
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2007 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Automatic Formulation of Stochastic Programs Via an Algebraic Modeling

Language

Thenie, Julien; Van Delft, Christian; Vial, Jean-Philippe

How to cite

THENIE, Julien, VAN DELFT, Christian, VIAL, Jean-Philippe. Automatic Formulation of Stochastic

Programs Via an Algebraic Modeling Language. In: Computational Management Science, 2007, vol. 4,

n° 1, p. 17–40. doi: 10.1007/s10287-006-0022-z

This publication URL: https://archive-ouverte.unige.ch//unige:111366

Publication DOI: 10.1007/s10287-006-0022-z

© The author(s). This work is licensed under a Backfiles purchase (National Licenses Project)

https://www.unige.ch/biblio/aou/fr/guide/info/references/licences/

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:111366
https://doi.org/10.1007/s10287-006-0022-z
https://www.unige.ch/biblio/aou/fr/guide/info/references/licences/

CMS (2007) 4:17–40
DOI 10.1007/s10287-006-0022-z

O R I G I NA L PA P E R

Automatic formulation of stochastic programs via
an algebraic modeling language

J. Thénié · Ch. van Delft · J.-Ph.Vial

Published online: 17 June 2006
© Springer-Verlag 2006

Abstract This paper presents an open source tool that automatically gener-
ates the so-called deterministic equivalent in stochastic programming. The tool
is based on the algebraic modeling language ampl. The user is only required to
provide the deterministic version of the stochastic problem and the information
on the stochastic process, either as scenarios or as a transitions-based event tree.

Keywords Stochastic programming · Algebraic modeling language ·
Deterministic equivalent

MSC code 90C15 Stochastic programming

1 Introduction

Sequential decision-making under uncertainty is a common situation that
decision-makers face. Stochastic programming is a powerful analytical tool
to support this process. As a scientific field stochastic programming has been
in existence for many years and has received many contributions (see, for
example Birge and Louveaux (1997), Kall and Wallace (1994) and the website
“stoprog.org” for exhaustive references). Yet this tool is not widely used, mainly
because users find it difficult to handle and implement. Indeed, the complexity

J. Thénié (B) · J.-Ph.Vial
HEC/Logilab/Department of Management Studies,
University of Geneva, 40 Bd du pont d’Arve,
1211 Geneva 4, Switzerland
e-mail: julien.thenie@hec.unige.ch

Ch. van Delft
HEC School of Management,
Paris (GREGHEC),
78 351 Jouy-en-Josas Cedex, France

18 J. Thénié et al.

of implementing stochastic programming is considerably higher than in the
deterministic case. For the latter, algebraic modeling languages, in short aml,
make it possible for users who are not experts in mathematical programming
to formulate and develop complex problems rapidly and have them solved.

A multistage stochastic programming problem can be interpreted as the
combination of a multistage dynamic model and a discrete time stochastic
process. If the stochastic process has finitely many states, one can formulate
the stochastic program as a deterministic problem, the so-called deterministic
equivalent. To build this model, one has to describe the two base components
separately – the deterministic multistage dynamic model and the stochastic pro-
cess – and then define variables and constraints contingent on the realization of
the stochastic process. This last operation is tedious, if not difficult, because the
contingent variables and constraints are in great number and must be appro-
priately hooked to specific events. The development of automatic procedures
to build this model is an active research stream in stochastic programming
(Condevaux-Lanloy et al. 2002, 2004; Fourer and Gay 1997, 2004; Valente et al.
2001). In any case, the dimension of the deterministic equivalent is a major issue
in stochastic programming. Devising efficient solution methods is still an open
field. It is thus important to give the user the opportunity to experiment with
solution methods of his choice.

The present work achieves a twofold goal. First, we derive rules to generate
event trees in a way similar to (van Delft and Vial 2004) for the transition-based
and the scenario-based description. Second, we present a script that automat-
ically generates the deterministic equivalent. The script is generic in that it
applies to any problem, provided the user complies with simple formulation
rules in the writing of the base deterministic model and the event tree descrip-
tion. In our approach we use ampl (Fourer et al. 1993), which is one of the
available commercial aml. The extension to another aml is conceivable if the
language is endowed with analogous recursive definitions properties.

In Condevaux-Lanloy et al. (2002), Dormer et al. (2005) and IBM (1998) the
authors propose a black-box approach, whose input consists in two files that
are provided by the user. The output is the numerical solution of the deter-
ministic equivalent. The input files describe the deterministic information and
the stochastic part. Data are to be transmitted via smps (Edwards et al. 1985;
Gassmann and Schweitzer 2001), an extension of the mps format (IBM 1998;
Murtagh 1981). For practical applications, even if some aml is used to build
the data, this approach is not as straightforward as it seems: at first, the whole
procedure is likely to appear quite tedious and long for practitioners and fur-
thermore, some coefficients in the deterministic equivalent may be given as
complex functions of deterministic and stochastic data, which cannot be easily
translated as such in smps file. Furthermore, the control the user has on his
model is through data transmission, with a model building process which is
externally defined. Basically, in this approach the model building process is not
really under direct control of the user. For example, the user cannot implement
specific resolution algorithm via specific packages or decomposition methods.

Automatic formulation of stochastic programs via an algebraic modeling language 19

Another approach, the one we choose to develop here, consists of exploiting
the aml features in order to formulate the full deterministic equivalent, see van
Deft and Vial (2004), and having a direct vision and control of this model. Then
the user sends the problem to a commercial solver, knowing that nowadays such
solvers can often handle large linear programming problems. Such an approach,
which permits the user to develop the model, is a necessary condition during the
modeling process. As a matter of fact, in real-life application the development
of a model of the considered problem is a complex issue involving the setting
of critical assumptions and approximations (as the choice of the parameters of
influence, time horizon, randomness modeling, ...). It is thus an advantage for
the user to control and understand the model structure during this development
process.

In the hope of narrowing the gap between users and the available mod-
eling and algorithmic tools, we propose some simple techniques to convert
multistage deterministic problems into stochastic programming ones. In this
framework, the deterministic part is entered as a standard ampl model. The
stochastic component is described via a collection of simple recursive formulas
that allow ampl1 to generate the event tree for the stochastic process outcomes
and compute the associated probabilities. We show that, in our framework,
putting together the deterministic programming problem and the stochastic
information can be made automatic by an appropriate script. We give the rules
to write the script in terms of elementary operations. With our approach, the
user is just asked to build the deterministic model and to provide the numerical
data relative to the stochastic process. The script produces two files, a model file
consisting of the full deterministic equivalent, and a data file. With those two
files, ampl can build the model and the instance to be passed to the solver that
the user wishes to use.

Our methodology is inspired by the principles exposed in Gassman and
Ireland (1996). We believe our proposal meets the main objectives of Gassman
and Ireland (1996) and offers the user open access and fulls control of the deter-
ministic equivalent. Our approach extends some of the ideas that appeared in
Fragnière et al. (2000). There, the authors were able to show that a portfolio
selection model with a million scenario could be generated by an aml and the
data processed by a structure-exploiting tool called set (Fragnière et al. 2000a)
to feed general purpose optimization codes for decomposition. More recently,
a similar scheme has been applied to the analysis of a supply chain management
problem (van Delft and Vial 2004). In both cases, the underlying stochastic pro-
cess is represented by an event tree and a one-step transition process. However,
in many stochastic programming applications the stochastic process is described
via scenarios. We thus devised an extension to that case. The originality of our
approach is that it is entirely based on available functionalities of ampl (Fourer
et al. 1993) and gnu mathprog (Makhorin 2005), a free subset of ampl. Our
tool can be freely duplicated.

1 In theory, the approach can also be extended to any aml that supports recursive definitions.

20 J. Thénié et al.

This paper is organized as follows. Section 2 presents the basic assumptions
which characterize the stochastic optimization models considered in this paper.
Section 3 deals with the modeling of the event tree. Section 4 presents a simple
example to illustrate the concepts previously introduced. It will also be used
in the later sections. Section 5 defines the primitives that make it possible to
navigate through the tree. In section 6, we discuss the automatic merging of
the linear deterministic optimization problem and the stochastic information
embedded in the event tree to build the so-called deterministic equivalent, and
we provide an example. In the conclusion, we summarize our contributions.

2 Stochastic programming formulation

Consider the following deterministic dynamic problem

min h0(x0) +
T∑

t=1

ht(Xt, �t) (1a)

s.t. ft(Xt, �t) = 0, t = 1, . . . , T, (1b)

f0(x0) = 0, (1c)

gt(Xt, �t) ≤ 0, t = 1, . . . , T, (1d)

g0(x0) ≤ 0, (1e)

where Xt = (x0, x1, . . . xt), with xt ∈ Rpt , is a decision variable and �t =
(ξ1, . . . ξt), with ξt ∈ Rqt , is a parameter. The equality constraints (1b) and (1c)
are usually associated with the dynamics of the problem. In general, ft, f0, gt and
g0 are vector-valued functions. Some problems may involve decision variables
with delayed effect. To account for the time lag, one must use doubly indexed
variables, e.g. xt,t+k, to express the fact that the decision is taken at time t and
takes effect at time t + k. For the sake of simplicity, we do not consider this
notational extension in the main text. For more details, see subsection 6.4 or
(van Delft and Vial 2004).

A stochastic version of Problem (1) is as follows

min h0(x0) + Eξ

{ T∑

t=1

ht(Xt, �t)

}
(2a)

s.t. ft(Xt, �t) = 0, t = 1, . . . , T, (2b)

f0(x0) = 0, (2c)

gt(Xt, �t) ≤ 0, t = 1, . . . , T, (2d)

g0(x0) ≤ 0, (2e)

where, in this stochastic counterpart, the parameter �t is a stochastic process.
In that general framework, the constraints are required to hold in an almost
sure sense.

Automatic formulation of stochastic programs via an algebraic modeling language 21

In the sequel, we shall use the concept of scenario.

Definition 1. Each scenario ω is a full realization of the random process �T,
namely

�T(ω) = (ξ1(ω), . . . , ξT(ω)).

Similarly,

�t(ω) = (ξ1(ω), . . . , ξt(ω)).

When the number of scenarios is finite, Problem (2) becomes a regular finite-
dimensional mathematical programming problem. Thus, we posit the assump-
tion:

Assumption 1. We assume that the process �T has a finite number N of scenar-
ios ω ∈ � = {ω1, . . . , ωN}. Scenario ω has an occurrence probability πω, with∑

ω∈� πω = 1. Furthermore, this stochastic process �T is independent of the
decision vectors Xt.

It can be seen that in Assumption 1 the scenarios can be identified by arbitrary
alphanumeric codes. For the sake of simpler notation, one often chooses ωi = i
and this is what we use in the sequel. Nevertheless, for clarity purposes, we shall
sometimes keep with the more general notation ωi to stress the fact that we are
dealing with a scenario.

A fundamental issue is the handling of the information structure, namely
what is known at period t when decision xt, associated with this period, is made.
We assume the following structure:

Assumption 2. In period t, the history of the stochastic process is known up
to its current realization ξt. This means that the decision-maker is informed of
the streams �t and Xt−1. However, the decision-maker has only probabilistic
knowledge of the future evolution ξt+1, . . . , ξT, conditionally to the past history
�t.

The decision process has then the form:

decision
x0

→ observation
�1

→ decision
x1

. . .→ decision
xT−1

→ observation
�T

→ decision
xT

The deterministic equivalent To account for Assumption 2, the variable Xt
is formally expressed as the function Xt(�t). We obtain the following version

22 J. Thénié et al.

of the deterministic equivalent

min h0(x0) +
∑

ω∈�

πω

[T∑

t=1

ht(Xt(�t(ω)), �t(ω))

]
(3a)

s.t. ft(Xt(�t(ω)), �t(ω)) = 0, t = 1, . . . , T, ω ∈ �, (3b)
f0(x0) = 0, (3c)
gt(Xt(�t(ω)), �t(ω)) ≤ 0, t = 1, . . . , T, ω ∈ �, (3d)
g0(x0) ≤ 0. (3e)

However, the explicit formulation of this deterministic equivalent as a func-
tion of the decision variables Xt(�t(ω)) and of the stochastic process �t(ω)

along the N different scenarios is not a straightforward issue. Problem (3) is
not a standard mathematical programming formulation in finite dimension. The
transformation into a finite dimension problem can be done via an event tree
representation that we discuss in the next section.

3 The event tree formulation

Under Assumption 2, the random data can be represented on an event tree.
Without loss of generality, the tree is assumed to be rooted at a single node in
period 0. The arcs only link nodes in successive time periods. A node in period t
has a unique predecessor in period t − 1, but possibly several successors in time
t + 1. We can univocally define a node of the event tree as a pair (t, n), n ∈ St,
where St is the set of indices of the nodes at period t. Each node (t, n) on the tree
has an unconditional probability Pt,n of being visited by the stochastic process.
Let us furthermore define Nt as the cardinality of St, i.e. Nt = |St|. Note that
Nt ≤ N, for 0 ≤ t ≤ T and NT = N.

To navigate in the event tree, one has to define a predecessor function that
identifies the node that immediately precedes the current node. To this end,
we introduce the concept of predecessor function a(t, n, k) which maps the cur-
rent node (t, n) to the index of its predecessor node in period t − k, along the
unique path that goes from the root (0, 1) to the node (t, n). Using this concept,
a scenario i, that ends at node (T, i), is uniquely associated with the sequence
of nodes
(

(0, 1), (1, a(T, i, T − 1)), . . . , (T − t, a(T, i, t)), . . . , (T − 1, a(T, i, 1)), (T, i)
)

.

(4)

Let us consider �t(ωi) and Xt(�t(ωi)) the realizations of the stochastic pro-
cess and of the decision variables along the scenario ωi. (Recall that we identify
ωi with its index i.) Denoting the unique node that scenario ωi crosses at time
t as (t, ni) = (t, a(T, i, T − t)), with a(T, i, T − t) ∈ St, one can introduce the
notation

Automatic formulation of stochastic programs via an algebraic modeling language 23

�t(ωi) = �t,ni := (ξ1,a(t,ni,t−1), . . . , ξt−1,a(t,ni,1), ξt,ni), (5)

Xt(�t(ωi)) = Xt,ni := (x0,1, . . . , xt−1,a(t,ni,1), xt,ni), (6)

with the decision variables xt,ni and the random process value ξt,ni associated
with the different nodes of the event tree. We can thus formally replace �t(ωi)

and Xt(�t(ωi)) by �t,ni and Xt(�t,ni).
Along these lines, the deterministic equivalent is formulated as the finite

dimensional problem

min h0(x0,1) +
T∑

t=1

⎡

⎣
∑

n∈St

Pt,n ht(Xt,n, �t,n)

⎤

⎦ (7a)

s.t. ft(Xt,n, �t,n) = 0, t = 1, . . . , T, n ∈ St, (7b)

f0(x0,1) = 0, (7c)

gt(Xt,n, �t,n) ≤ 0, t = 1, . . . , T, n ∈ St, (7d)

g0(x0,1) ≤ 0. (7e)

It can thus be seen that the components necessary to define the deterministic
equivalent (7) are the following:

1. The time horizon T.
2. The parameters describing the event tree, namely

St : the set of node indices at period t, (8)

a(t, n, k) : the index of the predecessor of node (t, n) in period t − k. (9)

3. The stochastic process values and the node probabilities, formally given by

ξt,n : the random process value at node (t, n), (10)

Pt,n : the unconditional probability of visiting node (t, n). (11)

4. The deterministic parameters.
5. The variables (in general, hooked on nodes).
6. The objective and the constraints (in general, hooked on nodes).

Item 1 is read from the model file for the deterministic problem. Items 2 and
3 are provided by special files. The user is not supposed to edit (or even to look
at those files). However, in the case of a transition-based representation (see
section 5.2), the stochastic process values are problem dependent. It may be
necessary to compute them and the user has to provide the relevant formulas.
The last 3 items are modifications and extensions of the deterministic model,
according to the information introduced in items 2 and 3.

24 J. Thénié et al.

The key points of the paper are:
• The model information (not the data) in items 2 and 3 is independent of

the problem (to the exception of special process value computation in a
transition-based representation of the event tree).

• The user can rely on a script to create items 4, 5 and 6 from the deterministic
problem and the information in items 2 and 3.

4 An illustrative example

4.1 The deterministic model

To illustrate problem (1), we propose the simple deterministic problem

min (x2 − x̄2)
2 (12a)

xt = xt−1 + ut−1 − ξt, t = 1, 2, (12b)

0 ≤ ut ≤ bt, t = 0, 1, (12c)

x0 = x̄0. (12d)

The decision variables are xt and ut, which can be respectively interpreted as
state and control variables. The parameters are x̄0, x̄2, bt and ξt. The ampl
formulation and the data file of the deterministic problem are given in Figure 1.

4.2 The stochastic process

As in section 2, we introduce randomness in the problem via the parameter
ξt. The process has three periods (0, 1, 2). The stochastic process is defined for
periods 1 and 2, as period 0 constitutes in fact an auxiliary initial period. There
are two transitions per period. Figure 2 displays a classical representation of the
process via scenarios on an event tree.

We will show in the next section how this process can be represented in two
ways, either by scenarios or by transitions and how a deterministic equivalent
can be coupled with both representations.

4.3 The deterministic equivalent

For this example, along the lines of (7) and assuming that the parameters (8)–
(11) are known, the deterministic equivalent can be formally written as

min
∑

n∈S2

P2,n (x2,n − x̄2)
2 (13a)

s.t. xt,n = xt−1,a(t,n,1) + ut−1,a(t,n,1) − ξt,n, t = 1, 2, n ∈ St, (13b)

0 ≤ ut,n ≤ bt, t = 0, 1, n ∈ St, (13c)

x0,1 = x̄0. (13d)

Automatic formulation of stochastic programs via an algebraic modeling language 25

Fig. 1 Model and data for the deterministic problem in ampl

Fig. 2 Stochastic process in
the illustrative example

The ampl formulation2 of this deterministic equivalent is displayed in Figure
3. It clearly appears now that the main difficulty is the automatic computation
of parameters (8)–(11) from the deterministic model and the stochastic process
description. This issue is addressed in the next sections.

2 The functions nodeprob[·,·], NodeSet[·] and kancest[·,·,·] that appear in that formula-
tion will be defined in the next sections.

26 J. Thénié et al.

Fig. 3 The deterministic equivalent problem in ampl

5 Primitives on the event tree

We discuss two ways to describe an event tree and we give the correspond-
ing parameters and auxiliary functions. In the first case, the base concept is a
scenario. The scenarios are described recursively, starting from an initial sce-
nario. A new scenario is linked to an existing one, which becomes its parent
scenario. The scenario description includes the values taken by the stochastic
process. In the second approach, the base concept is the transition process.
Starting from the root node, the set of possible transitions recursively defines
the nodes in the future periods. The index of a node in period t is thus associated
with the state of the process. Contrary to the scenario description, the event
tree and the values taken by the stochastic process are not given explicitly; they
have to be built from base information.

The scenarios provide an explicit description of the event tree and, in partic-
ular, the values taken by the stochastic process along the scenarios are explicitly
given.

Automatic formulation of stochastic programs via an algebraic modeling language 27

The transition-based approach is well-fitted for a discrete-time stochastic
process with a known finite one-step transition distribution. This approach can
be furthermore exploited to implement complex discretization procedure of
underlying random variables (see for example van Delft and Vial 2004). The
scenario-based formulation is usually the output of a complex procedure aim-
ing to approximate a continuous time and state process by a discrete event
tree through Monte-Carlo simulation and scenario reduction schemes whose
description is out of the scope of this paper. See for instance Høyland and
Wallace (2001) or Pflug (1989).

The two approaches will now be described in detail. From here on, we choose
to insert the argument of a function within square brackets ‘[’ and ‘]’. This nota-
tion matches that which is in force in the algebraic modeling language ampl,
which we use to model and solve the examples (see van Delft and Vial 2004).

5.1 Scenario-based representation

5.1.1 The general setting

As previously defined, a scenario is a realization of the underlying stochastic
process, from t = 0 to the horizon t = T. The first scenario in the list is often
named the base scenario: all other scenarios will be recursively defined with
respect to this base scenario.

In fact, it is useful to characterize how scenarios are related to each other.
First, from the definitions, it is directly seen that two scenarios ω[i] and ω[j] may
coincide up to a certain time t′, but if these scenarios are distinct at t′, they are
disjoint for all periods t > t′. In contrast, if two scenarios are identical in period
t, they are indistinguishable for all periods t′ < t. This can be interpreted by
considering that ω[i] is the parent scenario for scenario ω[j] and the meeting
period is t′. Formally, we define two parameters σ [i] and τ [i], with the under-
standing that σ [i] is the index of the parent scenario for scenario ω[i], and τ [i]
is the meeting period with its parent scenario. It is worth noting that under this
interpretation, the set S[t] can be viewed as the set of distinct scenarios at time
t.

We recall that the user gives the probabilities π [n] associated with each
scenario ω[n] = n. The values taken by the stochastic process along scenario
ω[n] are denoted by �[t, ω[n]] and are entered as data, or computed by generic
formulas. The set of node indices at each period is then computed as

S[t] =
{ {1} if t = 0,

{n | ω[n] ∈ �, τ [n] < t} if 1 ≤ t ≤ T.
(14)

Under this interpretation, for each time period t ≤ T, the set S[t] is viewed
as the set of scenarios which have diverged at some time t′ < t. This scenario
description is illustrated via the example, in Figure 4 below.

28 J. Thénié et al.

Fig. 4 Scenario description
for the illustrative example

Furthermore, for each node (t, n), the unconditional probability of being vis-
ited by the stochastic process can be recursively computed as follows from the
scenario probabilities

P[t, n] =

⎧
⎪⎨

⎪⎩

π [n] if t = T,
P[t + 1, n] +

∑

m∈S[t+1]
τ [m]=t, σ [m]=n

P[t + 1, m] if 0 ≤ t < T. (15)

The one-period predecessor function a[t, n, 1] is defined by

a[t, n, 1] =
{

n if t > τ [n] + 1,
σ [n] if 1 ≤ t ≤ τ [n] + 1,

(16)

with a[t, 1, 1] = 1, for 1 ≤ t ≤ T.
The k-period predecessor function a[t, n, k] can afterwards be defined as

a[t, n, k] =
{

a[t, n, 1] if k = 1,

a[t − 1, a[t, n, 1], k − 1] otherwise,
(17)

for all 1 ≤ k ≤ t.

5.1.2 Information provided by the user

The set of scenarios3 : 1, . . . , N
Scenario probabilities : π [n] for 1 ≤ n ≤ N
Parent scenario : σ [n] for 1 ≤ n ≤ N
Meeting period : τ [n] for 1 ≤ n ≤ N
Process values : ξ [τ [n] + 1, n], . . . , ξ [T, n] for 1 ≤ n ≤ N.

3 In the present ampl file, the scenarios can be alpha-numerically named, implying a few simple
changes, the most important being S[0] = {root} instead of {1}.

Automatic formulation of stochastic programs via an algebraic modeling language 29

5.1.3 Generic information

Set of nodes : S[t] computed by formula (14)
Node probabilities : P[t, n] computed by formula (15)
Predecessor function : a[t, n, 1] computed by formula (16)
k-predecessor function : a[t, n, k] computed by formula (17).

5.1.4 Notation in the AMPL models

We have chosen the following ampl notations

The set of scenarios : 1, . . . , N → Scen
Scenario probabilities : π → scenprob
Parent scenario : σ → parent
Meeting period : τ → meet
Process values : ξ → xi
Set of nodes : S → NodeSet
Node probabilities : P → nodeprob
k-predecessor function : a → kancest.

The corresponding ampl set of instructions is displayed in Figure 5.
With this scenario-based description, the deterministic equivalent is easily

obtained from the deterministic model by making the variable x and the param-
eter ξ contingent on the nodes (t, n) of the tree represented in Figure 2. The
ampl formulation of the deterministic equivalent has been given in Figure 3.

One notices that the k-ancestor functionkancest[·, ·, ·] and the set of indices
NodeSet[·], that are used in the model are not defined in Figure 2 (see footnote
2, page 25). These functions are defined via a set of generic ampl instructions
that will be appended to the deterministic file by an automatized process to be
described in the next section. Furthermore, in the proposed ampl formulation
without loss of generality, we formally define the different sets of time periods
involved in the problem definition. This is a convention that will be explained
in section 6.

5.2 Transition-based representation

5.2.1 The general setting

In the transition-based representation, the user describes the stochastic process
by a one-step transition process from one period to the next fully explained
in this section. This information is used to build the tree and to compute the
probabilities and the stochastic process values to be assigned at each node. It is
usually the case that the process value at a given node in t + 1 depends on two
elements. First, it depends on the history of the stochastic process until t, namely
�[t]. Second, it also depends on the nature of the transition from t to t + 1. We

30 J. Thénié et al.

Fig. 5 Event tree parameters for a scenario-based representation

thus assume that the description of the one-step transition process from a node
in period t to a node in period t + 1 is made via the following functions

– f [t] := the number of transitions from any node at period t4,
– p[t, j] := the one-step transition probability of transition j ∈ {1, . . . , f [t]},
– ε[t, j] := the one-step random factor corresponding to transition j ∈ {1, . . . ,

f [t]}.
The event tree is then built as follows. At period t, the nodes are numbered
from 1 to N[t] going from top to bottom: node (t, n) is the n-th node from the

4 In this paper, we restrict our presentation to the symmetric case where the number of transitions
depends only on the time period. However, models with asymmetric event trees can be handled.
They involve computed parameters f [t, n], contingent on the information (probability, value of the
stochastic process) available at node (t, n). This case has been treated in van Delft and Vial (2004).

Automatic formulation of stochastic programs via an algebraic modeling language 31

top in period t. In this way, we directly find S[t] = {1, ..., N[t]}. The number of
nodes at period t is recursively computed by

N[t] = N[t − 1] f [t − 1], (18)

with N[0] = 1, where f [t] is the number of branches emanating from each node
at period t. In this formulation, the one-period predecessor function a[t, n, 1] is
recursively defined by

a[t, n, 1] =
{

a[t, n − 1, 1] if n ≤ a[t, n − 1, 1]f [t − 1],
a[t, n − 1, 1] + 1 otherwise,

(19)

with

a[t, 1, 1] = 1, for 0 < t ≤ T,

a[t, n, 0] = n, for 0 ≤ t ≤ T, n ∈ S[t].

Then we recursively define the general k-period predecessor function with (17).
We also need to identify the transition index j that led from the previous

node (t − 1, a[t, n, 1]) to the actual node (t, n). It can be formally computed by
the auxiliary function
[t, n] defined as

[t, n] = n − (a[t, n, 1] − 1)f [t − 1]. (20)

Using the primitives (19) and (20) one may write

ξ [t, n] = q[�[t − 1, a[t, n, 1]], ε[t − 1,
[t, n]]], (21)

where q[·, ·] is a given function. According to (21), it can be seen that the random
process value ξ [t, n] is computed based on past events �[t − 1, a[t, n, 1] and on
the one step transition process ε[t − 1,
[t, n]], corresponding to the transition
leading to node (t, n).

To illustrate our point, we consider the illustrative example, which is a three-
period model (with T = 2) with a symmetric event tree. We represent it in
Figure 6. The uncertainty unfolds in time from left to right. Nodes appearing in
the same vertical cut belong to the same time period. At t = 0, there are two
branches giving rise to a pair of nodes in t = 1 (f [0] = 2 and N[1] = 2). At t = 1,
each node has two branches (f [1] = 2) and there are N[2] = 4 nodes in t = 2.
Time t = 2 is the horizon: no branch emanates from those nodes. Furthermore,
the transition indices are the following :
[1, 1] = 1,
[1, 2] = 2,
[2, 1] = 1,

[2, 2] = 2,
[2, 3] = 1 and
[2, 4] = 2.

From our assumptions, for a given node (t, n), the conditional transition
probabilities depend on the period t and on the transition index j. In the pres-
ent formulation, those probabilities are given and denoted p[t, j]. Often, these
probabilities result from the discretization procedure of an underlying random
variable (see, for example, van Delft and Vial (2004)). From these transition

32 J. Thénié et al.

Fig. 6 Transition-based
representation for the
example

probabilities, the unconditional occurrence probability P[t, n] of node (t, n) can
be recursively computed by

P[t, n] =
{

1 if t = 0,

p[t − 1,
[t, n]] P[t − 1, a[t, n, 1]] if 1 ≤ t ≤ T.
(22)

Figure 7 displays the formulas written in ampl.

5.2.2 Information provided by the user

Number of emanating arcs : f [t], for 0 ≤ t < T,
One-step random factor : ε[t, j], for 0 ≤ t < T, j = 1, . . . , f [t],
Transition probabilities : p[t, j], for 0 ≤ t < T, j = 1, . . . , f [t].

5.2.3 Generic information

Number of nodes : N[t] computed by formula (18).
Set of nodes : S[t] = {1, . . . , N[t]}
Predecessor : a[t, n, 1] computed by formula (19).
k-predecessor : a[t, n, k] computed by formula (17).
Transition index :
[t, n] computed by formula (20).
Node probabilities : P[t, n] computed by formula (22).

Automatic formulation of stochastic programs via an algebraic modeling language 33

Fig. 7 Event tree parameters for a transition-based representation

5.2.4 Notation in the AMPL models

In complement to the ampl notations introduced in the scenario-based ap-
proach, we add the following notations

Number of nodes : N → nodenb
Number of transitions : f → transnb
Transition probabilities : p → transprob
One-step random factor : ε → epsilon
Last transition index :
 → lastmove.

5.2.5 Computing the values of the stochastic process

We have explained in the general setting that in the transition-based represen-
tation, the stochastic process values to be assigned at each node have to be
computed. It can be seen via (21) that these values are assumed to depend on

34 J. Thénié et al.

the history of the stochastic process and on the nature of the last transition. If
this dependence is described by a formula, this formula must be made contin-
gent on the node of the tree, which is not direct for a user, as the tree is not
externally given (as in the scenario-based approach). To permit an automatic
computation, we ask the user to modify the deterministic model (1) by adding
the following deterministic equation

ξ [t] = q(�[t − 1], ε[t − 1]), (23)

that expresses ξ [t + 1] as a function of the external parameter ε[t]. In the ampl
deterministic model, ξ [t] will be declared as a variable,5 ε[t] as a parameter and
the transition equation (23) as a constraint. The parameter ε[t] can be viewed as
a pure random effect that is node independent. With such conventions, the con-
tingent process values will be automatically computed during the deterministic
equivalent generation.

We illustrate this approach with our example. In this example, the stochas-
tic process in Figure 2 can also be alternatively represented by the transition
function

ξ [t] = ξ [t − 1] + ε[t − 1], (24)

with the understanding that ξ [0] = 0 is fixed and ε[t] is the underlying random
effect. Table 1 displays these data.

Table 1 Data on the
transition process

Outcomes

t = 0 t = 1

ε[t] 8 6 4 2
p[t] 0.6 0.4 0.6 0.4

We thus reformulate the deterministic problem (12) for the example as

min (x[2] − x̄[2])2 (25a)

x[t] = x[t − 1] + u[t − 1] − ξ [t], t = 1, 2, (25b)

0 ≤ u[t] ≤ b[t], t = 0, 1, (25c)

ξ [t] = ξ [t − 1] + ε[t − 1], t = 1, 2, (25d)

x[0] = x̄[0], ξ [0] = 0. (25e)

In this formulation, the parameter ξ is treated as a variable, but ε is the random
parameter that triggers the process. The change in the status of ξ is purely
formal, but it gives a common framework for the description of process via

5 These variables will take fixed values on the event tree, a fact that the solver preprocess will use
to eliminate them for the solution phase.

Automatic formulation of stochastic programs via an algebraic modeling language 35

scenario or via transitions. The modification in the deterministic model (Figure
1) is displayed in Figure 8.

Fig. 8 ampl formulation of the dynamics of the perturbation

6 Automatic generation of the deterministic equivalent in ampl

In this section, we discuss the automatic merging of the deterministic structure
of the optimization problem (f [t], f [0], g[t] and g[0]) and the stochastic infor-
mation embedded in the event tree. We recall here that, while it is relatively
easy to describe the two base components – the underlying deterministic model
and the stochastic process – it is tedious to define the contingent variables and
constraints and build the deterministic equivalent. We show in this section how
to define a systematic procedure that performs this. This procedure can then be
translated into a script, so that the user is completely relieved from the painstak-
ing work. The procedure is simpler in the case of a scenario-based description
of the stochastic process. We shall detail this case and briefly review the few
modifications required to handle the transition-based case.

6.1 The two basic components

The first step in the generation of the deterministic equivalent is the descrip-
tion of the two basic components underlying the stochastic model, namely the
deterministic structure and the full description of the stochastic process via an
event tree. This step, which is to be performed by the user, can be summarized
as follows:

1. Formulate the underlying deterministic dynamic model as defined in (1).
– The number of time periods must be defined as a parameter, named “T”.

2. Enter the information describing the structure and the values of the sto-
chastic process as described in section 5.
– To do this, the convention described in subsection 5.1.4 should be fol-

lowed.

36 J. Thénié et al.

– The set of scenarios S[T] must be non-empty, and the first scenario in
S[T] must have no parent scenario. The user must describe at least one
scenario, named scenario 1.

6.2 Building the deterministic equivalent

The second step consists in building the deterministic equivalent. This can be
performed in an automatic fashion provided the deterministic model (1) is
written according to some simple conventions. We detail first the conventions,
and describe later the transformation rules that map the deterministic dynamic
problem to the deterministic equivalent.

6.2.1 Notation for the deterministic model

The formulation must comply with conventions. The first convention is the
standard modeling convention in ampl.

Convention 1. Indices are entered as arguments of functions, i.e., they are delim-
ited by square brackets “[” and “]”. For instance, we write

ft(x0, x1, . . . , xt, ξ1, ξ2, . . . , ξt) as f [t, x[0], x[1], . . . , x[t], ξ [1], ξ [2], . . . , ξ [t]].
The next convention applies to variables and parameters whose values are
contingent on the nodes of the event tree.

Convention 2. The time index at which the value of the variable or the parameter
is fixed is first in the list of indices which influence the value of the variable or
parameter.

For instance, we write x[t, j], with j representing a location or a product type,
and not x[j, t].

In the declaration phase, one must define the set of all time periods, and
possibly some of its subsets.

Convention 3. Any set of time periods starts with the same character string.

Our own convention is to denote TIME as the full set of time periods {0, . . . , T}.
The denomination of any subset of TIME will take the form TIME<exp>, e.g.,
TIMEa = {2, . . . , T − 1}.

In the problem definition (objective and constraints), the following conven-
tion is in force:

Convention 4. Time indices in variables and parameters are never replaced by
constants.

For instance, we do not write x[0] = 0, but, in mathematical style, {x[t] = 0 |
t = 0}.

Automatic formulation of stochastic programs via an algebraic modeling language 37

Under these conventions, the mathematical programming formulation can
be obtained from (1) by some simple transformations described below.

6.2.2 Transformation rules

The main task in defining the deterministic equivalent consists in properly
associating variables and constraints to the different nodes of the event tree.
Furthermore, the objective function has to be reformulated along (3). This can
be done via the following rules.

Rule 1 (Variable transformation). Replace the variable Xt with the N[t] vari-
ables X[t, n], n ∈ S[t]. If a variable has two time indices, only the first time index,
corresponding to the period when the decision is made, is to be taken into account.

Rule 2 (Parameter transformation). Replace the parameter �t with the N[t]
parameters �[t, n] where n ∈ S[t].
Rule 3 (Constraint transformation). Replace the constraints

ft(Xt, �t) = 0 and gt(Xt, �t) ≤ 0

with the N[t] constraints

f [t, X[t, n], �[t, n]] = 0 and g[t, X[t, n], �[t, n]] ≤ 0,

where n ∈ S[t].
Rule 4 (Objective transformation). In the objective, replace

ht(Xt, �t) with
∑

n∈S[t]
P[t, n] h[t, X[t, n], �[t, n]].

6.2.3 Implementing the rules

We propose on the internet6 a script that implements the rules via the syntac-
tic interpretation language perl (Wall et al. 2001). This script is generic and
applies to any model and data that comply with our rules.7 The script auto-
matically generates the corresponding deterministic equivalent. It performs a
syntactic analysis based on regular expressions (see Friedl 1997).

Inputs–outputs
The script counts four input files and two output files. We describe first the
input:

6 The “DET2STO” program. Free program available online at the website: “logilab.unige.ch”.
7 The authors cannot guarantee that all syntaxes supported by ampl are currently understood by
the script.

38 J. Thénié et al.

File I.1 describes the deterministic dynamic model structure (1) (.mod format
in ampl).

File I.2 describes the corresponding numerical data (.dat).
File I.3 describes the stochastic primitives (.mod).
File I.4 describes the numerical data underlying the stochastic process (.dat).

And then the output:

File O.1 describes the deterministic equivalent model structure (7) (.mod).
File O.2 describes the corresponding numerical data (.dat).

Script structure
First, the script generates the deterministic equivalent model, as follows:

• Pre-process in order to check the input structure validity.
• Declare and define the primitives according to the formulas in subsections

5.2.3 and 5.1.3.
• Identify declarations of variables and parameters.
• Modify the above declarations according to rule 1.
• Identify definitions of constraints.
• Modify the above definitions according to rule 2.
• Identify the definition of the objective function.
• Modify the above definition according to rule 3.

In a second phase, the script generates the deterministic equivalent data file by
merging the two numerical data input files.

The rules are simple enough to encode, but, in practice, the user must take
great care to make sure that the input files are consistent and complete. One
must keep in mind that there are often many different ways to write a model in
ampl, only some of which are consistent with Conventions 1–4.

Recall that a generated deterministic equivalent model is presented in
Figure 3.

6.3 The case of a transition-based formulation

The reader has certainly noticed that the transition-based formulation is more
complicated than the scenario-based one. Indeed, the user has to provide infor-
mation on the dynamics of the stochastic process as formulas that can be han-
dled in ampl. The surprising fact is that the deterministic equivalent can still be
produced by a script file at a minimal additional effort from the user.

The transformation rules differ from the scenario-based approach. Rule 1 is
replaced by:

Rule 5 (Variable transformation). Replace the variables Xt and �t with the N[t]
variables X[t, n] and �[t, n], n ∈ S[t].

Rule 2 is replaced by the following:

Automatic formulation of stochastic programs via an algebraic modeling language 39

Rule 6 (Parameter transformation). Replace the parameter εt−1 with the N[t]
parameters ε[t − 1,
[t, n]] where n ∈ S[t].

Rules 3 and 4 are maintained as in subsection 6.2.2.

6.4 Extension to variables with time lags

For the sake of simpler notation, we have not considered problems with time-
lagged decisions. However it is often the case that a decision is to be taken at t
but takes effect at t + k. This can be formalized by means of a double-indexing.
We adopt the following convention

Convention 5. If a variable or a parameter includes more than one time index,
the first time index corresponds to the time at which the decision is taken; the
subsequent time indices define the dates at which the parameter or variable has
an impact.

For instance, x[t, t + 1] will be made contingent on nodes [t, n], n ∈ S[t], but not
to nodes [t + 1, m], m ∈ S[t + 1].

7 Conclusion

Multistage stochastic programming with recourse is one possible approach to
model sequential decision-making under uncertainty. It applies to discrete, or
discretized, stochastic processes and leads to the formulation of the determin-
istic equivalent. This mathematical programming problem is expressed in alge-
braic terms and can be solved by available optimization software. In this paper,
we have proposed a methodology to help users to formulate the deterministic
equivalent program from their base deterministic model and from general event
tree representations of the stochastic process. In particular, we have introduced
recursively-defined generic functions that make it possible to navigate through
the tree and the alternative event tree formulations.

Together with the methodology, we offer a tool, the perl script, that fully
automatizes the process of of building and solving stochastic programming
problems. We would also like to emphasize a nice feature of the proposed tool.
Associated with the free gnu linear programming kit that contains the gnu
mathprog language – a subset of ampl – and a LP solver, our tool offers a free
alternative to stochastic linear programming. It is our hope that the tool will
evolve and benefit from contributions of the community. A debugger that would
check the correctness of the deterministic model would be most welcome, as
well as a user-friendly interface.

Acknowledgements The authors wish to thank anonymous referees for their comments and sug-
gestions that have helped in improving this paper. The first and third authors also acknowledge the
support of Fonds National Suisse de la Recherche Scientifique, grant # 100012-105309

40 J. Thénié et al.

References

Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, Berlin Heidelberg
New York

Condevaux-Lanloy C (2004) Extensions de l’interface entre langages de modélisation et codes
d’optimisation: application à la programmation stochastique multi-étapes linéaire et non-
linéaire. PhD Thesis, University of Geneva

Condevaux-Lanloy C, Fragnière E, King A (2002) SISP, simplified interface for stochastic program-
ming. Optim Methods Softw 17(3):423–443

Dormer A, Vazacopoulos A, Verma N, Tipi H (2005) Modeling & solving stochastic programming
problems in supply chain management using XPRESS-SP. Supply Chain Optimization; Geunes
and Pardalos Eds, (2005) 1–27

Edwards J, Birge J, King A, Nazareth L (1985) A standard input format for computer codes which
solve stochastic programs with recourse and a library of utilities to simplify its use. In: Working
Paper WP-85-03, International Institute for Applied Systems Analysis, Laxenburg, Austria

Fourer R, Gay D, Kernigham B (1993) ampl: a modeling language for mathematical programming.
The Scientific Press Series, San Francisco

Fourer R, Gay D (1997) Proposals for stochastic programming in the ampl modeling language.
In: Session WE4-G-IN11, International symposium on mathematical programming, lausanne,
August 27

Fourer R, Lopes L (2004) A filtration-oriented system for modeling in stochastic programming. In:
Technical report, Department of systems and industrial engineering, University of Arizona

Fragnière E, Gondzio J, Sarkissian R, Vial J.-Ph (2000a) Structure exploiting tool in algebraic
modeling languages. Manage Sci 46:1145–1158

Fragnière E, Gondzio J, Vial J.-Ph (2000) Building and solving large-scale stochastic programs on
an affordable distributed computing system. Ann Oper Res 99(1/4):167–187

Friedl JEF (1997) Mastering regular expressions, O’Reilly & Associates, Cambridge
Gassmann HI, Ireland AM (1996) On the formulation of stochastic linear programs using algebraic

modeling languages. Ann Oper Res 64:83–112
Gassmann HI, Schweitzer E (2001) A comprehensive input format for stochastic linear programs.

Ann Oper Res 104:89–125
Høyland K, Wallace S (2001) Generating scenario trees for multi-stage decision problems. Manage

Sci 47:295–307
IBM (1998) OSL Stochastic Extensions: Guide and Reference, ©IBM Corp.,
Kall P, Wallace S (1994) Stochastic programming. Wiley, New York
Makhorin A (2005) GNU linear programming kit: reference manual. Free software foundation, 4.8
Murtagh B (1981) Advanced linear programming: computation and practice, McGraw-Hill, New

York
Pflug G (1989) Optimal scenario tree generation for multiperiod financial planning. Math Program

89:251–271
Valente P, Mitra G, Poojari C, Kyriakis T (2001) Software tools for stochastic programming: a sto-

chastic programming integrated environment (SPInE). In: Technical report, Brunel University
van Delft Ch, Vial J.-Ph (2004) A practical implementation of stochastic programming: an applica-

tion to the evaluation of option contracts in supply chain. Automatica 40:743–756
Wall L, Christiansen T, Orwant J (2001) Programming Perl, 3rd ed. O’Reilly & Associates, Cam-

bridge

