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Abstract

The ANOVA method and permutation tests, two heritages of Fisher, have been extensively
studied. Several permutation strategies have been proposed by others to obtain a distribution-
free test for factors in a fixed effect ANOVA (i.e., single error term ANOVA). The resulting
tests are either approximate or exact. However, there exists no universal exact permutation
test which can be applied to an arbitrary design to test a desired factor. An exact permutation
strategy applicable to fixed effect analysis of variance is presented. The proposed method can
be used to test any factor, even in the presence of higher-order interactions. In addition, the
method has the advantage of being applicable in unbalanced designs (all-cell-filled), which is a
very common situation in practice, and it is the first method with this capability. Simulation
studies show that the proposed method has an actual level which stays remarkably close to
the nominal level, and its power is always competitive. This is the case even with very small
datasets, strongly unbalanced designs and non-Gaussian errors. No other competitor show
such an enviable behavior.

1 Introduction

ANOVA is probably the single most used method in many fields of science, ranging from biology
to psychology. Historically, a balanced design was preferable since the formulae in this case are
much easier and can be handled by hand, even with a large number of observations. By balanced,
we mean that each cell has exactly the same number of observations. With the use of statistical
packages, this is not a concern anymore, and in many fields a balanced design is almost impossible
to obtain, either because of (missing at random) drop-outs or by design. It is therefore useful to
provide methods that also work for unbalanced designs. We will assume in what follows that there
is at least one observation per cell (all-cell-filled). Analysing empty-cell designs is a complex topic
that goes beyond the scope of this paper, and we refer to Searle (1987).

To test different effects or factors in an ANOVA, i.e., main effects and interaction effects, some
authors advocate a sequential approach; first allocate the part of the explained variance to the
main effects (one after the other), then to the two-way interaction(s) (one after the other) and
then to increasingly and higher order interactions if present. In several statistical packages, this
approach is called sequential or Type I sum of squares. Other authors advocate a related but not
equivalent technique that we will call step-down procedure: Test first the higher- order interaction
and stop the procedure if the interaction is significant; otherwise, proceed and test the effects at
one lower level, using the simplified model that does not contain the higher-order interactions. The
last approach, called marginal or Type III sum of squares, consists, for any factor to be tested
(main effects, interaction effects), in comparing the full model versus the model that contains all
the factors except the factor to be tested.
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In balanced designs, the Type I and Type III sum of squares approaches are equivalent, but
the results and their interpretation might differ in unbalanced cases. Searle (1987) shows that the
null hypotheses tested differ depending on the type of sum of squares used. Each of these null
hypotheses can be expressed as a linear combination of the cell means. Searle (1987) claims that, in
unbalanced cases, the cell-mean hypothesis that very often meets the researcher’s goals is the one
linked to Type III sum of squares (see also the help files of StatSoft, 2007, for a nice summary).
Again this is valid only in the all-cell-filled case. The method we introduce is correct for Type III
sum of squares and for hierarchical models. Since for balanced designs all types of sum of squares
are equivalent, the method applies to all types of sum of squares in this case. For unbalanced
designs, some additional work would, however be needed to use Type I sum of squares.

It is very likely that the assumption that the error terms are distributed according to a Gaussian
distribution does not hold in many applied datasets. In this case, the required conditions for a
parametric ANOVA test are not satisfied and a test that does not depend on parametric hypothesis
is desirable, at least as a check for the parametric test. One famous class of so-called distribution-
free tests is permutation or randomization tests. Permutation tests date back to Fisher (1935), but
given the power of computers, they have resurfaced in recent decades. Permutation tests have lots
of applications not only in ANOVA but in different fields (Brombin and Salmaso, 2009, e.g.). For
more details on the history of permutation tests, see David (2008).

Exchangeability under the null hypothesis is the only requirement for having an exact permu-
tation test. Much stronger requirements, including the normality assumption of error terms, are
necessary in (parametric) ANOVA. Also, let us mention that even when the conditions of paramet-
ric tests hold, a permutation test is almost as powerful as parametric tests (Welch and Gutierrez,
1988, e.g.). The definition of exchangeability (in the case of continuous variables) is that the joint
density f satisfies f(z1, z2, .., zn) = f(zπ(1), zπ(2), ..., zπ(n)) for any permutation π of the indices.
This means that, under the null hypothesis, any permutation of the data is an equally probable
outcome (Good, 2004). Then, the observed statistic (based on actual data) has to be compared to
the empirical distribution of all the statistics obtained by permutations of the data. The proportion
of statistics higher than the observed statistic gives the p-value (Pesarin, 2001).

The permutation test is well studied for the comparison of two samples (the Wilcoxon rank test
is actually a special case of permutation tests). However, using a permutation test for more general
ANOVA designs has attracted much less attention in the statistics literature, and there is no unique
accepted approach for applying this class of the tests. First note that permutation tests can be
classified as exact or approximate. A test is exact if, under the null hypothesis, the probability of
type I error is equal to the nominal level of the test (Good, 1994; Anderson and Ter Braak, 2003).

In experimental designs with more than one factor, different strategies have been proposed.
They can be divided into two groups: permutation of observations (or raw data) and permutation
of different types of residuals. In this article we will focus on the permutation of residuals and
mention the other approaches only for completeness. We refer to a comprehensive review of the
literature (Anderson and Ter Braak, 2003) for more details. For permutation of raw data, there are
three important approaches. The first is the unrestricted permutation of raw data (Manly, 1997).
This is not an exact test, except in the simple case of one-way ANOVA (otherwise the effect of the
other factor(s) makes the data not exchangeable). The second one is the restricted permutation of
raw data. This was introduced by Good (1994, chapter 4) and Edgington (1995, chapter 6). It is
an exact test when testing the main effects in the absence of interaction terms. However, for larger
designs, the restrictions required leave no possible permutation and no test is available. The third
one is the synchronized permutation test, which also relies on restrictions and was introduced by
Salmaso (2003) for 2k design and Basso et al. (2007) for balanced two-way factorial designs. In
Gonzalez and Manly (1998), different permutation strategies have been studied and compared. The
simulation results show that no method is uniformly better than another over all kinds of designs.
According to their simulations, permutation of raw data has relatively more power than the other
approaches in some cases. Anderson and Ter Braak (2003) advocate the permutation of raw data.
They present guidelines to determine the exchangeable units to be permuted to obtain an exact
permutation test.
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Concerning the permutation of residuals, some authors advise using permutation tests based
on residuals under the full model (Ter Braak, 1992, e.g.). As its name suggests, one should first
compute the residuals based on the full model, which removes the effects of all factors from the
original observations. Then, one constructs a new sample or pseudo-data by adding the fitted
value to an unrestricted permuted version of the residuals. Based on these new samples, one uses
a statistic whose null hypothesis is that the true parameter is equal to its empirical value in the
original sample (Ter Braak, 1992). Note that, with this approach, the same “new samples” are used
for all the tests. The only difference is that the statistic used depends on which factor is tested.
This test is approximate and closely related to one of the bootstrap approaches used for regression
(Davison and Hinkley, 1997, e.g.).

Another approximate method is the permutation of residuals under the reduced model (Still
and White, 1981; Freedman and Lane, 1983). In this method, the residuals are computed from a
model that includes all parameters except the parameter(s) of interest. This means that only the
effect of the parameters that are of interest (that are tested) are possibly present in these residuals.
However, under the null hypothesis, there should be no systematic effect in these residuals, and
therefore an unrestricted permutation of these residuals is used to test the parameters of interest.
Anderson and Ter Braak (2003) showed that this method has relatively more power in comparison
with the other methods.

The technique we provide in this paper is permutation of residuals under a modified model, which
is an exact permutation method based on the residuals under the reduced model. The method will
be fully explained in Section 2.2. It is important to mention that we are considering only single
error term models. The idea is to remove that part of the design matrix that is not to be tested,
much like the residual maximum likelihood (REML) approach in mixed effect models. It is based
on an article by Jung et al. (2006). However our formulation generalizes their approach in three
important directions. (1) We have a general formula that is applied to any ANOVA design, whereas
they provided formulae only for three particular cases. (2) It can be applied to all factors in the
ANOVA, for example to test a main effect in the presence of interaction, while their formulae apply
only for the highest-order factor.(3) Our formula can be applied to unbalanced designs, whereas
they rely on balanced cases. In addition, note that our formulation is actually not restricted to
ANOVA and can be applied in regression settings as well. Huh and Jhun (2001) use also this type of
approach in regression, but only for a univariate hypothesis (they do also mention a multivariate test
but it is actually based on residuals under the full model). In the case of ANOVA and hierarchical
regression, a method that can deal with multivariate hypotheses is necessary, as is provided in the
present article.

An important advantage of this exact method compared to exact methods using restriction of
raw data is that this method is also applicable to designs with small sample sizes, because the
proposed method will rely on a much larger number of possible permutations. Note that this
method uses a separate permutation method to test each factor of interest.

The structure of the paper is the following. Section 2 presents the parametric tests in ANOVA.
Then we introduce an approximate method of permutation of residuals under the reduced model and
show that since the exchangeability assumption does not hold, it is not an exact test. In the next
part, the residuals under the modified model are introduced, and it is shown that they satisfy the
exchangeability condition, implying that they lead to an exact permutation test. Section 3 shows a
geometric illustration of the method. The construction of one important ingredient of the method
is also provided. The details for one specific ANOVA design are made explicit in Section 4. Finally,
Section 5 is devoted to a simulation study to evaluate the level and the power of the proposed
method and competitors.
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2 The method

The fully general model for regression and analysis of variance with single error term (ANOVA)
can be written as

y = Xβ + ε, (1)

where y is the vector of the explained variable, X is the design matrix, β the vector of parameters
and ε the vector of unknown errors with mean 0 and variance σ2. More details about the conditions
for the error term will be discussed in the following sections. For ANOVA, we will suppose that all
cells have at least one observation, a so-called all-cell-filled design (Searle, 1987, see).

In regression, X is of full rank, but this is not necessarily the case for ANOVA. Although they
have some advantages and advocates in other settings (Kirk, 1994; Searle, 1987), the approaches
using an overparameterized design matrix or cell-mean model design matrix will not be used here.
The following theory is much easier using sigma-restricted (SR) parameterization for the design
matrix, which contains all the necessary information on the model. In this case the design matrix
is of full rank, which implies that normal equations can be inverted without generalized inverse and
the degrees of freedom correspond to the number of columns (see below). Moreover, the subspace
spanned by the columns of interest is directly the projection subspace (whereas the subspace spanned
by an interaction term in the overparameterized parameterization contains the main effects as well).

An easy way to obtain the SR design matrix is to code the level on a set of (not necessarily
orthogonal) contrasts like Helmert or “treatment”. The number of columns corresponding to each
factor is equal to the number of degrees of freedom of that factor. For example, for the “treatment”
contrasts, each element gets the values 1, 0 and -1. Consider for instance a main effect A, with four
levels. In the design matrix, there are three columns corresponding to this factor. The first column
takes the value 1 for the observations which are in the first level of A, -1 if they are in the last level
of A, and 0 if they are in the other two levels. The same idea applies to the two other columns, but
switching the first with either the second or the third level (Cardinal and Aitken, 2006, see).

In the following we will suppose that X is of full rank, filled either with covariates or based
on the sigma-restricted (SR) parameterization. For any test of interest, we can divide the design
matrix X and the vector of parameters β into the component not of interest and the component of
interest:

X = [X1|X2], β =
[

β1

β2

]
,

and then write Eq. (1) as y = X1β1 + X2β2 + ε. The dimension of X is N × p. X1 is N × q and
corresponds to the columns of X that are not of interest for the particular test, and X2 is N×(p−q)
and corresponds to the tested part of X. Also y and ε are vectors of size N × 1 . Similarly, β is a
vector that includes p parameters and β1 and β2 are of dimensions q and (p− q), respectively. The
corresponding hypotheses are

H0 : β2 = 0 vs. H1 : β2 6= 0. (2)

If the null hypothesis is not rejected, then the explanatory variable(s) in X2 might not be necessary
and the simpler model in this case would be y = X1β1 + ε.

2.1 Parametric approach

If the errors are supposed Gaussian, the following theorem gives the statistic for the well-known
F -test in ANOVA, which is equivalent to the t-test or Wald test in regression and the F -test in
hierarchical regression.
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Theorem 1 The F -test statistic for the hypothesis on Eq. (2) for testing β2 is given by

Fss =
(RSS(β̂1)− RSS(β̂))/(p− q)

RSS(β̂)/(N − p)
, (3)

where RSS(·) is the residual sum of squares for the model with the corresponding parameters. If the
errors are Gaussian, Fss is distributed as (p− q, N − p).

The proof of the theorem can be found in many books on regression or ANOVA (Davison and
Hinkley, 1997, e.g.). To introduce our proposal, we first need to write this statistic in another form,
as shown in the next theorem.

Theorem 2 Fss is equal to FR, defined as

FR =
y′(Xrr(X ′

rrXrr)−1X ′
rr)y/(p− q)

y′(I −X(X ′X)−1X ′)y/(N − p)
, (4)

where

Xrr = (I −H1)X2, with H1 = X1(X ′
1X1)−1X ′

1. (5)

Note that in a fully balanced case (with SR parameterization), Xrr = X2.

The proof of this theorem can be found in the Appendix. In the following, we show how to transform
the data so that they can be permuted to obtain a genuine permutation test, while still using the
same statistic.

2.2 Permutation of residuals under the reduced model

As already stated, the condition to obtain a permutation test is to handle exchangeable objects.
The elements in y are certainly not exchangeable. Indeed, under the null hypothesis (2), E(yi) =
{X1β1}i, which differs depending on i.

Using the residuals under the reduced model solves this first obstacle, as shown next. In a
very similar way to the residual maximum likelihood (REML) approach in mixed effect models, we
remove the part of the design matrix which is not of interest for the test. This can be done by
premultiplying both sides of Eq. (1) by I −H1, and we obtain the reduced model

yrr = Xrrβ2 + εrr, (6)

where yrr = (I − H1)y, Xrr = (I − H1)X2 and εrr = (I − H1)ε. We will call yrr the residuals
under the reduced model or briefly the reduced residuals (hence the subscript rr). Note that, in
the balanced case, since X ′

1X2 = 0, we have that Xrr = X2.
We will show in Theorem 5 that the usual F -statistic (3) can be written based on the reduced

residuals yrr as follows:

Frr =
y′rr(Xrr(X ′

rrXrr)−1X ′
rr)yrr/(p− q)

y′rr(I −X(X ′X)−1X ′)yrr/(N − p)
. (7)

Under the null hypothesis (2), it is easy to see that, even with i.i.d. assumptions on the error
term, yrr is distributed as

yrr = εrr ∼ (0, σ2(I −H1)). (8)

All elements of yrr having the same expectation under the null, one might think that a permutation
scheme would be to permute the elements in the vector of residuals directly, say y∗rr, and plug them
in the formula of Frr to obtain

F ∗rr =
y∗rr

′(Xrr(X ′
rrXrr)−1X ′

rr)y∗rr/(p− q)
y∗rr

′(I −X(X ′X)−1X ′)y∗rr/(N − p)
. (9)
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The p-value is defined as (#F ∗rr such that F ∗rr ≥ Frr)/(#F ∗rr), for all or at least a large number of
permutations. However, exchangeability does not concern only expectations, but the entire joint
distribution, including variances and covariances and higher-order moments. From Eq. (8), we see
that y∗rr, a randomly permuted vector of yrr, is distributed differently from yrr. The exchangeability
is not met and therefore the corresponding test would not be an exact permutation test. The next
section shows the conditions needed to obtain exchangeable observations.

2.3 Permutation of residuals under the modified model

We explain how to obtain uncorrelated (transformed) observations to achieve an exact permutation
test. Since the matrix X1 has full rank q, there exists a matrix V of dimension N × (N − q) whose
columns form an orthonormal basis for the subspace orthogonal to (X1). Orthonormality of the
columns of V implies V ′V = IN−q. On the other hand, the subspaces spanned by X1 and V are
complementary by construction, and hence, the sum of the corresponding projections equal to the
identity matrix, i.e. I = X1(X ′

1X1)−1X ′
1 + V (V ′V )−1V ′. Therefore, the matrix V satisfies the

following equations simultaneously:

V V ′ = IN −H1 and V ′V = IN−q. (10)

The construction of V is explained in Section 3.2. Premultipling by V ′ both sides of (6), we get
the modified model as follows:

ymr = Xmrβ2 + εmr (11)

where ymr = V ′yrr are the residuals under the modified model, or briefly the modified residuals,
Xmr = V ′Xrr and εmr = V ′εrr. Note that unlike y and yrr which are of dimension N , the dimension
of ymr is N−q. The variance of εmr is (εmr) = (V ′εrr) = V ′(σ2(I−H1))V = σ2V ′V V ′V = σ2IN−q.
Hence, under the null hypothesis (2),

ymr = εmr ∼ (0, σ2IN−q). (12)

The following two theorems give sufficient conditions for the distribution of the error on the
original equation to have (weak/strong) exchangeable error in the modified model.

Theorem 3 If the elements of the original model error ε are exchangeable, then the modified model
errors, εmr, are weakly exchangeable; that is, they are exchangeable up to the second moment. In
particular, if the elements of ε are i.i.d., then the elements of εmr are weakly exchangeable.

Theorem 4 If the (joint) distribution of the original model error ε is spherical, then the modified
model errors, εmr, are strongly exchangeable. More formally, if ε, has a spherical density, i.e.,
fε(·), the (joint) probability density function (p.d.f.) of ε satisfies

fε(w) = fε(Tw),

for any unitary matrix T and vector w, then the modified model errors εmr are exchangeable; that
is, the joint p.d.f. of εmr remains fixed under any permutation of its elements, i.e.,

fεmr (u) = fεmr(Pu),

for any permutation matrix P , and vector u

The proofs of Theorem 3 and Theorem 4 are given in the Appendix.
One can obtain a new statistic based on the modified residuals. That is the F -statistic:

Fmr =
y′mr(Xmr(X ′

mrXmr)−1X ′
mr)ymr/(p− q)

y′mr(IN−q −Xmr(X ′
mrXmr)−1X ′

mr)ymr/(N − p)
, (13)

where ymr is defined in (11). The following theorem gives the justification of the proposed method.
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Theorem 5 For the observed data, the three statistics defined in Eqs. (3), (7) and (13) are equiv-
alent:

Fmr = Frr = Fss. (14)

The proof can be found in the Appendix. Now, we have all the ingredients to make an exact
permutation test: obtain y∗mr which is a permuted version of ymr, and replace it in Fmr with the
suitable F -statistic for permuted modified residuals:

F ∗mr =
y∗mr

′(Xmr(X ′
mrXmr)−1X ′

mr)y
∗
mr/(p− q)

y∗mr
′(IN−q −Xmr(X ′

mrXmr)−1X ′
mr)y∗mr/(N − p)

.

The p-value is defined as (#F ∗mr such that F ∗mr ≥ Fmr)/(#F ∗mr), for all or at least a large
number of permutations. The following theorem summarizes the main result of this paper.

Main result. In linear models y = Xβ + ε, as in Eq. (1), with X of full rank (regression
or ANOVA), many testing hypotheses can be written as in (2). This includes testing an interac-
tion in balanced and unbalanced designs and testing a main effect in the presence of higher-order
interactions (equivalent to the Type III sum of squares). With the conditions for the error term
given in Theorems 3 and 4, an exact permutation test can be computed using the permutation of
the residuals under the modified model (ymr) and the Fmr-statistic given in Eq. (13).

3 Some additional points about the new method

3.1 Graphical view of the proposed method

The graphical view depicted in Fig. 1 can help in understanding Theorem 5 and the link between
the different statistics. In the graph, the lines with the same color and length are parallel; X1 and
X2 are one-dimensional; y, X1 and X2 are displayed as vectors in RN , here R3. A small arrow
represents an orthogonal projection and (a) segment(s) represent(s) the subspace into which the
projection is done. yrr is the projection into the space orthogonal to X1.

Concerning Eq. (3), RSS(β), RSS(β1) are the squared distances of the vectors of residuals y−ŷX1

and y − ŷX1,X2 . In other words RSS(β1) and RSS(β) are the squared distances between y and
the line generated by X1, respectively the subspace generated by X1 and X2. By Pythagoras’
theorem, the difference between the two is SS(X2), also represented, which is the numerator of (3).
The denominator of (4) corresponds to the same vector as the denominator of (3). Its numerator
corresponds to the squared norm of the projection of y onto Xrr, named SSrr(X2), and the graphical
representation shows that it is of same length as SS(X2). Finally, given that yrr is the projection
into the orthogonal space of X1, Eq. (7) relies on RSSrr(β) and SSrr(X2), which have the same
lengths as RSS(β) and SS(X2), respectively. Concerning Eq. (13), since yrr belongs to a subspace
orthogonal to X1, and V just makes a change of basis in this subspace, the distances will remain
the same.

It is worth mentioning that the position of ymr is the same as that of yrr, but in a reduced
dimension space. Hence a similar argument shows that Fmr is also equivalent to Fss.

3.2 Construction of the matrix V

In this section we explain the construction of the matrix V . This construction relies on the eigen-
decomposition of (I −H1). Since (I −H1) is a symmetric and idempotent matrix, it possesses only
two eigenvalues: 0 and 1. Let (I−H1) = UDU ′ be the eigen-decomposition of (I−H1), where D is
a diagonal matrix containing the eigenvalues of (I−H1), and U is a unitary matrix, whose columns
are the eigenvectors of (I −H1). Since (I −H1) has rank N − q, there are exactly N − q ones and q
zeros in the diagonal of D. It is easy to show that both conditions in (10) are satisfied by choosing
V as the columns of U corresponding to the non-zero diagonal elements of D. It turns out that the
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X1

X2

ŷX1

ŷX1,X2

y

RSS(β)

RSS(β1)

SS(X2)

SSrr(X2)

RSSrr(β)

RSSrr(β1)

yrr

Xrr

ŷrrX1
= 0

ŷrrX1,X2

Figure 1: Graphical view of the proposed method. In this graph, various projections of y are shown
as the projection of y onto different spaces, and denoted by ŷ with the corresponding subscripts.
Similar projections are also shown for yrr. This is useful for geometrically observing the equality
Fmr = Frr = Fss which is proved in Theorem 5. The lines with the same color are parallel, and the
small arrows show orthogonal projections.

eigenvectors corresponding to the zero eigenvalue do not contribute in the product, and therefore
we have V V ′ = UDU ′ = I −H1. On the other hand, the fact that U is unitary implies V ′V = I.

It is worth mentioning that there is an (N − q)-dimensional subspace which is mapped to itself
under the projection induced by I −H1. Any orthonormal basis of such subspace can be chosen as
the eigenvectors of I −H1 corresponding to the non-zero eigenvalues. However, different choices of
such basis vectors result in different performance of the test in terms of level and power. Therefore,
it is worth considering some specifications for choices which give better performance. Assume that
p − q = 1, i.e. that X2 and thus Xmr are one- dimensional. In this case, the Fmr statistic is
equivalent to (a monotonic transformation of) CFmr = (y′mr ·Xmr)2.

• Spread the value of the statistic. The suitable matrix V is such that the statistic CFmr

takes many different values for different permutations. Now, if the matrix V is such that Xmr

is proportional to the vector [1 1 · · · 1]′, then the statistics for all possible permutations would
take the same value, proportional to |ymr|2, i.e., CF ∗mr = CFmr. Then the level and power
would be identical ! Similarly, if the chosen V is such that Xmr is proportional to [1 0 0 · · · 0]′,
then the value of the statistics would be {ymr}12 for the original data, and {ymr}i2 for some
1 ≤ i ≤ N − q for the permuted data, i.e., it only takes N − q different values, which is not as
extreme as the previous example, but still weakens the method in terms of level and power.

These two examples show that, if the matrix V is such that the statistic can take many
different values, it can be considered as a suitable V.

• Spread the observed vector in the space: This property says that the suitable matrix
V is such that most of the permuted vectors y∗mr form a large angle with the original one,
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ymr = V ′yrr.
Consider a model under the alternative hypothesis. In order to have a large power, we need
the p-values to take in most of the cases a small value , i.e., CF ∗mr < CFmr holds with high
probability. Ignoring the noise part of the observations, the statistics can be written as

|y′mrXmr| ' |β′2X ′
mrXmr| = |β2||Xmr|2,

and
|y∗mr

′Xmr| ' |β′2X∗
mr

′Xmr| = |β2||X∗
mr||Xmr|| cos θ∗| = |β2||Xmr|2| cos θ∗|,

where θ∗ is the angle between the vectors X∗
mr and Xmr, and where we have used the fact that

|Xmr| = |X∗
mr| in the last equality. Therefore, a good choice of V should give us | cos θ∗| ¿ 1,

or θ∗ close to ±π/2 for many permutations. For example, if V is such that all the components
of Xmr share the same sign (positive or negative), this condition is not satisfied.

A good, reasonable choice for V is one that results in a Xmr that has negative and positive
components which are all different. It is advised to check it before running the test.

4 Example

Consider a fixed effect balanced two-way ANOVA design with the following model:

yijk = µ + αi + βj + (αβ)ij + εijk, i = 1 . . . a, j = 1 . . . b, k = 1 . . . n, (15)

where αi and βj are the main effects of (fixed) factors A and B, µ is the overall mean, (αβ)ij is
the interaction effect in the ij th cell and εijk is the unknown error associated with observation yijk.
Imagine we want to test a main effect. Some statisticians recommend to first check that there is no
(significant) interaction effect, and then to test the main effect in the model with no interaction.
However, applied researchers often want to test all effects at once, and Searle (1987) showed that
this approach based on marginal tests corresponds to the following genuine hypotheses:

H0 : α1 = α2 = · · · = αa vs. H1 : not H0. (16)

The well-known statistic to test H0 is

FA =
∑a

i=1(ȳi.. − ȳ...)2/(a− 1)∑a
i=1

∑b
j=1

∑n
k=1(yijk − ȳij.)2/(ab(n− 1))

,

where a dot represent an average over the index. Under Gaussian assumptions, the distribution of
FA under the null is (a− 1, ab(n− 1)).

Here, we use reduced residuals in order to test the main effect A. The advantage of using reduced
residuals is that the effects of the non-interesting factors, i.e., the overall mean and the factors B
and AB, are removed from yijk. They are therefore defined as

y(rr)ijk = yijk − ȳ... − (ȳ.j. − ȳ...)− (ȳij. − ȳi.. − ȳ.j. + ȳ...)
= yijk − ȳij. + ȳi.. − ȳ.... (17)

By direct computation, we can see that the above F -statistic can be rewritten as

F(rr)A =
∑a

i=1(ȳ(rr)i.. − ȳ(rr)...)2/(a− 1)
∑a

i=1

∑b
j=1

∑n
k=1(y(rr)ijk − ȳ(rr)ij.)2/(ab(n− 1))

.

The equivalent matrix formulation is obtained by first defining the design matrix X as



...
X0, Xb, Xab

...

∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

X1

...
Xa

...




︸ ︷︷ ︸
X2

, (18)
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using a sigma-restricted parameterization of the factors A, B, and AB. Since the design is balanced,
the columns of X0, Xb , Xab, and Xa are orthogonal. So, by explicit computation of Eq. (3), it is easy
to show that Fss is equivalent to FA. Similarly, if we define yrr = (I−H1)y = (I−X1(X ′

1X1)−1X ′
1)y,

this leads to the same equation as (17). Moreover, Eq. (17) clearly shows that two y(rr)ijk are
correlated differently depending on whether they share a i and/or a j. Therefore the exchangeability
condition does not hold and even in this simple balanced two-way ANOVA we have to resort to the
computation of the residuals under the modified model ymr, through the use of the V matrix as
explained in Section 2.3.

It is important to note that the use of the sigma-restricted parameterization allows us to test
any factor, in particular to test a main effect in the presence of interactions. Jung et al. (2006)’s
formulation did not allow this. A second advantage of our matrix formulation is that it generalizes
to the unbalanced case, which again was not present in the cited article.

Finally, Theorem 5 states that Fmr = Frr = Fss are equal to FJ (see in the proof, Eq. (33))
for original observations. However, not all statistic are suited for permutation. Jung et al. (2006)
propose using FJ . A simulation study (not shown here) provided evidence that the level of this
permutation test can be far from the nominal level. One reason to explain this fact is that yrr is
in a subspace spanned by I −H1 but y∗rr is not restricted to lie in this subspace, and thus, for the
permuted y∗rr, FJ does not project onto the correct space, as does Frr.

5 Simulation study

In this part, three simulation studies are carried out to explore the performance of the new exact
method concerning level and power. In the first one, we consider testing the interaction in a two-way
balanced ANOVA with two observations per cell and two levels for α and β.

To assess the level and power, we need somehow to standardize the effect of interest. Here
we investigate the interaction, which must satisfy the sigma-restriction condition

∑a
i=1(αβ)ij =∑b

j=1(αβ)ij = 0. For comparison of the power, we consider a variation measure for the gradual

increase for the parameter of interest of (αβ) as θ =
(∑a,b

i,j=1((αβ)ij)2/(ab)
)1/2

. In the simulations,
the interaction that will be used is (αβ)ij · t/θ, where t is a constant that changes the parameter
of variations according to the level and power of interest. This means that for estimation of the
significance level, t is equal to 0, which makes the effects of αβ equal zero, and for the estimation of
power it makes changes in the original αβ according to the new variations of t > 0. After generating
the values in the last part, we add the error terms which is generated from different distributions,
namely N(0, 1), exp(1)− 1, t(4) and U(−√3,

√
3).

The new exact method (denoted Ymr) will be compared with three other methods, which are the
Normal-theory F -test (denoted F ) and two approximate permutation tests methods: unrestricted
permutation of residuals under the reduced model or permutation of yrr (see Eq. (9), denoted Yrr)
and unrestricted permutation of raw data or permutation of yijk, using the statistic (3) (denoted
Y ). The permutation tests are based on 1000 permutations and comparison of the level and power
of the methods is based on 5000 Monte Carlo replications.The results are given in Table 1 for
different values of t, including t = 0, representing the level.

The second study concerns a balanced three-way ANOVA. In this case the model considered is

yijk = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijk

i = 1, ..., a, j = 1, ..., b, k = 1, ..., c

In the simulations, we choose a = 2, b = 3, c = 4 and n = 2, and the same four different noises
are added. The results are given in Table 2 for the level of the test for βγ and Table 3 for the
level of the test for γ.The results show that all methods are close to the nominal α = 0.05. This is
probably due to the fact that the total number of observations is larger than in the first study.

The last study is carried out for an unbalanced two-way ANOVA model, as presented in Table 4.
The data are generated as in the first study, except that the number of observations for the four
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Table 1: Simulation results for a balanced two-way ANOVA with a = 2, b = 2, and n = 2 to test
the αβ interaction for different values of t. The column with t = 0 corresponds to the level, and
the other ones to power. In bold, values that are significantly different from the type I error, which
is set to 0.05.

stat. t = 0 t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5

N (0, 1)

Ymr

Yrr

Y
F-test

0.0493
0.0318
0.0615
0.0510

0.1843
0.1373
0.2308
0.1908

0.5460
0.4590
0.6260
0.5770

0.8413
0.7857
0.8942
0.8782

0.9533
0.9460
0.9815
0.9828

0.9918
0.9910
0.9988
0.9998

U(−√3,
√

3)

Ymr

Yrr

Y
F-test

0.0500
0.0390
0.0737
0.0537

0.0800
0.0647
0.1083
0.0870

0.2867
0.2483
0.3743
0.3160

0.6623
0.6130
0.7828
0.7337

0.9060
0.8977
0.9733
0.9737

0.9969
0.9917
0.9999
0.9902

exp(1)− 1

Ymr

Yrr

Y
F-test

0.0507
0.0330
0.0647
0.0520

0.2450
0.2217
0.3347
0.0520

0.6147
0.5717
0.6897
0.6007

0.8270
0.5717
0.8870
0.8193

0.9019
0.9270
0.9573
0.8983

0.9928
0.9910
0.9912
0.9902

t(4)

Ymr

Yrr

Y
F-test

0.0450
0.0254
0.0618
0.0429

0.1543
0.1170
0.1827
0.1372

0.7060
0.6080
0.7220
0.6400

0.8600
0.7830
0.8540
0.8250

0.8833
0.8460
0.9115
0.8628

0.9440
0.9050
0.9460
0.9390

Table 2: Simulation results for the level in a balanced three-way ANOVA with a = 2, b = 3, c = 4
and n = 2 to test the βγ interaction.The type I error is set to 0.05.

Three-way Ymr Yrr Y F-test
N (0, 1) 0.0503 0.0493 0.0497 0.0509

U(−√3,
√

3) 0.0516 0.0551 0.0529 0.0547
exp(1)− 1 0.0490 0.0462 0.0470 0.0488

t(4) 0.0546 0.0542 0.0524 0.0500
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Table 3: Simulation results for a balanced three-way ANOVA with a = 2, b = 3, c = 4 and n = 2
to test the main effect of γ. The type I error is set to 0.05.

Three-way Ymr Yrr Y F-test
N (0, 1) 0.0503 0.0523 0.0547 0.0510

U(−√3,
√

3) 0.0516 0.0542 0.0459 0.0523
exp(1)− 1 0.0526 0.0556 0.0543 0.0514

t(4) 0.0542 0.0552 0.0568 0.0534

cells is [2, 4; 2, 4] (left part of Table 4) or [1, 3; 1, 3] (right part of Table 4). The level is given in the
column with t = 0 and one value of power in the column with t = 1.

In both cases, the new method is the only one that keeps a level close to the nominal size. The
parametric F -test can have a level above 10% and the other permutation methods can be even
higher. In the case when several methods have the correct level, the new method is also quite
competitive in terms of power, which shows its good efficiency.

It is important to mention that in using the permutation of residuals under the modified model,
we had to use a separate permutation method to test each factor of interest. In other words, we
cannot test different factors simultaneously. For any given design, the matrix X is the same, but
depending on the parameter of interest to test, X1 and X2 (Eq. (2)) differ. Computationally, for
each parameter of interest, (I − H), V and ymr have to be computed (once). Then, y∗mr and
F ∗mr are computed for each permutation. As a comparison, for permutation of residuals under
the reduced model, the same computation has to be carried out, except the step involving V .
For the permutation of raw data, only the permutation step is present. However, it seems that
the permutation is the most computationally demanding step, so there are no large differences in
computation time in practice between the three approaches.

6 Conclusion

A general formula to test any factor in balanced and unbalanced designs with non-empty cell is
presented. It can be applied to any fixed effect ANOVA design or single error term ANOVA. In
this paper, we modify an approximate test and provide an exact permutation strategy based on
permutation of residuals under the reduced model. The main idea is to remove the correlation
between residuals, using the decomposition of an idempotent matrix. This makes the residuals
exchangeable. It is shown that if the error terms are i.i.d. or exchangeable, the modified residuals
are exchangeable up to the second moment, and under the spherical condition of the error terms,
the modified residuals are strongly exchangeable.

Simulation studies compare the significance level and power of the new method to the parametric
method. We also extended our numerical comparison to two other approximate methods, namely,
permutation of raw data and permutation of residuals under the reduced model, using several
different error distributions. Results of these simulations show that the proposed method has a
level which stays remarkably close to the nominal level and its power is always competitive. This is
the case even with very small data sets, strongly unbalanced design and non-Gaussian errors. No
other tested method shares this enviable property.
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Table 4: Simulation results for the level in an unbalanced two-way ANOVA with a = 2, b = 2, to
test the αβ interaction for different values of t. In bold, values that are significantly different from
the Type I error, which is set to 0.05.

Error dist. stat. [2,4;2,4] [1,3;1,3]
t = 0 t = 1 t = 0 t = 1

N (0, 1)

Ymr

Yrr

Y
F-test

0.0510
0.0612
0.0624
0.0504

0.784
0.833
0.812
0.802

0.0482
0.0720
0.0740
0.0490

0.442
0.560
0.544
0.460

U(−√3,
√

3)

Ymr

Yrr

Y
F-test

0.0500
0.0510
0.0402
0.0518

0.830
0.867
0.852
0.850

0.0460
0.0645
0.0650
0.0472

0.387
0.512
0.495
0.404

exp(1)− 1

Ymr

Yrr

Y
F-test

0.0528
0.1246
0.1720
0.1020

0.282
0.654
0.728
0.572

0.0564
0.1112
0.1122
0.0824

0.542
0.639
0.654
0.560

t(4)

Ymr

Yrr

Y
F-test

0.0482
0.0452
0.0454
0.0483

0.602
0.613
0.610
0.603

0.0502
0.0814
0.0830
0.0542

0.324
0.438
0.417
0.339
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Appendix

Proof of Theorem 2

Using Eq. (1), the residuals can be written as

r = y − ŷ = y −Xβ̂ = y −X(X ′X)−1X ′y = (I −H)y (19)

where H = X(X ′X)−1X ′ is an N × N matrix, which is known as the Hat matrix. Note that H
is the projection matrix to the subspace spanned by the columns of X. It is easy to show that
H is an idempotent matrix for any design matrix X; that is, H2 = H. Similarly, I − H is also
idempotent. Using the idempotent property of H, the residual sum of squares under the full model
can be written as

RSS(β̂) = r′r = y′(I −H)2y = y′(I −H)y = y′(I −X(X ′X)−1X ′)y, (20)

which shows the equality of the denominators of Fss and FR. Similarly, we can show that RSS(β̂1) =
y′(I −H1)y, with H1 = X1(X ′

1X1)−1X ′
1.

It remains to show that that y′(I−H1)y−y′(I−H)y = y′(Hrr)y, with Hrr = Xrr(X ′
rrXrr)−1X ′

rr.
This is implied by H = H1 + Hrr, which is proved in the following two lemmas.

Let X1 and X2 be two real matrices each with N rows. Define Xrr = (I − H1)X2, where
H1 = X1(X ′

1X1)−1X ′
1. Then the subspaces spanned by the union of the columns of X1 and X2 is

the same as that of X1 and Xrr, that is;
([X1|X2]) =( [X1|Xrr]). (21)

Proof of Lemma 6: In order to show the equality of the two subspaces, we will show that each of
them is a subspace of the other one.
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i) ([X1|X2]) ⊆( [X1|Xrr]). We just have to show that the columns of X2 lie in ([X1|Xrr]); i.e.,
there exist matrices A and B, such that X2 = X1A + XrrB. The definition of Xrr implies
that

Xrr = (I −H1)X2 = (I −X1(X ′
1X1)−1X ′

1)X2,

or, equivalently, X2 = X1((X ′
1X1)−1X ′

1X2) + Xrr, which shows the claim.

ii) ([X1|Xrr]) ⊆( [X1|X2]). Rewriting Xrr as

Xrr = X1(−(X ′
1X1)−1X ′

1X2) + X2 (22)

shows that Xrr is a linear combination of X1 and X2. This completes the proof of this lemma.
¥

H = H1 + Hrr.
Proof of Lemma 6: We showed in Lemma 6 that (X) =( X1rr), where X = [X1|X2] and X1rr =
[X1|Xrr]. Therefore, H and H1rr = X1rr(X ′

1rrX1rr)−1X ′
1rr, the projection matrices onto this

subspace are equal. It remains to show H1rr = H1 + Hrr.
Using the definition of Xrr, we have

X ′
1Xrr = X ′

1(I −H1)X2 = X ′
1(I −X1(X ′

1X1)−1X ′
1)X2 = 0. (23)

The columns of the matrices X1 and Xrr are therefore orthogonal. Hence (X1) and (Xrr), the
subspaces spanned by the columns of these two matrices, are orthogonal. Thus,

X ′
1rrX1rr =

[
X ′

1

X ′
rr

]
[X1 Xrr]

=
[

X ′
1X1 0
0 X ′

rrXrr

]

is a block diagonal matrix, and its inverse is simply obtained by

(X ′
1rrX1rr)

−1 =
[

(X ′
1X1)−1 0

0 (X ′
rrXrr)−1

]
. (24)

Therefore, we have

H1rr = X1rr(X ′
1rrX1rr)−1X ′

1rr (25)

= [X1 Xrr]
[

(X ′
1X1)−1 0

0 (X ′
rrXrr)−1

] [
X ′

1

X ′
rr

]

= X1(X ′
1X1)−1X ′

1 + Xrr(X ′
rrXrr)−1X ′

rr

= H1 + Hrr.

This completes the proof. ¥

Proof of Theorem 3

Note that the mean of the original error is zero, and so is the mean of the modified model error,
since it does not change under a linear transformation. Moreover,

εmr = V ′εrr = V ′(I −H1)ε = V ′V V ′ε = V ′ε. (26)

The exchangeability of the raw data implies that all the non-diagonal elements of its covariance
matrix are the same (and similarly all its diagonal elements are the same); i.e., the covariance
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matrix can be written as (ε) = (σ2 − ρ)IN + ρ′, where is the all-one column of length N . Hence
the covariance matrix of the modified model error can be written as

(εmr) = V ′((ε))V
= V ′((σ2− ρ)IN )V + ρV ′′V

= (σ2− ρ)IN−q + ρV ′′V.

In the presence of an intercept, is a vector in (X1), and it does not change under a projection
onto this space. Hence, V V ′ = (I − H1)1 = 0. This equality, together with the fact that V has
full column rank, implies that V ′1 = 0. Therefore, the covariance of εmr (and ymr) is a compound
symmetric matrix, and the elements of εmr are exchangeable. It is clear that since the class of
independent and identical distributions is a special subclass of the exchangeable distributions, the
elements of εmr (and ymr) are also exchangeable under the i.i.d. assumption. ¥

We state and prove the following lemma which plays a key role in the proof of Theorem 4.
Let V be an N × (N − q) matrix which satisfies V V ′ = IN − H1 and V ′V = IN−q. For any

(N − q)× (N − q) permutation matrix P , there exists a unitary matrix TP such that P ′V ′TP = V ′.
Proof of Lemma 6: Recall that I −H1 has N − q eigenvalues equal to 1, and q eigenvalues equal to
0. Let M be an N × q matrix containing the normalized eigenvectors of I −H1 corresponding to
the zero eigenvalues. We claim that the square matrix TP = MM ′+V PV ′ fulfills the requirements
of the lemma.

Note that the columns of V are the eigenvectors of I−H1 corresponding to non-zero eigenvalues.
Since I − H1 is an idempotent matrix, its eigenvectors are orthonormal; i.e., V ′M = M ′V = 0.
The first property of TP can be easily seen through

P ′V ′TP = P ′V ′(MM ′ + V PV ′) = P ′(V ′M)M ′ + P ′(V ′V )P ′V ′ = V ′, (27)

where the last equality follows from P ′P = IN−q, which holds for any permutation matrix.
In order to show that TP is unitary, we can write

T ′P TP = (MM ′ + V P ′V ′)(MM ′ + V PV ′)
= MM ′ + IN −H1 = IN , (28)

where, in the last equality, we used the fact that M ′M = Iq. Note that the eigenvectors of
I −H1 corresponding to the zero eigenvalues are exactly the eigenvectors of H1 corresponding to
the eigenvalues equal to 1. Thus, MM ′ = H1, which completes the proof. ¥

Proof of Theorem 4

Note that by definition of Eq. (26), one can write

fεmr (u) =
∫

x:V ′x=u

fε(x)dx.
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Let P be an arbitrary permutation matrix. We have

fεmr
(Pu) =

∫

x:V ′x=Pu

fε(x)dx

=
∫

x:P ′V ′x=u

fε(x)dx (29)

=
∫

w:P ′V ′TP w=u

fε(TP w)dw (30)

=
∫

w:V ′w=u

fε(TP w)dw (31)

=
∫

w:V ′w=u

fε(w)dw (32)

= fεmr
(u).

In the above chain of equalities, we use the fact that P ′P = I in (29); we use a change of variable
x = TP w in (30) where the matrix TP is the unitary matrix introduced in Lemma 6 and its property
is used in (31). Finally, in (32) we use the fact that ε has a spherical density. It is worth mentioning
that the determinant of the Jacobian matrix arising in the change of variable in (30) equals 1, since
Tp is a unitary matrix. ¥

Proof of Theorem 5

Define

FJ =
y′rr(Xrr(X ′

rrXrr)−1X ′
rr)yrr/(p− q)

y′rr(I −Xrr(X ′
rrXrr)−1X ′

rr)yrr/(N − p)
. (33)

In order to prove the theorem, we will show that 1) Frr = FR, 2) FJ = Frr and finally 3)
Fmr = FJ . These, together with Theorem 2 (Fss = FR), show the claim.

1) We will show that the numerators and denominators of Frr and FR are the same. Note that
Eq. (23) implies that

H1Hrr =
(
X1(X ′

1X1)−1X ′
1

) (
Xrr(X ′

rrXrr)−1X ′
rr

)

= X1(X ′
1X1)−1 (X ′

1Xrr) (X ′
rrXrr)−1X ′

rr = 0.

Therefore,

(I −H1)Hrr(I −H1) = Hrr. (34)

Using this equality, one can easily see that the two numerators are equal:

y′rrHrryrr =y′(I −H1)Hrr(I −H1)y = y′Hrry.

Similarly the denominators of Frr and FR are equal because

y′rr(I −H)yrr =y′rr(I −H1 −Hrr)yrr

=y′(I −H1) ((I −H1)−Hrr) (I −H1)y
=y′ (I −H1 − (I −H1)Hrr(I −H1)) y

=y′(I −H1 −Hrr)y
=y′(I −H)y.

Note that we have used the fact that H = H1 + Hrr in the first line of the above chain, as shown
in Lemma 6.

postprint – Journal of Computational Statistics and Data Analysis 54 (2010) 1881–1893



S. Kherad-Pajouh, O. Renaud / An Exact Permutation Method for Testing Any Effect in
Balanced and Unbalanced Fixed Effect ANOVA 18

2) The numerators of FJ and Frr are the same by their definition. Concerning the proof of
equality of FJ and Frr, it remains to show that their denominators are equal. We have

y′rr(I −Hrr)yrr = y′(I −H1)(I −Hrr)(I −H1)y
= y′ ((I −H1)− (I −H1)Hrr(I −H1)) y

= y′(I −H1 −Hrr)y
=y′(I −H)y.

3) The proof of FJ = Fmr is a direct consequence of the three following chains of equalities:

y′mrXmr = yrrV V ′Xrr = yrr(I −H1)Xrr = y′rrXrr,

X ′
mrXmr = X ′

rrV V ′Xrr = X ′
rr(I −H1)Xrr = X ′

rrXrr,

and

y′mrymr = y′rrV V ′yrr = y′rr(I −H1)yrr = y′rryrr,

in which where we have used V V ′ = I −H1. This completes the proof. ¥
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