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1 Abstract

This thesis is devoted to the study of singularities of holomorphic maps: their
geometry, as well as cohomological and K-theoretic invariants, their properties
and computational strategies.

The main object of study of global singularity theory is the Thom polynomial,
which may be defined as the Gl,, x Gl,-equivariant Poincaré dual of a closure of
a singularity. In the 70’s Damon proved that the Thom polynomial for contact
singularities depends only on the relative codimension, and may be expressed in
relative Chern classes. Pragacz and Weber showed that the Thom polynomial
for contact singularities expressed in the relative Chern classes has positive coeffi-
cients when written in the Schur basis. In this thesis, modern proofs of these two
theorems are given.

One of the main problems in global singularity theory is how to compute Thom
polynomials. This proved to be very difficult, and the two main computational
methods — the method of restriction equations for contact singularities and the
residue formula for Ag-singularities — work effectively only for rather small relative
codimensions. In this thesis, I show how the two methods can be combined in a
different computational approach and give examples of computation.

A recent development in global singularity theory is the introduction of the
K-theoretic invariants of singularity loci. One can define a K-theoretic invariant
of an affine variety in two different ways: either using the algebra of functions
on the variety itself, or using its smooth equivariant resolution. It is easy to
show that the two invariants are equal if and only if the closure of the singularity
locus has rational singularities. I prove that even for As singularity loci, in the
general case, the two invariants are different, and therefore, the As-loci may have
singularities worse than rational. However, in the case of relative codimension 0,

the two invariants coincide, and thus the As-loci have rational singularities.



2 Résumé en francais

Cette these est consacrée a ’étude de singularités de fonctions holomorphes: leur
géometrie, leurs invariants cohomologiques et K-théoriques, leurs propriétés et
stratégies de calcul.

L’objet principal de I’étude de la théorie globale des singularités est le polynome
de Thom, qui peut étre défini comme le Gl,, x Gl,-équivariant dual de Poincaré
de 'adhérence de singularité. Dans les années 1970 Damon a montré que les
polynomes de Thom des singularités contactes ne dépendent que de la codimension
relative, et peuvent étre exprimés en classes de Chern relatives. Pragacz et Weber
ont démontré que le polynome de Thom des singularités contactes a les coefficients
positifs dans la base de Schur. Dans cette these, les démonstrations modernes de
ces deux théoremes sont données.

L’un des principaux problemes de la théorie globale des singularités est de cal-
culer les polynomes de Thom. Ce probleme s’est revélé ardu, et les deux méthodes
principales de calcul — la méthode d’équations de restriction pour les singularités
contactes et la formule de résidues pour les singularités de type A, — ne sont
efficaces qu’en cas de codimensions relatives assez petites. Dans cette these, je
présente ces deux méthodes et je montre comment on peut combiner les deux
pour obtenir une nouvelle approche de calcul. Je donne aussi les examples de ce
calcul.

La récente évolution dans la théorie des singularités est I'introduction des in-
variant K-théoriques de singularités. Il y a deux stratégies pour définir I'invariant
K-théorique de variété affine: soit on utilise I’algebre de fonctions sur la variété,
soit on utilise sa résolution équivariante. Il est facile de montrer que les deux in-
variants coincident pour autant que 'adhérence de la singularité a des singularités
rationnelles. Je montre que déja pour les loci de type As, dans le cas général, les
deux invariants ne sont pas égaux et donc les loci de type Ay en général ont des
singularités plus complexes que rationnelles. En revanche, dans le cas de codimen-
sion relative nulle, les deux invariants coincident et donc les loci de type A, ont

des singularités rationnelles.
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4 Organization of the thesis

This thesis consists of four parts. We begin with Section 5, where we discuss the
motivation and give rigorous definitions of notions used in the rest of the thesis.

In Section 6 we formulate and give modern proofs of two fundamental theorems
regarding the properties of the Thom polynomial: Damon’s theorem and the Schur
positivity theorem by Pragacz and Weber. These two sections are based on my
paper [24].

Section 7 is devoted to the strategies of computing the Thom polynomials. We
give a short introduction to the two main modern computational methods — the
method of restriction equations and the residue formula. We show how one may
combine the two approaches to obtain another computational strategy. We give
several examples of such computations and conjecture that this new strategy in
fact reduces the computation of the Q-polynomial for A, singularities to a finite
number of substitutions. This section is based on an ongoing collaboration with
Prof. Andréas Szenes and Prof. Lészl6 Fehér.

In Section 8 we give definitions of two K-theoretic invariants of singularity loci.
We conclude that the two invariants are equal if and only if the singularity locus
has rational singularities. Using the A, loci as a simple example we obtain that
in the general case the two invariants are different, but they agree in case when

relative codimension is equal to 0. This section is based on my paper [25].



5 Preliminaries

5.1 Motivation

Global singularity theory originates from problems in obstruction theory. Con-
sider the following question: is there an immersion in a given homotopy class of
maps between two smooth manifolds? We can reformulate this problem as fol-
lows. Suppose M and N are smooth real manifolds with dim(N) > dim(M), and
f: M — N is a sufficiently generic smooth map in a fixed homotopy class. The

map f is an immersion, if

SUA Y {pe M| dimKer(d,f) > 1} = @.

The set X1(f) is called the X'-singularity locus, or simply the X!-locus of f,
i.e. the points in M where f has a X!-singularity: the kernel of the differential
of f is non-zero. In the case of Zs-cohomology and a sufficiently generic map f,
the set X!(f) represents a cohomology class via Poincaré duality. Clearly, if the
Poincaré dual PD[X!(f)] is non-zero in H*(M, Z,), then there is no immersion in
the homotopy class of f.

In the 50s, René Thom proved the following statement, now known as Thom’s

principle.

Theorem 5.1 (Thom’s principle, [33]). Let © be an (appropriately defined) singu-
larity and let m < n be non-negative integers. Suppose {as, ..., a,} and{a},...,a,,

are two sets of graded variables with dega; = degal = i. For all smooth compact
real manifolds M and N, dim(M) = m, dim(N) = n, and a sufficiently generic

smooth map f: M — N,

O(f)={pe M | [ has a singularity of type © at p}

!/

is a cycle in M, and there exists a universal polynomial in ay, ..., a, and ay, ..., al,

Tp[O](ai, ..., am,dl, ...,a,)

cey Uy

depending only on ©, m and n, such that

PD[O(f)] = Tp[O)(wi(TM), ..., wn(TM), f*wi (TN), ..., ffw,(TN)) € H (M, Zs),

where w;(TM) and w;(TN) are the Stiefel-Whitney classes of the corresponding

tangent bundles.



This universal polynomial is called the Thom polynomial of ©. We will give a
rigorous construction of this polynomial in the case of complex manifolds.

Thom’s principle may also be translated from the real to the complex case.

Theorem 5.2 (Thom’s principle in the complex case). Let © be an (appropriately
defined) singularity and let m < n be non-negative integers. Suppose {ai, ..., an}
and {aly,...,al} are two sets of graded variables with dega; = degal, = i. For
all compact complex manifolds M and N, dim(M) = m, dim(N) = n, and a

holomorphic map f: M — N satisfying certain transversality conditions,

O(f) ={pe M | f has a singularity of type © at p}

!/

is a cycle in M, and there exists a universal polynomial in ay, ..., a,, and a}, ..., a’,

Tp[O(ay, ..., am,ay, ..., a,)

cey Wy

depending only on ©, m and n, such that

PD[O(f)] = Tp[O](c1(TM), ..., cn(TM), f*ei(TN), ..., frea(TN)) € H*(M,R),

where ¢;(TM) and ¢;(TN) are the Chern classes of the corresponding tangent

bundles.

In fact, the result of Borel and Haefliger [8] implies that there are pairs of real
and complex singularities for which the real Thom polynomial may be obtained
by substituting the corresponding Stiefel-Whitney classes for the Chern classes in
the corresponding Thom polynomial in the complex case.

Calculating Thom polynomials is difficult: some progress has been made in
the works of Ronga [32], Porteous [28], Gaffney [18], Rimanyi [30], Bérczi, Fehér
and Rimdnyi [4], Fehér and Rimdnyi [14], and Bérczi and Szenes [5] and Kazarian
[22].

5.2 Global singularity theory

Let z,..., 2z, be the standard coordinates on C™. Denote by J™ the algebra of

formal power series in zq, ..., 2, without a constant term, i.e.

The space of d-jets of holomorphic functions on C™ near the origin is the

quotient of J™ by the ideal of series with the lowest order term of degree at least

7



d+1, i.e. the ideal generated by monomials z{'...z% such that 3" i; = d + 1. We
will denote this ideal by I{z4+1) :

Tp = JmTE.

As a linear space, the algebra JJ' may be identified with the space of poly-
nomials in 2z, ..., z,, of degree at most d without a constant term. The space of
d-jets of holomorphic maps from (C™,0) to (C",0), or the space of map-jets, is
denoted by J;"" and is naturally isomorphic to JJ* ® C™. In this paper we will
assume m < n.

Now let r be a non-negative integer. An unfolding of a map-jet ¥ € J;"" is a

J) TrRET of the form:

map-jet U e
(21, ooy Zns Yoo oy Yn) = (B (215 20 YLy oo o Un)s YLy - - s Ur),s
where ' € J7"" satisfies
F(z1,.o0020,0,...,0) = U(zy, ..., 2,).

The trivial unfolding (or a trivial suspension) is the map-jet

suspyV = (W(21, ...y 20), Y1y -y Yr).

Composition of map-jets together with cancellation of terms of degree greater

than d gives a well-defined map
TP Tyt —s gk
(U, D) — do V.
Consider a sequence of natural maps
J = I — o= " =2 Hom(C™, C").

For ¥ € J}"", the linear part of ¥ is defined as the image of ¥ in J;"" and denoted
by Lin .
Consider the set

Diff]' = {A € J;*™ | Lin A invertible}.

The previously defined operation “o”gives this set an algebraic group structure.
Let A, € Diff]’, A, € Diff}}, and U € J}"". The left-right action of Diff]}’ x Diff};
on Jj;"" is given by
(A, Ap)¥ =A,0¥o A;ll.
8



Definition 5.3. Left-right invariant algebraic subvarieties of J;"" are called sin-

gularities.

For each singularity © which is stratum of the Diff}" x Diff;-action there is a
map-jet ® defined up to left-right equivalence such that all other map-jets in ©
are left-right equivalent to a suspension of ®. Such ® is called a prototype of ©.

To a given element ¥ € J;"" = J7" ® C", presented as (Vy,...,¥,), ¥, € JJ,
we can associate an algebra Ay = JJ'/I(¥q,..., U, ). This algebra is nilpotent:
there exists a natural number ¢ such that A}, = 0, in other words, a product of
any ¢ elements of Ay is equal to 0. Ay is nilpotent because Jj* itself is nilpotent:
() = 0.

Definition 5.4. Suppose A is a finite-dimensional commutative nilpotent algebra.
The subset
)" ={VeJ"| Ay = A}

is called a contact singularity. We will omit the dependence on d in the notation

when the value of d is clear from the context.

When clear from the context, the dependence on m,n will be omitted.
In this work we will be focusing on contact singularities and some particular

series of contact singularities.

Example 5.1 (Morin singularities). The main notion of this work are Morin, or
Ay singularities. These are the contact singularities given by the nilpotent algebra
Ay = 2C[z] /x4t

The prototype of the Ay singularity is given by

d—1
(Za Yiye - 7yd—1) = (Zd+1 + Zyzzz7 Y1y - - 7yd—1)-
i=1

O 4 is left-right invariant, but two map-jets with the same nilpotent algebra
may be in different left-right orbits. However, there is a group acting on J;""
whose orbits are exactly the sets © 4 for various nilpotent algebras A. This group

is the contact group:

K™ = GL,(C @ J7*) x Diff7,

It acts on J,"" via
(M, A), U] = (M - W) 0 A7,

where M € GL,(C® JJ"), A € Diff}’, and ” -7 stands for matrix multiplication.

9



Theorem 5.5. [26] Two map-jets are contact equivalent if and only if their nilpo-

tent algebras are isomorphic.

Proposition 5.6. [2] Let A be a nilpotent algebra: A% = 0. For d > dim(A/A?)
and n sufficiently large, """ is a non-empty, left-right invariant, irreducible quasi-

projective algebraic subvariety of Jj"".

5.3 Equivariant Poincaré dual

Suppose a topological group G acts continuously on an algebraic variety M, and
Y is a closed G-invariant subvariety in M. In this section we will define an analog
of a Poincaré dual of Y, which reflects the G-action: the equivariant Poincaré dual
of Y.

Let G be a topological group and let 7: EG — BG be the universal G-bundle,
i.e. a principal G-bundle such that if p: £ — B is any principal G-bundle, then
there is a map (: B — BG unique up to homotopy and £ == (*EG. The universal
G-bundle exists, is unique up to homotopy equivalence and can be constructed as
a principal G-bundle with contractible total space.

Now we can construct the space with a free G-action and the same homotopy

type as a fixed before algebraic variety M, the Borel construction:

Definition 5.7. The Borel construction (also homotopy quotient or homotopy
orbit space) for a topological group G acting on a topological space M is the
space EG x¢ M, i.e. the factor of EG x M by the G-action: (zg™', gy) ~ (x,y),
where g € G,z € EG,y € M.

Definition 5.8. The equivariant cohomology of M is the ordinary cohomology for

the Borel construction:
H{(M) = H*(EG x¢ M).

Note that since (EG x pt)/G = EG/G = BG, the equivariant cohomology of
a point is Hf(pt) = H*(BG).

We would like to define an analog of a Poincaré dual in the equivariant case, i.e.
when a group G acts on an algebraic variety M and Y C M is a closed G-invariant
subvariety. We constructed a substitute for the orbit space of G-action on M: the
Borel construction EG xg M. Now, EG XY is again a G-invariant subvariety of
EG x¢ M, and we want to define a dual of EG x¢Y in H*(EG xg M) = H:L(M).
However, first we have to deal with the fact that EG is usually infinite-dimensional

by introducing an approximation.
10



Lemma 5.9. [1] Suppose Ey C Ey C ... is a sequence of finite-dimensional
connected spaces with a free G-action compatible with the embeddings, such that
HY(E;) = 0 for every fized i, and j large enough. Then for any M, any i and j

large enough there are natural isomorphisms
H'(E; xg M) 2 H(EG xg M) = H5(M).
Let us fix EG, BG and the finite-dimensional approximations
EFEG,Cc EGy C ... C EG

together with BG; = EG;/G. We can now consider EG; x¢ Y C EG; xg M
with j large enough — two finite dimensional spaces. Let D be the codimension of
EGj; xgY in EGj x¢q M.

Every irreducible closed subvariety of a non-singular variety has a well-defined
Borel-Moore homology class [16], so we can define the equivariant Poincaré dual

of Y as follows:
eP(Y) = [EG; x¢ Y]pu € H*P(EG; xg M) = HZP (M)

for 5 large enough.

5.4 The Thom polynomial

We want to study the equivariant Poincaré dual of a closure of a singularity
© C J". Since J;"" is contractible and the group Diff] x Diff] acting on it
is homotopy equivalent to Gl,, x Gl,, the equivariant Poincaré duals of subvari-
eties in J;"" with respect to these groups will coincide. Therefore, in the rest of
the paper we will assume G = Gl,, x Gl,, .

First, we need to fix FG, BG and the corresponding approximations with an

appropriate topology. Recall that C* is defined as
C* = {(z1,29,...) | z € C, only finite number of z; is non-zero}.

Fix E Gl,, = Fr(m, c0), the manifold of m-frames of vectors in C*, and B Gl,, =
Gr(m, o), the Grassmannian of m-planes in C*>. So, in our case EG = Fr(m, oco) X
Fr(n,o00) and BG = Gr(m,00) x Gr(n,oc0). The approximations are given by
EG; = Fr(m, j)xFr(n, j) and BG; = Gr(m, j)xGr(n, j). With j — oo H5(BG,) =
H(BG) for all i.

By definition,

eP(0) € H:(J"™™) = H*(BG) = H*(Gr(m, 00) x Gr(n,0)),
11



since J;"" is contractible.

Let L,, denote the tautological vector bundle over Gr(m, o), i.e.
Gr(m, o0) x €= 5 {(V,p) | p € V}.

Then we can identify H*(Gr(m, o0),C) with Clcy, ..., ¢;,], where ¢; are the Chern
classes of L} — the dual tautological bundle. This observation allows us to define

the Thom polynomial as follows:

Definition 5.10. Let d,m,n € N and let m < n. Let © C J;*" be a singularity.
The Thom polynomial of © is defined as

Tp[O](c, ) = eP(O) € H*(Gr(m, 00) x Gr(n,00)) = Cley, ..., em] @ C[d, ..., ],
where ¢; are the Chern classes of Ly, and ¢ — the Chern classes of Lj,.

The notation Tp[B](c, ) comes from the total Chern class: ¢ =) ¢;.

The Thom polynomial defined above coincides with the universal polynomial
from the Thom’s principle. In this paper we will think of the Thom polynomial as
defined in Definition 5.10. For a detailed discussion of the relation between this
definition and the Thom’s principle, see [5], [14] and [22].

12



6 Structure theorems of global singularity the-

ory

6.1 Damon’s theorem

Before stating and proving Damon’s theorem, let us first discuss the relation be-

tween Thom polynomials for different singularities.

6.1.1 Relation between different Thom polynomials

Suppose A is a nilpotent algebra. Fix m,n,m’,n’ € N such that n > m, n’ >
m' and n —m = n' —m'. Consider ©7" C J™ and 7™ < J™ and the
corresponding approximations for K, K’ > 0 of the Borel constructions EG g Xg
O C BGk x¢ Ji" and EG i x @ O1™ € EG' g x ¢ J7 " for G = Gl,, x G,
and G’ = Gl,,y x Gl,,s .

Suppose ¢ and h in the following diagram are holomorphic.

¥ = EGgxg0) " —— EGgxaJ)" —— Gr(m, K) x Gr (n, K)

| ,

S = BGlxq@) " e EGh % T~ Gr(m, K') x Gr (n/, K7)
If the following conditions [14] are satisfied:
e the square on the right commutes,
o h1(%y) =13,
e h is transversal to the smooth points of ¥,

then h* PD[X,] = PD[h'(2)] = PD[X;]. From the commutativity of the right

square we obtain the equality
Tp[O4™] = " Tp[O} ™).
Let now m' =m+ 1, n’ =n + 1. Define the map ¢ as follows:
p: Gr(m,K) x Gr(n, K) — Gr(m+ 1, K +1) x Gr(n + 1, K + 1)

(Vi,Va) = (Vi@ C, Vo @ C).

13



Define h in a similar way: let (eq,es,...,ex+1) be a fixed orthonormal basis
of CE+1 and let (¢1,...,t,) be an orthonormal m-frame in CX such that e, ¢
(t1, ..y tm), let (Uy...,0,) € J/"", ie. W,(z,...,2,) € JJ', then h is given by:

1 1
h: EGk Xg len’n — EG/K—H Xagr J;H_ o

((tla ...,tm), (\Ifh RN \Dn>) —> ((tla --'ytm76m+1)7 (\I’l, cey \Iln,zmﬂ)).

Let us denote the set of Chern classes of the dual tautological bundle L;, on
Gr(m,K) by ¢ = ¢y, ..., ¢n, the Chern classes of L} by ¢ = ¢}, ...,c,, the Chern

ey Oy

classes of L}, ; on Gr(m + 1, K 4+ 1) by ¢ =@, ...,Gpnq1 and the Chern classes of
Ly ., byd =7¢4,...,¢pi1. The transversality and the commutativity of the square

on the right are straightforward, so the following is true:
THIO e, ) = " TolO (e, 7).
We can also show how the pullback of ¢ acts on the Chern classes ¢; and @; :
©*(¢;) = ¢; for i <m and ¢*(Cn41) =0,
©*(@;) = ¢, for i <n and ¢*(¢41) = 0.
Using the properties of the pullback map we conclude the following.

Lemma 6.1. In the above notations,
Tp[O4"](c1s s Cmy &y s ) = TD[OG (¥ (@), 07 (), 97 (@) 07 (@) =

ey Oy

= Tp[@7 " (ey, ..., em, 0,6, ..., ), 0)

We can iterate the same procedure for Tp[@7>"?] Tp[@7 "], etc, but
since the Thom polynomial has a fixed degree, there will be a stabilization. This
conclusion proves that the Thom polynomial depends only on the difference n —m
but not on m and n, it also allows us to define the notion that generalizes the

Thom polynomial.

Definition 6.2. Fix a nilpotent algebra A and the difference between the dimen-
sions of the source and the target of the map-jets, i.e. n — m in our previous
notations, denote this number by I. Fix k = codim(6,"") in JJ"". Define the

universal Thom polynomial as
UTPIO(E1s s o oo o) = TOIOT ™ (et oo s oy s o)

for m > k.
14



For all m,n such that n — m = [ we obtain

TplO%"(ct, ..., Cm, s, ..., ) = UTp[O4Y](ct, ..., €m, 0, ...,0,¢;, ..., ¢,,0,...,0).

o b

Let us show an important property of the universal Thom polynomial. Let
f: Gr(m, K) — Gr(m/, K')

be any holomorphic map. Consider the diagram:

EGgxaJ]™" = Gr(m, K) x Gr(n, K)

K :

/

EG/}{+K/XG’u7dm+m/’n+m/ L)Gr(m_i_ m’,K+ K’) % Gr (n —i—m’,K 4 K/)
Define ¢ as

eV, Vo) = (Vi f(V1),Va® f(V1)), Vi € Gr(m, K), V5 € Gr(n, K).

Let (eq,...,emn) be the orthonormal basis for Vi, (e},...,e],) — the orthonor-

o Ep

mal basis for V5, and (€, ...,€, ) — the orthonormal basis for f(V}). Let ¥ =
(Uy,...,¥,) € J;"". Define h as follows:

hl(et, ..., em, €7 €), V] =

9 Cn

= [(€1, -y Emy €Ly evey €ty €15 ey €15 vy €t )y (U1, s W 20ty oy 2 )]

Let ¢ be the total Chern class of L}, ¢’ — the total Chern class of L}, and d; —
the total Chern class of f*(L;},). We have the following formulae for the pullbacks:

o c(Lyy) =c(Ly, @ f*Ly,) = cdy

o'c(Ly ) =c(Ly & f*Ly,) = ddy
On the level of the universal Thom polynomials we obtain the following.

Lemma 6.3. In the above notations,

UTp[0](c, ') = UTp[©4](cdy, ddy).
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6.1.2 Proof of Damon’s theorem

Theorem 6.4 (Damon, [11]). Letd, m,n € N and let m < n. Suppose A is a finite-
dimensional commutative nilpotent algebra and ©'" C JJ"" a contact singularity.
The Thom polynomial of """ depends only on the difference | =n —m and can

be expressed in a single set of variables ¢ given by the generating series

AL
L4 oyt ot 4 = im0 Gl

> j=o Gt? .
These new variables are called the relative Chern classes. We will denote the

Thom polynomial expressed in the relative Chern classes by Tp[©y""](¢//¢).

Proof. The previous discussion implies that if there existed a map f such that

dy = 1/c, the Damon’s theorem would be proved since
UTp[©4](c, ') = UTp[OL](1,¢'/c) = UTp[O,](c'/c).

In fact, such a map does not exist. The equality ¢(L*) = 1/¢(Q*) holds for
a finite Grassmannian, so d; should be ¢(Q*), but the Chern classes of the dual
tautological bundle can not be pulled back to Q* via a holomorphic map because
c(L*) is positive (i.e. the Chern classes of L* are linear combinations with non-
negative coefficients of the Poincaré duals to analytic subvarieties) and ¢(Q*) is
not.

Let S be an ample line bundle over Gr(m, K). Then for « big enough, Q% ®S5%*
is generated by its global holomorphic sections and thus has positive Chern classes.

There exists a holomorphic map
fa: Gr(m,K) — Gr(m+m., K + K.

such that fi(Ly ... ) = Q) ® 5%

Let us compute the total Chern class of this twisted bundle. Denote the bundles
from the splitting principle for @, by &,...,&, and their first Chern classes by
Y1, - - -, Yn, denote the first Chern class of S by z. Then the following identity holds:

c(Qf, @ S®) =c(£; @5 D ... ®E, @ 5% =

H yi+az+1 1_[(3/Z + 1)+ aP(a) =c(Q),) +a- Pla),

i=1
where a - P(«) is a polynomial in « that contains all the summands of []}", (z; +
ay + 1) that depend on «. Define

Yo: Gr(m,K) x Gr(n,K) — Gr(m +m/y, K + K') x Gr(n +m/o, K + K',)
16



(V1,V2) = (Vi ® fa(V1),V2 & fa(1))

Denote the total Chern class of the dual tautological bundle L on Gr(m +

m+m/ o

m'y, K + K’,) by ¢ and the total Chern class of the dual tautological bundle
L:, . onGr(n+m,, K+ K',) by @. Then by the previous discussion we have

n+m’q

the following relations between the Chern classes:
#(®) = - (@) + aP(a) = 1+ ¢ aP(a)
o' (@)= (c(Qr) + aP(a)) = /c+ - aP(a).
Or, on the level of the universal Thom polynomials:
UTp[04](1+c-aP(a),d Jetc-aP(a)) = UTp[O4](1, ¢ /c)+aPy(a) = UTp[@](c, ¢),

where aPs(«r) contains all the summands that depend on «.
Since aPy(a) = UTp[O4Y](c,d) — UTp[O4](1,c /c) their expressions in the

Schur polynomial basis are also equal:
aPya) = 0y Wau(@)s:()s,(¢)

UTp[O](c, ) = UTpO4]1(L, ¢ /e) = 37 Brusa(c)su(c)
a Z Wiu(a)sa(e)su(c) = Z Biusa(e)su(c)
This equation holds if and only if

By, = aWy,(«a)

for all A and p. However, since this is true for all sufficiently large o, the polynomial
By, —aWy,(«) has infinite number of roots. Thus, it is zero for all . This implies

that By, = 0 for all A and p, i.e. UTp[O©4](c, ') = UTp[O4](1,d /c). O

6.2 Positivity

The Schur polynomials serve as a natural basis for the cohomology ring of Grass-
mannians. Given an integer partition A = (Aq, ..., \,), such that K > X\ > Ay >
... > Am > 0 define the conjugate partition A\* = (A}, ..., \;) by taking A! to be
the largest j such that A; > i. Denote by sx(b1, ..., by,) the expression of the Schur

polynomials in elementary symmetric polynomials:
S)\(bl, N bm) = det{b)\;f+j_i}?7j:1.

17



The Schur polynomials of degree d in m variables form a linear basis for the
space of homogeneous degree d symmetric polynomials in m variables.

Consider the finite Grassmannian Gr(m, K'). The Schur polynomials indexed
by A such that K > A\ > ... > \,, > 0, evaluated in the Chern classes ¢, ..., ¢,
of the dual tautological vector bundle L}, are the Poincaré duals of the Schu-
bert cycles — homological classes of Schubert varieties oy, special varieties whose

homological classes form a basis for the homology of the Grassmannian [16]:
S,\(Cl, ...,Cm) = PD[O’)\]

The following result was first proved by Pragacz and Weber. Here we give a

new proof of this result.

Theorem 6.5 (Pragacz, Weber, [29]). Let d,m,n € N and let m < n. Suppose A
is a finite-dimensional commutative nilpotent algebra and ©'y" C Ji"" a contact
singularity. The Thom polynomial of ©'" expressed in the relative Chern classes

18 Schur-positive:
Tp[O"](¢/e) = > arsa(d/c)

where ay > 0.

Proof. By Damon’s theorem, Thom polynomials for contact singularities can be

written as follows:
TplO%"](c, ) = Tp[OF"H](1,¢ /c) =

—ZQOASO S,\ /C Zoéo,\S,\ /C

for 5 big enough. To prove the positivity we show that agy > 0 for all A.
Fix a plane Vj € Gr(m, K) and define the map

h: Gr(n, K) — Gr(m, K) x Gr(n, K)

V) =V, V).

Let ¢ be the unique map making the following diagram commutative:

_1(EGK Xa @Z’n)g h*(EGK Xa J;n,n) P GI‘(?’L, K)

i ;

Y = EGg xq 0" ——— EGk x¢g JJ" —2—~ Gr(m, K) x Gr(n, K)

18



The idea of the proof is to show that

Zao,\s,\ = h*(Tp[O®"](¢, ")) = PD[X],

where X is an analytic cycle in Gr(n, K).

Let o) be a homology class of a Schubert variety of dimension complementary
to dim X. Gl,, acts transitively on Gr(n, K), so by Kleiman’s theorem [23] there
exists C' € Gl,, such that (CX) Noy is of expected dimension (so, discrete) and
CX is homologous to X.

#(X N 0')\/) = PD[ PD O')\/ ZOZOMSM S)\/ ) = Qo) —

= #(CX N O'N) = Z multx Z 0.

zeCXNoy/

Here mult, is an intersection multiplicity, which is non-negative for two analytic
cycles.

Let us consider the details. We should construct the algebraic variety X.
First, denote EGx xg J;"" by E and EGyx xg ©)"" by X for short. It is clear
that ¢~ '(2) C h*(E). If ¢ is also transversal to 3, then we have that

" PD[Z] = PD[p~'(%)].
By definition, we need to show that:
Im(d,(¢)) + Tp)2 = Tp) 2
for z € ¢~1(X). Locally
TeplE = T.(Gr(m, K) x Gr(n, K)) ® T,J;""

for z € EGx = Gr(m,K) x Gr(n,K) and y € J;"". With this interpretation
the transversality is obvious since Im(d,(y)) has T, J;"" as a direct summand and
T2 has T.(Gr(m, K) x Gr(n, K)) as a direct summand.

Let us show that the vector bundle ~A*(E) has enough holomorphic sections to

find a holomorphic section s transversal to = 1(X).
Lemma 6.6. EGy xg J"" = (69?:1 Sym Lm> X L.

Proof. An element of a fiber of EGg x¢ J;"" is a class [(em, €,), ], where f €

T, e is a frame, i.e. a linear injective map form C™ to C¥X, and e, is a linear
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injective map form C" to CX. We consider a class [(e,, €,), f] with the equivalence

relation
((emsen)s ) ~ ((emCit e 0 1), C fCL1),

where C,, € Gl,, C € Gl .

An element of the fiber of (@le Sym’ Lm) X L7 is a polynomial function of
degree at most d without a constant term between V,, € Gr(m,K) and V, €
Gr(n, K).

The map [(em, €n), f] = emo foe, ! is correctly defined and is a bijection. [

We use this lemma to decompose h*(E) :
* d 7 : * : *
h*(E) = <@i:1 Sym (Trlvm)) ® L, = Ter(djnm)il QL

where Triv,, is a trivial vector bundle whose fiber is a complex vector space of
dimension m.
We use the following theorem to show that this bundle has enough global

holomorphic sections to find one transversal to ¢ ~'(X).

Theorem 6.7 (Parametric transversality theorem, [20]). Let M, N, Z, S be
smooth manifolds. Consider F: M x S — N D Z, smooth map transversal to Z.

Then for almost all s € S the map F is transversal to Z.

Let D = (dilm) — 1. In the notations of the Parametric transversality theorem,
let
M = Gr(n, K), N = Hom(L,,C") = h*(EGk x¢ J;"™),

Z =~ }(2), S =T(Hom(L,,CP)) = Hom(CK,CP),

Then, the map F' from the theorem is the following:
F: Gr(n, K) x Hom(C*,C”) — Hom(L,, CP).

(V7 f ) = f ’V-
The transversality of F' to ¢~ !(X) obviously follows from the fact that dy, ) F

is surjective for all V and f.

Now, by Parametric transversality theorem, the set of holomorphic sections of
h*(E) transversal to smooth points of ¢~ !(X) is open and dense in all holomorphic
sections of this bundle. The set of holomorphic sections of h*(E) transversal to
smooth points of the set of singular points of ¢~1(X) is open and dense in the set
of holomorphic sections transversal to smooth point of ¢~!(X), and so on. Since

this procedure drops the dimension of the variety, it is a finite process and the
20



intersection of a finite number of open and dense sets is again open and dense. So,
we can choose a holomorphic section s transversal to ! (3).

The analytic subvariety X from the discussion at the beginning of the proof is
s (D)

PD[s "¢ ()] = s* PD[p~'()] = (pr2*)'¢* PD[X] = h*(pr*) "' PD[E] =
= h*Tp[@%"](c, ) = Z agrsx(c)

and the proof of positivity is complete. n
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7 Computing Thom polynomials

Computing the Thom polynomials is difficult. So far, Thom polynomials are
known only for a limited number of singularities, mostly in small relative codi-
mensions. There are two main modern methods to compute Thom polynomials:
Rimanyi’s method of restriction equations and the Bérczi-Szenes-Kazarian residue
formula. In this section we will explain both methods and show how the combi-

nation of the two may simplify the computations.

7.1 Rimanyi’s method of restriction equations

Let us recall the method of computing the Thom polynomials introduced by
Riményi in [30].

Let I > 0 and let © be a singularity in the jet-space of relative codimension [,
ie. © C J™ Let §: C™ — C™ be its prototype.

Definition 7.1. [30] The maximal compact subgroup of the left-right symmetry
group of 6

Autd = {(An, A) € DIff x Diff7 | A, 000 ALY = 6}

will be denoted by Ge. Its representations on C™ and C™™ will be A\;(0) and
A2(©) respectively. The vector bundles associated to the universal Gg-bundle
using the representations A;(©) and A\y(©) will be called &g and &e. The total
Chern class of © is defined as

C(@) 0(66)

= o) € H*(BGe,Z).

Let the Euler class ¢(0) € H2°4m®(BGg, Z) be the Euler class of the bundle &g.

Definition 7.2. [30] (The hierarchy of singularities.) Let ©,Z be singularities
in J7"* for [ > 0. The singularity © will be called more complicated than Z if
O ¢ Z. We will write Z < O. Let us adapt the convention © ¢ ©.

Proposition 7.3. [30] If codim = > codim ©, then = £ ©.

Theorem 7.4. (Riményi’s method of restriction equations, [30])

[1]

e(2) ife=
0 if © #
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Corollary 7.5. [30]

dE) ife==t

Tp[O](d(2)) = , _ _
0 if© # = and © #£ =,

where € (Z) and ¢ (Z) are the Euler and the Chern classes of = corresponding to

any subgroup G% < G=.

Often, these conditions characterize the Thom polynomial. Let us show how

to compute the Thom polynomial using this method on a simple example.

Example 7.1. Suppose [ = 0, and let us compute the Thom polynomial of © 43 C
J;"™. By Proposition 7.3, the Aj singularity is more complicated than the A,
and the A; singularities. The computation of the Chern and the Euler classes
corresponding to singularities is described in great detail in [30], in particular, the

following formulas for A; singularities are computed:

c(Ay) = BT 4r —ia? i® —

Since © 43 C J;"™ is of codimension 3, its Thom polynomial is a homogeneous

polynomial of degree 3 in relative Chern classes (interpreted as graded variables):
TplO’)."] = Bei + Ceies + Des.

We will use Rimanyi’s method of restriction equations to compute the unknown

coefficients B,C, D € Z. By Theorem 7.4, we have the following equations:

1. Tp[ Z;m](C(AQ» =0« BC?(AQ) + CCl(AQ)CQ(AQ) + DC3(A2) =0
=4B-2C+ D =0

2. Tp[O}")(c(A1)) =0=B—-C+ D=0
3. TplO7"](c(As3)) = e(A3) = 9B —3C + D = 2,

4B—-2C+D =0 B
that is, the coefficients of Tp[@};™] are given by § B — C' 4+ D =0 =0
D

I
(\&] w —

9B -3C+D =2

This method allows us to compute the Thom polynomials when the hierarchy
of singularities is known. However, the hierarchy depends on [ and is not known
in the general case.
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7.2 The Bérczi-Szenes-Kazarian residue formula

Another method of computing the Thom polynomials for Ag-singularities was

presented in [5]. This formula does not depend on the hierarchy of singularities.

Theorem 7.6. 5| Let T, C By C Gly be the subgroups of invertible diagonal
and upper-triangular matrices respectively. Denote the diagonal weights of T, by
21, ..., 2q. Consider the Glg-module of 3-tensors Hom(C?, Sym? C%); identifying the

weight-(z;—z;+2;) symbols qu and qfi, we can write a basis for this space as follows:
Hom(C?, Sym? C%) = @Cqﬁ“j, 1<i,7,k<d.

Consider the reference element

d d—i

_ E E i+j
Eref = Qij

i=1 j=1
in the Bg-invariant subspace
Ny = @ quj C Hom(C%, Sym? C%).
1<i+j<k<d

Set the notation R4 for the orbit closure Bacef C Ny, and consider its Ty -

equivariant Poincaré dual

Qa(z1, ..., 24) = eP(Ra, Na)1,,

which is a homogeneous polynomial of degree dim(Ny) — dim(R,).
Then for arbitrary integers m < n, the Thom polynomial for the A4-singularity
with m-dimensional source space and n-dimensional target space is given by the

following iterated residue formula:

) T = )Qules o 24) TTpe <1> g

eP(©y") = Res ——
‘ e HZ:I Hi‘:ll ?I:I?(l’kﬂ)(zi + 25 — 21) i

where RC() is the generating function of the relative Chern classes:

H?:l (1 + 6iq)
[T (1 +Ng)

here 0; and \; denote the corresponding Chern roots.

3 )
Zi

RC(q) =1+ c1g+ ¢’ + - =

The only unknown ingredient in the Bérczi-Szenes-Kazarian residue formula is
the Q)4 polynomial. While in principle it is an algebraic problem whose solution can
be computed using software such as Singular or Macaulay, in reality the existing
methods and the computational capacity of modern computers only allow us to
find @4 for d < 6.
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7.3 The Q-polynomial

The degree of the Q-polynomial is the codimension of R4 in Ny. The dimension
of N4 may be computed by indexing the basis by the triples of (i, j, k) such that
1 < jandi+j <k < d. The dimension of the Borel orbit of the reference element

1S

dim(Ry) = dim(By) — dim(Stab,,_,) = <d ;r 1) _d- @)

Let us compute the degree of Q4 for d < 7 (the same data up to d = 6 may be
found in [5].)

d | dim Ny | dim R, | deg Qq
1 0 0 0
2 1 1 0
3 3 3 0
4 7 6 1
5 13 10 3
6 22 15 7
7 34 21 13

Example 7.2. Since ()3 = 1, we have the following formula for the Thom poly-

. m,m m,m
nomial of @A3 cCJ;

m,m (Zl - 22)<Zl - Z3)<Z2 — ’23)
Tp(@™™) = (—1) Res Res R :
P(O4") = (1) Res Res Res o ) (er + 22 — 20) 01 — )

21 Z9 Z3

Let us focus on the case when @4 is non-trivial. Following the idea from [5],
we first describe the set of equations satisfied by Ry C Ny.

We will write the equations in terms of the basis dual to the {g;} basis of
N,. The elements of this basis may be interpreted as the structure constants of
the multiplication making a d-dimensional filtered vector space a commutative d-
dimensional filtered algebra, i.e. let V} D V5 --- D Vy such that V; = (v;, ..., v4) be
a filtration on C?. The multiplication preserving the filtration is of the following
form: ;

v v = Z tfjvk € Vits,
k=i+j
where tfj € Z are the structure constants. Note that the reference element gives

the "graded” multiplication, i.e.

TE S
VU5 = tij Vit
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Since the points in the Borel orbit of the reference element correspond to
associative multiplications, Ry will satisfy the associativity equations, i.e. relations
between the structure constants coming from the associative triples

(v; - vj) - v = v - (v - V).

Example 7.3. [5] The first case where a non-trivial associativity equation appears
is the case d =4 :

(Ul"Ul) s Vg = (Ul'UQ)‘Ul =4
t%lt%Q = t?zt%z’,-

The variety defined by this equation is an irreducible toric variety of the same
dimension as R4 [5], thus they coincide. The equivariant Poincaré dual in this

case is given by the sum of weights of any of the two monomials:
Qs(21, 22,23, 24) = (221 — 22) + (220 — 24) = 221 + 22 — 24.

However, in the more complicated cases the variety described by the associa-

tivity equations is not toric and, moreover, has more than one component.

Example 7.4. The first case where the variety given by the associativity equations
has more than one component is the case d = 6 [5]. The following triples will give

the associativity relations:

The corresponding associativity equations are the following:

2 44 3 44
t1t9y = t1ot13

2 45 3,5 3 45 4 45

tiitoy + tiitas = tiatys + tiathy

t11155 + 1115 + 11154 = tiats + thatly + 15105

2 4 45
t11t33 = ty3l14

2 16 | 43 46 446 | 45 46
tiitag + titas = tysliy + titys
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t%ltg4 = t?4t(155
t?th:J, = z53315(155 = tilgtg4
t%ﬂi = t?ztg:s
t%zt% + tgztg‘s) = t?thS + t4112tg4-

It is easy to see that the associativity variety contains two maximal dimensional

components: Rg and another one given by
<t%1 =0, t?2 =0, t?l =0; t‘;’4 =0, tflj4 =0, tflj5 =0, tg4 =0).

To distinguish the Rg component we add an extra relation such that it is
satisfied by Rg, but not by the other component. This extra relation is computed

in [5] using Macaulay:

Fiotiatastis + Eaotistintis + titistootss + taatiatoatis —

4 44 4 44 4 44 4 44
_t22t11t33t23 - t13t12t32t23 - Z522251325?32533 - tl3tl3tg3tg2 =0.

The computation of the Poincaré dual Qg of a Borel orbit Rg is non-trivial. The
computation using the description of the vanishing ideal of Rg by explicit relations

is written in detail in [5] and is too long to recall here.

Remark 7.7. While we have no effective method of computing the extra relations
(we can no longer use Macauley for d = 7), the form of the extra-relation for Rg
suggests that the extra components appear when there exist d-dimensional asso-
ciative algebras that admit a filtration different from the natural for A;-algebras
(1,...,1)-filtration.

It is easy to see that the monomials from the extra relation for R only have
1,2, 3 as lower indices and 4,5, 6 as upper indices. That is, the extra filtration is
the (3, 3)-filtration given by

‘/1 = <U1,'U2,U3>, ‘/2 = <’U4,U5,U6>
Vi-ViCVa, Vi-Va=Va V5 =0.
Or, in terms of the structure constants,
<t%1 = t?l = ti’2 = t?4 = t?5 = tg4 = >

For d = 7 we have found two different extra-filtrations: the (3,4)- and the
(4, 3)-filtrations.
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The first one is given by
‘/1 - <U17U2,U3,U4>, ‘/2 = <U5,U6,U7>7 or

2 3 4 3 4 4 4 6 7 7 7
<t11 =ty =1l =l =ty =l =ty =15 =l =tjg = lgs = O>‘

The second extra component is given by
‘/1 = </017/027U3>7 ‘/2 - </U4,U5,U6,’U7>, or

7 7 7 7 7 7
<t%1 = tzl))l = ti’Q = t?4 = t?4 =ty = t?5 =ty =t = t34 =ty =ty =1ty = 0>'

7.4 Q-polynomial and the restriction equations

In this subsection we would like to show how Rimanyi’s method of restriction
equations may be used to calculate the Q4 polynomial in a different manner.

We will use a more general setup than in Theorem 7.4, following the ideas in
[12]. Note that the Thom polynomial is the equivariant Poincaré dual, and the
singularity is an invariant subvariety and a group orbit, so, using the fact that the
normal bundle of an orbit of a group action reduces to the stabilizer group of the

points of the orbit, we arrive at the following theorem.

Theorem 7.8. Let V' be a wector space equipped with a compact Lie group G
action and let 33 be a closed G-invariant subvariety of V. If p € V' does not belong
to X2, then

eP[X|(z1, ..., 2m) =0,

where z; are the diagonal weights of the Lie algebra Stab,,.

Let us show how one may apply this theorem to the calculation of the Qg
polynomial. Consider the space Hom(Sym? C¢, C%) of commutative multiplications
on C? compatible with the previously defined filtration. There’s a torus T acting
on the dual space Ny, and Ry is a Ty-invariant subvariety.

The Ty-equivariant Poincaré dual of R, is the Q4 polynomial. We may write
down the ()4 polynomial as a general polynomial in d variables of degree codim R4
with unknown coefficients. Then, if we find a sufficient number of points outside
Rg, the equations from the theorem above will determine Q)4 up to multiplication,
i.e. the solution will still have one parameter. There are several ways of how to

get rid of it, we will return to this question later.
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The most obvious way of how to find points in Ng not belonging to R, is to
take the points corresponding to the monomials from the associativity equations,

that is, to a monomial ¢¥.t%

ijtiry corresponds a point in Ny given by

q; + q,-,'j, #0
Gey = 0if {e, f, g} # {i, 5, k} # {i 5K}

Since these points do not satisfy the equations satisfied by R,, they do not
belong to R,.

Example 7.5. Let us show how to apply the method described above to the
simplest case when (4 is non-trivial, that is, the case d = 4.
For d = 4, we have deg@y = dim Ny —dim Ry, =7 —6 = 1, so (J4 is a linear

polynomial in 4 variables:
Qa(21, 22, 23, 24) = @121 + Ag22 + a3zz + aa24, a; € 7.
There is only one associative triple giving one associativity equation:
(1)1'?}1) s Vg = (’Ul 'Ug)'vl =
t%1t32 = t?ﬂ%&
That means we have two monomials, so two substitutions.

1. The weights of the Lie algebra corresponding to the the stabilizer of 3,3,
are given by
To = 21’1 To = 21’1
=
T4 = 279 x4 = 4a1

That is, we have the following equation:

Q4(1,221, 23, 421) = @121 + 2a9x1 + agxs + dagz; = 0.
2. In the case of t3,t]; we have

T3 = 21+ To

Ty = 2% + T

and the substitution gives us

Q4(l’1, T2, X1 + 9, 21’1 + l’g) = a11q + [eHE) + ag(l‘l + ZL’Q) + CL4<21,’1 + 1’2) = 0.
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All that is left is to solve the following system of linear equations:

/

a1—|—2a2—|—4a420

a1ry + 2a9x1 + asrs + 4asxy =0 as =0
=

a1x1 + asxy + CLg(Il + LEQ) -+ CL4<25L’1 -+ .’I]Q) =0 ay + as + 2@4 =0

\CL2+CL3+CL4:0

(05} =1

a1:2t
=

CL3:0

a4:—t.

\

The final answer is Q4(21, 22, 23, 24) = 2tz + tzp — tzy, which agrees with the

computation in [5] for ¢ = 1.

The computation for )5 is similar, but can no longer be carried out by hand, the
answer obtained with Maple is again a one-parameter solution. In the case of Qg,
however, the computation using only the restrictions coming from the associativity
equations gives a two-parameter solution. This computation once again suggests
that the associativity variety for d = 6 contains two components. Since there is an
extra relation that R satisfies, we use the substitutions coming from monomials
of this relation, and once again obtain a one-parameter solution. This leads to the

following conjecture.

Conjecture 7.9. Restrictions coming from the associativity equations and from
the extra equations distinguishing the R,; component determine )4 up to multi-

plication.

Remark 7.10. In the case of ()5 there are 10 substitutions coming from the
associativity equations, but the answer remains the same if we use only 6 of
them. For Q¢ there are 37 substitutions in total, but if we take only 20 certain
substitutions, we again get the correct answer. We are unable to explain the

geometry related to this phenomenon yet.

7.5 Getting rid of the last parameter

The method described above uses the constraints that are homogeneous linear
equations, so only allows us to obtain the solution up to multiplication. That is,

to obtain ()4, we must find a non-homogeneous equation.
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Remark 7.11. The obvious non-homogeneous equation would be the analog of

the equation

Tp[O](c(©)) = e(©)
from Riméanyi’s method of restriction equations, but in our case this equation is
Q(z,2z,...,nx) = H((z +j)x — iz — jx) =0,

so we get no new information from it.

7.5.1 The coefficient of c{

The following statement is proved by Riményi (see [30], Corollary 5.4).
Proposition 7.12. [30] The Thom polynomial of © 4, C J;"" for m —n > 0 in
relative Chern classes is equal to
Tp[O4,] =l +...
The easiest way to separate the coefficient of ¢? is to use the residue formula:

(=) Lo (2 — 2)Qalz1, - - .,zd)) ﬁl (1) _,

S 7 - —

- d k—1 yymin(i,k—1) .
2=00 ) ) R

Hk:1 H’i:l j=1 (Zl 2j T Rk “i

Example 7.6. Let us return to the case d = 4. In Example 7.5 we were able to
calculate the following one-parameter solution: Qy(21, 22, 23, 24) = 2tz +tzo — tzy.
Now, using the formula above, we can compute the value of the parameter ¢.

Res (2tz) +tzg —tz4)(21 — 24)(21 — 23) (21 — 22) (22 — 24) (22 — 23)(23 — 24)
z=00 (221 — 29)(221 — 23)(221 — 24) (21 + 20 — 23) (21 + 20 — 24) (21 + 23 — 24) (220 — 24) 21202324

= —ResResRes Hz = 2)

=t=1
22=023=024=0 (2Z2 — 24)222’324

So, the final answer is

Qu(z1, 22, 23, 24) = 221 + 22 — 24.

7.5.2 The volume of the toric orbit

In this method we use the idea from [3]. Let wy, ... wq be the new variables defined
by

21 = Wy, 22:211)1—’(1]2, cey zd:dwl—wQ—wg—...wd.

The Q)4 polynomial in these variables can be thought of as a polynomial in a distin-
guished variable w; whose coefficients are homogeneous polynomials in ws, . . . , wy.
Let us denote the equivariant Poincaré dual of the toric orbit Tye.er by QY. In [3]

Bérczi proves the following theorem.
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Theorem 7.13. [3]

coeff  op (Qa(wr, ..., wa)) = C4Q5,

where the constant Cy is given by

. (—1) =21 () (b=2)(b=2) . ... (2 1 4)! if d = 2k
Cl p—
(—1)=D=1) () (k=2)(k=1) . ... (—2k+3) ifd =2k +1.

Let us show how to use this fact when getting rid of the last parameter in the

(4 polynomial.

Example 7.7. Let d = 5. Suppose we have obtained a formula for the Q)5 poly-

nomial up to a multiplication:
Qs(21,...,25) = t(22 +2’2—755)(22’%‘1‘32122—22125+2Z2Z3—Z2Z4—2225—2324+Z425)-

It is enough to compare the coeffwgop(Qg,(wl, 1...,1)) and C5Q%(1,...,1). Let
us rewrite the one-parameter formula for the (05 polynomial using the following
substitutions:

We obtain the following:
Q5(w1, 1, cey 1) = —3t’LU1 + gt,

so the left hand side is —3t.
The constant C, on the right hand side is equal to —1 by the formula above.
There are several methods of computing the equivariant Poincaré dual of the
toric orbit, but since we do not need the whole polynomial, only its value when
evaluated at (1,1...,1), we will compute the simplicial volume of the convex hull

of the weights of t;:jj . Let us list all the structure constants of this type:
t15 o, i, tha, e, 135
The weights of these vectors are:
(2,—1,0,0,0),

(17 17 _17070)7
(17 07 17 _170)7

(]-a 0707 17 _1)7
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(Oa 2707 _170)7
(0,1,1,0, —1).

It is easy to see that these weights lie in the codimension 2 subspace of t; : first,
the scalar product of any of these points with (1,2,3,4,5) is equal to 0, second,
the scalar product of any of these points with (1,1,1,1,1) is equal to 1. Let us
drop the two last coordinates. Now we have 6 points in R?. The computation of
the Poincaré dual for the corresponding toric variety goes as follows. First, we
take the convex hull of these points, then we take the minimal triangulation of the
convex hull. Now, the equivariant Poincaré dual will be equal to the sum over all

simplices S of the following products:

H (zi + 2 — 2k)-

weight(tfjﬁés

Note that since we are only interested in computing this sum for z; = 1, the answer
will be the number of simplices in the triangulation, i.e. the simplicial volume of
the convex hull. This computation can be easily done with the QHull software for
this case as well as for higher-dimensional cases. Here are the simplicial volumes
for n = 5,6,7 computed with QHull.

d|Qy1,...,1)
5 3
6 10
7 20

In our case the answer is 3, so

—3t=-3=t=1

33



8 K-theoretic Thom polynomials

In [31] Rimanyi and Szenes discussed the K-theoretic generalization of the Thom
polynomial. As the Thom polynomial, the new invariant is the fundamental class,
but not in equivariant cohomology, but in equivariant K-theory. However, there
are two different definitions of this invariant. In this section we define both invari-

ants and prove that they are in fact different.

8.1 Equivariant smooth resolution

We begin with recalling the necessary facts about smooth resolutions.
Let X be an affine variety. If Y is smooth and there exists a proper birational

map f:Y — X, then we say that Y is a smooth resolution of X.

Proposition 8.1. The cohomology groups H (Y, Oy) do not depend on the smooth

resolution Y, i.e. are invariants of X.

This fact follows from the Elkik-Fujita Vanishing Theorem [21]. In the nota-
tions of Theorem 1-3-1 from [21], take two smooth resolutions of X and a morphism
between them ¢: Z — Y with E equal to the support of the cokernel of the natural
morphism f*wy — wyz, L equal to f*wy, L equal to the structure sheaf, and D

and D — the empty divisors.
Proposition 8.2. H°(X,Ox) = H(Y, Oy) if and only if X is normal.

If X is not normal, there exists a unique normalisation of X — normal affine
variety X. In this case HO()?,O)?) = H(Y,Oy), but HO()?,O;() # HY(X, Ox).
The proof of the proposition above is based on the universal property of the

normalization and Zariski’s Main Theorem [27].

Definition 8.3. Let X be a normal affine variety, then X has rational singularities
if H'(Y,Oy) =0 for all i > 0.

Suppose a Lie group G acts on the affine space AM. Let X C AM be a G-
invariant subvariety. Y is called an equivariant smooth resolution of X if YV
is smooth, G acts on Y, and the map f: Y — X is proper birational and G-
equivariant.

Let T be the maximal torus of G. One of the natural questions that arises in
[31] is whether x[H°(X, Ox)](t) is equal to x [>_(=1)'H (Y, Oy)] (t), t € T. Note
that while X is an affine variety and therefore H*(X,Ox) = 0 for ¢ > 0, this in
not necessarily true for H (Y, Oy).
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Proposition 8.4. Let G be a Lie group acting on AM. Let X C AM be a G-
wmvariant subvariety, and let' Y be its smooth G-equivariant resolution. Let T be

the maximal torus of G. The equality

AH (X, 0x)](t) = x [ (-1 H (Y, 00)| (1), teT
holds if and only if X has rational singularities.

In this section we study whether the As-singularity loci have rational singular-
ities.

Let us briefly recall the necessary facts about nilpotent algebras. We will call
an algebra N mnilpotent if it is finite dimensional and if there exists a natural
number £ such that the product of each k£ elements of the algebra vanishes, that
is, N¥ = 0. J7" is nilpotent: (J7")*! = 0, the algebra J} is often denoted by
Ay = tC[t] /L.

Definition 8.5. An algebra C'is (1,1,...,1)-filtered if C' has an increasing finite
sequence of subspaces 0 = Fy.1 C I}, C ... C F} = C such that F; - I; C F;y; and

Nilpotent algebras have a natural filtration: 0 = N**' ¢ N* Cc ... c N> C N.
In case of Ay, this filtration is a (1,1, ..., 1)-filtration.

Definition 8.6. Ag-singularity locus is given by

Ot ={(Py,.. Pa) € 77 [ T3 /TPy, Py = Ag).

O " is a Gl(m) x Gl(n)-invariant affine subvariety in J;"".

8.1.1 Equivariant smooth resolution of the A;-locus

Let us briefly look at a simpler case, the A;-locus:

O™ = {M € Hom(C™,C") | tk M < m},

i.e. for every M € ©}"" there exists a non-zero eigenvector v € C™ such that
Mv = 0.

Proposition 8.7. The space
{(M,v) | Mv=0, M € Hom(C™,C"), v € C"} C Hom(C™,C") x P!

is an equivariant smooth resolution of ©'".
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This space can be understood as follows: let us fix an element v € P! and
describe the set {M € Hom(C™,C") | Mv = 0}.

There is a tautological sequence of vector bundles on P~ :

O(-1) =L c Q

Pm—l

We can apply Hom(x,C™) to it and obtain the following sequence:

Hom(Q,C") Hom(C™, C")

|

]P)m—l

Hom(L,C")

The map Hom(C™, C") — Hom(L,C") can be interpreted as the evaluation map
M +— Mu for a fixed v € P!, Tts kernel is exactly Hom(Q, C").
The equivariant smooth resolution of ©7;"" defined above may be presented as

the following vector bundle:

Hom(Q, C*) @Z’f

]Pm—l

It is well-known that ©'{"" has rational singularities. In this paper we study

the rationality of the singularities of @z’" and prove the following theorems.

—_~—

Theorem 8.8. ©'\)" in general can have singularities worse than rational.

—_~—

Theorem 8.9. ©0"" has rational singularities.

Before proving the main theorems, we recall the explicit construction for the
equivariant smooth resolution of @Z‘;n, the Borel-Weil-Bott theorem, and demon-
strate the spectral sequences technique that will allow us to study the rationality

of the singularities of the As-loci.
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8.2 Equivariant smooth resolution of the As-locus

In this section we recall an explicit construction for the equivariant smooth res-

olution of the As-locus following [22]. The general case is discussed in [22] and

[5].
Before we present the equivariant smooth resolution of ©}"", we need to intro-

duce some preliminary notions.

Definition 8.10. The curvilinear Hilbert scheme of order 2 is defined as follows:

Hilb 4, (C™) 2 {T C J3" | J5"/T = A,}.

Each ideal I € Hilb4,(C™) comes with the tautological sequence:

I Jp N~ Jr/1

To construct a smooth equivariant resolution of ©'\"" we start with the following

vector bundle:

Hom(C", 1) o

Hilb 4, (C™)

The fiber over I € Hilby,(C™) is the space of all n-tuples of elements of I. The
set of n-tuples of elements of I that generate [ is Zariski open in Hom(C", I) and
the projection Hom(C",I) — J;*" D ©’))" is proper.

This vector bundle is not a smooth equivariant resolution of ©" because
Hilb 4, (C™) is not smooth. The next step is to find a smooth equivariant resolution
of Hilb4,(C™).

Since every I € Hilby,(C™) is equipped with the tautological sequence men-

tioned above, we can rewrite Hilb4,(C™) as

Hilb,(C™) ={f: JJ* = N | dim N =2, f — surj. alg. homomorphism} /o

The equivalence relation is defined as follows: f ~ f”if the diagram commutes:
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N

e

Jy"
x

We will be interested in (1, 1)-filtered 2-dimensional nilpotent algebras. There

12

N

are two different types of them:
e A, with the natural (1, 1)-filtration: A2 C A,
e algebra N generated by two elements, such that the product of any two

elements of N is 0. This algebra does not have a natural (1, 1)-filtration, so

we introduce an artificial (1, 1)-filtration F; C N, where F} is any line in N.

Let us introduce the notation for filtered algebra homomorphisms. Suppose N
and C' are filtered algebras. We will denote a homomorphism compatible with the
filtrations on N and C' by

f:N ENYe;

Proposition 8.11. The smooth equivariant resolution of Hilb4,(C™) is given by
—_— A . 3
Hilby, (C™) = {f: J3" = N | N - 2-dim. (1,1)-filt., [ — surj.} /.

The equivalence is taken up to a filtered algebra isomorphism:

v

Jy" A
X

The following vector bundle is a smooth equivariant resolution of the As-locus:

N

N

Hom(C™, I) oL

Hilb 4, (C™)
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Now we need to find a simpler interpretation of this resolution.

Let g be the inverse of the canonical map Ji* — Ji/(Ji")? = C™:
g: C" = J3

Let us denote its image by I'm(g) = E*. E* is the linear part of J3".
Let A® be a 2-dimensional algebra equipped with the (1, 1)-filtration and f €

Hilb 4,(C™). We can define two natural maps

?/JliE%AAa Y = f

E*
Py Sym? A® — A2
Proposition 8.12. The linear map 1, ® ¥y: E* @ Sym? A® — A2 is surjective.

Proposition 8.13. Let N be a 2-dimensional filtered vector space.

@A2 (C™) is in one-to-one correspondence with the set of isomorphism classes
of pairs (11,12), where ¢y: Sym* N — N is a map giving N an associative com-
mutative algebra structure and vy: (C™)" — N is a linear map such that 1 @® s

is surjective. Pairs (11,19) are taken up to filtered algebra isomorphism.

Let us describe Hilb 4,(C™) using this correspondence.
Suppose N be a 2-dimensional vector space with a filtration Ny C N, where

N, is a line in N.

(cm) N/Ny

S

N

The kernel of this map is defined by Ker(y,) = {V c (C™)* | dimV =m —1} =
Pm=1(C™)* =2 P™ ! Let us denote O(—1) over P! by L; and the quotient bundle
by Q1.

The kernel of 1 @ 1), is then a codimension 2 subspace in Sym?* L; @ (C™)* =2
L? @ (C™)*, such that it’s projection is of codimension 1 in (C™)*, that is:

~

P (Qf @ (LF)?) P(Q, ® LY)

]P)m—l
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Let us fix a point a in P™~!1. The fiber over this point is P((Q; ® L3?)|,) =
PV,. Let V be an m-dimensional complex vector space. We have the following

tautological sequence on PV, :

O(_l) =Ly Va Q>

PVa

This description allows us to present the smooth equivariant resolution of the

Ag-locus in the following form:

n S m2(Cm69Q1 m,n
Hom ((C , 2 7 ) O,
P(Q1 @ L})
}P)mfl

8.3 The Borel-Weil-Bott theorem

Let V' be an m-dimensional complex vector space. In this paper we use the Borel-
Weil-Bott theorem to compute the cohomology of GI(V')-equivariant vector bun-
dles on PV.

The irreducible representations of GI(V') are parametrized by their highest
weights — non-increasing integer partitions A of length m (we allow the entries to
be equal to 0): A\ > Ay > A, > 0. We will denote the irreducible representation
of GI(V') of highest weight \ by ¥AV.

Consider the canonical sequence of vector bundles on PV :

O(-1)=1L 1% Q@

PV

We will be interested in computing the cohomology of G1(V')-equivariant vector
bundles of the form ¥*Q ® L* on PV. Following the argument in [15], a vector
40



bundle of this form may be presented as a pushforward of the corresponding line
bundle on the flag variety of GI(V'). Thus, we may compute its cohomology using
the following interpretation of the Borel-Weil-Bott theorem.

Theorem 8.14 (The Borel-Weil-Bott theorem, [15]). Consider an irreducible
GI(V)-equivariant vector bundle ¥*Q @ L¥ on PV. Denote by (\, k) the concate-
nation of X = (A1, ..., Am—1) and k, and by p = (m,m — 1,...,1) the half-sum of
the positive roots of G1(V').

Consider (\ k) +p=AN+m, a+m—1,.. A1 +2,k+1).

If two entries of (A, k) + p are equal, then

HY(PV,¥*Q ® L*) = 0 for all 1.

If all entries of (\, k) + p are distinct, then there exists a unique permutation
o such that o((\ k) + p) is strictly decreasing, i.e. dominant. The length of
this permutation, l(c), is the number of strictly increasing pairs of elements of
(A k) + p.

. Nk +0=pY i i = (o)
Then H(PV,¥2Q @ L*) =
0 otherwise.
Example 8.1. Let us compute H*(P?, Q ® Sym? Q ® L°).

First, we need to decompose @ ® Sym? (@ into the direct sum of irreducible
representations. The algorithm is the same as in decomposing the product of two
corresponding Schur polynomials into a sum of Schur polynomials, for the details
see [16] or [17].

In the case of Q ® Sym? @, we obtain the following:

Q ® Sme Q — Z(I,O,O)Q ® E(Q,O,O)Q — 2(3,0,0)@ + 2(2’1’0)Q.

To compute the cohomology groups of the initial sheaf, we compute the coho-

mology groups of both irreducible summands:
Hi(]P)?)’ Q ® Sym2 Q ® L5) — Hi(]P)37 2(3,0,0)@ ® L5) D Hi(]P)fi’ Z(Q,I,O)Q ® L5)

Applying the Borel-Weil-Bott theorem to X3*0Q @ L, we first construct
the sequence (A, k): here A = (3,0,0) and k& = 5. We see that (A k) +p =
(3,0,0,5) + (4,3,2,1) = (7,3,2,6) has no repetitions. The unique permutation
making (7,3,2,6) decreasing is o = (2,3,4). Since there are two increasing pairs
in (7,3,2,6), namely, {3,6} and {2,6}, I(0) — the length of o — is 2. Finally,
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a((\ME)+p)—p = (7,6,3,2) — (4,3,2,1) = (3,3,1,1), so the only non-zero

cohomology group is
HQ(P3, Z(B’O’O)Q ® L5) _ 2(3,3,1,1)(:4.

The second irreducible summand is ©(219Q ® L°. Here we obtain (\, k) +p =
(2,1,0,5) + (4,3,2,1) = (6,4, 2,6) — there are repetitions, so

H (P, x190Q @ L°) = 0 for all i.
RE3ILOCH if § = 2
0if i #2

The final answer is H'(P?, Q ® Sym? Q ® L°) =

8.4 Rationality of the singularities of the A,-loci

In this section we show that ©))™, the normalization of ©);™, has rational singu-

larities, and give an example, where @z’n has singularities worse than rational.
Consider the quasi-projective variety Y — Kazarian’s smooth resolution of

m7n .
I

Y = Hom (C”, Sym2§:@Q1> CH
P1
P(Q: @ L})

P2

HJ)m—l

By definition, (:)?X/f has rational singularities if H*(Y,Oy) = 0 for all i > 0. We
will compute these cohomology groups step by step, by pushing forward along the
tower.

Fix a point a in P!, the fiber over this point is p;*(a) = P((Q1 @ L?)|,) =
PV,, where V, is an m-dimensional complex vector space. Let us also denote the
constant sheaf (Sym? C™ @ @,)|, on PV, by W.

Since the fiber over a point b in PV, <Hom ((C”, w))

I , is affine, we

‘ ‘ b
have H'(Y, Oy) = H'(PV,, (p1).Oy). Moreover, the C*-action on the fiber allows

us to decompose (p;).Oy into homogeneous components:

W& C?
_ ~ l
-0 =0l > @it (£550)
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This decomposition leads to the following identity on the level of cohomology:

, . , W &Cr
H{(Y,Oy) = H(PV,, (p1).Oy) = H ( PV,,Sym' [ ——— ] ).
(Y,Oy) (PVa, (p1)+Oy) @ ( ym (L2®Cn)>
Let us compute H* <]P>V;, Sym!’ (M)) . We start with the Koszul resolution

Lo®Cm
1 wecr .
9] of Sym (L2§Cn>'

A(Ly®C") = AL, ® C") @ Sym' (W @ C") — . ..
o AT (L, ® CY) @ Sym (W @ C?) — ...
W eCr
oo = AY(Ly) ® Sym {(W ® C") — Sym'(W ® C") — Sym! rer
Lo ®Cr
We are interested in the case when [ is sufficiently large. Note that since Lo
is a line bundle, A’(L, ® C") vanishes for ¢ > n. Using these facts we can rewrite
the resolution as follows.

Resolution 1:
Ly @ A"(C") —» ... — le_i 0% AH((C") Q Symi(W ®C") — ...

... = Sym' (W @ C") — Sym! (W®C >

Ly,®Cr
According to the Borel-Weil-Bott theorem,

o H" Y(PV,, O(—k)) = Sym" ™V, @ det V, if k —m >0,
o H™ Y(PV,, O(—k))=0ifk—m <0,
o HI(PV,, O(—k))=0ifi#m — 1.

This knowledge allows us to write down the Leray spectral sequence, which
is a collection of indexed pages, i.e. tables with arrows pointing in the direction
(m,m — 1) on the m-th page. The Leray spectral sequence allows us to obtain
the cohomology groups of Sym’ (Kggz

On the first page of the Leray spectral sequence, to each sheaf in the resolution

) by computing successive approximations.

above corresponds a column of its cohomology groups:

43



n —m terms

Hl

H — - —_— - ° o HY

According to Leray’s theorem, the spectral sequence for the exact sequence
converges to zero. The only term in the first column that can be cancelled by the

other terms in the spectral sequence is the term in the 0-th line. This means that
Hi (]P’Va, Sym!’ (Zgg)) vanishes for i > 0.
Applying the pushforward (ps)., we obtain

H'(Y,0y) = H' (Pml,HO (]P’Va, Sym' (Z 2 gn))) .
l

Let us construct the resolution of H° (Syml (M>) . In the spectral sequence

Lo®Cm
above, whatever remains in the line number m — 1 after the first page goes exactly

to Sym’(WW ® C") in the line number 0 on the m-th page. This allows us to write

down the following resolution:
det V, ® Sym" ™™V, ® A"C" @ Sym" (W @ C") — ...
o= detV, @ Sym"™" 'V @ A"IC" @ Sym™ (W @ C") — ..

.. = det V,@A"C"@Sym' " (W&C") — Sym'(W@C") — H° (Sym’ (—?f z EW,))
2

Which can be presented in the following form.
Resolution 2:
det Q ® L? @ Sym™ " (Q; @ L?) ® A"C" ® Sym' "((Sym*C™ & Q) ® C") — ...
L= detQ® L2 @ Sym™ " Q@ LP) @ A"TIC" @ Sym!' ™" ((Sym? C" @ Q1) @ C) — ...
o= detQ® L2 @ A™C™ @ Sym' ™ ™((Sym? C™ @ Q) ® C") —

2 mm n
— Sym!((Sym?C™ & Q) ® C") — H° (Syml <(Sym i ;983) ®C ))
2

This allows us to formulate our first result.
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Theorem 8.15. ©"™ has rational singularities.

Proof. If m = n then Resolution 2 may be rewritten as follows:

det Q ® L? @ A"C" ® Sym' ™" ((Sym*C" @ Q) ® C") —
— Sym'((Sym*C" @ Q1) ® C") — (%)

s HO (Syml ((Sym2 Cro@)® Cn))

Ly Cr

We will prove that, in the corresponding spectral sequence, there are no non-trivial

terms above the 0-th line.

Lemma 8.16.
Sym™ ((Sym? C" @ Q) @ C") =

N
=P | (ymV 7 (sym’C'@C) e P Sym" Qi ®---®Sym™ @
=0 ;

Setting N = [, the lemma provides the decomposition of Sym'((Sym?C" @

Q1) ® C™). The only non-constant sheaves here are the sheaves of the form
Sym" Q1 ® - - - ® Sym™ Q.
We decompose this tensor product into a sum of irreducible representations:

Sym" Q; ® -+ ® Sym™ Q1 = P a2 @y,
A
where A = (A1, ..., Am), > Ax = > i;, and ay are non-negative integers.

Since there is no multiplication by a power of L; and A is already dominant,
i.e. strictly decreasing, by the Borel-Weil-Bott theorem H*(P™~!, Sym" Q1 ®---®
Sym™ Q) = 0 for i > 0.

This proves that the term in the second line of the resolution (%) does not
have any higher cohomology.

However, the term in the first line of the resolution (x) has L? as a multiplier.
As before, we use the lemma above for N = [ — n to find the decomposition of

this term. The non-trivial part in this case is the following:

det Q1 ® L7 ® @ axX*Qr = det C" ® L1 @ @D an @1
A A

Let us apply the Borel-Weil-Bott theorem to ¥*Q; ® L :

(/\1, ...,)\m_l, 1) + (m, ey 1) = (V1 +m, ..., Vp—1+ 2,2)
45



Since v,,,_1 > 0, we either have a dominant sequence if v,,_1; > 0, or a repetition

if v,,,_1 = 0. In both cases there is no higher cohomology.
So, there are no non-trivial entries in the corresponding Leray spectral sequence
above the 0-th line, so H(Y, Oy) = 0 for i > 0, and 6@1’7” has rational singularities.
m

—_~—

Theorem 8.17. @ZLQ’" in general has singularities worse than rational.

Proof. Consider the case m =5, n=7, [ =T.
m2C5aQ, 7
We prove that H! | P4, Sym7 ((Sy CopQ1)®C

200 )) 2 0. In this particular case

Resolution 2 is the following:
det @ ® L ® Sym*(Q; @ L3) —
—detQ ®L?® (Q,® L) @ A°C"® ((Sym?*C° @ Q) ® CT) —
—det @, ® L? ® A°C” ® Sym?((Sym?* C°* @ Q,) ® C7) —
— Sym"((Sym® C° @ Q1) ® CT) —

— H° (Sym7 ((Sym2 C e Q) ®C7>>

L, ® C7

Consider the term in the first line of the resolution above.
det Q1 ® LT @ Sym*(Q1 & L7) = det Q1 ® L] ® (Sym” Q1 & Q1 ® LT @ L) =
=det Q; ® L} & det @ ® L} (Sym® Q1 & Q1 ® L7) .
Using the Borel-Weil-Bott theorem, one can easily check that
H* (P*, det@Q; ® LY) 20,
H°(P*, Sym”((Sym*’C* @ Q) ® C7)) 20,

but all other terms of the resolution do not have any cohomology.

The corresponding Leray spectral sequence is the following:

H* ®

H° ®
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Thus, we proved that

7 <IP>4, Sym” ((Sym2 C*® Q1) ®<C7)> 20

Ly ®C7

and therefore @?4’27 has singularities worse than rational. O

According to Boutot [10], the GIT quotient of a smooth variety with respect to
a reductive group has rational singularities. Thus, we have the following corollary
of the Theorem 8.17.

Corollary 8.18. @Z’n can not be presented as a reductive quotient of a smooth

variety.

For the recent results on the GIT quotient with respect to non-reductive groups,

see the works of Kirwan and Bérczi [7], and Bérczi, Doran, Hawes and Kirwan [6].

Remark 8.19. In both Theorem 8.15 and Theorem 8.17 we consider the normal-
izations of the As-loci. Let us show that the normalization is not redundant, i.e.
that ©’"" is not always normal.

Let V be a complex vector space equipped with the action of a compact Lie
group G, and let X be a closed G-invariant subvariety of V. Suppose Y is a
smooth G-equivariant resolution of X.

Consider the following diagram:

H°(Y,Oy)

/

HO(V,Oy) = @, Sym' V* h

e

H(X,0,)

We know that ¢ is always surjective, and, according to Proposition 8.2, h is
an isomorphism if and only if X is normal. Now, if f is not surjective, then h can
not be an isomorphism, and therefore in this case X is not a normal variety.

Let V = J,"", G = Gl(m) x Gl(n), X = ©7)", and let Y be the Kazarian’s

smooth equivariant resolution of ©7".
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Consider Resolution 2 in the general case:

det Q ® L? ® Sym™ ™(Q, ® L?) ® A"C" @ Sym' "((Sym*C™ & Q;) @ C") — ...
oo detQ® L2 @ Sym™ ™ (Q @ L) @ AVC" @ Sym! ") ((Sym?* C™ @ Q) @ C) — ..
o= detQ® L2 @ A™C™ @ Sym' ™ ™((Sym?C™ @ Q) ® C") —

Sym?*C™ @ Q) ® C"
Ly ®Cn ’

— Sym'((Sym*C™ @ Q,) ® C") — H° (Pm_l, Sym!’ ((

Recall that

2 ~vm n
HO(Y. 0y) = @) H° (pml, Sym <<Sym CreQ)eC )) .
l

L, ®Cn
H(V,0y) = @5 Sym'((Sym® C™ & C™)®C") = @ H (P, Sym'((Sym” C™ @ Q1)@C")).
l l

Since the map f from the diagram above preserves the graded components, it

is enough to prove that

2 ™~m n
fir Sym'((Sym?C™ @ C™)®C") — H° <Pm‘1, Sym' ((Sym Cro@)eC )>

Ly,®Cr

is not surjective for some fixed [.
Note that f; is the right arrow in the line H of the first page of the Leray
spectral sequence corresponding to Resolution 2. That is, if we can find an ex-

ample of a spectral sequence with a non-horizontal arrow pointing to the term

H° (mel, Sym' <(Sym2 f:l@e('%@nl)@cn)) , we prove that f is not surjective.

Let m =3, n=4, | = 4. In this case Resolution 2 is the following:

detQ ® L} ® (Q1 @ L}) ® A'C* —
—detQ® L2 @ A’C* @ ((Sym* C* @ Q) ® C*) —

(Sym’C* @ Q) ® C*
Ly ®C* ’

— Sym*((Sym? C* @ Q) ® C*) — H° <IP>2, Sym?* (

A straightforward computation using the Borel-Weil-Bott theorem shows that

the corresponding Leray spectral sequence is the following.

H? ®
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(Sym? C30Q,)@C* ))
)

We see that there is a non-horizontal arrow pointing to H° (]P’Q, Sym* ( &l

34 . :
thus ©7% is not a normal variety.

Remark 8.20. Since the equivariant resolutions for the As-loci given in [5] and
[22] are smooth, the computational methods presented in this paper may be used

to check the rationality of the singularities of ©'3"".

8.5 Kazarian’s model for A; singularities

Let us recall the construction of Kazarian’s resolution [22] for A, singularities (we
have already seen this construction for the case of Ay and A; singularities in the
previous section).

As in the case of A, singularity, we construct the resolution of the locus © 4 C

J;"" using the Hilbert scheme. Recall the following notations:

Hilby(C™) = {I  J7 | dim(J7/I) = d},

Hilb,, (C™) = {1 C J7 | T3 /T = Ag).

As discussed before, Hilby,(C™) is not smooth and not convenient for the
future computations.

Let us fix a filtration on on a d-dimensional vector space V :
V=V%oViD---DV;=0, dimV;/V;;; = 1.
We may define the Hilbert scheme remembering the filtration:
Hilba, (C™) = {(Z.A) | (J7'/1)> = Ad}.
It is clear that there exists a birational map
£+ Hilby, (C™) — Hilb 4, (C™).

In the general case, Kazarian’s resolution [22] is a smooth compact variety
M, defined as the moduli space of the following flags. Take V' — a d-dimensional
vector space with the filtration defined above, together with a surjective linear
map V « (C™)* @ Sym? V such that

W, =V/V;i« (C"V'®S;,i=1...d,
where S; «= Sym?(W;) «- Sym?V is generated by W, @ W; for k + j < i.
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The variety My can be constructed by induction. For d = 1 we have S; = 0,
Wy « (C™)* and M; = Gr(1,m) = P™ ! together with the tautological line
bundle L;.

Suppose we have constructed My ; with the sequence of maps
Wi« Wy« oo e Wy

and the tautological bundles L; over M; and with the surjective linear map Wy_; «
(C™)* @ Sy_1. Since Sy is determined by W7, ... W, 4, it can also be interpreted
as a bundle over M;_;.

M, parametrizes subspaces Wy «— (C™)* @ Sy such that Wy_ «— Wy, so let us
define M, as the bundle over My_; :

M, = P(((Cm)* b Sd>/Wd_1).

The construction of the manifold M, can be presented as the following diagram:

(Ba—1/Wa—2) ) P((C™)*)

P(Eq/Wq_ P
MMd—l = ... — i,

My
where E; = (C™)* & S,.
Proposition 8.21. [22] M, is smooth and compact.

The manifold M, is defined together with the projection V « (C™)* @& S,.
The restriction V' « (C™)* gives the linear map and V « S, defines the fil-
tered commutative algebra structure on V. The dual picture determines a filtered
commutative coalgebra structure.

Let us summarize the previous discussion in the form of a diagram:

Hom(Sym? V, V) D Ry

|

]\J{d Mgy E pt
Hilb 4, (C™) Hilb 4, (C™)—— Hilby(C™)

Lemma 8.22. [22] Suppose v is a generic section of Hom(Sym*V,V) — M,.
Then Hilb 4, (C™) = 7~ (Ry)

Example 8.2. For d = 1 we have already shown that M; = P™~!. Let us denote
the tautological sequence over M; by O(—1) = L; — C™ — Q.
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For d =2, Sy = Wy @ Wi, so My = P(((C™)* & Sy)/W1) = P(Qy & L?). Let us
denote the bundles from the tautological sequence over My by ()2 and L.

Ford =3, S5 = W, @ Wy & Wy @ Way, so Mz = P(((C™)* & S;)/W,) =
P(Q2® (L1 ® Ls)).

In the general case,

42
Si= P WioW;, and My=P | Qa1 ® | P Li® Loy

i+j<d i=1

Remark 8.23. Starting from d = 4 there will be points in M, such that the
canonical commutative filtered algebra structure defined by Wy «— (C™)* @ Sy in
the corresponding fiber is not associative. Moreover, the bundle Hom(C", I) from
Kazarian’s resolution is not defined over My for d > 4, since the definition of this

bundle requires a choice of the map on the right:

d
I — @ sym’(C™) — 4,

=1

which is not unique for d > 4. However, this vector bundle is defined over the

sublocus where the canonical algebra structure in the fiber is associative.
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