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Patterns of eukaryotic diversity from the surface 
to the deep-ocean sediment
Tristan Cordier1,2*, Inès Barrenechea Angeles1,3, Nicolas Henry4,5, Franck Lejzerowicz6,7, 
Cédric Berney4,5, Raphaël Morard8, Angelika Brandt9,10, Marie-Anne Cambon-Bonavita11, 
Lionel Guidi12, Fabien Lombard12,13, Pedro Martinez Arbizu14,15, Ramon Massana16, 
Covadonga Orejas17, Julie Poulain5,18, Craig R. Smith19, Patrick Wincker5,18,  
Sophie Arnaud-Haond20, Andrew J. Gooday21,22*, Colomban de Vargas4,5*, Jan Pawlowski1,23,24*

Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assess-
ments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we 
compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial 
sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sedi-
ment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at 
least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. 
These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux 
from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposi-
tion at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals 
previously overlooked taxa that may drive the biological carbon pump.

INTRODUCTION
Deep-ocean sediment (DOS) ecosystems cover more than half of 
Earth’s surface and remain one of the least explored ecosystems on 
the planet. This vast and heterogeneous environment provides hab-
itats for diverse biological communities that support fundamental 
ecological processes and services, such as nutrient recycling for the 

healthy functioning of ocean ecosystems and carbon sequestra-
tion for the regulation of Earth’s climate over geological time scales 
(1). The DOS is exposed to growing anthropogenic pressures, 
notably from climate change (2, 3), deep-sea mining (4), oil and 
gas exploitation, and bottom trawling (5), making a scientifically 
informed protection of its biodiversity a matter of the highest 
importance (6–8).

For more than 50 years, a considerable effort has been devoted to 
understanding the diversity and biogeography of benthic organisms 
thriving in the DOS (9). However, the enormous extent of this habitat 
and its remote location under several kilometers of water means that 
only a minute proportion has ever been sampled. Most previous studies 
have focused on morphological analyses of the macro- and mega-fauna, 
which typically show high levels of a diversity and small-scale faunal 
patchiness (9–11), and have recently been proposed as biological in-
dicators for deep-ocean monitoring and conservation (12). Less at-
tention has been paid to the microbial and meiofaunal organisms that 
numerically dominate DOS communities (13, 14) but can hardly be 
identified using classical morphotaxonomic approaches. Studying 
planktonic organisms sinking to DOS is hampered by similar technical 
limitations related to great depths (resulting in poor spatial coverage 
of sinking plankton datasets) and limited morphological identifica-
tion (but for shell-building taxa that can keep distinctive features 
once in the sediment). Their study is hence often approached indi-
rectly, using sediment traps to capture the sinking flux of taxa over 
time that contribute most to the biologically driven carbon sequestration in 
the deep ocean before they reach the sediment (15–17).

The development of high-throughput environmental genomics has 
begun to fill these gaps in knowledge, revealing substantial unknown 
diversity among viruses (18) and prokaryotes (19–22) from DOS. Yet, 
the use of genomics to explore DOS eukaryotes has been limited and 
focused mostly on particular taxonomic groups (23–25) or geographic 
regions [(21, 26–28), but see (29)]. One major challenge in interpreting 
molecular data from DOS is to distinguish DNA reads that belong to 
indigenous benthic eukaryotes from those originating from pelagic 
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organisms that sink through the water column and leave their DNA 
traces in the sediments (28, 30–32).

Here, we tackle these problems by comparing a newly generated, 
global-scale DNA metabarcoding dataset of total eukaryotic diver-
sity from deep oceanic surficial sediments (418 samples collected 
during 15 oceanographic cruises from 2010 to 2016; table S1) to com-
parable published datasets from euphotic (1160 samples from the 
Tara Oceans expeditions) (33, 34) and aphotic (138 samples from 
the Tara Oceans and Malaspina expeditions) (35) zones across the 
world ocean. Together, these represent the first consistent molecular 
meta-dataset spanning the three main open-ocean realms (pelagic 
euphotic, pelagic aphotic, DOS) at a global scale across 447 sampling 
sites (Fig. 1A). We assembled ~2.42 billion DNA reads (table S2), 
produced by polymerase chain reaction (PCR) amplification of the 
V9 region of the 18S ribosomal RNA gene, and processed them using 
the DADA2 workflow to infer amplicon sequence variants (ASVs). 
On the basis of taxonomic annotations of ASVs using the SILVA 
and PR2 sequence databases and on the occurrence of a highly con-
served DNA sequence motif across eukaryotes, we discarded pro-
karyotic, plastidic, and mitochondrial ASVs, as well as technical 
artifacts, allowing us to focus on eukaryotic diversity.

RESULTS AND DISCUSSION
Eukaryotic diversity from the ocean surface to the DOS
We obtained a total of 242,465 eukaryotic ASVs represented by 
~1.95 billion DNA reads (Fig. 1B). Only 3806 (1.6%) of these ASVs 
were detected in all three realms, while 6382 pelagic ASVs were de-
tected in DOS. These ASVs were assumed to correspond to sinking 
pelagic organisms, mainly plankton, although 29 ASVs (represent-
ing 1.29% of the reads of these ASVs) could be ascribed to nekton 
(e.g., dead vertebrates), which also contribute to the downward flux 
of organic matter. From the metazoan fraction of sinking pelagic 
organisms, we curated benthic animals with known meroplanktonic 
larvae (224 ASVs; see Materials and Methods). The number of 
ASVs found exclusively in DOS, here assumed to correspond to in-
digenous deep-sea benthic organisms, was comparable to that found 
in the pelagic realms, although there were 25 times more pelagic 
DNA reads in our meta-dataset (Fig. 1B). To account for this varia-
tion in sequencing effort, we subsampled each aggregated dataset 
per realm 1000 times at identical sequencing depths (1 Mio reads) 
and analyzed the diversity of ASV, together with their distribution 
and abundances within and across the pelagic (euphotic and apho-
tic zones) and DOS (sinking pelagic and benthic organisms; fig. S1) 
realms. This indicated that, although nearly half of eukaryotic DNA 
reads represent sinking planktonic ASVs, the ASV richness in the 
DOS could be more than three times higher than in pelagic habitats, 
with more than 60% of ASVs being exclusively benthic.

The unique size fractionation of the pelagic samples from the Tara 
Oceans dataset has a strong effect on a diversity (richness and 
evenness) and b diversity (compositional variation) measures (fig. S2) 
(33). The samples from the micro- (20 to 180 m) and meso- (180 to 
2000 m) plankton collected by 20- and 180-m net tows concentrate 
mostly on copepods and collodarians that lower a diversity and in-
flate b diversity measures when compared to other pelagic samples. 
Since these taxa were also detected in the lower plankton size frac-
tions, we confined our analyses to the richest nano- (3 to 20 m) and 
pico- (0.2 to 5 m) plankton fractions to compare a and b diversity 
patterns across Tara Oceans, Malaspina, and DOS samples.

Both the ASV accumulation curves as a function of sampling effort 
and Shannon diversity values confirmed that benthic eukaryotic di-
versity is much higher than that in the water column (Fig. 1C). The 
benthic accumulation curve is similar to that obtained for the pelagic 
aphotic zone, which may indicate that diversity in aphotic waters is 
also very high and largely undersampled [but see (36)]. Clustering 
of eukaryotic communities by their compositional similarity revealed 
a clear separation of the pelagic and DOS realms and changes along 
a gradient of absolute latitude (Fig. 1D and fig. S3). This was confirmed 
by permutational multivariate analysis of variance (PERMANOVA), 
both for type of realm (R2 = 0.144, P < 0.001) and for absolute lati-
tude (R2 = 0.031, P < 0.001). The degree of eukaryotic community 
differentiation (b diversity dispersion) within each realm was 
similar (Wilcoxon test, P > 0.05; Fig. 1D). Our results therefore 
indicate that eukaryotic communities of the DOS are both more 
diverse and sharply different compared to those of pelagic realms.

The taxonomic compositions of eukaryotic assemblages were 
clearly different in the pelagic euphotic, pelagic aphotic, and DOS 
realms (Fig. 2A; see fig. S4 for relative abundances and table S3 for 
details). While diversity in the euphotic zone is dominated taxo-
nomically by Alveolata (30.8%), notably dinoflagellates (Dinophyceae, 
19.4%), the aphotic zone is extremely rich in Diplonemea [46.5%; 
see (37–39)], mainly heterotrophic nanoflagellates in the family 
Eupelagonemidae (46.2%). The taxonomic composition of the deep, 
exclusively benthic, eukaryotic assemblage is very different, com-
prising various groups that do not occur or rarely occur in the water 
column (fig. S5 and table S3), e.g., Dactylopodida amoebae (6.5%), 
Chromadoria nematodes (5.3%), Monothalamid foraminifera (4.4%), 
and Oligohymenophorea ciliates (3.7%). Nearly two-thirds (60.1%) 
of the benthic eukaryotic ASVs (representing 47.8% of the reads) 
could not be taxonomically annotated using current reference taxo-
nomic databases and a similarity cutoff of 85%, and many of them 
matched a reference sequence with less than 80% similarity (Fig. 2B). 
By comparison, the proportion of unassigned ASVs in the pelagic 
samples is 24.7% (2.6% of the reads) in the euphotic zone and 13.9% 
(4.1% of the reads) in the aphotic zone (Fig. 2C and table S3).

To better characterize the taxonomic breadth of the unknown 
eukaryotic diversity in the ocean, we clustered all unassigned eu-
karyotic ASVs into operational taxonomic units (OTUs) at decreasing 
similarity thresholds (fig. S6). This revealed that more than 10,000 
benthic OTUs are formed with a 90% similarity cutoff, well below the 
species/genus threshold levels (40). These results indicate that previous-
ly unknown high-rank eukaryotic groups with diverse and abundant 
sublineages likely make up most of the diversity thriving in DOS. A 
similar number of 90% cutoff OTUs is formed in the pelagic euphotic 
zone, but their relative abundance (2.6% of the reads) is much lower 
than for benthic diversity (47.8% of the reads). Many of these unas-
signed pelagic ASVs may thus correspond to rare unknown eukary-
otes or rare intraspecific/intragenomic variants of known eukaryotes 
with unusually high polymorphism (41). Among the known taxa 
(39.9% of benthic ASVs and 52.2% of benthic reads), our data for 
selected typical deep benthic macrofaunal and meiofaunal groups 
show that some are relatively well represented in the current data-
bases (e.g., polychaetes and nemerteans; fig. S7), while others re-
main poorly represented (e.g., foraminifera and nematodes).

Biogeography of deep-ocean benthic eukaryotes
Analysis of the strictly benthic eukaryotic diversity revealed global 
biogeographic patterns among DOS communities. The overall richness 
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of benthic ASVs tends to decrease with increasing latitude (fig. S8). 
Benthic richness follows a bell-shaped trend with increasing export 
flux of particulate organic carbon (POC) from the surface and par-
ticularly with increasing POC reaching the seafloor (the latter explain-
ing up to 10.7% of the variation in overall benthic richness). This 
pattern is not consistent across benthic groups, with nematodes, 
foraminifera, and molluscs being notably more diverse at higher 
latitudes and at sites with higher POC flux reaching the seafloor 
(fig. S8). The compositional structure of deep benthic communities 
is in broad agreement with abyssal biogeographic provinces (42) 
(PERMANOVA R2 = 0.136, P < 0.001) and somewhat structured 

along a gradient of absolute latitude at a global scale (R2 = 0.051, 
P < 0.001), although polar regions are separated on the ordination 
(Fig. 3A). We used a selection of environmental parameters (see 
Materials and Methods) in a stepwise model building for constrained 
ordination to explain the observed pattern. The model explained up 
to 15.1% of the benthic compositional variation, with seabed nitrate, 
POC export from the surface, and POC reaching the seafloor together 
explaining 11.2% (table S4), in line with previous findings on the role 
of POC export in shaping benthic prokaryotic communities (19).

The average proportion of shared ASVs between pairs of sam-
ples as a function of their geographical distance was relatively stable 
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up to 10 km, after which it decreased steadily (fig. 3B), possibly in-
dicating dispersal limitation among benthic taxa or shifts in envi-
ronmental drivers. We calculated key distance-decay parameters 
for selected benthic groups (table S5), i.e., the rate of decrease in 
their community similarity with increasing spatial separation. The 
initial similarities (i.e., similarity at 1 km distance that provides a 
measure of the local presence/absence patchiness) indicate that 
benthic macrofaunal groups (molluscs and polychaetes) tend to 
have a stronger local turnover than meiofaunal or protistan groups 
(nematodes, foraminifera, and amoebae). The former also generally 
have a steeper distance-decay, as indicated by the greater slope of 
linear models and lower halving distances, i.e., the distance after 
which the initial similarity is halved (table S5). These results indicate 
that dispersal limitation or environmental filtering (or a combination 

of both) may be stronger for macrofaunal benthic organisms than 
for meiofaunal or microbial eukaryotes, although macrofaunal taxa 
are usually thought not to be limited in their dispersion, owing to 
their common planktonic larval phases (43).

We lastly compared spatial structures and distance-decay parameters 
for whole benthic eukaryotic communities with those for water col-
umn communities (table S5). Overall, benthic communities are more 
spatially structured (mantel: r = 0.454, P < 0.001) than pelagic com-
munities (euphotic: r = 0.147, P < 0.001; aphotic: r = 0.228, P < 0.001) 
and have lower initial similarity, steeper distance-decay, and smaller 
halving distances (table S5 and fig. S9), consistent with previous 
findings for benthic compared to pelagic communities of bacteria 
in the world ocean (44). This was also shown by fitting neutral 
community assembly models to each realm dataset, indicating that 
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Fig. 2. Taxonomic composition of eukaryotes (ASV richness) in the pelagic euphotic, pelagic aphotic, and DOS (sinking plankton and benthic communities) 
realms. (A) ASV richness of eukaryotic groups (see fig. S4 for relative abundances and table S3 for details). The number of ASVs and their relative abundance in the sedi-
ment are shown for ASVs of pelagic origin, as well as those derived from indigenous benthic taxa. (B) Number of ASVs (represented as density) as a function of their 
similarity with the best hit with a reference sequence in the PR2 database. The peaks in density for each realm are highlighted on the plot, and the corresponding similarity 
level with reference sequences is indicated. (C) Cumulative proportion of ASVs and read abundance as a function of their similarity with the best hit with a reference se-
quence in PR2. The red vertical lines indicate the similarity cutoff (85%) for taxonomic annotation used in this study.
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taxonomic groups of the pelagic euphotic zone tend to be more geo-
graphically widespread, while benthic groups tend to be less wide-
spread than expected by neutral models (fig. S10). The importance 
of benthic community patchiness at local scales is reinforced by the 
variation of b diversity as a function of increasing sampling scale 
(Fig. 3C). The compositional variations within single sediment 
cores (8 to 10 cm in diameter) and between sediment cores collected 
from the same multicorer deployment (30 cm to 1 m apart) were 
comparable to that between deployments at a single station. This 
confirms the high degree of deep benthic community variation at 
local scales observed before in the case of selected groups of macro- 
and meiofauna by both morphological (45) and DNA-based (24) 
studies.

Eukaryotic plankton DNA signature on the DOS
Our study provides the first DNA-based insight into the qualitative 
and semiquantitative importance of the eukaryotic plankton diver-
sity reaching the DOS at a global scale and thus driving the biologi-
cal transfer of atmospheric carbon to the seafloor. The taxonomic 
composition of the 6382 planktonic eukaryotes in the DOS is 
roughly similar to that in the pelagic euphotic and aphotic zones 
(Fig. 2). In terms of relative abundance, however, planktonic DNA 
reads from sediment samples are mainly distributed among diatoms 
(15.4%) and various groups of rhizarians (26.9%) but include rela-
tively few copepods (1.3%) and dinoflagellates (4.7%), which 
numerically dominate the plankton in upper ocean layers (fig. S4 
and table S3). Plankton DNA on the DOS also include abundant 
ASVs assigned to the diplonemids (2.3%) and fungi (4.2%) that are 
common in the aphotic zone, supporting previous findings that the 
DOS accumulates DNA from organisms occurring throughout the 
entire water column (28).

The pelagic ASVs reaching the DOS are generally among the most 
abundant planktonic eukaryotes in the water column (together rep-
resenting 75.8% of the reads in the euphotic and 79.3% of the reads 
in the aphotic), although not all abundant pelagic ASVs are present 
in the DOS (Fig. 4A). We explored whether their occurrence in the 
DOS could be explained by their size distribution and by their tro-
phic modes. We found no evidence that larger planktonic taxa are 
more likely to reach the DOS than smaller taxa (Fig. 4C), reinforcing 
the idea that most sinking plankton is transferred to the sediment 
through organic aggregates and not as individual organisms. How-
ever, the relative abundance of large planktonic taxa was higher in 
high-latitude sediments, especially in the Arctic (Fig. 4D), consistent 
with the trend of increasing sea-surface plankton size with increas-
ing latitude and nutrient content (46, 47). Notably, the proportion 
of parasitic protists among sinking pelagic ASVs (13.7%) is greater 
than among nonsinking pelagic ASVs (2.9%; Fig. 4E), indicating that 
pelagic parasites are more likely to reach the DOS. Their relatively 
higher abundance in temperate and tropical latitude sediments sug-
gests their ecological importance at these latitudes (Fig. 4F). Greater 
transfer of parasites to the DOS could reflect their ability to infect 
and kill larger hosts and/or the massive amounts of resistant and 
relatively dense propagules that they typically release after host in-
fection and that could persist in sinking aggregates (48–51).

We aggregated our data for each entire realm to investigate whether 
the most abundant sinking pelagic ASVs in the water column are 
also the most abundant among sinking pelagic ASVs detected in the 
sediment, providing insight into their overall taphonomy (fig. S11). 
Similar abundance profiles would indicate that the structure of sink-
ing plankton assemblages is overall preserved in surface sediment, 
whereas dissimilar profiles would indicate that sinking assemblages 
are consumed or repackaged during their downward transfer in a 
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Fig. 3. Biogeography of the deep-ocean benthic eukaryotic communities. (A) Principal coordinates analysis of the Bray-Curtis dissimilarity matrix computed from the 
normalized read counts of indigenous benthic ASVs using the cumulative sum scaling (CSS) method. The proportion of variance explained by the first two axes is indicated 
on the plot. The gray lines and numbers indicate the absolute latitude as a fitted smooth surface on the ordination, and the red arrows are fitted seafloor (temp.: tempera-
ture; diss. O2: dissolved oxygen; seabed salinity, silicate and nitrate concentrations, and POC reaching the seafloor) or surface water (primary prod.: primary productivity, 
POC export from the surface) environmental parameters to the ordination. Colors and symbols indicate location of sampling sites in the abyssal biogeographic provinces 
(AB1 to AB13) postulated by (42). (B) Proportion of shared benthic ASVs as a function of increasing distance between pairs of samples. The proportion of shared ASVs was 
computed only within the same oceanic basins. (C) Variation in b diversity, i.e., distribution of sample distances to group centroids, as a function of increasing spatial 
sampling scale. Higher values indicate higher compositional variation. Orange dots and bars represent means and standard deviations (SDs), respectively.
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nonrandom manner. For instance, the abundance profiles of sinking 
pelagic ASVs of copepods, dinoflagellates, diatoms, acanthareans, 
eupelagonemids, hydrozoans, and spumellarians in both the euphotic 
and aphotic zones are similar to their abundance profiles in the 
DOS (fig. S11), suggesting that their structure in pelagic ecosystems 
is preserved on the seafloor. Their profiles in the DOS better mirrored 
those in the aphotic zone (higher R2 of linear models), suggesting 
that the transformation of sinking material occurs mostly in the up-
per oceanic layer. However, this was not the case for diatoms and 
collodarians, for which the abundance profiles in the euphotic and 
aphotic layer were similarly preserved in the DOS, likely because of 
their higher propensity to sink and form aggregates (52, 53). Although 
plankton DNA transfer to sediment has yet to be investigated [but 
see (54–56)], notably by accounting for physical processes (e.g., deep 
waters currents and vertical mixing) that interact with biological and 
ecological processes in the deposition of sinking material, our study 
reinforces the significance of the DOS as a DNA archive of upper- 
ocean biodiversity and ecology and a source of potential new proxies 
to document past environmental changes (57).

Last, we attempted to correlate our global DOS plankton bio-
diversity dataset to yearly average POC export from the surface and 
the fraction of it reaching the DOS, as estimated, respectively, by 
thorium-derived export measurements, modeled at a global scale (58), 
and by evaluating the efficiency of POC transfer through the water 
column based on sediment trap POC flux data, net primary produc-
tion estimates, and sea surface temperatures (59). Overall, the pelagic 
ASVs detected in the DOS represent 21.4% of the DNA reads obtained 

from sediment samples. The proportion of DNA reads of pelagic 
origin in the sediment follows an increasing trend from low to high 
latitudes (Fig. 5A). This proportion also broadly approximates POC 
export from the surface (R2 = 0.23, P < 0.001), despite the higher 
remineralization rates at productive high latitudes (60). Furthermore, 
the composition of plankton DNA in the DOS can predict up to 
58% of the variation in POC export from the surface and 57% of the 
POC reaching the seafloor using cross-validated random forest re-
gressions (Fig. 5B). We used a multivariate regression method to 
identify the sinking pelagic ASVs that best explain the variation of 
POC export and POC reaching the seafloor (Fig. 5C). Not unexpectedly, 
diatoms and dinoflagellates (52, 61) were important contributors, but 
we also identified some previously overlooked taxa that are not usually 
considered to contribute to POC export, such as alveolate parasites 
(MALV-II), cercozoans, chrysophytes, and several unknown eukaryotes 
[see also (51)]. Our time-integrated data from the DOS therefore 
highlight previously underappreciated taxa that may be keystone 
drivers of the biological carbon pump.

Toward a holistic view of ocean biodiversity 
and ecosystem processes
Our global molecular meta-dataset from the ocean surface to the 
DOS provides the first unified vision of eukaryotic biodiversity pat-
terns across the three dimensions of the world ocean (Fig. 1). It shows 
that the DOS is an extremely rich and unique realm with a strong 
connection to the water masses above that is reflected in the pelagic 
DNA signature (Figs. 1, 4, and 5 and fig. S11). Although focused on 
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smaller-sized organisms (eukaryotic microbes and meiofauna), these 
DNA-based results are broadly consistent with morphological evi-
dence from larger animals for high deep-sea benthic a diversities 
and small-scale patchiness (high local species turnover) (9–11).

The DOS appears to be much more diverse than oceanic waters 
(Fig. 1 and fig. S1) and is composed of communities of mostly un-
known eukaryotes (Fig. 2) that display clear biogeographic patterns 
at global scales and considerable patchiness at local scales (Fig. 3). 
These patterns are likely driven by the flux of sinking organic aggre-
gates and fecal pellets (Fig. 3, table S4, and fig. S8) (62, 63). Our data 
also show that the DNA-based plankton abundance profiles are 
broadly preserved in the DOS and that the transformation of sinking 
material appears to occur mostly between the euphotic and aphotic 
layers (fig. S11). The deposition of eukaryotic plankton is maximal 
at productive high latitudes (Fig. 5), and the plankton contribution 
to time-integrated sedimentary DNA broadly approximates the yearly 
average POC export from the surface. Moreover, the taxonomic 

composition of planktonic assemblages in the DOS is an even better 
predictor of the variation of POC export from the surface and the 
fraction of it reaching the seafloor (Fig. 5), indicating that biodiversity 
is key for ocean carbon export and burial. These DOS assemblages 
comprise not only taxa that are known to be important drivers of 
the biological carbon pump but also several taxonomic and func-
tional groups that have been overlooked in what is arguably one of 
the most fundamental ecological processes of the world ocean.

Together, our results highlight the DOS as one of Earth’s richest 
modern ecosystems and fossil archives. They underline the need for 
concerted international efforts to further understand DOS biodiversity 
and its ecological role in planetary biogeochemical cycles. Our study, 
together with recent evidence that plankton DNA signal can be pre-
served in subseafloor sediments (54–57), paves the way for using 
sedimentary planktonic DNA to complement the microfossil-based 
proxies currently used to reconstruct ancient oceans, including 
their biological carbon sequestration processes. We hope it will also 
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provide the basis for a more informed and effective stewardship 
strategy for protecting unique and relatively pristine deep-ocean 
ecosystems as the exploitation of seabed resources gathers pace.

MATERIALS AND METHODS
DOS sample collection
DOSs have been collected during two main projects (deep_sea and 
eDNAbyss). For the deep_sea project, sediment samples were col-
lected at abyssal depths during eight expeditions to the Arctic, 
Atlantic, Southern, and Pacific Oceans (table S1). We used dispos-
able sterile spoons to subsample the top surface sediment centimeter 
(c.a. 2 g from 0 to 1 cm) following a nested sampling design: up to 
three pseudo-replicates per core, up to two cores per deployment 
(multicorer), and up to three deployments per station (detailed list 
in table S7). Sediment samples were placed in sterile falcon tubes 
with (VEMA, SYSTCOII, KuramBio I, MANGAN’16, ABYSSLINE) 
and without (MSM39, DIVA3, and BIONOD) 6 ml of Lifeguard 
Preservation Solution (QIAGEN) before being frozen onboard at 
−20°C. The samples were shipped within −20°C containers to the 
University of Geneva (Switzerland). Upon arrival, sediment sam-
ples were stored at −80°C until extraction of nucleic acids.

For the eDNAbyss project, lower bathyal and abyssal sediments 
were collected in the Mediterranean Sea, North Atlantic, and Arctic 
Oceans during five cruises (Arctic: MarMine; North Atlantic: 
MEDWAVES; Mediterranean: PEACETIME, CANHROV, and 
ESSNAUT; table S1). For each station, triplicate cores (10 cm in 
diameter) were collected with a multicorer or with a remotely operated 
vehicle. Surface sediment (0 to 1 cm) was collected using metallic 
spatulas previously sterilized with bleach or DNA Exitus, rinsed with 
ethanol 96° and then nanopure water, and transferred into sterile 
zip-locked bags, homogenized by mixing and flattened to be stored 
at −80°C until DNA extraction. When possible, other layers (1 to 3, 
3 to 5, 5 to 10, and 10 to 15 cm) were also collected from sediment 
cores. An empty zip lock bag from the stock used served as a blank 
sampling and extraction control in several stations along each cruise.

Nucleic acid extractions, PCR amplification, and  
illumina sequencing
For each of the 320 surface sediment samples collected in abyssal 
plains of the deep_sea project, we extracted the total RNA and DNA 
contents of c.a. 2 g of material as in (64), and we generated cDNA 
from deoxyribonuclease-treated RNA as in (65). We controlled that 
no carried-over DNA molecules remained in the RNA extracts based 
on the absence of PCR products after 60 cycles. We amplified by 
PCR the V9 hypervariable region of the ribosomal 18S gene with the 
following primer pair: the forward 1389F (5′-TTGTACACACCG-
CCC-3′) and the reverse 1510R (5′-CCTTCYGCAGGTTCACCTAC-3′) 
as designed in (66). Tag-encoded versions of the primers (a unique 
8-nt sequence was added in the 5′ end of each primer) were used to 
multiplex up to 40 samples per sequencing library. Each sample was 
amplified in duplicate PCR reactions, and each PCR was performed 
in a total volume of 25 l as follows: 19.4 l of H2O, 2.5 l buffer 
(FastStart, Roche), 0.5 l of bovine serum albumin (20 mg/ml; 
Invitrogen Ultrapure), 0.5 l of 10 mM dNTPs (deoxyribonucleotide 
triphosphate) (Roche), 0.1 l of FastStart DNA Polymerase (5 U/l; 
FastStart, Roche), 0.5 l of forward and reverse primers at 10 mM, 
and lastly, 1 l of DNA or RNA template (or 1.5 l for some samples 
that did not amplify with 1 l). All DNA and RNA samples were measured 

using the double-stranded DNA (dsDNA) High-Sensitivity Assay 
Kit and the RNA High-Sensitivity Assay Kit on the Qubit 4 fluorometer 
(Thermo Fisher Scientific) and diluted at 7 ng/l prior PCR ampli-
fication. The PCR reaction conditions were as follows: predenaturation 
step at 94°C for 3 min, followed by 35 cycles of denaturation at 
94°C for 30 s, annealing at 57°C for 1 min, extension at 72°C for 1.5 min, 
and a final extension at 72°C for 2 min. A PCR-negative control for 
each unique combination of tag-encoded primers was verified by agarose 
gel electrophoresis. The two PCR replicates for each sample were 
combined and quantified using high- resolution capillary electrophore-
sis (QIAxcel System, QIAGEN). The PCR products were pooled in 
equimolar concentration within each multiplexed library. Each pool 
of PCR products was purified using a High Pure PCR Product Pu-
rification kit (Roche), following the manufacturer’s instructions. The 
sequencing libraries were prepared using the TruSeq DNA PCR-Free 
Library Preparation Kit (Illumina), following the manufacturer’s in-
structions. The libraries were quantified by quantitative PCR (qPCR) 
using the Kapa Library Quantification Kit for Illumina Platforms 
(Kapa Biosystems) and sequenced on a MiSeq instrument (Illumina) 
using paired-end sequencing for 300 cycles with kit v2.

Within the project eDNAbyss, DNA extractions were performed 
on about 10 g of sediment using the PowerMax Soil DNA Isolation 
Kit (QIAGEN, Hilden, Germany), following the manufacturer pro-
tocol, except for the last step where incubation of the elution buffer 
was prolonged 10 min on the spin filter membrane to increase the 
DNA yield. The first solution of the kit was poured into empty field 
control ziplock bags, before being extracted along with sediment 
samples, following the exact same protocol. All DNA extracts were 
then stored at −80°C (and transported to Genoscope on dry ice) 
until PCR amplifications. The V9 hypervariable region of the 18S 
ribosomal RNA (rRNA) gene was amplified by PCR using the same 
primer pair (1389F and 1510R). Each sample was amplified in trip-
licates, and each PCR reaction was performed in a total volume of 
25 l with the Phusion High-Fidelity PCR Master Mix with GC buffer 
(Thermo Fisher Scientific), 0.4 M final concentration of each primer, 
3% of dimethyl sulfoxide, 1× Phusion Master Mix, and 2.5 ng of 
template DNA (less for few extracts with very low DNA concentra-
tion). The PCR reaction conditions were as follows: predenaturation 
step at 98°C for 30 s, followed by 25 cycles of denaturation at 98°C 
for 10 s, annealing at 57°C for 30 s, extension at 72°C for 30 s, and a 
final extension at 72°C for 10 min. PCR products were purified using 
1.8× AMPure XP beads cleanup (Beckmann Coulter Genomics). 
Aliquots of purified amplicons were then run on an Agilent Bioanalyzer 
using the DNA High Sensitivity LabChip kit to check their lengths 
and quantified with a Qubit Fluorometer to check their quality and 
concentration. Amplicons generated were then used for preparation 
of sequencing libraries. Amplicons (100 ng) were directly end-repaired, 
A-tailed, and ligated to Illumina adapters on a Biomek FX Laboratory 
Automation Workstation. Library amplification was then performed 
using a Kapa Hifi HotStart NGS library Amplification kit with the same 
cycling conditions applied for previous steps and cleaned up by AMPure 
XP purification (1 to 1 volume). All libraries were then quantified 
first by Quant-it dsDNA HS (high-sensitivity) assay using a Fluoroskan 
Ascent instrument (Thermo Fisher Scientific) and then by qPCR with 
the KAPA Library Quantification Kit for Illumina Libraries (Kapa 
Biosystems) on an MXPro instrument (Agilent Technologies). Lib-
rary profiles were checked using high-throughput microfluidic cap-
illary electrophoresis system (LabChip GX, PerkinElmer, Waltham, MA). 
Libraries were then normalized to 10 nM by addition of 10 mM 
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tris-Cl (pH 8.5) and applied to cluster generation according to the 
Illumina Cbot User Guide (part no. 15006165). PhiX DNA spike-in 
was adapted for some libraries (20% instead of 1%) to minimize the 
loss of data due to low nucleotide diversity at the beginning of the 
sequencing run. Libraries were sequenced on HiSeq4000 or HiSeq2500 
instruments (Illumina) on a paired-end mode. The raw sediment 
sequencing data have been deposited to the European Nucleotide 
Archive (ENA) under project accessions PRJEB33873 (eDNAbyss) 
and PRJEB48517 (deep_sea).

Public 18S-V9 rDNA sequencing datasets
We gathered published datasets (table S2) targeting the V9 hyper-
variable region of the eukaryotic 18S rRNA gene and using the same 
PCR primers pair (1389F and 1510R) used here for the DOS sam-
ples. These datasets were produced by studies sampling the euphotic/
aphotic zones (33–35, 67–69) and the DOS (30, 67).

Environmental variables
Although some environmental variables and sediment descriptors 
were collected during the oceanic expeditions from which we col-
lected sediment samples, their heterogeneity led us to extract more 
homogeneous environmental layers from the Global Marine Envi-
ronment Datasets (http://gmed.auckland.ac.nz) to standardize our 
concatenated dataset across multiple studies. These variables in-
cluded the surface calcite (calcite, in mole per cubic meter), surface 
nitrate (nitrate, in micromole per liter), surface silicate (silicate, in 
micromole per liter), surface phosphate (phosphate, in micromole 
per liter), average photosynthetically active radiation (PAR_mean, 
in Einstein per square meter per day), surface pH, average sea surface 
temperature (sst_mean, in celcius), variation in sea surface tem-
perature (sst_range, in celsius), average surface currents strength 
(srf_current, in meter per second), primary production (primprod, 
in mgC·m2/day/cell), average stock of particulate inorganic carbon 
(PIC_mean, in mole per cubic meter), average stock of POC (POC_
mean, in mole per cubic meter), total suspended matter (tsm_mean, 
in grams per cubic meter), seabed slope (slope, degree), seabed ni-
trate (sb_nitrate, in micromole per liter), seabed silicate (sb_silicate, 
in micromole per liter), seabed-dissolved oxygen (sb_o2dissolve, in 
milliliter per liter), seabed-utilized oxygen (sb_o2utilized, in milliliter 
per liter), seabed temperature (sb_temp, in celsius), seabed salinity 
[sb_salinity, practical salinity scale (PSS)], and average tempera-
ture in the water column (wat_col_temp, in celsius). We also ex-
tracted the estimated POC export at 100 m depth below the surface 
(POC_export, g Corg/m2 per year) (58) and the POC fraction reaching 
the seafloor (POC_seafloor, g Corg/m2 per year) (59, 70). The values 
of each environmental variable for each sample analyzed in this study 
were extracted from the environmental layers with their Global 
Positioning System (GPS) coordinates (table S7).

Raw sequencing data processing
For the deep_sea dataset, the sequencing libraries were demultiplexed 
using Double Tag Demultiplexer (DTD) software (https://github.
com/yoann-dufresne/DoubleTagDemultiplexer) to screen the R1 
and R2 files of each library and retrieve unique tag-encoded primer 
combinations associated to each sample (allowing no mismatches). 
We thus produced pairs of fastq files for each sample. For all other 
illumina datasets (see table S2), we obtained at least one pair of fastq 
files (paired-end) per sample (some samples were sequenced several 
times to obtain enough reads that were subsequently merged before 

statistical analysis). For the datasets produced with the 454 sequencing 
technology, we obtained one fastq file per sample. We used two R 
scripts (for paired-end illumina datasets and for 454 dataset, see the 
“rds_pipeline_illumina.R” and “rds_pipeline_454.R” scripts) to process all 
the fastq files by batch of 10 samples per job on a High-Performance 
Computing cluster (Baobab, University of Geneva). The R scripts im-
plemented the key steps of the DADA2 workflow (71) and additional 
quality filtering steps (see below). The scripts performed the quality 
filtering with the filterAndTrim function of the DADA2 v1.12.1 R 
package with default settings, the trimming of primers using the cut-
adapt v2.4 software (72), the filtering of any read that still contain traces of 
primers (fastqFilterPrimersMatchs function in the fastqUtils.R script), 
the filtering of any read below 20 bp (fastqFilterWidth function in the 
fastqUtils.R script), the training of errors models using the learnErrors 
function of DADA2 with default settings, the inference of ASVs using 
the dada function with default settings (but for the 454 data, for 
which we used the HOMOPOLYMER_GAP_PENALTY = −1, 
BAND_SIZE = 32 options, as recommended by the DADA2 package 
developing team), and the merging for the overlapping paired-end 
reads using the mergePairs function with the option “trimOverhang.” 
Last, we exported the output of the DADA2 workflow, i.e., the “.rds” 
files that contain all the ASV sequences and their counts for each 
sample. We also collected summary statistics on each processing step, 
the trained errors models, and processing time for each sample.

Combining the datasets into a single ASV-to-sample table, 
taxonomic and functional annotations, matrix curation
We reimported the rds files into R to build an ASV-to-sample table. 
We first produced an ASV table per dataset, filtered chimeric ASVs 
with the option “consensus” within each dataset, and aggregated the 
replicated libraries per biological sample for the deep_sea, tara, and 
tara_polar datasets. We also aggregated the reads obtained from DNA 
and RNA libraries generated for each deep_sea sediment samples, 
since a comparative analysis revealed that the diversity and bio-
geographic patterns of eukaryotic communities are mostly similar 
between DNA and RNA [fig. S12; in line with (29, 73)]. We filtered 
the ASVs detected in the negative controls of the eDNAbyss dataset 
across the eDNAbyss ASV table. Last, we concatenated each dataset- 
based ASV-to-sample table into a single one and exported all the 
ASV sequences into a fasta file for taxonomic annotations. We used 
the “assignment-fasta-vsearch” module of the SLIM v0.6 software 
(74) that wraps the vsearch v2.2.2 software (75). The ASVs were 
compared to a custom version of PR2 (33) that focus on the 18S V9 
region and that include functional annotations (available at https://
doi.org/10.5281/zenodo.3768950) and with the SILVA v138 database 
(76). Taxonomic annotations were the consensus among up to three 
candidate reference sequences that are above 85% similarity with 
the query or directly assigned to the reference sequence if the query 
had a similarity of at least 99%. We also performed another search 
without restricting a minimum similarity threshold to match an en-
try reference sequence in the custom V9 version of PR2, to identify 
non-18S V9 sequences. We focused our analysis on the eukaryotic 
diversity by discarding any prokaryotic, plastidic ASVs, or any other 
artifactual ASV. We used taxonomic annotations obtained with the 
SILVA database to discard prokaryotic ASVs and the annotations 
obtained with PR2 to discard organelle-derived ASVs. All ASVs that 
only loosely match any V9 reference sequence (i.e., <20% similarity) 
were considered as non-18S V9 sequence and were discarded. We 
also filtered ASVs that did not contain the “GTCG” motif in the first 
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four nucleotides in the 5′ end. This motif is widely conserved across 
eukaryotes, whereas prokaryotes have a “GTCA” motif highly con-
served in those positions. We lastly used the length distribution of 
eukaryotic and prokaryotic ASVs to discard any possible prokaryotic 
unassigned ASVs (filter set at 116 bp; fig. S13). For downstream tax-
onomic analyses, we used PR2-based annotations using the 85% 
minimum similarity threshold. We also inferred the trophic mode 
of pelagic ASVs (phototrophic/photosymbiotic/parasitic/heterotrophic 
protists and zooplankton/other metazoan) based on the matching 
candidate reference sequences in PR2 (up to three candidates per 
queried ASV). We ascribed our ASVs to functional groups only if 
the functional attributes across candidates above 95% similarity were 
unambiguous, i.e., all the candidates for taxonomic assignment share 
similar functional attributes. We also used the different size frac-
tions of the Tara Oceans samples to infer the size of pelagic ASVs, 
by using a weighted average of relative abundances across the size 
fractions of plankton samples (using the lowest mesh size, e.g., from 
the 20- to 180-m size fraction, we used 20 m in our calculation for 
this size fraction).

Classifying eukaryotic ASVs into pelagic or benthic taxa
We considered the ASVs being detected in pelagic samples as plank-
tonic (or nektic), the ASVs detected exclusively in sediment samples 
as benthic, and the ASVs detected in both pelagic and sediment data-
sets as sinking plankton [although 29 vertebrates ASVs, comprising 
most of the nekton, represented ~1.29% of the sequences detected 
in both pelagic and sediment samples (table S3), we hereafter refer 
only to sinking plankton]. However, because multiple benthic groups 
have meroplanktonic larvae and hence could be detected in pelagic 
samples, we manually curated the ASVs assigned to metazoans within 
the sinking plankton fraction, based on their known lifestyles. This 
was, for instance, the case for some polychaetes, molluscs, echino-
derms, or harpacticoid copepods that were “forced” into benthic 
diversity but not for pteropods that were left in the sinking plank-
ton. Of the 546 metazoan ASVs in the sinking plankton fraction, 
224 were curated as benthic (see table S8 for the details of this man-
ual curation).

Eukaryotic community diversity and structural analysis
For a and b diversity analyses, we used functions of the vegan R 
package v2.5-3 (77), unless specified differently. Because the size 
fractionation of the pelagic samples from the Tara Oceans datasets 
has a strong effect on a and b diversity measures, we compared 
eukaryotic diversity patterns across pelagic and benthic realms by 
considering only the richest nano- (3 to 20 m) and pico- (0.2 to 
5 m) size fractions of pelagic samples. The eukaryotic ASV accu-
mulation curves as a function of sampling effort were computed 
with the specaccum function with the “random” method. We calcu-
lated the Shannon diversity for each sample and compared the dis-
tribution of sample diversity across both pelagic euphotic and aphotic 
with the strictly benthic diversity using the stat_compare_means 
function of the ggpubr R package v0.2.5 (78) with default settings. 
For b diversity analysis, we removed samples with less than 1000 reads 
and discarded ASVs represented by less than 100 reads throughout 
the dataset. We then normalized the ASV-to-sample matrix with the 
cumulative sum scaling (CSS) method (79) and computed a Bray-Curtis 
dissimilarity matrix between pairs of samples. The dissimilarity matrix 
was used to perform a nonmetric multidimensional scaling (NMDS) 
ordination on two axes. Sampling depth and absolute latitude variables 

were fit to the NMDS as smooth surfaces using the ordisurf func-
tion. The dissimilarity matrix was also used as input of the adonis 
function for PERMANOVA models testing for differences between 
eukaryotic compositional structure between realms (pelagic euphotic, 
pelagic aphotic, and sediment) and along a gradient of absolute latitude 
(nested in type of realm and restricting permutations within type of 
realm with the “strata” option), using 999 permutations. Last, we 
measured the b diversity dispersion within each realm using the 
betadisper function and compared the distances distribution to group 
centroids between realms using the stat_compare_means function 
of the ggpubr R package.

For a diversity and b diversity analyses of the deep-ocean benthic 
communities, we focused on oceanic samples only, i.e., we did not 
consider the samples from the Mediterranean Sea nor the ones from 
the Gulf of California, to avoid potential effects from coastal ecosys-
tems. We calculated the normalized ASV richness per sample for the 
overall benthic communities and for selected benthic groups 
(nematodes, foraminifera, platyhelminths, polychaetes, molluscs, and 
ciliates) by rarefying each benthic sample at the lowest remaining 
sequencing depth (after removing planktonic ASVs and after focus-
ing on a given benthic taxonomic group). We used generalized ad-
ditive models (GAMs) to investigate the possible nonlinear variation 
of richness and Shannon diversity along gradients of latitude, pri-
mary production, and POC export from the surface and reaching 
the seafloor using the gam function of the mgcv R package (https://
cran.r-project.org/web/packages/mgcv/) and the smoothing parameter 
set to 3. For b diversity analyses, we used a similar approach than 
detailed above (CSS-normalized and Bray-Curtis dissimilarity ma-
trix), although here, we did not filter rare ASVs. We used the pcoa 
function of the ape R package (80) to perform a principal coordinate 
analysis of the Bray-Curtis dissimilarity matrix and calculate the 
structural variation explained by the first two axis of the ordination. 
We used the ordisurf and envfit functions to respectively fit the 
absolute latitude and a selection of environmental variables (seabed 
variables: salinity, temperature, silicate, nitrate, dissolved oxygen, POC 
reaching the seafloor, and pelagic variables that connect the surface 
to the DOS, namely, the primary productivity and the POC export 
from the surface) to the ordination. PERMANOVA models were 
used to test for differences in benthic composition between abyssal 
postulated biogeographic provinces (42) and along a gradient of ab-
solute latitude using 999 permutations. Then, we used the selected 
environmental variables in a stepwise model building for constrained 
ordination (distance-based redundancy analysis) using the ordi2step 
function in a forward direction and using 999 permutations, to ex-
plain the observed benthic community structure. We calculated the 
proportion of shared ASVs between pairs of benthic samples to in-
vestigate the decrease of shared ASV proportion as a function of 
increasing spatial distance (calculated from GPS coordinates, see the 
“companionFunctions.R” script). We also calculated key distance- 
decay parameters as in (81), i.e., the initial similarities (Sørensen 
similarities between pairs of samples distant to each other by less 
than a kilometer), the slope of distance-decay relationship (here in a 
log-linear regression form), and the halving distances, i.e., the spatial 
distance after which the initial similarities are halved. We calculated 
these parameters on an average Sørensen dissimilarity matrix calcu-
lated over 10 rarefaction draws at the minimum sequencing depth 
possible (the sequencing depth of the sample with the lowest num-
ber of reads) and by considering the full benthic community or by 
focusing on selected benthic groups only, e.g., polychaetes, molluscs, or 
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platyhelminths (macrofaunal size classes); nematodes or foraminifera 
(meiofauna); and amoebae or ciliates (microbes). We used the mantel 
function to test for correlation between spatial distance and commu-
nity dissimilarities using 999 permutations. We used the betadisper 
function to calculate the b dispersion of benthic communities at 
increasing sampling spatial scale (between replicates samples of a 
sediment core, between cores of the same deployment, between de-
ployments at a given station, and within a given abyssal basin). Last, 
we aggregated all samples at the station scale and fitted neutral com-
munity assembly models as in (82) to investigate whether the distri-
bution of ASVs within the pelagic and benthic realms are less or more 
geographically widespread than expected by neutral models.

We compared the inferred functional attributes (size and trophic 
mode) of sinking pelagic ASVs with their nonsinking counterparts 
to explore whether these traits could explain their transfer to the 
DOS. We also explored the variation of functional groups and size 
classes of the sinking planktonic communities in the sediment along 
the gradient of latitude. We investigated the spatial pattern of planktonic 
abundance on the seafloor by fitting a GAM on the proportion of 
planktonic DNA reads in the sediment as function of latitude (with 
smoothing parameter set to 3). Then, we aggregated the planktonic 
DNA reads of all sediment samples at the station scale and used 
random forest models to predict the POC export from the surface 
and the POC reaching the seafloor in a leave-one-out cross-validation 
approach. We used the ranger function of the ranger R package (83) 
in a regression mode, growing 300 trees and setting the “mtry” 
parameter at one-third of the total number of features (number of 
sinking pelagic ASVs). Linear models were used to measure the per-
formance of predictive models. Last, we used a sparse partial least 
square regression [mixOmics R package (84)] to identify the pelagic 
ASVs detected in the sediment that are best correlated with the vari-
ation of POC export and POC reaching the seafloor and with primary 
productivity and latitudes. We then focused on the pelagic ASVs that 
were reported with a correlation coefficient above 0.3 with POC ex-
port and POC reaching the seafloor and presented them in a clus-
tered heatmap.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj9309

View/request a protocol for this paper from Bio-protocol.
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