MD-2 mRNA expression compared 

with undifferentiated cells. Primary human blood monocytes and alveolar macrophages 

showed a strong MD-2 mRNA expression in all subjects tested. 
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Figure 5. MD-2 mRNA expression (RT-PCR) in undifferentiated 
CD14(+)THP-1 cells, in cells differentiated with 1,25 (OH)2 vitamin D3
(D3), retinoic acid (RA), and γ −interferon (γ -INF), in peripheral blood
monocytic cells from two healthy donors (#1 and #2) and in human 
primary alveolar macrophages (AM) from two different donors (#1 and 
#2). GAPDH mRNA housekeeping gene expression is shown in the lower 
panel. A vector containing MD-2 cDNA was used as a positive control for 
MD-2 expression and another vector containing TLR4 cDNA served as a 
negative control.
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Discussion 

 

 We initially hypothesized that the differentiation process in myeloid cells modified the 

expression of surface molecules implicated in LPS responses, and that these changes were 

responsible for the acquisition of LPS responsiveness. We found that the surface levels of 

LPS putative receptor chains (CD14, TLR2, and TLR4) were not substantially modified by 

the differentiation process. Only γ-interferon significantly increased TLR4 expression. This is 

probably due to a functional interferon consensus responding element in its promoter region, 

as recently described by Rehli et al. [29]. 1,25 (OH)2 vitamin D3 did not modify TLR4 

expression, whereas retinoic acid slightly but consistently decreased its surface expression. In 

contrast with studies on LPS tolerance [30], we were not able to correlate the magnitude of 

cellular LPS responses with TLR4 expression in this THP-1 model. Indeed, γ-interferon, 

which augmented TLR4 expression, was less potent than 1,25 (OH)2 vitamin D3 to enhance 

LPS responses in THP-1 cells. In addition, retinoic acid which induced a small reduction in 

TLR4 expression responded to endotoxin at least as well as parental CD14(+)THP-1 cells. 

CD14, whose expression is driven by a viral constitutive promoter in CD14(+)THP-1 cells, as 

well as TLR2 expression, were not significantly altered by the differentiation process, and 

could therefore not account for the differences observed in LPS responses between 

differentiated and undifferentiated cells.  

 

 Overall, we show that the involvement of TLR2 and TLR4 in the LPS response of 

myeloid cells depends on the degree of cell differentiation. Blocking experiments using 

monoclonal antibodies showed that the molecules critical for LPS responses were CD14 and 

TLR2 in undifferentiated CD14(+)THP-1 cells. Cells exposed to γ-interferon or 1,25 (OH)2 

vitamin D3 became less TLR2-dependent. Cells differentiated with retinoic acid responded to 
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LPS prominently through TLR4. Importantly, in all situations, the addition of both anti-TLR2 

and anti-TLR4 mAbs abrogated LPS responses. This and the observations described above 

tend to support the notion that TLR2 may function as an LPS receptor [12, 13], primarily in 

undifferentiated myeloid cells, but that cells become less TLR2-dependent as they mature. 

Although the level of expression of TLR2 in primary monocytes/macrophages was much 

higher than that of TLR4, LPS responses in these cells were essentially TLR4-dependent. The 

existence of TLR2-TLR4 heterocomplexes has been recently postulated [31], however the 

interplay and association between TLR2 and TLR4 in cells expressing both molecules 

remains to be determined. 

 

 We next asked whether the observed reduction of TLR2-dependence in LPS responses 

occurring during CD14(+)THP-1 cell maturation could be explained by a differential 

expression of the TLR4 co-factor MD-2 [19-21]. MD-2 was previously found to confer LPS 

responsiveness to TLR4-expressing cells, possibly by modifying the TLR4 tertiary structure 

[20]. We observed that MD-2 mRNA was upregulated after treatment with the three different 

differentiating agents. The increased MD-2 expression also correlated with the observation 

that differentiated cells became less TLR2-dependent. However, except for THP-1 cells 

differentiated with retinoic acid, MD-2 upregulation did not induce a significant increase in 

TLR4-dependence. One limitation of these observations is that MD-2 expression was only 

measured at the mRNA level due to the lack of specific anti-MD-2 mAbs.  The reduction of 

the “CD14-dependence” of LPS-induced responses after THP-1 differentiation was somewhat 

surprising (Fig. 3). This could be due to an increased LPS sensitivity of differentiated cells, as 

previously shown by us and others [25, 32]. However, the cell response remained completely 

TLR-dependent as indicated by the double anti-TLR2 and anti-TLR4 mAb blockade 

experiment.  
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 Our observation of a reduced TLR2-dependence and a skewing towards TLR4-

dependence in LPS responses during the differentiation process could be explained by the 

possible involvement of an additional, as yet unknown component of the LPS multichain 

receptor. This component would “uncouple” LPS or LPS-CD14 complexes from TLR2 or 

alternatively augment the affinity of TLR4 for the signaling complex. It could also be argued 

that during myeloid cell differentiation, TLRs molecules (and/or CD14) localize in different 

plasma membrane subdomains or in different intracellular organelles that are important for 

transmembrane signaling [33, 34]. Recruitment of transmembrane receptors by GPI-anchored 

proteins has been observed in other systems, such as the molecules implicated in signaling by 

the GNDF family ligands [35], as well as in the contactin-associated protein (caspr)/F3 

contactin system [36]. 

 

 Because of the promonocytic origin and tumoral nature of THP-1 cells, this model has 

obvious limitation for generalization of the findings in primary cells. We felt important to 

further study the relevance of TLRs and MD-2 in LPS responses of fully differentiated 

primary human myeloid cells.  Human monocytes and human alveolar macrophages express 

high levels of CD14 and TLR2. TLR4 was detected at much lower levels at the surface of 

primary human myeloid cells, consistent with the report of Beutler [7]. Despite this low 

expression level, LPS stimulation of primary myeloid cells was essentially dependent on 

TLR4, consistent with the increasing body of evidence that TLR4 is the key signaling chain of 

the LPS receptor [7]. The combination of anti-TLR2 and anti-TLR4 mAbs, most of the time 

did not increase inhibition of LPS responses compared with the anti-TLR4 mAb alone. Of 

note is the robust expression of MD-2 mRNA in all primary myeloid cells tested. This strong 

MD-2 expression could account for the definite TLR4 dependence of mature primary myeloid 
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cells stimulated with LPS. To reconcile data between THP-1 cells and primary myeloid cells, 

we postulate that differentiated THP-1 cells display a phenotype and functionality 

intermediate between undifferentiated promonocytes and fully differentiated primary myeloid 

cells. However, whether primary human promonocytes behave like THP-1 cells with regards 

to the differentiation process needs to be further determined.  

 

 It is also important here to stress that CD14 remains the primary acceptor molecule 

required for LPS signaling. In all cell lines and primary cells tested in this study, none of the 

anti-TLRs mAbs was as strong as the anti-CD14 mAb to block LPS effects. This may indicate 

a very proximal and pivotal role of CD14 in recognizing LPS before the putative transfer of 

LPS to a signaling molecule such as a member of TLRs occurs, or before a protein-protein 

interaction between CD14 and TLRs takes place [13]. Although anti-TLRs mAbs were used 

at saturating levels, these mAbs could obviously be of a lesser affinity as compared with the 

anti-CD14 mAb tested. This could also argue that in primary myeloid cells, CD14-dependent 

but TLR2 and TLR4-independent pathways co-exist.  

 

 In conclusion, we show that the relative involvement of membrane molecules in LPS 

recognition and signaling depends on the degree of myeloid cell differentiation. Whereas 

undifferentiated promonocytic cells respond to LPS in a TLR2-dependent manner, 

monocytes/macrophages predominantly signal through a TLR4/MD-2 pathway. Among the 

various cell surface molecules important for LPS signaling, CD14 remains the necessary and 

pivotal LPS acceptor. 
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Abstract 

 

Dendritic cells (DCs) represent a key cellular link between innate and adaptive 

immunity. During tissue infection, DCs sense the presence of microbial antigens, participate 

in the local inflammation, migrate to lymphoid organs, and turn into professional antigen-

presenting cells. Using a model of human monocyte-derived DCs cultured in vitro, we show 

that LPS responsiveness of DCs varies greatly during the process of DC differentiation and 

maturation. Levels of LPS responsiveness correlated closely with the levels of CD14, TLR4 

and MD-2, all key components of the LPS receptor. Monocyte-derived immature DCs 

retained their LPS sensitivity, and still expressed CD14 and TLR4. In contrast, DCs matured 

with endotoxin or pro-inflammatory cytokines lost their surface expression of CD14 and 

TLR4, as well as their LPS responsiveness. TLR3 expression was found restricted to 

differentiated and mature DCs. These findings show that the expression pattern and levels of 

microbial receptors in DCs govern their effector function, i.e. antigen capture and processing 

versus antigen presentation. 
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Introduction 

 

Dendritic cells (DCs) are widely distributed in various organs throughout the body and 

play essential roles in antigen recognition and in the initiation of immune responses to non-

self antigens (1). Immature DCs residing as a surveillance network in many tissues are very 

effective in capturing and processing antigens, particularly through an increased mannose 

receptor expression (2). Mature DCs are principally found in lymphoid organs and lose 

antigen capture capacity to acquire efficient antigen presenting function. These cells typically 

display high surface expression of major histocompatibility complex (MHC) molecules as 

well as T cell co-stimulatory proteins such as CD40, CD80, and CD86 (3). This maturation 

process is under the tight control of inflammatory cytokines and bacterial products (4). 

Whereas it has been recognized that the final maturation of DCs was associated with a loss of 

LPS responsiveness (5), the receptors implicated in the recognition of bacterial molecules and 

the pathway(s) of DC activation in response to these bacterial molecules remain poorly 

defined. 

 

Toll-like receptors (TLRs) belong to a novel and growing family of receptors of the 

innate immunity, and are expressed by numerous cell types (6, 7). TLR2 and TLR4 are now 

recognized as receptors for molecules from the cell surface of Gram-positive and Gram-

negative bacteria, mycobacteria and yeasts (6). TLR4, together with the acute phase 

lipopolysaccharide-binding protein and CD14 mediates cell activation in response to 

endotoxin (6). An “accessory” molecule, MD-2, binds to TLR4 and is required for efficient 

LPS signaling (8). Interestingly, Muzio et al. recently showed that TLR3 expression, a TLR of 

unknown function, was restricted to DCs (9).  
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We hypothesized that the surface expression of CD14, TLRs and  MD-2 was regulated 

during the processes of human monocyte-derived DC differentiation and maturation, and 

accounted for the variations observed in LPS sensitivity. Herein, we show that the loss of 

endotoxin responsiveness in DCs matured with LPS or pro-inflammatory cytokines was due 

to the disappearance of TLR4 and CD14 from the cell surface. 
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Materials and Methods 

 

 

Culture differentiation and maturation of human monocyte-derived dendritic cells. 

Human monocytes were obtained from healthy blood donors. Peripheral blood 

mononuclear cells (PBMC) were isolated using a classical Ficoll-Paque® (Amersham 

Pharmacia Biotech, Uppsala, Sweden) gradient and isolated by adherence (10). In order to 

obtain monocyte-derived dendritic cells, 106/mL monocytes were incubated in culture 

medium containing 10 ng/mL of both recombinant human GM-CSF (Immugenex Corp, CA, 

USA) and IL-4 (R&D Systems, MN, USA) for 6 days, according to the method published by 

Sallusto and Lanzavecchia (10). On day 6, immature dendritic cells (imDCs) were matured 

with 1 µg/mL 055:B5 E.coli LPS (Difco Laboratories, MI, USA), 50 ng/mL TNF-α (Biogen, 

Geneva, CH) or 50 ng/mL IL-1ß (a gift from Jean-Michel Dayer, University of Geneva, 

Switzerland) in culture medium containing GM-CSF and IL-4 for an additional period of 3 

days.  

 

 

 Flow cytometry. 

 Monocytes from PBMC, monocytes which have adhered overnight, imDCs and mature 

DCs (mDCs) were analyzed by flow cytometry for the surface expression of TLRs, CD14, 

and specific markers of dendritic cells, CD86 and CD83. For flow cytometry analyses, cells 

were incubated with the following murine mAbs: anti-human (h)TLR2 (2392, from P.J. 

Godowski, Genentech Inc. South San Fransisco), anti-hTLR4 (HTA 125, provided by K. 

Miyake, Saga Medical School, Japan), anti-hCD86 (clone IT2.2, PharMingen, CA, USA), 

anti-hCD83 (clone HB15A, Immunotech), or an isotype control mouse IgG (clone 679.1Mc7, 
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Immunotech, Marseille, France), and followed by staining with a secondary phycoerythrin 

(PE)-conjugated goat anti-mouse IgG (Anawa, Wangen, Switzerland). CD14 was labeled with 

PE-conjugated anti-hCD14 mAb (clone TüK4, Dako, Denmark). 

 

 

 RNA preparation and RT-PCR analysis of TLRs and MD-2 mRNAs. 

 Buffy coats from healthy blood donors, adherent monocytes, imDCs and mDCs were 

lyzed in 1 mL of TRIzol® (Gibco). Total RNA was isolated with phenol/chloroform (11) and 

1 µg of total RNA was reverse-transcribed with oligo(dT) primer (Pharmacia) and Expand 

Reverse Transcriptase (Roche,Basel, CH) for 60 min at 42°C to obtain cDNAs. PCR was 

performed on cDNAs using Taq polymerase (Roche) and specific primers designed for 

hTLR2 (5’ - GCC AAA GTC TTG ATT GAT TGG - 3’, sense and 5’ - TTG AAG TTC TCC 

AGC TCC TG - 3’, antisense), hTLR3 (5’ - GAT TAA CGA GAC CCA TAC CA - 3’, sense 

and 5’ - AAC AGA GTG CAT GGT TCA GT - 3’, antisense), hTLR4 (5’ – GTC TGG CTG 

GTT TAG AAG TC - 3’, sense and 5’ - ACA CCA TTG AAG CTC AGA TC - 3’, antisense), 

hMD-2 (5’ - TTC CAC CCT GTT TTC TTC CA - 3’, sense and 5’ - TAG GTT GGT GTA 

GGA TGA CA - 3’, antisense) or GAPDH (5’ - GGT CAT CCA TGA CAA CTT TG - 3’, 

sense and 5’ - CTA CAT GGC AAC TGT GAG GA - 3’, antisense) for 35 cycles at 94°C for 

1 min, 55°C (MD-2 and GAPDH) or 58°C (TLR2, -3, -4) for 1 min, and 72°C for 90 sec 

(Perkin Elmer Thermocycler, Norwalk, CT). Amplified bands were imaged and quantitated 

using a computer-based imaging system (Kaiser/Vilber Lourmat system, France). Samples 

were screened for genomic DNA contamination by carrying samples through the PCR 

procedure with mRNA samples which did not undergo reverse transcription. Negative 

controls for each set of PCR reactions were performed with plasmids containing unrelated 

cDNAs. Positive controls for the PCR reaction included plasmids containing cDNAs of 
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TLR2, TLR4 (a gift from C. Kirschning) or MD-2 (kindly provided by K. Miyake). Positive 

controls for TLR3 consisted of cDNAs prepared from the human colonic HT29 cell line, 

known to express TLR3 (12). 

 

 

Cell stimulation for cytokine production. 

Cells at various stages of DC differentiation and maturation were stimulated at 37°C 

with 1 µg/mL 055:B5 E.coli LPS for 24 hr in a 24-well plate at the concentration of 106 

cells/mL. Levels of TNF-α and IL-12 p70 proteins were measured in conditioned 

supernatants using ELISA kits from BioSource International (Camarillo, CA, USA) and R&D 

Systems, (Minneapolis, MN, USA), respectively. In addition, immature DCs were stimulated 

with LPS in the presence or absence of anti-CD14 (clone 28C5), and anti-TLRs mAbs. 
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Results  

 

 

 Surface markers on monocytes and DCs. 

 We first determined by flow cytometry the levels of various surface markers on 

monocytes as well as on immature and mature monocyte-derived DCs. As shown in Fig. 1, 

CD86, a classical DC marker, was not expressed at the surface of monocytes, but was 

acquired during DC differentiation and maturation. A similar expression profile was observed 

for the “co-stimulatory” molecules CD40 and CD83, which are specific markers of mature 

DC ((2) and data not shown). Since it is now thought that the LPS receptor is a multichain 

complex receptor associating CD14, a TLR and an “MD” molecule, we measured the 

expression of these molecules. CD14 was highly expressed on monocytes but was 

progressively lost after DC differentiation. TLR4 expression was easily detected in 

monocytes; its level of expression decreased in imDCs and became undetectable in mDCs. 

TLR2 expression also decreased during differentiation and maturation but remained expressed 

at low levels in mDCs. The changes in surface markers observed during maturation were 

similar in cells treated with LPS and TNF-α. IL-1ß was somewhat less potent in inducing DC 

maturation. Immature DCs not treated with maturation agents during the 3 d final maturation 

process did not modify surface levels of TLRs, CD14 and CD86. 
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Figure 1. Flow cytometry analysis of the surface expression of TLR2, 
TLR4, CD14 and CD86 during differentiation and maturation of human
monocyte-derived dendritic cells (DCs). Immature DCs were obtained after 6 
d treatment of monocytes with GM-CSF and IL-4, and matured with an 
additional 3 d treatment with LPS, TNF-α or IL-1ß. At each step of cell 
differentiation and maturation, cells were collected and labeled with specific  
monoclonal antibodies (solid line), or an isotype control (dotted line). Cell 
fluorescence intensity (a.u. = arbitrary unit) was determined by flow
cytometry.
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Messenger RNA levels of TLRs and MD-2 during differentiation and maturation. 

Using a semi-quantitative RT-PCR technique, we next investigated the mRNA 

expression levels of TLRs and MD-2 during the process of DC maturation (Fig. 2). TLR2 and 

MD-2 mRNA expression slightly decreased during DC differentiation and maturation, 

whereas TLR4 mRNA levels increased during differentiation and decreased during DC 

maturation (Fig. 2 for MD-2, data not shown for TLR2 and TLR4). TLR3 mRNA was not 

detected in monocytes, appeared in imDCs, and then decreased in mDCs (Fig. 2). The data 

presented in Fig. 2 correspond to one representative experiment out of 3 similar experiments. 

In one experiment, a faint TLR3 band could be amplified from monocytes isolated in two 

different donors. 
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Figure 2. RT-PCR analysis of TLR3 and MD-2 mRNA expression during
dendritic cell differentiation and maturation.
Panel A. Amplified TLR3, MD-2 and GAPDH cDNA bands in whole blood 
leucocytes (leuco), adherent monocytes (Mo), immature dendritic cells  
(imDCs) and mature dendritic cells (mDCs) from two healthy subjects (#1 and 
#2). cDNAs from HT29 cells and the plasmid containing MD-2 cDNA were 
used as positive controls (C+) for TLR3 and MD-2, respectively. A plasmid
containing TLR4 cDNA was used as a negative control (C-). 
Panel B. Semi-quantitative analysis of TLR3 and MD-2 mRNA expression. 
TLR3 (white bars) and MD-2 (black bars) band densities were determined by 
densitometry, reported to GAPDH band intensity in the same sample, and 
expressed as arbitrary units (a.u.). 
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Cell responses to LPS.  

We next stimulated monocytes, imDCs and mDCs with LPS and measured cytokine 

production (Fig. 3, panel A). Monocytes responded to LPS by secreting TNF-α and IL-12. 

Immature DCs had increased cytokine responses to LPS as compared with monocytes. The 

LPS-induced TNF-α secretion by immature DCs was blocked by anti-CD14 mAb, decreased 

by 50% by anti-TLR4 mAb, and unchanged by anti-TLR2 mAb (Fig. 3, panel B). In all cases 

maturation with LPS or TNF-α was associated with a loss of LPS responsiveness (Fig. 4). 

Similarly to what we observed with surface markers, maturation with IL-1ß only partially 

decreased LPS responsiveness in mature DCs. No significant production of cytokines was 

observed in unstimulated cells. 
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Figure 3. Panel A. TNF-α and IL-12p70 produced by monocytes, 
immature DCs and mature DCs after stimulation with LPS. The cytokines 
were measured in conditioned supernatants by ELISA. The results were 
expressed as the mean ± SEM of 6 independent experiments. 
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Figure 3. Panel B. TLRs and CD14 dependence in LPS-induced TNF-α
secretion in immature DCs. Immature DCs were stimulated 18 hr. with 1
ng/mL LPS. One representative experiment out of three similar experiments. 
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Figure 4. TNF-α production in dendritic cells matured with LPS, TNF-α
or IL-1β for 3 days and stimulated with LPS for 24 hr. TNF-α was 
measured in conditioned supernatants by ELISA. This is one representative 
experiment out of three similar experiments.
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Discussion 

 

Using an in vitro model of monocyte-derived DC differentiation, we demonstrate here 

that DCs evolve from LPS-sensitive immature cells into LPS-unresponsive mature cells. This 

is correlated with the loss of expression of critical LPS recognition molecules such as CD14 

and TLR4 during the process of DC maturation. This represents the molecular basis for the 

reprogramming of immature DCs, which become unresponsive to LPS, while acquiring  the 

molecular equipment needed for full antigen-presenting capacity. 

 

Immature DCs interface innate and adaptive immune responses (7, 13). Due to the 

surface expression of various pattern recognition receptors, such as the mannose, 

complement, scavenger and CD14 receptors, immature DCs specialize into cells recognizing, 

internalizing and processing non-self microbial antigens. They are typically concentrated in 

organs that are in close contact with non-self antigens, such as the skin, intestine, liver and 

lungs (14, 15). It has now been well demonstrated that the phenotype of in vitro differentiated 

DCs was very similar to that of tissue DCs, such as lung DCs (2) or skin Langerhans cells 

(16). These cells express a vast array of surface molecules important for the recognition and 

uptake of bacteria and bacterial products. Here, we show that, in addition to the mannose and 

scavenger receptors (2, 14), immature DCs also express significant amounts of CD14, TLR2, 

TLR4 and MD-2. These latter proteins associate on cell surface to form multichain receptor 

complexes and mediate cell activation to conserved microbial molecules such as LPS, 

peptidoglycan, and lipoarabinomannan (6). Importantly, we found that these cells were fully 

responsive to LPS and produce high amounts of TNF-α and IL-12. This response was 

dependent on CD14 and TLR4 but not TLR2. In our experiments, immature DCs responded 

somewhat better to LPS than adherent monocytes. This could be an effect of the 6 day-
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treatment with GM-CSF, a growth factor which has previously been described to augment cell 

responsiveness to endotoxin (17). 

 

The exposure of immature DCs to pro-inflammatory molecules such as LPS, TNF-α or 

CD40L leads to further maturation of the DCs. During maturation, DCs migrate to lymphoid 

organs where they acquire full antigen-presenting capacity, with high levels of surface 

expression of MHC and co-stimulatory molecules (4, 18). In the present study, we observed 

that DC maturation was accompanied with a loss in CD14 and TLR4 antigens expression, two 

molecules that are critical for LPS signaling in myeloid and endothelial cells (19-22) as well 

as for LPS internalization by macrophages (23, 24). MD-2, a molecule associated with TLR4 

and required for efficient LPS signaling (8), was also decreased at the level of mRNA 

expression during DC maturation. This loss of CD14 and TLR4 expression paralleled the 

absence of LPS responsiveness in mature DCs. Interestingly, hyporesponsiveness of mature 

DCs to bacterial antigens had been previously reported by Kalinski et al. (5). Taken together, 

our results add to the notion that DC maturation is associated with a loss of surface expression 

molecules required for pathogen recognition and microbial uptake (2, 25). Mature cells, 

however acquire full antigen-presentation capacity and support a strong allogenic mixt 

lymphocyte reaction (2, 26, 27).  

 

TLR-3 was found by Muzio et al. to be specifically expressed in human dendritic cells. 

(9). Herein, we confirm that mRNA for TLR3 was undetectable by RT-PCR in monocytes, 

appeared in immature DCs and decreased in mature DCs. To date, TLR3 remains of unknown 

function, but interestingly it is the only human TLR lacking a conserved proline residue 

important for signaling through the Toll/IL-1R domain (28, 29). We also found that TLR3 

mRNA was expressed in buffy coats from blood donors. This could be due to the presence of 
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circulating DCs in blood leukocytes (30) or to the fact that non-monocytic leukocytes express 

TLR3 at levels below Northern blot detection (9). It is likely that the expression of TLR3 is 

tightly modulated by response elements sensitive to growth factors (such as GM-CSF) and/or 

IL-4. Further work is needed to unravel the potential role of TLR3 in DC-specific functions or 

in DC differentiation. The expression of additional TLRs by DCs also remains to be 

determined. 

 

In conclusion, our findings provide additional support for the fact that immature DCs 

display a vast array of pathogen recognition receptors, including members of the important 

TLR family, and produce a strong pro-inflammatory response to LPS. This is important 

information given the phagocytic and inflammation-enhancing functions of tissue dendritic 

cells. Exposure of these cells to endotoxin and pro-inflammatory cytokines reprogram DCs 

into professional antigen-presenting cells which loose their response to microbial antigens, 

but are now capable of boosting T cell proliferation and activation. This unresponsiveness to 

endotoxin could be attributed to the downregulation of CD14, TLR4 and MD-2.  
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5.1 Introduction 

 

As observed in previous studies, the GPI-anchor of CD14 does not seem to play a role 

in endotoxin-induced cell activation or internalization. Indeed, the replacement of the CD14 

GPI-anchor by a transmembrane tail revealed that the GPI tail targets CD14 to lipid-rich 

domains, whereas it is not required for LPS-mediated myeloid cell activation and LPS 

internalization [429]. However, it was observed that anti-CD14 antibody-induced cross-

linking caused a rapid calcium mobilization signal only in GPI-anchored CD14 THP-1 cells. 

For this observation, no physiological explanation could be provided [25]. However, it is 

possible that the GPI anchoring system may be important for other signaling functions.  

 

Interestingly, aerolysin, one of the best characterized toxins secreted by the Gram-

negative bacterium Aeromonas (A.) hydrophila as well as other Aeromonas species, has been 

reported to bind specifically to GPI-anchors. Aerolysin pathogenicity resides in its capacity to 

create pores in mammalian cell membranes and subsequently induces cell death by an osmotic 

process.  

 

 

5.1.1 Pathologies induced by Aeromonas hydrophila 

 

Aeromonas present in aqueous environments are at the origin of gastrointestinal 

diseases in humans. Moreover, in immuno-compromised patients, Aeromonas infection can 

lead to septicemia and meningitis [430, 431]. The implication of aerolysin also called alpha-

haemolysin, in A. hydrophila- associated systemic infections was demonstrated by using 

mutant strains lacking the aerolysin gene product. These aerolysin mutant strains were neither 

hemolytic for blood erythrocytes nor cytotoxic for Chinese hamster ovary tissue culture cells 

compared to revertant strains [432]. In addition, specific neutralizing antibodies to aerolysin 

have been detected in animals surviving Aeromonas infection. 

 

Few years before, some investigations had revealed that radiolabeled-aerolysin binds to 

rat erythrocytes, and that this binding could be inhibited by specific anti-aerolysin antibodies. 

It was defined that the aerolysin interaction with erythrocyte membranes was facilitated by a 

specific glycoprotein receptor. Moreover, aerolysin binding is followed by the formation of 

discrete holes or pores responsible for the hemolysis of erythrocytes [433].  
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5.1.2 Secretion of aerolysin from bacteria. 

 

In order to get out of the bacteria, aerolysin utilizes the type II secretion system. This 

protein does not cross the inner and outer membranes simultaneously, but requires more than 

one step for an export outside [434]. First, the N-terminal signal sequence of the 

preproaerolysin targets the protein to sec machinery which allows translocation across the 

inner membrane and removal of the signal sequence [435]. Proaerolysin present in the 

periplasm, further traverses the outer membrane of bacteria in a ATP-dependent and an 

electromotive force, and is released in the extracellular medium [436]. Interestingly, though 

translocation across the inner membrane occurs in an unfolded state, translocation across the 

outer membrane occurs in an apparently fully folded state [437]. It is still unclear whether 

proaerolysin is secreted as a dimer or a monomer. Strong evidences indicated that the protein 

crosses the outer membrane as a fully folded dimer, suggesting that folding and dimerization 

occur in the periplasm [438]. As determined by mass spectrometry, no post-translational 

modification seems to occur in the aerolysin primary sequence. 

 

 

5.1.3 Biochemical properties of aerolysin 

 

Many biochemical investigations on aerolysin enabled to better characterize this 

protein. Purified aerolysin has a molecular weight of 52 kDa. Interestingly, its hemolytic 

action is inhibited by certain reducing agents including ferrous iron and cysteine [439]. The 

aerolysin sequence analysis indicated that although most of the sequence seems unrelated to 

that of Staphylococcus aureus alpha-toxin, both proteins are very hydrophilic, and they each 

contain a nearly identical string of 10 aa [440].  

 

Proaerolysin is a highly soluble 470-aa protein of 52 kDa secreted as an inactive 

precursor of the toxin, aerolysin. Spontaneously, proaerolysin seems to be more stable as a 

dimer than as a monomer. In the dimer, adjacent monomers are orientated in an anti-parallel 

manner and the domain 1 is implicated in such a process as shown by truncation mutant 

experiments. However, as shown by Fivaz et al., the dimer gradually dissociates at 

concentrations below 0.1 mg/mL [441]. Such a low protein concentration prevents the 
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crystallization of monomers and subsequently, structural analysis of the monomer remains 

impossible. Meanwhile, crystallization of proaerolysin as a dimer is possible and forms 

tetragonal crystals that contain the dimer in the asymmetric unit [442]. Structural analysis 

revealed that the protoxin has a L-shaped form which can be divided into a small N-terminal 

globular domain and a large lobe corresponding to an elongated domain. This latter lobe 

contains 3 domains characterized by the presence of β-sheets, which characterize 42% of the 

whole structure, whereas helices mainly concentrated in domain 2, represent only 21% of the 

molecule. The presence of two disulfide bonds in domains 1 (Cysteine(C)19-C75) and 2 

(C159-C164) significantly increases the overall stability of the protein [443]. Even if the exact 

function of each domain remains unknown, several important regions of the molecule were 

identified and hypothesis on the nature of their function could be raised using a combination 

of chemical modification and site-directed mutagenesis. Actually, domains 1 and 2 appear to 

be involved in receptor binding, domain 2 in triggering oligomerization, domains 3 and 4 in 

maintaining the oligomer assembled and domain 4 has been proposed to line the channel.  

 

In contrast to other pore-forming toxins such as colicins, proaerolysin does not contain 

any hydrophobic stretches within its primary sequence that could form potential 

transmembrane regions. 

 

 

5.1.4 Activation of proaerolysin into aerolysin 

 

In order to protect themselves from killing effects of aerolysin, Aeromonas bacteria 

produce an inactive precusor, proaerolysin unable to oligomerize and to form a membrane-

perforating channel. Activation of proaerolysin occurs through the cleavage of a C-terminal 

peptide present within a flexible loop located in domain 4. Several common proteases are able 

to perform this activation [444]. As determined by mass spectrometry, trypsin cleaves 

proaerolysin after the lysine at position 427, whereas chymotrypsin cuts after the arginine at 

429 [445]. Members of the mammalian pro-protein convertase family including furin were 

also found to cut after the arginine 432 [446]. The above results also indicate that proaerolysin 

can be activated either in solution by soluble enzymes, or at the surface of the target cells by 

transmembrane proteases such as furin. As mentioned by van der Goot et al., a C-terminal 

peptide of 43 or 45 aa is removed after proteolytic cleavage and plays no further role in the 

process of channel formation [447]. Following activation, aerolysin circularly assembles into 
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heptamers that is extremely stable [443, 448, 449]. Actually, removal of the peptide from 

proaerolysin might trigger a conformational change that promotes aerolysin oligomerization. 

Indeed, a significant change in secondary structure, characterized by a decrease in random 

structure and an increase in beta-sheet content was observed by spectroscopy. This 

conformationnel change appeared to propagate along the molecule from the cleavage site 

[450]. This process could possibly reduce the energy barrier leading to heptamer. More 

precisely, it was shown that after proteolytic activation, movement of a loop in domain 3 of 

aerolysin is required to induce oligomerization [451]. In contrast, subsequent oligomerization 

of the mature toxin did not involve any change in overall secondary structure but involved a 

modification of the tertiary interactions [450]. Although oligomerization must normally occur 

on the surface of the target cell, it can also take place in solution if the protein concentration 

rises above about 100 µg/mL. The histidine (His-) 132 has been demonstrated to be a pivotal 

aa, since the mutation of this residue totally abolishes the channel formation in lipid bilayers 

[452, 453]. Later studies indicated that His-132 must in addition be protonated for 

oligomerization to proceed. This suggested that the environment of this residue might act as a 

nucleation site for the polymerisation process [454]. In contrast, mutations of tryptophan 371 

and 373 were found to accelerate the heptamer formation process. This observation suggested 

that these mutations somewhat destabilize the protein thereby facilitating the rearrangements 

required for heptamer assembly [455]. Chemical experiments enabled to detect in domains 3 

and 4, aa regions (180-307 and 401-427) presumably involved in monomer/monomer 

interactions in the heptameric protein and exclusively composed of beta structure [443]. In 

contrast, domains 1 and 2 do not seem to be crucial in such a function. However, it cannot be 

excluded that these two latter domains are important to initialise the formation of the complex 

as observed with the different aa mutations described above [452, 453, 455].  

 

Structural analysis of the oligomer was limited because of extreme difficulties in the 

crytallization procedure. Nevertheless, the complex could be described to have a mushroom 

like shape similar to that of staphylococcal α-toxin using the low-resolution model of the 

heptamer defined from two-dimensional crystals [448]. In addition, combining this low-

resolution model and the high-resolution structure of proaerolysin, a model of the channel has 

been proposed [456]. According to this model, domains 1 and 2 would lie on the membrane, 

domain 3 would form the mouth of the channel and domain 4 would cross the bilayer and line 

the pore. This model however remains to be confirmed experimentally. 

 



 171

 

5.1.5 Receptor binding of proaerolysin 

 

For many years, it was wondered whether proaerolysin would bind to a receptor at the 

target cell surface and if so, whether this binding could induce the heptamerization after the 

proaerolysin activation. Interestingly, instead of recognizing one specific receptor, 

proaerolysin, and also aerolysin were found to interact with a specific post-translational 

modification, a GPI anchor [457-460]. The GPI-anchor is added in the endoplasmic reticulum, 

to the carboxy terminus of newly synthesized proteins that bear a GPI-anchoring signal [461, 

462]. The GPI anchor then targets these proteins to the plasma membrane. The discovery of 

GPI-anchor proteins as receptors for proaerolysin came from different experiments. Indeed, 

the use of a phosphatidyl inositol-specific phospholipase C protected cells against aerolysin 

[458]. Moreover, cells deficient in GPI biosynthesis such as cells from patients suffering from 

the PNH syndrom, had a dramatically reduced sensitivity towards aerolysin [463]. Recent 

evidence suggested that the proaerolysin binds the GPI-anchor as a monomer and not as a 

dimer as previously thought [441]. Amongst the identified GPI-anchored proteins that bind 

proaerolysin, were found Thy-1, contactin, CD14, semaphorin K1 and the GPI-anchored 

isoform of N-cam (unpublished observations from L. Abrami et al.) [458, 460]. The apparent 

Kd for proaerolysin binding was estimated between 20 and 65 nM [459, 464]. Present as a 

stable dimer in solution, this dimeric protoxin is quite capable of receptor binding as recently 

shown [465, 466]. Regions of aerolysin involved in the binding were mapped by site-directed 

mutagenesis followed by plasmon resonance analysis. Interestingly, experiments revealed that 

many of the residues identified as being important for high-affinity binding corresponded to 

aromatic residues present in domain 1 and 2 [464]. It was suggested that aromatic residues 

could stack against the pyranose rings of sugars as already observed for other carbohydrate-

binding proteins [467]. However, considering the large size of domains 1 and 2 of 

proaerolysin, it remains unclear how the toxin can interact with the glycan core of the GPI-

anchor receptor. Conformational changes in the glycan core of the anchor and in the toxin are 

likely to be necessary. As shown by a recent study, aerolysin binding to the receptor also 

requires the polypeptide moiety of GPI-anchored proteins in addition to the glycan core [468]. 

Once bound to the cell surface, proaerolysin is activated by proteolytic cleavage as already 

described in a previous section. Oligomerization then occurs probably by lateral movement of 

the toxin within the plane of the membrane. This heptamerization is also possible in solution, 

but at a higher aerolysin concentration (1 µM) than that observed in experiments with living 
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cells (10 pM) [7, 445]. Actually, reducing the dimensionality from 3 to 2 (cell membrane 

surface), concentrates aerolysin and would facilitate interactions between aerolysin molecules 

for the oligomerization. One of the extensively characterized properties of the GPI-anchored 

protein family is that they have a complex and unusual mobility at the cell surface. They can 

navigate in the phosphoglyceride region of the plasma membrane with a higher mobility than 

transmembrane proteins [469]. They also have the ability to associate in a dynamic fashion 

with cholesterol and glycosphingolipid-rich microdomains also called "lipid rafts" and present 

in the plasma membrane [470, 471]. With such uncommon characteristics, it has been 

hypothesized for many years that lipid rafts could promote the cell surface oligomerization of 

aerolysin. Several studies led to controversial observations and interpretations. In 1999, 

Abrami et al. published that the capacity of proaerolysin to associate with microdomains was 

abrogated in cells treated with the cholesterol binding drug saponin. In the same time, the 

treatment dramatically affected the aerolysin oligomerization [7]. The oligomerization process 

was partially restored when higher concentrations of toxin were added to cells. Therefore, 

microdomains appeared to act as concentration platforms at the cell surface due to their 

capacity to recruit GPI-anchored proteins [472]. And aerolysin seemed to have use this 

property for its own purpose. On the opposite, recent investigations demonstrated that the 

chemical destruction of lipid-rich domains in T lymphocytes or in erythrocytes did not 

decrease the rate at which cells were lysed by the toxin. In a similar manner, the rate of 

aerolysin-induced channel assembly was not different in liposomes containing variable lipid 

compositions, which favoured or not lipid rafts formation [473].  

 

Interestingly, several other bacterial pore-forming toxins have been found to share 

common properties: 1) the toxin oligomerization procedure for channel formation and 2) the 

use of raft components to achieve this process. In addition, it appeared that certain bacteria 

and viruses have chosen the site of lipid rafts to entry into cells [reviewed by 474]. 

 

After aerolysin heptamerization, insertion of the channel into the lipid bilayer remains a 

step very poorly understood. As shown by Van der Goot et al., the heptamer is an 

amphiphatic complex and is therefore prone to aggregation. From these results, it was also 

suggested that this amphiphatic property of the complex could constitute the driving force for 

membrane insertion [455]. It has been suggested that unfavourable energetic effects exist at 

the junctures between lipid rafts and the fluid-phase phosphoglyceride region of the plasma 

membrane [475]. These unstable boundaries might facilitate membrane insertion of the 
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aerolysin heptamer. Also, other characteristics of lipid rafts might promote membrane 

penetration. In a more recent study, Alonso et al. described that lipids composition would be 

an important factor for the heptamer insertion into lipid bilayers. Experiments were done 

using large unilamellar egg phosphatidylcholine vesicles containing varying amounts of other 

lipids. It appeared that the most favourable lipids were phosphatidylethanolamine, 

diacylglycerol, cholesterol, or hexadecane [476]. 

 

 

5.1.6 Consequences of channel formation 

 

Aerolysin-induced channel formation leads to plasma membrane permeabilization to 

small ions such as calcium and potassium [459, 477]. As shown by voltage-clamp 

experiments, these channels are voltage-gated and slightly anion selective. Between -70 to 

+70 mV, channels present in artificial lipid membranes remain opened, whereas outside this 

range they are inactivated and subsequently closed. In addition to its inhibitory role in the 

oligomerization of monomeric aerolysin, zinc ions are able to close the channel by binding to 

a site within the channel lumen [478]. Using different technical analysis, the inner diameter of 

the channel was determined to range between 17 to 40 Å [433, 479]. In contrast to some other 

pore-forming toxins, no repair of plasma membrane lesions has been observed. This may be 

due to a high stability of the channel, its resistance to proteolysis and degradation. 

Alternatively, aerolysin might not be internalised by cells and therefore not be removed from 

the surface.  

 

As measured with viability tests, cells can survive for several hours, depending on the 

aerolysin concentration. Few minutes after channel formation, cells start swelling and very 

often seem to die from an osmotic shock. Meanwhile, in some cell types, death seems to be 

induced by apoptosis, suggesting that underlying complex signals are involved in cell 

destruction. In T cells, degradation of genomic DNA, one of the property of apoptosis has 

been observed. This process could be overcome by overexpression of the anti-apoptotic 

protein Bcl-2. Aerolysin-induced apoptosis was suggested to be due to a massive entry of 

calcium.  

 

As shown by Abrami et al., the interaction of aerolysin with a variety of polarized and 

non-polarized epithelial cells results in vacuolation of the ER, but does not affect other 



 174

intracellular compartments. This phenomenon in turn causes selective disorganization of early 

biosynthetic membrane dynamics, which led to an arrest in transport of newly synthesized 

proteins out of the ER. Although ER vacuolation can be observed for some forms of 

apoptosis, no degradation of genomic DNA was detected and moreover, vacuolation could not 

be prevented by Bcl-2 overexpression. But vacuolation was inhibited by ATP depletion of 

cells or depolymerization of the microtubule network, indicating that the process is dependent 

on the dynamic properties of ER membranes. It is not clear how this inhibition is achieved 

and several investigations remain to be perform to better understand how and why the ER 

vacuolation occurs. Interestingly, two other toxins (the Serratia marcescens hemolysin and 

the Vibrio cholera El tor hemolysin) have recently been described to also induce massive 

intracellular vacuole formation [480, 481]. 

 

In addition to these modifications, channel formation induces a number of cellular 

responses. Krause et al. have shown that aerolysin triggers release of calcium from the ER in 

human granulocytes [482]. Moreover, this process could be inhibited by pre-treating cells 

with pertussis toxin or by treating cells with phospholipase Cβ inhibitor. This observation 

indicated that aerolysin channel formation had triggered the activation of G-proteins and the 

production of inositol(1,4,5)-triphosphate. Activation of G-proteins still remains an unclear 

signaling cascade. One possibility is that the aerolysin channels affect the integrity of lipid 

rafts, which have been implicated in modulating and integrating signaling events at the 

plasma membrane. 

 

 

5.1.7 Problematic 

 

During millions of years, bacteria, higher fungi, cnidairians, snakes, insects and other 

arthropods have developed specific line of defense by producing very potent molecules : 

cytolytic peptides or proteins. Studies of some of such bacterial molecules revealed 

similarities in their sequences and also in their mode of action. This was the case of aerolysin 

compared to the α-toxin from Clostridium speticum, the Leishmania amazonensis cytolysin a 

pore-forming toxin called leishporin or the leukotoxin from Pasteurella haemolytica [483-

485]. Interestingly, this latest pore-forming toxin was characterized to induce intracellular 

calcium elevation and also to activate the transcription factor NF-κB in ruminant leukocytes 
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and platelets [484]. As a result of this activation, pro-inflammatory cytokines such as TNF-α, 

IL-1β and IL-8 were produced. It was further demonstrated that NF-κB activation was 

dependent on the calcium elevation induced by the leukotoxin. As previously mentioned, 

aerolysin provokes the increase of calcium in granulocytes [482]. In this study, we 

investigated whether aerolysin could also activate NF-κB and induce secretion of pro-

inflammatory proteins that could be involved in inflammation observed in infection with 

Aeromonas hydrophila. Aerolysin enters in contact with cells via the GPI-anchor of proteins 

present at the cell surface. Using CD14, a GPI-anchored recepteur able to bind an array of 

microbial molecules, we were interested in studying a new mechanism of action of a bacterial 

molecule. 
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5.2 Aerolysin activates cells via a NF-κB pathway 
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Abstract 

 

Bacterial exotoxins can affect host cell survival by their direct cytotoxic effects. Here, 

we show that aerolysin, a pore-forming toxin from Aeromonas hydrophila stimulates human 

cells to secrete pro-inflammatory mediators. Promonocytic THP-1 cells secreted significant 

amounts of the IL-8 neutrophil chemokine when exposed to aerolysin. Aerolysin treatment of 

epithelial HEK 293 cells was associated with a NF-κB-dependent cell activation, as assessed 

by a classical E-selectin luciferase reporter assay. Cell activation was markedly increased by 

the overexpression of surface GPI-anchored molecules such as CD14, CD55 and a GPI-

engineered version of the green fluorescent protein, that act as receptors for the toxin. 

Experiments with hypoosmolar milieu as well as the small concentrations of aerolysin used in 

our assays rule out the possibility that the observed effect was due to cell swelling. These 

observations are important with regards to the possible pathogenic role of the toxin, being 

pro-inflammatory in addition to be cytotoxic. 
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Introduction 

 

Aerolysin is a pore-forming toxin [1] secreted by Aeromonas hydrophila and plays an 

important pathogenic role in infections caused by these bacteria. [2-5]. The toxin is produced 

as an inactive precursor that requires proteolytic cleavage of a C-terminal peptide [6,7]. The 

GPI moiety of several GPI-anchored molecules has now been recognized as the necessary cell 

surface receptor for aerolysin binding [8-10]. The active toxin then associates into heptameric 

rings which are inserted into host cell membrane, to form a pore permeable to water and ions 

ultimately leading to cell death. In addition, channel formation triggers a number of 

unexpected cellular events such as apoptosis in T cells [11], vacuolation of the endoplasmic 

reticulum in epithelial cells [10,12] as well as calcium release from endoplasmic reticulum in 

granulocytes due to the activation of G-proteins and the production of inositol (1,4,5)-

triphosphate [13]. The mechanisms by which aerolysin “activates” cells remain to be 

unraveled.  

 

Here, we show that aerolysin triggers secretion of the chemokine IL-8 from human cells 

via a NF-κB-dependent pathway. This process requires binding of aerolysin to GPI-anchored 

proteins present at the surface of host cells, and is independent of the aerolysin-induced cell 

swelling.  
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Material and Methods 

 

 

 Cells 

Human promonocytic, CD14-negative, THP-1 cells (ATCC, Rockville, MD) were 

stably transfected with a plasmid encoding for a green fluorescent protein (GFP, Clontech) 

under the control of the –546 bp interleukin-8 (IL-8) promoter (pIL-8/GFP-THP-1 cells) [14]. 

These pIL-8/GFP-THP-1 cells were cultured in RPMI 1640 medium containing 10% fetal 

bovine serum (FBS), 10 U/mL penicillin, 10 µg/mL gentamicin and 0.5 mg/mL G418 (= 

“ culture medium ”). To increase the surface expression of glycosylphosphatidyl inositol 

(GPI)-anchored CD14, pIL-8/GFP-THP-1 cells were differentiated with 10-7 M 1,25 (OH)2 

vitamin D3 (VD3, Roche Pharma, Basel, Switzerland) in culture medium without G418 for 72 

hr [15]. pIL-8/GFP-THP-1 cells differentiated or not with VD3 did not express GFP unless 

stimulated with “pro-inflammatory” mediators such as LPS (unpublished data). VD3 

differentiation (48 – 72 hrs) induces a marked upregulation of the GPI-anchored CD14 in 

THP-1 cells and confers LPS responsiveness [16]. Complementary DNAs encoding for GPI-

anchored proteins (GPI-CD14, GPI-CD55, a GPI-engineered version of the green fluorescent 

protein, GPI-GFP) and for a transmembrane form of CD14 (tm-CD14) were used for 

experiments of transient transfection of HEK 293 cells. Briefly, these transfections were 

carried out using the Effecten™ transfection reagent. These cells were co-transfected with 

plasmids encoding firefly luciferase under the control of an E-selectin minimal promoter 

containing 3 NF-κB consensus sequences [17] and a plasmid encoding for a constitutively 

expressed renilla luciferase driven by the TK promoter (Promega). After 24 hr, the level of 

surface expression of these molecules in transient transfectants were determined by flow 

cytometry using the following antibodies: 63D3 (ATCC) for human CD14, MEM 118 
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(provided by V. Horejsi, Praha, Czechoslovakia) for human CD55 (decay accelerating factor, 

DAF), and a rabbit anti-GFP polyclonal antibody for GPI-GFP (provided by Van der Goot G), 

and appropriate PE-conjugated secondary antibodies. Controls included cells transfected with 

empty vectors. Cells were used 24 hrs after transfections. 

 

 

 Stimulation of pIL-8/GFP-THP-1 cells with aerolysin 

Just before the assay, proaerolysin was cleaved into aerolysin with 2.5 µg/mL of trypsin 

(10 minutes at room temperature). Trypsin was inactivated with 12 µg/mL of trypsin inhibitor 

(Sigma). 3 x 105 cells/mL VD3-differentiated pIL-8/GFP-THP-1 cells were stimulated at 37 

°C with various concentrations of aerolysin in RPMI 1640 medium containing 2% FBS (= 

“ stimulation medium ”). At times 0, 1, 3, 6, and 24 hrs, 200 µL of conditioned supernatant 

were collected and kept frozen to further assay the secretion of IL-8 by ELISA (Endogen). 

Aerolysin-induced cell death was monitored using propidium iodide (PI, PharMingen) 

staining. GFP expression and PI cell uptake were analyzed by flow cytometry within the same 

sample using FL2 and FL3 channels, respectively. To control for inducibility of GFP under 

the control of the IL-8 promoter, cells were treated in parallel with 100 ng/mL LPS O111:B4 

E. Coli LPS (List Biological Laboratories Inc., Campbell, CA). All cell activation 

experiments involving aerolysin were performed in the presence of 10 µg/mL polymyxin B in 

order to exclude a possible effect of contaminating LPS. In control experiments not shown 

here, polymyxin treatment of cells did not interfere with cell activation, and blocked LPS-

dependent activation of these cells. 
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 Stimulation of HEK 293 cells with aerolysin 

HEK 293 cells expressing the GPI-anchored form of CD14, CD55, GFP, a chimeric 

transmembrane form of CD14, or transfected with their appropriate empty vectors were 

stimulated with aerolysin at various concentrations for 6 hr. Cells were then lysed and firefly 

and renilla luciferase activities were measured in 20 µL of cell lysates according to the 

Promega protocol [18]. Inducible luciferase activity in one sample was calculated using the 

ratio of: firefly luciferase/renilla luciferase activities. Fold induction was defined as the ratio 

of test sample/control sample inducible luciferase activities. Experiments were done in 

triplicates and results were expressed as mean of fold induction ± 1SD. 

 

 

 Hypo-osmotic shock 

HEK 293 cells or pIL-8/GFP-THP-1 cells were submitted to a 6 hr hypo-osmotic shock 

by adding increasing concentrations of endotoxin-free dH2O to the stimulation medium. Cell 

stimulation induced by osmotic shock was tested using the above-described double luciferase 

reporter gene assay (293 cells) and by the secretion by these cells of IL-8 (THP-1 cells) in the 

milieu. The cell viability was measured using a MTT assay [19] (Sigma). Briefly, MTT 

(yellow) is incorporated into mitochondria of live cells where it concentrates and crystallize 

(violet dye). Cell viability correlates with the intensity of the violet color after cell lysis, 

measured by spectrophotometry (570 nm).  
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Results 

 

 

 Aerolysin activates THP-1 cells 

In order to study aerolysin induced cell activation, we have first used the well 

characterized cell line THP-1. As shown in Fig. 1A, this cell line is sensitive to the toxin as 

witnessed by a dose- and time-dependent induction of cell death. Interestingly, aerolysin 

treatment resulted in the secretion of the IL-8 chemokine in a dose- and time-dependent 

manner (Fig. 1B). This effect was most probably related to an augmented IL-8 gene 

transcription, since aerolysin induced the activation of the IL-8 promoter in our pIL-8/GFP 

reporter system (Fig. 1C). The maximum IL-8 secretion was observed with 2ng/mL (40 pM) 

aerolysin and corresponded to ~ 5 % of the secretion obtained with 100 ng/mL LPS, which is 

a strong agonist in this THP-system (data not shown). Aerolysin incuded IL-8 secretion was 

not due to LPS contamination of the toxin sample since polymixin B has no effect the 

chemokine production. These observations indicating that in addition, and most probably 

prior to, its cytotoxic action aerolysin could activate mammalian cells and promote the 

secretion of the pro-inflammatory IL-8 chemokine. 
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Figure 1. Cell viability and IL-8 secretion by THP-1 cells. Calcitriol-
differentiated pIL-8/GFP-THP-1 cells were incubated for 24 hr with 0.5 (open 
circle), 2 (closed triangle), 10 ng/mL (closed square) aerolysin, or milieu only 
(open square). (A) Cell viability, as measured by propidium iodide staining, 
expressed as % viable cells; (B) IL-8 protein secretion in the supernatants of 
stimulated THP-1 cells; and (C) IL-8 promoter activation induced by
aerolysin, measured by the capacity of aerolysin to induce the transcription of 
the GFP gene under the control of an IL-8 promoter construct, and expressed 
as mean fluorescence index, arbitrary units (see methods).
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 Cell surface molecules important for aerolysin activation 

Channel formation by aerolysin in mammalian cells requires the presence of cell surface 

GPI-anchored proteins. In order to investigate whether the presently observed activation 

process was also GPI dependent, HEK 293 cells were transiently transfected with plasmids 

encoding for GPI-CD14 or, as a control, a transmembrane chimeric form of CD14 (tm-

CD14). HEK293 cells were used because they do not express CD14-endogeously. Using a 

classical NF-κB reporter assay (minimal E-selectin-1 promoter driving the firefly luciferase), 

we found that even in the absence of transfection, HEK 293 cells were responsive to 

aerolysin. Aerolysin-dependent cell activation was markedly enhanced by the overexpression 

of GPI-CD14 but not by the expression of similar amounts of tm-CD14 (Fig. 2), in contrast to 

LPS sensitivity, which is promoted by GPI-CD14 as well as its transmembrane counterpart 

[20]. As a control, we have tested that for all transfected HEK 293 cells the response to TNF-

α, a classical NF-κB agonist, was the same (data not shown). 
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Figure 2. Aerolysin-induced cell activation in cells overexpressing CD14.
HEK 293 cells were transiently transfected with plasmids encoding for a
transmembrane (tm-) form of CD14, a GPI version of CD14 or an empty 
vector, together with a plasmid encoding for luciferase, driven by a minimal 
ELAM promoter. 24 hr post-transfection, cells were incubated for 6 hr with 2
ng/mL aerolysin (black bars) or medium only (white bars). Insert. Flow
cytometry analysis of the surface expression of tm-CD14 and GPI-CD14 in 
transiently transfected HEK 293 cells after 24 hr. Cell fluorescence intensity 
was expressed as arbitrary unit (a.u.).
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To rule out a role of CD14 itself in aerolysin induced activation process, the effects of 

over expression two other GPI-anchored proteins, CD55 (GPI-DAF) and a GPI-engineered 

version of the green fluorescent protein (GPI-GFP), were analyzed. Control HEK 293 cells 

expressed basal levels of endogenous GPI-DAF, but as expected neither CD14 nor GPI-GFP 

could be detected (Fig. 3A). Over-expression of both CD55 and GPI-GFP led to an increase 

sensitivity to aerolysin (Fig. 3B). The more pronounced effect of GPI-GFP is likely due to a 

higher degree of expression. These experiments further support the requirement for a GPI 

anchor-protein, independently of the polypeptide moiety, to observe aerolysin-dependent cell 

activation. 
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Figure 3. Panel A. Overexpression of GPI-anchored proteins increases cell 
stimulation by aerolysin. HEK 293 cells were transiently transfected with
plasmids encoding for GPI-CD14, GPI-CD55 (DAF), GPI-GFP or an empty 
vector. 24 hr post-transfection, cells were incubated with aerolysin (2 ng/mL; 
black bars) or medium only (white bars) for 6 hr.
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Figure 3. Panel B. Flow cytometry analysis of the surface expression of 
GPI-CD14, GPI-CD55 (DAF), GPI-GFP in transiently transfected HEK 
293 cells. Cells were labeled with specific antibodies against the GPI proteins 
and a phycoerythrin-coupled secondary antibody. Cell fluorescence intensity 
was expressed as arbitrary unit (a.u.).
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 Hypo-osmotic shock does not reproduce aerolysin-dependent cell activation 

Since we observed that aerolysin triggered cells swelling and since cell swelling has 

been associated in some cell systems with cell activation [21,22], we next investigated 

whether HEK 293 cells could be activated by a hypo-osmotic shock. Cells, expressing or not 

CD14, were submitted to culture media increasingly diluted with distilled water (dH2O). 

Whereas cell swelling, in still viable cells, was clearly observed upon exposure to 60-80% 

dH2O concentration, we were unable to detect NF-κB activation using our luciferase reporter 

assay (Fig. 4). In contrast, treatment with 2 ng/mL aerolysin induced NF-κB-dependent cell 

activation in a CD14 (or GPI) dependent manner (Fig. 4). Similar observations were made 

using VD3-differentiated THP-1 cells submitted to a hypo-osmotic shock: aerolysin treatment 

induced cell swelling and cell activation (IL-8 secretion) whereas the osmotic shock only 

lysed the cells without any IL-8 release (data not shown). These observation rule out the 

possibility that aerolysin activates cells due to osmotic swelling since this pathway does not 

appear to operate in HEK293 and THP-1 cells. 
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Figure 4. Aerolysin but not hypoosmotic shock induces cell activation via a 
NF-κB-dependent mechanism. HEK 293 cells were transiently transfected 
with plasmids encoding for GPI-CD14 (black bars) or with an empty vector
(white bars). Cells were treated for 6 hrs with a hypoosmolar media obtained
by increasing the percentage of water in the culture medium. Cells were also 
incubated with 2 ng/mL aerolysin in iso-osmolar medium; GPI-CD14-
transfected cells (black bars) and HEK293 cells tranfected with an empty 
vector (white bars) for 6 hr. Insert. Effect of hypoosmolar milieu and of 
aerolysin on cell viability. In this experiment, cell viability was tested using a 
MTT assay (see methods).

0

2

4

6

0 20 50 80
Hypo-osmotic shock

(% H2O added)
Aerolysin
(2 ng/mL)

Lu
ci

fe
ra

se
 A

ct
iv

ity
(F

ol
d

of
 In

du
ct

io
n)

0
20
40
60
80

100
120

C
el

l V
ia

bi
lit

y 
(%

)
0 20 50 80

Hypo-osmotic shock
(%  H2O added)

Aerolysin
(2 ng/mL)

90 100

0

2

4

6

0 20 50 80
Hypo-osmotic shock

(% H2O added)
Aerolysin
(2 ng/mL)

Lu
ci

fe
ra

se
 A

ct
iv

ity
(F

ol
d

of
 In

du
ct

io
n)

0
20
40
60
80

100
120

C
el

l V
ia

bi
lit

y 
(%

)
0 20 50 80

Hypo-osmotic shock
(%  H2O added)

Aerolysin
(2 ng/mL)

90 100

0
20
40
60
80

100
120

C
el

l V
ia

bi
lit

y 
(%

)
0 20 50 80

Hypo-osmotic shock
(%  H2O added)

Aerolysin
(2 ng/mL)

90 100



 192

Discussion 

 

The pore-forming ability of aerolysin and other pore-forming toxins has been 

extensively analysed and is fairly well understood at the molecular level [23]. The biological 

consequences of pore-formation have however not been fully estimated. Some effects have 

been described for aerolysin such as G-protein activation [13], ER vacuolation [10] or 

induction of apoptosis [24]. Here we show that aerolysin triggers the secretion of IL-8, an 

important recruitment factor for polymorphonuclear neutrophils. Chemokine production was 

found to be paralleled by transcriptional activation via NF-κB. 

 

The activating effects of aerolysin were observed at concentrations that were not 

cytotoxic. The mechanism underlying aerolysin induced NF-κB activation and chemokine 

production however remains unclear. The present transfection experiments clearly underline 

the importance of GPI-anchored proteins. These molecules could either be directly implicated 

in the signaling process [25] or exclusively act as aerolysin receptors. Several models for cell 

activation by aerolysin could be proposed: 1) oligomerized aerolysin bound to GPI molecules 

could induce crosslinking of these receptors, calcium mobilization and subsequent NF-κB 

activation; 2) the formation of a pore by aerolysin and the flux of ions may trigger cell 

activation; and 3) aerolysin bound to GPI molecules could encounter another signaling 

molecule and induce transmembrane signaling. Examples of the latter can be found in the 

interaction of other bacterial molecules, such as lipopolysaccharide (LPS) with its receptor; 

LPS receptor is a complex made of the GPI-anchored CD14 glycoprotein, and a 

transmembrane signaling complex, the Toll-like receptor (TLR)-4/MD-2 complex [26]. 

Although it is tempting to speculate that heptamer formation by aerolysin could promote 

clustering of GPI-anchored proteins and thereby cell activation, we favor the hypothesis that 
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cell activation is a consequence of channel formation. It has indeed previously been shown 

that aerolysin is able to activate G-proteins and intracellular calcium release via the IP3 

pathway. This process absolutely required channel formation [13]. Similarly Nelson and co-

workers found that aerolysin induced apoptosis of T-lymphocytes only occurred upon channel 

formation and that heptamer formation was not sufficient [11]. It has in addition been 

observed, during the course of the present study, that other pore-forming toxins such as 

Staphyloccocal α-toxin can activate cells via NF-κB and that membrane permeabilization was 

crucial [27]. Chemokine production was also observed with other pore-forming toxins [28-

30]. Finally, since the NF-κB signaling pathway has been implicated in different types of 

stress [31], it is not unlikely to be triggered upon membrane damage. Nevertheless, it is 

important to highlight the fact that cell activation was independent on cell swelling caused by 

an hypo-osmotic shock following the aerolysin induced-membrane permeabilization. 

 

The herein described the ability of aerolysin to trigger transcriptional activation and the 

production of pro-inflammatory mediators may represent a significant pathway in the 

pathogenesis of bacterial infections due to Aeromonas hydrophila.  
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6 GENERAL DISCUSSION 
 

 

6.1 Internalization of LPS 

 

 

6.1.1 Internalization pathways 

 

 The first aim of our studies was to investigate the LPS endocytic pathway, and the 

possible role of the receptor CD14 in this process. We found that LPS was internalised by a 

macropinocytotic pathway in a CD14-dependent manner. This pathway resembles that of 

phagocytosis observed by Kang et al for LPS uptake in monocytes and macrophages [250]. 

Interestingly, CD14 was also found to be implicated in phagocytosis of Gram-negative 

bacteria [24, 486]. The LPS endocytosis pathway as well as the involvement of CD14 in LPS 

internalization appeared to be two controversial points. In some studies, it could be 

demonstrated that LPS internalization was dependent on CD14, whereas other works 

indicated that it was a CD14-independent process. Vasselon et al. published that 

internalization of monomeric LPS occured after its transfer out of cell surface CD14 [294]. 

Following endocytosis, fluorescently-labeled LPS was found intracellularly near the cell 

surface in small vesicles that did not contain CD14. At later stages, LPS was observed in 

larger, punctate structures identified as the Golgi apparatus. Conversely, LPS aggregates were 

found to be internalised in association with CD14 [294]. Likewise in the study of Kitchens et 

al., CD14 was shown to internalise LPS in monocytes via at least two pathways, different 

from that we discovered in our study [487]. The bulk of LPS appeared to enter non-coated 

tubular invaginations of the plasma membrane, whereas endocytosis by clathrin-coated pits 

was found to be a minor pathway. Entry of LPS into these non-coated caveolae-like 

invaginations was related to the observation that LPS bound to mCD14 in low-density lipid 

enriched domains of the plasma membrane that have properties similar to those of caveolae 

[487]. These observations are consistent with our own work. Using sucrose density gradients 

isolating lipid “rafts”, CD14 was found in lipid-rich domains. The targeting of CD14 into 

these specific regions of the plama membrane was related to the GPI anchor. Furthermore, we 

found that CD14 was more concentrated on microvilli or ruffles at the cell surface, the typical 

morphological structures involved in phagocytosis and macropinocytosis. Similarly to our 
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results, electron microscopic images by Kang et al. revealed the presence of biotin-LPS on 

such cell surface protrusions and then in phagocytic vacuoles after internalization [250]. 

These vacuoles thightly resembles the large vesicular structures with which gold-labeled 

CD14 was observed to be associated during internalization [250]. Altogether, these results 

suggest that internalization of LPS occurs by several pathways. Furthermore, the physical 

state of LPS, monomeric versus aggregate LPS, is likely to greatly influence the route and the 

CD14-dependence of LPS endocytosis. 

 

 

6.1.2 Influences on internalization 

 

 Since CD14 was discovered to be anchored by a GPI, it was wondered whether this 

specific anchor could play a role in cell activation. Until now, no difference could be observed 

in the LPS response of cells bearing the GPI-anchored CD14 and those bearing a chimeric 

transmembrane form of CD14 [25]. In our study, we addressed the possible role of the CD14 

GPI-anchoring system for LPS internalization. Using CD14 anchored via a classical GPI 

anchor or an engineered transmembrane version, we concluded that the anchor of CD14 did 

not influence the pathway and also the rate of LPS endocytosis. Likewise, the rate of CD14 

internalization, quantified by electron microscopy studies, was not modulated by the CD14 

anchor. In contrast, different types of external stimuli can modulate LPS endocytosis. 

Interference in the CD14-mediated LPS internalization could be observed in several studies. 

Indeed, the addition of anti-LPS monoclonal antibodies modifies the route of LPS endocytosis 

by decreasing LPS uptake by CD14, while promoting complement-mediated opsonic uptake 

through membrane-associated complement receptor (CR) 1 or other cell receptors [488-490]. 

Similarly, it was demonstrated in a recent study that monoclonal antibodies raised against the 

deep-core of lipid A or the O-linked polysaccharide moieties of LPS accelerated 

internalization and detoxification of LPS without stimulating cytokine release, a process 

mediated by Fc-receptors [491]. Another phenomenon that influences LPS internalization was 

described by Ding et al. These authors suggested that secretory leukocyte protease inhibitor 

(SLPI) interfered with uptake of LPS by macrophages. This inhibitory effect of SLPI may 

have, in part, been due to the blockade by SLPI of LPS transfer to sCD14 and its interference 

with LPS uptake from LPS-sCD14 complexes in macrophages [492]. 
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 Despite influences of external stimuli on endotoxin endocytosis, LPS is able to regulate 

its own internalization, and also the ingestion of microbes and other particles. Two of the 

most characteristic properties of monocytes/macrophages are their capacity to take up large 

volumes by fluid-phase pinocytosis and to ingest microbes and other particles by 

phagocytosis. Effects of LPS on internalization processes have been reported in these cells. 

Peppelenbosch et al. showed that LPS regulated macrophage fluid phase pinocytosis via 

CD14-dependent and CD14-independent pathways. Indeed, LPS was shown to inhibit fluid 

phase pinocytosis at low concentrations, but at higher concentrations stimulated pinocytosis 

[493]. In addition to its role in the route of LPS endocytosis as mentioned in the previous 

section, the physical state in which LPS is presented to cells can influence its own initial rate 

of internalization. Indeed, the larger the LPS aggregates are, the faster they internalise into 

cells [494]. However, for each LPS physical state, LPS is internalised by a constitutive 

mechanism. These observations are consistent with our results showing that LPS is 

constitutively internalised in a CD14-dependent manner, and does not modulate its own 

endocytosis [429]. This conclusion is related to the fact that no difference was observed in the 

rate of CD14 internalization in the presence and in the absence of LPS. 

 

 

6.1.3 Relationship between LPS signaling, LPS internalization and intracellular 

traffic 

 

 As mentioned above, a large majority of LPS molecules that bind to CD14 will 

eventually internalise. The reason for this process is to sequester LPS and limit its interactions 

with other cells. The relationship between LPS internalization and LPS signaling has been a 

matter of controversy. Some investigators proposed that internalization or endocytic 

movement of LPS may play a role in LPS-induced signaling. For example, Detmers et al. 

demonstrated that LPS internalization and early endosomal fusion may be required for signal 

transduction [179]. Moreover, it was reported that macrophages from C3H/HeJ mice 

genetically hyporesponsive to LPS exhibit defective endocytic uptake of LPS and ceramide, 

and point to a role of vesicular transport for responses to these mediators [495]. Subsequently, 

the same investigators published that LPS from Rhodobacter sphaeroides (RsLPS), a non-

stimulatory LPS antagonist, exhibited defective traffic in normally LPS-responsive cells, and 

inhibited intracellular traffic of a stimulatory form of LPS [177]. In contrast, several studies 

supported the notion that LPS internalization and LPS signaling were independent processes. 
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It was for example shown that LPS partial structures inhibited responses to LPS in a human 

macrophage cell line without influencing LPS uptake by a CD14-mediated pathway [346]. 

Furthermore, Gegner et al. concluded that while LPS signal transduction and LPS clearance 

utilized both LBP and mCD14, the pathways bifurcated after LPS binding to mCD14 [114]. 

From these studies, it could be concluded that the bulk of LPS bound to CD14 was 

internalised, sequestrated and disposed, whereas only a small fraction of it was involved in 

signaling interactions at the cell surface. Consistent with these observations, our results 

showed that LPS-induced IL-8 production in THP-1 cells was not inhibited using cytochalasin 

D, a specific microfilament-disrupting agent, which prevented LPS and CD14 internalization. 

This observation strongly suggests that LPS-induced cell activation and LPS endocytosis are 

dissociated events. Another study reporting that LPS internalization occurs with identical 

kinetics in C3H/HeJ (non-LPS responding mouse strain) and C3H/HeN (LPS responding 

mouse strain) macrophages argues for this theory [494]. 

 

 

6.2 Role of CD14 and TLRs in LPS-induced activation and internalization in 

epithelial cells 

 

Epithelial cells frequently represent the first line of defense against invading 

microorganisms due to their barrier function and to an array of antimicrobial molecules that 

they can produce. A better understanding of the involvement of epithelial cells in the host 

immune response would help us to prevent some infections leading to sepsis, and also some 

chronic diseases. Since our study, other investigators reported the constitutive expression of 

CD14 gene and protein in some intestinal and liver epithelial cells considered as CD14-

negative cells [496]. In addition, sCD14 was described to be produced by some of these cells 

[131, 496-499]. CD14 is an important receptor that binds LPS and acts on epithelial cells via a 

soluble-dependent manner. Following the identification of some epithelial cells unresponsive 

to LPS, we found that these cells overexpressing CD14 after transfection remained resistant to 

LPS. We thus concluded that CD14 was not sufficient for LPS-induced cell activation and 

hypothesized that these cells were deficient in a molecule of the proximal LPS-dependent 

signaling pathway. The newly discovered TLR2 and TLR4 transmembrane proteins, 

demonstrated to be involved in LPS signaling, were proposed to be potential candidates. 

Several articles recently reported the presence of TLRs in intestinal and liver epithelial cells. 

Hepatocytes were shown to express TLR1 through TLR9 as well as MyD88 and MD-2 
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transcripts. Furthermore, these cells were shown to be activated by nanogram concentrations 

of LPS through a TLR4 response pathway [500]. Considering the LPS unresponsiveness of 

the HepG2 cell line used in our studies, our results appear to be in contradiction with such 

findings. To explain this discrepancy, we might point out that HepG2 cells are tumoral cells 

and could hypothesize that this cell line is mutated for either TLR4 or MD-2 protein. 

Mutation in the MyD88 gene seems to be less probable, since our HepG2 cells are responsive 

to IL-1. Indeed, the IL-1 receptor interacts with the MyD88 molecule by its intracytoplasmic 

tail (TIR domain) to activate the NF-κB signaling cascade [501]. To the opposite, MyD88 

gene mutation could have occurred or a splice variant of MyD88 could be expressed in 

colonic T84 cells unresponsive to both LPS and IL-1, but not to TNF-α [501]. Given the 

function of hepatocytes which metabolise and clear molecules from the bloodstream, it is not 

surprising that these cells express a pattern of recognition receptors such as CD14 and TLRs. 

Furthermore, recent papers have shown that LPS treatment of hepatocytes induced the 

upregulation of CD14 mRNA and protein levels as well as TLR2 mRNA at the transcriptional 

level [131, 498, 502, 503]. 

 

 Regarding intestinal epithelial cells, the constitutive expression pattern of CD14, TLRs 

(TLR2-5) receptors and MD-2, as well as LPS responsiveness differs from one cell type to 

another and also according to pathological disorders [413, 504, 505]. Surface expression of 

these receptors can be modulated by LPS and some cytokines [506]. Furthermore, TLRs 

appeared to activate specific intracellular signal transduction pathways in each intestinal 

epithelial cell type [413]. Responsiveness of these cells to LPS was recently shown to be 

correlated with TLR4, but not TLR2 or CD14 expression [499]. The IL-8 production by 

SW620 cells in response to LPS in a soluble CD14 dependent manner we observed is thus 

probably due to the presence of TLR4 and MD-2 expressed by these cells [507]. 

 

 Many investigations have shown that, after interaction with the plasma membrane, LPS 

is endocytosed into myeloid cells to be cleared. In our study, we found that intestinal and liver 

epithelial cells could also internalise LPS. Hornef et al. confirmed this result and in addition, 

demonstrated that internalised LPS colocalized with TLR4 residing in the Golgi apparatus of 

intestinal epithelial cells [508]. In hepatocytes, LPS was shown to internalise via lipoprotein 

receptors and to traffic through the same endosomal pathway employed for the catabolism of 

triglyceride-rich lipoporoteins [509]. This result could provide an explanation to the so low 

CD14-dependence in LPS internalization we observed with HepG2 cells.  



 201

 

The lumenal surface of the colonic epithelium is continually exposed to Gram-negative 

commensal bacteria and LPS. Recognition of LPS by TLR4 results in pro-inflammatory gene 

expression in diverse cell types. Normally, however, commensal bacteria and their 

components do not elicit an inflammatory response from intestinal epithelial cells. Several 

hypothetic scenario could be put forward and would probably be worth exploring : i) little or 

no CD14 and TLRs receptors would be constitutively expressed by these cells. However, their 

expression could be upregulated by specific signals if some pathogenic bacteria manage to 

invade the epithelium. Abreu et al.’s study argues in this direction, since native colonic 

epithelial cell lines were shown to express a low level of TLR4 and MD-2 mRNA. Th1 

cytokines such as γIFN or TNF-α were demonstrated to initiate intestinal inflammation by 

increasing TLR4 and MD-2 mRNA leading to LPS reactivity [506]. Another paper reported 

that TLR4 were barely detectable in human primary epithelial cells of normal mucosa, but 

was strongly upregulated in inflammatory situations [504]. In contrast, other investigations 

indicated that decreased expression of TLR4 and MD-2 correlated with intestinal epithelial 

cell protection against dysregulated pro-inflammatory gene expression in response to LPS 

[414]. ii) TLRs positioned at the apical pole, would monitor the sensitive balance of the 

lumenal microbial array and thus would control the cell response. As reported by Cario et al., 

TLR2 and TLR4 were shown to be constitutively expressed at the apical pole of differentiated 

T84 cells. After stimulation with LPS or peptidoglycan, TLRs were observed to selectively 

traffic to cytoplasmic compartments near the basolateral membrane [510]. This article also 

raised the idea that TLRs targeting in intestinal epithelial cells can be modulated. iii) It is 

tempting to imagine that CD14 and TLRs could rather be present at the basolateral surface of 

and inside epithelial cells constituting the lumen. Indeed, TLRs, localised at these strategic 

sites, could detect bacteria which use endocytosis or disrupt the paracellular epithelial barrier 

to infect the tissue. Interesting findings on Shigella flexneri way of invasion of the colonic 

epithelium would argue for this latter scenario [511].  

 

 

6.3 Relationship between the differential expression of some innate immune 

receptors : CD14, MD-2 and TLRs, and the LPS-induced cell activation at 

different differenciation steps of monocytic cells 
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With the discovery of TLRs, receptors involved in cell response to LPS and other 

microbial molecules, we were interested in studying the expression profile of these receptors 

in parallel to the response to LPS in monocytic cells at different stages of differentiation. In 

the first part of chapter II, the study was performed with promonocytic THP-1 cells, treated or 

not with various differentiating agents. A comparative study was undergone with human 

primary tissue macrophages, fully differentiated monocytic cells and also blood leukocytes. In 

the second part of the chapter, the study concerned the differentiation of monocytes into 

immature DCs which further matured after treatment with IL-1, TNF-α or LPS. Here, we 

tried to summarize in this diagram the results of both studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Expression of LPS-receptor molecules (S=cell membrane surface 
expression detected by FACS; R=mRNA expression measured by RT-PCR), 
TLR-dependence in and degree of cell response to LPS in myeloid cells at 
different stages of differentiation. 
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 We found that the sensitivity of cells to LPS was acquired upon cell differentiation. This 

acquisition could be correlated with the appearance of MD-2 expression during the 

differenciation process, but not with the slight modulation of TLRs expression already present 

at the cell surface of undifferentiated myeloid cells. TLR receptors seem to be pivotal 

receptors in the innate immune defense. To support these results, Zarember et al. analyzed 

TLR expression in fractionated primary human leukocytes such as monocytes, granulocytes 

and indicated that professional phagocytes expressed the greatest variety of TLR mRNAs 

[512, 513]. 

 

 In contrast, the loss of LPS-response in mature DCs could be correlated to the decrease 

of MD-2 mRNA expression, and the disappearance of TLR4 at the cell surface. The 

implication of TLR4 in the activation of immature DCs treated with LPS also resides in the 

partial blocking of cell activation with specific anti-TLR4 antibodies. In contrast, no blocking 

with anti-TLR2 antibodies was observed, suggesting that TLR2 was not implicated in LPS-

induced activation of immature DCs. Using a mixture of anti-TLR2 and anti-TLR4 antibodies 

led to similar results to those obtained with anti-TLR4 antibodies only. This partial LPS 

inactivation led us to imagine that (an)other(s) possible component(s), as for instance TLR3 

whose expression seems to be specific to immature DCs, as also found by Muzio et al., could 

be involved in LPS-induced DC activation. Recent papers have confirmed our results by 

describing identical modulation of TLRs expression during the differentiation process of 

monocytes into immature and then mature DCs [512, 514]. It was also unanimously accepted 

that TLR4 was responsible for LPS recognition as well as LPS-signal transduction in 

immature DCs, whereas TLR2 was involved in DC activation induced by Gram-positive 

bacterial products [514, 515]. DCs activation occurred through the activation of MAP kinase 

family members (ERK, p38), NF-κB and the secretion of various pro-inflammatory cytokines 

such as TNF-α, IL12p70 and IL-6 [516]. In several publications, immature DCs were 

described as cells with a large repertoire of TLRs, that enabled these cells to respond to a vast 

variety of stimuli. In addition to TLR2 and TLR4 involvement in DC activation, TLR9 turned 

out to be specialized in DC signal transducing for bacterial CpG DNA [517]. Although many 

TLRs led to comparable activation of NF-κB, striking differences in cytokine and chemokine 

gene transcription could be observed. Indeed, it was reported that some TLR agonists 

specifically promoted the production of cytokines which favored Th1-orientated immune 
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response, whereas other induced the release of cytokines producing conditions that were 

predicted to favor Th2 development [518]. Moreover, DC stimulation with different TLR 

agonists not only activated cells, but also orientated immature DCs towards maturation, and 

modulated the expression of many TLRs as shown in recent papers [512, 514, 516, 519]. 

 

 Altogether these data suggest that myeloid cell precursors (i.e. promonocytes) evolve 

towards cells (i.e. monocytes, tissue macrophages or immature DCs) that have the capacity i) 

to sense their environment with the “pattern recognition” CD14 receptor and ii) to 

discriminate between microbial molecules such as LPS with their array of TLRs and MD-2, 

iii) to communicate with their environment by producing cytokines and other factors. After 

endocytosis and processing of “non-self” microbial molecules, these myeloid cells such as 

immature DCs evolve towards cells that loose the capacity of recognition with the important 

downregulation of CD14, some TLRs and MD-2 expression, and cell activation, but acquire 

the property of antigen-presentation to lymphocytes. This latter function as well as the kind of 

secreted cytokines create a link between innate and adaptive immunity by activating and 

orientating the secondary immune response. For a long time, the innate immunity was 

considered as a “non-specific” immune system and as a first line of defense compared to the 

adaptive immune system, which establishes long-lasting and very specific antimicrobial 

protection. Meanwhile, with the cloning of Toll-like receptors and other recent discoveries in 

the field, the innate immune system eventually appeared as a more complex and “refined” 

system. 

 

 

6.4 Role of another bacterial product : Aerolysin as a pro-inflammatory signal 

inducer 

 

Aerolysin from Aeromonas hydrophila has been shown to provoke serious and fatal 

diseases. This toxin first binds to a GPI-anchored protein and rapidly heptamerizes. This 

heptamerization leads to the creation of holes in the membrane of cells, which then swell and 

die by an osmotic shock, and, in some cases, by apotosis. Apart from cell death, we were 

interested in studying whether this bacterial product could induce pro-inflammatory signals, a 

critical step of innate immune defenses against foreign microorganisms. We found that 

aerolysin could induce a pro-inflammatory signal (IL-8 production and NF-κB activation) in a 

dose- and time-dependent manner only in cells expressing the GPI form of CD14 and not in 
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those expressing the transmembrane CD14. Meanwhile, we could demonstrate that this 

aerolysin-induced cell activation was not specific to CD14, since similar results were found 

with cells expressing other GPI-anchored proteins. The common feature between these 

surface receptors was the GPI-anchor. This observation strengthened the fact that the GPI-

anchoring system seems to be an essential part of the receptor to induce cell activation. 

Supporting this, we observed that the degree of cell response to aerolysin paralleled the 

degree of GPI-receptors surface expression. Subsequently, all these results raised the question 

of the role of the GPI-anchoring system in the aerolysin-induced IL-8 synthesis and NF-κB 

activation measured in our study. Pugin at al. had shown that a calcium flux was induced 

when GPI-CD14 was cross-linked with anti-CD14 antibodies, an observation that did not 

have any physiological explanation in the context of LPS studies. Interestingly, as previously 

mentioned, Krause et al. have reported that when granulocytes were treated with aerolysin, a 

calcium flux from intracellular stores and chemotaxis could be observed [482]. From these 

results, it could be proposed that in heptamerizing, aerolysin bound to CD14, induces a cross-

linking of the GPI-anchored receptor, that leads to cell activation through the increase of 

cytoplasmic calcium and NF-κB translocation into the nucleus. Despite its role in the 

targeting of GPI-anchored proteins into lipid-rich domains, the GPI-anchoring system could 

also have a role in the binding of bacterial toxins and in the induction of cell signaling 

different to that observed with LPS.  

 

To support our results, other bacterial toxins such as act, a toxin secreted by Aeromonas 

hydrophila was shown to induce pro-inflammatory cytokine production and to activate 

arachidonic acid metabolism in macrophages [520]. It was also reported that leukotoxin 

stimulates cytokine gene expression in bovine alveolar macrophages which required calcium 

elevation and NF-κB activation. This paper hypothized that the calcium could be involved in 

I-κB inactivation by modulating the activity of kinases which could phosphorylate I-κB [484]. 

Jefferson et al. also found a role of intracellular calcium and NF-κB in the up-regulation and 

secretion of IL-8 induced by Clostridium difficile toxin A in human monocytic cells (PBMC 

and THP-1) [521]. In order to see whether the calcium is involved in NF-κB activation after 

aerolysin treatment, it would be judicious to block calcium by using specific chelators. 

 

 Treatment of cells with aerolysin led to the creation of holes in the plasma membrane 

and subsequently to the entry of water into cells. This event induced cell swelling as observed 
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during an hypoosmotic shock. Various authors have published that osmotic shock could 

stimulate cells by inducing MAPK and NF-κB activation [522, 523]. We thus wondered 

whether the cell activation observed after aerolysin treatment was caused by the toxin itself or 

by cell swelling. By performing an hypoosmotic stress with water, we could demonstrate that 

no cell activation was induced, suggesting that cells responded directly to aerolysin and 

probably not to the consequences of aerolysin treatment. 
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7 PERSPECTIVES 
 

 To summarize, the innate immunity is an ancestral immune system which constitutes a 

first line of defense when microorganisms invade the body. To neutralize these microbes, two 

major strategies have been developed: the soluble and the receptor pathways. The first 

pathway involves soluble proteins specialized in the detection of various carbohydrates and 

lipids present in microorganisms. This capacity of recognition renders these proteins efficient 

to attack and to kill pathogens. This may take place either directly, by inducing opsonization 

of these particles by phagocytic cells or indirectly, by presenting them to other cells. The 

second pathway which implicates receptors present on leukocytes, ECs and other cells, are 

also able to detect foreign molecules. After recognition, receptors internalise these molecules 

or microorganisms into the cell, and clear them from the body. In addition, some of these 

receptors such as CD14 and TLRs can mediate cell activation after binding of bacterial 

ligands. The Gram-negative endotoxin (or LPS) has been proposed to be one of the most 

potent cell stimulator through CD14 and TLR4/MD-2. Subsequently, activated cells produce 

biological mediators which initiate an inflammatory reaction. Such a reaction is essential to 

activate the defense system in order to destroy the invading microorganisms, to chemoattract 

effector cells, and to proceed into wound healing. Meanwhile, the production of pro-

inflammatory mediators has to be tightly controled and has to be confined in a local area. 

Otherwise, “overproduction” of inflammatory mediators and release into the circulation may 

result in a systemic inflammatory reaction, a phenomenon typical of endotoxemia and septic 

shock. The starting point of this dysregulation remains unknown, but may involve genetical, 

biochemical, physiological and environmental predisposing factors. Each year, the syndrome 

of sepsis provokes more than 200 000 deaths in the United States alone. At the present time, 

there are only limited treatments available for septic shock, which are mainly confined to 

supportive measures. A better understanding of cellular and molecular mechanisms 

underlying the pathology of sepsis might lead to the discovery of new therapeutical targets. 

One of the critical and obligatory step in the pathogenesis of the sepsis syndrome is the 

recognition of bacteria and bacterial products by host cells. The recognition of LPS by 

immune cells, which was found to generate a syndrome similar to that of sepsis when LPS 

was injected to animals, has been extensively studied. More than ten years ago, CD14 has 

been identified as a receptor capable of mediating LPS effects on mammalian cells. LPS 

transfer to CD14 is catalysed by LBP, an acute phase protein present in the plasma, which 
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essential role is to monomerize LPS from LPS aggregates and to shuttle it to acceptors. After 

binding of LPS to CD14, cells are activated through TLR4 and MD-2, and LPS is internalised 

into cells to be cleared. The soluble form of CD14 present in plasma and body fluids can also 

bind LPS. The LPS-sCD14 complex activates some non CD14-bearing cells by binding to 

TLR4 [412]. 

 

 CD14 is promiscuous in that it binds a large array of different bacterial ligands It 

recognizes various chemical structures from pathogens to apoptotic cells, to lipids, and has 

been proposed to be a “pattern recognition receptor” [23]. Now how CD14 can recognize all 

these various chemical structures remains unclear. It could be proposed that CD14 acts as a 

“concentrator” of pathogenic molecules to the surface of the cell that would allow both 

signaling and clearing processes through other receptors. In that sense, CD14 would be one 

chain of a multiple chain receptor complex for microbial molecules and other “non-self” 

ligands [524]. Supporting this, the discovery of TLRs revealed that each member of this 

family was specialized in the recognition of one or several ligands belonging to Gram-

negative bacteria, Gram-positive bacteria, yeast and even viruses. Furthermore, it was shown 

that the heterodimerization of TLRs such as TLR2 with TLR6 or TLR1 increases the 

discrimination power between different ligands [380, 381]. It is therefore possible that other 

combinations between TLRs occur in a combinatorial manner. In addition to TLRs, other 

accessory proteins may be involved in this “receptor protein complex” such as “MD 

molecules”, and may further explain different cell responses to a variety of ligands interacting 

with CD14. Indeed, depending on the nature of the ligands, CD14 may or not induce cell 

activation.  

 

 The association of CD14, TLR4, and MD-2 is a prototypical example of a “receptor 

protein complex” implicated in LPS signaling. This complex may also include other 

components as suggested in recent studies [525-527]. Meanwhile, interactions between each 

member of this complex and LPS remain to be explored more deeply. It was recently shown 

that both TLR4 and MD-2 directly bound LPS [389, 390, 405, 407]. It was questioned 

whether CD14 and TLR4 interacted through their respective leucine rich repeats when LPS is 

present. Understanding how MD-2, an anchorless protein, attaches to the transmembrane 

TLR4 is still an unresolved question. Membrane targeting studies of CD14 revealed that this 

protein is found in lipid-enriched domains [25, 429, 528]. With similar studies, it would be 

interesting to determine whether TLR4 or other TLRs are also constitutively present in such 
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lipidic rafts or whether these receptors are recruited into these membrane domains in a ligand-

specific manner.  

 

 Previous studies have shown that LPS was internalised into cells in both CD14-

dependent and CD14-independent manners and could follow different endocytosis pathways 

[250, 429, 487]. To date, it is still unknown whether TLRs are internalised and if so, which 

endocytosis pathways they used. In addition, their contribution in the endocytosis of LPS or 

other foreign molecules remained to be determined. Detection of specific “internalization 

motifs” in their transmembrane tail could bring new clues and may explain that a portion of 

LPS is endocytosed via coated pits as found by Kitchens et al. [487]. Interestingly, Underhill 

et al. found that membrane TLR2 was recruited to macrophage phagosomes during zymozan 

ingestion and able to discriminate the nature of pathogens [372]. This was rapidly followed by 

the surface recycling of TLR2. This observation again raises the question of a possible 

dependence between internalization and cell signaling.  

 

 Little is known on the modulation and on the implication of TLRs and MD-2 in the 

pathophysiology of sepsis. Measuring levels of surface expression of these receptors during 

the disease could identify new clinical markers. It has also to be demonstrated whether, like 

CD14, TLRs and MD-2 exist as soluble proteins and if they mediate cell activation in this 

form. 

 

 Until now, clinical trials using molecules or antibodies antagonizing the effects of 

individual pro-inflammatory mediators (eg. cytokines, PAF, prostaglandins, NO-synthase) 

have invariably failed. However, all these approaches had in common the inhibition of 

secondary inflammatory mediators occurring in sepsis. An alternative strategy would be to 

block interactions of noxious bacterial components with pivotal receptors that could prevent 

the initiation of an unappropriate inflammatory response. Encouraging results described by 

Schimke et al. showed that the use of anti-CD14 antibodies in vivo provided animal protection 

against endotoxin-induced septic shock [529]. However, a potential problem with this 

approach might be an undesired inhibition of the clearence of bacteria. Indeed, it has been 

shown that in the case of an infection with Shigella, the blockade of CD14 in vivo was 

associated with increased Shigella-mediated invasion and tissue destruction [530]. The key 

element to this problem could be the suppression or the modulation of cell response to 

bacterial products without affecting the internalization/clearance of these products or bacteria. 
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The discovery of accessory proteins in the “LPS receptor complex” may provide new 

therapeutic targets for the prevention of septic shock. 

 

 Apart from its role in CD14 targeting to lipid-rich domains, the GPI-anchor of CD14 

has no clearly defined function in LPS-induced cell activation and LPS-endocytosis. After 

binding to a GPI-anchor, aerolysin, a pore-forming toxin from a Gram-negative bacteria 

Aeromonas hydrophila generates a pro-inflammatory signal in cells. In addition to deleterious 

cytolitic effects, this toxin seems to trigger a primary immune response which could synergise 

to that induced by endotoxin released from bacteria. Investigating this process could lead to a 

new mechanism of action of a bacterial toxin that could directly involve the GPI-anchor in 

cell activation.  

 

 In this manuscript are presented our results discussed in the context of the current state 

of knowledge concerning interactions of endotoxin with the innate system. Many topics have 

been covered ranging from LPS binding, internalization to signaling. The recent discovery of 

TLRs and MD-2 proteins provides exciting perspectives in the LPS field, and represents 

promising targets for the treatment of sepsis, but also rises key questions as to how LPS 

interacts with cells and how has innate immunity evolved. 
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