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16 Abstract

17 The potential of using gene expression signature as a biomarker of toxicants exposure was 

18 explored in the microalga Chlamydomonas reinhardtii exposed 2 hours to mercury (Hg) as 

19 inorganic mercury (IHg) and methyl mercury (MeHg) in presence of copper (Cu) and 

20 Suwannee River Humic Acid (SRHA). Total cellular Hg (THg = IHg + MeHg) decreased in 

21 presence of SRHA for 0.7 nM IHg and 0.4 nM MeHg, but increased for 70 nM IHg exposure. 

22 In mixtures of IHg + MeHg and (IHg or MeHg) + Cu, SRHA decreased THg uptake, except 

23 for 0.7 nM IHg + 0.4 nM MeHg which was unchanged. In the absence of SRHA, 0.5 µM Cu 

24 strongly decreased intracellular THg concentration for 70 nM IHg, while it had no effect for 

25 0.7 nM IHg and 0.4 nM MeHg. The expression of single transcripts was not correlated with 

26 measured Hg uptake, but a subset of 60 transcripts showed signatures specific to the exposed 

27 metal(s) and was congruent with exposure concentration. Notably, the range of fold change 

28 values of this subset correlated with THg bioaccumulation with a two-slope pattern in line 

29 with [THg]intra/[THg]med ratios. Gene expression signature seems a promising approach to 

30 complement chemical analyses to assess bioavailability of toxicants in presence of other 

31 metals and organic matter.

32

33 Keywords: copper, dissolved organic matter, microalgae, uptake, transcriptomics.
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35 1. Introduction

36 For environmental risk assessment, a rapid diagnostic is instrumental to limit pollution 

37 impacts. Thus, the development of early warning tools is highly desirable. In this context, 

38 managers of ecosystems use ecotoxicology - the study of biota responses to toxicants- to 

39 evaluate the level of toxicity of pollution to identify the most efficient actions. Historically 

40 ecotoxicology focused on cellular effects, such as growth or photosynthesis efficiency. Recent 

41 advances in system biology, notably new genomic sequencing techniques are fundamentally 

42 transforming ecotoxicology approach by offering powerful tools to directly detect the earliest 

43 stages of the toxicological response including non-models species with unsequenced genomes 

44 (Beauvais-Fluck et al., 2016, 2017; Beauvais-Fluck et al., 2018b; Brinke and Buchinger, 

45 2017; Regier et al., 2016). Transcriptomic offers a great potential because it was shown to be 

46 efficient for analysis of short-term exposure, more sensitive than classical bioassays (e.g. 

47 bioaccumulation or physiological effects) and to correlate with gradients of contaminants in 

48 natural waters, as well as to be able to identify toxicant-specific signatures (Dranguet et al., 

49 2017a; Garcia-Reyero et al., 2009; Gomez-Sagasti et al., 2016; Regier et al., 2013a; Yang et 

50 al., 2007). Indeed, several toxicological studies were able to differentiate toxicants on the 

51 basis of the gene expression profiles in exposed organisms to multiple environmental 

52 stressors, offering a more thorough analysis than currently available bioassays (Aardema and 

53 MacGregor, 2002; Beauvais-Fluck et al., 2018a; Beauvais-Fluck et al., 2018b; Poynton et al., 

54 2011; Regier et al., 2013a; Waring et al., 2001). Moreover, transcriptomic has the potential of 

55 identifying the impact of several stressors in a single analysis and seems hence particularly 

56 interesting for in-situ analysis characterized by a cocktail of different metals and the presence 

57 of organic matter (Almeida et al., 2005; Beauvais-Fluck et al., 2018a; Beauvais-Fluck et al., 

58 2018b; Dondero et al., 2011; Hutchins et al., 2010; Milan et al., 2015; Regier et al., 2016; 

59 Villeneuve et al., 2012). However, there is now a need to better evaluate the potential of this 

60 tool, in particular its predictive aspects of bioavailability and toxicity to the ecosystem 

61 (Fedorenkova et al., 2010). Notably, the connection between gene response and 

62 environmental exposure needs to be investigated in more detail.

63 Mercury (Hg) toxicity and biomagnification in trophic web is a worldwide hazard in aquatic 

64 ecosystems (Lavoie et al., 2013). Nonetheless, an efficient early-warning tool to reliably 

65 assess Hg bioavailability and its potential impact in natural environments is still missing. 

66 Because Hg enters the food web through phytoplankton (Bravo et al., 2014), microalgae are 

67 key organisms to assess Hg exposure (Le Faucheur et al., 2014). In the environment, 

68 microalgae are exposed to Hg in the presence of other metals and metal binding organic 
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69 ligands. In aquatic environments Hg occurs as inorganic Hg (IHg) and methyl Hg (MeHg) and 

70 the concentration of total Hg (THg = IHg + MeHg) generally spans between 1 pM to 30 nM, 

71 with MeHg representing 1 to 30% of THg (Bravo et al., 2014; Cossa et al., 2009). Currently, 

72 the European environmental quality standard for freshwater protection is 0.35 nM THg (Crane 

73 and Babut, 2007). What is more, the dissolved organic matter (DOM) present in freshwaters is 

74 considered as an important environmental factor that protects the aquatic primary producers 

75 from metal stress. Indeed DOM functional groups play a key role for the bioavailability of Hg 

76 and MeHg to microalgae by dictating the chemical speciation of Hg (Skyllberg, 2011). 

77 Further, the complex interplay between DOM, Hg and other soft metals, also affects the 

78 impact of Hg on cells by interacting on similar cellular targets and/or indirectly affecting Hg 

79 uptake (Beauvais-Fluck et al., 2018b; Ravichandran, 2004). Because of this complexity, the 

80 impact of DOM is difficult to predict as both increased and decreased Hg uptake in algae have 

81 been reported in the presence of DOM, depending on the algal species, DOM concentration 

82 and composition (Gorski et al., 2008; Le Faucheur et al., 2014; Luengen et al., 2012). 

83 The aim of this study was to investigate the potential of transcriptomic to develop an early-

84 warning biomarker tool of Hg-exposure in Chlamydomonas reinhardtii under 

85 environmentally relevant conditions. Previous analysis revealed that nM concentrations of 

86 IHg and MeHg are sublethal in C. reinhardtii, but induced an obvious and efficient defense 

87 response at the gene and cell level (Beauvais-Fluck et al., 2016, 2017). Briefly, both nM IHg 

88 and MeHg increased chlorophyll a content and increased photosynthesis efficiency, MeHg 

89 additionally increased intracellular reactive oxygen species (ROS) concentration and 

90 regulated a higher number of genes than IHg (Beauvais-Fluck et al., 2016, 2017). As toxic 

91 metals generally occur in mixtures in the aquatic environment, copper (Cu) was chosen to 

92 study its effect on Hg uptake because of i) its ubiquitous presence in freshwater, ii) its 

93 essentiality (vs nonessential Hg) to primary producers and iii) the previous observation of a 

94 competition between Cu and IHg uptake in a cyanobacteria and a macrophyte (Pandey and 

95 Singh, 1993; Regier et al., 2013b). Cu concentrations in aquatic systems have been reported 

96 from 0.4 to 400 µM, but it's known that its bioavailability and toxicity to organisms are highly 

97 dependent on its chemical speciation (USEPA, 2007; Zhang et al., 2017). We analyzed here 

98 the regulation of a subset of transcripts and linked transcript expression signatures to Hg 

99 intracellular concentrations, used as a direct measure of Hg bioavailability, in microalgae 

100 exposed to nM concentrations inorganic Hg (IHg) and/or methyl Hg (MeHg) in complex 

101 media including an essential metal (i.e. Cu) and humic substances (as proxy for the 
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102 recalcitrant component of DOM). In addition the influence of IHg and MeHg on the gene 

103 expression triggered by Cu exposure was also considered.

104

105 2. Material and methods

106

107 2.1. Experimental design

108 Based on the global transcriptional analysis (RNA-Seq) of Chlamydomonas reinhardtii to 

109 IHg, MeHg and Cu in single exposure (Beauvais-Fluck et al., 2016, 2017), a subset of 

110 transcripts showing a specific response or a dose-dependent response to IHg, MeHg or Cu 

111 were selected. Suwannee River Humic Acid (SRHA) standard (International Humic 

112 Substances Society, St. Paul, MN, USA) was used as a proxy for the more recalcitrant fraction 

113 of DOM. We tested 0.7 or 70 nM IHg, 0.4 nM MeHg and IHg-MeHg mixtures (ratios 

114 IHg:MeHg of 1.75 or 175), in the presence or absence of 0.5 µM Cu and of SRHA (1 or 10 

115 mg·L-1) to mimic conditions likely to be found in a Hg-contaminated site. 

116

117 2.2. Labware

118 All material was washed in 10% HNO3 (EMSURE, Merck, Darmstadt, Germany) followed by 

119 two 10% HCl acid baths (EMSURE, Merck, Darmstadt, Germany), thoroughly rinsed with 

120 ultrapure water (MilliQ Direct system, Merck, Darmstadt, Germany) and dried under a 

121 laminar flow hood. Material for culture and experiments, including media, were additionally 

122 autoclaved (1 bar, 121°C, 20 min) to avoid microbial contamination.

123

124 2.3. Exposure of algae 

125 Chlamydomonas reinhardtii (wild type strain CPCC11, Canadian Phycological Culture 

126 Centre, Department of Biology, University of Waterloo, Waterloo, ON, Canada) were 

127 harvested in their mid-exponential growth phase and exposed in 100 mL of an artificial 

128 medium, containing 8.2·10-4 M CaCl2, 3.6·10-4 M MgSO4, 2.8·10-4 M NaHCO3, 1.0·10-4 M 

129 KH2PO4 and 5.0·10-6 M NH4NO3, pH was 6.9 ± 0.1. The cell density was 8.1 ± 1.1·105 

130 cell·mL-1. All exposures were conducted using three biological replicates. The exposure 

131 duration of 2 h was chosen based on previous data of Hg toxicokinetics and in-situ RNA-Seq 

132 that supported the interest of such length of exposure in the field because it allows targeting 

133 early-response genes that are more specific to the toxicant than latter gene response 

134 (Beauvais-Fluck et al., 2016; Dranguet et al., 2017a). 
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135 For uptake experiments, exposure medium was prepared and enriched (or not) with SRHA 24 

136 h before the exposure experiment, while metals were added 30 min before algae. C. 

137 reinhardtii cells were exposed or not (control) 2 h to 0.7 or 70 nM IHg (Hg(NO3)2 standard 

138 solution, Sigma-Aldrich, Buchs, Switzerland), 0.4 nM MeHg (MeHgCl standard solution, 

139 Alfa Aesar, Ward Hill, MA, USA) or 0.5 µM Cu (CuSO4 solution, Sigma-Aldrich, Buchs, 

140 Switzerland) and the following mixtures: 0.7 nM IHg + 0.4 nM MeHg, 70 nM IHg + 0.4 nM 

141 MeHg, 0.7 nM IHg + 0.5 µM Cu, 70 nM IHg + 0.5 µM Cu and 0.4 nM MeHg + 0.5 µM Cu, 

142 (without SRHA), 1 mg·L-1 SRHA or 10 mg·L-1 SRHA.

143

144 2.4. Metal Uptake

145 After exposure, cells (50 mL) were centrifuged (10 min, 1300g). Pellets of algae exposed to 

146 IHg or MeHg and Cu were resuspended in 1 mM ethylene·diamine·tetraacetic·acid (EDTA, 

147 Sigma-Aldrich, Buchs, Switzerland) + 1 mM cysteine (Sigma-Aldrich, Buchs, Switzerland) 

148 and 1 mM EDTA, respectively and centrifuged (10 min, 1300g). Both washing media were 

149 prepared with the metal-free exposure medium. This procedure eliminated metals loosely 

150 bound to cell walls to enable measure of intracellular metal concentration ([metal]intra). Algal 

151 pellets were immediately freeze-dried (Beta 1-8 K, Christ, Germany).

152 Intracellular total Hg (THg = IHg + MeHg) concentration was determined on freeze-dried 

153 pellets by atomic absorption spectrometry using the Advanced Hg Analyzer AMA 254 (Altec 

154 s.r.l., Czech Republic). The detection limit (DL) defined as 3× the standard deviation (SD) of 

155 10 blank measurements was 0.05 ng THg. The accuracy of the measurements was examined 

156 by certified reference material (CRM) MESS-3, showing 100 ± 0.1 % recovery. To measure 

157 Cu uptake, dry algal pellets were digested in 1 mL HNO3 (Suprapur, Merck Darmstadt, 

158 Germany) at 90 ºC for 1 h and Cu concentration was measured by inductively coupled plasma 

159 mass spectrometry (ICP-MS; 7700x, Agilent Technologies, Morges, Switzerland) which DL 

160 was 0.18 µg·L-1 Cu.

161 Concentrations of THg, MeHg and Cu in media were determined by the MERX Automated 

162 Total Mercury Analytical System (Brooks Rand Instruments, Seattle, WA, USA), having a 

163 DL of 0.04 ng·L-1 THg, the MERX Automated Methyl Mercury Analytical System (Brooks 

164 Rand Instruments, Seattle, WA, USA) having a DL of 0.01 ng·L-1 MeHg and ICP-MS (see 

165 above), respectively. Effective concentrations in media for single and mixtures metal 

166 experiments were in average 0.36 ± 0.03 nM MeHg and 0.68 ± 0.02 nM THg for low 

167 concentration experiments, and 68.0 ± 1.8 nM THg in high concentration experiments. The 

168 concentration of Cu was in average 0.55 ± 0.004 µM Cu. The chemical speciation of IHg, 
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169 MeHg, and Cu in media solutions were calculated from finally determined metal 

170 concentrations by an iterative procedure in Excel (Microsoft, Redmond, WA, USA), as 

171 described in (Beauvais-Fluck et al., 2018b).

172

173 2.5. Transcript response assessment by nCounter 

174 The nCounter technology by NanoString Inc. (Seattle, WA, USA) (Geiss et al., 2008), a 

175 medium-throughput quantitative approach to study differential transcript expression, without 

176 the need to perform reverse transcription of mRNA to cDNA and subsequent polymerase 

177 chain reaction (PCR), was chosen to test transcript expression level as biomarker of metal 

178 exposure. A subset of transcripts was selected according to the correlation of their expression 

179 level with intracellular Hg or Cu concentrations in previous RNA-Seq experiment (Table S1) 

180 (Beauvais-Fluck et al., 2017), available in the Gene Expression Omnibus database 

181 (GSE65109). The set included 3 housekeeping transcripts (for input variation), 6 positive (for 

182 lane specific variation) and 8 negative (for background correction) internal controls. Total 

183 RNA was extracted from 50 mL of culture as previously described using TRI Reagent 

184 (Sigma-Aldrich, Buchs, Switzerland) (Beauvais-Fluck et al., 2016, 2017) and 500 ng RNA 

185 were used for nCounter analysis. After background correction and normalization, 5 transcripts 

186 were not further considered because of their too low signal, 192 transcripts passed quality 

187 controls (Table S1), including 122 transcripts not having and 70 transcripts having an 

188 annotation in the MapMan ontology (Thimm et al., 2004). Among the represented metabolic 

189 pathways, 9 transcripts were annotated to the ‘cell’ category (e.g. motility and development), 

190 12 to the ‘transport’ category (including 3 metal transporters, e.g. zinc transport precursor, 1 

191 ammonium and 3 ABC transporters), 7 to the ‘photosynthesis’ category (including 5 

192 transcripts involved in the carbon concentrating mechanism), 7 to the ‘sugar metabolism’ 

193 category (glycolysis, TCA, major and minor) and 2 to the ‘tetrapyrrole synthesis’ and to the 

194 ‘oxidation-reduction’ (redox) categories. Other categories (e.g. hormone, secondary 

195 metabolism, lipid, nitrate and biodegradation of xenobiotics) were represented by 1 transcript 

196 each. The category ‘regulation of gene expression’ (i.e. RNA, protein, amino acid, nucleotide, 

197 signaling) included 23 transcripts and 3 transcripts were attributed to the ‘miscellaneous’ 

198 category in the codeset (Table S1).

199

200 2.6. Data analysis

201 Background THg and Cu concentrations in cells measured in the absence of SRHA and in 

202 presence of 1 mg·L-1 SRHA or 10 mg·L-1 SRHA were subtracted from data on metal uptake 
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203 and t-tests (α=0.05) were used to compare metal uptake for each treatment vs Control. To 

204 compare the different treatments, uptake was normalized by the effective exposure 

205 concentration in media at the beginning of treatment ([metal]intra/[metal]med).

206 Fold changes (FC) for the nCounter analysis were calculated in Excel by comparing 

207 expression of transcripts in algae exposed to metal(s) (single and mixture), in absence or 

208 presence of 1 and 10 mg·L-1 SRHA and for algae exposed to SRHA alone vs control (absence 

209 of SRHA and absence of Hg, MeHg or Cu). This enabled to analyze both the molecular 

210 effects of metal and SRHA, and their interactions. Heatmaps were created in Genesis v1.7.7 

211 (Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria) 

212 (Sturn et al., 2002).

213 Statistical analyses (t-tests, principal component analysis and histograms) and graphical 

214 representations were computed in Sigma Plot (Systat Software, San Jose, CA, USA).

215

216 3. Results

217 3.1. Uptake of IHg and MeHg in mixtures of metals

218 We assessed the Hg uptake by determining the intracellular metal concentrations and by 

219 comparing the ratios of intracellular THg concentrations to IHg and MeHg concentrations in 

220 the exposure medium (Figure 1A). While the presence of 0.5 µM Cu had no significant effect 

221 on THg uptake in mixtures with 0.7 nM IHg or with 0.4 nM MeHg, the THg uptake decreased 

222 five times when the concentration of IHg was increased to 70 nM (Figure 1A, Table S2). 

223 Importantly, the uptake of MeHg was much more efficient than uptake of Hg, as revealed by 

224 the ratio [THg]intra/[THg]med being 19× higher for 0.4 nM MeHg than that for 0.7 nM IHg 

225 solutions. 

226 The presence of SRHA had variable effects on THg uptake depending on metal composition 

227 (Figure 1B, Table S2). The addition of 1 mg·L-1 SRHA decreased THg uptake (for all 

228 exposure conditions except 70 nM IHg) as compared to systems with no humic substances. A 

229 similar intracellular concentration of THg was determined at 1 and 10 mg·L-1 SRHA for 0.7 

230 nM IHg, 70 nM IHg + 0.4 nM MeHg and 70 nM IHg + 0.5 µM Cu. For 0.7 nM IHg + 0.5 µM 

231 Cu a significant decrease in THg uptake was observed when SRHA was increased from 1 to 

232 10 mg·L-1 (t-tests, p-values<0.01) (Figure 1B, Table S2). To summarize, THg uptake in IHg 

233 treatments is decreased by SRHA in presence of Cu (0.7 and 70 nM IHg) or MeHg (70 nM 

234 IHg), while THg uptake is unaffected or even increased by SRHA for IHg treatments in 

235 absence of Cu and MeHg. In MeHg treatments THg uptake is generally not affected by Cu, 

236 IHg or SRHA. Although some of the results may be explained by uptake being controlled by 
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237 chemical speciation and metal competition for uptake sites (Table S3), the general picture 

238 points at other mechanisms being of major importance for metal uptake in this organism.

239

240 3.2. Transcript signatures of IHg and MeHg alone and with SRHA

241 The expression level of the 192 transcripts strongly changed between the 27 experimental 

242 treatments (Table S1). A closer look at the log2FC values of IHg and MeHg in single 

243 exposure, revealed 25 transcripts showing contrasted regulation for 0.7, 70 nM IHg and 0.4 

244 nM MeHg (Table 1). Transcript expression was also affected by the presence of SRHA and its 

245 concentration. For instance, log2FC values of the transcript Cre10.g447800, coding for an 

246 uncharacterized protein, decreased from 3.5 to 1.9 and 0.5 at 0.7 nM IHg with 0, 1 and 10 

247 mg·L-1 SRHA, respectively. A transcript involved in signaling (Cre16.g668850) showed 

248 opposite regulation of log2FC for 0.7 nM (e.g. -4.0 at 0 mg·L-1 SRHA) and 70 nM IHg (e.g. 

249 0.6 at 0 mg·L-1 SRHA). In line with the significant decrease in THg uptake for MeHg at 1 

250 mg·L-1 SRHA, the expression of g18130 was 1.2× lower at 1 mg·L-1 SRHA. Furthermore, an 

251 amino acid transporter (Cre06.g298750) was up-regulated in 0.7 nM and 0.7 nM IHg + 1 

252 mg·L-1 SRHA, and down-regulated in the other treatments (Table 1). This transcript could be 

253 an interesting candidate biomarker of IHg exposure in the nM range. Two transcripts, g6368 

254 showing sequence similarity to the Arabidopsis thaliana MLO1 (putatively involved in the 

255 modulation of pathogen defense and leaf cell death) and g16833 (involved in post-

256 translational modification), were specifically up-regulated by MeHg, and could thus be 

257 interesting candidate biomarkers of MeHg exposure. The expression of the 25 selected 

258 transcripts (Table 1) revealed that globally their expression level at 70 nM IHg was closer to 

259 0.4 nM MeHg than to 0.7 nM IHg treatment, suggesting that single transcript responses could 

260 differentiate IHg exposure at the nM vs the µM range, but not IHg from MeHg in C. 

261 reinhardtii.

262 In the absence of SRHA, the expression of 23 and 15 transcripts (out of 25) was either 

263 unchanged or close to the arithmetical mean of their expression in the single IHg and MeHg 

264 treatments at 0.7 nM IHg + 0.4 nM MeHg and 70 nM IHg + 0.4 nM MeHg, respectively. At 

265 0.7 nM IHg + 0.4 nM MeHg, 2 transcripts showed stronger regulation than at 0.7 nM IHg. At 

266 70 nM IHg + 0.4 nM MeHg, the expression of 6 transcripts was stronger than in 70 nM IHg 

267 and 4 transcripts had an opposite regulation than in single IHg and MeHg treatments. Data 

268 suggested a higher and more specific transcript expression regulation by the interaction of IHg 

269 and MeHg when exposed in the 175 IHg:MeHg ratio treatment than in quasi-equimolar 

270 treatment.
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271 The presence of SRHA had no effect on the transcript expression for 11 and 8 transcripts (4 

272 were common) for 0.7 nM IHg + 0.4 nM MeHg and 70 nM IHg + 0.4 nM MeHg, 

273 respectively. For instance, the expression of Cre02.g109650, coding for a transcript involved 

274 in the cell motility, was always close to the arithmetical mean of single treatments, at all 

275 SRHA concentration tested here. On the opposite, the comparison of the expression of 3 and 4 

276 transcripts to their expressions in single treatments differed in the three SRHA conditions, for 

277 0.7 nM IHg + 0.4 nM MeHg and 70 nM IHg + 0.4 nM MeHg, respectively. These results 

278 suggest that SRHA had a significant impact on transcript expression, in single treatments but 

279 also in IHg-MeHg mixture, supporting that gene expression is a very sensitive variable.

280

281 3.3. Linking single transcript expression level and Hg intracellular concentrations

282 Here we aimed to assess the potential of developing a biomarker of Hg uptake based on 

283 transcripts’ expression level. We thus selected transcripts showing the same log2FC signs 

284 among all IHg and MeHg treatments, resulting in a list of 11 candidate transcripts (Figure 2). 

285 Both FC and THg uptake were normalized by their values in absence of SRHA to compare all 

286 treatments, including mixtures with Cu and to account for the effect of SRHA (see above and 

287 Table S1). Only one transcript, g18130 (kinase) showed a decrease in transcript expression 

288 level with decreased uptake at 0.7 nM IHg, while the 10 other transcripts resulted in no 

289 obvious correlation, suggesting that this approach may not be very promising to predict Hg 

290 uptake in C. reinhardtii.

291

292 3.4. Linking multiple transcript expression signatures and Hg intracellular 

293 concentrations

294 Here, to assess the potential of transcript expression signature, we selected 60 transcripts for 

295 further investigation as biomarkers of metal uptake in all experimental treatments. Selection 

296 of transcripts was made on following criteria: i) transcripts showing a log2FC lower than -0.5 

297 or higher than +0.5 in the ‘1 mg·L-1 SRHA’ and ‘10 mg·L-1 SRHA’ treatments were excluded 

298 to limit SRHA background signal; ii) the transcripts showing specific expression for 0.7 nM 

299 IHg, 70 nM IHg and MeHg and different expression level for mixtures with Cu were 

300 included, iii) transcripts that showed an altered expression with SRHA congruent with 

301 measured uptake were selected. Principal component analysis (Figure S1) showed that the 

302 signature of this subset of transcripts efficiently discriminated 0.7 nM IHg (and 0.7 nM + 0.4 

303 nM MeHg) from 70 nM IHg (and 0.7 nM IHg + 0.4 nM MeHg), and to a lesser extent 0.4 nM 

304 MeHg from 70 nM IHg. The heatmap built with all the treatments showed similar outcomes 
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305 as the principal component analysis (Figure 3, clusters A and C). Mixtures of IHg with Cu 

306 (cluster D) were clustered separately from Cu alone (0 and 1 mg·L-1 SRHA, cluster E) and 

307 IHg alone (clusters A and C). 

308 The signature of the subset of transcripts also allowed classifying samples according to Hg 

309 uptake: e.g. 0.7 nM IHg + 10 mg·L-1 SRHA (0.003 ± 0.015 amolTHg·cell-1) was closer to the 

310 signatures of SRHA than to 0.7 nM IHg + 10 mg·L-1 SRHA (0.012 ± 0.015 amol·cell-1). In 

311 cluster A, the samples classified according to measured [THg]intra, ranging from 17.2 to 9.5 

312 amolTHg·cell-1 from 70 nM IHg + 10 mg·L-1 SRHA to 70 nM + 0.4 nM MeHg + 10 mg·L-1 

313 SRHA, respectively. We observed the same trend in cluster E, ranging from 2.47 amolTHg·cell-

314 1 to 0 amolTHg·cell-1 (i.e. below background THg concentration in 10 mg·L-1 SRHA) from 70 

315 nM IHg + 0.5 µM to 0.7 nM IHg + 0.5 µM + 10 mg·L-1 SRHA.

316 Five transcripts, that showed a strong down-regulation in Cu only treatment, were included in 

317 the subset of transcripts and successfully discriminated a specific signature for Cu treatments. 

318 The signature of transcripts exposed to Cu + 10 mg·L-1 SRHA was, however, close to the 

319 signature of SRHA, in line with the strong effect of SRHA on Cu uptake (see below).

320 As mentioned above, among the 192 transcripts studied by nCounter, we could identify few 

321 transcripts discriminating, 0.7 nM IHg, 70 nM IHg and 0.4 nM MeHg (Table 1), but their FC 

322 were not congruent with THg uptake (Figure 2). On the other hand, when plotting the 

323 distribution of log2FC values for the 60 selected transcripts for all treatments including 1 and 

324 10 mg·L-1 SRHA (Figures S2), we found the number of transcripts with high FC value to 

325 increase with increased intracellular concentration. We thus plotted the range of log2FC 

326 values (difference between the lowest and the highest log2FC values) and THg uptake 

327 normalized by the concentration of exposure ([THg]intra/[THg]med ratio) for the 60 selected 

328 transcripts (Figure 4). A linear relationship was observed for 0.7 nM IHg and 0.7 nM IHg + 

329 0.5 µM Cu (lower [THg]intra/[THg]med ratio) (adjusted R2 = 0.84) and another linear 

330 relationship for 70 nM IHg, 70 nM + 0.4 nM MeHg and 0.4 nM MeHg, in line with their 

331 higher [THg]intra/[THg]med ratios (adjusted R2 = 0.92) (Figure 4). Correlations were slightly 

332 weaker when 0.7 nM IHg + 0.4 nM MeHg or 0.4 nM MeHg + 0.5 µM Cu were included 

333 respectively with the lower [THg]intra/[THg]med ratio (adjusted R2 = 0.58). However, this linear 

334 correlation between transcript expression and Hg uptake appears to be promising for the 

335 further development of transcriptomic tools to assess Hg exposure and Hg bioavailability in 

336 mixtures.

337

338 3.5. Copper uptake and transcript expression in response to Cu exposure
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339 For comparative purpose, we assessed the transcript expression and Cu uptake in complex 

340 media containing Cu. In the absence of SRHA, Cu intracellular concentration decreased in 

341 mixture with 70 nM IHg (2×) and 0.4 nM MeHg (1.7×) treatments, while it was unchanged in 

342 mixture with 0.7 nM IHg (Table S2). The presence of SRHA significantly decreased Cu 

343 uptake in all conditions (t-tests, p-values<0.01) (Table S2). More in detail, for the 0.5 µM Cu, 

344 Cu uptake decreased (1.9×) from 0 mg·L-1 SRHA to 1 mg·L-1 SRHA, but was unchanged 

345 from 1 to 10 mg·L-1 SRHA, while Cu intracellular concentration further decreased (2.2×) at 

346 10 mg·L-1 SRHA for 0.7 nM IHg + 0.5 µM Cu. For both 70 nM IHg + 0.5 M Cu and 0.4 nM 

347 MeHg + 0.5 µM Cu treatments, measured intracellular concentrations in the presence of 10 

348 mg·L-1 SRHA were below the background concentration of control cells exposed to 10 mg·L-1 

349 SRHA (Table S2). These results imply that MeHg and SRHA have a strong negative effect on 

350 Cu uptake and that Cu in mixture with high IHg concentration affected both THg and Cu 

351 uptake in C. reinhardtii. The decrease of Cu uptake with increasing SRHA concentration was 

352 in fair agreement with a modeled decreased fraction of inorganic Cu, whereas negative 

353 impacts of Hg and MeHg on Cu uptake likely have little to do with competition given the 

354 large differences in concentrations (Tables S2 and S3). 

355 Exposure to Hg, Cu and SRHA resulted in a wide range of Cu intracellular concentrations. 

356 For comparison, we plotted transcript FC values against Cu intracellular concentrations and 

357 found 7 transcripts showing dose-dependent response with Cu uptake in the studied mixtures 

358 (Figure S3). For instance, log2FC increased with increased uptake for the antioxidant enzyme 

359 glutathione peroxidase 5 (GPX5, Cre10g.458450), while log2FC decreased for Cre14.g615350 

360 involved in oxygen transport. The Fe-assimilating protein (Cre12.g456600) showed a bell 

361 shape with increasing uptake of Cu. Data suggest that single transcript expression could 

362 assess more reliably Cu bioavailability than Hg bioavailability. However, both Hg 

363 bioavailability and Cu bioavailability were well correlated with transcript expression 

364 signature (see above).

365

366 4. Discussion

367 4.1. Impact of DOM on Hg and Cu uptake

368 We hypothesized that the presence of SRHA would decrease Hg, MeHg and Cu uptake and 

369 consequently impact the level of transcript regulation. In agreement with the above 

370 hypothesis, addition of SRHA decreased THg intracellular concentration in 0.4 nM MeHg 

371 treatments as well as Cu intracellular concentration in all treatments. The latter observation 

372 was consistent with the decrease of metal uptake in presence of DOM observed for many 
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373 cations, e.g. Cu2+ and Cd2+, and was attributed to the complexation of metals to DOM binding 

374 sites, such as oxygen-containing, amino and reduced sulfur functional groups, reducing the 

375 free metal ions concentrations and thus metal bioavailability (Lamelas and Slaveykova, 2007). 

376 It has been reported that DOC concentrations exceeding 100 µM decreased IHg and MeHg 

377 uptake in the diatom Thalassiosira pseudonana when exposed 1 h to natural waters spiked 

378 with 2 nM IHg or 0.9 nM MeHg (Zhong and Wang, 2009). Similarly, in the diatom Cyclotella 

379 meneghiniana, exposure during 72 h to 0.4-0.8 nM MeHg with increasing DOM 

380 concentration (0, 1.5, 3, 5, 10 and 20 mg·L-1 DOM isolated from natural waters) showed a 

381 decrease of MeHg uptake (Luengen et al., 2012). For the green alga Selenastrum 

382 capricornutum, additions of 10-20 mg·L-1 DOM decreased IHg and MeHg uptake after 24 h 

383 of exposure to 1 pM IHg and 3 pM MeHg (Gorski et al., 2008). A recent study further 

384 demonstrated that THg uptake in biofilms correlated with the predicted concentrations of IHg 

385 chemical species not bound to organic ligands in natural waters (Dranguet et al., 2017b). In 

386 contrast, THg uptake by C. reinhardtii in our study increased after addition of 10 mg·L-1 

387 SRHA at 70 nM IHg. A doubling of MeHg uptake was reported in C. reinhardtii exposed to 

388 0.6-0.7 nM MeHg with increased DOC (280 µM DOC vs 177 µM DOC) (Pickhardt and 

389 Fisher, 2007). Using a bacterial bioreporter it was observed that IHg bioavailability under 

390 non-equilibrium conditions significantly increased when the DOM concentration was 

391 increased from 0 to 10 mg·L-1 DOM, but the bioavailability declined upon further increase in 

392 DOM to 50 mg·L-1 (Chiasson-Gould et al., 2014). To summarize, despite many observations 

393 providing support for binding to DOM and competition with other metals being in control of 

394 IHg and MeHg uptake by organisms in natural waters, there are also results pointing at more 

395 complicated explanations. In this study the modeled chemical speciation of IHg, MeHg and 

396 Cu (dividing each metal into fractions involving organic and inorganic ligands; Table S3) is 

397 difficult to directly link with their bioavailability (Table S2), suggesting that other 

398 mechanisms are interfering. 

399 We recently studied the impact on THg intracellular concentration of SRHA in the aquatic 

400 macrophyte Elodea nuttallii using similar experimental conditions as reported here (Beauvais-

401 Fluck et al., 2018b). While addition of 1 mg·L-1 SRHA had no impact on uptake, an increase 

402 to 10 mg·L-1 SRHA significantly decreased THg intracellular concentrations in both IHg and 

403 MeHg 0.1 nM treatments. An increase of IHg to 10 nM had no further increasing effect on 

404 THg intracellular concentration. For both IHg + MeHg and IHg + Cu, addition of 10 mg·L-1 

405 SRHA significantly reduced THg intracellular concentration (as compared to control and 1 

406 mg L-1), whereas for the MeHg + Cu mixture THg intracellular concentrations increased by 
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407 1.9× concomitantly with a 1.4× decrease in Cu intracellular concentrations. Based on 

408 speciation modeling, it was suggested that formation of Cu(I) in presence of E. nuttallii could 

409 explain these data together with the established difference in binding affinities for IHg and 

410 MeHg to DOM functional groups. These very clear differences in the uptake of IHg, MeHg 

411 and Cu between E. nuttallii and C. reinhardtii could be attributed to the unicellularity of the 

412 alga vs. the pluricellularity of the macrophyte. Another factor that differed between these two 

413 experiments is the surface-to-volume ratio which is expected to result in higher uptake in 

414 unicellular organisms (Beauvais-Fluck et al., 2018a). However, in contrast to this expectation, 

415 THg intracellular concentrations in E. nuttallii appeared to be higher than for C. reinhardtii, 

416 in line with field observations showing a high Hg uptake in E. nuttallii compared to other 

417 primary producers (Beauvais-Fluck et al., 2018a). Besides, based on transcriptome responses, 

418 the impact of IHg and MeHg uptake appears to be lower for C. reinhardtii than for E. nuttallii 

419 both in controlled and field experimental conditions (Beauvais-Fluck et al., 2018a; Dranguet 

420 et al., 2017a). Although C. reinhardtii harvests light via chloroplasts for energy as plants do, 

421 it also possesses numerous genes derived from the last plant-animal common ancestor that 

422 have been lost in angiosperms, including transporters and the possibility of extensive 

423 metabolic flexibility (Merchant et al., 2007). Taken together, our divergent observations on 

424 how an unicellular and a pluricellular organism take up IHg, MeHg and Cu may imply that 

425 homeostasis networks triggered by IHg, MeHg and Cu exposure are species-specific and 

426 modify the metal uptake by different organisms to an extent that chemical speciation 

427 modeling alone cannot explain. 

428

429 4.2. Impact of Cu on Hg uptake and impact of Hg on Cu uptake

430 In aquatic ecosystems, toxicants are present in cocktails, thus to improve environmental 

431 realism of the exposures, here we further tested the impact of Cu on Hg uptake. We 

432 hypothesized that chemical mixtures will affect metal bioaccumulation, e.g. by direct 

433 competition for uptake or complexation with humic acid, or through synergistic interactions. 

434 We observed a 4.7× decrease of THg uptake in 70 nM IHg + 0.5 µM Cu, but no impact in 0.7 

435 nM IHg + 0.5 µM Cu treatment. Concomitantly, we observed a 2x decreased Cu uptake in 70 

436 nM IHg + 0.5 µM Cu treatment. In the cyanobacteria Nostoc calcicola, mixture exposure of 

437 1.5 µM IHg + 40 µM Cu decreased 2× IHg uptake (Pandey and Singh, 1993). Here Cu 

438 competition is more effective when present in 10-20× excess than in higher excess. This could 

439 be attributed to Cu homeostasis network regulation that triggers different transporters 

440 according to external Cu concentration. This finding is different from previous observations 
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441 made on the macrophyte E. nuttallii which was suggested to take up Hg using high affinity Cu 

442 transporters COPT1 (Regier et al., 2013a). Again, these contrasted results point to species-

443 specific homeostasis networks triggered by IHg, MeHg and Cu exposure. Obviously, there is 

444 a need to gain fundamental knowledge on how various metals affect the bioavailability of 

445 other metals in different types of organisms. 

446

447 4.3. Linking transcript expression level and uptake

448 A rapid diagnostic of environmental risk is desirable to limit and mitigate pollution impacts. 

449 Transcriptomic was reported to be more sensitive than classical bioassays (e.g. shorter 

450 exposure and low concentrations), and to have the potential of identifying the impact of 

451 several stressors in a single analysis (Dranguet et al., 2017a; Garcia-Reyero et al., 2009; 

452 Gomez-Sagasti et al., 2016; Regier et al., 2013a; Yang et al., 2007). It seems thus a promising 

453 approach in the context of toxicity and risk assessment but requires further testing in more 

454 complex experimental conditions. In this context, we aimed to investigate in detail the 

455 relationship between transcript expression level and exposure in more realistic environmental 

456 scenarios, using Hg uptake as a “proof of concept”. Here, while it was possible to find 4 

457 transcripts among the 192 transcripts discriminating 0.7 nM IHg, 70 nM IHg and 0.4 nM 

458 MeHg (Table 1), only 1 transcript had a regulation pattern significantly correlated in a dose-

459 dependent manner to THg uptake (Figure 2). In the same line, two recent studies in aquatic 

460 primary producers showed that using single transcript expression is not sufficient as specific 

461 metal biomarker, while the expression signature of a subset of transcripts seems more 

462 promising. Simon et al. (2008, 2011) used single transcript expression as biomarker of Cd 

463 exposure in C. reinhardtii, first in controlled laboratory conditions and then in situ (Simon et 

464 al., 2011; Simon et al., 2008). None of the 9 potential biomarkers of Cd exposure in C. 

465 reinhardtii tested in binary metal mixtures with Cu or led by quantitative reverse transcription 

466 PCR confirmed their Cd specificity established in single exposure experiments (Hutchins et 

467 al., 2010). On the opposite, in E. nuttallii the signature of transcript expression measured by 

468 nCounter analysis after 24 h exposure in IHg + Cd mixture was able to differentiate mixture 

469 of 1 nM IHg + 1 nM Cu from 1 nM IHg + 0.1 nM MeHg and 1 nM IHg alone, confirming the 

470 sensitivity of this approach (Regier et al., 2013a). 

471 Similarly, here measuring the signature of a subset of transcripts and the number of transcripts 

472 showing high FC values appeared to be a more consistent approach to assess Hg exposure. A 

473 strong correlation was obtained between THg uptake and the range of FC values, including 

474 for treatments resulting in low THg uptake such as in 0.7 nM IHg and complex media 
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475 including Cu and SRHA. This is in line with recent transcriptomic studies on C. reinhardtii 

476 and E. nuttallii exposed 2 h in situ, where the number of transcripts with high FC (e.g. >|4|) 

477 was congruent with the gradient of contamination (up to 12 pM THg), although 

478 bioaccumulation of Hg was comparable with the background levels (Dranguet et al., 2017a). 

479 However, here the linear correlation was different for low and high [THg]intra/[THg]med ratios 

480 in our experimental conditions, pointing that transcript expression showed the highest 

481 sensitivity at low Hg concentrations, which are more likely to be found in natural waters and 

482 difficult to assess by classical bioassays.

483 What is more, we observed here that the transcriptional profiling of the subset of 60 selected 

484 transcripts successfully clustered treatments according to the metal uptake in all experimental 

485 treatments including mixtures. Moreover, it is likely that the specific signatures are linked to 

486 the different mode of action of IHg, MeHg and Cu. The cluster of MeHg, close to 70 nM IHg, 

487 was consistent with a previous study on the whole transcriptome response to IHg and MeHg 

488 in C. reinhardtii, showing many common cellular pathways regulated by IHg and MeHg 

489 exposure, suggesting a common mode of action of both Hg forms (Beauvais-Fluck et al., 

490 2017). Here, our results showed that MeHg and Cu have distinct modes of action as suggested 

491 by the opposite transcript expression signature observed.

492 For Cu, the intracellular Cu concentration was globally congruent with the modeled free Cu2+ 

493 concentration in the exposure medium (except in the most complex media; Tables S2 and S3) 

494 and congruent with the expression level of transcripts. On the opposite, data for Hg uptake 

495 were less straightforward than Cu data and confirmed the difficulty to use chemical modeling 

496 to predict Hg bioavailability even in simplified media in the presence of organic matter and 

497 other metals. Our data highlights the need of an accurate measurement of uptake that critically 

498 reflects bioavailability to cells. There is thus a need for novel tools, like transcriptomic, 

499 notably to assess Hg bioavailability for Hg risk assessment. Indeed, transcript expression 

500 signature could be an efficient biomarker of Hg and other contaminants exposure, because the 

501 expression of numerous transcripts depends on the interaction of the toxicant with 

502 intracellular biomolecules. Additionally, using transcript expression signature may be 

503 valuable in the context of risk assessment due to their high sensitivity and mechanistic value 

504 (Schirmer et al., 2010). In future research, the subset of transcripts needs improvement by 

505 adding or removing some transcripts as well as testing additional scenarios (e.g. a larger range 

506 of IHg, MeHg and DOM concentrations and their binary and ternary mixtures, several time 

507 points) as well as other toxicants and environmental samples. Notably, the effect on the gene 

508 expression level would need to be linked to effects at higher level of biological organization 
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509 (i.e. individuals, population) to be applicable in risk assessment (Brinke and Buchinger, 

510 2017). However, our data evidenced that using the expression signature of a subset of 60 

511 transcripts was a promising tool to detect exposure to pollutants in C. reinhardtii. Notably, the 

512 range of FC values among regulated transcripts might represent a sensitive early-warning 

513 biomarker of exposure at low concentrations. 

514
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689 Table 1: Fold changes (log2FC) of 25 selected transcripts showing differential expression for IHg and MeHg (--N.A.--, not assigned).

690

0 1 10 0 1 10 0 1 10
Cre10.g447800 --N.A.-- 3.48 1.95 0.54 -0.04 0.00 0.20 0.43 0.45 0.34
Cre06.g298750 transport-AA 2.92 1.39 -0.60 -0.37 -0.37 -0.68 -0.49 -0.73 -0.69
Cre02.g074800 --N.A.-- 1.01 0.89 0.49 2.48 2.24 1.91 3.08 2.88 2.53
Cre02.g093500 --N.A.-- -0.14 0.03 -0.30 1.54 1.28 1.29 2.95 3.08 3.12
Cre12.g492650 --N.A.-- 0.34 -0.34 -0.26 0.87 0.46 0.77 3.04 3.17 3.05
Cre06.g260550 nucleotide 0.92 0.47 -0.07 1.43 1.33 0.90 2.00 1.94 1.74
Cre16.g657200 xenobiotics -0.10 0.37 0.68 0.78 0.41 0.91 1.22 1.18 1.53
g9144 cell motility -2.39 -2.51 -2.19 -0.90 -1.21 -1.24 1.69 1.61 1.84
Cre16.g668850 signalling -4.05 -3.26 -2.01 0.63 0.66 0.22 -0.11 0.11 -0.27
Cre17.g714300 --N.A.-- -3.26 -2.27 -1.69 0.24 0.13 -0.42 -0.09 0.04 -0.21
Cre14.g616050 --N.A.-- -2.39 -2.17 -1.44 0.58 0.40 0.05 0.20 0.35 0.07
Cre06.g249500 RNA -2.19 -1.84 -1.38 0.69 0.41 -0.03 0.29 0.28 -0.06
Cre10.g442800 transport-misc -0.69 -0.47 -0.33 -0.47 0.04 0.10 -0.16 -0.06 -0.11
Cre12.g529450 cell division -1.03 -0.92 -0.79 -0.44 -0.49 -0.61 0.07 0.01 -0.03
Cre03.g152750 apoptosis -0.72 -0.84 -0.86 0.16 -0.45 -0.25 0.23 0.50 0.57
g11558 --N.A.-- -0.80 -0.63 -0.93 0.84 0.36 0.20 0.63 0.49 0.20
Cre02.g109650 cell motility -1.52 -1.00 -0.65 1.13 0.73 0.29 0.94 0.96 0.51
Cre06.g249350 RNA -1.78 -1.23 -0.87 0.92 0.69 0.24 0.95 0.95 0.60
Cre10.g441250 --N.A.-- -0.67 -0.71 -0.36 -0.10 0.15 0.15 0.83 0.68 0.63
g6368 transport-misc 0.03 -0.16 -0.39 0.01 -0.09 -0.21 0.85 0.60 0.45
g16833 proteins 0.05 0.04 0.06 -0.08 -0.20 -0.20 0.46 0.40 0.54
Cre06.g263550 redox -0.05 -0.24 -0.44 0.27 0.26 0.35 0.86 1.02 0.92
g18130 proteins -0.14 -0.09 -0.13 0.46 0.46 0.40 1.09 0.94 0.99
Cre10.g458450 redox -0.18 -0.21 -0.16 0.70 0.67 0.63 0.96 1.09 0.84
g6373 proteins -0.21 -0.40 -0.55 0.68 0.74 0.58 1.12 0.77 0.86

0.4 nM MeHg

SRHA (mg·L-1)SRHA (mg·L-1)Transcript MapMan category SRHA (mg·L-1)

0.7 nM IHg 70 nM IHg
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Figure 1: (A) Effect of MeHg on IHg uptake and effect of Cu on IHg and MeHg uptake in 

absence of SRHA. Asterisks indicate a significant difference with the respective treatment 

without Cu (t-test, p-value < 0.05). (B) Effect of SRHA on THg uptake for all treatments 

compared to the respective treatment without SRHA normalized by 100% (dashed line). 

Asteriks indicate a significant difference with the respective treatment without SRHA 

(ANOVA post-hoc Holm-Sidak, p-value < 0.05). Uptake was measured as THg (= IHg + 

MeHg) concentration in algal cells ([THg]intra) and divided by concentration in the medium 

([THg]med) (mean ± SD, n = 3). Numbers 1 and 10 indicate concentration of SRHA (mg·L-1).
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Figure 2: Gene fold changes for 11 selected genes according to THg uptake, both normalized 

by their value in absence of SRHA.

[THg]intra/[THg]intra no SRHA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

lo
g 2F

C
/lo

g 2F
C

no
 S

R
H

A

0.0

0.5

1.0

1.5

2.0

2.5

Effect of SRHA on THg uptake

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

lo
g 2F

C
/lo

g 2F
C

no
 S

R
H

A

0.0

0.5

1.0

1.5

2.0

2.5

Cre09.g413350
Cre06.g263550 (thioredoxin) 
Cre02.g086150 
Cre01.g043800 
Cre04.g227950 
Cre12.g540300 
Cre02.g106100 
Cre07.g349600 (iron-sulphur cluster) 
Cre17.g740050 
g18130 (kinase)
Cre02.g086150 

Effect of SRHA on THg uptake

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

lo
g 2F

C
/lo

g 2F
C

no
 S

R
H

A

0.0

0.5

1.0

1.5

2.0

2.5

Cre09.g413350
Cre06.g263550 (thioredoxin) 
Cre02.g086150 
Cre01.g043800 
Cre04.g227950 
Cre12.g540300 
Cre02.g106100 
Cre07.g349600 (iron-sulphur cluster) 
Cre17.g740050 
g18130 (kinase)
Cre02.g086150 

Effect of SRHA on THg uptake

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

lo
g 2F

C
/lo

g 2F
C

no
 S

R
H

A

0.0

0.5

1.0

1.5

2.0

2.5

Cre09.g413350
Cre06.g263550 (thioredoxin) 
Cre02.g086150 
Cre01.g043800 
Cre04.g227950 
Cre12.g540300 
Cre02.g106100 
Cre07.g349600 (iron-sulphur cluster) 
Cre17.g740050 
g18130 (kinase)
Cre02.g086150 

0.7 nM IHg

70 nM IHg

0.4 nM MeHg

uptake ↑
DGE ↓

uptake ↑
DGE ↑

uptake ↓
DGE ↑

uptake ↓
DGE ↓



3

Figure 3: Hierarchical clustering of treatments according to the expression level of 60 

selected genes (average linkage, Euclidean distance). Fold changes were calculated by 

dividing the expression level in the treatment by the expression level in the control (no metal, 

no SRHA). Letters show second level clusters.
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Figure 4: Relationship between the range of log2FC values for 60 selected genes (difference 

between the lowest and the highest log2FC values) and THg uptake normalized by medium 

concentration. Numbers 0, 1 and 10 indicate concentration of SRHA (mg·L-1).
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