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Thèse No. 5244

Genève

Atelier d’impression ReproMail de l’Université de Genève
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1 Abstract

This thesis is devoted to the study of singularities of holomorphic maps: their

geometry, as well as cohomological and K-theoretic invariants, their properties

and computational strategies.

The main object of study of global singularity theory is the Thom polynomial,

which may be defined as the Glm×Gln-equivariant Poincaré dual of a closure of

a singularity. In the 70’s Damon proved that the Thom polynomial for contact

singularities depends only on the relative codimension, and may be expressed in

relative Chern classes. Pragacz and Weber showed that the Thom polynomial

for contact singularities expressed in the relative Chern classes has positive coeffi-

cients when written in the Schur basis. In this thesis, modern proofs of these two

theorems are given.

One of the main problems in global singularity theory is how to compute Thom

polynomials. This proved to be very difficult, and the two main computational

methods – the method of restriction equations for contact singularities and the

residue formula for Ak-singularities – work effectively only for rather small relative

codimensions. In this thesis, I show how the two methods can be combined in a

different computational approach and give examples of computation.

A recent development in global singularity theory is the introduction of the

K-theoretic invariants of singularity loci. One can define a K-theoretic invariant

of an affine variety in two different ways: either using the algebra of functions

on the variety itself, or using its smooth equivariant resolution. It is easy to

show that the two invariants are equal if and only if the closure of the singularity

locus has rational singularities. I prove that even for A2 singularity loci, in the

general case, the two invariants are different, and therefore, the A2-loci may have

singularities worse than rational. However, in the case of relative codimension 0,

the two invariants coincide, and thus the A2-loci have rational singularities.
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2 Résumé en français

Cette thèse est consacrée à l’étude de singularités de fonctions holomorphes: leur

géometrie, leurs invariants cohomologiques et K-théoriques, leurs propriétés et

stratégies de calcul.

L’objet principal de l’étude de la théorie globale des singularités est le polynôme

de Thom, qui peut être défini comme le Glm×Gln-équivariant dual de Poincaré

de l’adhérence de singularité. Dans les années 1970 Damon a montré que les

polynômes de Thom des singularités contactes ne dépendent que de la codimension

relative, et peuvent être exprimés en classes de Chern relatives. Pragacz et Weber

ont démontré que le polynôme de Thom des singularités contactes a les coefficients

positifs dans la base de Schur. Dans cette thèse, les démonstrations modernes de

ces deux théorèmes sont données.

L’un des principaux problèmes de la théorie globale des singularités est de cal-

culer les polynômes de Thom. Ce problème s’est revélé ardu, et les deux méthodes

principales de calcul – la méthode d’équations de restriction pour les singularités

contactes et la formule de résidues pour les singularités de type Ak – ne sont

efficaces qu’en cas de codimensions relatives assez petites. Dans cette thèse, je

présente ces deux méthodes et je montre comment on peut combiner les deux

pour obtenir une nouvelle approche de calcul. Je donne aussi les examples de ce

calcul.

La récente évolution dans la théorie des singularités est l’introduction des in-

variant K-théoriques de singularités. Il y a deux stratégies pour définir l’invariant

K-théorique de variété affine: soit on utilise l’algèbre de fonctions sur la variété,

soit on utilise sa résolution équivariante. Il est facile de montrer que les deux in-

variants cöıncident pour autant que l’adhérence de la singularité a des singularités

rationnelles. Je montre que déjà pour les loci de type A2, dans le cas général, les

deux invariants ne sont pas égaux et donc les loci de type A2 en général ont des

singularités plus complexes que rationnelles. En revanche, dans le cas de codimen-

sion relative nulle, les deux invariants cöıncident et donc les loci de type A2 ont

des singularités rationnelles.
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4 Organization of the thesis

This thesis consists of four parts. We begin with Section 5, where we discuss the

motivation and give rigorous definitions of notions used in the rest of the thesis.

In Section 6 we formulate and give modern proofs of two fundamental theorems

regarding the properties of the Thom polynomial: Damon’s theorem and the Schur

positivity theorem by Pragacz and Weber. These two sections are based on my

paper [24].

Section 7 is devoted to the strategies of computing the Thom polynomials. We

give a short introduction to the two main modern computational methods – the

method of restriction equations and the residue formula. We show how one may

combine the two approaches to obtain another computational strategy. We give

several examples of such computations and conjecture that this new strategy in

fact reduces the computation of the Q-polynomial for Ad singularities to a finite

number of substitutions. This section is based on an ongoing collaboration with

Prof. András Szenes and Prof. László Fehér.

In Section 8 we give definitions of two K-theoretic invariants of singularity loci.

We conclude that the two invariants are equal if and only if the singularity locus

has rational singularities. Using the A2 loci as a simple example we obtain that

in the general case the two invariants are different, but they agree in case when

relative codimension is equal to 0. This section is based on my paper [25].
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5 Preliminaries

5.1 Motivation

Global singularity theory originates from problems in obstruction theory. Con-

sider the following question: is there an immersion in a given homotopy class of

maps between two smooth manifolds? We can reformulate this problem as fol-

lows. Suppose M and N are smooth real manifolds with dim(N) ≥ dim(M), and

f : M → N is a sufficiently generic smooth map in a fixed homotopy class. The

map f is an immersion, if

Σ1(f)
def
= {p ∈M | dim Ker(dpf) ≥ 1} = ∅.

The set Σ1(f) is called the Σ1-singularity locus, or simply the Σ1-locus of f,

i.e. the points in M where f has a Σ1-singularity : the kernel of the differential

of f is non-zero. In the case of Z2-cohomology and a sufficiently generic map f ,

the set Σ1(f) represents a cohomology class via Poincaré duality. Clearly, if the

Poincaré dual PD[Σ1(f)] is non-zero in H∗(M,Z2), then there is no immersion in

the homotopy class of f .

In the 50s, René Thom proved the following statement, now known as Thom’s

principle.

Theorem 5.1 (Thom’s principle, [33]). Let Θ be an (appropriately defined) singu-

larity and let m ≤ n be non-negative integers. Suppose {a1, ..., am} and {a′1, ..., a′n}
are two sets of graded variables with deg ai = deg a′i = i. For all smooth compact

real manifolds M and N , dim(M) = m, dim(N) = n, and a sufficiently generic

smooth map f : M → N,

Θ(f) = {p ∈M | f has a singularity of type Θ at p}

is a cycle in M , and there exists a universal polynomial in a1, ..., am and a′1, ..., a
′
n

Tp[Θ](a1, ..., am, a
′
1, ..., a

′
n)

depending only on Θ, m and n, such that

PD[Θ(f)] = Tp[Θ](w1(TM), ..., wm(TM), f ∗w1(TN), ..., f ∗wn(TN)) ∈ H∗(M,Z2),

where wi(TM) and wj(TN) are the Stiefel-Whitney classes of the corresponding

tangent bundles.
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This universal polynomial is called the Thom polynomial of Θ. We will give a

rigorous construction of this polynomial in the case of complex manifolds.

Thom’s principle may also be translated from the real to the complex case.

Theorem 5.2 (Thom’s principle in the complex case). Let Θ be an (appropriately

defined) singularity and let m ≤ n be non-negative integers. Suppose {a1, ..., am}
and {a′1, ..., a′n} are two sets of graded variables with deg ai = deg a′i = i. For

all compact complex manifolds M and N , dim(M) = m, dim(N) = n, and a

holomorphic map f : M → N satisfying certain transversality conditions,

Θ(f) = {p ∈M | f has a singularity of type Θ at p}

is a cycle in M , and there exists a universal polynomial in a1, ..., am and a′1, ..., a
′
n

Tp[Θ](a1, ..., am, a
′
1, ..., a

′
n)

depending only on Θ, m and n, such that

PD[Θ(f)] = Tp[Θ](c1(TM), ..., cm(TM), f ∗c1(TN), ..., f ∗cn(TN)) ∈ H∗(M,R),

where ci(TM) and cj(TN) are the Chern classes of the corresponding tangent

bundles.

In fact, the result of Borel and Haefliger [8] implies that there are pairs of real

and complex singularities for which the real Thom polynomial may be obtained

by substituting the corresponding Stiefel-Whitney classes for the Chern classes in

the corresponding Thom polynomial in the complex case.

Calculating Thom polynomials is difficult: some progress has been made in

the works of Ronga [32], Porteous [28], Gaffney [18], Rimányi [30], Bérczi, Fehér

and Rimányi [4], Fehér and Rimányi [14], and Bérczi and Szenes [5] and Kazarian

[22].

5.2 Global singularity theory

Let z1, . .., zm be the standard coordinates on Cm. Denote by Jm the algebra of

formal power series in z1, . .., zm without a constant term, i.e.

Jm = {h ∈ C[[z1, . .., zm]] | h(0) = 0}.

The space of d-jets of holomorphic functions on Cm near the origin is the

quotient of Jm by the ideal of series with the lowest order term of degree at least
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d+ 1, i.e. the ideal generated by monomials zi11 . ..zimm such that
∑
ij = d+ 1. We

will denote this ideal by I〈zd+1〉 :

Jmd = Jm/I〈zd+1〉.

As a linear space, the algebra Jmd may be identified with the space of poly-

nomials in z1, . .., zm of degree at most d without a constant term. The space of

d-jets of holomorphic maps from (Cm, 0) to (Cn, 0), or the space of map-jets, is

denoted by Jm,nd and is naturally isomorphic to Jmd ⊗ Cn. In this paper we will

assume m ≤ n.

Now let r be a non-negative integer. An unfolding of a map-jet Ψ ∈ Jm,nd is a

map-jet Ψ̂ ∈ Jm+r,n+r
d of the form:

(z1, . . . , zn, y1, . . . , yn) 7→ (F (z1, . . . , zn, y1, . . . , yn), y1, . . . , yr),

where F ∈ Jm+r,n
d satisfies

F (z1, . . . , zn, 0, . . . , 0) = Ψ(z1, . . . , zn).

The trivial unfolding (or a trivial suspension) is the map-jet

susprΨ = (Ψ(z1, . . . , zn), y1, . . . , yr).

Composition of map-jets together with cancellation of terms of degree greater

than d gives a well-defined map

Jm,nd × Jn,kd −→ Jm,kd

(Ψ,Φ) 7→ Φ ◦Ψ.

Consider a sequence of natural maps

Jm,nd → Jm,nd−1 → . ..→ Jm,n1
∼= Hom(Cm,Cn).

For Ψ ∈ Jm,nd , the linear part of Ψ is defined as the image of Ψ in Jm,n1 and denoted

by Lin Ψ.

Consider the set

Diffmd = {∆ ∈ Jm,md | Lin ∆ invertible}.

The previously defined operation“◦”gives this set an algebraic group structure.

Let ∆m ∈ Diffmd , ∆n ∈ Diffnd , and Ψ ∈ Jm,nd . The left-right action of Diffmd ×Diffnd

on Jm,nd is given by

(∆m,∆n)Ψ = ∆n ◦Ψ ◦∆−1
m .
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Definition 5.3. Left-right invariant algebraic subvarieties of Jm,nd are called sin-

gularities.

For each singularity Θ which is stratum of the Diffmd ×Diffnd -action there is a

map-jet Φ defined up to left-right equivalence such that all other map-jets in Θ

are left-right equivalent to a suspension of Φ. Such Φ is called a prototype of Θ.

To a given element Ψ ∈ Jm,nd
∼= Jmd ⊗ Cn, presented as (Ψ1, . ..,Ψn), Ψi ∈ Jmd ,

we can associate an algebra AΨ = Jmd /I〈Ψ1, . ..,Ψn〉. This algebra is nilpotent :

there exists a natural number q such that AqΨ = 0, in other words, a product of

any q elements of AΨ is equal to 0. AΨ is nilpotent because Jmd itself is nilpotent:

(Jmd )d+1 = 0.

Definition 5.4. Suppose A is a finite-dimensional commutative nilpotent algebra.

The subset

Θm,n
A = {Ψ ∈ Jm,nd | AΨ

∼= A}

is called a contact singularity. We will omit the dependence on d in the notation

when the value of d is clear from the context.

When clear from the context, the dependence on m,n will be omitted.

In this work we will be focusing on contact singularities and some particular

series of contact singularities.

Example 5.1 (Morin singularities). The main notion of this work are Morin, or

Ad singularities. These are the contact singularities given by the nilpotent algebra

Ad = xC[x]/xd+1

The prototype of the Ad singularity is given by

(z, y1, . . . , yd−1) 7→ (zd+1 +
d−1∑
i=1

yiz
i, y1, . . . , yd−1).

ΘA is left-right invariant, but two map-jets with the same nilpotent algebra

may be in different left-right orbits. However, there is a group acting on Jm,nd

whose orbits are exactly the sets ΘA for various nilpotent algebras A. This group

is the contact group:

Km,nd = Gln(C⊕ Jmd )oDiffmd .

It acts on J k,n
d via

[(M,∆),Ψ] 7→ (M ·Ψ) ◦∆−1,

where M ∈ Gln(C⊕ Jmd ), ∆ ∈ Diffmd , and ” · ” stands for matrix multiplication.
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Theorem 5.5. [26]Two map-jets are contact equivalent if and only if their nilpo-

tent algebras are isomorphic.

Proposition 5.6. [2] Let A be a nilpotent algebra: Ad+1 = 0. For d ≥ dim(A/A2)

and n sufficiently large, Θm,n
A is a non-empty, left-right invariant, irreducible quasi-

projective algebraic subvariety of Jm,nd .

5.3 Equivariant Poincaré dual

Suppose a topological group G acts continuously on an algebraic variety M, and

Y is a closed G-invariant subvariety in M. In this section we will define an analog

of a Poincaré dual of Y , which reflects the G-action: the equivariant Poincaré dual

of Y .

Let G be a topological group and let π : EG→ BG be the universal G-bundle,

i.e. a principal G-bundle such that if p : E → B is any principal G-bundle, then

there is a map ζ : B → BG unique up to homotopy and E ∼= ζ∗EG. The universal

G-bundle exists, is unique up to homotopy equivalence and can be constructed as

a principal G-bundle with contractible total space.

Now we can construct the space with a free G-action and the same homotopy

type as a fixed before algebraic variety M , the Borel construction:

Definition 5.7. The Borel construction (also homotopy quotient or homotopy

orbit space) for a topological group G acting on a topological space M is the

space EG×GM, i.e. the factor of EG×M by the G-action: (xg−1, gy) ∼ (x, y),

where g ∈ G, x ∈ EG, y ∈M.

Definition 5.8. The equivariant cohomology of M is the ordinary cohomology for

the Borel construction:

H∗G(M) = H∗(EG×GM).

Note that since (EG× pt)/G = EG/G = BG, the equivariant cohomology of

a point is H∗G(pt) = H∗(BG).

We would like to define an analog of a Poincaré dual in the equivariant case, i.e.

when a group G acts on an algebraic variety M and Y ⊂M is a closed G-invariant

subvariety. We constructed a substitute for the orbit space of G-action on M : the

Borel construction EG×GM. Now, EG×G Y is again a G-invariant subvariety of

EG×GM, and we want to define a dual of EG×G Y in H∗(EG×GM) = H∗G(M).

However, first we have to deal with the fact that EG is usually infinite-dimensional

by introducing an approximation.
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Lemma 5.9. [1] Suppose E1 ⊂ E2 ⊂ ... is a sequence of finite-dimensional

connected spaces with a free G-action compatible with the embeddings, such that

H i(Ej) = 0 for every fixed i, and j large enough. Then for any M, any i and j

large enough there are natural isomorphisms

H i(Ej ×GM) ∼= H i(EG×GM) = H i
G(M).

Let us fix EG, BG and the finite-dimensional approximations

EG1 ⊂ EG2 ⊂ . .. ⊂ EG

together with BGj = EGj/G. We can now consider EGj ×G Y ⊂ EGj ×G M
with j large enough – two finite dimensional spaces. Let D be the codimension of

EGj ×G Y in EGj ×GM.

Every irreducible closed subvariety of a non-singular variety has a well-defined

Borel-Moore homology class [16], so we can define the equivariant Poincaré dual

of Y as follows:

eP(Y ) = [EGj ×G Y ]BM ∈ H2D(EGj ×GM) = H2D
G (M)

for j large enough.

5.4 The Thom polynomial

We want to study the equivariant Poincaré dual of a closure of a singularity

Θ ⊂ Jm,nd . Since Jm,nd is contractible and the group Diffnd ×Diffnd acting on it

is homotopy equivalent to Glm×Gln, the equivariant Poincaré duals of subvari-

eties in Jm,nd with respect to these groups will coincide. Therefore, in the rest of

the paper we will assume G = Glm×Gln .

First, we need to fix EG, BG and the corresponding approximations with an

appropriate topology. Recall that C∞ is defined as

C∞ = {(z1, z2, . ..) | zi ∈ C, only finite number of zi is non-zero}.

Fix EGlm = Fr(m,∞), the manifold of m-frames of vectors in C∞, and BGlm =

Gr(m,∞), the Grassmannian of m-planes in C∞. So, in our case EG = Fr(m,∞)×
Fr(n,∞) and BG = Gr(m,∞) × Gr(n,∞). The approximations are given by

EGj = Fr(m, j)×Fr(n, j) andBGj = Gr(m, j)×Gr(n, j).With j →∞H i
G(BGj) =

H i
G(BG) for all i.

By definition,

eP(Θ) ∈ H∗G(Jm,nd ) = H∗(BG) = H∗(Gr(m,∞)×Gr(n,∞)),
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since Jm,nd is contractible.

Let Lm denote the tautological vector bundle over Gr(m,∞), i.e.

Gr(m,∞)× C∞ ⊃ {(V, p) | p ∈ V }.

Then we can identify H∗(Gr(m,∞),C) with C[c1, . .., cm], where ci are the Chern

classes of L∗m – the dual tautological bundle. This observation allows us to define

the Thom polynomial as follows:

Definition 5.10. Let d,m, n ∈ N and let m ≤ n. Let Θ ⊂ Jm,nd be a singularity.

The Thom polynomial of Θ is defined as

Tp[Θ](c, c′) = eP(Θ) ∈ H∗(Gr(m,∞)×Gr(n,∞)) ∼= C[c1, . .., cm]⊗ C[c′1, . .., c
′
n],

where ci are the Chern classes of L∗m and c′j – the Chern classes of L∗n.

The notation Tp[Θ](c, c′) comes from the total Chern class: c =
∑
ci.

The Thom polynomial defined above coincides with the universal polynomial

from the Thom’s principle. In this paper we will think of the Thom polynomial as

defined in Definition 5.10. For a detailed discussion of the relation between this

definition and the Thom’s principle, see [5], [14] and [22].
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6 Structure theorems of global singularity the-

ory

6.1 Damon’s theorem

Before stating and proving Damon’s theorem, let us first discuss the relation be-

tween Thom polynomials for different singularities.

6.1.1 Relation between different Thom polynomials

Suppose A is a nilpotent algebra. Fix m,n,m′, n′ ∈ N such that n ≥ m, n′ ≥
m′ and n − m = n′ − m′. Consider Θm,n

A ⊂ Jm,nd and Θm′,n′

A ⊂ Jm
′,n′

d and the

corresponding approximations for K,K ′ � 0 of the Borel constructions EGK ×G
Θm,n
A ⊂ EGK ×G Jm,nd and EG′K′ ×G′ Θm′,n′

A ⊂ EG′K′ ×G′ Jm
′,n′

d for G = Glm×Gln

and G′ = Glm′ ×Gln′ .

Suppose ϕ and h in the following diagram are holomorphic.

Σ1 = EGK×GΘ
m,n

A
� � // EGK×GJm,n

d
π //

h
��

Gr(m,K)×Gr (n,K)

ϕ

��
Σ2 = EG′K′×G′Θ

m′,n′

A
� � // EG′K′×G′J

m′,n′

d
π′ // Gr(m′, K ′)×Gr (n′, K ′)

If the following conditions [14] are satisfied:

• the square on the right commutes,

• h−1(Σ2) = Σ1,

• h is transversal to the smooth points of Σ2,

then h∗ PD[Σ2] = PD[h−1(Σ2)] = PD[Σ1]. From the commutativity of the right

square we obtain the equality

Tp[Θm,n
A ] = ϕ∗Tp[Θm′,n′

A ].

Let now m′ = m+ 1, n′ = n+ 1. Define the map ϕ as follows:

ϕ : Gr(m,K)×Gr(n,K) −→ Gr(m+ 1, K + 1)×Gr(n+ 1, K + 1)

(V1, V2) 7→ (V1 ⊕ C, V2 ⊕ C).
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Define h in a similar way: let (e1, e2, . .., eK+1) be a fixed orthonormal basis

of CK+1, and let (t1, . .., tm) be an orthonormal m-frame in CK such that em+1 /∈
〈t1, . .., tm〉, let (Ψ1. ..,Ψn) ∈ Jm,nd , i.e. Ψj(z1, . .., zm) ∈ Jmd , then h is given by:

h : EGK ×G Jm,nd −→ EG′K+1 ×G′ J
m+1,n+1
d

((t1, . .., tm), (Ψ1, . ..,Ψn)) 7→ ((t1, . .., tm, em+1), (Ψ1, . ..,Ψn, zm+1)).

Let us denote the set of Chern classes of the dual tautological bundle L∗m on

Gr(m,K) by c = c1, . .., cm, the Chern classes of L∗n by c′ = c′1, . .., c
′
n, the Chern

classes of L∗m+1 on Gr(m + 1, K + 1) by c = c1, . .., cm+1 and the Chern classes of

L∗n+1 by c′ = c′1, . .., c
′
n+1. The transversality and the commutativity of the square

on the right are straightforward, so the following is true:

Tp[Θm,n
A ](c, c′) = ϕ∗Tp[Θm+1,n+1

A ](c, c′).

We can also show how the pullback of ϕ acts on the Chern classes ci and c′i :

ϕ∗(ci) = ci for i ≤ m and ϕ∗(cm+1) = 0,

ϕ∗(c′i) = c′i for i ≤ n and ϕ∗(c′n+1) = 0.

Using the properties of the pullback map we conclude the following.

Lemma 6.1. In the above notations,

Tp[Θm,n
A ](c1, ..., cm, c

′
1, ..., c

′
n) = Tp[Θm+1,n+1

A ](ϕ∗(c1), ..., ϕ∗(cm+1), ϕ∗(c′1), ..., ϕ∗(c′n+1)) =

= Tp[Θm+1,n+1
A ](c1, ..., cm, 0, c

′
1, ..., c

′
n, 0)

We can iterate the same procedure for Tp[Θm+2,n+2
A ], Tp[Θm+3,n+3

A ], etc, but

since the Thom polynomial has a fixed degree, there will be a stabilization. This

conclusion proves that the Thom polynomial depends only on the difference n−m
but not on m and n, it also allows us to define the notion that generalizes the

Thom polynomial.

Definition 6.2. Fix a nilpotent algebra A and the difference between the dimen-

sions of the source and the target of the map-jets, i.e. n − m in our previous

notations, denote this number by l. Fix k = codim(Θ
m,n

A ) in Jm,nd . Define the

universal Thom polynomial as

UTp[Θl
A](c1, . .., ck, c

′
1, . .., c

′
k+l) = Tp[Θm,m+l

A ](c1, . .., ck, c
′
1, . .., c

′
k+l)

for m > k.
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For all m,n such that n−m = l we obtain

Tp[Θm,n
A ](c1, . .., cm, c

′
1, . .., c

′
n) = UTp[Θl

A](c1, . .., cm, 0, . .., 0, c
′
1, . .., c

′
n, 0, . .., 0).

Let us show an important property of the universal Thom polynomial. Let

f : Gr(m,K) −→ Gr(m′, K ′)

be any holomorphic map. Consider the diagram:

EGK×GJm,n
d

π //

h
��

Gr(m,K)×Gr (n,K)

ϕ

��
EG′K+K′×G′J

m+m′,n+m′

d
π′ // Gr(m+m′, K +K ′)×Gr (n+m′, K +K ′)

Define ϕ as

ϕ(V1, V2) = (V1 ⊕ f(V1), V2 ⊕ f(V1)), V1 ∈ Gr(m,K), V2 ∈ Gr(n,K).

Let (e1, . .., em) be the orthonormal basis for V1, (e′1, . .., e
′
n) – the orthonor-

mal basis for V2, and (e1, . .., em′) – the orthonormal basis for f(V1). Let Ψ =

(Ψ1, . ..,Ψn) ∈ Jm,nd . Define h as follows:

h[(e1, . .., em, e
′
1. .., e′n),Ψ] =

= [(e1, . .., em, e1, . .., em′ , e
′
1, . .., e

′
n, e1, . .., em′), (Ψ1, . ..,Ψn, zn+1, . .., zn+m′)]

Let c be the total Chern class of L∗m, c
′ – the total Chern class of L∗n, and df –

the total Chern class of f ∗(L∗m′). We have the following formulae for the pullbacks:

ϕ∗c(L∗m+m′) = c(L∗m ⊕ f ∗L∗m′) = cdf

ϕ∗c(L∗n+m′) = c(L∗n ⊕ f ∗L∗m′) = c′df

On the level of the universal Thom polynomials we obtain the following.

Lemma 6.3. In the above notations,

UTp[Θl
A](c, c′) = UTp[Θl

A](cdf , c
′df ).
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6.1.2 Proof of Damon’s theorem

Theorem 6.4 (Damon, [11]). Let d,m, n ∈ N and let m ≤ n. Suppose A is a finite-

dimensional commutative nilpotent algebra and Θm,n
A ⊂ Jm,nd a contact singularity.

The Thom polynomial of Θm,n
A depends only on the difference l = n−m and can

be expressed in a single set of variables c̃ given by the generating series

1 + c̃1t+ c̃2t
2 + ... =

∑n
i=0 c

′
it
i∑m

j=0 cjt
j
.

These new variables are called the relative Chern classes. We will denote the

Thom polynomial expressed in the relative Chern classes by Tp[Θm,n
A ](c′/c).

Proof. The previous discussion implies that if there existed a map f such that

df = 1/c, the Damon’s theorem would be proved since

UTp[Θl
A](c, c′) = UTp[Θl

A](1, c′/c) = UTp[Θl
A](c′/c).

In fact, such a map does not exist. The equality c(L∗) = 1/c(Q∗) holds for

a finite Grassmannian, so df should be c(Q∗), but the Chern classes of the dual

tautological bundle can not be pulled back to Q∗ via a holomorphic map because

c(L∗) is positive (i.e. the Chern classes of L∗ are linear combinations with non-

negative coefficients of the Poincaré duals to analytic subvarieties) and c(Q∗) is

not.

Let S be an ample line bundle over Gr(m,K). Then for α big enough, Q∗m⊗S⊗α

is generated by its global holomorphic sections and thus has positive Chern classes.

There exists a holomorphic map

fα : Gr(m,K) −→ Gr(m+m′α, K +K ′α)

such that f ∗α(L∗m+m′α
) = Q∗m ⊗ S⊗α.

Let us compute the total Chern class of this twisted bundle. Denote the bundles

from the splitting principle for Q∗m by E1, . . . , En and their first Chern classes by

y1, . . . , yn, denote the first Chern class of S by z. Then the following identity holds:

c(Q∗m ⊗ S⊗α) = c(E1 ⊗ S⊗α ⊕ . ..⊕ Em ⊗ S⊗α) =

=
m∏
i=1

(yi + αz + 1) =
m∏
i=1

(yi + 1) + αP (α) = c(Q∗m) + α · P (α),

where α · P (α) is a polynomial in α that contains all the summands of
∏m

i=1(xi +

αy + 1) that depend on α. Define

ϕα : Gr(m,K)×Gr(n,K) −→ Gr(m+m′α, K +K ′α)×Gr(n+m′α, K +K ′α)
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(V1, V2) 7→ (V1 ⊕ fα(V1), V2 ⊕ fα(V1))

Denote the total Chern class of the dual tautological bundle L∗m+m′α
on Gr(m +

m′α, K + K ′α) by c and the total Chern class of the dual tautological bundle

L∗n+m′α
on Gr(n + m′α, K + K ′α) by c′. Then by the previous discussion we have

the following relations between the Chern classes:

ϕ∗(c) = c · (c(Q∗m) + αP (α)) = 1 + c · αP (α)

ϕ∗(c′) = c′ · (c(Q∗m) + αP (α)) = c′/c+ c′ · αP (α).

Or, on the level of the universal Thom polynomials:

UTp[Θl
A](1+c·αP (α), c′/c+c′·αP (α)) = UTp[Θl

A](1, c′/c)+αP2(α) = UTp[Θj
A](c, c′),

where αP2(α) contains all the summands that depend on α.

Since αP2(α) = UTp[Θl
A](c, c′) − UTp[Θl

A](1, c′/c) their expressions in the

Schur polynomial basis are also equal:

αP2(α) = α
∑

Wλµ(α)sλ(c)sµ(c′)

UTp[Θl
A](c, c′)− UTp[Θl

A](1, c′/c) =
∑

Bλµsλ(c)sµ(c′)

α
∑

Wλµ(α)sλ(c)sµ(c′) =
∑

Bλµsλ(c)sµ(c′)

This equation holds if and only if

Bλµ = αWλµ(α)

for all λ and µ. However, since this is true for all sufficiently large α, the polynomial

Bλµ−αWλµ(α) has infinite number of roots. Thus, it is zero for all α. This implies

that Bλµ = 0 for all λ and µ, i.e. UTp[Θl
A](c, c′) = UTp[Θl

A](1, c′/c).

6.2 Positivity

The Schur polynomials serve as a natural basis for the cohomology ring of Grass-

mannians. Given an integer partition λ = (λ1, . .., λm), such that K ≥ λ1 ≥ λ2 ≥
. .. ≥ λm > 0 define the conjugate partition λ∗ = (λ∗1, . .., λ

∗
k) by taking λ∗i to be

the largest j such that λj ≥ i. Denote by sλ(b1, . .., bm) the expression of the Schur

polynomials in elementary symmetric polynomials:

sλ(b1, . .., bm) = det{bλ∗i+j−i}mi,j=1.
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The Schur polynomials of degree d in m variables form a linear basis for the

space of homogeneous degree d symmetric polynomials in m variables.

Consider the finite Grassmannian Gr(m,K). The Schur polynomials indexed

by λ such that K ≥ λ1 ≥ . .. ≥ λm > 0, evaluated in the Chern classes c1, . .., cm

of the dual tautological vector bundle L∗m are the Poincaré duals of the Schu-

bert cycles – homological classes of Schubert varieties σλ, special varieties whose

homological classes form a basis for the homology of the Grassmannian [16]:

sλ(c1, . .., cm) = PD[σλ].

The following result was first proved by Pragacz and Weber. Here we give a

new proof of this result.

Theorem 6.5 (Pragacz, Weber, [29]). Let d,m, n ∈ N and let m ≤ n. Suppose A

is a finite-dimensional commutative nilpotent algebra and Θm,n
A ⊂ Jm,nd a contact

singularity. The Thom polynomial of Θm,n
A expressed in the relative Chern classes

is Schur-positive:

Tp[Θm,n
A ](c′/c) =

∑
αλsλ(c

′/c)

where αλ ≥ 0.

Proof. By Damon’s theorem, Thom polynomials for contact singularities can be

written as follows:

Tp[Θm,n
A ](c, c′) = Tp[Θm+j,n+j

A ](1, c′/c) =

=
∑
λ

α0λs0(1)sλ(c
′/c) =

∑
λ

α0λsλ(c
′/c)

for j big enough. To prove the positivity we show that α0λ ≥ 0 for all λ.

Fix a plane V0 ∈ Gr(m,K) and define the map

h : Gr(n,K) −→ Gr(m,K)×Gr(n,K)

h(V ) = (V0, V ).

Let ϕ be the unique map making the following diagram commutative:

ϕ−1(EGK ×G Θm,n
A ) �

� // h∗(EGK ×G Jm,nd )
p2 //

ϕ

��

Gr(n,K)

h

��
Σ = EGK ×G Θm,n

A
� � // EGK ×G Jm,nd

p1 // Gr(m,K)×Gr(n,K)
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The idea of the proof is to show that∑
λ

α0λsλ(c
′) = h∗(Tp[Θm,n

A ](c, c′)) = PD[X],

where X is an analytic cycle in Gr(n,K).

Let σλ′ be a homology class of a Schubert variety of dimension complementary

to dimX. Gln acts transitively on Gr(n,K), so by Kleiman’s theorem [23] there

exists C ∈ Gln such that (CX) ∩ σλ′ is of expected dimension (so, discrete) and

CX is homologous to X.

#(X ∩ σλ′) = PD[X] · PD[σλ′ ] =
∑
µ

α0µsµ(c′)sλ′(c
′) = α0λ =

= #(CX ∩ σλ′) =
∑

x∈CX∩σλ′

multx ≥ 0.

Here multx is an intersection multiplicity, which is non-negative for two analytic

cycles.

Let us consider the details. We should construct the algebraic variety X.

First, denote EGK ×G Jm,nd by E and EGK ×G Θm,n
A by Σ for short. It is clear

that ϕ−1(Σ) ⊂ h∗(E). If ϕ is also transversal to Σ, then we have that

ϕ∗ PD[Σ] = PD[ϕ−1(Σ)].

By definition, we need to show that:

Im(dx(ϕ)) + Tϕ(x)Σ = Tϕ(x)E

for x ∈ ϕ−1(Σ). Locally

T(z,y)E = Tz(Gr(m,K)×Gr(n,K))⊕ TyJm,n
d

for z ∈ EGK = Gr(m,K) × Gr(n,K) and y ∈ Jm,nd . With this interpretation

the transversality is obvious since Im(dx(ϕ)) has TyJ
m,n
d as a direct summand and

Tϕ(x)Σ has Tz(Gr(m,K)×Gr(n,K)) as a direct summand.

Let us show that the vector bundle h∗(E) has enough holomorphic sections to

find a holomorphic section s transversal to ϕ−1(Σ).

Lemma 6.6. EGK ×G Jm,nd =
(⊕d

i=1 Symi Lm

)
� L∗n.

Proof. An element of a fiber of EGK ×G Jm,nd is a class [(em, en), f ], where f ∈
Jm,n
d , em is a frame, i.e. a linear injective map form Cm to CK , and en is a linear
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injective map form Cn to CK . We consider a class [(em, en), f ] with the equivalence

relation

((em, en), f) ∼ ((emC
−1
m , enC

−1
n ), CnfC

−1
m ),

where Cn ∈ Gln, Ck ∈ Glk .

An element of the fiber of
(⊕d

i=1 Symi Lm

)
� L∗n is a polynomial function of

degree at most d without a constant term between Vm ∈ Gr(m,K) and Vn ∈
Gr(n,K).

The map [(em, en), f ] 7→ em ◦ f ◦ e−1
n is correctly defined and is a bijection.

We use this lemma to decompose h∗(E) :

h∗(E) =
(⊕d

i=1
Symi(Trivm)

)
⊗ L∗n = Triv(d+mm )−1⊗L

∗
n,

where Trivm is a trivial vector bundle whose fiber is a complex vector space of

dimension m.

We use the following theorem to show that this bundle has enough global

holomorphic sections to find one transversal to ϕ−1(Σ).

Theorem 6.7 (Parametric transversality theorem, [20]). Let M , N , Z, S be

smooth manifolds. Consider F : M × S → N ⊃ Z, smooth map transversal to Z.

Then for almost all s ∈ S the map Fs is transversal to Z.

Let D =
(
d+m
m

)
− 1. In the notations of the Parametric transversality theorem,

let

M = Gr(n,K), N = Hom(Ln,CD) ∼= h∗(EGK ×G Jm,nd ),

Z = ϕ−1(Σ), S = Γ(Hom(Ln,CD)) = Hom(CK ,CD).

Then, the map F from the theorem is the following:

F : Gr(n,K)× Hom(CK ,CD) −→ Hom(Ln,CD).

(V, f) 7→ f |V .

The transversality of F to ϕ−1(Σ) obviously follows from the fact that d(V,f)F

is surjective for all V and f .

Now, by Parametric transversality theorem, the set of holomorphic sections of

h∗(E) transversal to smooth points of ϕ−1(Σ) is open and dense in all holomorphic

sections of this bundle. The set of holomorphic sections of h∗(E) transversal to

smooth points of the set of singular points of ϕ−1(Σ) is open and dense in the set

of holomorphic sections transversal to smooth point of ϕ−1(Σ), and so on. Since

this procedure drops the dimension of the variety, it is a finite process and the
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intersection of a finite number of open and dense sets is again open and dense. So,

we can choose a holomorphic section s transversal to ϕ−1(Σ).

The analytic subvariety X from the discussion at the beginning of the proof is

s−1ϕ−1(Σ) :

PD[s−1ϕ−1(Σ)] = s∗ PD[ϕ−1(Σ)] = (pr2
∗)−1ϕ∗ PD[Σ] = h∗(pr1

∗)−1 PD[Σ] =

= h∗Tp[Θm,n
A ](c, c′) =

∑
λ

α0λsλ(c
′)

and the proof of positivity is complete.
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7 Computing Thom polynomials

Computing the Thom polynomials is difficult. So far, Thom polynomials are

known only for a limited number of singularities, mostly in small relative codi-

mensions. There are two main modern methods to compute Thom polynomials:

Rimányi’s method of restriction equations and the Bérczi-Szenes-Kazarian residue

formula. In this section we will explain both methods and show how the combi-

nation of the two may simplify the computations.

7.1 Rimányi’s method of restriction equations

Let us recall the method of computing the Thom polynomials introduced by

Rimányi in [30].

Let l ≥ 0 and let Θ be a singularity in the jet-space of relative codimension l,

i.e. Θ ⊂ Jm,m+l
d . Let θ : Cm → Cm+l be its prototype.

Definition 7.1. [30] The maximal compact subgroup of the left-right symmetry

group of θ

Aut θ = {(∆m,∆m+l) ∈ Diffmd ×Diffm+l
d | ∆m+l ◦ θ ◦∆−1

m = θ}

will be denoted by GΘ. Its representations on Cm and Cm+l will be λ1(Θ) and

λ2(Θ) respectively. The vector bundles associated to the universal GΘ-bundle

using the representations λ1(Θ) and λ2(Θ) will be called ξΘ and ξΘ. The total

Chern class of Θ is defined as

c(Θ) =
c(ξΘ)

c(ξΘ)
∈ H∗(BGΘ,Z).

Let the Euler class e(Θ) ∈ H2 codim Θ(BGΘ,Z) be the Euler class of the bundle ξΘ.

Definition 7.2. [30] (The hierarchy of singularities.) Let Θ,Ξ be singularities

in Jm,m+l
d for l ≥ 0. The singularity Θ will be called more complicated than Ξ if

Θ 6⊂ Ξ. We will write Ξ < Θ. Let us adapt the convention Θ ≮ Θ.

Proposition 7.3. [30] If codim Ξ ≥ codim Θ, then Ξ ≮ Θ.

Theorem 7.4. (Rimányi’s method of restriction equations, [30])

Tp[Θ](c(Ξ)) =

e(Ξ) if Θ = Ξ

0 if Θ ≯ Ξ and Θ 6= Ξ.
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Corollary 7.5. [30]

Tp[Θ](c′(Ξ)) =

e′(Ξ) if Θ = Ξ

0 if Θ ≯ Ξ and Θ 6= Ξ.
,

where e′(Ξ) and c′(Ξ) are the Euler and the Chern classes of Ξ corresponding to

any subgroup G′Ξ ≤ GΞ.

Often, these conditions characterize the Thom polynomial. Let us show how

to compute the Thom polynomial using this method on a simple example.

Example 7.1. Suppose l = 0, and let us compute the Thom polynomial of ΘA3 ⊂
Jm,md . By Proposition 7.3, the A3 singularity is more complicated than the A2

and the A1 singularities. The computation of the Chern and the Euler classes

corresponding to singularities is described in great detail in [30], in particular, the

following formulas for Ai singularities are computed:

c(Ai) = 1+(i+1)x
1+x

= 1 + ix− ix2 + ix3 − . ..

e(Ai) = i!xi.

Since ΘA3 ⊂ Jm,md is of codimension 3, its Thom polynomial is a homogeneous

polynomial of degree 3 in relative Chern classes (interpreted as graded variables):

Tp[Θm,m
A3

] = Bc3
1 + Cc1c2 +Dc3.

We will use Rimányi’s method of restriction equations to compute the unknown

coefficients B,C,D ∈ Z. By Theorem 7.4, we have the following equations:

1. Tp[Θm,m
A3

](c(A2)) = 0⇔ Bc3
1(A2) + Cc1(A2)c2(A2) +Dc3(A2) = 0

⇒ 4B − 2C +D = 0

2. Tp[Θm,m
A3

](c(A1)) = 0⇒ B − C +D = 0

3. Tp[Θm,m
A3

](c(A3)) = e(A3)⇒ 9B − 3C +D = 2,

that is, the coefficients of Tp[Θm,m
A3

] are given by


4B − 2C +D = 0

B − C +D = 0

9B − 3C +D = 2

⇒


B = 1

C = 3

D = 2.

This method allows us to compute the Thom polynomials when the hierarchy

of singularities is known. However, the hierarchy depends on l and is not known

in the general case.
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7.2 The Bérczi-Szenes-Kazarian residue formula

Another method of computing the Thom polynomials for Ad-singularities was

presented in [5]. This formula does not depend on the hierarchy of singularities.

Theorem 7.6. [5] Let Td ⊂ Bd ⊂ Gld be the subgroups of invertible diagonal

and upper-triangular matrices respectively. Denote the diagonal weights of Td by

z1, ..., zd. Consider the Gld-module of 3-tensors Hom(Cd, Sym2Cd); identifying the

weight-(zi−zj+zk) symbols qkij and qkji, we can write a basis for this space as follows:

Hom(Cd, Sym2Cd) =
⊕

Cqkij, 1 ≤ i, j, k ≤ d.

Consider the reference element

εref =
d∑
i=1

d−i∑
j=1

qi+jij

in the Bd-invariant subspace

Nd =
⊕

1≤i+j≤k≤d

Cqkij ⊂ Hom(Cd, Sym2Cd).

Set the notation Rd for the orbit closure Bdεref ⊂ Nd, and consider its Td -

equivariant Poincaré dual

Qd(z1, ..., zd) = eP(Rd, Nd)Td ,

which is a homogeneous polynomial of degree dim(Nd)− dim(Rd).

Then for arbitrary integers m ≤ n, the Thom polynomial for the Ad-singularity

with m-dimensional source space and n-dimensional target space is given by the

following iterated residue formula:

eP(Θm,n
Ad

) = Res
z=∞

(−1)d
∏

i<k(zi − zk)Qd(z1, . . . , zd)∏d
k=1

∏k−1
i=1

∏min(i,k−i)
j=1 (zi + zj − zk)

d∏
i=1

RC

(
1

zi

)
zn−mi ,

where RC(·) is the generating function of the relative Chern classes:

RC(q) = 1 + c1q + c2q
2 + · · · =

∏n
i=1(1 + θiq)∏m
j=1(1 + λjq)

,

here θi and λi denote the corresponding Chern roots.

The only unknown ingredient in the Bérczi-Szenes-Kazarian residue formula is

theQd polynomial. While in principle it is an algebraic problem whose solution can

be computed using software such as Singular or Macaulay, in reality the existing

methods and the computational capacity of modern computers only allow us to

find Qd for d ≤ 6.
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7.3 The Q-polynomial

The degree of the Q-polynomial is the codimension of Rd in Nd. The dimension

of Nd may be computed by indexing the basis by the triples of (i, j, k) such that

i ≤ j and i+ j ≤ k ≤ d. The dimension of the Borel orbit of the reference element

is

dim(Rd) = dim(Bd)− dim(Staberef ) =

(
d+ 1

2

)
− d =

(
d

2

)
.

Let us compute the degree of Qd for d ≤ 7 (the same data up to d = 6 may be

found in [5].)

d dimNd dimRd degQd

1 0 0 0

2 1 1 0

3 3 3 0

4 7 6 1

5 13 10 3

6 22 15 7

7 34 21 13

Example 7.2. Since Q3 = 1, we have the following formula for the Thom poly-

nomial of Θm,m
A3
⊂ Jm,md :

Tp(Θm,m
A3

) = (−1) Res
z1=∞

Res
z2=∞

Res
z3=∞

(z1 − z2)(z1 − z3)(z2 − z3)

(2z1 − z2)(z1 + z2 − z3)(2z1 − z3)
·

· RC

(
1

z1

)
RC

(
1

z2

)
RC

(
1

z3

)
dz1dz2dz3

Let us focus on the case when Qd is non-trivial. Following the idea from [5],

we first describe the set of equations satisfied by Rd ⊂ Nd.

We will write the equations in terms of the basis dual to the {qkij} basis of

Nd. The elements of this basis may be interpreted as the structure constants of

the multiplication making a d-dimensional filtered vector space a commutative d-

dimensional filtered algebra, i.e. let V1 ⊃ V2 · · · ⊃ Vd such that Vi = 〈vi, . . . , vd〉 be

a filtration on Cd. The multiplication preserving the filtration is of the following

form:

vi · vj =
d∑

k=i+j

tkijvk ∈ Vi+j,

where tkij ∈ Z are the structure constants. Note that the reference element gives

the ”graded” multiplication, i.e.

vi · vj = ti+jij vi+j.
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Since the points in the Borel orbit of the reference element correspond to

associative multiplications, Rd will satisfy the associativity equations, i.e. relations

between the structure constants coming from the associative triples

(vi · vj) · vk = vi · (vj · vk).

Example 7.3. [5] The first case where a non-trivial associativity equation appears

is the case d = 4 :

(v1 · v1) · v2 = (v1 · v2) · v1 ⇔

t211t
4
22 = t312t

4
13.

The variety defined by this equation is an irreducible toric variety of the same

dimension as Rd [5], thus they coincide. The equivariant Poincaré dual in this

case is given by the sum of weights of any of the two monomials:

Q4(z1, z2, z3, z4) = (2z1 − z2) + (2z2 − z4) = 2z1 + z2 − z4.

However, in the more complicated cases the variety described by the associa-

tivity equations is not toric and, moreover, has more than one component.

Example 7.4. The first case where the variety given by the associativity equations

has more than one component is the case d = 6 [5]. The following triples will give

the associativity relations:

(v1 · v1) · v2 = (v1 · v2) · v1

(v1 · v1) · v3 = (v1 · v3) · v1

(v1 · v1) · v4 = (v1 · v4) · v1

(v1 · v2) · v3 = (v1 · v3) · v2

(v1 · v2) · v3 = (v2 · v1) · v3

(v2 · v2) · v1 = (v2 · v1) · v2.

The corresponding associativity equations are the following:

t211t
4
22 = t312t

4
13

t211t
5
22 + t311t

5
23 = t312t

5
13 + t412t

5
14

t211t
6
22 + t311t

6
23 + t411t

6
24 = t312t

6
13 + t412t

6
14 + t512t

6
15

t211t
5
23 = t413t

5
14

t211t
6
23 + t311t

6
33 = t413t

6
14 + t513t

6
15
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t211t
6
24 = t514t

6
15

t312t
6
33 = t523t

6
15 = t413t

6
24

t422t
5
14 = t312t

5
23

t422t
6
14 + t522t

6
15 = t312t

6
23 + t412t

6
24.

It is easy to see that the associativity variety contains two maximal dimensional

components: R6 and another one given by

〈t211 = 0, t312 = 0, t311 = 0; t514 = 0, t614 = 0, t615 = 0, t624 = 0〉.

To distinguish the R6 component we add an extra relation such that it is

satisfied by R6, but not by the other component. This extra relation is computed

in [5] using Macaulay:

t412t
4
12t

5
23t

6
33 + t422t

4
13t

5
12t

6
33 + t413t

4
13t

5
22t

6
23 + t422t

4
13t

5
23t

6
13−

−t422t
4
11t

5
23t

6
33 − t413t

4
12t

5
22t

6
33 − t422t

4
13t

5
13t

6
23 − t413t

4
13t

5
23t

6
22 = 0.

The computation of the Poincaré dual Q6 of a Borel orbit R6 is non-trivial. The

computation using the description of the vanishing ideal of R6 by explicit relations

is written in detail in [5] and is too long to recall here.

Remark 7.7. While we have no effective method of computing the extra relations

(we can no longer use Macauley for d = 7), the form of the extra-relation for R6

suggests that the extra components appear when there exist d-dimensional asso-

ciative algebras that admit a filtration different from the natural for Ad-algebras

(1, . . . , 1)-filtration.

It is easy to see that the monomials from the extra relation for R6 only have

1, 2, 3 as lower indices and 4, 5, 6 as upper indices. That is, the extra filtration is

the (3, 3)-filtration given by

V1 = 〈v1, v2, v3〉, V2 = 〈v4, v5, v6〉

V1 · V1 ⊂ V2, V1 · V2 = V2 · V2 = 0.

Or, in terms of the structure constants,

〈t211 = t311 = t312 = t514 = t615 = t624 = 0〉.

For d = 7 we have found two different extra-filtrations: the (3, 4)- and the

(4, 3)-filtrations.
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The first one is given by

V1 = 〈v1, v2, v3, v4〉, V2 = 〈v5, v6, v7〉, or

〈t211 = t311 = t411 = t312 = t412 = t413 = t422 = t615 = t715 = t716 = t725 = 0〉.

The second extra component is given by

V1 = 〈v1, v2, v3〉, V2 = 〈v4, v5, v6, v7〉, or

〈t211 = t311 = t312 = t514 = t614 = t714 = t615 = t715 = t716 = t624 = t724 = t725 = t734 = 0〉.

7.4 Q-polynomial and the restriction equations

In this subsection we would like to show how Rimányi’s method of restriction

equations may be used to calculate the Qd polynomial in a different manner.

We will use a more general setup than in Theorem 7.4, following the ideas in

[12]. Note that the Thom polynomial is the equivariant Poincaré dual, and the

singularity is an invariant subvariety and a group orbit, so, using the fact that the

normal bundle of an orbit of a group action reduces to the stabilizer group of the

points of the orbit, we arrive at the following theorem.

Theorem 7.8. Let V be a vector space equipped with a compact Lie group G

action and let Σ be a closed G-invariant subvariety of V . If p ∈ V does not belong

to Σ, then

eP[Σ](x1, . . . , xm) = 0,

where xi are the diagonal weights of the Lie algebra Stabp.

Let us show how one may apply this theorem to the calculation of the Qd

polynomial. Consider the space Hom(Sym2Cd,Cd) of commutative multiplications

on Cd compatible with the previously defined filtration. There’s a torus Td acting

on the dual space Nd, and Rd is a Td-invariant subvariety.

The Td-equivariant Poincaré dual of Rd is the Qd polynomial. We may write

down the Qd polynomial as a general polynomial in d variables of degree codimRd

with unknown coefficients. Then, if we find a sufficient number of points outside

Rd, the equations from the theorem above will determine Qd up to multiplication,

i.e. the solution will still have one parameter. There are several ways of how to

get rid of it, we will return to this question later.
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The most obvious way of how to find points in Nd not belonging to Rd is to

take the points corresponding to the monomials from the associativity equations,

that is, to a monomial tkijt
k′

i′j′ corresponds a point in Nd given byqkij + qk
′

i′j′ 6= 0

qgef = 0 if {e, f, g} 6= {i, j, k} 6= {i,′ j′k′}

Since these points do not satisfy the equations satisfied by Rd, they do not

belong to Rd.

Example 7.5. Let us show how to apply the method described above to the

simplest case when Qd is non-trivial, that is, the case d = 4.

For d = 4, we have degQ4 = dimN4 − dimR4 = 7 − 6 = 1, so Q4 is a linear

polynomial in 4 variables:

Q4(z1, z2, z3, z4) = a1z1 + a2z2 + a3z3 + a4z4, ai ∈ Z.

There is only one associative triple giving one associativity equation:

(v1 · v1) · v2 = (v1 · v2) · v1 ⇒

t211t
4
22 = t312t

4
13.

That means we have two monomials, so two substitutions.

1. The weights of the Lie algebra corresponding to the the stabilizer of t211t
4
22

are given by x2 = 2x1

x4 = 2x2

⇔

x2 = 2x1

x4 = 4x1

That is, we have the following equation:

Q4(x1, 2x1, x3, 4x1) = a1x1 + 2a2x1 + a3x3 + 4a4x1 = 0.

2. In the case of t312t
4
13 we havex3 = x1 + x2

x4 = 2x1 + x2

and the substitution gives us

Q4(x1, x2, x1 + x2, 2x1 + x2) = a1x1 + a2x2 + a3(x1 + x2) + a4(2x1 + x2) = 0.
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All that is left is to solve the following system of linear equations:

a1x1 + 2a2x1 + a3x3 + 4a4x1 = 0

a1x1 + a2x2 + a3(x1 + x2) + a4(2x1 + x2) = 0
⇔



a1 + 2a2 + 4a4 = 0

a3 = 0

a1 + a3 + 2a4 = 0

a2 + a3 + a4 = 0

⇒



a2 := t

a1 = 2t

a3 = 0

a4 = −t.

The final answer is Q4(z1, z2, z3, z4) = 2tz1 + tz2 − tz4, which agrees with the

computation in [5] for t = 1.

The computation forQ5 is similar, but can no longer be carried out by hand, the

answer obtained with Maple is again a one-parameter solution. In the case of Q6,

however, the computation using only the restrictions coming from the associativity

equations gives a two-parameter solution. This computation once again suggests

that the associativity variety for d = 6 contains two components. Since there is an

extra relation that R6 satisfies, we use the substitutions coming from monomials

of this relation, and once again obtain a one-parameter solution. This leads to the

following conjecture.

Conjecture 7.9. Restrictions coming from the associativity equations and from

the extra equations distinguishing the Rd component determine Qd up to multi-

plication.

Remark 7.10. In the case of Q5 there are 10 substitutions coming from the

associativity equations, but the answer remains the same if we use only 6 of

them. For Q6 there are 37 substitutions in total, but if we take only 20 certain

substitutions, we again get the correct answer. We are unable to explain the

geometry related to this phenomenon yet.

7.5 Getting rid of the last parameter

The method described above uses the constraints that are homogeneous linear

equations, so only allows us to obtain the solution up to multiplication. That is,

to obtain Qd, we must find a non-homogeneous equation.
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Remark 7.11. The obvious non-homogeneous equation would be the analog of

the equation

Tp[Θ](c(Θ)) = e(Θ)

from Rimányi’s method of restriction equations, but in our case this equation is

Q(x, 2x, . . . , nx) =
∏

((i+ j)x− ix− jx) = 0,

so we get no new information from it.

7.5.1 The coefficient of cd1

The following statement is proved by Rimányi (see [30], Corollary 5.4).

Proposition 7.12. [30] The Thom polynomial of ΘAd ⊂ Jm,nd for m − n > 0 in

relative Chern classes is equal to

Tp[ΘAd ] = cd1 + . . .

The easiest way to separate the coefficient of cd1 is to use the residue formula:

Res
z=∞

(−1)d
∏

i<k(zi − zk)Qd(z1, . . . , zd)∏d
k=1

∏k−1
i=1

∏min(i,k−i)
j=1 (zi + zj − zk)

d∏
i=1

(
1

zi

)
= 1

Example 7.6. Let us return to the case d = 4. In Example 7.5 we were able to

calculate the following one-parameter solution: Q4(z1, z2, z3, z4) = 2tz1 + tz2− tz4.

Now, using the formula above, we can compute the value of the parameter t.

Res
z=∞

(2tz1 + tz2 − tz4)(z1 − z4)(z1 − z3)(z1 − z2)(z2 − z4)(z2 − z3)(z3 − z4)

(2z1 − z2)(2z1 − z3)(2z1 − z4)(z1 + z2 − z3)(z1 + z2 − z4)(z1 + z3 − z4)(2z2 − z4)z1z2z3z4

= −Res
z2=0

Res
z3=0

Res
z4=0

t(z2 − z4)

(2z2 − z4)z2z3z4

= t = 1

So, the final answer is

Q4(z1, z2, z3, z4) = 2z1 + z2 − z4.

7.5.2 The volume of the toric orbit

In this method we use the idea from [3]. Let w1, . . . wd be the new variables defined

by

z1 = w1, z2 = 2w1 − w2, . . . , zd = dw1 − w2 − w3 − . . . wd.

The Qd polynomial in these variables can be thought of as a polynomial in a distin-

guished variable w1 whose coefficients are homogeneous polynomials in w2, . . . , wd.

Let us denote the equivariant Poincaré dual of the toric orbit Tdεref by Q0
d. In [3]

Bérczi proves the following theorem.
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Theorem 7.13. [3]

coeffwtop
1

(Qd(w1, . . . , wd)) = CdQ
0
d,

where the constant Cd is given by

Cd =

(−1)(k−2)(k−1)(−2)(k−2)(k−2) · · · · · (−2k + 4)1 if d = 2k

(−1)(k−1)(k−1)(−2)(k−2)(k−1) · · · · · (−2k + 3)1 if d = 2k + 1.

Let us show how to use this fact when getting rid of the last parameter in the

Qd polynomial.

Example 7.7. Let d = 5. Suppose we have obtained a formula for the Q5 poly-

nomial up to a multiplication:

Q5(z1, . . . , z5) = t(2z1+z2−z5)(2z2
1 +3z1z2−2z1z5+2z2z3−z2z4−z2z5−z3z4+z4z5).

It is enough to compare the coeffwtop
1

(Q5(w1, 1 . . . , 1)) and C5Q
0
5(1, . . . , 1). Let

us rewrite the one-parameter formula for the Q5 polynomial using the following

substitutions:

zi = i · w1 − (i− 1) for i = 1..5.

We obtain the following:

Q5(w1, 1, . . . , 1) = −3tw1 + 9t,

so the left hand side is −3t.

The constant Cd on the right hand side is equal to −1 by the formula above.

There are several methods of computing the equivariant Poincaré dual of the

toric orbit, but since we do not need the whole polynomial, only its value when

evaluated at (1, 1 . . . , 1), we will compute the simplicial volume of the convex hull

of the weights of ti+jij . Let us list all the structure constants of this type:

t211, t
3
12, t

4
13, t

5
14, t

4
22, t

5
23.

The weights of these vectors are:

(2,−1, 0, 0, 0),

(1, 1,−1, 0, 0),

(1, 0, 1,−1, 0),

(1, 0, 0, 1,−1),
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(0, 2, 0,−1, 0),

(0, 1, 1, 0,−1).

It is easy to see that these weights lie in the codimension 2 subspace of t∗5 : first,

the scalar product of any of these points with (1, 2, 3, 4, 5) is equal to 0, second,

the scalar product of any of these points with (1, 1, 1, 1, 1) is equal to 1. Let us

drop the two last coordinates. Now we have 6 points in R3. The computation of

the Poincaré dual for the corresponding toric variety goes as follows. First, we

take the convex hull of these points, then we take the minimal triangulation of the

convex hull. Now, the equivariant Poincaré dual will be equal to the sum over all

simplices S of the following products:∏
weight(tkij)/∈S

(zi + zj − zk).

Note that since we are only interested in computing this sum for zi = 1, the answer

will be the number of simplices in the triangulation, i.e. the simplicial volume of

the convex hull. This computation can be easily done with the QHull software for

this case as well as for higher-dimensional cases. Here are the simplicial volumes

for n = 5, 6, 7 computed with QHull.

d Q0
d(1, . . . , 1)

5 3

6 10

7 20

In our case the answer is 3, so

−3t = −3⇒ t = 1.
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8 K-theoretic Thom polynomials

In [31] Rimányi and Szenes discussed the K-theoretic generalization of the Thom

polynomial. As the Thom polynomial, the new invariant is the fundamental class,

but not in equivariant cohomology, but in equivariant K-theory. However, there

are two different definitions of this invariant. In this section we define both invari-

ants and prove that they are in fact different.

8.1 Equivariant smooth resolution

We begin with recalling the necessary facts about smooth resolutions.

Let X be an affine variety. If Y is smooth and there exists a proper birational

map f : Y → X, then we say that Y is a smooth resolution of X.

Proposition 8.1. The cohomology groups H i(Y,OY ) do not depend on the smooth

resolution Y, i.e. are invariants of X.

This fact follows from the Elkik-Fujita Vanishing Theorem [21]. In the nota-

tions of Theorem 1-3-1 from [21], take two smooth resolutions ofX and a morphism

between them g : Z → Y with E equal to the support of the cokernel of the natural

morphism f ∗ωY → ωZ , L equal to f ∗ωY , L̃ equal to the structure sheaf, and D

and D̃ – the empty divisors.

Proposition 8.2. H0(X,OX) = H0(Y,OY ) if and only if X is normal.

If X is not normal, there exists a unique normalisation of X – normal affine

variety X̃. In this case H0(X̃,OX̃) = H0(Y,OY ), but H0(X̃,OX̃) 6= H0(X,OX).

The proof of the proposition above is based on the universal property of the

normalization and Zariski’s Main Theorem [27].

Definition 8.3. Let X be a normal affine variety, then X has rational singularities

if H i(Y,OY ) = 0 for all i > 0.

Suppose a Lie group G acts on the affine space AM . Let X ⊂ AM be a G-

invariant subvariety. Y is called an equivariant smooth resolution of X if Y

is smooth, G acts on Y, and the map f : Y → X is proper birational and G-

equivariant.

Let T be the maximal torus of G. One of the natural questions that arises in

[31] is whether χ[H0(X,OX)](t) is equal to χ [
∑

(−1)iH i(Y,OY )] (t), t ∈ T. Note

that while X is an affine variety and therefore H i(X,OX) = 0 for i > 0, this in

not necessarily true for H i(Y,OY ).
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Proposition 8.4. Let G be a Lie group acting on AM . Let X ⊂ AM be a G-

invariant subvariety, and let Y be its smooth G-equivariant resolution. Let T be

the maximal torus of G. The equality

χ[H0(X,OX)](t) = χ
[∑

(−1)iH i(Y,OY )
]

(t), t ∈ T

holds if and only if X has rational singularities.

In this section we study whether the A2-singularity loci have rational singular-

ities.

Let us briefly recall the necessary facts about nilpotent algebras. We will call

an algebra N nilpotent if it is finite dimensional and if there exists a natural

number k such that the product of each k elements of the algebra vanishes, that

is, Nk = 0. Jmd is nilpotent: (Jmd )d+1 = 0, the algebra J1
d is often denoted by

Ad = tC[t]/td+1.

Definition 8.5. An algebra C is (1, 1, . .., 1)-filtered if C has an increasing finite

sequence of subspaces 0 = Fk+1 ⊂ Fk ⊂ . .. ⊂ F1 = C such that Fi · Fj ⊂ Fi+j and

dimFi/Fi+1 = 1.

Nilpotent algebras have a natural filtration: 0 = Nk+1 ⊂ Nk ⊂ . .. ⊂ N2 ⊂ N.

In case of Ad, this filtration is a (1, 1, . .., 1)-filtration.

Definition 8.6. Ad-singularity locus is given by

Θm,n
Ad

= {(P1, . . . , Pn) ∈ Jm,nd | Jmd /I〈P1, . . . , Pn〉 ∼= Ad}.

Θm,n
Ad

is a Gl(m)×Gl(n)-invariant affine subvariety in Jm,nd .

8.1.1 Equivariant smooth resolution of the A1-locus

Let us briefly look at a simpler case, the A1-locus:

Θm,n
A1

= {M ∈ Hom(Cm,Cn) | rkM < m},

i.e. for every M ∈ Θm,n
A1

there exists a non-zero eigenvector v ∈ Cm such that

Mv = 0.

Proposition 8.7. The space

{(M, v) | Mv = 0, M ∈ Hom(Cm,Cn), v ∈ Cm} ⊂ Hom(Cm,Cn)× Pm−1

is an equivariant smooth resolution of Θm,n
A1

.
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This space can be understood as follows: let us fix an element v ∈ Pm−1 and

describe the set {M ∈ Hom(Cm,Cn) | Mv = 0}.
There is a tautological sequence of vector bundles on Pm−1 :

O(−1) = L Cm Q

Pm−1

We can apply Hom(∗,Cn) to it and obtain the following sequence:

Hom(Q,Cn) Hom(Cm,Cn) Hom(L,Cn)

Pm−1

The map Hom(Cm,Cn)→ Hom(L,Cn) can be interpreted as the evaluation map

M 7→Mv for a fixed v ∈ Pm−1. Its kernel is exactly Hom(Q,Cn).

The equivariant smooth resolution of Θm,n
A1

defined above may be presented as

the following vector bundle:

Hom(Q,Ck) Θn,k
A1

Pn−1

It is well-known that Θm,n
A1

has rational singularities. In this paper we study

the rationality of the singularities of Θm,n
A2

and prove the following theorems.

Theorem 8.8. Θ̃m,n
A2

in general can have singularities worse than rational.

Theorem 8.9. Θ̃m,m
A2

has rational singularities.

Before proving the main theorems, we recall the explicit construction for the

equivariant smooth resolution of Θm,n
A2

, the Borel-Weil-Bott theorem, and demon-

strate the spectral sequences technique that will allow us to study the rationality

of the singularities of the A2-loci.
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8.2 Equivariant smooth resolution of the A2-locus

In this section we recall an explicit construction for the equivariant smooth res-

olution of the A2-locus following [22]. The general case is discussed in [22] and

[5].

Before we present the equivariant smooth resolution of Θm,n
A2

, we need to intro-

duce some preliminary notions.

Definition 8.10. The curvilinear Hilbert scheme of order 2 is defined as follows:

HilbA2(Cm) ∼= {I ⊂ Jm2 | Jm2 /I ∼= A2}.

Each ideal I ∈ HilbA2(Cm) comes with the tautological sequence:

I Jm2 N ∼= Jm2 /I

To construct a smooth equivariant resolution of Θm,n
A2

we start with the following

vector bundle:

Hom(Cn, I) Θm,n
A2

HilbA2(Cm)

The fiber over I ∈ HilbA2(Cm) is the space of all n-tuples of elements of I. The

set of n-tuples of elements of I that generate I is Zariski open in Hom(Cn, I) and

the projection Hom(Cn, I) � Jm,nd ⊃ Θm,n
A2

is proper.

This vector bundle is not a smooth equivariant resolution of Θm,n
A2

because

HilbA2(Cm) is not smooth. The next step is to find a smooth equivariant resolution

of HilbA2(Cm).

Since every I ∈ HilbA2(Cm) is equipped with the tautological sequence men-

tioned above, we can rewrite HilbA2(Cm) as

HilbA2(Cm) = {f : Jm2 → N | dimN = 2, f – surj. alg. homomorphism} /∼

The equivalence relation is defined as follows: f ∼ f ′ if the diagram commutes:
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N

Jm,n2

N

f

f ′

∼=

We will be interested in (1, 1)-filtered 2-dimensional nilpotent algebras. There

are two different types of them:

• A2 with the natural (1, 1)-filtration: A2
2 ⊂ A2,

• algebra N generated by two elements, such that the product of any two

elements of N is 0. This algebra does not have a natural (1, 1)-filtration, so

we introduce an artificial (1, 1)-filtration F1 ⊂ N, where F1 is any line in N.

Let us introduce the notation for filtered algebra homomorphisms. Suppose N

and C are filtered algebras. We will denote a homomorphism compatible with the

filtrations on N and C by

f : N
∆−→ C

Proposition 8.11. The smooth equivariant resolution of HilbA2(Cm) is given by

ĤilbA2(Cm) = {f : Jm2
∆−→ N | N – 2-dim. (1, 1)-filt., f – surj.} /∼ ,

The equivalence is taken up to a filtered algebra isomorphism:

N

Jm,n2

N

∆

∆

∆

The following vector bundle is a smooth equivariant resolution of the A2-locus:

Hom(Cn, I) Θm,n
A2

ĤilbA2(Cm)
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Now we need to find a simpler interpretation of this resolution.

Let g be the inverse of the canonical map Jm2 → Jm2 /(J
m
2 )2 ∼= Cm:

g : Cm → Jm2

Let us denote its image by Im(g) = E∗. E∗ is the linear part of Jm2 .

Let A∆ be a 2-dimensional algebra equipped with the (1, 1)-filtration and f ∈
ĤilbA2(Cm). We can define two natural maps

ψ1 : E → A∆, ψ1 = f
∣∣
E∗

ψ2 : Sym2A∆ → A∆

Proposition 8.12. The linear map ψ1 ⊕ ψ2 : E∗ ⊕ Sym2A∆ → A∆ is surjective.

Proposition 8.13. Let N be a 2-dimensional filtered vector space.

ĤilbA2(Cm) is in one-to-one correspondence with the set of isomorphism classes

of pairs (ψ1, ψ2), where ψ2 : Sym2N → N is a map giving N an associative com-

mutative algebra structure and ψ1 : (Cm)∗ → N is a linear map such that ψ1 ⊕ ψ2

is surjective. Pairs (ψ1, ψ2) are taken up to filtered algebra isomorphism.

Let us describe ĤilbA2(Cm) using this correspondence.

Suppose N be a 2-dimensional vector space with a filtration N2 ⊂ N, where

N2 is a line in N .

(Cm)∗ N/N2

N

ψ
′
1

ψ1

The kernel of this map is defined by Ker(ψ
′
1) = {V ⊂ (Cm)∗ | dimV = m− 1} =

Pm−1(Cm)∗ ∼= Pm−1. Let us denoteO(−1) over Pm−1 by L1 and the quotient bundle

by Q1.

The kernel of ψ1⊕ψ2 is then a codimension 2 subspace in Sym2 L1⊕ (Cm)∗ ∼=
L2

1 ⊕ (Cm)∗, such that it’s projection is of codimension 1 in (Cm)∗, that is:

Pm−1(Q∗1 ⊕ (L∗1)2) P(Q1 ⊕ L2
1)

Pm−1

∼=
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Let us fix a point a in Pm−1. The fiber over this point is P((Q1 ⊕ L2
1)|a) =

PVa. Let V be an m-dimensional complex vector space. We have the following

tautological sequence on PVa :

O(−1) = L2 Va Q2

PVa

This description allows us to present the smooth equivariant resolution of the

A2-locus in the following form:

Hom
(
Cn, Sym2 Cm⊕Q1

L2

)
Θm,n
A2

P(Q1 ⊕ L2
1)

Pm−1

8.3 The Borel-Weil-Bott theorem

Let V be an m-dimensional complex vector space. In this paper we use the Borel-

Weil-Bott theorem to compute the cohomology of Gl(V )-equivariant vector bun-

dles on PV.
The irreducible representations of Gl(V ) are parametrized by their highest

weights – non-increasing integer partitions λ of length m (we allow the entries to

be equal to 0): λ1 ≥ λ2 ≥ λm ≥ 0. We will denote the irreducible representation

of Gl(V ) of highest weight λ by ΣλV.

Consider the canonical sequence of vector bundles on PV :

O(−1) = L V Q

PV

We will be interested in computing the cohomology of Gl(V )-equivariant vector

bundles of the form ΣλQ ⊗ Lk on PV . Following the argument in [15], a vector
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bundle of this form may be presented as a pushforward of the corresponding line

bundle on the flag variety of Gl(V ). Thus, we may compute its cohomology using

the following interpretation of the Borel-Weil-Bott theorem.

Theorem 8.14 (The Borel-Weil-Bott theorem, [15]). Consider an irreducible

Gl(V )-equivariant vector bundle ΣλQ ⊗ Lk on PV. Denote by (λ, k) the concate-

nation of λ = (λ1, ..., λm−1) and k, and by ρ = (m,m − 1, . . . , 1) the half-sum of

the positive roots of Gl(V ).

Consider (λ, k) + ρ = (λ1 +m,λ2 +m− 1, ..., λm−1 + 2, k + 1).

If two entries of (λ, k) + ρ are equal, then

H i(PV,ΣλQ⊗ Lk) = 0 for all i.

If all entries of (λ, k) + ρ are distinct, then there exists a unique permutation

σ such that σ((λ, k) + ρ) is strictly decreasing, i.e. dominant. The length of

this permutation, l(σ), is the number of strictly increasing pairs of elements of

(λ, k) + ρ.

Then H i(PV,ΣλQ⊗ Lk) =

Σσ((λ,k)+ρ)−ρV if i = l(σ)

0 otherwise.

Example 8.1. Let us compute H i(P3, Q⊗ Sym2Q⊗ L5).

First, we need to decompose Q ⊗ Sym2Q into the direct sum of irreducible

representations. The algorithm is the same as in decomposing the product of two

corresponding Schur polynomials into a sum of Schur polynomials, for the details

see [16] or [17].

In the case of Q⊗ Sym2Q, we obtain the following:

Q⊗ Sym2Q = Σ(1,0,0)Q⊗ Σ(2,0,0)Q = Σ(3,0,0)Q+ Σ(2,1,0)Q.

To compute the cohomology groups of the initial sheaf, we compute the coho-

mology groups of both irreducible summands:

H i(P3, Q⊗ Sym2Q⊗ L5) = H i(P3,Σ(3,0,0)Q⊗ L5)⊕H i(P3,Σ(2,1,0)Q⊗ L5).

Applying the Borel-Weil-Bott theorem to Σ(3,0,0)Q ⊗ L5, we first construct

the sequence (λ, k): here λ = (3, 0, 0) and k = 5. We see that (λ, k) + ρ =

(3, 0, 0, 5) + (4, 3, 2, 1) = (7, 3, 2, 6) has no repetitions. The unique permutation

making (7, 3, 2, 6) decreasing is σ = (2, 3, 4). Since there are two increasing pairs

in (7, 3, 2, 6), namely, {3, 6} and {2, 6}, l(σ) – the length of σ – is 2. Finally,
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σ((λ, k) + ρ) − ρ = (7, 6, 3, 2) − (4, 3, 2, 1) = (3, 3, 1, 1), so the only non-zero

cohomology group is

H2(P3,Σ(3,0,0)Q⊗ L5) = Σ(3,3,1,1)C4.

The second irreducible summand is Σ(2,1,0)Q⊗L5. Here we obtain (λ, k) + ρ =

(2, 1, 0, 5) + (4, 3, 2, 1) = (6, 4, 2, 6) – there are repetitions, so

H i(P3,Σ(2,1,0)Q⊗ L5) = 0 for all i.

The final answer is H i(P3, Q⊗ Sym2Q⊗ L5) =

Σ(3,3,1,1)C4 if i = 2

0 if i 6= 2
.

8.4 Rationality of the singularities of the A2-loci

In this section we show that Θ̃m,m
A2

, the normalization of Θm,m
A2

, has rational singu-

larities, and give an example, where Θ̃m,n
A2

has singularities worse than rational.

Consider the quasi-projective variety Y – Kazarian’s smooth resolution of

Θm,n
A2

:

Y = Hom
(
Cn, Sym2 Cm⊕Q1

L2

)
Θm,n
A2

P(Q1 ⊕ L2
1)

Pm−1

p1

p2

By definition, Θ̃m,n
A2

has rational singularities if H i(Y,OY ) = 0 for all i > 0. We

will compute these cohomology groups step by step, by pushing forward along the

tower.

Fix a point a in Pm−1, the fiber over this point is p−1
2 (a) = P((Q1 ⊕ L2

1)|a) ∼=
PVa, where Va is an m-dimensional complex vector space. Let us also denote the

constant sheaf (Sym2Cm ⊕Q1)|a on PVa by W.

Since the fiber over a point b in PVa,
(

Hom
(
Cn, Sym2 Cm⊕Q1

L2

)) ∣∣∣∣
b

, is affine, we

have H i(Y,OY ) = H i(PVa, (p1)∗OY ). Moreover, the C∗-action on the fiber allows

us to decompose (p1)∗OY into homogeneous components:

(p1)∗OY = OY |p−1
1 (b)

∼=
⊕
l

Syml

(
W ⊗ Cn

L2 ⊗ Cn

)
.
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This decomposition leads to the following identity on the level of cohomology:

H i(Y,OY ) = H i(PVa, (p1)∗OY ) =
⊕
l

H i

(
PVa, Syml

(
W ⊗ Cn

L2 ⊗ Cn

))
.

Let us compute H i
(
PVa, Syml

(
W⊗Cn
L2⊗Cn

))
. We start with the Koszul resolution

[9] of Syml
(
W⊗Cn
L2⊗Cn

)
:

Λl(L2 ⊗ Cn)→ Λl−1(L2 ⊗ Cn)⊗ Sym1(W ⊗ Cn)→ . . .

· · · → Λl−i(L2 ⊗ Cn)⊗ Symi(W ⊗ Cn)→ . . .

· · · → Λ1(L2)⊗ Syml−1(W ⊗ Cn)→ Syml(W ⊗ Cn)→ Syml

(
W ⊗ Cn

L2 ⊗ Cn

)
We are interested in the case when l is sufficiently large. Note that since L2

is a line bundle, Λi(L2 ⊗ Cn) vanishes for i > n. Using these facts we can rewrite

the resolution as follows.

Resolution 1:

Ln2 ⊗ Λn(Cn)→ . ..→ Ll−i2 ⊗ Λl−i(Cn)⊗ Symi(W ⊗ Cn)→ . ..

. ..→ Syml(W ⊗ Cn)→ Syml

(
W ⊗ Cn

L2 ⊗ Cn

)
According to the Borel-Weil-Bott theorem,

• Hm−1(PVa, O(−k)) ∼= Symk−m Va ⊗ detVa if k −m ≥ 0,

• Hm−1(PVa, O(−k)) ∼= 0 if k −m < 0,

• H i(PVa, O(−k)) ∼= 0 if i 6= m− 1.

This knowledge allows us to write down the Leray spectral sequence, which

is a collection of indexed pages, i.e. tables with arrows pointing in the direction

(m,m − 1) on the m-th page. The Leray spectral sequence allows us to obtain

the cohomology groups of Syml
(
W⊗Cn
L2⊗Ck

)
by computing successive approximations.

On the first page of the Leray spectral sequence, to each sheaf in the resolution

above corresponds a column of its cohomology groups:
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According to Leray’s theorem, the spectral sequence for the exact sequence

converges to zero. The only term in the first column that can be cancelled by the

other terms in the spectral sequence is the term in the 0-th line. This means that

H i
(
PVa, Syml

(
W⊗Cn
L2⊗Cn

))
vanishes for i > 0.

Applying the pushforward (p2)∗, we obtain

H i(Y,OY ) =
⊕
l

H i

(
Pm−1, H0

(
PVa, Syml

(
W ⊗ Cn

L2 ⊗ Cn

)))
.

Let us construct the resolution ofH0
(

Syml
(
W⊗Cn
L2⊗Cn

))
. In the spectral sequence

above, whatever remains in the line number m−1 after the first page goes exactly

to Syml(W ⊗Cn) in the line number 0 on the m-th page. This allows us to write

down the following resolution:

detVa ⊗ Symn−m Va ⊗ ΛnCn ⊗ Syml−n(W ⊗ Cn)→ . ..

. ..→ detVa ⊗ Symn−m−i V ⊗ Λn−iCn ⊗ Syml−(n−i)(W ⊗ Cn)→ . ..

. ..→ detVa⊗ΛmCn⊗Syml−m(W⊗Cn)→ Syml(W⊗Cn)→ H0

(
Syml

(
W ⊗ Cn

L2 ⊗ Cn

))
Which can be presented in the following form.

Resolution 2:

detQ⊗ L2
1 ⊗ Symn−m(Q1 ⊕ L2

1)⊗ ΛnCn ⊗ Syml−n((Sym2Cm ⊕Q1)⊗ Cn)→ . ..

. ..→ detQ⊗ L2
1 ⊗ Symn−m−i(Q1 ⊕ L2

1)⊗ Λn−iCn ⊗ Syml−(n−i)((Sym2Cm ⊕Q1)⊗ Cn)→ . ..

. ..→ detQ⊗ L2
1 ⊗ ΛmCn ⊗ Syml−m((Sym2Cm ⊕Q1)⊗ Cn)→

→ Syml((Sym2Cm ⊕Q1)⊗ Cn)→ H0

(
Syml

(
(Sym2Cm ⊕Q1)⊗ Cn

L2 ⊗ Cn

))
This allows us to formulate our first result.
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Theorem 8.15. Θ̃m,m
A2

has rational singularities.

Proof. If m = n then Resolution 2 may be rewritten as follows:

detQ⊗ L2
1 ⊗ ΛnCn ⊗ Syml−n((Sym2Cn ⊕Q1)⊗ Cn)→

→ Syml((Sym2Cn ⊕Q1)⊗ Cn)→

→ H0

(
Syml

(
(Sym2Cn ⊕Q1)⊗ Cn

L2 ⊗ Cn

)) (?)

We will prove that, in the corresponding spectral sequence, there are no non-trivial

terms above the 0-th line.

Lemma 8.16.

SymN((Sym2Cn ⊕Q1)⊗ Cn) =

=
N⊕
i=0

(SymN−i (Sym2Cn ⊗ Cn
))
⊗

i1+···+in=i⊕
(i1,...,in)

Symi1 Q1 ⊗ · · · ⊗ Symin Q1

 .

Setting N = l, the lemma provides the decomposition of Syml((Sym2Cn ⊕
Q1)⊗ Cn). The only non-constant sheaves here are the sheaves of the form

Symi1 Q1 ⊗ · · · ⊗ Symin Q1.

We decompose this tensor product into a sum of irreducible representations:

Symi1 Q1 ⊗ · · · ⊗ Symik Q1 =
⊕
λ

aλΣ
λQ1,

where λ = (λ1, . .., λm),
∑
λk =

∑
ij, and aλ are non-negative integers.

Since there is no multiplication by a power of L1 and λ is already dominant,

i.e. strictly decreasing, by the Borel-Weil-Bott theorem H i(Pm−1, Symi1 Q1⊗· · ·⊗
Symin Q1) = 0 for i > 0.

This proves that the term in the second line of the resolution (?) does not

have any higher cohomology.

However, the term in the first line of the resolution (?) has L2
1 as a multiplier.

As before, we use the lemma above for N = l − n to find the decomposition of

this term. The non-trivial part in this case is the following:

detQ1 ⊗ L2
1 ⊗

⊕
λ

aλΣ
λQ1 = detCm ⊗ L1 ⊗

⊕
λ

aλΣ
λQ1.

Let us apply the Borel-Weil-Bott theorem to ΣλQ1 ⊗ L1 :

(λ1, . .., λm−1, 1) + (m, . .., 1) = (ν1 +m, . .., νm−1 + 2, 2).
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Since νm−1 ≥ 0, we either have a dominant sequence if νm−1 > 0, or a repetition

if νm−1 = 0. In both cases there is no higher cohomology.

So, there are no non-trivial entries in the corresponding Leray spectral sequence

above the 0-th line, so H i(Y,OY ) = 0 for i > 0, and Θ̃m,m
A1

has rational singularities.

Theorem 8.17. Θ̃m,n
A2

in general has singularities worse than rational.

Proof. Consider the case m = 5, n = 7, l = 7.

We prove that H1

(
P4, Sym7

(
(Sym2 C5⊕Q1)⊗C7

L2⊗C7

))
6∼= 0. In this particular case

Resolution 2 is the following:

detQ1 ⊗ L2
1 ⊗ Sym2(Q1 ⊕ L2

1)→

→ detQ1 ⊗ L2
1 ⊗ (Q1 ⊕ L2

1)⊗ Λ6C7 ⊗ ((Sym2C5 ⊕Q1)⊗ C7)→

→ detQ1 ⊗ L2
1 ⊗ Λ5C7 ⊗ Sym2((Sym2C5 ⊕Q1)⊗ C7)→

→ Sym7((Sym2C5 ⊕Q1)⊗ C7)→

→ H0

(
Sym7

((
Sym2C5 ⊕Q1

)
⊗ C7

L2 ⊗ C7

))
Consider the term in the first line of the resolution above.

detQ1 ⊗ L2
1 ⊗ Sym2(Q1 ⊕ L2

1) = detQ1 ⊗ L2
1 ⊗

(
Sym2Q1 ⊕Q1 ⊗ L2

1 ⊕ L4
1

)
=

= detQ1 ⊗ L6
1 ⊕ detQ1 ⊗ L2

1

(
Sym2Q1 ⊕Q1 ⊗ L2

1

)
.

Using the Borel-Weil-Bott theorem, one can easily check that

H4
(
P4, detQ1 ⊗ L6

1

)
6∼= 0,

H0(P4, Sym7((Sym2C5 ⊕Q1)⊗ C7)) 6∼= 0,

but all other terms of the resolution do not have any cohomology.

The corresponding Leray spectral sequence is the following:
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Thus, we proved that

H1

(
P4, Sym7

((
Sym2C5 ⊕Q1

)
⊗ C7

L2 ⊗ C7

))
6∼= 0,

and therefore Θ̃5,7
A2

has singularities worse than rational.

According to Boutot [10], the GIT quotient of a smooth variety with respect to

a reductive group has rational singularities. Thus, we have the following corollary

of the Theorem 8.17.

Corollary 8.18. Θm,n
A2

can not be presented as a reductive quotient of a smooth

variety.

For the recent results on the GIT quotient with respect to non-reductive groups,

see the works of Kirwan and Bérczi [7], and Bérczi, Doran, Hawes and Kirwan [6].

Remark 8.19. In both Theorem 8.15 and Theorem 8.17 we consider the normal-

izations of the A2-loci. Let us show that the normalization is not redundant, i.e.

that Θm,n
A2

is not always normal.

Let V be a complex vector space equipped with the action of a compact Lie

group G, and let X be a closed G-invariant subvariety of V . Suppose Y is a

smooth G-equivariant resolution of X.

Consider the following diagram:

H0(Y,OY )

H0(V,OV ) =
⊕

l Syml V ∗

H0(X,Ox)

f

g

h

We know that g is always surjective, and, according to Proposition 8.2, h is

an isomorphism if and only if X is normal. Now, if f is not surjective, then h can

not be an isomorphism, and therefore in this case X is not a normal variety.

Let V = Jm,n2 , G = Gl(m) × Gl(n), X = Θm,n
A2

, and let Y be the Kazarian’s

smooth equivariant resolution of Θm,n
A2

.
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Consider Resolution 2 in the general case:

detQ⊗ L2
1 ⊗ Symn−m(Q1 ⊕ L2

1)⊗ ΛnCn ⊗ Syml−n((Sym2Cm ⊕Q1)⊗ Cn)→ . ..

. ..→ detQ⊗ L2
1 ⊗ Symn−m−i(Q1 ⊕ L2

1)⊗ Λn−iCn ⊗ Syml−(n−i)((Sym2Cm ⊕Q1)⊗ Cn)→ . ..

. ..→ detQ⊗ L2
1 ⊗ ΛmCn ⊗ Syml−m((Sym2Cm ⊕Q1)⊗ Cn)→

→ Syml((Sym2Cm ⊕Q1)⊗ Cn)→ H0

(
Pm−1, Syml

(
(Sym2Cm ⊕Q1)⊗ Cn

L2 ⊗ Cn

))
.

Recall that

H0(Y,OY ) =
⊕
l

H0

(
Pm−1, Syml

(
(Sym2Cm ⊕Q1)⊗ Cn

L2 ⊗ Cn

))
and

H0(V,OV ) =
⊕
l

Syml((Sym2Cm ⊕ Cm)⊗Cn) =
⊕
l

H0(Pm−1, Syml((Sym2Cm ⊕Q1)⊗Cn)).

Since the map f from the diagram above preserves the graded components, it

is enough to prove that

fl : Syml((Sym2Cm ⊕ Cm)⊗Cn) −→ H0

(
Pm−1, Syml

(
(Sym2Cm ⊕Q1)⊗ Cn

L2 ⊗ Cn

))
is not surjective for some fixed l.

Note that fl is the right arrow in the line H0 of the first page of the Leray

spectral sequence corresponding to Resolution 2. That is, if we can find an ex-

ample of a spectral sequence with a non-horizontal arrow pointing to the term

H0
(
Pm−1, Syml

(
(Sym2 Cm⊕Q1)⊗Cn

L2⊗Cn

))
, we prove that f is not surjective.

Let m = 3, n = 4, l = 4. In this case Resolution 2 is the following:

detQ⊗ L2
1 ⊗ (Q1 ⊕ L2

1)⊗ Λ4C4 →

→ detQ⊗ L2
1 ⊗ Λ3C4 ⊗ ((Sym2C3 ⊕Q1)⊗ C4)→

→ Sym4((Sym2C3 ⊕Q1)⊗ C4)→ H0

(
P2, Sym4

(
(Sym2C3 ⊕Q1)⊗ C4

L2 ⊗ C4

))
.

A straightforward computation using the Borel-Weil-Bott theorem shows that

the corresponding Leray spectral sequence is the following.
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We see that there is a non-horizontal arrow pointing toH0
(
P2, Sym4

(
(Sym2 C3⊕Q1)⊗C4

L2⊗C4

))
,

thus Θ3,4
A2

is not a normal variety.

Remark 8.20. Since the equivariant resolutions for the A3-loci given in [5] and

[22] are smooth, the computational methods presented in this paper may be used

to check the rationality of the singularities of Θm,n
A3

.

8.5 Kazarian’s model for Ad singularities

Let us recall the construction of Kazarian’s resolution [22] for Ad singularities (we

have already seen this construction for the case of A2 and A1 singularities in the

previous section).

As in the case of A2 singularity, we construct the resolution of the locus ΘA ⊂
Jm,nd using the Hilbert scheme. Recall the following notations:

Hilbd(Cm) = {I ⊂ Jmd | dim(Jmd /I) = d},

HilbAd(C
m) = {I ⊂ Jmd | Jmd /I ∼= Ad}.

As discussed before, HilbAd(Cm) is not smooth and not convenient for the

future computations.

Let us fix a filtration on on a d-dimensional vector space V :

V = V0 ⊃ V1 ⊃ · · · ⊃ Vd = 0, dimVi/Vi+1 = 1.

We may define the Hilbert scheme remembering the filtration:

H̃ilbAd(C
m) = {(I,∆) | (Jmd /I)∆ ∼= Ad}.

It is clear that there exists a birational map

f : H̃ilbAd(C
m)→ HilbAd(C

m).

In the general case, Kazarian’s resolution [22] is a smooth compact variety

Md defined as the moduli space of the following flags. Take V – a d-dimensional

vector space with the filtration defined above, together with a surjective linear

map V � (Cm)∗ ⊕ Sym2 V such that

Wi = V/Vi � (Cm)∗ ⊕ Si, i = 1 . . . d,

where Si � Sym2(Wi) � Sym2 V is generated by Wk ⊗Wj for k + j ≤ i.
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The variety Md can be constructed by induction. For d = 1 we have S1 = 0,

W1 � (Cm)∗ and M1 = Gr(1,m) = Pm−1 together with the tautological line

bundle L1.

Suppose we have constructed Md−1 with the sequence of maps

W1 � W2 � · · ·� Wd−1

and the tautological bundles Li overMi and with the surjective linear mapWd−1 �

(Cm)∗ ⊕ Sd−1. Since Sd is determined by W1, . . . ,Wd−1, it can also be interpreted

as a bundle over Md−1.

Md parametrizes subspaces Wd � (Cm)∗⊕ Sd such that Wd−1 � Wd, so let us

define Md as the bundle over Md−1 :

Md = P((Cm)∗ ⊕ Sd)/Wd−1).

The construction of the manifold Mr can be presented as the following diagram:

Md
P(Ed/Wd−1)−−−−−−−→Md−1

P(Ed−1/Wd−2)−−−−−−−−→ · · · −→ . . .
P((Cm)∗)−−−−−→ pt,

where Ei = (Cm)∗ ⊕ Si.

Proposition 8.21. [22] Md is smooth and compact.

The manifold Md is defined together with the projection V � (Cm)∗ ⊕ Sd.

The restriction V � (Cm)∗ gives the linear map and V � Sd defines the fil-

tered commutative algebra structure on V. The dual picture determines a filtered

commutative coalgebra structure.

Let us summarize the previous discussion in the form of a diagram:

Hom(Sym2 V, V ) ⊃ Rd

��
Md

//Md−1
// · · · // pt

H̃ilbAd(Cm)
?�

OO

// HilbAd(Cm) �
� // Hilbd(Cm)

Lemma 8.22. [22] Suppose γ is a generic section of Hom(Sym2 V, V ) → Md.

Then H̃ilbAd(Cm) = γ−1(Rd)

Example 8.2. For d = 1 we have already shown that M1 = Pm−1. Let us denote

the tautological sequence over M1 by O(−1) = L1 → Cm → Q1.
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For d = 2, S2 = W1⊗W1, so M2 = P(((Cm)∗⊕ S2)/W1) = P(Q1⊕L2
1). Let us

denote the bundles from the tautological sequence over M2 by Q2 and L2.

For d = 3, S3 = W1 ⊗ W1 ⊕ W1 ⊗ W2, so M3 = P(((Cm)∗ ⊕ S3)/W2) =

P(Q2 ⊕ (L1 ⊗ L2)).

In the general case,

Sd =
⊕
i+j≤d

Wi ⊗Wj, and Md = P

Qd−1 ⊕

[ d−1
2 ]⊕
i=1

Li ⊗ Ld−i


 .

Remark 8.23. Starting from d = 4 there will be points in Md such that the

canonical commutative filtered algebra structure defined by Wd � (Cm)∗ ⊕ Sd in

the corresponding fiber is not associative. Moreover, the bundle Hom(Cn, I) from

Kazarian’s resolution is not defined over Md for d ≥ 4, since the definition of this

bundle requires a choice of the map on the right:

I →
d⊕
i=1

Symi(Cm)→ A,

which is not unique for d ≥ 4. However, this vector bundle is defined over the

sublocus where the canonical algebra structure in the fiber is associative.
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