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Shot Noise in Mesoscopic Conductors

Ya. M. Blanter and M. Büttiker
Département de Physique Théorique, Université de Genève, CH-1211, Genève 4, Switzerland

Theoretical and experimental work concerned with dynamic fluctuations has developed into a very
active and fascinating subfield of mesoscopic physics. We present a review of this development
focusing on shot noise in small electric conductors. Shot noise is a consequence of the quantization
of charge. It can be used to obtain information on a system which is not available through conduc-
tance measurements. In particular, shot noise experiments can determine the charge and statistics
of the quasiparticles relevant for transport, and reveal information on the potential profile and
internal energy scales of mesoscopic systems. Shot noise is generally more sensitive to the effects
of electron-electron interactions than the average conductance. We present a discussion based on
the conceptually transparent scattering approach and on the classical Langevin and Boltzmann-
Langevin methods; in addition a discussion of results which cannot be obtained by these methods is
provided. We conclude the review by pointing out a number of unsolved problems and an outlook
on the likely future development of the field.

(October 18, 1999)
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I. INTRODUCTION

A. Purpose of this Review

During the past two decades mesoscopic physics has
developed into a fascinating subfield of condensed matter
physics. In this article, we review a special topic of this
field: We are concerned with the dynamical noise prop-
erties of mesoscopic conductors. After a modest start, a
little more than a decade ago, both theories and experi-
ments have matured. There is now already a substantial
theoretical literature and there are a number of interest-
ing experiments with which theoretical predictions can
be compared. Some experiments ask for additional theo-
retical work. The field has thus reached a stage in which
a review might be useful as a first orientation for re-
searchers who wish to enter the field. Also researchers
which are already active in the field might appreciate a
review to help them keep an overview over the rapid de-
velopment which has occurred. Any review, of course,
reflects the authors’ preferences and prejudices and in
any case cannot replace the study of the original litera-
ture.

Presently, there are no reviews covering the actual
state of development of the field. The only article which
provides a considerable list of references, and gives a
description of many essential features of shot noise in
mesoscopic systems, has been written in 1996 by de Jong
and Beenakker [1]. It is useful as a first introduction
to the subject, but since then the field has developed
considerably, and a broader review is clearly desirable.
An additional brief review has been written by Martin
[2]. The subject has been touched in books with broader
scopes by Kogan [3] (Chapter 5) and Imry [4] (Chap-
ter 8). These reviews, and in particular, the work of de
Jong and Beenakker [1], provided a considerable help in
starting this project.

B. Scope of the Review

Our intention is to present a review on shot noise in
mesoscopic conductors. An effort is made to collect a
complete list of references, and if not comprehensively
re-derive, then at least to mention results relevant to the
field. We do not cite conference proceedings and brief
commentaries, unless we feel that they contain new re-
sults or bring some understanding which cannot be found
elsewhere. Certainly, it is very possible that some papers,
for various reasons, have not come to our attention. We
apologize to the authors whose papers we might have
overlooked.

Trying to classify the already large literature, we chose
to divide the Review into sections according to the meth-
ods by which the results are derived and not according to
the systems we describe. Many results can be obtained
in the framework of the scattering approach and/or by
classical methods. We deliberately avoid an explana-
tion of the Green’s function method, the master equa-
tion approach, and the bosonization technique. An at-
tempt to explain how any one of these approaches work
would probably double the size of this Review, which is
already long enough. Consequently, we make an effort to
re-derive the results existing in the literature by either
the scattering or one of the classical (but not the master
equation) approaches, and to present a unifying descrip-
tion. Certainly, for some systems these simple methods
just do not work. In particular, this concerns Section
VII, which describes shot noise in strongly correlated sys-
tems. Results obtained with more sophisticated methods
are discussed only briefly and without an attempt to re-
derive them. We incorporate a number of original results
in the text; they are usually extensions of results avail-
able in the literature, and are not specially marked as
original.

A good review article should resemble a textbook use-
ful to learn the subject but should also be a handbook
for an expert. From this perspective this Review is more
a textbook than a handbook. We encourage the reader
who wants to enter the field to read the Review from the
beginning to the end. On the other hand, we also try
to help the experts, who only take this Review to look
for the results concerning some particular phenomenon.
It is for this reason that we have included the Table I
with references to the different subsections in which the
subject is discussed. The Review is concluded by a brief
summary.

C. Subjects not addressed in this Review

First of all, we emphasize that this is not a general
review of mesoscopic physics. In many cases, it is nec-
essary to describe briefly the systems before addressing
their noise properties. Only a few references are provided
to the general physical background. These references are
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not systematic; we cite review articles where this is pos-
sible, and give references to the original papers only in
cases such reviews are not readily available. This Review
is not intended to be a tool to study mesoscopic physics,
though possibly many important ideas are present here.

A multitude of sources typically contribute to the
noise of electrical conductors. In particular, some of
the early experimental efforts in this field suffered from
1/f -noise which is observed at low frequencies. There is
still to our knowledge no established theory of 1/f -noise.
The present article focuses on fundamental, unavoid-
able sources of noise, which are the thermal (Nyquist-
Johnson-noise) and the shot noise due to the granular-
ity of charge. The reader may find an account of other
sources of noise in the book by Kogan [3].

We mention also that, though we try to be very accu-
rate in references, this Review cannot be regarded as a
historical chronicle of shot noise research. We re-derive
a number of results by other methods than were used in
the original papers, and even though we make an effort to
mention all achievements, we do not emphasize historical
priorities.

D. Fundamental sources of noise

Thermal noise. At non-zero temperature, thermal
fluctuations are an unavoidable source of noise. Thermal
agitation causes the occupation number of the states of
a system to fluctuate.

Typically, in electric conductors, we can characterize
the occupation of a state by an occupation number n
which is either zero or one. The thermodynamic average
of the occupation number 〈n〉 is determined by the Fermi
distribution function f and we have simply 〈n〉 = f .
In an equilibrium state the probability that the state is
empty is on the average given by 1−f , and the probabil-
ity that the state is occupied is on the average given by
f . The fluctuations away from this average occupation
number are (n− 〈n〉)2 = n2 − 2n〈n〉 + 〈n〉2. Taking into
account that for a Fermi system n2 = n, we find immedi-
ately that the fluctuations of the occupation number at
equilibrium away from its thermal average are given by

〈

(n− 〈n〉)2
〉

= f(1 − f). (1)

The mean squared fluctuations vanish in the zero tem-
perature limit. At high temperatures and high enough
energies the Fermi distribution function is much smaller
than one and thus the factor 1 − f in Eq. (1) can be
replaced by 1. The fluctuations are determined by the
(Maxwell) – Boltzmann distribution.

The fluctuations in the occupation number give rise to
equilibrium current fluctuations in the external circuit
which are via the fluctuation-dissipation theorem related
to the conductance of the system. Thus investigation
of equilibrium current fluctuations provides the same in-
formation as investigation of the conductance. This is

not so with the shot noise of electrical conductors which
provides information which cannot be obtained from a
conductance measurement. We next briefly discuss the
source of shot noise.

Shot noise. Shot noise in an electrical conductor is a
consequence of the quantization of the charge. Unlike for
thermal noise, to observe shot noise, we have to investi-
gate the non-equilibrium (transport) state of the system.

To explain the origin of shot noise we consider first a
fictitious experiment in which only one particle is inci-
dent upon a barrier. At the barrier the particle is either
transmitted with probability T or reflected with probabil-
ity R = 1−T . We now introduce the occupation numbers
for this experiment. The incident state is characterized
by an occupation number nin, the transmitted state is
characterized by an occupation number nT and the re-
flected state by an occupation number nR. If we repeat
this experiment many times, we can investigate the av-
erage of these occupation numbers and their fluctuations
away from the average behavior. In our experiments the
incident beam is occupied with probability 1 and thus
〈nin〉 = 1. However the transmitted state is occupied
only with probability T and is empty with probability R.
Thus 〈nT 〉 = T and 〈nR〉 = R. The fluctuations away
from the average occupation number, can be obtained
very easily in the following way: The mean squared fluc-
tuations in the incident beam vanish, (nin −〈nin〉)2 = 0.
To find the mean squared fluctuations in the transmitted
and reflected state, we consider the average of the prod-
uct of the occupation numbers of the transmitted and
reflected beam 〈nTnR〉. Since in each event the parti-
cle is either transmitted or reflected, the product nTnR

vanishes for each experiment, and hence the average van-
ishes also, 〈nTnR〉 = 0. Using this we find easily that the
mean squares of the transmitted and reflected beam and
their correlation is given by

〈(∆nT )2〉 = 〈(∆nR)2〉 = −〈∆nT ∆nR〉 = TR, (2)

where we have used the abbreviations ∆nT = nT − 〈nT 〉
and ∆nR = nR−〈nR〉. Such fluctuations are called parti-
tion noise since the scatterer divides the incident carrier
stream into two streams. The partition noise vanishes
both in the limit when the transmission probability is 1
and in the limit when the transmission probability van-
ishes, T = 0. In these limiting cases no partitioning takes
place. The partition noise is maximal if the transmission
probability is T = 1/2.

Let us next consider a slightly more sophisticated, but
still fictitious, experiment. We assume that the incident
beam is now occupied only with probability f . Even-
tually f will just be taken to be the Fermi distribution
function. The initial state is empty with probability 1−f .
Apparently, in this experiment the average incident oc-
cupation number is 〈nin〉 = f , and since the particle is
transmitted only with probability fT and reflected with
probability fR, we have 〈nT 〉 = fT and 〈nR〉 = fR.
Since we are still only considering a single particle, we
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have as before that in each event the product nTnR van-
ishes. Thus we can repeat the above calculation to find

〈(∆nT )2〉 = Tf(1 − Tf), (3)

〈(∆nR)2〉 = Rf(1 −Rf), (4)

〈∆nT ∆nR〉 = −TRf2. (5)

If we are in the zero temperature limit, f = 1, we recover
the results discussed above. Note that now even in the
limit T = 1 the fluctuations in the transmitted state do
not vanish, but fluctuate like the incident state. For the
transmitted stream, the factor (1 − Tf) can be replaced
by 1, if either the transmission probability is small or if
the occupation probability of the incident carrier stream
is small.

We can relate the above results to the fluctuations of
the current in a conductor. To do this we have to put
aside the fact that in a conductor we deal not as above
just with events of a single carrier but with a state which
may involve many (indistinguishable) carriers. We imag-
ine a perfect conductor which guides the incident carriers
to the barrier, and imagine that we have two additional
conductors which guide the transmitted and reflected
carriers away from the conductor, such that we can dis-
cuss, as before, incident, transmitted and reflected cur-
rents separately. Furthermore, we want to assume that
we have to consider only carriers moving in one direction
with a velocity v(E) which is uniquely determined by the
energy E of the carrier. Consider next the average inci-
dent current. In a narrow energy interval dE, the incident
current is dIin(E) = ev(E)dρ(E), where dρ(E) is the
density of carriers per unit length in this energy range.
The density in an energy interval dE is determined by the
density of states (per unit length) ν(E) = dρ/dE times
the occupation factor nin(E) of the state at energy E.
We thus have dρ(E) = nin(E)ν(E)dE. The density of
states in our perfect conductors is ν(E) = 1/(2πh̄v(E)).
Thus the incident current in a narrow energy interval is
simply

dIin(E) =
e

2πh̄
nin(E)dE. (6)

This result shows that there is a direct link between
currents and the occupation numbers. The total inci-
dent current is Iin = (e/2πh̄)

∫

nin(E)dE and on the
average is given by 〈Iin〉 = (e/2πh̄)

∫

f(E)dE. Similar
considerations give for the average transmitted current
〈IT 〉 = (e/2πh̄)

∫

f(E)TdE and for the reflected cur-
rent 〈IR〉 = (e/2πh̄)

∫

f(E)RdE. Current fluctuations
are dynamic phenomena. The importance of the above
consideration is that it can now easily be applied to in-
vestigate time-dependent current fluctuations. For oc-
cupation numbers which vary slowly in time, Eq. (6)
still holds. The current fluctuations in a narrow energy
interval are at long times determined by dIin(E, t) =

(e/2πh̄)nin(E, t)dE where nin(E, t) is the time depen-
dent occupation number of states with energy E. A
detailed derivation of the connection between currents
and occupation numbers is the subject of an entire Sec-
tion of this Review. We are interested in the low fre-
quency current noise and thus we can Fourier trans-
form this equation. In the low frequency limit we obtain
I(ω) = (e/2πh̄)

∫

dEn(E,E+ h̄ω). As a consequence the
fluctuations in current and the fluctuations in occupation
number are directly related. In the zero frequency limit
the current noise power is SII = e2

∫

dESnn(E). In each
small energy interval particles arrive at a rate dE/(2πh̄)
and contribute, with a mean square fluctuation, as given
by one of the equations (3) – (5), to the noise power.
We have Snn(E) = (1/πh̄)〈∆n∆n〉. Thus the fluctua-
tion spectra of the incident, transmitted, and reflected
currents are

SIinIin
= 2

e2

2πh̄

∫

dEf(1 − f); (7)

SIT IT
= 2

e2

2πh̄

∫

dE Tf(1 − Tf); (8)

SIRIR
= 2

e2

2πh̄

∫

dE Rf(1 − Rf). (9)

The transmitted and reflected current are correlated,

SIT IR
= −2

e2

2πh̄

∫

dE Tf Rf. (10)

In the limit that either T is very small or f is small,
the factor (1 − Tf) in Eq. (8) can be replaced by one.
In this limit, since the average current through the bar-
rier is 〈I〉 = (e/2πh̄)

∫

dETf , the spectrum, Eq. (8), is
Schottky’s result [5] for shot noise,

SIT IT
= 2e〈I〉. (11)

Schottky’s result corresponds to the uncorrelated arrival
of particles with a distribution function of time inter-
vals between arrival times which is Poissonian, P (∆t) =
τ−1 exp(−∆t/τ), with τ being the mean time interval be-
tween carriers. Alternatively, Eq. (11) is also referred to
in the literature as the Poisson value of shot noise.

The result Eq. (8) is markedly different from Eq. (11)
since it contains, in comparison to Schottky’s expression,
the extra factor (1−Tf). This factor has the consequence
that the shot noise (8) is always smaller than the Pois-
son value. For truly ballistic systems (T = 1) the shot
noise even vanishes in the zero temperature limit. As
the temperature increases, in such a conductor (T = 1)
there is shot noise due to the fluctuation in the incident
beam arising from the thermal fluctuations. Eventually
at high temperatures the factor 1− f can be replaced by
1, and the ballistic conductor exhibits Poisson noise, in
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accordance with Schottky’s formula, Eq. (11). The full
Poisson noise given by Schottky’s formula is also reached
for a scatterer with very small transparency T ≪ 1. We
emphasize that the above statements refer to the trans-
mitted current. In the limit T ≪ 1 the reflected current
remains nearly noiseless up to high temperatures when
(1−Rf) can be replaced by 1. We also remark that even
though electron motion in vacuum tubes (the Schottky
problem [5]) is often referred to as ballistic, it is in fact a
problem in which carriers have been emitted by a source
into vacuum either through thermal activation over or by
tunneling through a barrier with very small transparency.

Our discussion makes it clear that out of equilibrium,
and at finite temperatures, the noise described by Eq.
(8) contains the effect of both the fluctuations in the in-
cident carrier beam as well as the partition noise. In a
transport state, noise in mesoscopic conductors has two
distinct sources which manifest themselves in the fluctu-
ations of the occupation numbers of states: (i) thermal
fluctuations; (ii) partition noise due to the discrete na-
ture of carriers1.

Both the thermal and shot noise at low frequencies
and low voltages reflect in many situations independent
quasi-particle transport. Electrons are, however, inter-
acting entities and both the fluctuations at finite frequen-
cies and the fluctuation properties far from equilibrium
require in general a discussion of the role of the long-
range Coulomb interaction. A quasi-particle picture is
no longer sufficient and collective properties of the elec-
tron system come into play.

The above considerations are, of course, rather simplis-
tic and should not be considered as a quantitative theory.
Since statistical effects play a role, one would like to see a
derivation which relates the noise to the symmetry of the
wave functions. Since we deal with many indistinguish-
able particles, exchange effects can come into play. The
following Sections will treat these questions in detail.

E. Composition of the Review

The review starts with a discussion of the scatter-
ing approach (Section II). This is a fully quantum-
mechanical theory which applies to phase-coherent trans-
port. It is useful to take this approach as a starting point
because of its conceptual clarity. The discussion pro-
ceeds with a number of specific examples, like quantum
point contacts, resonant double barriers, metallic diffu-

1Note that this terminology, common in mesoscopic physics,
is different from that used in the older literature [6], where
shot noise (due to random injection of particles into a system)
and partition noise (due to random division of the particle
stream between different electrodes, or by potential barriers)
are two distinct independent sources of fluctuations.

sive wires, chaotic cavities, and quantum Hall conduc-
tors. We are interested not only in current fluctuations
at one contact of a mesoscopic sample but also in the
correlations of currents at different contacts. Predictions
and experiments on such correlations are particularly in-
teresting since current correlations are sensitive to the
statistical properties of the system. Comparison of such
experiments with optical analogs is particularly instruc-
tive.

Section III describes the frequency dependence of noise
via the scattering approach. The main complication is
that generally one has to include electron-electron in-
teractions to obtain fluctuation spectra which are cur-
rent conserving. For this reason, not many results are
currently available on frequency-dependent noise, though
the possibility to probe in this way the inner energy scales
and collective response times of the system looks very
promising.

We proceed in Section IV with the description of super-
conducting and hybrid structures, to which a generalized
scattering approach can be applied. New noise features
appear from the fact that the Cooper pairs in supercon-
ductors have the charge 2e.

Then in Sections V and VI we review recent discus-
sions which apply more traditional classical approaches
to the fluctuations of currents in mesoscopic conductors.
Specifically, for a number of systems, as far as one is
concerned only with ensemble averaged quantities, the
Langevin and Boltzmann-Langevin approaches provide
a useful discussion, especially since it is known how to
include inelastic scattering and effects of interactions.

Section VII is devoted to shot noise in strongly cor-
related systems. This Section differs in many respects
from the rest of the Review, mainly because strongly
correlated systems are mostly too complicated to be de-
scribed by the scattering or Langevin approaches. We
resort to a brief description and commentary of the re-
sults, rather than to a comprehensive demonstration how
they are derived.

Subject Subdivision

Ballistic conductors
• Electron-phonon interactions VI C
• Electron-electron interactions in

non-degenerate ballistic conductors VI E
• Hanbury Brown – Twiss effects II F 8, II F 9,

IV A, B
• Aharonov-Bohm effect II F 10

Tunnel barriers
• Normal barriers II F 1
• Barriers in diffusive conductors II F 4
• Coulomb blockade regime VII A
• Frequency dependence of noise III B, III C
• Barriers of oscillating random height III C
• NS interfaces IV A
• Josephson junctions IV B
• Barriers in Luttinger liquids VII C
• Counting statistics for normal

5



and NS barriers A

Quantum point contacts
• Normal quantum point contacts II F 2
• SNS contacts IV C

Double-barrier structures
• Resonant tunneling; linear regime II F 3
• Double-barrier suppression II F 3, V B
• Counting statistics A
• Double wells and crossover to the

diffusive regime II F 3, V B
• Quantum wells in the non-linear regime:

super-Poissonian shot noise enhancement V C
• Interaction effects in quantum wells II G, V B,

V C
• Coulomb blockade in quantum dots (normal,

superconducting, or ferromagnetic electrodes) VII A
• Frequency dependence of noise V B, V C,

VII A
• Resonant tunneling through localized states;

Anderson and Kondo models II F 3, VII B
• NINIS junctions IV A

Disordered conductors
• Noise suppression in metallic diffusive wires II F 4, VI B
• Counting statistics A
• Multi-terminal generalization and

Hanbury Brown – Twiss effects II F 9, VI B
• Interaction effects II G, VI C
• Frequency dependence of noise III B, VI D
• Disordered contacts and interfaces II F 4
• Disordered NS and SNS contacts IV A, IV C
• Crossover to the ballistic regime II F 4
• Localized regime II F 4
• Non-degenerate diffusive conductors VI E
• Composite fermions with disorder VII D
• Noise induced by thermal transport C

Chaotic cavities
• Noise suppression in two-terminal

chaotic cavities II F 5, VI F,
VI G

• Cavities with diffusive boundary scattering VI F
• Multi-terminal generalization and

Hanbury Brown – Twiss effects II F 5, VI G
• Counting statistics A

Quantum Hall effect
• IQHE edge channels II F 6, II F 10
• Hanbury Brown – Twiss effects with

IQHE edge channels II F 7, II F 9
• FQHE edge channels VII C
• Composite fermions VII D

Systems with purely capacitive coupling
• Frequency dependence of noise III D, III E

TABLE I. The results reviewed in this article arranged by
subject.

We conclude the Review (Section VIII) with an out-
look. We give our opinion concerning possible future di-
rections along which the research on shot noise will de-
velop. In the concluding Section, we provide a very con-
cise summary of the state of the field and we list some
(possibly) important unsolved problems.

Some topics are treated in a number of Appen-
dices mostly to provide a better organization of the
manuscript. The Appendices report important results on
topics which are relatively well rounded, are relevant for
the connections between different sub-fields, and might
very well become the subject of much further research.

II. SCATTERING THEORY OF THERMAL AND
SHOT NOISE

A. Introduction

In this Section we present a theory of thermal and
shot noise for fully phase-coherent mesoscopic conduc-
tors. The discussion is based on the scattering approach
to electrical conductance. This approach, as we will
show, is conceptually simple and transparent. A phase-
coherent description is needed if we consider an individ-
ual sample, like an Aharonov-Bohm ring, or a quantum
point contact. Often, however, we are interested in char-
acterizing not a single sample but rather an ensemble of
samples in which individual members differ only in the
microscopic arrangement of impurities or small variations
in the shape. The ensemble averaged conductance is typ-
ically, up to a small correction, determined by a classical
expression like a Drude conductance formula. Similarly,
noise spectra, after ensemble averaging, are, up to small
corrections, determined by purely classical expressions.
In these case, there is no need to keep information about
phases of wavefunctions, and shot noise expressions may
be obtained by classical methods. Nevertheless, the gen-
erality of the scattering approach and its conceptual clar-
ity, make it the desired starting point of a discussion of
noise in electrical conductors.

Below we emphasize a discussion based on second
quantization. This permits a concise treatment of the
many particle problem. Rather than introducing the
Pauli principle by hand, in this approach it is a conse-
quence of the underlying symmetry of the wave functions.
It lends itself to a discussion of the effects related to the
quantum mechanical indistinguishability of identical par-
ticles. In fact it is an interesting question to what extend
we can directly probe the fact that exchange of particles
leaves the wave function invariant up to a sign. Thus an
important part of our discussion will focus on exchange
effects in current-current correlation spectra.

We start this Section with a review of fluctuations in
idealized one- and two-particle scattering problems. This
simple discussion highlights the connection between sym-
metry of the wave functions (the Pauli principle) and the
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fluctuation properties. It introduces in a simple manner
some of the basic concepts and it will be interesting to
compare the results of the one- and two-particle scatter-
ing problems with the many-particle problem which we
face in mesoscopic conductors.

B. The Pauli principle

The investigation of the noise properties of a system
is interesting because it is fundamentally connected with
the statistical properties of the entities which generate
the noise. We are concerned with systems which con-
tain a large number of indistinguishable particles. The
fact that in quantum mechanics we cannot label different
particles implies that the wave function must be invari-
ant, up to a phase, if two particles are exchanged. The
invariance of the wave function under exchange of two
particles implies that we deal with wavefunctions which
are either symmetric or antisymmetric under particle ex-
change. (In strictly two dimensional systems more exotic
possibilities are permitted). These symmetry statements
are known as the Pauli principle. Systems with sym-
metric (antisymmetric) wavefunctions are described by
Bose-Einstein (Fermi-Dirac) statistics, respectively.

Prior to the discussion of the noise properties in electri-
cal conductors, which is our central subject, in this sub-
section we illustrate in a simple manner the fundamental
connection between the symmetry of the wave function
and the statistical properties of scattering experiments.
We deal with open systems similarly to a scattering ex-
periment in which particles are incident on a target at
which they are scattered. The simplest case in which the
symmetry of the wave function matters is the case of two
identical particles. Here we present a discussion of ide-
alized two-particle scattering experiments. We consider
the arrangement shown in Fig. 1, which contains two
sources 1 and 2 which can emit particles and two detec-
tors 3 and 4 which respond ideally with a signal each time
a particle enters a detector. An arrangement similar to
that shown in Fig. 1 is used in optical experiments. In
this field experiments which invoke one or two incoming
particle streams (photons) and two detectors are known
as Hanbury Brown – Twiss experiments [7], after the pio-
neering experiments carried out by these two researchers
to investigate the statistical properties of light.

In Fig. 1 the scattering is, much as in an optical
table top experiment, provided by a half-silvered mir-
ror (beam-splitter), which permits transmission from the
input-channel 1 through the mirror with probability am-
plitude s41 = t to the detector at arm 4 and generates
reflected particles with amplitude s31 = r into detector 3.
We assume that particles from source 2 are scattered like-
wise and have probability amplitudes s32 = t and s42 = r.
The elements sij , when written as a matrix, form the
scattering matrix s. The elements of the scattering ma-
trix satisfy |r|2 + |t|2 = 1 and tr∗ + rt∗ = 0, stating that

the scattering matrix is unitary. A simple example of a
scattering matrix often employed to describe scattering
at a mirror in optics is r = −i/

√
2 and t = 1/

√
2.

41

2

3

FIG. 1. An arrangement of scattering experiment with two
sources (1 and 2) and two detectors (3 and 4).

We are interested in describing various input states
emanating from the two sources. To be interesting, these
input states contain one or two particles. We could de-
scribe these states in terms of Slater determinants, but
it is more elegant to employ the second quantization ap-
proach. The incident states are described by annihilation

operators âi or creation operators â†i in arm i, i = 1, 2.
The outgoing states are, in turn, described by annihila-

tion operators b̂i and creation operators b̂†i , i = 3, 4. The
operators of the input states and output states are not
independent but are related by a unitary transformation
which is just the scattering matrix,

(

b̂3
b̂4

)

= s

(

â1

â2

)

. (12)

Similarly, the creation operators â†i and b̂†i are related by
the adjoint of the scattering matrix s†. Note that the
mirror generates quantum mechanical superpositions of
the input states. The coefficients of these superpositions
are determined by the elements of the scattering matrix.

For bosons, the âi obey the commutation relations

[âi, â
†
j ] = δij . (13)

Since the scattering matrix is unitary, the b̂i obey the
same commutation relations. In contrast, for fermions,

the âi and b̂i obey anti-commutation relations

{âi, â
†
j} = δij . (14)

The different commutation relations for fermions and
bosons assure that multi-particle states reflect the un-
derlying symmetry of the wave function.
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The occupation numbers of the incident and transmit-

ted states are found as n̂i = â†i âi and n̂i = b̂†i b̂i,

(

〈n̂3〉
〈n̂4〉

)

=

(

R T
T R

)(

〈n̂1〉
〈n̂2〉

)

, (15)

where we introduced transmission and reflection proba-
bilities, T = |t|2 and R = |r|2.

Single, independent particle scattering. Before
treating two-particle states it is useful to consider briefly
a series of scattering experiments in each of which only
one particle is incident on the mirror. Let us suppose
that a particle is incident in arm 1. Since we know that
in each scattering experiment there is one incident parti-
cle, the average occupation number in the incident arm
is thus 〈n1〉 = 1. The fluctuations away from the aver-
age occupation number ∆n1 = n1 − 〈n1〉 vanish identi-
cally (not only on the average). In particular, we have
〈(∆n1)2〉 = 0. Particles are transmitted into arm 4 with
probability T , and thus the mean occupation number in
the transmitted beam is 〈n4〉 = T . Similarly, particles are
reflected into arm 3 with probability R, and the average
occupation number in our series of experiments is thus
〈n3〉 = R. Consider now the correlation 〈n3n4〉 between
the occupation numbers in arm 3 and 4. Since each parti-
cle is either reflected or transmitted, it means that in this
product one of the occupation numbers is always 1 and
one is zero in each experiment. Consequently the corre-
lation of the occupation numbers vanishes, 〈n3n4〉 = 0.
Using this result, we obtain for the fluctuations of the oc-
cupation numbers ∆n3 = n3−〈n3〉 in the reflected beam
and ∆n4 = n4 − 〈n4〉 in the transmitted beam,

〈(∆n3)2〉 = 〈(∆n4)2〉 = −〈∆n3∆n4〉 = TR. (16)

The fluctuations in the occupation numbers in the trans-
mitted and reflected beams and their correlation are a
consequence of the fact that a carrier can finally only be
either reflected or transmitted. These fluctuations are
known as partition noise. The partition noise vanishes
for a completely transparent scatterer T = 1 and for a
completely reflecting scatterer R = 1 and is maximal for
T = R = 1/2. We emphasize that the partition noise
is the same, whether we use a fermion or boson in the
series of experiments. To detect the sensitivity to the
symmetry of the wave function, we need to consider at
least two particles.

Two-particle scattering. We now consider two par-
ticles incident on the mirror of Fig. 1, focusing on the
case that one particle is incident in each arm. We fol-
low here closely a discussion by Loudon [8] and refer
the reader to this work for additional information. The
empty (vacuum) state of the system (input arms and out-
put arms) is denoted by |0〉. Consider now an input state
which consists of two particles with a definite momentum,
one incident in arm 1 and one incident in arm 2. For sim-
plicity, we assume that the momentum of both particles
is the same. With the help of the creation operators given

above we can generate the input state |Ψ〉 = â†1â
†
2|0〉. The

probability that both particles appear in output arm 3 is
P (2, 0) = 〈Ψ|n̂3n̂3|Ψ〉, the probability that in each out-
put arm there is one particle is P (1, 1) = 〈Ψ|n̂3n̂4|Ψ〉,
and the probability that both particles are scattered into
arm 4 is P (0, 2) = 〈Ψ|n̂4n̂4|Ψ〉. Considering specifically
the probability P (1, 1), we have to find

P (1, 1) = 〈Ψ|n̂3n̂4|Ψ〉 = 〈0|â2â1b̂
†
3b̂3b̂

†
4b̂4â

†
1â
†
2|0〉. (17)

First we notice that in the sequence of b̂-operators b̂3
and b̂†4 anti-commute (commute), and we can thus write

b̂†3b̂3b̂
†
4b̂4 also in the sequence ∓b̂†3b̂†4b̂3b̂4. Then, by insert-

ing a complete set of states with fixed number of particles

|n〉〈n| into this product, ∓b̂†3b̂†4|n〉〈n|b̂3b̂4, it is only the
state with n = 0 which contributes since to the right
of 〈n| we have two creation and two annihilation opera-
tors. Thus the probability P (1, 1) is given by the absolute
square of a probability amplitude

P (1, 1) = |〈0|b̂3b̂4â†1â†2|0〉|2. (18)

To complete the evaluation of this probability, we express

â†1 and â†2 in terms of the output operators b̂†3 and b̂†4 using
the adjoint of Eq. (12). This gives

â†1â
†
2 = rtb̂†3b̂

†
3 + r2 b̂†3b̂

†
4 + t2b̂†4b̂

†
3 + rtb̂†4b̂

†
4. (19)

Now, using the commutation relations, we pull the an-
nihilation operators to the right until one of them acts
on the vacuum and the corresponding term vanishes. A
little algebra gives

P (1, 1) = (T ±R)2. (20)

Eq. (20) is a concise statement of the Pauli principle. For
bosons P (1, 1) depends on the transmission and reflection
probability of the scatterer, and vanishes for an ideal mir-
ror T = R = 1/2. The two particles are preferentially
scattered into the same output branch. For fermions
P (1, 1) is independent of the transmission and reflection
probability and given by P (1, 1) = 1. Thus fermions are
scattered with probability one into the different output
branches. It is instructive to compare these result with
the one for classical particles, P (1, 1) = T 2 +R2. We see
thus that the probability to find two bosons (fermions) in
two different detectors is suppressed (enhanced) in com-
parison with the same probability for classical particles.

A similar consideration also gives for the probabilities

P (2, 0) = P (0, 2) = 2RT (21)

for bosons, whereas for fermions the two probabilities
vanish P (2, 0) = P (0, 2) = 0. For classical partition of
carriers the probability to find the two particles in the
same detector is RT , which is just one half of the prob-
ability for bosons.

The average occupation numbers are 〈n3〉 = 〈n4〉 = 1,
since we have now two particles in branch 3 with prob-
ability P (2, 0) and one particle with probability P (1, 1).
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Consequently, the correlations of the fluctuations in the
occupation numbers ∆n̂i = n̂i − 〈ni〉 are given by

〈∆n̂3∆n̂4〉 = −4RT, (22)

for bosons and by 〈∆n̂3∆n̂4〉 = 0 for fermions. For
bosons the correlation is negative due to the enhanced
probability that both photons end up in the same out-
put branch. For fermions there are no fluctuations in
the occupation number and the correlation function thus
vanishes.

Two-particle scattering: Wave packet overlap.
The discussion given above implicitly assumes that both
”particles” or ”waves” arrive simultaneously at the mir-
ror and ”see” each other. Clearly, if the two particles ar-
rive at the mirror with a time-delay which is large enough
such that there is no overlap, the outcome of the exper-
iments described above is entirely different. If we have
only a sequence of individual photons or electrons arriv-
ing at the mirror we have for the expectation values of
the occupation numbers 〈n3〉 = 〈n4〉 = R + T = 1, and
the correlation of the occupation number 〈n3n4〉 = 0 van-
ishes. Consequently, the correlation of the fluctuations of
the occupation number is 〈∆n1∆n2〉 = −1. Without any
special sources at hand it is impossible to time the car-
riers such that they arrive simultaneously at the mirror,
and we should consider all possibilities.

To do this, we must consider the states at the in-
put in more detail. Let us assume that a state in in-
put arm i can be written with the help of plane waves
Ψi(k, xi) = exp(−ikxi) with xi the coordinate along arm
i normalized such that it grows as we move away from
the arm toward the source. Similarly, let yi be the coor-
dinates along the output arms such that yi vanishes at
the mirror and grows as we move away from the splitter.
A plane wave Ψ1(k, x1) = exp(−ikx1) incident from arm
1 thus leads to a reflected wave in output arm 3 given
by Ψ1(k, y3) = r exp(−iky3) and to a transmitted wave
Ψ1(k, y4) = t exp(−iky4) in output arm 4. We call such a
state a ”scattering state”. It can be regarded as the limit
of a wave packet with a spatial width that tends towards
infinity and an energy width that tends to zero. To built
up a particle that is localized in space at a given time
we now invoke superpositions of such scattering states.
Thus, let the incident particle in arm i be described by
Ψi(xi, t) =

∫

dkαi(k) exp(−ikxi) exp(−iE(k)t/h̄), where
αi(k) is a function such that

∫ ∞

0

dk|αi(k)|2 = 1, (23)

and E(k) is the energy of the carriers as a function of the
wave vector k. In second quantization the incident states
are written with the help of the operators

Â†i (xi, t) =

∫ ∞

0

dkiαi(ki)Ψi(k, xi)â
†
i (ki)

× exp (−iE(ki)t/h̄), (24)

and the initial state of our two-particle scattering exper-

iment is thus Â†1(x1, t)Â
†
2(x2, t)|0〉. We are again inter-

ested
in determining the probabilities that two particles ap-
pear in an output branch or that one particle appears in
each output branch, P (2, 0) =

∫∞
0 dk3dk4〈n̂3(k3)n̂3(k4)〉,

P (1, 1) =
∫∞
0 dk3dk4 〈n̂3(k3)n̂4(k4)〉, and P (0, 2) =

∫∞
0 dk3dk4〈n̂4(k3)n̂4(k4)〉. Let us again consider P (1, 1).

Its evaluation proceeds in much the same way as in the
case of pure scattering states. We re-write P (1, 1) in
terms of the absolute square of an amplitude,

P (1, 1) =

∫ ∞

0

dk3dk4|〈0|b̂3(k3)b̂4(k4)|Ψ〉|2. (25)

We then write the â operators in the Â in terms of the

output operators b̂. Instead of Eq. (20), we obtain

P (1, 1) = T 2 + R2 ± 2TR|J |2, (26)

where

J =

∫ ∞

0

dkα∗1(k)α2(k) exp(ik(x1 − x2)) (27)

is the overlap integral of the two particles. For the case
of complete overlap |J | = 1 we obtain Eq. (20). For
the case that we have no overlap we obtain the classical
result P (1, 1) = T 2+R2 which is independent of whether
a boson or fermion is incident on the scatterer. In the
general case, the overlap depends on the form of the wave
packet. If two Gaussian wave packets of spatial width δ
and central velocity v are timed to arrive at time τ1 and
τ2 at the scatterer, the overlap integral is

|J |2 = exp[−v2(τ1 − τ2)2/2δ2]. (28)

A significant overlap occurs only during the time δ/v.
For wave packets separated in time by more than this
time interval the Pauli principle is not effective.

Complete overlap occurs in two simple cases. We can
assume that the two wave packets are identical and are
timed to arrive exactly at the same instant at the scat-
terer. Another case, in which we have complete over-
lap, is in the basis of scattering states. In this case
|αi(k)|2 = δ(k−ki) for a scattering state with wave vector
ki and consequently for the two particles with ki and kj

we have J = δij . The first option of timed wave packets
seems artificial for the thermal sources which we want to
describe. Thus in the following we will work with scat-
tering states.

Probability Classical Bosons Fermions

P (2, 0) RT RT (1 + |J |2) RT (1 − |J |2)
P (1, 1) R2 + T 2 R2 + T 2 − 2RT |J |2 R2 + T 2 + 2RT |J |2
P (0, 2) RT RT (1 + |J |2) RT (1 − |J |2)

TABLE II. Output probabilities for one particle incident
in each input arm (From Ref. [8]).
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The probabilities P (2, 0), P (1, 1) and P (0, 2) for these
scattering experiments are shown in Table II. The con-
siderations which lead to these results now should be ex-
tended to take the polarization of photons or spin of elec-
trons into account.

Two-particle scattering: Spin. Consider the case
of fermions and let us investigate a sequence of exper-
iments in each of which we have an equal probability
of having electrons with spin up or down in an inci-
dent state. Assuming that the scattering matrix is in-
dependent of the spin state of the electrons, the results
discussed above describe the two cases when both spins
point in the same direction (to be denoted as P (1 ↑, 1 ↑)
and P (1 ↓, 1 ↓)). Thus what remains is to consider
the case in which one incident particle has spin up and
one incident particle has spin down. If the detection is
also spin sensitive, the probability which we determine is
P (1 ↑, 1 ↓). But in such an experiment we can tell which
of the two particles went which way at the scatterer and
there is thus no interference. The outcome is classical:
P (1 ↑, 1 ↓) = R2 for an initial state with a spin up in
arm 1 and a spin down in arm 2. For the same state we
have P (1 ↓, 1 ↑) = T 2.

Now let us assume that there is no way of detecting the
spin state of the outgoing particles. For a given initial
state we have P (1, 1) =

∑

σ,σ′ P (1σ, 1σ′) where σ and

σ′ are spin variables. If we consider all possible incident
states with equal probability, we find P (1, 1) = T 2+R2+
TR|J |2 i. e. a result with an interference contribution
which is only half as large as given in Eq. (26). For
further discussion, see Appendix B.

The scattering experiments considered above assume
that we can produce one or two particle states either in
a single mode or by exciting many modes. Below we will
show that thermal sources, the electron reservoirs which
are of the main interest here, cannot be described in this
way.

C. The scattering approach

The idea of the scattering approach (also referred to
as Landauer approach) is to relate transport properties
of the system (in particular, current fluctuations) to its
scattering properties, which are assumed to be known
from a quantum-mechanical calculation. In its tradi-
tional form the method applies to non-interacting sys-
tems in the stationary regime2. The system may be either

2To avoid a possible misunderstanding, we stress that the
long range Coulomb interaction needs to be taken into ac-
count when one tries to apply the scattering approach for the
description of systems in time-dependent external fields, or
finite-frequency fluctuation spectra in stationary fields. On
the other hand, for the description of zero-frequency fluctua-

at equilibrium or in a non-equilibrium state; this informa-
tion is introduced through the distribution functions of
the contacts of the sample. To be clear, we consider first a
two-probe geometry and particles obeying Fermi statis-
tics (having in mind electrons in mesoscopic systems).
Eventually, the generalization to many probes and Bose
statistics is given; extensions to interacting problems are
discussed at the end of this Section. In the derivation we
essentially follow Ref. [9].

L

^

a
R

^

b
R

^

a
L

^

b

R

sample
T T

µ µ
L

L

R

R

L

FIG. 2. Example of two-terminal scattering problem for
the case of one transverse channel.

Two-terminal case; current operator. We con-
sider a mesoscopic sample connected to two reservoirs
(terminals, probes), to be referred to as “left” (L) and
“right” (R). It is assumed that the reservoirs are so large
that they can be characterized by a temperature TL,R

and a chemical potential µL,R; the distribution functions
of electrons in the reservoirs, defined via these parame-
ters, are then Fermi distribution functions

fα(E) = [exp[(E − µα)/kBTα] + 1]−1, α = L,R

(see Fig. 2). We must note at this stage, that, although
there are no inelastic processes in the sample, a strict
equilibrium state in the reservoirs can be established only
via inelastic processes. However, we consider the reser-
voirs (the leads) to be wide compared to the typical cross-
section of the mesoscopic conductor. Consequently, as far
as the reservoirs are concerned, the mesoscopic conduc-
tor represents only a small perturbation, and describing
their local properties in terms of an equilibrium state
is thus justified. We emphasize here, that even though
the dynamics of the scattering problem is described in
terms of a Hamiltonian, the problem which we consider
is irreversible. Irreversibility is introduced in the discus-
sion, since the processes of a carrier leaving the meso-
scopic conductor and entering the mesoscopic conductor
are unrelated, uncorrelated events. The reservoirs act as
sources of carriers determined by the Fermi distribution

tion spectra in stationary fields, a consistent theory can be
given without including Coulomb effects, even though the
fluctuations themselves are, of course, time-dependent and
random.
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but also act as perfect sinks of carriers irrespective of the
energy of the carrier that is leaving the conductor.

Far from the sample, we can, without loss of general-
ity, assume that transverse (across the leads) and longi-
tudinal (along the leads) motion of electrons are separa-
ble. In the longitudinal (from left to right) direction the
system is open, and is characterized by the continuous
wave vector kl. It is advantageous to separate incom-
ing (to the sample) and outgoing states, and to intro-
duce the longitudinal energy El = h̄2k2

l /2m as a quan-
tum number. Transverse motion is quantized and de-
scribed by the discrete index n (corresponding to trans-
verse energies EL,R;n, which can be different for the left
and right leads). These states are in the following re-
ferred to as transverse (quantum) channels. We write
thus E = En + El. Since El needs to be positive, for
a given total energy E only a finite number of chan-
nels exists. The number of incoming channels is denoted
NL,R(E) in the left and right lead, respectively.

We now introduce creation and annihilation operators
of electrons in the scattering states. In principle, we could
have used the operators which refer to particles in the
states described by the quantum numbers n, kl. How-
ever, the scattering matrix which we introduce below,
relates current amplitudes and not wave function ampli-

tudes. Thus we introduce operators â†Ln(E) and âLn(E)
which create and annihilate electrons with total energy
E in the transverse channel n in the left lead, which are
incident upon the sample. In the same way, the creation

b̂†Ln(E) and annihilation b̂Ln(E) operators describe elec-
trons in the outgoing states. They obey anticommutation
relations

â†Ln(E)âLn′(E′) + âLn′(E′)â†Ln(E) = δnn′δ(E − E′),

âLn(E)âLn′(E′) + âLn′(E′)âLn(E) = 0,

â†Ln(E)â†Ln′(E
′) + â†Ln′(E

′)â†Ln(E) = 0.

Similarly, we introduce creation and annihilation opera-

tors â†Rn(E) and âRn(E) in incoming states and b̂†Rn(E)

and b̂Rn(E) in outgoing states in the right lead (Fig. 2).

The operators â and b̂ are related via the scattering
matrix s,















b̂L1

. . .
b̂LNL

b̂R1

. . .
b̂RNR















= s















âL1

. . .
âLNL

âR1

. . .
âRNR















. (29)

The creation operators â† and b̂† obey the same relation
with the hermitian conjugated matrix s†.

The matrix s has dimensions (NL +NR)× (NL +NR).
Its size, as well as the matrix elements, depends on the
total energy E. It has the block structure

s =

(

r t′

t r′

)

. (30)

Here the square diagonal blocks r (size NL ×NL) and r′

(size NR × NR) describe electron reflection back to the
left and right reservoirs, respectively. The off-diagonal,
rectangular blocks t (size NR×NL) and t′ (size NL×NR)
are responsible for the electron transmission through the
sample. The flux conservation in the scattering process
implies that the matrix s is quite generally unitary. In the
presence of time-reversal symmetry the scattering matrix
is also symmetric.

The current operator in the left lead (far from the sam-
ple) is expressed in a standard way,

ÎL(z, t) =
h̄e

2im

∫

dr⊥

[

Ψ̂†L(r, t)
∂

∂z
Ψ̂L(r, t)

−
(

∂

∂z
Ψ̂†L(r, t)

)

Ψ̂L(r, t)

]

,

where the field operators Ψ̂ and Ψ̂† are defined as

Ψ̂L(r, t) =

∫

dEe−iEt/h̄

NL(E)
∑

n=1

χLn(r⊥)

(2πh̄vLn(E))1/2

×
[

âLne
ikLnz + b̂Lne

−ikLnz
]

and

Ψ̂†L(r, t) =

∫

dEeiEt/h̄

NL(E)
∑

n=1

χ∗Ln(r⊥)

(2πh̄vLn(E))1/2

×
[

â†Lne
−ikLnz + b̂†Lne

ikLnz
]

.

Here r⊥ is the transverse coordinate(s) and z is the co-
ordinate along the leads (measured from left to right);
χL

n are the transverse wave functions, and we have in-
troduced the wave vector, kLn = h̄−1[2m(E − ELn)]1/2

(the summation only includes channels with real kLn),
and the velocity of carriers vn(E) = h̄kLn/m in the n-th
transverse channel.

After some algebra, the expression for the current can
be cast into the form

ÎL(z, t) =
e

4πh̄

∑

n

∫

dEdE′ei(E−E′)t/h̄ 1
√

vLn(E)vLn(E′)

× {[vLn(E) + vLn(E′)]

×
[

exp [i (kLn(E′) − kLn(E)) z] â†Ln(E)âLn(E′)

− exp [i (kLn(E) − kLn(E′)) z] b̂†Ln(E)b̂Ln(E′)
]

+ [vLn(E) − vLn(E′)] (31)

×
[

exp [−i (kLn(E) + kLn(E′)) z] â†Ln(E)b̂Ln(E′)

− exp [i (kLn(E) + kLn(E′)) z] b̂†Ln(E)âLn(E′)
]}

.
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This expression is cumbersome, and, in addition, depends
explicitly on the coordinate z. However, it can be consid-
erably simplified. The key point is that for all observable
quantities (average current, noise, or higher moments of
the current distribution) the energies E and E′ in Eq.
(31) either coincide, or are close to each other. On the
other hand, the velocities vn(E) vary with energy quite
slowly, typically on the scale of the Fermi energy. There-
fore, one can neglect their energy dependence, and reduce
the expression (31) to a much simpler form3,

ÎL(t) =
e

2πh̄

∑

n

∫

dEdE′ei(E−E′)t/h̄

×
[

â†Ln(E)âLn(E′) − b̂†Ln(E)b̂Ln(E′)
]

. (32)

Note that n̂+
Ln(E) = â†Ln(E)âLn(E) is the operator of

the occupation number of the incident carriers in lead

L in channel n. Similarly, n̂−Ln(E) = b̂†Ln(E)b̂Ln(E) is
the operator of the occupation number of the out-going
carriers in lead L in channel n. Setting E′ = E+ h̄ω and
carrying out the integral over ω gives

ÎL(t) =
e

2πh̄

∑

n

∫

dE
[

n̂+
Ln(E, t) − n̂−Ln(E, t)

]

. (33)

Here n̂±Ln(E, t) are the time-dependent occupation num-
bers for the left and right moving carriers at energy E.
Thus Eq. (33) states that the current at time t is sim-
ply determined by the difference in occupation number
between the left and right movers in each channel. We
made use of this intuitively appealing result already in
the introduction. Using Eq. (29) we can express the
current in terms of the â and â† operators alone,

ÎL(t) =
e

2πh̄

∑

αβ

∑

mn

∫

dEdE′ei(E−E′)t/h̄

× â†αm(E)Amn
αβ (L;E,E′)âβn(E′). (34)

Here the indices α and β label the reservoirs and may
assume values L or R. The matrix A is defined as

Amn
αβ (L;E,E′) = δmnδαLδβL −

∑

k

s†Lα;mk(E)sLβ;kn(E′),

(35)

and sLα;mk(E) is the element of the scattering matrix

relating b̂Lm(E) to âαk(E). Note that Eq. (34) is inde-
pendent of the coordinate z along the lead.

Average current. Before we proceed in the next
subsection with the calculation of current-current cor-
relations, it is instructive to derive the average current

3A discussion of the limitations of Eq. (32) is given in Ref.
[10].

from Eq. (34). For a system at thermal equilibrium the
quantum statistical average of the product of an electron
creation operator and annihilation operator of a Fermi
gas is

〈

â†αm(E)âβn(E′)
〉

= δαβδmnδ(E − E′)fα(E). (36)

Using Eq. (34) and Eq. (36) and taking into account the
unitarity of the scattering matrix s, we obtain

〈IL〉 =
e

2πh̄

∫

dE Tr
[

t†(E)t(E)
]

[fL(E) − fR(E)] .

(37)

Here the matrix t is the off-diagonal block of the scatter-
ing matrix (30), tmn = sRL;mn. In the zero-temperature
limit and for a small applied voltage Eq. (37) gives a
conductance

G =
e2

2πh̄
Tr
[

t†(EF )t(EF )
]

. (38)

Eq. (38) establishes the relation between the scattering
matrix evaluated at the Fermi energy and the conduc-
tance. It is a basis invariant expression. The matrix
t†t can be diagonalized; it has a real set of eigenvalues
(transmission probabilities) Tn(E) (not to be confused
with temperature), each of them assumes a value be-
tween zero and one. In the basis of eigen channels we
have instead of Eq. (37)

〈IL〉 =
e

2πh̄

∑

n

∫

dE Tn(E) [fL(E) − fR(E)] . (39)

and thus for the conductance

G =
e2

2πh̄

∑

n

Tn, (40)

Eq. (40) is known as a multi-channel generalization of
the Landauer formula. Still another version of this result
expresses the conductance in terms of the transmission
probabilities TRL,mn = |sRL,mn|2 for carriers incident in
channel n in the left lead L and transmitted into channel
m in the right lead R. In this basis the Hamiltonians of
the left and right lead (the reservoirs) are diagonal and
the conductance is given by

G =
e2

2πh̄

∑

mn

Tmn. (41)

We refer to this basis as the natural basis. We remark
already here that, independently of the choice of basis,
the conductance can be expressed in terms of transmis-
sion probabilities only. This is not case for the shot noise
to be discussed subsequently. Thus the scattering ma-
trix rather then transmission probabilities represents the
fundamental object governing the kinetics of carriers.
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Multi-terminal case. We consider now a sample con-
nected by ideal leads to a number of reservoirs labeled by
an index α, with the Fermi distribution functions fα(E).
At a given energy E the lead α supports Nα(E) trans-
verse channels. We introduce, as before, creation and
annihilation operators of electrons in an incoming â†αn,

âαn and outgoing b̂†αn, b̂αn state of lead α in the trans-
verse channel n. These operators are again related via
the scattering matrix. We write down this relation, sim-
ilar to Eq. (29), in components,

b̂αm(E) =
∑

βn

sαβ;mn(E)âβn(E). (42)

The matrix s is again unitary, and, in the presence of
time-reversal symmetry, symmetric.

Proceeding similarly to the derivation presented above,
we obtain the multi-terminal generalization of Eq. (34)
for the current through the lead α,

Îα(t) =
e

2πh̄

∑

βγ

∑

mn

∫

dEdE′ei(E−E′)t/h̄

× â†βm(E)Amn
βγ (α;E,E′)âγn(E′), (43)

with the notation

Amn
βγ (α;E,E′) = δmnδαβδαγ −

∑

k

s†αβ;mk(E)sαγ;kn(E′).

(44)

The signs of currents are chosen to be positive for incom-
ing electrons.

Imagine that a voltage Vβ is applied to the reservoir β,
that is, the electro-chemical potential is µβ = µ + eVβ ,
where µ can be taken to be the equilibrium chemical
potential. From Eq. (43) we find the average current,

〈Iα〉 =
e2

2πh̄

∑

β

Vβ

∫

dE

(

− ∂f

∂E

)

×
[

Nαδαβ − Tr
(

s†αβsαβ

)]

, (45)

where the trace is taken over channel indices in lead α. As
usual, we define the conductance matrix Gαβ via Gαβ =
d〈Iα〉/dVβ |Vβ=0. In the linear regime this gives

〈Iα〉 =
∑

β

GαβVβ (46)

with

Gαβ =
e2

2πh̄

∫

dE

(

− ∂f

∂E

)

[

Nαδαβ − Tr
(

s†αβsαβ

)]

.

(47)

The scattering matrix is evaluated at the Fermi energy.
Eq. (47) has been successfully applied to a wide range

of problems from ballistic transport to the quantum Hall
effect.

Current conservation, gauge invariance, and

reciprocity. Any reasonable theory of electron trans-
port must be current-conserving and gauge invariant.
Current conservation means that the sum of currents en-
tering the sample from all terminals is equal to zero at
each instant of time. For the multi-terminal geometry
discussed here this means

∑

α Iα = 0. The current is
taken to be positive if it flows from the reservoir towards
the mesoscopic structure. For the average current in the
two-terminal geometry, we have IL +IR = 0. We empha-
size that current conservation must hold not only on the
average but at each instant of time. In particular, current
conservation must also hold for the fluctuation spectra
which we discuss subsequently. In general, for time de-
pendent currents, we have to consider not only contacts
which permit carrier exchange with the conductor, but
also other nearby metallic structures, for instance gates,
against which the conductor can be polarized. The re-
quirement that the results are gauge invariant means in
this context, that no current arises if voltages at all reser-
voirs are simultaneously shifted by the same value (and
no temperature gradient is applied). For the average cur-
rents (see Eqs. (39), (47)) both properties are a direct
consequence of the unitarity of the scattering matrix.

For the conductance matrix Gαβ current conservation
and gauge invariance require that the elements of this
matrix in each row and in each column add up to zero,

∑

α

Gαβ =
∑

β

Gαβ = 0. (48)

Note that for the two terminal case this implies G ≡
GLL = GRR = −GLR = −GRL. In the two terminal
case, it is thus sufficient to evaluate one conductance to
determine the conductance matrix. In multi-probe sam-
ples the number of elements of the one has to determine
to find the conductance matrix is given by the constraints
(48) and by the fact that the conductance matrix is a sus-
ceptibility and obeys the Onsager-Casimir symmetries

Gαβ(B) = Gβα(−B).

In the scattering approach the Onsager-Casimir symme-
tries are again a direct consequence of the reciprocity
symmetry of the scattering matrix under field reversal.

In the stationary case, the current conservation and
the gauge invariance of the results are a direct conse-
quence of the unitarity of the scattering matrix. In gen-
eral, for non-linear and non-stationary problems, current
conservation and gauge invariance are not automatically
fulfilled. Indeed, in ac-transport a direct calculation of
average particle currents does not yield a current con-
serving theory. Only the introduction of displacement
currents, determined by the long range Coulomb interac-
tion, leads to a theory which satisfies these basic require-
ments. We will discuss these issues for noise problems in
Section III.
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D. General expressions for noise

We are concerned with fluctuations of the current away
from their average value. We thus introduce the opera-
tors ∆Îα(t) ≡ Îα(t) − 〈Iα〉. We define the correlation
function Sαβ(t − t′) of the current in contact α and the
current in contact β as4

Sαβ(t− t′) ≡ 1

2

〈

∆Îα(t)∆Îβ(t′) + ∆Îβ(t′)∆Îα(t)
〉

.

(49)

Note that in the absence of time-dependent external fields
the correlation function must be function of only t − t′.
Its Fourier transform,

2πδ(ω+ω′)Sαβ(ω) ≡
〈

∆Îα(ω)∆Îβ(ω′) + ∆Îβ(ω′)∆Îα(ω)
〉

,

is sometimes referred to as noise power.
To find the noise power we need the quantum statis-

tical expectation value of products of four operators â.
For a Fermi gas (or a Bose gas) at equilibrium this ex-
pectation value is

〈

â†αk(E1)âβl(E2)â†γm(E3)âδn(E4)
〉

−
〈

â†αk(E1)âβl(E2)
〉

〈

â†γm(E3)âδn(E4)
〉

= δαδδβγδknδmlδ(E1 − E4)δ(E2 − E3)

× fα(E1) [1 ∓ fβ(E2)] . (50)

(The upper sign corresponds to Fermi statistics, and the
lower sign corresponds to Bose statistics. This conven-
tion will be maintained whenever we compare systems
with differing statistics. It is also understood that for
Fermi statistics fα(E) is a Fermi distribution and for
Bose statistics fα(E) is a Bose distribution function).
Making use of Eq. (43) and of the expectation value
(50), we obtain the expression for the noise power [9],

Sαβ(ω) =
e2

2πh̄

∑

γδ

∑

mn

∫

dEAmn
γδ (α;E,E + h̄ω)

× Anm
δγ (β;E + h̄ω, E)

× {fγ(E) [1 ∓ fδ(E + h̄ω)]

+ [1 ∓ fγ(E)] fδ(E + h̄ω)} . (51)

4Note that several definitions, differing by numerical factors,
can be found in the literature. The one we use corresponds to
the general definition of time-dependent fluctuations found
in Ref. [11]. We define the Fourier transform with the co-
efficient 2 in front of it, then our normalization yields the
equilibrium (Nyquist-Johnson) noise S = 4kBTG and is in
accordance with Ref. [1], see below. The standard definition
of Fourier transform would yield the Nyquist-Johnson noise
S = 2kBTG. Ref. [9] defines the spectral function which is
multiplied by the width of the frequency interval where noise
is measured.

Note that with respect to frequency, it has the symmetry
properties Sαβ(ω) = Sβα(−ω). For arbitrary frequencies
and an arbitrary s-matrix Eq. (51) is neither current con-
serving nor gauge invariant and additional considerations
are needed to obtain a physically meaningful result.

In the reminder of this Section, we will only be inter-
ested in the zero-frequency noise. For the noise power at
ω = 0 we obtain [9]

Sαβ ≡ Sαβ(0) =
e2

2πh̄

∑

γδ

∑

mn

∫

dEAmn
γδ (α;E,E)

× Anm
δγ (β;E,E) (52)

× {fγ(E) [1 ∓ fδ(E)] + [1 ∓ fγ(E)] fδ(E)} .

Eqs. (52) are current conserving and gauge invariant.
Eq. (52) can now be used to predict the low frequency
noise properties of arbitrary multi-channel and multi-
probe, phase-coherent conductors. We first elucidate the
general properties of this result, and later on analyze it
for various physical situations.

Equilibrium noise. If the system is in thermal equi-
librium at temperature T , the distribution functions in
all reservoirs coincide and are equal to f(E). Using the
property f(1 ∓ f) = −kBT∂f/∂E and employing the
unitarity of the scattering matrix, which enables us to
write

∑

γδ

Tr
(

s†αγsαδs
†
βδsβγ

)

= δαβNα

(where as before the trace is taken over transverse chan-
nel indices, and Nα is the number of channels in the lead
α), we find

Sαβ =
e2kBT

πh̄

∫

dE

(

− ∂f

∂E

)

×
[

2Nαδαβ − Tr
(

s†αβsαβ + s†βαsβα

)]

. (53)

This is the equilibrium, or Nyquist-Johnson noise. In
the approach discussed here it is a consequence of the
the thermal fluctuations of occupation numbers in the
reservoirs. Comparing Eqs. (45) and (53), we see that

Sαβ = 2kBT (Gαβ +Gβα) . (54)

This is the manifestation of the fluctuation-dissipation
theorem: equilibrium fluctuations are proportional to the
corresponding generalized susceptibility, in this case to
the conductance. For the time-reversal case (no magnetic
field) the conductance matrix is symmetric, and Eq. (54)
takes the form

Sαβ = 4kBTGαβ ,

which is familiar for the two-terminal case, S = 4kBTG,
with G being the conductance. From Eq. (54) we see
that the fluctuation spectrum of the mean squared cur-
rent at a contact α is positive (since Gαα > 0) but that
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the current-current correlations of the fluctuations at dif-
ferent probes are negative (since Gαβ < 0). The sign of
the equilibrium current-current fluctuations is indepen-
dent of statistics: Intensity-intensity fluctuations for a
system of bosons in which the electron reservoirs are re-
placed by black body radiators are also negative. We
thus see that equilibrium noise does not provide any in-
formation of the system beyond that already known from
conductance measurements.

Nevertheless, the equilibrium noise is important, if
only to calibrate experiments and as a simple test for
theoretical discussions. Experimentally, a careful study
of thermal noise in a multi-terminal structure (a quan-
tum Hall bar with a constriction) was recently performed
by Henny et al [12]. Within the experimental accuracy,
the results agree with the theoretical predictions.

Shot noise. Zero temperature. We now consider
noise in a system of fermions5 in a transport state. In
the zero temperature limit the Fermi distribution in each
reservoir is a step function fα(E) = θ(µα − E). Using
this we can rewrite Eq. (52) as

Sαβ =
e2

2πh̄

∑

γ 6=δ

∫

dE Tr
[

s†αγsαδs
†
βδsβγ

]

×{fγ(E) [1 − fδ(E)] + fδ(E) [1 − fγ(E)]} . (55)

We are now prepared to make two general statements.
First, correlations of the current at the same lead,
Sαα, are positive. This is easy to see, since their
signs are determined by positively defined quantities6

Tr[s†αγsαδs
†
αδsαγ ]. The second statement is that the cor-

relations at different leads, Sαβ with α 6= β, are negative.

This becomes clear if we use the property
∑

δ sαδs
†
βδ = 0

and rewrite Eq. (55) as

Sαβ = − e2

πh̄

∫

dE

× Tr

[(

∑

γ

sβγs
†
αγfγ(E)

)(

∑

δ

sαδs
†
βδfδ(E)

)]

.

The integrand is now positively defined. Of course, cur-
rent conservation implies that if all cross-correlationsSαβ

are negative for all β different from α, the spectral func-
tion Sαα must be positive.

Actually, these statements are even more general.
One can prove that cross-correlations in the system of
fermions are generally negative at any temperature, see
Ref. [9] for details. On the other hand, this is not correct
for a system of bosons, where under certain conditions
cross-correlations can be positive.

5For bosons at zero temperature one needs to take into ac-
count Bose condensation effects.

6These quantities are called “noise conductances” in Ref. [9].

Two-terminal conductors. Let us now consider the
zero-temperature shot noise of a two-terminal conduc-
tor. Again we denote the leads as left (L) and right
(R). Due to current conservation, we have S ≡ SLL =
SRR = −SLR = −SRL. Utilizing the representation of
the scattering matrix (30), and taking into account that
the unitarity of the matrix s implies r†r + t†t = 1, we
obtain after some algebra

S =
e2

πh̄
Tr (r†rt†t) e|V |, (56)

where the scattering matrix elements are evaluated at the
Fermi level. This is the basis invariant relation between
the scattering matrix and the shot noise at zero temper-
ature. Like the expression of the conductance, Eq. (38),
we can express this result in the basis of eigen channels
with the help of the transmission probabilities Tn and
reflection probabilities Rn = 1 − Tn,

SLL =
e3|V |
πh̄

∑

n

Tn (1 − Tn) . (57)

We see that the non-equilibrium (shot) noise is not simply
determined by the conductance of the sample. Instead, it
is determined by a sum of products of transmission and
reflection probabilities of the eigen channels. Only in the
limit of low-transparency Tn ≪ 1 in all eigen channels is
the shot noise given by the Poisson value, discussed by
Schottky,

SP =
e3|V |
πh̄

∑

n

Tn = 2e〈I〉. (58)

It is clear that zero-temperature shot noise is always sup-
pressed in comparison with the Poisson value7. In partic-
ular, neither closed (Tn = 0) nor open (Tn = 1) channels
contribute to shot noise; the maximal contribution comes
from channels with Tn = 1/2. The suppression below the
Poissonian limit given by Eq. (58) was one of the aspects
of noise in mesoscopic systems which triggered many of
the subsequent theoretical and experimental works. A
convenient measure of sub-Poissonian shot noise is the
Fano factor F which is the ratio of the actual shot noise
and the Poisson noise that would be measured if the sys-
tem produced noise due to single independent electrons,

F =
SLL

SP
. (59)

7This statement is only valid for non-interacting systems.
Interactions may cause instabilities in the system, driving the
noise to super-Poissonian values. Noise in systems with multi-
stable current-voltage characteristics (caused, for example, by
a non-trivial structure of the energy bands, like in the Esaki
diode) may also be super-Poissonian. These features are dis-
cussed in Section V.
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For energy independent transmission and/or in the linear
regime the Fano factor is

F =

∑

n Tn(1 − Tn)
∑

n Tn
. (60)

The Fano factor assumes values between zero (all chan-
nels are transparent) and one (Poissonian noise). In par-
ticular, for one channel it becomes (1 − T ).

Unlike the conductance, which can be expressed in
terms of (transmission) probabilities independent of the
choice of basis, the shot noise, even for the two termi-
nal conductors considered here, can not be expressed in
terms of probabilities. The trace of Eq. (56) is a sum over
k, l,m, n of terms r∗knrkmt

∗
lmtln, which by themselves are

not real valued if m 6= n (in contrast to the Eq. (41)
for the conductance). This is a signature that carriers
from different quantum channels interfere and must re-
main indistinguishable. It is very interesting to examine
whether it is possible to find experimental arrangements
which directly probe such exchange interference effects,
and we return to this question later on. In the remaining
part of this subsection we will use the eigen channel ba-
sis which offers the most compact representation of the
results.

The general result for the noise power of the current
fluctuations in a two-terminal conductor is

S =
e2

πh̄

∑

n

∫

dE {Tn(E) [fL(1 ∓ fL) + fR(1 ∓ fR)]

± Tn(E) [1 − Tn(E)] (fL − fR)
2
}

. (61)

Here the first two terms are the equilibrium noise con-
tributions, and the third term, which changes sign if we
change statistics from fermions to bosons, is the non-
equilibrium or shot noise contribution to the power spec-
trum. Note that this term is second order in the distri-
bution function. At high energies, in the range where
both the Fermi and Bose distribution function are well
approximated by a Maxwell-Boltzmann distribution, it
is negligible compared to the equilibrium noise described
by the first two terms. According to Eq. (61) the shot
noise term enhances the noise power compared to the
equilibrium noise for fermions but diminishes the noise
power for bosons.

In the practically important case, when the scale of
the energy dependence of transmission coefficients Tn(E)
is much larger than both the temperature and applied
voltage, these quantities in Eq. (61) may be replaced by
their values taken at the Fermi energy. We obtain then
(only fermions are considered henceforth)

S =
e2

πh̄

[

2kBT
∑

n

T 2
n

+ eV coth

(

eV

2kBT

)

∑

n

Tn (1 − Tn)

]

, (62)

where V is again the voltage applied between the left and
right reservoirs. The full noise is a complicated function
of temperature and applied voltage rather than a sim-
ple superposition of equilibrium and shot noise8. For low
voltages eV ≪ kBT we obtain S = 4kBTG, in accor-
dance with the general result (54).

Note that, since cothx > 1/x for any x > 0, the actual
noise (62) for any voltage is higher than the equilibrium
noise. This is not generally correct if the transmission
coefficients are strongly energy dependent. As pointed
out by Lesovik and Loosen [13], in certain situations (for
instance, when the transmission coefficients sharply peak
as functions of energy) the total non-equilibrium noise
may be actually lower than the equilibrium noise at the
same temperature.

We conclude this subsection with some historical re-
marks. Already Kulik and Omel’yanchuk [14] noticed
that the shot noise in ballistic contacts (modeled as an
orifice in an insulating layer between two metallic reser-
voirs) vanishes if there is no elastic impurity scattering.
Subsequently, Khlus [15] considered such a point contact
with elastic scattering and derived Eq. (62) by means of a
Keldysh Green’s function technique. The papers by Ku-
lik and Omel’yanchuk and by Khlus remained unknown,
they were either not or only poorly cited even in the
Russian literature. Later Lesovik [16] derived Eq. (61)
in the framework of the scattering approach (for the case
of fermions). Independently, Yurke and Kochanski [17]
investigated the momentum noise of a tunneling micro-
scopic tip, also based on the scattering approach, treating
only the one-channel case; Ref. [16] treated the multi-
channel case, but assumed at the outset that the scatter-
ing matrix is diagonal and that the diagonal channels are
independent. A generalization for many-channel conduc-
tors described by an arbitrary scattering matrix (without
assumption of independence) and for the many-terminal
case was given in Refs. [18,19]. The same results were
later discussed by Landauer and Martin [20] and Mar-
tin and Landauer [21] appealing to wave packets. The
treatment of wave-packet overlap (see subsection II B) is
avoided by assuming that wave packets are identical and
timed to arrive at the same instant. Ref. [9], which we
followed in this subsection, is a long version of the papers
[18,19].

E. Voltage Fluctuations

Role of external circuit. Thus far all the results
which we have presented are based on the assumption
that the sample is part of an external circuit with zero

8The full noise can be divided into equilibrium-like and
transport parts, see Ref. [9]. This division is, of course,
arbitrary.
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impedance. In this case the voltage (voltages) applied to
the sample can be viewed to be a fixed non-fluctuating
quantity and the noise properties are determined by the
current correlations which we have discussed. The ideal-
ized notion of a zero-impedance external circuit does of-
ten not apply. Fig. 3 shows a simple example: The sam-
ple S is part of an electrical circuit with resistance Rext

and a voltage source which generates a voltage Vext. (In
general the external circuit is described by a frequency
dependent impedance Zext(ω)). As a consequence, in
such a circuit, we deal with both current fluctuations
and voltage fluctuations.

The current fluctuations through the sample are now
governed by the fluctuations ∆V (t) of the voltage
across the sample, which generate a fluctuating cur-
rent ∆IV (ω) = G(ω)∆V (ω), where G(ω) is frequency-
dependent conductance (admittance) of the sample. In
addition, there is the contribution of the spontaneous
current fluctuations δI(ω) themselves. The total fluctu-
ating current through the sample is thus given by

∆I(ω) = G(ω)∆V (ω) + δI(ω). (63)

Eq. (63) has the form of a Langevin equation with a
fluctuating source term given by the spontaneous current
fluctuations determined by the noise power spectrum S of
a two terminal conductor. To complete these equations
we must now relate the current through the sample to
the external voltage. The total current I is related to the
external voltage Vext and the voltage across the sample
by the Kirchoff law V + RextI = Vext. Here Vext is a
constant, and the voltage and current fluctuations are
thus related by ∆V +Rext∆I = 0, or

∆V (ω) = −Rext∆I(ω). (64)

For Rext = 0 (zero external impedance) we have the
case of a voltage controlled external circuit, while for
Rext → ∞ (infinite external impedance) we have the case
of a current controlled external circuit. The Langevin
approach assumes that the mesoscopic sample and the
external circuit can be treated as separate entities, each
of which might be governed by quantum effects, but that
there are no phase coherent effects which would require
the treatment of the sample and the circuit as one quan-
tum mechanical entity. In such a case the distinction
between sample and external circuit would presumably
be meaningless. Eliminating the voltage fluctuations in
Eqs. (63) and (64) gives for the current fluctuations
∆I(ω)(1 + G(ω)Rext) = δI(ω) and with the resistance
of the sample R = 1/G(0) and the noise power spectrum
S we obtain in the zero-frequency limit9

9The quantity SII is defined by Eq.(49), as before. The
quantity SV V is defined by the same expression where current
fluctuations ∆I are replaced by the voltage fluctuations ∆V .

SII =
S

(1 +Rext/R)2
. (65)

Eq. (65) shows that the external impedance becomes
important if it is comparable or larger than the resis-
tance of the sample. Eliminating the current we obtain
(1/Rext + G(ω))∆V (ω) = −δI(ω), and thus a voltage
fluctuation spectrum given by

SV V =
S

( 1
Rext

+ 1
R )2

. (66)

At equilibrium, where the current noise power is given by
S = 4kBTG, Eq. (66) gives SV V = 4kBT/R(1/Rext +
1/R)2 which reduces in the limit Rext → ∞ to the famil-
iar Johnson-Nyquist result SV V = 4kBTR for the volt-
age fluctuations in an infinite external impedance circuit.
The procedure described above can also be applied to
shot noise as long as we are only concerned with effects
linear in the voltage V . Far from equilibrium, this ap-
proach applies if we replace the conductance (resistance)
by the differential conductance (resistance) and if a linear
fluctuation theory is sufficient.

S

V
ext

R ext

I

V

FIG. 3. Noise measurements in an external circuit. The
sample is denoted S.

External circuit: multi-probe conductors. For a
multi-probe geometry the consideration of the external
circuit is similarly based on the Langevin equation [9],

∆Iα =
∑

β

Gαβ∆Vβ + δIα, (67)

where Gαβ is an element of the conductance matrix and
δIα is a fluctuating current with the noise power spec-
trum Sαβ . The external circuit loops connecting to a
multi-probe conductor can have different impedances:
the external impedance is thus also represented by a ma-
trix which connects voltages and currents at the contacts
of the multi-probe conductor. Ideally, the current source
and sink contacts are connected to a zero impedance ex-
ternal circuit, whereas the voltage probes are connected
to an external loop with infinite impedance.
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At equilibrium, in the limiting case that all probes are
connected to infinite external impedance loops, the volt-
age fluctuations can be expressed in terms of multi-probe
resistances. Consider first a four-probe conductor. A
four-probe resistance is obtained by injecting current in
contact α taking it out at contact β and using two ad-
ditional contacts γ and δ to measure the voltage differ-
ence Vγ − Vδ. The four-probe resistance is defined as
Rαβ,γδ = (Vγ − Vδ)/I. Using the conductance matrix of
a four-probe conductor, a little algebra shows that,

Rαβ,γδ = D−1 (GγαGδβ −GγβGδα) , (68)

where D is any sub-determinant of rank three of the con-
ductance matrix. (Due to current conservation and gauge
invariance all possible subdeterminants of rank three of
the conductance matrix are identical and are even func-
tions of the applied magnetic field). Eqs. (68) can be ap-
plied to a conductor with any number of contacts larger
than four, since the conductance matrix of any dimension
can be reduced to a conductance matrix of dimension
four, if the additional contacts not involved in the mea-
surement are taken to be connected to infinite external
impedance loops. Similarly, there exists an effective con-
ductance matrix of dimension three which permits to de-
fine a three-probe measurement. In such a measurement
one of the voltages is measured at the current source con-
tact or current sink contact and thus two of the indices in
Rαβ,γδ are identical, α = γ or β = δ. Finally, if the con-
ductance matrix is reduced to a 2 × 2 matrix, we obtain
a resistance for which two pairs of indices are identical,
Rαβ,αβ or Rαβ,βα = −Rαβ,αβ. With these resistances we
can now generalize the familiar Johnson-Nyquist relation
SV V = 4kBTR for two-probe conductors, to the case of
a multi-probe conductor. For the correlation of a volt-
age difference Vα −Vβ measured between contacts α and
β with a voltage fluctuation Vγ − Vδ measured between
contacts γ and δ Eq. (67) leads to

〈(Vα − Vβ)(Vγ − Vδ)〉 = 2kBT (Rαβ,γδ +Rγδ,αβ). (69)

The mean squared voltage fluctuations α = γ and β = δ
are determined by the two-terminal resistances Rαβ,αβ of
the multi-probe conductor. The correlations of voltage
fluctuations (in the case when all four indices differ) are
related to symmetrized four-probe resistances.

If shot noise is generated, for instance, by a current
incident at contact α and taken out at contact β (in a
zero external impedance loop) and with all other contacts
connected to an infinite impedance circuit, the voltage
fluctuations are [22]

〈(δVγ − δVδ)(δVǫ − δVζ)〉 =
∑

αη

Rαβ,ǫζRηβ,γδSαη, (70)

where Sαη is the noise power spectrum of the current
correlations at contacts α and η, and β is an arbitrary
index.

These examples demonstrate that the fluctuations in a
conductor are in general a complicated expression of the
noise power spectrum determined for the zero-impedance
case, the resistances (or far from equilibrium the differ-
ential resistances) and the external impedance (matrix).
These considerations are of importance since in exper-
iments it is the voltage fluctuations which are actually
measured and which eventually are converted to current
fluctuations.

F. Applications

In this subsection, we give some simple applications of
the general formulae derived above, and illustrate them
with experimental results. We consider only zero fre-
quency limit. As we explained in the Introduction, we do
not intend to give here a review of all results concerning
a specific system. Instead, we focus on the application
of the scattering approach. For results derived for these
systems with other methods, the reader is addressed to
Table 1.

FIG. 4. Crossover from thermal to shot noise measured by
Birk, de Jong, and Schönenberger [30]. Solid curves corre-
spond to Eq. (71); triangles show experimental data for the
two samples, with lower (a) and higher (b) resistance.

1. Tunnel barriers

For a tunnel barrier, which can be realized, for exam-
ple, as a layer of insulator separating two normal metal
electrodes, all the transmission coefficients Tn are small,
Tn ≪ 1 for any n. Separating terms linear in Tn in Eq.
(62) and taking into account the definition of the Poisson
noise, Eq.(58), we obtain
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S =
e3V

πh̄
coth

(

eV

2kBT

)

∑

n

Tn = coth

(

e|V |
2kBT

)

SP .

(71)

At a given temperature, Eq. (71) describes the crossover
from thermal noise at voltages e|V | ≪ kBT to shot noise
at voltages e|V | ≫ kBT . The transition is indepen-
dent from any details of the tunnel barrier and occurs
at e|V | = kBT .

Eq. (71) is also obtained in the zero-frequency, zero
charging energy limit of microscopic theories of low trans-
parency normal tunnel junctions or Josephson junctions
[23–28]. These theories employ the tunneling Hamilto-
nian approach and typically only keep the terms of lowest
non-vanishing order in the tunneling amplitude. Poisso-
nian shot noise was measured experimentally in semicon-
ductor diodes, see e.g. Ref. [29]; these devices, however,
could hardly be called mesoscopic, and it is not always
easy to separate various sources of noise. More recently,
Birk, de Jong, and Schönenberger [30] presented mea-
surements of noise in a tunnel barrier formed between an
STM tip and a metallic surface. Specifically addressing
the crossover between the thermal and shot noise, they
found an excellent agreement with Eq. (71). Their ex-
perimental results are shown in Fig. 4.

2. Quantum point contacts

A point contact is usually defined as a constriction be-
tween two metallic reservoirs. Experimentally, it is typi-
cally realized by depleting of a two-dimensional electron
gas formed with the help of a number of gates. Changing
the gate voltage Vg leads to the variation of the width of
the channel, and consequently of the electron concentra-
tion. All the sizes of the constriction are assumed to be
shorter than the mean free path due to any type of scat-
tering, and thus transport through the point contact is
ballistic. In a quantum point contact the width of the
constriction is comparable to the Fermi wavelength.

2 4 6 80 10

2

3

2

1

ξ

1

FIG. 5. Conductance in units of e2/2πh̄ (curve 1) and
zero-frequency shot noise power in units of e3|V |/6πh̄ (curve
2) for a quantum point contact with ωy = 4ωx as a function of
the gate voltage. Here ξ = (EF − V0)/h̄ωx is a dimensionless
energy.

Quantum point contacts have drawn wide attention
after experimental investigations [31,32] showed steps in
the dependence of the conductance on the gate voltage.
This stepwise dependence is illustrated in Fig. 5, curve 1.
An explanation was provided by Glazman et al [33], who
modeled the quantum point contact as a ballistic channel
between two infinitely high potential walls (Fig. 6a). If
the distance between the walls d(x) (width of the con-
tact) is changing slowly in comparison with the wave-
length, transverse and longitudinal motion can be ap-
proximately separated. The problem is then effectively
reduced to one-dimensional motion in the adiabatic po-
tential U(x) = π2n2h̄2/2md2(x), which depends on the
width profile and the the transverse channel number n.
Changing the gate voltage leads to the modification of
the potential profile. Theoretically it is easier to fix the
geometry of the sample, i.e the form of the potential,
and vary the Fermi energy in the channel EF (Fig. 6b).
The external potential is smooth, and therefore may be
treated semi-classically. This means that the channels
with n < kF dmin/π (here h̄kF ≡ (2mEF )1/2, and dmin

is the minimal width of the contact) are open and trans-
parent, Tn = 1, while the others are closed, Tn = 0. The
conductance (40) is proportional to the number of open
channels and therefore exhibits plateaus as a function of
the gate voltage. At the plateaus, shot noise is equal
to zero, since all the channels are either open or closed.
The semi-classical description fails when the Fermi en-
ergy lies close to the top of the potential in one of the
transverse channels. Then the transmission coefficient for
this channel increases from zero to one due to quantum
tunneling through the barrier and quantum reflection at
the barrier. The transition from one plateau to the next
is associated with a spike in the shot noise as we will now
discuss.
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FIG. 6. Geometry of the quantum point contact in
the hard-wall model (a) and the effective potential for
one-dimensional motion (b).

A more realistic description of the quantum point con-
tact takes into account that the potential in the trans-
verse direction y is smooth [34]. The constriction can
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then be thought of as a bottleneck with an electrostatic
potential of the form of a saddle. Quite generally the
potential can be expanded in the directions away from
the center of the constriction,

V (x, y) = V0 −
1

2
mω2

xx
2 +

1

2
mω2

yy
2,

where the constant V0 denotes the potential at the saddle
point. Experimentally it is a function of the gate voltage.
The transmission probabilities are given by Ref. [34],

Tn(E) = [1 + exp (−πǫn)]
−1
,

ǫn ≡ 2

[

E − h̄ωy

(

n+
1

2

)

− V0

]

/h̄ωx. (72)

The transmission probability Tn(E) exhibits a crossover
from zero to one as the energy E passes the value V0 +
h̄ωy(n+ 1/2). The resulting zero temperature shot noise
as a function of V0, using Eq. (57), is illustrated in Fig. 5
for the case ωy = 4ωx (curve 2). The conductance of this
quantum point contact is shown in Fig. 5 as curve 1. As
expected, the shot noise dependence is a set of identical
spikes between the plateaus. The height of each spike is
e3|V |/4πh̄ up to exponential accuracy. At the plateaus
shot noise is exponentially suppressed. This behavior of
shot noise in a quantum point contact was predicted by
Lesovik [16]. The shot noise of a saddle point model
of a quantum point contact was presented in Ref. [1].
Scherbakov et al [35] thoroughly analyze and compare
shot noise for various models of quantum point contacts.
Using a classical (master equation) approach, shot noise
suppression was also confirmed by Chen and Ying [36].

If a magnetic field is applied in the transverse direc-
tion, the energies ǫn are pushed up. Shot noise is thus
an oscillating function of the magnetic field for a fixed
gate voltage. Strong magnetic fields may even drive the
quantum point contact to the regime EF < ǫ0, suppress-
ing the shot noise completely [35].

Using Eq. (61), it is easy also to study shot noise in
the non-linear regime as the function of the applied bias
voltage V . We obtain

S ≈ e2ωx

(2π)2
NV , NV =

e|V |
h̄ωy

, (73)

where NV is the number of channels which open in the
energy interval between zero and e|V |. Eq. (73) applies
when this number is large, NV ≫ 1. For even higher
voltages e|V | > V0, the noise becomes voltage indepen-
dent, as found by Larkin and Reznikov [37]. They also
discuss self-consistent interactions and found that the
non-linear shot noise is suppressed as compared to the
non-interacting value.

As the number of open channels becomes large, so
that the width of the constriction is much wider than
the Fermi wavelength (classical point contact), the shot
noise stays the same, while the conductance grows pro-
portional to the number of channels. Thus, shot noise be-
comes small in comparison with the Poisson value (at the

top of the n-th spike this suppression equals (4n)−1), and
in this sense shot vanishes for a classical point contact, as
found by Kulik and Omel’yanchuk [14]. Note, however,
that the shot noise really disappears only when inelastic
scattering becomes significant (see subsection II G).

FIG. 7. Conductance (upper plot) and shot noise (lower
plot) as functions of the gate voltage, as measured by
Reznikov et al [42]. Different curves correspond to five dif-
ferent bias voltages.

Experimentally, sub-Poissonian shot noise suppression
was observed by Akimenko, Verkin, and Yanson [38] in a
slightly different system, a metallic quantum point con-
tact, which is essentially an orifice in a thin insulating
layer between two metallic reservoirs. In this system,
however, it is difficult to separate different sources of
noise. In ballistic quantum point contacts sub-Poisson
suppression was observed in an early experiment by Li
et al [39], and later by Dekker et al [40,41]. Reznikov
et al [42] found clearly formed peaks in the shot noise
as a function of the gate voltage. A considerable im-
provement in the experimental technique was obtained
by measuring noise in the MHz range at frequencies far
above the range where 1/f -noise contributes. The results
of Reznikov et al [42] are shown in Fig. 7. Compared to
the theory the experimental noise peaks exhibit a slight
asymmetry around the transition point. Kumar et al [43]
developed a different low frequency technique based on
voltage correlation measurements to filter out unwanted
noise. They found that “the agreement 〈of experimental
results〉 with theoretical expectations, within the calcu-
lable statistical deviations, is nearly perfect”. Recently,
van den Brom and van Ruitenbeek [44] demonstrated
that shot noise measurements can be used to extract in-
formation on the transmission probabilities of the eigen
channels of nanoscopic metallic point contacts. Subse-
quently, Bürki and Stafford [45] were able to reproduce
their results quantitatively based on a simple theoretical
model which takes into account only two features of the
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contacts, the confinement of electrons and the coherent
backscattering from imperfections.

3. Resonant tunnel barriers

The transport through two consecutive tunnel barri-
ers allows already to discuss many aspects of shot noise
suppression. Let us first consider the case of purely one-
dimensional electron motion through two potential bar-
riers with transmission probabilities TL and TR, sepa-
rated by a distance w, as shown in Fig. 8. Eventually,
we will assume that the transmission of each barrier is
low, TL ≪ 1 and TR ≪ 1. An exact expression for the
transmission coefficient of the whole structure is

T (E) (74)

=
TLTR

1 + (1 − TL)(1 − TR) − 2
√

(1 − TL)(1 − TR) cosφ(E)
,

with φ(E) being the phase accumulated during motion
between the barriers; in our particular case φ(E) =
2w(2mE)1/2/h̄. Eq. (74) has a set of maxima at the res-
onant energies Er

n such that the phase φ(Er
n) equals 2πn.

Expanding the function φ(E) around Er
n, and neglecting

the energy dependence of the transmission coefficients,
we obtain the Breit-Wigner formula [46,47]

T (E) = Tmax
n

Γ2
n/4

(E − Er
n)2 + Γ2

n/4
, Tmax

n =
4ΓLnΓRn

Γ2
n

.

(75)
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FIG. 8. Resonant double barriers. The case of low voltage
is illustrated; resonant levels inside the well are indicated by
dashed lines.

Tmax
n is the maximal transmission probability at res-

onance. We have introduced the partial decay widths
ΓLn,Rn = h̄νnTL,R. The attempt frequency νn of the n-th
resonant level is given by ν−1

n = (h̄/2)(dφ/dEr
n) = w/vn,

vn = (2Er
n/m)1/2. Γn ≡ ΓLn + ΓRn is the total decay

width of the resonant level. Eq. (75) is, strictly speaking,

only valid when the energy E is close to one of the res-
onant energies10 Er

n. In many situations, however, the
Lorentz tails of T (E) far from the resonances are not
important, and one can write

T (E) =
∑

n

Tmax
n

Γ2
n/4

(E − Er
n)2 + Γ2

n/4
.

Despite the fact that the transparencies of both barri-
ers are low, we see that the total transmission coefficient
shows sharp peaks around resonant energies. This effect
is a consequence of constructive interference and is known
as resonant tunneling. The transmission coefficient at
the top of a peak equals Tmax

n ; for a symmetric reso-
nance ΓLn = ΓRn the transmission is ideal, Tmax

n = 1.
This dependence may be probed11 by applying a gate
voltage. The gate voltage moves the positions of the res-
onant levels, and the conductance exhibits peaks around
each resonance.

In the linear regime the shot noise is determined by
the transmission coefficient evaluated at the Fermi level,
and is thus an oscillating function of the gate voltage,
vanishing almost completely between the peaks. The
Fano factor (60) at the top of each peak is equal to
F = (ΓLn − ΓRn)2/Γ2

n. It vanishes for a symmetric bar-
rier. For a resonance with Tmax

n > 1/2 the Fano fac-
tor reaches a maximum each time when the transmission
probability passes through T = 1/2; for a resonance with
Tmax

n < 1/2 the shot noise is maximal at resonance.
One-dimensional problem, non-linear regime.

For arbitrary voltage, direct evaluation of the expressions
(39) and (61) gives an average current,

I =
e

h̄

NV
∑

n=1

ΓLnΓRn

Γn
, (76)

and a zero-temperature shot noise,

S =
2e2

h̄

NV
∑

n=1

ΓLnΓRn(Γ2
Ln + Γ2

Rn)

Γ3
n

. (77)

Here NV is the number of resonant levels in the energy
strip e|V | between the chemical potentials of the left and
right reservoirs. Eqs. (76) and (77) are only valid when
this number is well defined – the energy difference be-
tween any resonant level and the chemical potential of
any reservoir must be much greater than Γ. Under this
condition both the current and the shot noise are inde-
pendent of the applied voltage. The dependence of both
the current and the shot noise on the bias voltage V is
thus a set of plateaus, the height of each plateau being

10We assume that the resonances are well separated, Γ ≪
h̄2/2mw2.
11For discussion of experimental realizations, see below.
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proportional to the number of resonant levels through
which transmission is possible. Outside this regime, when
one of the resonant levels is close to the chemical poten-
tial of left and/or right reservoir, a smooth transition
with a width of order Γ from one plateau to the next
occurs.

Consider now for a moment, a structure with a sin-
gle resonance. If the applied voltage is large enough,
such that the resonance is between the Fermi level of the
source contact and that of the the sink contact, the Fano
factor is

F =
Γ2

L + Γ2
R

Γ2
. (78)

It varies between 1/2 (symmetric barrier) and 1 (very
asymmetric barrier). Expression (78) was obtained by
Chen and Ting [48] using a nonequilibrium Green’s func-
tions technique, and independently in Ref. [19] using the
scattering approach. It was confirmed in Monte Carlo
simulations performed by Reklaitis and Reggiani [49,50].
If the width of the resonance is comparable to the applied
voltage, Eq. (78) has to be supplemented by correction
terms due to the Lorentz tails of the Breit-Wigner for-
mula, as found in Ref. [19] and later by Averin [51].

It is also worthwhile to point out that our quantum-
mechanical derivation assumes that the electron pre-
serves full quantum coherence during the tunneling pro-
cess (coherent tunneling model). Another limiting case
occurs when the electron completely loses phase co-
herence once it is inside the well (sequential tunneling
model). This latter situation can be described both clas-
sically (usually, by means of a master equation) and
quantum-mechanically (e.g., by connecting to the well
one or several fictitious voltage probes which serve as
“dephasing” leads). These issues are addressed in Sec-
tion V, where we show that the result for the Fano factor
Eq. (78) remains independent of whether we deal with a
coherent process or a fully incoherent process. The Fano
factor Eq. (78) is thus insensitive to dephasing.

Quantum wells. The double-barrier problem is also
relevant for quantum wells, which are two- or three-
dimensional structures12, consisting of two planar (lin-
ear in two dimensions) potential barriers. Of interest is
transport in the direction perpendicular to the barriers
(across the quantum well, axis z). These systems have
drawn attention already in the seventies, when resonant
tunneling was investigated both theoretically [52] and ex-
perimentally [53].

If the area of the barriers (in the plane xy) A is very
large, the summation over the transverse channels in Eqs.
(39), (61) can be replaced by integration, and we obtain
for the average current

12For simplicity, we use a three-dimensional notation. Spe-
cialization to two dimensions is trivial.

I =
eν2A
2πh̄

∫ ∞

0

dE⊥dEzT (Ez)

× {fL (Ez + E⊥) − fR (Ez + E⊥)}

and the shot noise

S =
e2ν2A
πh̄

∫ ∞

0

dE⊥dEzT (Ez) [1 − T (Ez)]

× {fL (Ez + E⊥) − fR (Ez + E⊥)} ,

with ν2 = m/2πh̄2 the density of states of the two-
dimensional electron gas (per spin). The key point is that
the transmission coefficient depends only on the energy
of the longitudinal13 motion Ez, and thus is given by the
solution of the one-dimensional double-barrier problem,
discussed above. Denoting µL = EF + eV , µR = EF ,
and integrating over dE⊥, we write (the temperature is
set to zero)

I =
eν2A
2πh̄

{

eV

∫ EF

0

dEzT (Ez)

+

∫ EF +eV

EF

dEz (EF + eV − Ez)T (Ez)

}

(79)

and

S =
e2ν2A
πh̄

{

eV

∫ EF

0

dEzT (Ez) [1 − T (Ez)] (80)

+

∫ EF +eV

EF

dEz (EF + eV − Ez)T (Ez) [1 − T (Ez)]

}

.

Expressions (79) and (80) are valid in the linear and
non-linear regimes, provided interactions are not impor-
tant. We will consider the noise in the non-linear regime
in Section V, where it will be shown that effects of charg-
ing of the well may play an important role. Here, special-
izing on the regime linear in the bias voltage V , we obtain
a current 〈I〉 = GV determined by the conductance

G =
e2ν2ANF

h̄

ΓLΓR

Γ
, (81)

and a shot noise power

S = 2e

(

Γ2
L + Γ2

R

)

Γ2
〈I〉. (82)

Here NF is the number of resonant states in the one-
dimensional problem, which lie below EF . Eqs. (81)
and (82) are valid only when the distance between all
resonant levels and the Fermi level is much greater that
Γ. This dependence may be probed again, like in a one-
dimensional structure, with the help of a gate. Both the

13Along the current, not along the well.
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current and the shot noise exhibit plateaus as a function
of gate voltage; these plateaus are smoothly joined over
a width of order Γ. This dependence resembles that of
the non-linear one-dimensional regime, but it clearly is
a consequence of different physics. Nevertheless, in the
plateau regime the Fano factor is the same, Eq. (78). This
fact was noted by Davis et al [54], who presented both
quantum and classical derivations of this result. Classical
theories of shot noise suppression in quantum wells are
discussed in Section V.

Averaging. Another point of view was taken by
Melsen and Beenakker [55] and independently by Mel-
nikov [56], who investigated not a single resonant tunnel-
ing structure but an ensemble of systems. Imagine an en-
semble of quasi-one-dimensional double-barrier systems,
in which some parameter is random. For definiteness, we
assume that the systems are subject to a random gate
voltage. Then in some of them the Fermi level is close
to one of the resonant energies, and in others it lies be-
tween two resonant levels. Therefore, on average, shot
noise must be finite even in the linear regime. To quan-
tify this argument, we turn to the exact expression (74)
for the transmission coefficient14 and assume that the
phase φ is a random variable, uniformly distributed on
the interval (0, 2π). We only consider the linear regime.

First, we calculate the conductance,

G =
e2

2πh̄

∑

n

Tn =
e2N

(2π)2h̄

∫ 2π

0

T (φ)dφ =
e2N

2πh̄

TLTR

TL + TR
,

(83)

where N is the number of transverse channels, and we
have taken into account TL ≪ 1, TR ≪ 1. The same
calculation for the shot noise yields [56,1]

S =
e3|V |N
2π2h̄

∫ 2π

0

T (φ) [1 − T (φ)] dφ

=
e3|V |N
πh̄

TLTR

(

T 2
L + T 2

R

)

(TL + TR)
3 . (84)

The Fano factor is given again by Eq. (78).
We can learn two lessons from this simple model. First,

the Fano factor (78) F = (Γ2
L + Γ2

R)/Γ2 appears each
time when there is some kind of averaging in the sys-
tem which involves one-dimensional motion across two
barriers. In the two examples we considered, the one-
dimensional non-linear problem, and the quantum well in
the linear regime, this averaging is provided by the sum-
mation over all the levels between the chemical potentials
of the two reservoirs (one dimension), or the summation
over the transverse channels at the given total energy

14The Breit-Wigner formula (75) cannot be used for this
purpose, since it is not exact far from the resonance.

(quantum well). Thus, both problems prove to be self-
averaging. At the same time, this averaging is absent in
the one-dimensional linear problem, and the Fano fac-
tor has nothing to do with Eq. (78) even between the
resonances.

The second lesson is provided by the distribution func-
tion of the transmission coefficients of the eigen chan-
nels in the one-dimensional problem [55,56]. Without
giving details, we mention only that it has a bimodal
form. The transmission coefficients assume values be-
tween Tmin = TLTR/4 ≪ 1 and Tmax; those close to
Tmin and Tmax have higher probability than those lying
in between. The Fano factor is very sensitive to the ap-
pearance of transmission coefficients close to one, since
it is these values which cause the sub-Poisson suppres-
sion. Thus, for a symmetric barrier Tmax = 1, and the
probability to find the transmission coefficient close to 1
is high. This yields the lowest possible Fano factor 1/2
which is possible in this situation. We will return in more
detail to the distribution of transmission probabilities for
metallic diffusive conductors and chaotic cavities.

Related work. Here we mention briefly additional
theoretical results on noise in double-barrier and similar
structures.

Runge [57] investigates noise in double-barrier quan-
tum wells, allowing for elastic scattering inside the well.
He employs a non-equilibrium Green’s function technique
and a coherent potential approximation, and arrives at
rather cumbersome expressions for the average current
and noise power. In the limit of zero temperature, how-
ever, his results yield the same Fano factor (78), despite
the fact that both current and noise are sensitive to im-
purity scattering.

Lund Bø and Galperin [58,59] consider a resonant
quantum well in a strong magnetic field perpendicular
to the interfaces (along the axis z). They find that the
shot noise power (in the linear and nonlinear regimes,
but without charging effects taken into account) shows
peaks each time when the new Landau level in the well
crosses the chemical potential in the right reservoir.

Xiong [60] analyzes noise in superlattices of finite size
(several consecutive barriers) using the transfer matrix
method. His numerical results clearly show shot noise
suppression with respect to the Poisson value, but, un-
fortunately, the Fano factor is not plotted.

Resonant tunneling through localized states.
The following problem was discussed by Nazarov and
Struben [61]. Consider now non-linear transport through
one, one-dimensional, symmetric barrier, situated in the
region −w/2 < z < w/2. We assume that there are res-
onant states which are randomly distributed inside the
barrier and strongly localized. Applying the model sug-
gested for this situation by Larkin and Matveev [62], we
assume that these resonant states are provided by impuri-
ties inside the barrier; the localization radius of each state
is denoted by ξ, ξ ≪ w. Transition rates are exponen-
tially sensitive to the position of these impurities inside
the barrier. In the regime of low impurity concentration,
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only those situated close to the center of the barrier con-
tribute to the transport properties. Thus, the problem is
effectively mapped onto a double-barrier problem, where
the impurity region near the center of the barrier serves
as a potential well, and is separated by two “barriers”
from the left and right reservoirs. The tunneling rates
through these “barriers” to a resonant state depend on
the position z of the impurity which provides this reso-
nant state. We have [62]

ΓL,R(z) = Γ0 exp [±z/ξ] , |z| < w/2.

We have assumed that this amplitude is energy indepen-
dent, and that impurities are uniformly distributed in
energy and space. Thus, our expressions (76) and (77)
hold, and must be averaged over impurity configurations.
We write

I =
e

h̄
n0Γ0

∫ ∞

−∞

dz

2 cosh(z/ξ)

and

S =
2e2

h̄
n0Γ0

∫ ∞

−∞
dz

cosh(2z/ξ)

4 cosh3(z/ξ)
,

where n0 is the spatial concentration of impurities. By
extending the integration to infinity, we have taken into
account ξ ≪ w. Performing the average and calculating
the Fano factor, we find [61]

F = 3/4,

which is markedly different form the usual double-barrier
suppression F = 1/2.

The model can be generalized15 to include Coulomb
correlations [63]. Imagine that each resonant center has
two degenerate electron states available for tunneling,
corresponding to two different spin states. However, if
one of the states is filled, the other one is shifted up by
the Coulomb energy U . We assume that the Coulomb en-
ergy is very large, so that once one electron has tunneled,
the tunneling of the second one is suppressed. Then the
effective tunneling rate through the “left” barrier is 2ΓL

(we assume that voltage is applied from left to the right),
and instead of Eqs. (76) and (77) we write for the current
[63] and shot noise power per spin [61]

I =
eNV

h̄

ΓLΓR

2ΓL + ΓR
, S =

2e2NV

h̄

ΓLΓR(4Γ2
L + Γ2

R)

(2ΓL + ΓR)3
.

Averaging over impurity configurations and calculating
the Fano factor, we find again F = 3/4 [61].

15This example concerns interacting systems, and is included
in this Section only as an exception.

Experiments. The simplest experimental system one
can imagine which should exhibit the features of a two-
barrier structure is just a one-dimensional channel con-
strained by two potential barriers. If the barriers are
close to each other, the region between the two barriers
can be considered as a zero-dimensional system and is
called a quantum dot. In addition, one usually places one
more electrode (gate), which couples only capacitively to
the dot. Roughly speaking, the voltage applied to the
gate shifts all electron levels in the dot with respect to
the chemical potential of the reservoirs, and may tune
them to the resonance position. However, typically quan-
tum dots are so small that Coulomb interaction effects
(Coulomb blockade) become important, and the theoret-
ical picture described above is no longer valid. If the
space between the barriers is large and one-dimensional
(one channel), interaction effects are also important, and
a Luttinger liquid state is formed. For a more extensive
discussion of noise in interacting systems, the reader is
addressed to Section VII.

FIG. 9. The Fano factor observed experimentally by Li et
al [64] as a function of current for three quantum wells, which
differ by their asymmetry. The solid line represents the Pois-
son shot noise value.

Quantum wells, however, are macroscopic objects, and
hence are less sensitive to interactions. Thus, experi-
ments carried out on quantum wells may probe the non-
interacting theory of noise suppression in a double-barrier
system. Sub-Poissonian shot noise suppression in quan-
tum wells was observed by Li et al [64] even before a the-
ory of this suppression was available. Li et al noted that
the suppression is maximal for symmetric barriers, and
is insignificant for very asymmetric structures (Fig. 9).
This suppression was later observed by van de Roer et
al [65], Ciambrone et al [66], Liu et al [67], and Przadka
et al [68]. Liu et al compared their experimental data
with the results of numerical simulations attempting to
take into account specific features of their sample, and
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found that theory and experiment are in a reasonable
agreement. Yau et al [69] observed shot noise suppres-
sion in double quantum wells (triple barrier structures).
We should note, however, that in all experimental data
available, the Fano factor depends considerably on the
applied voltage in the whole range of voltages. Appar-
ently, this happens because already relatively low volt-
ages drive the system out of the linear regime. To the
best of our knowledge, this issue has not been addressed
systematically, although some results, especially concern-
ing the negative differential resistance range, exist. They
are summarized in Section V.

4. Metallic diffusive wires

1/3-suppression. We consider now transport in
multi-channel diffusive wires in the metallic regime. This
means that, on one hand, the length of the wire L is much
longer than the mean free path l due to disorder. On
the other hand, in a quasi-one-dimensional geometry all
electron states are localized in the presence of arbitrarily
weak disorder; the localization length equals Lξ = N⊥l,
where N⊥ is the number of transverse channels16. Thus
for a wire to be metallic we must have L≪ Lξ (which of
course implies N⊥ ≫ 1). As everywhere so far, we ignore
inelastic processes.

Comparison between the Drude-Sommerfeld formula
for conductance17,

G =
2

π

e2nτ

m

w

L
, (85)

(n is the electron concentration, and τ = l/vF is the
momentum relaxation time), and the Landauer formula
(40) yields the expression for the average transmission
coefficient,

〈T 〉 =
l

L
. (86)

In the diffusive regime we have 〈T 〉 ≪ 1.
A naive point of view would be to assume that all the

transmission coefficients of the wire are of the order of
the average transmission eigenvalue 〈T 〉 and thus, that all
transmission probabilities are small. From our previous
consideration it would then follow that the Fano factor is
very close to one: a metallic diffusive wire would exhibit
full Poissonian shot noise. On the other hand, it is well

16We use below two-dimensional notations: for a strip of
width w the number of transverse channels is equal to N⊥ =
pF w/πh̄. All results expressed through N⊥ remain valid also
for a three-dimensional (wire) geometry.

17The factor 2/π which might look unusual to some readers
only reflects a different definition of the mean free path, and
is not essential for any results which we describe below.

known that a macroscopic metallic conductor exhibits
no shot noise. Using this information as a guide one
might equally naively expect that a mesoscopic metallic
diffusive conductor also exhibits no shot noise.

In fact, these naive assumptions are incorrect. In par-
ticular, the fact that the transmission eigenvalues of a
metallic conductor are not all small has long been rec-
ognized18: In the metallic regime, for any energy open
channels (with T ∼ 1) coexist with closed ones (T ≪ 1).
The distribution function of transmission coefficients has
in fact a bimodal form. This bimodal distribution leads
to sub-Poissonian shot noise. Quantitatively, this situa-
tion can be described by random matrix theory of one-
dimensional transport. It implies [73] that the channel-
dependent inverse localization lengths ζn, related to the
transmission coefficients by Tn = cosh−2(L/ζn), are uni-
formly distributed between 0 and l−1. This statement
can be transformed into the following expression for the
distribution function of transmission coefficients,

P (T ) =
l

2L

1

T
√

1 − T
, Tmin < T < 1,

Tmin = 4 exp(−2L/l), (87)

and P (T ) = 0 otherwise. As discussed, it has a bimodal
form: almost open and almost close channels are pre-
ferred. The dependence P (T ) is illustrated in Fig. 10.

P(T)

T 10

FIG. 10. Distribution function of transmission coefficients
(87) for L/l = 10.

The distribution function P (T ) must be used now to
average expressions (40) and (57) over impurity config-
urations. Direct calculation confirms Eq. (86), and,
thus, the distribution function (87) yields the Drude-
Sommerfeld formula (85) for the average conductance.
Furthermore, we obtain

18This statement has a long history, and we only cite two
early papers on the subject by Dorokhov [70] and Imry [71].
For a modern discussion we refer to Ref. [72].
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〈T (1 − T )〉 =
l

3L
,

which implies that the zero-temperature shot noise power
is

S =
e3|V |
3πh̄

N⊥l

L
=

1

3
SP . (88)

The shot noise suppression factor for metallic diffusive
wires is equal to F = 1/3. The remarkable feature is that
this result is universal: As long as the geometry of the
wire is quasi-one-dimensional and l ≪ L ≪ Lξ (metal-
lic diffusive regime), the Fano factor does not depend on
the degree of disorder19, the number of transverse chan-
nels, and any other individual features of the sample.
This result was first obtained by Beenakker and one of
the authors [74] using the approach described above. In-
dependently, Nagaev [75] derived the same suppression
factor 1/3 by using a classical theory based on a Boltz-
mann equation with Langevin sources. This theory and
subsequent developments are described in Section VI.

Later on, the 1/3 suppression of shot noise became
a subject of a number of microscopic derivations. Alt-
shuler, Levitov, and Yakovets [76] recovered the Fano
factor 1/3 by direct microscopic calculation using the
Green’s function technique. Nazarov [77] proved that
the distribution (87) holds for an arbitrary (not neces-
sarily quasi-one-dimensional) geometry; thus, the 1/3-
suppression is “super-universal”. He used a slightly dif-
ferent technique, expressing scattering matrices through
Green’s functions and then performing disorder averages.
The same technique, in more elaborated form, was used
in Ref. [78], which also obtains the 1/3-suppression.

It is clear that the quantum-mechanical theories
of Refs. [74,76–78] are equivalent for the quasi-one-
dimensional geometry, since they deal with disorder aver-
ages basically in the same way. On the other hand, their
equivalence to the classical consideration of Ref. [75] is
less obvious.

Experimentally, shot noise in metallic diffusive wires
was investigated by Liefrink et al [79], who observed that
it is suppressed with respect to the Poisson value. The
suppression factor in this experiment lies between 0.2 and
0.4 (depending on gate voltage). More precise experi-
ments were performed by Steinbach, Martinis, and De-
voret [80] who analyzed silver wires of different length.
In the shortest wires examined they found a shot noise
slightly larger than 1/3 and explained this larger value
as due to electron-electron interaction20. A very accurate

19It seems that the question whether the Fano factor de-
pends on the type of disorder has never been addressed. In
all cases disorder is assumed to be Gaussian white noise, i.e.
〈U(r)U(r′)〉 ∝ δ(r − r′).

20In long wires, interaction effects play a role; this is ad-
dressed in Section VI.

measurement of the 1/3 noise suppression was performed
by Henny et al [81]. Special care was taken to avoid elec-
tron heating effects by attaching very large reservoirs to
the wire. Their results are displayed in Fig. 11.

FIG. 11. Shot noise measurements by Henny et al
[81] on three different samples. The lower solid line is
1/3–suppression, the upper line is the hot-electron result
F =

√
3/4 (see Section VI). The samples (b) and (c) are

short, and clearly display 1/3–suppression. The sample (a)
is longer (has lower resistance), and the shot noise deviates
from the non-interacting suppression value due to inelastic
processes.

Localized regime. In quasi-one-dimensional wires
with length L ≫ Lξ the transmission coefficients are
“crystallized” around exponentially small values [72].
This leads to a conductance and a shot noise power which
decay exponentially with the length L. Shot noise is not
suppressed with respect to the Poissonian value: F = 1.

The shot noise in the one-dimensional case was an-
alyzed by Melnikov [56], who obtained different sup-
pression factors for various models of disorder in a one-
channel wires. In particular, the model of Gaussian delta-
correlated one-dimensional disorder leads to the suppres-
sion factor 3/4.

Weak localization and mesoscopic fluctuations.
In the metallic regime, quantum interference effects due
to disorder, which eventually drive the system into the
localized regime, manifest themselves in the form of
weak localization corrections. For the shot noise, the
weak localization correction was studied by de Jong and
Beenakker [82], and later by Macêdo [83], Macêdo and
Chalker [84], and Macêdo [85]. They found

S =
e3|V |
πh̄

[

N⊥l

3L
− 1

45

]

. (89)

Comparison with a similar expression for the conduc-
tance,

G =
e2

2πh̄

[

N⊥l

L
− 1

3

]

,

yields the Fano factor

F =
1

3
+

4

45

L

N⊥l
. (90)

The second terms represent weak localization corrections
(L ≪ N⊥l). These expressions are valid for the case
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of preserved time-reversal symmetry (orthogonal sym-
metry). In the case of broken time-reversal symmetry
(unitary symmetry; technically, this means that a weak
magnetic field is applied) weak localization corrections
are absent and the Fano factor stays at 1/3. Thus, we
see that weak localization effects suppress noise, but en-
hance the Fano factor, in agreement with the general ex-
pectation that it lies above 1/3 in the localized regime.
The crossover from the metallic to the localized regime
for shot noise has not been investigated.

De Jong and Beenakker [82], Macêdo [83], and Macêdo
and Chalker [84] studied also mesoscopic fluctuations of
shot noise21, which are an analog of the universal con-
ductance fluctuations. For the root mean square of the
shot noise power, they found

r.m.s. S =
e3|V |
πh̄

√

46

2835β
,

where the parameter β equals 1 and 2 for the orthogonal
and unitary symmetry, respectively. These fluctuations
are independent of the number of transverse channels,
length of the wire, or degree of disorder, and may be
called [82] ”universal noise fluctuations”.

The picture which emerges is, therefore, that like the
conductance, the ensemble averaged shot noise is a classi-
cal quantity. Quantum effects in the shot noise manifest
themselves only if we include weak localization effects or
if we ask about fluctuations away from the average. With
these results it is thus no longer surprising that the 1/3
noise suppression factor derived quantum mechanically
and from a classical Boltzmann equation for the fluctu-
ating distribution are in fact the same. The same pic-
ture holds of course not only for metallic diffusive wires
but whenever we ensemble average. We have already dis-
cussed this for the resonant double barrier and below will
learn this very same lesson again for chaotic cavities.

Chiral symmetry. Mudry, Brouwer, and Furusaki
[86,87] studied the transport properties of disordered
wires with chiral symmetry (i.e. when the system con-
sists of two or several sublattices, and only transitions
between different sublattices are allowed). Examples of
these models include tight-binding hopping models with
disorder or the random magnetic flux problem. Chiral
models exhibit properties usually different from those of
standard disordered wires22, for instance, the conduc-
tance at the band center scales not exponentially with
the length of the wire L, but rather as a power law
[88]. Ref. [87], however, finds that in the diffusive regime
(l ≪ L ≪ N⊥l) the Fano factor equals precisely 1/3,
like for ordinary symmetry. The only feature which ap-
pears due to the chiral symmetry is the absence of weak

21This requires the knowledge of the joint distribution func-
tion of two transmission eigenvalues.

22Extensive list of references is provided by Ref. [86].

localization corrections in the zero order in N⊥. Weak
localization corrections, both for conductance and shot
noise, scale as L/(lN⊥) and discriminate between chiral
unitary and chiral orthogonal symmetries.

Transition to the ballistic regime. In the zero-
temperature limit, a perfect wire does not exhibit shot
noise. For this reason, one should anticipate that in the
ballistic regime, l > L, shot noise is suppressed below
1/3. The crossover between metallic and ballistic regimes
in disordered wires was studied by de Jong and Beenakker
[82] (see their Eq. (A10)), who found for the noise sup-
pression factor

F =
1

3

(

1 − 1

(1 + L/l)3

)

. (91)

It, indeed, interpolates between F = 1/3 for l ≪ L and
F = 0 for L≫ l. Later, they [89,90] illustrated Eq. (91)
by using the classical (Boltzmann-Langevin) approach
for single-channel wires23. Liu, Eastman, and Yamamoto
[91] performed Monte Carlo simulations of shot noise for
the same situation, and found agreement with Eq. (91).

Nazarov [77] and, independently, Beenakker and
Melsen [92] addressed the metallic – ballistic crossover
in a disordered quantum point contact, i.e. a constric-
tion between two quasi-one-dimensional metallic diffusive
conductors (of identical width). The diffusive conduc-
tors have a mean free path l, a combined length L and
a total resistance RN . The constriction has a resistance
RT = (h/e2)N0 in the presence of N0 open channels.
For this system the Fano factor is a function of the ratio
γ = N0L/(lN) = RN/RT , and is given by

F =
1

3

(

1 − 1

(1 + γ)3

)

. (92)

Eq.(92) describes a crossover from F = 1/3 (the metal-
lic regime) to F = 1 (classical point contact between
metallic diffusive banks) and actually follows [92] from
Eq. (91).

Disordered interfaces. Schep and Bauer [93] con-
sidered transport through disordered interfaces, modeled
as a configuration of short-ranged scatterers randomly
distributed in the plane perpendicular to the direction of
transport. In the limit g ≪ N⊥, with g and N⊥ being the
dimensionless conductance and the number of transverse
channels, respectively, they found the following distribu-
tion function of transmission coefficients,

P (T ) =
g

πN⊥

1

T 3/2
√

1 − T
,

[

1 +

(

πN⊥
2g

)2
]−2

< T < 1, (93)

23This must be considered as a toy model, since the classical
theory ignores localization effects. Single-channel wires are in
reality either ballistic or localized, but never metallic.
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and zero otherwise. Eq. (93) accidentally has the same
form as the distribution function of transmission coeffi-
cients for the symmetric opaque double-barrier structure.
The noise suppression factor for this system equals 1/2,
e.g. the suppression is weaker than for metallic diffusive
wires.

5. Chaotic cavities

1/4-suppression. Chaotic cavities are quantum sys-
tems which in the classical limit would exhibit chaotic
electron motion. We consider ballistic chaotic systems
without any disorder inside the cavity; the chaotic nature
of classical motion is a consequence of the shape of the
cavity or due to surface disorder. The results presented
below are averages over ensembles of cavities. The en-
semble can consist of a collection of cavities with slightly
different shape or a variation in the surface disorder, or
it can consist of cavities investigated at slightly different
energies. Experimentally, chaotic cavities are usually re-
alized as quantum dots, formed in the 2D electron gas by
back-gates. They may be open or almost closed; we dis-
cuss first the case of open chaotic quantum dots, shown
in Fig. 12a. We neglect charging effects24. One more
standard assumption, which we use here, is that there is
no direct transmission: Electrons incident from one lead
cannot enter another lead without being reflected from
the surface of the cavity (like Fig. 12a).

P(T)

1

a) b)

0 T

FIG. 12. (a) An example of a chaotic cavity. (b) Distribu-
tion function of transmission eigenvalues (94).

The description of transport properties of open chaotic
cavities based on the random matrix theory was proposed
independently by Baranger and Mello [96] and Jalabert,
Pichard, and Beenakker [97]. They assumed that the
scattering matrix of the chaotic cavity is a member of

24In the case when the cavity is open, i.e. connected by ideal
leads to the electron reservoirs, charging effects may still play
a role. This effect, called mesoscopic charge quantization [94],
was recently shown to affect very weakly the conductance of
open chaotic cavities [95]. Results for shot noise are currently
unavailable.

Dyson’s circular ensemble of random matrices, uniformly
distributed over the unitary group. For the cavity where
both left and right leads support the same number of
transverse channels N⊥ ≫ 1, this conjecture implies the
following distribution function of transmission eigenval-
ues,

P (T ) =
1

π
√

T (1 − T )
, (94)

shown in Fig. 12b. As a consequence of the assump-
tion underlying random matrix theory, this distribution
is universal: It does not depend on any features of
the system. Taking into account that 〈T 〉 = 1/2 and
〈T (1 − T )〉 = 1/8, we obtain for conductance,

G =
e2N⊥
4πh̄

,

and for the zero-temperature shot noise,

S =
e3|V |N⊥

8πh̄
=

1

4
SP .

The Fano factor equals F = 1/4, and is, of course, also
universal. For the one-channel case, the whole distribu-
tion function of shot noise may be found analytically [98],

P (S) (95)

=







√
1+
√

1−4η+
√

1−√1−4η√
16η(1−4η)

, orthogonal symmetry

2√
1−4η

, unitary symmetry
,

where we defined η = πh̄S/(e3|V |).
In the general case when the numbers of transverse

channels in the left NL and right NR lead are not equal,
but still NL ≫ 1 and NR ≫ 1, the distribution func-
tion of transmission eigenvalues has been calculated by
Nazarov [100]. Using this result, a calculation of the shot
noise gives for the Fano factor [100,72]

F =
NLNR

(NL +NR)2
. (96)

This suppression factor has 1/4 as its maximal value
for the symmetric case NL = NR, and shot noise is
suppressed down to zero in the very asymmetric case
NL ≪ NR or NL ≫ NR. Indeed, for NL ≪ NR the
transport properties are determined by the less trans-
parent (left) contact; however, since the contact is still
ideal, the noise in this situation is totally suppressed.

Eq. (96) results from an ensemble average, and, as we
discussed, must be a classical result. Indeed, it has been
derived [99] by purely classical means, see Section VI.

Crossover to double-barrier behavior. We as-
sume now that the cavity is separated from the leads by
tunnel barriers. Brouwer and Beenakker [101] were able
to calculate the distribution function of transmission co-
efficients in this system for the symmetric case, when the
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number of channels supported by the left and the right
lead are equal, NL = NR = N , and the transmission co-
efficients T̃i in each channel i are same for the left and
the right barriers. Assuming in addition NT̃i ≫ 1 for all
channels, they found

P (T ) =
1

N

N
∑

i=1

T̃i(2 − T̃i)

π(T̃ 2
i − 4T̃iT + 4T )

√

T (1 − T )
. (97)

Calculating the averages

〈T 〉 =
1

2N

∑

i

T̃i,

and

〈T (1 − T )〉 =
1

8N

∑

i

T̃i(2 − T̃i),

we find the Fano factor,

F =
〈T (1 − T )〉

〈T 〉 =
1

4

∑

i T̃i(2 − T̃i)
∑

i T̃i

. (98)

In particular, if all the transmission probabilities T̃i are
the same and equal to T̃ , we obtain F = (2 − T̃ )/4.
This expression reproduces the limiting cases F = 1/4

for T̃ = 1 (no barriers – open quantum cavity) and F =

1/2 for T̃ → 0 (double-barrier suppression in symmetric
system). Thus, Eq. (98) describes crossover between
the behavior characteristic for an open cavity and the
situation when the barriers are so high that the dynamics
inside the cavity does not play any role.

6. Edge channels in the quantum Hall effect regime

Now we turn to the description of effects which are
inherently multi-terminal. The calculation of the scat-
tering matrix is in general a difficult problem. However,
in some special situations the scattering matrix can be
deduced immediately even for multi-terminal conductors.

We consider a four-terminal conductor (Fig. 13) made
by patterning a two-dimensional electron gas. The con-
ductor is brought into the quantum Hall regime by a
strong transverse magnetic field. In a region with inte-
ger filling of Landau levels the only extended states at
the Fermi energy which connect contacts [102] are edge
states25, the quantum mechanical equivalent of classical

25We do not give a microscopic description of edge states.
Coulomb effects in the integer quantum Hall effect regime lead
to a spatial decomposition into compressible and incompress-
ible regions. Edge channels in the fractional quantum Hall
effect regime will be discussed in Section VII.

skipping orbits. Since the net current at a contact is
determined by the states near the Fermi surface, trans-
port in such a system can be described by considering the
edge states. Note that this fact makes no statement on
the spatial distribution of the current density. In particu-
lar a description based on edge states does not mean that
the current density vanishes away from the edges. This
point which has caused considerable confusion and gen-
erated a number of publications is well understood, and
we refer the reader here only to one particularly percep-
tive discussion [103]. Edge states are uni-directional; if
the sample is wide enough, backscattering from one edge
state to another one is suppressed [102]. In the plateau
regime of the integer quantum Hall effect, the number
of edge channels is equal to the number of filled Landau
levels. For the discussion given here, we assume, for sim-
plicity, that we have only one edge state. In a quantum
Hall conductor wide enough so that there is no backscat-
tering, there is no shot noise [18]. Hence we introduce a
constriction (Fig. 13) and allow scattering between dif-
ferent edge states at the constriction [18]: the probability
of scattering from contact 4 to the contact 3 is T , while
that from 4 to 1 is 1 − T . In the following, we will fo-
cus on the situation when the chemical potentials of all
the four reservoirs are arranged so that µ2 = µ3 = µ,
µ1 = µ4 = µ+ eV .

T

2

3

1

4

1-T 1-T

T

FIG. 13. Four-probe quantum Hall conductor. Solid lines
indicate edge channels; dashed lines show the additional scat-
tering probability T through the quantum point contact.

The scattering matrix of this system has the form

s =







0 s12 0 s14
0 0 s23 0
0 s32 0 s34
s41 0 0 0






. (99)

Here the elements s14 = r, s32 = r′, s12 = t, s34 = t′

form the 2×2 scattering matrix at the constriction: |t|2 =
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|t′|2 = T , |r|2 = |r′|2 = 1−T , r∗t′+t∗r′ = r∗t+r′t′∗ = 0.
The two remaining elements, s41 = exp(iθ1) and s23 =
exp(iθ2) describe propagation along the edges without
scattering. It is straightforward to check that the matrix
(99) is unitary.

We consider first the shot noise at zero temperature
[18,9]. Using the general Eq. (55), we see immedi-
ately that the only non-zero components of the shot noise
power tensor are S11 = S33 = −S13 = −S31, with

S31 = −e
3|V |
πh̄

T (1 − T ). (100)

Indeed, if there is no scattering between the edge states,
there is no shot noise in the system. The same is true
for the case when this scattering is too strong: all the
current from 2 flows to 1, and from 4 to 3.

For finite temperature all components become non-zero
(except for S24) and can be found [9] from Eq. (52). We
only give the result for S13 = S31,

S13 = − e2

πh̄

∫

dE T (1 − T )(f1 − f3)2, (101)

where f1 and f3 are Fermi distribution functions in the
reservoirs 1 and 3, respectively. This result is remarkable
since it vanishes for T = 1 at any temperature: The
correlation function (101) is always “shot-noise-like”.

One more necessary remark is that all the shot noise
components in this example are actually expressed only
through absolute values of the scattering matrix ele-
ments: Phases are not important for noise in this simple
edge channel problem.

Early experiments on noise in quantum Hall systems
were oriented to other sources of noise (see e.g. Refs.
[104,105]), and are not discussed here. Shot noise in the
quantum Hall regime was studied by Washburn et al [106]
who measured voltage fluctuations in a six-terminal ge-
ometry with a constriction, which, in principle, allows for
direct comparison with the above theory. They obtained
results in two magnetic fields, corresponding to the fill-
ing factors ν = 1 and ν = 4. Although their results
were dominated by 1/f -noise, Washburn et al were able
to find that shot noise is very much reduced below the
Poisson value, and the order of magnitude corresponds
to theoretical results.

7. Hanbury Brown – Twiss Effects with edge channels

The conductor of Fig. 13 is an electrical analog of the
scattering of photons at a half-silvered mirror (see Fig. 1).
Like in the table top experiment of Hanbury Brown and
Twiss [7,8], there is the possibility of two sources which
send particles to an object (here the quantum point con-
tact) permitting scattering into transmitted and reflected
channels which can be detected separately. Bose statis-
tical effects have been exploited by Hanbury Brown and

Twiss [7] to measure the diameter of stars. The electri-
cal geometry of Fig. 13 was implemented by Henny et
al [12], and the power spectrum of the current correla-
tion between contact 1 (reflected current) and contact 3
(transmitted current) was measured in a situation where
current is incident from contact 4 only. Contact 2 was
closed such that effectively only a three-terminal struc-
ture resulted. For the edge-channel situation considered
here, in the zero-temperature limit, this does not affect
the correlation between transmitted and reflected cur-
rent. (At finite temperature, the presence of the fourth
contact would even be advantageous, as it avoids, as de-
scribed above, the ”contamination” due to thermal noise
of the correlation function of reflected and transmitted
currents, see Eq. (101)). The experiment by Henny et
al finds good agreement with the predictions of Ref. [18],
i.e. Eq. (100). With experimental accuracy the current
correlation S31 is negative and equal in magnitude to the
mean square current fluctuations S11 = S33 in the trans-
mitted and reflected beam. The experiment finds thus
complete anti-correlation. This outcome is related to the
Fermi statistics only indirectly: If the incident carrier
stream is noiseless, current conservation alone leads to
Eq. (100). As pointed out by Henny et al [12], the experi-
ment is in essence a demonstration that in Fermi systems
the incident carrier stream is noiseless. The pioneering
character of the experiment by Henny et al [12] and an
experiment by Oliver et al [107] which we discuss below
lies in the demonstration of the possibility of measuring
current-current correlation in electrical conductors [108].
Henny et al [12] measured not only the shot noise but
used the four-terminal geometry of Fig. 13 to provide an
elegant and interesting demonstration of the fluctuation-
dissipation relation, Eq. (54).

λ
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κ

FIG. 14. Three-probe geometry illustrating the experiment
by Henny et al [12].

Now it is interesting to ask, what happens if this com-
plete population of the available states is destroyed (the
incident carrier stream is not noiseless any more). This
can be achieved by inserting an additional quantum point
contact in the path of the incident carrier beam (see Fig.
14). We denote the transmission and reflection probabil-
ity of this first quantum point contact by κ and λ = 1−κ,
and the transmission and reflection probability of the sec-
ond quantum point contact by T and R as above. The
scattering matrix of this system has the form
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s =

( −iλ1/2 0 κ1/2

(κT )1/2 −iR1/2 −i(λT )1/2

−i(κR)1/2 T 1/2 −(λR)1/2

)

. (102)

The phases in this experiment play no role and here have
been chosen to ensure the unitarity of the scattering ma-
trix. In the zero-temperature limit with a voltage differ-
ence V between contact 1 and contacts 2 and 3 (which
are at the same potential) the noise power spectra are

S =
e2|V |
πh̄

(

κλ −κλT −κλR
−κλT κT (1 − κT ) −κ2TR
−κλR −κ2TR κR(1 − κR)

)

. (103)

The correlation function between transmitted and re-
flected beams S23 = S32 = −κ2RT is proportional to the
square of the transmission probability in the first quan-
tum point contact. For κ = 1 the incident beam is com-
pletely filled, and the results of Henny et al [12] are recov-
ered. In the opposite limit, as κ tends to zero, almost all
states in the incident carrier stream are empty, and the
anti-correlation between transmitted and reflected beams
also tends to zero.

8. Three-terminal structures in zero magnetic field

A current-current correlation was also measured in
an experiment by Oliver et al [107] in a three-probe
structure in zero magnetic field. This experiment fol-
lows more closely the suggestion of Martin and Landauer
[21] to consider the current-current correlations in a Y-
structure. Ref. [21], like Ref. [18], analyzes the noise
power spectrum in the zero frequency limit. Early ex-
periments on a three-probe structure by Kurdak et al
[109] were dominated by 1/f–noise and did not show any
effect.

Here the following remark is appropriate. Strictly
speaking, the Hanbury Brown – Twiss (HBT) effect is
a coincidence measurement. In the optical experiment
the intensity fluctuation dIα(t) is measured and corre-
lated with the intensity fluctuation dIβ(t + τ), where τ
is a short time smaller than the response time τ̃ of the
detector. The coincidence rate Cαβ is thus

Cαβ = (1/2τ̃)

∫ τ̃

0

dτ〈dÎα(t)dÎβ(t+ τ) + dÎβ(t+ τ)dÎα(t)〉

(104)

The coincidence rate is related to the frequency depen-
dent noise power spectrum by

Cαβ = (1/τ̃)

∫ τ̃

0

dτ

∫

dωeiωτSαβ(ω) (105)

In Section III, we discuss the frequency dependence of
the noise power spectrum in more detail. Typically its
lowest characteristic frequencies are given by RC-times.

In principle, such a measurement should, therefore, be
able to give information on the frequency dependence of
the noise power spectrum. In the experiment of Oliver
et al the resolution time τ̃ is probably long compared
to such intrinsic time scales, and thus the experiment
is effectively determined by the white noise limit of the
power spectrum.

Let us now briefly consider a Y-shaped conductor [21]
and discuss its correlations in the white noise limit. We
assume that the same voltage V is applied between the
terminals 1 and 2, and 1 and 3: µ1 = µ2 +eV = µ3 +eV .
For zero temperature, the general formula (55) yields the
following expression for the cross-correlations of currents
in leads 2 and 3,

S23 = −e
3|V |
πh̄

Tr
[

s†21s21s
†
31s31

]

, (106)

which is negative in accordance with the general consid-
erations. Note the formal similarity of this result to the
shot-noise formula in the two terminal geometry given by
Eq. (56). In the single channel limit, if we assume that
there is no reflection back into contact 1, Eq. (106) be-
comes S23 = −(e3|V |/πh̄)T (1−T ), where T is the trans-
mission probability from 1 to 2. This simple result under-
lines (the formal) equivalence of scattering at a QPC with
separation of transmitted and reflected streams and scat-
tering at a reflectionless Y-structure. The experiments by
Oliver et al [107] confirm these theoretical predictions.

The experiments by Henny et al [12] and Oliver et al
[107] test the partitioning of a current stream. If the
incident carrier stream is noiseless, the resulting current
correlation is negative already due to current conserva-
tion alone. Therefore, experiments are desirable, which
test electron statistical effects (and the sign of correla-
tions) in situations where current conservation plays a
much less stringent role.

9. Exchange Hanbury Brown – Twiss effects

a)

1 1-T

2

3

4 1 3

2 4

b)

T

FIG. 15. Four-terminal conductors for Hanbury Brown –
Twiss exchange effects (a), quantum point contact geometry
(b). Terminals are numbered by digits. The dashed line in
(a) indicates a phase-sensitive trajectory which contributes to
exchange terms in Eq. (107). Arrows in (b) indicate non-zero
transmission probabilities.
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Another HBT experiment was proposed in Ref. [19]
(see also Ref. [9]). It is based on the comparison of the
noise generated in the presence of two incident currents
with the noise generated by one source only. We first
present a general discussion and later consider a number
of applications. Consider the four-terminal structure of
Fig. 15a. We will be interested in cross-correlations of
currents at the contacts 2 and 4,

S ≡ −S24.

The quantity S defined in this way is always positive.
Now we discuss three different ways of applying voltage.
The first one (to be referred to as experiment A) is to
apply a voltage to the reservoir 1, µ1 − eV = µ2 = µ3 =
µ4. In the next one (experiment B) the voltage is applied
to 3, µ1 = µ2 = µ3−eV = µ4. Finally, in the experiment
C the identical26 voltages are applied to 1 and 3, µ1 −
eV = µ2 = µ3 − eV = µ4. Results for zero temperature
are readily derived from Eq. (55) and read

SA =
e3|V |
πh̄

Ξ1, SB =
e3|V |
πh̄

Ξ2,

SC =
e3|V |
πh̄

(Ξ1 + Ξ2 + Ξ3 + Ξ4) , (107)

where

Ξ1 = Tr
[

s†21s21s
†
41s41

]

,

Ξ2 = Tr
[

s†23s23s
†
43s43

]

,

Ξ3 = Tr
[

s†21s23s
†
43s41

]

Ξ4 = Tr
[

s†23s21s
†
41s43

]

. (108)

The quantities SA and SB are determined by transmis-
sion probabilities from 2 and 4 to 1 and 3, respectively,
and are not especially interesting. New information is
contained in SC . In systems obeying classical statistics,
the experiment C would be just a direct superposition of
the experiments A and B, SC = SA +SB. The additional
terms Ξ3 and Ξ4 in the rhs of Eq. (107) are due to quan-
tum (Fermi) statistics of the electrons. These terms now
invoke products of scattering matrices which are in gen-
eral not real valued. These terms are not products of two
pairs of scattering matrices as in Eq. (56) or Eq. (106)
but contain four scattering matrices in such a way that
we are not able to distinguish from which of the two cur-
rent carrying contacts a carrier was incident. For future
convenience, we define the quantity ∆S = SC −SA−SB,

26We note in passing that if different voltages are applied
to 1 and 3, the correlation functions (107) imply that S23

cannot be an analytic function of the two voltages. Thus, our
four-terminal conductor is a non-linear circuit element due to
exchange effects.

which indicates the fermionic analog of the HBT effect.
One can show [9] that for finite temperatures the corre-
sponding correction for bosons is of the same form but
has the opposite sign, hence it will be called “exchange
contribution”. One more remarkable feature of the result
(107) is that the exchange correction ∆S is phase sensi-
tive. Indeed, it represents the contribution of trajectories
indicated by the dashed line in Fig. 15a (traversed in both
directions), and thus is proportional to exp(±iφ), with φ
being the phase accumulated during the motion along
the trajectories. For this reason, one cannot generally
predict the sign of ∆S: the only restrictions are that all
the quantities SA, SB, and SC need to be positive.

Gramespacher and one of the authors [110–112] con-
sidered a particular geometry where the leads 2 and 4
are tunneling contacts locally coupled to the sample (e.g.
scanning tunneling microscope tips). In this case, the ex-
change contribution can directly be expressed in terms of
the wave functions (scattering states)

∆S =
1

π2h̄2

∑

mn

1

v1mv3n

× Re {ψ1m(r)ψ∗1m(r′)ψ∗3n(r)ψ3n(r′)} , (109)

where the sum is over all transverse channels m in the
lead 1 and n in the lead 3; r and r′ are the points to
which the contacts 2 and 4 couple, respectively, and ψαk

is the wave function of the corresponding scattering state.
Thus, the exchange contribution explicitly depends on
phases of the wave functions.

We investigate now the general expression for the four-
terminal phase-sensitive HBT effect (107) for various sys-
tems. Our concern will be the sign and relative magni-
tude of the exchange contribution ∆S = SC − SA − SB.

Disordered systems. Naively, one might assume
that in a disordered medium the phase accumulated
along the trajectory, indicated by the dashed line in
Fig. 15a, is random. Then the phase-sensitive exchange
contribution would be zero after being averaged over dis-
order. Thus, this view implies SC = SA + SB.

A quantitative analysis of these questions was provided
by the authors of this review in Ref. [78]. In this work the
scattering matrices in Eq. (108) are expressed through
Green’s functions to which disorder averaging was ap-
plied using the diagram technique. The key result found
in Ref. [78] is that the naive picture mentioned above,
according to which one might expect no exchange effects
after disorder averaging, is completely wrong. Exchange
effects survive disorder averaging. The reason can be un-
derstood if the principal diagrams (which contain four
diffusion propagators) are translated back into the lan-
guage of electron trajectories. One sees then that the
typical trajectory does not look like the dashed line in
Fig. 15b. Instead, it looks like a collection of dashed lines
shown in Fig. 16a: the electron diffuses from contact 1
to some intermediate point 5 in the bulk of the sample
(eventually, the result is integrated over the coordinate
of point 5), then it diffuses from 5 to 2 and back from 2
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to 5 precisely along the same trajectory, and so on, until
it returns from 5 to 1 along the same diffusive trajec-
tory as it started. Thus, there is no phase enclosed by
the trajectory. This explains why the exchange contribu-
tion survives averaging over disorder; apparently, there
is a classical contribution to the exchange correlations
which requires knowledge only of Fermi statistics, but
no information about phases of scattering matrices. In-
deed, a classical theory of ensemble averaged exchange
effects was subsequently proposed by Sukhorukov and
Loss [113,114].

5

1

2

4

3

a) b)

FIG. 16. Examples of four-terminal disordered conductors.
Disordered area is shaded. Dashed line denotes diffusive mo-
tion between its ends.

Once we determined that exchange correction ∆S ex-
ists in diffusive conductors, we must evaluate its sign and
relative magnitude. We only describe the results quali-
tatively; details can be found in Refs. [78,114]. Two spe-
cific geometries have been investigated: the disordered
box (Fig. 16a) and the disordered cross (Fig. 16b). For
the box, the exchange correction ∆S is negative, i.e. ex-
change suppresses noise (SC < SA + SB). The effect is
quite considerable: The correction is of the same order of
magnitude as the classical contributions in SA and SB,
and is suppressed only by a numerical factor. For the
cross, the exchange contribution is positive – exchange
enhances noise – but the magnitude is by powers of l/L
smaller than SA and SB. Here l and L are the mean free
path and the length of the disordered arms, respectively.
Thus, neither sign nor magnitude of the exchange effects
is predetermined in diffusive systems: they are geome-
try and disorder dependent, and the only limitation is
SC > 0.

Gramespacher and one of the authors [110,111] con-
sidered a geometry of a disordered wire (along the axis
z) between the contacts 1 (z = 0) and 3 (z = L), cou-
pled locally at the points z and z′ to the contacts 2 and
4, respectively, via high tunnel barriers (these latter can

be viewed as scanning tunneling microscope tips)27 and
evaluated Eq. (109). It was found that the exchange
effect is positive in the case, i.e. it enhances noise, irre-
spectively of the position of the contacts 2 and 4. For
the particular case when both tunnel contacts are situ-
ated symmetrically around the center of the wire at a
distance d, z = (L−d)/2 and z′ = (L+d)/2, the relative
strength of the exchange term is

∆S

SC
=

1

3

[

2 +
d

L
− 2

(

d

L

)2
]

,

and reaches its maximum for d = L/4. We see that the
exchange effect in this case generally has the same order
of magnitude as the classical terms SA and SB.

Chaotic cavities. A similar problem in chaotic cav-
ities was addressed in Ref. [115] (see also Ref. [116]).
Similarly to disordered systems, it was discovered that
exchange effects survive on average. An additional fea-
ture is however that the exchange effects in chaotic cavi-
ties are universal. That of course is a consequence of the
assumption that the cavity can be described by using
Dyson’s circular ensemble. For open cavities, one finds

Ξ1 = Ξ2 = −3Ξ3 = −3Ξ4 =
3

4

N3
⊥

16N2
⊥ − 1

, (110)

where we assumed that all leads are identical and sup-
port N⊥ transverse channels. This implies SA = SB,
SC = 4SA/3, or ∆S = −2SA/3. Thus, exchange effects
suppress noise in open chaotic cavities.

The situation changes if the cavity is separated from
the leads by tunnel barriers. Assuming that the transmis-
sion coefficients of all barriers in all transverse channels
are identical and equal T , N⊥T ≫ 1, Ref. [115] finds

{

Ξ1 = Ξ2

Ξ3 = Ξ4

}

=
N⊥T

64

{

T + 2
−3T + 2

}

.

Thus, for T = 2/3 the exchange effect changes sign: If
the barriers separating the cavity from the reservoirs are
high enough, the exchange enhances the correlations. In
the limit of very opaque barriers, T → 0, we have SC =
2(SA + SB): the exchange correction is the same as the
classical contributions SA and SB.

Edge channels in the quantum Hall effect

regime. Interesting tests of exchange (interference) ef-
fects can also be obtained in high magnetic fields using
edge channels. In fact this leads to a simple example

27Ref. [111] also considers a three-terminal structure (a (dis-
ordered) wire with a single STM tip attached to it). The
fluctuations of the current through the tip are in this case
proportional to the local distribution function of electrons at
the coupling point, see Eq. (249) below.
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where the phase dependence of the exchange effect is in-
deed essential [9]. Imagine that the system is placed into
a strong magnetic field, and the transport is only due to
edge channels. We assume that there is only one edge
state flowing from 1 through 2 and 3 to 4 and back to 1
(Fig. 17). Furthermore, for simplicity we assume that all
the leads are identical, and the transmission probability
to enter from the lead to the edge state is T . A direct
calculation gives [9]

Ξ1 = Ξ2 =
T 4(1 − T )2

[1 + (1 − T )4 − 2(1 − T )2 cosφ]2
,

Ξ3 = Ξ∗4 =
T 4(1 − T )2 exp(iφ)

[1 + (1 − T )4 − 2(1 − T )2 cosφ]2
,

where φ is the phase accumulated along the whole tra-
jectory, and the phase dependence in the denominator
appears due to the possibility of multiple traversals of
the full circle. We have

SC =
2e3|V |
πh̄

T 4(1 − T )2

[1 + (1 − T )4 − 2(1 − T )2 cosφ]2
(1 − cosφ) .

(111)

4
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FIG. 17. Hanbury Brown – Twiss effect with edge states.

Here the term with 1 represents the “classical” contri-
butions SA +SB, while that with cosφ is accountable for
the exchange effect ∆S. We see that, depending on φ,
exchange effects may either suppress (down to zero, for
φ = 0) or enhance (up to 2(SA + SB), for φ = π) total
noise. This is an example illustrating the maximal phase
sensitivity which the exchange effect can exhibit.

This simple example gives also some insight on how
exchange effects survive ensemble averaging. Since the
phase φ occurs not only in the numerator but also in the
denominator, the average of Eq. (111) over an ensemble
of cavities with the phase φ uniformly distributed in the
interval from 0 to 2π is non-zero and given by

〈SC〉 =
2e3|V |
πh̄

T 4(1 − T )2

[1 − (1 − T )2]3[1 + (1 − T )2]
. (112)

The ensemble averaged exchange contribution vanishes
both in the limit T = 0 and in the limit T = 1.

Note that if another order of contacts is chosen, 1 →
3 → 2 → 4, the whole situation changes: the exchange
term is now phase insensitive and has a definite sign (neg-
ative, i.e. exchange suppresses noise) [9]. This is because
the trajectories responsible for exchange terms do not
form closed loops in this case.

Experiments. The phase-sensitive Hanbury Brown–
Twiss effect discussed above has not so far been probed
in experiments. However, a related experiment was car-
ried out by Liu et al [117,118], who measured the mean
squared fluctuations S33 of the current in the lead 3, of
a four probe structure, applying voltages in the same
three-fold ways that we have discussed.

Prior to the description of experimental results, we
discuss briefly a measurement of S33 on the quantum
Hall conductor of Fig. 13. If current is incident from
contact 4 (experiment A), or contact 2 (experiment B)
alone we have for the current fluctuations at contact 3
SA

33 = SB
33 = (e3|V |/πh̄)T (1 − T ). On the other hand

if currents are incident both from contact 4 (experiment
C) and contact 2, all states are now completely filled and
thus in the zero-temperature limit SC

33 = 0. Thus, in
comparison to experiments A or B there is a complete
reduction of the shot noise at contact 3 in experiment C:
The spectral density SC

33 is suppressed down to zero.

FIG. 18. Experimental results of Liu et al [118]. Upward
and downward triangles correspond to the situations when
only one of the two input contacts is open (values SA and
SB, respectively); squares indicate the case when both input
contacts are effective (SC).

In the experiment of Liu et al [117,118] the mean
square current fluctuations are measured in zero mag-
netic field in a conductor in which a left input (1) and
output contact (3) are separated by a thin barrier from a
right input contact (2) and output contact (4) (see Fig.
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18). The input contacts form QPC’s and are adjusted
to provide transmission close to 1. The output contacts
support a number of channels. In this experiment it thus
not possible to fill all outgoing states in contact 3 com-
pletely and there is thus only a limited reduction of noise
in experiment C compared to experiments A and B. The
experimentally observed ratio SC/(SA + SB) = 0.56.

It is also useful to compare the experiment of Liu et al
[117,118] simply with a chaotic cavity connected to point
contacts which are fully transparent T = 1 [115]. Then
using Eq. (110) one finds a ratio SC/(SA + SB) = 2/3
which is surprisingly close to what was observed in the
experiment.

10. Aharonov – Bohm effect

The Aharonov – Bohm (AB) effect tests the sensitivity
to a magnetic flux Φ of electrons on a trajectory which
enclose this flux. In the pure AB-effect the electron does
not experience the magnetic field, the electron trajectory
is entirely in a field free region. It is a genuine quantum
effect, which is a direct consequence of the gauge invari-
ance of the velocity and the wave nature of electrons.
The simplest geometry demonstrating the AB effect in
electric transport is a ring coupled to two reservoirs and
threaded by a magnetic flux, as shown in Fig. 19a. Then,
the AB effect is manifest in a periodic flux dependence
of all the transport properties.

Qualitatively different phenomena arise in weak and
strong magnetic fields, and these two cases need to be
considered separately.
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FIG. 19. (a) Geometry of a ring threaded by a flux Φ,
demonstrating the Aharonov–Bohm effect in a weak magnetic
field. (b) Conductance in units of e2/2πh̄ (1) and shot noise
power in units of e3V/πh̄ (2) as a function of the AB flux
Φ/Φ0 for a particular value of the phase φ = π/2.

Weak magnetic fields. In this regime, the trans-
mission coefficient(s) (and, subsequently, conductance)
of the two-terminal structure shown in Fig. 19a, is a
periodic function of the external flux, with the period
Φ0 = 2πh̄c/e. The resulting conductance is sample-
specific, and, in particular, it is very sensitive to the

phase of the trajectory enclosing the flux. In phase coher-
ent many-channel conductors the AB-oscillations in the
conductance represent a small correction to a flux insensi-
tive (classical) background conductance28. Thus the AB
effect is most dramatic in single channel rings [120,121]
where the flux induced modulations of the conductance
are of the order of the conductance itself. Shot noise in
such a structure was studied by Davidovich and Anda
[122] using the nonequilibrium Green’s functions tech-
nique. They considered a one-channel ring and used a
tight-binding description of the ring and leads. Here
we will give another derivation, based on the scatter-
ing approach. A related issue was discussed by Iannac-
cone, Macucci, and Pellegrini [123], who studied noise in
a multiply-connected geometry using the scattering ap-
proach, and found that if there is no transmission from
the left part of the ring to the right part and vice versa
(Fig. 19a), noise of the left and right parts add up classi-
cally. In particular, this means that such a system would
not exhibit an AB effect.

We follow Refs. [120,121] which study the transmission
coefficient of single-channel rings connected to external
leads (Fig. 19a). Our purpose here is to illustrate only
the principal effect, and therefore we consider the sim-
ple case without scattering in the arms of the ring. We
also assume that the ring is symmetric. Formulae for
shot noise in more complicated situations can be readily
produced from Ref. [120,121], though, to the best of our
knowledge, they have never been written down explicitly.

We describe the “beam splitters”, separating the leads
from the ring (black triangles in Fig. 19a) by the scatter-
ing matrix [121]

sb =

(−(a+ b) ǫ1/2 ǫ1/2

ǫ1/2 a b
ǫ1/2 b a

)

, (113)

where the parameter ǫ, 0 < ǫ < 1/2, is responsible for
the coupling of the ring to the lead, and

a =
1√
2

(√
1 − 2ǫ− 1

)

,

b = − 1√
2

(√
1 − 2ǫ+ 1

)

.

Specializing to the case of the ring which is ideally cou-
pled to the leads, ǫ = 1/2, we obtain for the transmission
coefficient [121]

T (Φ) =
(1 + cos θ) sin2 φ

(1 + cos θ − cos 2φ)2 + (1/2) sin2 2φ
, (114)

28In disordered systems, the ensemble averaged conductance
exhibits AB oscillations with the period of Φ0/2. These os-
cillations are, like the weak localization correction, associated
with the interference of two electron trajectories running in
opposite directions [119]. Weak localization effects and shot
noise have not so far been investigated.
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where θ = 2πΦ/Φ0, and φ is the phase accumulated dur-
ing the motion along a half of the ring (without mag-
netic field). Now the conductance (40) G = (e2/2πh̄)T
and the shot noise (57) S = (e3|V |/πh̄)T (1 − T ) are im-
mediately expressed as functions of the applied magnetic
flux. They are strongly dependent on the phase φ, which
is sample-specific. In particular, both the conductance
and the shot noise vanish for φ = 0 or φ = π. This is a
consequence of the symmetry assumed here: If the leads
are attached asymmetrically to the ring the transmission
coefficient stays finite for any value of the phase [124].
The dependence of conductance and shot noise on flux
Φ for a particular value φ = π/2 is shown in Fig. 19b.
We reemphasize that the flux dependence shown depends
strongly on the sample specific phase φ.

Strong magnetic fields. Now we turn to the situa-
tion of the quantum Hall effect, where transport current
is carried by the edge states. A remarkable feature of
this regime is that a two-terminal ring without backscat-
tering does not exhibit the AB effect. The edge states
(Fig. 20a) exist in different regions of space, and thus
do not interfere. Indeed, the absence of backscattering,
which precludes the AB-effect, is just the condition for
conductance quantization [102]. We cannot have both a
quantized conductance and an AB-effect.

2

a) b)

4

3

ΦΦ

1

FIG. 20. (a) Geometry of a ring in strong magnetic field.
Edge states are shown. (b) Four-terminal geometry which
facilitates separation of scattering and AB effects.

The question which we want now to address is the fol-
lowing: Can one observe AB effects in the noise, which
the fourth order interference effect in a situation when
they do not exist in the conductance which is only a sec-
ond order interference effect? We noticed already that
shot noise is a phase sensitive effect, and contains inter-
ference terms, absent in the conductance. The shot noise
contains non-real terms composed of four scattering ma-
trix elements. This is the case already in the two-terminal
shot noise formula when it is expressed in the natural
basis. In the two terminal case the appearance of such
products depends, however, on the basis we chose: The

shot noise is a function of transmission probabilities only,
if it is evaluated in the eigen channel basis. However, in
a multi-terminal geometry, such products appear natu-
rally if we consider current-current cross-correlations. We
call these non-real products exchange interference terms,
since they are a manifestation of interference effects in
multi-particle wave functions (Slater determinants of sin-
gle particle wave functions) which result from the indis-
tinguishability of carriers. In contrast, the effects we have
already seen in weak fields, which contribute to the con-
ductance as well as to the shot noise are a consequence
of second order or direct interference.

The two-terminal geometry of Fig. 20a is not appro-
priate for the observation of the exchange interference
effects, since shot noise vanishes without scattering be-
tween edge channels. If scattering is introduced, shot
noise becomes finite, but at the same time the conduc-
tance becomes sensitive to the flux, due to direct inter-
ference. One can try to separate AB effects in the shot
noise due to direct and exchange interference, but this is
awkward.

A possible way out was proposed in Ref. [112], which
suggested four-terminal geometries with two weak cou-
pling contacts. We follow here a subsequent, clearer dis-
cussion given in Ref. [111]. The geometry is shown in
Fig. 20b. This is a quantum dot in a strong magnetic
field coupled via two quantum point contacts to reser-
voirs. The ring geometry is actually not needed in the
experiment and serves only for conceptual clarity. Cur-
rent flows between contacts 1 and 2, and the contacts 3
and 4 are inserted locally at the quantum point contact
between the edge states in the leads. The magnetic field
is such that the two-probe conductance is quantized, but
weak enough such that at the quantum point contact the
left- and right-going wave functions of the two edge chan-
nels overlap. As is well known, the fact that the wave
functions in the quantum point contact overlap, does not
destroy the quantization, as long as the potential of the
quantum point contact is smooth. We take the scattering
matrix relating the amplitudes of carriers in the contact
3 (or 4) with those in the edge channels nearby to be of
the same form (113) as for the “beam splitter” discussed
above. Here it is now essential to assume that coupling
is weak thus we take ǫ≪ 1. In the experiment proposed
in Refs. [112,111] the same voltage V is applied simulta-
neously to the contacts 1 and 2. Then we have

S33 = S44 =
2e3|V |
πh̄

ǫ,

S34 = −2e3|V |
πh̄

ǫ2 [1 + cos(φ + 2πΦ/Φ0)] ,

where φ is a certain phase. The relative value of S34 as
compared to S33 is ǫ. At the same time, the corrections
to the conductance and the shot noise due to direct inter-
ference are proportional to ǫ2. Thus, in our geometry up
to the terms of ǫ2 conductance is not renormalized by the
AB effect, while shot noise feels it due to its two-particle
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nature. This is thus a geometry where the AB effect man-
ifests itself in the fourth order interference and modulates
the Hanbury Brown – Twiss effect (the current-current
cross-correlation at contacts 3 and 4).

G. Inelastic scattering. Phase breaking

Throughout this Section, we treated the mesoscopic
systems as completely phase coherent. In reality, there
is always at least some inelastic or phase breaking scat-
tering present. The scattering approach as it was used
here, is based on the carrier transmission at a definite
energy. In contrast, electron-electron or electron-phonon
interactions can change the energy of a carrier. Thus a
scattering theory of such processes has to be based on a
scattering amplitudes which permit incoming and outgo-
ing particles to have different energies. To our knowledge,
the extension of scattering theory of electrical transport
within such a generalized scattering matrix approach has
not been worked out. It is, however, possible to make
progress even within the scattering approach used so far:
To treat phase breaking theoretically we often proceed
by inventing a Hamiltonian system with many degrees of
freedom while we are interested in the behavior of only
a subsystem. Similarly it is possible to arrive at an ap-
proach which describes inelastic transitions and phase
breaking by first considering a completely phase-coherent
conductor with one or a continuum of additional voltage
probes which are purely fictitious [125,47]. The addi-
tional fictitious voltage probes act as dephasers on the
actual conductor of interest. This approach has been
widely used to investigate the effect of dephasing on con-
ductance. We refer the reader here only to a few early
works [125,47,126,127]. In this subsection we illustrate
the application of these ideas to noise. Other approaches,
based on Green’s function techniques, have also been in-
voked to derive results for strongly correlated systems
(see Section VII). Furthermore, on the purely classical
level, it proved to be rather simple to extend the fluctuat-
ing Boltzmann equation approach to include interactions.
For the results on interaction and noise in double barrier
resonant tunneling structures and metallic diffusive con-
ductors the reader is addressed to Sections V and VI,
respectively. The approach which uses voltage probes as
dephasers is interesting because of its conceptual clar-
ity and because of its close relation to experiments: The
effect of additional voltage probes can easily be tested
experimentally with the help of gates which permit to
switch off or on a connection to a voltage probe (see e.g.
Ref. [128]).

Voltage probes as dephasers. Consider a meso-
scopic conductor connected to N (real) contacts. To in-
troduce inelastic scattering, we attach a number M of
purely fictitious voltage probes to this conductor. The
entire conductor with its N + M contacts is phase co-
herent and exhibits the noise of a purely phase coherent

conductor. However, elimination of the M fictitious volt-
age probes leads to an effective conduction problem for
which the conductance and the noise depend on inelastic
scattering processes [19,74,129–131]. Depending on the
properties of the fictitious voltage probes, three differ-
ent types of inelastic scattering can be realized, which de
Jong and Beenakker [90] classify as “quasi-elastic scatter-
ing” (phase breaking), “electron heating”, and “inelastic
scattering”. Now we describe these types of probes sepa-
rately. This division corresponds to the distinction of τφ,
τee, and τin. We emphasize that only a microscopic the-
ory can give explicit expressions for these times. What
the approach based on fictitious voltage probes can do is
to find the functional dependence of the conductance or
the noise on these times.

The results for interaction effects in double-barrier
structures seem to be well established by now. In con-
trast, for diffusive metallic wires with interactions the
situation is less clear. For discussion, the reader is ad-
dressed to Section VI.

In this subsection, we assume that the system is charge
neutral, i.e. there is no pile-up of charge. This charge
neutrality is normally provided by Coulomb interactions,
which thus play an important role. If this is not the case,
one can get different results, like for resonant tunneling
quantum wells with charging (Section V) or quantum
dots in the Coulomb blockade regime (Section VII).

Inelastic scattering. We begin the discussion with
the strongest scattering processes which lead to carrier
energy relaxation and consequently also energy dissipa-
tion. Physically, this may correspond to electron-phonon
scattering. To simulate this process, we consider a two-
terminal structure in the conceptually simple case where
we add only one fictitious voltage probe29 (marked as
3, see Fig. 21). As in our treatment of noise in multi-
probe conductors we assume that all reservoirs (also the
voltage probe reservoir 3) are characterized by Fermi dis-
tribution functions (for simplicity, we only consider zero-
temperature case). We take µ2 = 0 and µ1 = eV ; the
chemical potential µ3 is found from the condition that at
a voltage probe the current I3 vanishes at any moment
of time. Then an electron which has left the conduc-
tor and escaped into the reservoir of the voltage probe
must immediately be replaced by another electron that
is reinjected from the voltage probe into the conductor
with an energy and phase which are uncorrelated with
that of the escaping reservoir. This approach to inelastic
scattering was applied to noise in interacting mesoscopic
systems in Ref. [19] (where only the average current was

29There are a number of works treating the effect of dis-
tributed dephasing (many voltage probes) on conduction pro-
cesses (see for instance Ref. [132]). Results on inelastic scat-
tering on shot noise with several probes can be found in Refs.
[74,82,90].
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taken to vanish), and the analysis for an instantaneously
vanishing current was presented in Ref. [74].

1 2

b)

3

1 3 2
R R

1 2

1 2
S S

a)

FIG. 21. (a) Setup with intermediate electrode. (b) Equiv-
alent circuit for the case when there is no direct transmission
from 1 to 2.

To proceed, we introduce transmission probabilities
from the lead α to the lead β,

Tαβ = Tr s†αβsαβ ,
∑

β

Tαβ =
∑

β

Tβα = Nα,

Nα being the number of transverse channels in the lead
α. Currents can be then written as

I1 =
e2

2πh̄
[T12eV + T13(eV − µ3)] + δI1,

I2 =
e2

2πh̄
[−T21eV − T23µ3] + δI2,

I3 =
e2

2πh̄
[−T31(eV − µ3) + T32µ3] + δI3,

where δIα are the fluctuating parts of the currents (each
of them is zero on average), correlated according to Eq.
(55) with µ3 replaced by the average 〈µ3〉. The current
conservation implies δI1+δI2+δI3 = 0. The requirement
I3 = 0 implies now that the electrochemical potential at
the voltage probe is a fluctuating function of time µ3(t)
given by

µ3 =
T31

T31 + T32
eV +

2πh̄

e2
δI1 + δI2
T31 + T32

. (115)

The first term on the right hand side represents the av-
erage chemical potential 〈µ3〉, while the second one is
a fluctuating correction. The two-terminal conductance
(defined according to 〈I2〉 = GV ) depends only on the
average potential 〈µ3〉 and is given by [125,47]

G =
e2

2πh̄

[

T12 +
T13T23

T13 + T23

]

. (116)

In Eq. (116) the probability T12 describes coherent trans-
mission, whereas the second term is the incoherent con-
tribution.

Due to the fluctuations of the chemical potential µ3,
the random part of the current I1 is now

∆I1 = δI1 −
T13

T31 + T32
(δI1 + δI2) ,

and due to the current conservation the random part of
the current I2 is the same with the opposite sign. Now
the expression for the shot noise power S11 can be easily
obtained from Eq. (55), but it is rather cumbersome in
the general case. In the following, we consider only the
fully incoherent case T12 = 0, when there is no direct
transmission from 1 to 2: Every carrier on its way from
contact 1 to 2 enters the electrode 3 with the probability
one. This condition also implies Tα3 = T3α. Essentially,
the fully incoherent case means that the two parts of
the system, from 1 to 3, and from 3 to 1, are resistors
which add classically. In particular, the conductance Eq.
(116) contains now only the second term, which now just
states that two consecutive incoherent scatterers exhibit
a resistance which is equal to the series resistance. For
the current correlations, we obtain S11 = S22 = −S12 =
−S21 with

S11 =
e3|V |
πh̄

T 2
23Tr

[

s11s
†
11s13s

†
13

]

+ T 2
13Tr

[

s22s
†
22s23s

†
23

]

(T13 + T23)
3 .

(117)

This expression can be re-written in the following
transparent manner: First, we define the resistances
of the parts of the system between 1 and 3, R1 =
2πh̄/(e2T13), and between 2 and 3, R2 = 2πh̄/(e2T23).
The total resistance between 1 and 2 is given by R =
R1 + R2. Now the voltage drop between 1 and 3 is
eV R1/R and between 3 and 2 is eV R2/R. Taking this
into account, the noise power measured between 1 and 3
is (Fig. 21),

S1 =
e3|V |
πh̄

R1

R
Tr
[

s13s
†
13

(

1 − s13s
†
13

)]

,

and noise power measured between 2 and 3 is,

S2 =
e3|V |
πh̄

R2

R
Tr
[

s23s
†
23

(

1 − s23s
†
23

)]

.

Now we can write Eq. (117) as [74] (S ≡ S11)

R2S = R2
1S1 +R2

2S2. (118)

The meaning of Eq. (118) is obvious if we realize that
R2S is the voltage fluctuations (for an infinite external
impedance circuit) across the whole conductor. The right
hand side is just a sum of voltage fluctuations from 1 and
3, and from 3 to 2. Thus, Eq. (118) states nothing but
that the voltage fluctuations are additive.

Another form of Eq. (118) is useful [133]. We introduce
the noise suppression factors F1 = S1R/(2e|V |) and F2 =
S2R/(2e|V |) in the first and second resistor. For the Fano
factor of the whole system we obtain

F =
R2

1F1 +R2
2F2

(R1 +R2)2
. (119)

First of all, we now evaluate Eq. (119) for the case
of the double-barrier structure, where the intermediate
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electrode is placed between the barriers. Physically, this
would correspond to strong inelastic scattering inside the
quantum well — in contrast to the quantum-mechanical
discussion of the previous subsection, which implicitly
requires full phase coherence. Taking into account that
for high barriers F1 = F2 = 1, and that the resistances
R1 and R2 are inversely proportional to the tunneling
rates ΓL and ΓR, respectively, we immediately arrive at
Eq. (78), i.e. the result for the fully coherent case30.
We thus see that even though inelastic scattering modi-
fies both the conductance and shot noise of the resonant
tunneling structure, it leaves the Fano factor unchanged.
This statement, due to Chen and Ting [134] and Davies
et al [54], will be again demonstrated in Section V, where
the derivation of Eq. (78) based on a classical Langevin
approach (which corresponds to the absence of quantum
coherence) is presented.

Next we consider a quasi-one-dimensional geometry
and assume for a moment that the lead 3 divides the wire
into two identical parts. Then in Eq. (119) R1 = R2,
F1 = F2, and we obtain F = F1/2. Thus, the Fano fac-
tor of the whole wire is one half of the noise measured in
each segment.

This result, which describes local inelastic scattering
in the middle of the wire, can be generalized to uniform
inelastic scattering. For this purpose we introduce a cer-
tain length Li associated with inelastic scattering; we
assume that Li is much shorter than the total length of
the wire L. One must then consider initially a conductor
with Ni = L/Li additional fictitious voltage probes sep-
arated by distances Li along the conductor. In the fully
incoherent case this picture is equivalent to Ni identical
classical resistors connected in series. The Fano factor of
this system is then the Fano factor of the phase-coherent
segment divided by Ni. In particular, if the wire is dif-
fusive, the suppression factor31 is [74,82] F = (3Ni)

−1.
Thus, the conclusion is the following: Inelastic scattering
suppresses shot noise. A macroscopic system (large com-
pared to an inelastic scattering length, Ni ≫ 1) exhibits
no shot noise. This is a well known fact, the absence of
shot noise of macroscopic conductors is used to stabilize
lasers.

Shimizu and Ueda [133] and Liu and Yamamoto

30Lund Bø and Galperin [59] performed microscopic cal-
culation of noise in quantum wells in transverse magnetic
field with the account of electron-phonon scattering (phonon-
assisted tunneling). They found that the Fano factor is
suppressed by inelastic scattering, as compared with non-
interacting value. This result clearly contradicts to the con-
clusions of this subsection; we presently do not understand
the reasons for this discrepancy.

31Of course, not only the average of the noise vanishes in
macroscopic system, but also fluctuations. De Jong and
Beenakker found r.m.s.S ∝ N

−5/2
i . The weak localization

correction to shot noise decreases as N−2
i .

[129,130] provided a similar discussion of noise suppres-
sion in the crossover regime between mesoscopic behavior
and classical circuit theory (macroscopic behavior). Liu,
Eastman, and Yamamoto [91] performed Monte Carlo
simulations of shot noise and included explicitly electron-
phonon scattering.

Quasi-elastic scattering. In contrast to inelastic
scattering, dephasing processes leave the energy essen-
tially invariant. To simulate a scattering process which
destroys phase but leaves the energy invariant we now
have to consider a special voltage probe. We require that
the additional electrode conserves not only the total cur-
rent, but also the current in each small energy interval
[90]. Such a voltage probe will not give rise to energy
relaxation and dissipates no energy.

From the condition that the current in each energy
interval vanishes we find that the distribution function
in the reservoir of the voltage probe is given by

f3(E) =
G1f1(E) +G2f2(E)

G1 +G2
, (120)

where f1 and f2 are the Fermi functions at the reservoirs
1 and 2, and the conductances are G1 = R−1

1 , G2 = R−1
2 .

We have assumed again that there is no direct transmis-
sion between 1 and 2. Straightforward calculation gives
for the Fano factor [90]

F =
R3

1F1 +R3
2F2 +R2

1R2 +R1R
2
2

(R1 +R2)3
. (121)

We analyze now this result for various situations. First,
we see that for a ballistic wire divided by a dephas-
ing electrode into two parts, F1 = F2 = 0, shot noise
does not vanish (unlike Eq. (121)). We obtain F =
R1R2(R1 + R2)−2. Thus for a ballistic system, which
is ideally noiseless, dephasing leads to the appearance of
shot noise.

For the strongly biased resonant double-barrier struc-
ture, we have F1 = F2 = 1, and obtain again the result
(78), which is thus insensitive to dephasing.

For metallic diffusive wires, F1 = F2 = 1/3, Eq. (121)
yields for the ensemble averaged Fano factor F = 1/3 in-
dependent on the location of the dephasing voltage probe,
i. e. independent of the ratio of R1 and R2. Thus, our
consideration indicates that the noise suppression factor
for metallic diffusive wires is also insensitive to dephas-
ing, at least when the dephasing is local (in any point
of the sample). This result hints that the Fano factor
of an ensemble of metallic diffusive wires is not sensitive
to dephasing even if the latter is uniformly distributed.
Indeed, de Jong and Beenakker [82] checked this by cou-
pling locally a dephasing reservoir to each point of the
sample. Already at the intermediate stage their formulae
coincide with those obtained classically by Nagaev [75].
This proves that introducing dephasing with fictitious,
energy conserving voltage probes is in the limit of com-
plete dephasing equivalent to the Boltzmann-Langevin
approach. That inelastic scattering, and not dephasing,
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is responsible for the crossover to the macroscopic regime,
has been recognized by Shimizu and Ueda [133].

The effect of phase breaking on the shot noise in
chaotic cavities was investigated by van Langen and one
of the authors [115]. For a chaotic cavity connected to
reservoirs via quantum point contacts with NL and NR

open quantum channels, the Fano factors vanish F1 =
F2 = 0, and since R1 = πh̄/e2NL and R2 = πh̄/e2NR,
the resulting Fano factor is given by Eq. (96), i.e. it
is identical with the result that is obtained from a com-
pletely phase coherent, quantum mechanical calculation.
Thus for chaotic cavities, like for metallic diffusive wires,
phase breaking has no effect on the ensemble averaged
noise power.

Electron heating. This is the third kind of inelastic
scattering, which implies that energy can be exchanged
between electrons. Only the total energy of the electron
subsystem is conserved. Physically, this corresponds to
electron-electron scattering. Within the voltage probe
approach, it is taken into account by including the reser-
voir 3, with chemical potential µ3 determined to obtain
zero (instantaneous) electrical current and a temperature
T3, which is generally different from the lattice temper-
ature (or the temperature of the reservoirs 1 and 2), to
obtain zero (instantaneous) energy flux. For a detailed
discussion we refer the reader to the paper by de Jong and
Beenakker [82], here we only mention the result for two
identical diffusive conductors at zero temperature32. The
Fano factor is in this case F ≈ 0.38, which is higher than
the 1/3-suppression for the non-interacting case. We will
see in Section VI that the classical theory also predicts
shot noise enhancement for the case of electron heating.

Intermediate summary. Here are the conclusions
one can draw from the simple consideration we presented
above.

• Dephasing processes do not renormalize the ensem-
ble averaged shot noise power (apart from weak
localization corrections, which are destroyed by de-
phasing). In particular, this statement applies to
metallic diffusive wires, chaotic cavities, and reso-
nant double barrier structures.

• Inelastic scattering renormalizes even the ensemble
averaged shot noise power: A macroscopic sample
exhibits no shot noise. An exception is the res-
onant double barrier structure, subject to a bias
large compared to the resonant level width. Under
this condition neither the conductance nor the shot
noise of a double barrier are affected.

• As demonstrated for metallic diffusive wires elec-
tron heating enhances noise.

32The temperature of the reservoirs 1 and 2 is zero. The
temperature of the intermediate reservoir is in this case [82]
kBT3 = (

√
3/2π)e|V |.

The last statement implies the following scenario for
noise in metallic diffusive wires [80]. There exist three in-
elastic lengths, responsible for dephasing (L1), electron
heating (L2) and inelastic scattering (L3). We expect
L1 < L2 < L3. Indeed, requirements for dephasing (in-
elastic scattering) are stronger (weaker) than those for
electron heating. Then for the wires with length L≪ L2

the Fano factor equals 1/3 and is not affected by inelas-
tic processes; for L2 ≪ L ≪ L3 it is above 1/3, and for
L≫ L3 it goes down and disappears as L→ ∞.

In Section VI we will reconnect to the results presented
here within the classical Boltzmann-Langevin approach.

III. SCATTERING THEORY OF FREQUENCY
DEPENDENT NOISE SPECTRA

A. Introduction. Current conservation

The investigation of frequency dependent transport, in
particular, noise, is important, since it can reveal infor-
mation about internal energy scales of mesoscopic sys-
tems, not available from dc transport. On the other
hand, the investigation of the dynamic noise is a more
difficult task than the investigation of quasi-static noise.
This is true experimentally, since frequency dependent
measurements require a particularly careful control of
the measurement apparatus (one wants to see the ca-
pacitance of the sample and not that of the coaxial ca-
ble connecting to the measurement apparatus), and it
is also true theoretically. Addressing specifically meso-
scopic systems, the conceptual difficulty is that generally
it is meaningless to consider the dynamic response of non-
interacting electrons. Since this point remains largely un-
appreciated in the literature, we give here a brief expla-
nation of this statement. Consider the following system
of equations of classical electrodynamics33,

j = jp +
1

4π

∂E

∂t
; E = −∇ϕ; (122)

∇2ϕ = −4πρ; (123)

div jp +
∂ρ

∂t
= 0. (124)

Here j, ϕ and ρ are the density of the electric current
(particle current), the electric potential, and the charge
density, respectively; E is the electric field. Equation
(122) states that the total current j is a sum of the parti-
cle current jp and the displacement current, represented
by the second term on the rhs. Equations (123) and (124)
are the Poisson equation and the continuity equation, re-
spectively; they must be supplemented by appropriate

33For simplicity, we assume the lattice dielectric constant to
be uniform and equal to one.
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boundary conditions. We make the following observa-
tions.

(i) Equations (122), (123), and (124), taken together,
yield div j = 0: the total current density has neither
sources nor sinks. This is a general statement, which fol-
lows entirely from the basic equations of electrodynamics,
and has to be fulfilled in any system. Theories which fail
to yield a source and sink free total current density can-
not be considered as correct. The equation div j = 0 is
a necessary condition for the current conservation, as it
was defined above (Section II).

(ii) The particle current jp is generally not divergence-
less, in accordance with the continuity equation (124),
and thus, is not necessarily conserved. To avoid a possi-
ble misunderstanding, we emphasize that it is not a mere
difference in definitions: The experimentally measurable
quantity is the total current, and not the particle current.
Thus, experimentally, the fact that the particle current
is not conserved is irrelevant.

(iii) The Poisson equation (123), representing electron-
electron interactions, is crucial to ensure the conservation
of the total current. This means that the latter cannot
be generally achieved in the free electron model, where
the self-consistent potential ϕ is replaced by the external
electric potential.

(iv) In the static case the displacement current is zero,
and the particle current alone is conserved. In this case
the self-consistent potential distribution ϕ(r) is generally
also different from the external electrostatic potential,
but to linear order in the applied voltage the conductance
is determined only by the total potential difference. As a
consequence of the Einstein relation the detailed spatial
variation of the potential in the interior of the sample is
irrelevant and has no effect on the total current.

In mesoscopic physics the problem is complicated since
a sample is always a part of a larger system. It interacts
with the nearby gates (used to define the geometry of
the system and to control the number of charges in the
system). Thus a complete solution of the above system
of equations is usually a hopeless task without some se-
rious approximations. The theoretical task is to choose
idealizations and approximations which are compatible
with the basic conservation laws expressed by the above
equations. For instance, we might want to describe in-
teractions in terms of an effective (screened) interaction
instead of the full long range Coulomb interaction. It is
then necessary to ensure that such an effective interaction
indeed leads to the conservation of current.

Three frequency dependent types of noise spectra
should be distinguished: (i) Finite-frequency noise at
equilibrium or in the presence of dc voltage. (ii) Zero-
frequency noise in the presence of an ac voltage; the re-
sulting spectrum depends on the frequency of the ac-
voltage. (iii) Finite-frequency noise in the presence of
an ac voltage; this quantity depends on two frequen-
cies. Here we are interested mostly in the first type
of noise spectra; the second one is only addressed in
subsection III C. We re-iterate that, generally, one can

not find the ac conductance and the current fluctuations
from a non-interacting model. Even the finite frequency
current-current correlations (noise) at equilibrium or in
the presence of a dc voltage source, which are of pri-
mary interest in this Section, can not be treated with-
out taking account interactions. A simple way to see
this is to note that due to the fluctuation-dissipation
theorem, the equilibrium correlation of currents in the
leads α and β at finite frequency, Sαβ(ω), is related to
the corresponding element of the conductance matrix,
Sαβ(ω) = 2kBT [Gαβ(ω) + G∗βα(ω)]. The latter is a re-
sponse to average current in the lead α to the ac volt-
age applied to the lead β, and is generally interaction-
sensitive. Thus, calculation of the quantity Sαβ(ω) also
requires a treatment of interactions to ensure current con-
servation.

We can now be more specific and make the same point
by looking at Eq. (51) which represents the fluctu-
ations of the particle current at finite frequency. In-
deed, for ω = 0 the current conservation

∑

α Sαβ = 0
is guaranteed by the unitarity of the scattering matrix:
The matrix A(α,E,E) (Eq. (44)) contains a product
of two scattering matrices taken at the same energy,
and therefore it obeys the property

∑

α A(α,E,E) = 0.
On the other hand, for finite frequency the same ma-
trix A should be evaluated at two different energies
E and E + h̄ω, and contains now a product of two
scattering matrices taken at different energies. These
scattering matrices generally do not obey the property
∑

α s
†
αβ(E)sαγ(E + h̄ω) = δβγ , and the current conser-

vation is not fulfilled:
∑

α Sαβ(ω) 6= 0.
Physically, this lack of conservation means that there

is charge pile-up inside the sample, which gives rise to
displacement currents. These displacement currents re-
store current conservation, and thus need to be taken into
account. It is exactly at this stage that a treatment of
interactions is required. Some progress in this direction
is reviewed in this Section later on.

It is sometimes thought that there are situations when
displacement currents are not important. Indeed, the ar-
gument goes, there is always a certain energy scale h̄ωc,
which determines the energy dependence of the scatter-
ing matrices. This energy scale is set by the level width
(tunneling rate) Γ for resonant tunnel barriers, the Thou-
less energy Ec = h̄D/L2 for metallic diffusive wires (D
and L are the diffusion coefficient and length of the wire,
respectively), and the inverse Ehrenfest time (i.e. the
time for which an electron loses memory about its initial
position in phase space) for chaotic cavities. The scat-
tering matrices may be thought as energy independent
for energies below h̄ωc. Then for frequencies below ωc

we have
∑

α s
†
αβ(E)sαγ(E + h̄ω) ∼ δβγ , and the unitar-

ity of the scattering matrix assures current conservation,
∑

α Sαβ = 0. However, there are time-scales which are
not set by the carrier kinetics, like RC-times which reflect
a collective charge response of the system. In fact, from
the few examples for which the ac conductance has been
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examined, we know that it is the collective times which
matter34. Displacement currents can be neglected only, if
we can assure that these collective times are much shorter
than any of the kinetic time-scales discussed above. Fur-
thermore, there are problems which can only be treated
by taking interactions into account, even at arbitrarily
low frequency: Later on in this Section we will discuss
the RC-times of mesoscopic conductors capacitively cou-
pled to a gate. The noise induced into a nearby capacitor
is proportional to the square of the frequency. Naive dis-
cussions which do not consider the energy dependence of
the scattering matrix cannot predict such currents.

Let us at first consider the range of frequencies that
are much smaller than any inverse kinetic time scale and
smaller than any inverse collective response time. This
case is in some sense trivial, since the energy dependence
of the scattering matrices is neglected, and the system is
now not probed on the scale ωc. As a consequence there
is no novel information on the system compared to a zero
frequency noise measurement. In this case, as we will see,
the entire frequency dependence of the noise is due to the
frequency dependence of the Fermi functions. However, it
is the low-frequency measurements which are more easily
carried out, and therefore there is some justification to
discuss noise spectra in this frequency interval.

The rest of the Section is organized as follows. Sub-
section III B treats fluctuations of the particle current
of independent electrons, either at equilibrium or in the
presence of a dc bias, in the regime when the scattering
matrices can be assumed to be frequency independent.
Subsection III C generalizes the same notions for noise
caused by an ac bias. Afterwards, we relax the approxi-
mation of the energy independence of scattering matrices,
and in subsections III D and III E consider two simple ex-
amples. In both of them Coulomb interactions prove to
be important. Though the theory of ac noise is far from
being completed, we hope that these examples, repre-
senting the results available by now in the literature, can
stimulate further research in this direction.

In this Section, we only review the quantum-
mechanical description of frequency dependent noise,
based on the scattering approach. Alternatively, the
frequency dependence of shot noise in diffusive conduc-
tors may be studied based on the classical Boltzmann-
Langevin approach [140–145]. These developments are
described in Section VI.

34Exceptions are frequency dependent weak localization cor-
rections [137] which depend in addition to the RC-time also
on the dwell time [138], and perfect ballistic wires which have
a charge neutral mode determined by the transit time as the
lowest collective mode [139].

B. Low-frequency noise for independent electrons:
at equilibrium and in the presence of dc transport

General consideration. This subsection is devoted
to low-frequency noise, in a regime where the scatter-
ing matrices are energy independent. We take the fre-
quency, temperature and the voltage all below ωc, and
below any frequencies associated with the collective re-
sponse of the structure. For simplicity we only consider
the two-terminal case, µL = eV , µR = 0, V ≥ 0. We em-
phasize again that in this approach the internal energy
scales of mesoscopic conductors cannot be probed, nor is
there a manifestation of the collective modes. The fre-
quency dependence of noise is entirely due to the Fermi
functions.

Our starting point is Eq. (51), which in this form is
given in Ref. [146]. Taking the scattering matrices to be
energy independent, we write

S(ω) ≡ SLL(ω) =
e2

2πh̄

{

∑

n

T 2
n

∫

dE

× [fLL(E,ω) + fRR(E,ω)] +
∑

n

Tn (1 − Tn)

×
∫

dE [fLR(E,ω) + fRL(E,ω)]

}

, (125)

with the abbreviation

fαβ(E,ω) = fα(E) [1 − fβ(E + h̄ω)]

+ [1 − fα(E)] fβ(E + h̄ω). (126)

Here the Tn’s are, as before, (energy independent) trans-
mission coefficients. Performing the integration, we ob-
tain

S(ω) =
e2

2πh̄

{

2h̄ω coth

(

h̄ω

2kBT

)

∑

n

T 2
n

+

[

(h̄ω + eV ) coth

(

h̄ω + eV

2kBT

)

(127)

+ (h̄ω − eV ) coth

(

h̄ω − eV

2kBT

)]

∑

n

Tn (1 − Tn)

}

.

This formula expresses the noise spectral power for arbi-
trary frequencies, voltages, and temperatures (all of them
are assumed to be below ωc). The frequency dependent
functions in Eq. (127) are obtained already in the dis-
cussions of noise based on the tunneling Hamiltonian ap-
proach for junctions [24] (see also Refs. [26,147,27]). In
this approach one expands in the tunneling probability,
and consequently, to leading order, terms proportional
to
∑

n T
2
n are disregarded. The full expression Eq. (127)

including the terms proportional to T 2
n was derived by

Khlus [15] assuming from the outset that the scattering
matrix is diagonal. It is a general result for an arbi-
trary scattering matrix, if the Tn’s are taken to be the
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the eigenvalues of t†t. Later the result of Khlus was re-
derived by Yang [148] in connection with the QPC; the
many-channel case was discussed by Ueda and Shimizu
[149], Liu and Yamamoto [130], and Schoelkopf et al
[150].

ω

S

eV-eV

1

2

1

3

FIG. 22. Frequency dependence of noise for zero tem-
perature, (Eq. (129), solid line), and finite temperatures
(dash-dotted line, 2). Line 1 shows equilibrium noise,
S = e2|ω|

∑

n
Tn/π. Line 3 corresponds to the upper line

of Eq. (129). In this figure we set h̄ = 1.

We note first that for ω = 0, Eq. (127) reproduces
the results for thermal and shot noise presented in Sec-
tion II (for the two-terminal case and energy independent
transmission coefficients). Furthermore, at equilibrium
(V = 0) it gives the Nyquist noise,

Seq(ω) =
e2ω

π
coth

(

h̄ω

2kBT

)

∑

n

Tn, (128)

as implied by the fluctuation-dissipation theorem. For
zero temperature we obtain from Eq. (127)

S(ω) =
e2

πh̄
(129)

×
{

h̄|ω|∑n T
2
n + eV

∑

n Tn(1 − Tn), h̄|ω| < eV

h̄|ω|∑n Tn, h̄|ω| > eV
.

The frequency dependence is given by a set of straight
lines. For zero frequency, the result for shot noise is re-
produced, S = (e3V/πh̄)

∑

n Tn(1 − Tn). At higher fre-
quencies the spectral density increases, and for any fi-
nite ω it is not proportional to the voltage any more.
Thus, for finite frequency, like for finite temperature, we
do not have pure shot noise. At h̄ω = ±eV the noise
spectral power has a discontinuous derivative, and for
|ω| > eV/h̄ the noise spectrum tends to the equilibrium
value Eq. (128) determined by the zero-point quantum
fluctuations, independent of the voltage. Finite temper-
ature smears the singularities since now the Fermi func-
tions are continuous. The noise spectrum is shown in
Fig. 22. It can also be represented differently, if we de-
fine excess noise (for kBT = 0) as the difference between
the full noise power Eq. (129) and equilibrium noise,

Sex(ω) = S(ω) − e2|ω|∑n Tn/π. The excess noise is
given by

Sex(ω) =
e2

πh̄

∑

n

Tn (1 − Tn) (eV − h̄|ω|) , h̄|ω| ≤ eV,

and zero otherwise.
Eq. (127) is general and valid for all systems under the

conditions it was derived. Instead of discussing it for all
the examples mentioned in Section II, we consider only
the application to a metallic diffusive wire.

Metallic diffusive wires. Performing the disorder
averages of transmission coefficients with the distribu-
tion function (87), we find the result obtained earlier by
Altshuler, Levitov, and Yakovets [76],

S(ω) =
1

3
G

{

4h̄ω coth

(

h̄ω

2kBT

)

+ (h̄ω + eV ) coth

(

h̄ω + eV

2kBT

)

+ (h̄ω − eV ) coth

(

h̄ω − eV

2kBT

)}

, (130)

where G = e2N⊥l/2πh̄L is the conductance of a wire
with mean free path l and length L.

FIG. 23. Experimental results of Schoelkopf et al [150] for
the frequency dependence of noise in metallic diffusive wires.
Solid lines for each frequency indicate the theoretical result
(130). The quantity shown on the vertical axis is essentially
∂S/∂V .

An experimental investigation of the frequency de-
pendent noise in diffusive gold wires is presented by
Schoelkopf et al [150]; this paper reports one of the only
two presently available measurements of ac noise. They
find a good agreement with Eq. (130), where the elec-
tron temperature T was used as a fitting parameter35

35Due to effects of electron heating; see Section VI.
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(the same for all frequencies). The results of Ref. [150]
are plotted in Fig. 23 as a function of voltage for different
frequencies; theoretical curves are shown as solid lines. In
the experiment, the highest frequency corresponded ap-
proximately to the Thouless energy, and in this regime
Eq. (130) is well justified.

We have emphasized earlier that in this frequency
regime no internal dynamics of the system is probed. The
fact that Eq. (130) agrees with experiment is a conse-
quence of the strong screening in metals. In poor metals,
the RC-times might become long. A finite value of the
screening length may permit charge fluctuations and con-
sequently modify the noise behavior even at relative low
frequencies. We address this issue in Section VI.

Inelastic scattering. Now one can ask: What is the
effect of inelastic scattering on frequency dependent noise
in the regime, where the scattering matrices can be taken
to be energy independent. This problem was studied by
Ueda and Shimizu [149], and later by Zheng, Wang, and
Liu [151], who included electron-phonon interaction di-
rectly into the scattering approach, and by Liu and Ya-
mamoto [130], who used an approach based on dephasing
voltage probes. The general conclusion is, that like in the
case of the zero frequency, inelastic scattering suppresses
noise36.

C. Low-frequency noise for independent electrons:
Photon-assisted transport

Now we generalize the results of the preceding sub-
section to the case when the applied voltage is time-
dependent; the scattering matrices are still assumed not
to depend on energy. The fluctuations in the presence of
a potential generated by an ac magnetic flux were treated
by Lesovik and Levitov [152]; the fluctuation spectrum in
the presence of oscillating voltages applied to the contacts
of the sample was obtained in Ref. [153]. The results are
essentially the same; below we follow the derivation of
Ref. [153].

We consider a two-terminal conductor; the chemical
potential of the right reservoir is kept fixed (we as-
sume it to be zero), while the left reservoir is subject
to a constant voltage V̄ plus the oscillating component
U(t) = V (Ω) cos Ωt. One cannot simply use the station-
ary scattering theory as described in Section II. Instead,
the scattering states in the left lead are now solutions of
the time-dependent Schrödinger equation,

ψn(r, E, t) = χLn (r⊥) eikLnz−iEt/h̄

×
∞
∑

l=−∞
Jl

(

eV (Ω)

h̄Ω

)

e−ilΩt. (131)

36In contrast, the effect of dephasing on the finite frequency
noise seems not to have been investigated.

Thus, in the presence of an oscillating voltage each state
with the central energy E is split to infinitely many sub-
bands with energies E+ lh̄Ω, which have smaller spectral
weight. Following the literature on tunneling, this phe-
nomenon is called photon-assisted transport, since elec-
trons with higher energies (l > 0) have higher transmis-
sion probabilities, and might propagate through the sam-
ple thanks to the additional energy.

Now we use a formal trick, assuming that the oscil-
lating potential only exists asymptotically far from the
sample (and there Eq. (131) is valid), and decays slowly
towards the sample. Thus, there is a certain portion of
the left lead, where there is no oscillating potential, but
still no scattering. The annihilation operators in this part
of the left lead have thus the form

âLn(E) =
∑

l

Jl

(

eV (Ω)

h̄Ω

)

â′Ln(E − lh̄Ω),

where the operators â′ describe the states of the left reser-
voir. Instead of Eq. (34), we obtain

ÎL(t) =
e

2πh̄

∑

αβ

∑

mn

∫

dEdE′ei(E−E′)t/h̄

×
∑

lk

Jl

(

eVα

h̄Ω

)

Jk

(

eVβ

h̄Ω

)

(132)

× â′†αm(E − lh̄Ω)Amn
αβ (L;E,E′)â′βn(E′ − kh̄Ω),

and we set VL = V (Ω), VR = 0. Finally, we assume that
the frequency is not too high, so that the left reservoir
can be considered to be at (dynamic) equilibrium at any
instant of time. Then the averages of the operators â′

are essentially equilibrium averages, expressed through
the Fermi functions, fL = fF (E − eV̄ ) and fR = fF (E).

In the presence of a time-dependent voltage, the corre-
lation function SLL (49) depends not only on the time dif-
ference t− t′, but also on the absolute time τ = (t+ t′)/2.
In the following, we are interested in the noise spectra on
a time scale long compared to Ω−1. Then the noise power
can be averaged over τ ,

S(t− t′) =
1

τ̃

∫ τ̃

0

dτS(t − t′, τ), τ̃ =
2π

Ω
.

Leaving more general cases aside, we only give an expres-
sion for the zero-frequency component of SLL [152,153],

SLL(ω = 0,Ω) =
e2

2πh̄

∑

αβ

∫

dE
∑

l

J2
l

(

e(Vα − Vβ)

h̄Ω

)

× Tr [Aαβ(L)Aβα(L)] fαβ(E, lh̄Ω), (133)

where the matrices A are explicitly assumed to be energy
independent. For zero external frequency, Ω = 0, only
the Bessel function with l = 0 survives, and should be
taken equal to one for any α and β; then we reproduce the
zero-frequency expression (52). Performing the energy
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integration and introducing the transmission coefficients,
we obtain [154]

S(Ω) =
e2

2πh̄

{

4kBT
∑

n

T 2
n

=

∞
∑

l=−∞
J2

l

(

eV (Ω)

h̄Ω

)

∑

n

Tn (1 − Tn) (134)

×
[

(

lh̄Ω + eV̄
)

coth

(

lh̄Ω + eV̄

2kBT

)

+
(

lh̄Ω − eV̄
)

coth

(

lh̄Ω − eV̄

2kBT

)]}

.

For zero temperature, Eq. (134) exhibits singularities at
voltages V̄ = lh̄Ω/e: The derivative ∂S/∂V̄ is a set of
steps. The height of each step depends on the ac voltage
due to the Bessel function in Eq. (134).

Lesovik and Levitov [152] considered a geometry of (an
almost closed) one-channel loop of length L connected
to two reservoirs. The loop contains a scatterer, and
is pierced by the time-dependent magnetic flux Φ(t) =
Φa sin Ωt. The time dependent flux generates an electric
field and thus an internal voltage U(t) = Ua cos Ωt with
eUa = 2π(Φa/Φ0)(L/2πR)h̄Ω, where L is the length of
the segment on the circle with radius R. In addition, a
constant voltage Ū is applied. The magnetic flux can be
incorporated in the phase of the scattering matrix, and
the previous analysis is easily generalized for this case.
Ref. [152] found that for zero temperature ∂S/∂Ū is again
a step function of voltage. Steps occur at Ū = lh̄Ω/e,
and the height of each step is λl = T (1−T )J2

l (eUa/h̄Ω),
where T is the transmission coefficient. In the Ref. [152]
the argument of the Bessel function is written in terms
of the ratio of fluxes 2πΦa/Φ0 and the effect is called
a non-stationary Aharonov-Bohm effect. However, we
emphasize that what is investigated is the response to the
external electric field generated by the oscillating flux.
This is a classical response, unrelated to any Aharonov-
Bohm type effect.

It is remarkable that in the case of energy indepen-
dent transmission probabilities the response to the elec-
tric field considered in Ref. [152] is the same as that of
an oscillating voltage V ≡ Ua applied to a contact.

Levinson and Wölfle [155] considered a related prob-
lem: the noise for the transmission through a barrier with
an oscillating random profile (originating, for instance,
from the external irradiation). The latter is represented
by a one-dimensional potential

U(x, t) = U0(x) + δU(x, t).

The random component δU is assumed to be zero on av-
erage, and its second moment is a function of t−t′. In this
case, current-current correlations, 〈δI(t)δI(t′)〉, for each
particular realization of the random potential depend on
both times t and t′. However, after averaging over disor-
der realizations, the resulting noise only depends on t−t′

and can be Fourier transformed. The scattering matrices
are energy independent for frequencies below the inverse
time of flight through the barrier, ω ≪ vF /L, with L
being the length of the barrier.

A remarkable feature of this model is that if the barrier
and the irradiation are symmetric, U0(x) = U0(−x), and
δU(x, t) = δU(−x, t), and no voltage is applied between
the reservoirs, there is no current generated by the irradi-
ation. On the other hand, a non-equilibrium contribution
to noise exists. In particular, when the second moment of
the random potential is δU(x, t)δU(x′, t′) = V 2

0 δ(x− x′),
it happens to have the same frequency structure as the
equilibrium one (128), but with the coefficient propor-
tional to V 2

0 . The voltage applied to the reservoirs is,
as usual, one more source of non-equilibrium noise. For
further details, we refer the reader to Ref. [155].

FIG. 24. (a) Theoretical results (134) for various ampli-
tudes of the ac voltage; dotted line shows the dc results; (b)
Experimental results of Schoelkopf et al [154] for the same
parameters; (c) Experimental results plotted as ∂2S/∂V̄ 2 for
different ac voltage amplitudes. The frequency Ω is fixed.

Experimentally, noise in response to a simultaneous
dc voltage and ac voltage applied to the contacts of the
sample was studied by Schoelkopf et al [154] in phase
coherent metallic diffusive wires37. They measured zero-

37As usual, for metallic diffusive wires
∑

n
T 2

n and
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frequency noise as a function of voltage V̄ in the GHz
range. The results are presented in Fig. 24 as ∂S/∂V̄ and
∂2S/∂V̄ 2. The latter quantity is expected to have sharp
peaks at the resonant voltages V̄ = lh̄Ω/e. Indeed, three
peaks, corresponding to l = 0,±1 are clearly seen; others
are smeared by temperature and not so well pronounced.

Ref. [153] emphasized the need for a self-consistent cal-
culation of photon-assisted transport processes even in
the case that the only quantity of interest are the cur-
rents or noise-spectra measured at zero frequency. The
true electric field in the interior of the conductor is not
the external field. The fact that the experimental results
agree rather well with the simple results presented here
(which do not invoke any self-consistency) is probably a
consequence of the effective screening of the metallic con-
ductor. The true potential is simply linear in the range of
frequencies investigated experimentally. A self-consistent
spectrum for photon-assisted noise spectra can probably
be developed along the lines of Ref. [153].

D. Noise of a capacitor

Now we turn to the problems where the energy depen-
dence of the scattering matrices is essential. Rather than
trying to give the general solution (which is only avail-
able for the case when the potential inside the system
is spatially uniform [156,157]), we provide a number of
examples which could serve as a basis for further inves-
tigations of finite frequency noise.

The simple case of shot noise in a ballistic wire was
studied by Kuhn, Reggiani, and Varani [158,159]. They
found signatures of the inverse flight time vF /L. How-
ever, the interactions are taken into account only implic-
itly via what the authors call “quantum generalization of
the Ramo-Shockley theorem”. We do not know in which
situations this approach is correct, and it certainly can-
not be correct universally. Thus, even this simple case
cannot be considered as solved and needs further consid-
eration.

b)

L R L R

G

a)

FIG. 25. A mesoscopic capacitor (a); a mesoscopic conduc-
tor vis-a-vis a gate (b).

∑

n
Tn(1 − Tn) must be replaced by 2lN⊥/3L and lN⊥/3L,

respectively.

We start from the simplest system — a mesoscopic ca-
pacitor (Fig. 25a), which is connected via two leads to
equilibrium reservoirs. Instead of the full Poisson equa-
tion interactions are described with the help of a geomet-
rical capacitance C. There is no transmission from the
left to the right plate, and therefore there is no dc current
from one reservoir to the other. Moreover, this system
does not exhibit any noise even at finite frequency if the
scattering matrix is energy independent. Indeed, if only
the matrices sLL and sRR are nonzero, we obtain from
Eq. (51)

S
(0)
αβ (ω) =

e2

2πh̄
δαβ

∫

dE Tr
{[

1 − s†αα(E)sαα(E + h̄ω)
]

×
[

1 − s†αα(E + h̄ω)sαα(E)
]}

× fα(E)(1 − fα(E + h̄ω)). (135)

Here we used the superscript (0) to indicate that the fluc-
tuations of the particle current, and not the total current,
are discussed. If the scattering matrices are energy in-
dependent, Eq. (135) is identically zero due to unitar-
ity. Another way to make the same point is to note that
since SLR = 0, the only way to conserve current would
be SLL = 0.

Before proceeding to solve this problem, we remark
that Eq. (135) describes an equilibrium fluctuation
spectrum and via the fluctuation dissipation theorem

S
(0)
αα(ω) = 2h̄ωgαα(ω) coth(h̄ω/2kBT ) is related to the

real part of a conductance gαα(ω) given by

gαα(ω) =
e2

h̄

∫

dE Tr
{[

1 − s†αα(E)sαα(E + h̄ω)
]}

× fα(E) − fα(E + h̄ω)

h̄ω
. (136)

In what follows, the fluctuation dissipation theorem for
the non-interacting system also ensures this theorem for
the interacting system.

Current conservation is restored only if interactions are
taken into account. Below we assume that charging ef-
fects are the only manifestation of interactions [157,131].
We first present the general result which is, within the
limitations stated above, valid for arbitrary frequencies.
We then consider in detail the low frequency expansion
of this result which can be expressed in physically ap-
pealing quantities: an electrochemical capacitance and a
charge relaxation resistance.

General result. Our starting point are the particle

current operators in the left and right lead (43), Î
(0)
L (t)

and Î
(0)
R (t). Their fluctuation spectra are determined by

Eq. (135). Now we must take into account that the
total currents are in fact not just the particle currents
but contain an additional contribution generated by the
fluctuating electrostatic potential on the capacitor plates.
We introduce the operators of the potential on the left
ûL(t) and right ûR(t) plate. The fluctuation of the total
current through the lead α can be written in operator
form as follows,

46



∆Îα(t) = δÎα(t) +

∫

dt′χα(t− t′)δûα(t′), α = L,R.

(137)

Here we introduced δÎα(t) = Î
(0)
α (t)−〈I(0)

α 〉 and δûα(t) =
ûα(t) − 〈uα〉. Furthermore, χα is the response func-
tion which determines the current generated at contact
α in response to an oscillating potential on the capac-
itor plate. For the simple case considered here, it can
be shown [157] that this response function is directly
related to the the ac conductance, Eq. (136), for non-
interacting electrons, which gives the current through the
lead α in response to a voltage applied to the same lead,
χα(ω) = −gαα(ω). The minus sign is explained by noting
that the current fluctuation is the response to µα − uα

rather than uα. The operators ∆Î, and not δÎ, determine
the experimentally measured quantities.

The total current in this system is the displacement
current. In the capacitance model the charge of the ca-
pacitor Q̂ is given by Q̂ = C(ûL − ûR). Note that this
is just the Poisson equation expressed with the help of a
geometrical capacitance. To the extent that the poten-
tial on the capacitor plate can be described by a uniform
potential this equation is valid for all frequencies. Then
the fluctuations of the current through the left and right
leads are

∆ÎL(t) =
∂

∂t
δQ̂(t) = C

∂

∂t
[δûL(t) − δûR(t)] , (138)

and ∆ÎL(t) = −∆ÎR(t). Thus, the conservation of the to-
tal current is assured. In contrast to the non-interacting
problem, the currents to the left and right are now com-
pletely correlated. Equations (137) and (138) can be used
to eliminate the voltage fluctuations. The result is con-
veniently expressed in the frequency representation,

∆ÎL = −∆ÎR =
iωC

gLLgRR − iωC(gLL + gRR)

×
[

gLLδÎR − gRRδÎL

]

.

The noise power S ≡ SLL becomes

S(ω) =
ω2C2

|gLLgRR − iωC(gLL + gRR)|2

×
[

|gRR|2S(0)
LL + |gLL|2S(0)

RR

]

. (139)

Eq. (139) expresses the frequency dependent noise spec-
trum of the interacting system in terms of the conduc-

tances gLL(ω), gRR(ω) and the noise spectra S
(0)
LL, S

(0)
RR

of the problem without interactions. Together with Eq.
(135), this is the result of the first step of our calcula-
tion. Note that the noise of the capacitor depends only
implicitly, through the scattering matrices and the Fermi
functions, on the stationary (dc) voltage difference across
the capacitor. Eq. (139) is thus valid independently on

whether the potentials in the two reservoirs are the same
or not.

So far, our consideration is valid in the entire frequency
range up to the frequencies at which the concept of a
single potential no longer holds: ω ≪ e2/ǫd, where ǫ and
d are the static susceptibility and the distance between
the capacitor plates, respectively.

Low-frequency expansion. Now we turn to the low-
frequency expansion of Eq. (139), leaving only the lead-
ing term. The expansion of gαα can be easily obtained
[157],

gαα(ω) = −iωe2ναAα +O(ω2),

ναAα = − 1

2πi

∫

dE
∂fα

∂E
Tr

(

s†αα(E)
∂sαα(E)

∂E

)

, (140)

where να is the density of states per unit area and Aα

is the area of the cross-section of the plate α. The fact
that the density of states can be expressed in terms of the
scattering matrix is well known [160,161]. Expanding Eq.
(135), we write38

S(0)
αα =

e2h̄ω2kBT

π

∫

dE

(

−∂fα

∂E

)

Tr

(

s†αα(E)
∂sαα(E)

∂E

)2

+ O(|ω|3).

Now we introduce the electrochemical capacitance,

C−1
µ ≡ C−1 + (e2νLAL)−1 + (e2νRAR)−1, (141)

and the charge relaxation resistances,

Rqα =
h̄

4πe2ν2
αA2

α

∫

dE

(

−∂fα

∂E

)

× Tr

(

s†αα(E)
∂sαα(E)

∂E

)2

. (142)

These two quantities, which determine the RC-time of
the mesoscopic structure, now completely specify the low
frequency noise of the capacitor. A little algebra gives
[157,131]

S = 4kBTω
2C2

µ (RqL +RqR) +O(ω3). (143)

We remark that the charge relaxation resistance is de-
termined by half the resistance quantum πh̄/e2 and not
2πh̄/e2, reflecting the fact that each plate of the capaci-
tor is coupled to one reservoir only.

We note now that the low-frequency expansion of the
ac conductance (admittance) of the same capacitor [157]
has a form

38For zero temperature, the expansion of Eq. (135) starts
with a term proportional to |ω|3 rather than ω2. As a result,
4kBT is replaced by 2h̄|ω| in the final expression (143) for
noise S.
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G(ω) = −iωCµ + ω2C2
µ (RqL +RqR) +O(ω3). (144)

Thus, we see that the fluctuation-dissipation theorem is
also obeyed for the interacting system. Again, the noise
spectrum of this equilibrium system contains the same
information as the admittance. We emphasize once more
that it is not required that the electrochemical potential
of the two plates of the capacitor are identical. The re-
sults given above also hold if there is a large dc voltage
applied across the capacitor.

The electrochemical capacitance and the charge relax-
ation resistance have been evaluated for a number of ex-
amples. In the limit of one quantum channel only, the
charge relaxation resistance is universal, independent of
the properties of the scattering matrix, and given by
Rq = πh̄/e2. This is astonishing in view of the fact that
if a tunnel barrier is inserted in the channel connecting
the capacitor plate to the reservoir one would expect a
charge relaxation resistance that diverges as the tunnel
barrier becomes more and more opaque. For a chaotic
cavity connected via a perfect single-channel lead to a
reservoir and coupled capacitively to a macroscopic gate,
the distribution of the electrochemical capacitance has
been given in Ref. [162]. In this case the charge relax-
ation resistance, as mentioned above, is universal and
given by Rq = πh̄/e2. For a chaotic cavity coupled via
an N -channel quantum point contact to a reservoir and
capacitively coupled to a macroscopic gate, the capaci-
tance and charge relaxation resistance can be obtained
from the results of Brouwer and one of the authors [138].
For large N , for an ensemble of chaotic cavities, the ca-
pacitance fluctuations are very small, and the averaged
charge relaxation resistance is given by Rq = 2πh̄/e2N .
If a tunnel barrier is inserted into the contact, the en-
semble averaged resistance is [163] Rq = 2πh̄/e2TN for
a barrier which couples each state inside the cavity with
transmission probability T to the reservoir. In accor-
dance with our expectation the charge relaxation resis-
tance is determined by the two-terminal tunnel barrier
resistance Rt = 2πh̄/e2TN . For additional examples we
refer the reader to Ref. [164] which presents an overview
of the known charge relaxation resistances Rq for meso-
scopic conductors.

E. Shot noise of a conductor observed at a gate

It is interesting to ask what would be measured at a
gate that couples capacitively to a conductor which is
in a transport state. In such a situation, in the zero-
temperature limit, the low frequency noise in the con-
ductor is the shot noise discussed in this Review. Thus
we can ask, what are the current fluctuations capacitively
induced into a gate due to the shot noise in the nearby
conductor? To answer this question we consider a meso-
scopic conductor vis-a-vis a macroscopic gate [98]. The
whole system is considered as a three-terminal structure,
with L and R labeling the contacts of the conductor, and

G denoting the gate (Fig. 25b). The gate and the con-
ductor are coupled capacitively with a geometrical ca-
pacitance C. For a macroscopic gate the fluctuations
of the potential within the gate are small and can be
neglected. Finally, the most crucial assumption is that
the potential inside the mesoscopic conductor is uniform
and may be described by a single (fluctuating) value u.
This assumption is often made in the discussion of the
Coulomb blockade effect, but it is in reality almost never
satisfied39.

We provide a solution to this problem by extending the
discussion of the mesoscopic capacitor. We start from the

operators of the particle currents, Î
(0)
α . We have Î

(0)
G = 0,

since without interactions there is no current through a
macroscopic gate, and correlations of other current oper-
ators are given by Eq. (51). We introduce the operator of
potential fluctuation δû(t) in the conductor; the charge

fluctuation is δQ̂(t) = Cδû(t). Since there is transmission
from the left to the right, we write for the fluctuations of
the total currents,

∆Îα(t) = δÎα(t) +

∫ t

−∞
dt′χα(t− t′)δû(t′), α = L,R

∆ÎG(t) = −C ∂

∂t
δû(t). (145)

with the condition ∆Î
(0)
L + ∆Î

(0)
R = C∂δû(t)/∂t, which

ensures the current conservation. It is important that the
quantities χα, which determine the response of currents
at the terminals to the potential inside the sample, must
be evaluated at equilibrium, and, since this potential is
time dependent, the ac current should be taken. The
entire dependence on u of the average current is due to
scattering matrices. In the semi-classical approximation
they depend on the combination E − eu, and the deriva-
tive with respect to the internal potential is essentially
the derivative with respect to energy. Retaining only the
leading order in frequency, we obtain (see e.g. [136])

χα(ω) = iωe2Nα +O(ω2),

39There are no quantum-mechanical calculations of fre-
quency dependent noise with the potential profile taken into
account available in the literature. However, when the con-
ductor is a perfect wire, with a nearby gate, the existing calcu-
lation of ac conductance [165] can be generalized to calculate
noise. One has to start from the field operators, write a den-
sity operator, and solve the Poisson equation as an operator
equation for the field operator of the (electro-chemical) po-
tential. This lengthy calculation leads to an obvious result:
there is no non-equilibrium noise in the absence of backscat-
tering. Though this outcome is trivial, we hope that the same
approach may serve as a starting point to solve other prob-
lems, like a wire with backscattering. A related discussion
was developed classically for the frequency dependent noise
in diffusive conductors [140–145], see Section VI.
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Nα = − 1

4πi

∫

dE
∂f

∂E

∑

β

× Tr

(

s†αβ

∂sαβ

∂E
−
∂s†αβ

∂E
sαβ(E)

)

, (146)

which is the analog of Eq. (140) for a multi-probe conduc-
tor. The quantities Nα, called emittances in Ref. [136],
obey the rule NL + NR = νA (with ν and A being the
density of states and the area/volume of the conductor,
respectively). They have the meaning of a density of
the scattering states which describes the electrons exit-
ing eventually through the contact α, irrespectively of
the contact they entered through.

Combining Eqs. (145) and (146), we obtain

∆ÎL =
[

1 − e2NLK
]

δÎL − e2NLKδÎL,

∆ÎR = −e2NRKδÎL +
[

1 − e2NRK
]

δÎR,

∆ÎG = −CK
[

δÎL + δÎR

]

,

where K ≡ (C + e2NL + e2NR)−1 plays the role of an
effective interaction which determines the change in the
electrostatic potential inside the conductor in response
to a variation of the charge inside the conductor. In the
following, we are only interested in the fluctuations of
the current through the gate. For this quantity, which
vanishes for zero frequency, we obtain

SGG = C2K2
[

S
(0)
LL + S

(0)
LR + S

(0)
RL + S

(0)
RR

]

. (147)

We note that the sum of all the current fluctuation spec-
tra in Eq. (147) is just the fluctuation spectrum of the
total charge on the conductor: The continuity equation
gives [98]

∑

α Îα(ω) = iωeN̂ (ω) where N̂ is the opera-
tor of the charge in the mesoscopic conductor. From the
current operator Eq. (43) we obtain

N̂ (t) =
e

2πh̄

∑

αβγ

∑

mn

∫

dEdE′ei(E−E′)t/h̄

× â†βm(E)Nmn
βγ (E,E′)âγn(E′), (148)

with the non-diagonal density of states elements Nmn
βγ

Nmn
βγ (E,E′) =

1

2πi(E − E′)

∑

α

[δmnδαβδαγ

−
∑

k

s†αβ;mk(E)sαγ;kn(E′)

]

, (149)

or in matrix notation Nβγ = (1/2πiω)
∑

αAβγ(α,E,E+
h̄ω) with the current matrix Aβγ(α,E,E′) given by Eq.
(44). Thus, instead of Eq. (147) we can also express the
fluctuation spectrum of the current at the gate in terms
of the charge fluctuation spectrum

SGG = e2C2K2ω2S
(0)
NN , (150)

with

S
(0)
NN(ω) =

e2

2πh̄

∑

γδ

∑

mn

∫

dENmn
γδ (E,E + h̄ω)

× Nnm
δγ (E + h̄ω, E) {fγ(E) [1 − fδ(E + h̄ω)]

+ [1 − fγ(E)] fδ(E + h̄ω)} . (151)

Eq. (151) is, in the absence of interactions, the general
fluctuation spectrum of the charge on a mesoscopic con-
ductor.

In the zero-temperature limit, we obtain [98]

SGG (152)

= 2C2
µω

2

{

Rqh̄|ω| +RV (eV − h̄|ω|), h̄|ω| < eV,
Rqh̄|ω|, h̄|ω| > eV,

where V > 0 is voltage applied between left and right
reservoirs. Here the electro-chemical capacitance is

C−1
µ = C−1 +

[

e2 (NL +NR)
]−1

, (153)

the charge relaxation resistance40 reads

Rq =
πh̄

e2

∑

γδ=L,R

Tr
(

N γδN †γδ

)

[

∑

γ

Tr N γγ

]−2

, (154)

and the non-equilibrium resistance is

RV =
2πh̄

e2
Tr
(

NLRN †LR

)

[

∑

γ

Tr N γγ

]−2

, (155)

with the notation

N γδ =
1

2πi

∑

α

s†αγ

∂sαδ

∂E
.

It can be checked easily that equilibrium noise, Seq
GG =

2C2
µRqh̄|ω|3, satisfies the fluctuation-dissipation theo-

rem. The resistance Rq can be extracted from the ac
conductance as well. However, non-equilibrium noise
is described by another resistance, RV , which is a new
quantity. It probes directly the non-diagonal density of
states elements NLR of the charge operator. The non-
diagonal density of states elements which describe the
charge fluctuations in a conductor in the presence of shot
noise can be viewed as the density of states that is asso-
ciated with a simultaneous current amplitude at contact
γ and contact δ, regardless through which contact the
carriers leave the sample. These density of states can
be also viewed as blocks of the Wigner-Smith time delay
matrix (2πi)−1s†ds/dE.

40In terms of the previous subsection, this is the charge re-
laxation resistance of the conductor. The charge relaxation
resistance of the macroscopic gate is zero.
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For a saddle-point quantum point contact the resis-
tances Rq and RV are evaluated in Ref. [98]. In the
presence of a magnetic field RV has been calculated for
a saddle point model by one of the authors and Mar-
tin [166], and is shown in Fig. 26. For a chaotic cavity
connected to two single channel leads both resistances
are random quantities, for which the whole distribution
function is known [98]. Thus, the resistance Rq (in units
of 2πh̄/e2) assumes values between 1/4 and 1/2, with the
average of 3/8 (orthogonal symmetry) or 5/14 (unitary
symmetry). The resistance RV lies in the interval be-
tween 0 and 1/4, and is on average 1/12 and 1/14 for
orthogonal and unitary symmetry, respectively.
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FIG. 26. RV (solid line, in units of 2πh̄/e2) and the con-
ductance G (dashed line, in units of e2/2πh̄) as a function
of EF − V0 for a saddle point QPC with ωx/ωy = 1 and
ωc/ωx = 4, ωc is the cyclotron frequency. After Ref. [166].

IV. SHOT NOISE IN HYBRID NORMAL AND
SUPERCONDUCTING STRUCTURES

The dissipationless current (supercurrent) in supercon-
ductors is a property of a ground state, and therefore
is noiseless – it is not accompanied by any fluctuations.
However, noise appears if the superconductor is in con-
tact with piece(s) of normal metals. This Section is de-
voted to the description of shot noise in these hybrid
structures, which exhibit a variety of interesting phenom-
ena. Following the point of view of the previous Sections,
we present here a description which is based on an ex-
tension of the scattering approach to hybrid structures.

A. Shot noise of normal-superconductor interfaces

Simple NS interface, scattering theory and gen-

eral expressions. We consider first an interface of nor-
mal metal and superconductor (NS). If the applied volt-

age is below the superconducting gap ∆, the only mecha-
nism of charge transport is Andreev reflection at the NS
interface: an electron with energy E approaching the in-
terface from the normal side is converted into a hole with
energy −E. The velocity of the hole is directed back from
the interface to a normal metal. The missing charge 2e
on the normal side appears as a new Cooper pair on the
superconducting side. There is, of course, also a reverse
process, when a Cooper pair recombines with a hole in
the normal conductor, and creates an electron. At equi-
librium, both processes have the same probability, and
there is thus no net current. However, if a voltage is
applied, a finite current flows across the NS interface.

The scattering theory which we described in Section II
has to be extended to take into account the Andreev scat-
tering processes. We give here only a sketch of the deriva-
tion; a more detailed description, as well as a comprehen-
sive list of references, may be found in Refs. [72,168]. To
set up a scattering problem, we consider the following
geometry (Fig. 27): The boundary between normal and
superconducting parts is assumed to be sharp, and elas-
tic scattering happens inside the normal metal (shaded
region) only. The scattering region is separated from the
NS interface by an ideal region 2, which is much longer
than the wavelength, and thus we may there use asymp-
totic expressions for the wave functions. This spatial
separation of scattering from the interface is artificial.
It is not really necessary; our consideration leading to
Eq. (159) and (160) does not rely on it. Furthermore,
for simplicity, we assume that the number of transverse
channels in the normal lead 1 and in the intermediate
normal portion 2 is the same.
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FIG. 27. A simplified model of an NS interface adopted for
the scattering description. Scattering is assumed to happen in
the shaded area inside the normal metal, which separates the
ideal normal parts 1 and 2. Andreev reflection is happening
strictly at the interface separating 2 and the superconductor.

We proceed in much the same way as in Section II and
define the annihilation operators in the region 1 asymp-
totically far from the scattering area, â1en, which an-
nihilate electrons incoming on the sample. These elec-
trons are described by wave functions χ1n(r⊥) exp(ikF z)
with unit incident amplitude, where the coordinate z is
directed towards the superconductor (from the left to
the right in Fig. 27), the index n labels the transverse
channels. Here we neglected the energy dependence of
the wave vector, anticipating the fact that only energies
close to the Fermi surface will play a role in transport.

Similarly, the operator b̂1en annihilates electrons in the
outgoing states in the region 1, χ1n(r⊥) exp(−ikF z).
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For holes, we define an annihilation operator in the
incoming states in the region 1 as â1hn, and the cor-
responding wave function is χ1n(r⊥) exp(−ikF z). Note
that though this wave function is identical to that for
outgoing electrons, it corresponds to the incoming state
with energy −E. The velocity of these holes is directed
towards the interface. The annihilation operator for holes

in the outgoing states, b̂1hn, is associated with the wave
function χ1n(r⊥) exp(ikF z). Creation operators for elec-
trons and holes are defined in the same way. Thus, the
difference with the scattering theory for normal conduc-
tors is that we now have an extra index, which assumes
values e, h and discriminates between electrons and holes.

The electron and hole operators for the outgoing states
are related to the electron and hole operators of the in-
coming states via the scattering matrix,
(

b̂1e

b̂1h

)

= s

(

â1e

â1h

)

≡
(

see seh

she shh

)(

â1e

â1h

)

, (156)

where the element see gives the outgoing electron current
amplitude in response to an incoming electron current
amplitude, she gives the outgoing hole current amplitude
in response to an incoming electron current amplitude,
etc. The generalized current operator (32) for electrons
and holes in region 1 is

ÎL(t) =
e

2πh̄

∫ ∞

0

dEdE′ei(E−E′)t/h̄

× Tr
[

â†1e(E)â1e(E′) − â†1h(E)â1h(E′)

− b̂†1e(E)b̂1e(E′) + b̂†1h(E)b̂1h(E′)
]

, (157)

or, equivalently,

ÎL(t) =
e

2πh̄

∑

αβ

∫ ∞

0

dEdE′ei(E−E′)t/h̄

× Tr
[

â†1α(E)Aαβ(E,E′)â1β(E′)
]

, (158)

where we have again introduced electron-hole indices α
and β, and the trace is taken over channel indices. The
matrix A is given by

A(E,E′) = Λ − s†(E)Λs(−E′), Λ =

(

1 0
0 −1

)

,

with the matrix Λ discriminating between electron and
holes. Introducing the distribution functions for elec-
trons fe(E) = [exp[(E − eV )/kBT ] + 1]−1 and holes
fh(E) = [exp[(E + eV )/kBT ] + 1]−1, and acting in a
similar way as in Section II for normal systems, we ob-
tain from the current operator and the usual quantum
statistical assumptions for the averages and correlations
of the electron and hole operators in the normal reservoir
the zero-temperature conductance

G =
e2

πh̄
Tr
[

s†heshe

]

(159)

and the shot noise power

S =
4e3|V |
πh̄

Tr
[

s†heshe

(

1 − s†heshe

)]

(160)

in the zero-temperature limit up to linear order in the ap-
plied voltage. Here we have made use of the unitarity of

the scattering matrix, in particular, s†eesee + s†heshe = 1,
and of the particle-hole symmetry. As a consequence,
both the conductance and the noise can be expressed in
terms of she only. We emphasize that Eqs. (159) and
(160) are completely general: In particular, they do not
require a clean NS interface and the spatial separation of
the scattering region of the normal conductor from the
interface. However, without such additional assumptions
the evaluation of the scattering matrix can be very diffi-
cult.

To gain more insight we now follow Beenakker [72] and
assume, as shown in Fig. 27, that a perfect region of nor-
mal conductor is inserted between the disordered part of
the conductor and the NS-interface. In region 2, incom-
ing states for electrons and outgoing states for holes have
wave functions proportional to exp(−ikF z), while out-
going states for electrons and incoming states for holes
contain the factor exp(ikF z). We also define annihilation

operators â2en, â2hn, b̂2en, b̂2hn, and creation operators
for this region.

The scattering inside the normal lead is described by a
4N⊥× 4N⊥ scattering matrix sN (N⊥ being the number
of transverse channels),







b̂1e

b̂2e

b̂1h

b̂2h






= sN







â1e

â2e

â1h

â2h






, (161)

where operators like b̂1e are vectors, each component de-
noting an individual transverse channel. The elastic scat-
tering in the normal region does not mix electrons and
holes, and therefore in the electron-hole decomposition
the matrix sN is diagonal,

sN =

(

s0(E) 0
0 s∗0(−E)

)

, s0(E) =

(

r11 t12
t21 r22

)

,

Here s0(E) is the usual 2N⊥ × 2N⊥ scattering matrix
for electrons, which contains reflection and transmission
blocks.

To leading order in ∆/EF (if both the normal conduc-
tors and the superconductor have identical Fermi ener-
gies) Andreev reflection at a clean interface is described
by a 2N × 2N scattering matrix, which is off-diagonal in
the electron-hole decomposition, and is given by

(

â2e

â2h

)

= γ

(

0 exp(iφ)
exp(−iφ) 0

)(

b̂2e

b̂2h

)

, (162)

with γ ≡ exp[−i arccos(E/∆)]. With some algebra
we can now find expressions for the scattering matrices
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see, seh, . . . in terms of the Andreev reflection amplitude
and the scattering matrix of the normal region [72],

see(E) = r11(E) + γ2t12(E)r∗22(−E)

×
[

1 − γ2r22(E)r∗22(−E)
]−1

t21(E),

seh(E) = γ exp(iφ)t12(E)

×
[

1 − γ2r∗22(−E)r22(E)
]−1

t∗21(−E),

she(E) = γ exp(−iφ)t∗12(−E)

×
[

1 − γ2r22(E)r∗22(−E)
]−1

t21(E), (163)

shh(E) = r∗11(−E) + γ2t∗12(−E)r22(E)

×
[

1 − γ2r∗22(−E)r22(E)
]−1

t∗21(−E).

These matrices express amplitudes for an electron (hole)
incoming from the left to be eventually reflected as an
electron (hole). The corresponding probability is given
by the squared absolute value of the matrix element. In
the following, we only consider the case when no magnetic
field is applied to the structure. Then the matrix s0(E) is
symmetric. For e|V | ≪ ∆ one has γ = −i. Taking again
the particle-hole symmetry into account, we obtain with
the help of Eqs. (159), (162) the conductance

G =
e2

πh̄

∑

n

T 2
n

(2 − Tn)2
, (164)

and using Eq. (160), the shot noise

S =
4e3|V |
πh̄

Tr
[

s†heshe

(

1 − s†heshe

)]

=
16e3|V |
πh̄

∑

n

T 2
n(1 − Tn)

(2 − Tn)4
, (165)

where Tn are eigenvalues of the matrix t†12t12, i.e. trans-
mission eigenvalues of the normal region (evaluated at
the Fermi surface). As in normal conductors, channels
with Tn = 0 and Tn = 1 do not contribute to the noise.
Note that it is the fact that we have chosen to express the
conductance and the noise in terms of the eigenvalues of
the normal region which gives rise to the non-linear eigen-
value expressions given by Eqs. (164), (165). In terms of
the eigen channels of she the resulting expression would
be formally identical to the conductance and the noise of
a normal conductor.

The expression (165) was obtained by Khlus [15] us-
ing a Keldysh approach for the case when the normal
metal and the superconductor are separated by a tun-
nel barrier. He also investigated the finite temperature
case and derived the Nyquist noise. The results were re-
derived within the scattering approach by Muzykantskii
and Khmelnitskii [169]. The general case was studied
by de Jong and Beenakker [170] in the framework of the
scattering approach; we followed their work in the course
of the above derivation. Martin [171] obtains the same
results using statistical particle counting arguments and

investigates the crossover between shot and thermal noise
(see below).

Applications. If the normal and superconducting
electrodes are separated by a tunnel barrier, all the trans-
mission coefficients Tn can be taken to be the same,
Tn = T (not to be confused with temperature). Then
we obtain

G =
e2N⊥
πh̄

T 2

(2 − T )2
,

S =
16e3|V |N⊥

πh̄

T 2(1 − T )

(2 − T )4
,

with N⊥ the number of transverse channels. For the Fano
factor this yields [15,170]

F =
S

2eGV
=

8(1 − T )

(2 − T )2
. (166)

For low transparency T ≪ 1 the Fano factor tends to the
value of 2. This corresponds to the notion that shot noise
in NS junctions is essentially the result of uncorrelated
transfer of particles with charge 2e. The shot noise is
super-Poissonian (F > 1) for T < 2(

√
2 − 1) ≈ 0.83. For

open barriers (T = 1) the shot noise vanishes.
Refs. [15,171] have also shown that the crossover be-

tween shot and Nyquist noise happens at the tempera-
ture kBT = 2e|V |, which is one more manifestation of
the doubling of the effective charge.

For the case of a disordered normal metal, Eqs. (164)
and (165) have to be averaged over impurity configura-
tions. Using the distribution function of the transmission
coefficients in the disordered region (87), we obtain for
the Fano factor [170] F = 2/3. This is twice as high as
for a normal disordered wire. Macêdo [85] obtains the
weak localization correction and mesoscopic fluctuations
of the shot noise power. In particular, he finds that the
mean square of the shot noise power scales as the shot
noise power itself, and in this sense the fluctuations are
universal (as for normal diffusive conductors).

De Jong and Beenakker [170] analyze the case when
both a disordered normal metal and tunnel barrier are
present, and describe the crossover between the two lim-
iting regimes which are obtained in the absence of a dis-
ordered region or in the absence of tunnel barrier.

Naidenov and Khlus [172] and Fauchère, Lesovik, and
Blatter [173] analyze the situation when the normal and
the superconducting electrodes are separated by a reso-
nant double barrier (in particular, this may correspond
to the situation of resonant impurities in the insulating
layer separating the two electrodes). Ref. [172] considers
the one-channel sample specific case (no averaging) and
discussed the resonant structure of the conductance and
the noise. Using the distribution function of transmis-
sion eigenvalues and assuming that the barrier is sym-
metric, Ref. [173] finds for the ensemble average a Fano
factor F = 3/4. This should be contrasted with the re-
sult F = 1/2 for the corresponding normal symmetric
resonant double barrier.
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Schep and Bauer [93] investigate the effect of a dis-
ordered interface separating the normal metal and the
superconductor. The Fano factor also, of course, equals
F = 3/4, which is higher than the value 2/3 discussed
above.

Non-linear regime. Khlus [15], and subsequently
Anantram and Datta [174] (who used the scattering ap-
proach), considered noise in the non-linear regime. With-
out giving details, we only mention the case of an ideal
NS interface coupled to a perfect wire for which all the
transmission coefficients Tn are equal to one. This ideal
contact does not exhibit shot noise for voltages below
∆/e, as is seen from Eq. (165). The physical reason is
that in this case the scattering process is not random:
an electron approaching the interface is converted into a
hole with probability one and sent back. However, as the
voltage increases above ∆/e, quasiparticle states in the
superconductor become available, and electrons can now
tunnel into the superconductor without being reflected as
holes (imperfect Andreev reflections). This induces noise
even for an ideal interface. For still higher voltages, an
even broader range of energies is involved. However, for
energies E ≫ ∆ (almost) all electrons tunnel into the
superconductor without being Andreev reflected. Since
the interface is ideal, this process is also noiseless. Thus,
noise is produced only by electrons with energies higher
than ∆, but with energies which are in the vicinity of
∆. This implies [15,174] that the shot noise is zero for
e|V | < ∆, then starts to grow rapidly, and saturates
when the voltage becomes of the order of several ∆/e.
The saturation value is found [15] to be

Smax =
4e2N⊥∆

15πh̄
. (167)

For a non-ideal conductor (0 < Tn < 1 for at least one
channel) the same mechanism leads to the crossover from
Eq. (165) at low voltages to Eq. (57) for high voltages.

For barriers of low transparency T ≪ 1 (for instance,
when there is an insulating layer at some distance from
the NS interface) another mechanism for non-linear noise
takes place, as discussed by Fauchère, Lesovik and Blat-
ter [173]. In such a geometry the phases of the scattering
matrix are energy sensitive. For e|V | ≪ ∆ we obtain,
similarly to Eqs. (164) and (165), formulae for non-linear
transport,

I =
e

πh̄

∑

n

∫ eV

0

T 2
n

T 2
n + 2(1 − Tn)(1 − cos(αn(E))

dE,

(168)

and noise,

S =
8e2

πh̄

∑

n

∫ e|V |

0

T 2
n(1 − Tn)(1 − cos(αn(E))

[T 2
n + 2(1 − Tn)(1 − cos(αn(E))]2

dE.

(169)

Here we assumed the transmission probabilities Tn to be
energy independent. The phase αn is

αn(E) = φn(E) − φn(−E) − 2 arccos(E/∆)

= 4Ed/h̄vn − 2 arccos(E/∆),

where d is the distance between the insulating layer and
the NS interface, and vn is the velocity in the channel
n. φn(E) is the phase that an electron with energy E
acquires during a round-trip between the NS interface
and the insulating layer. For E = 0 we have αn = π,
and thus in the linear regime Eqs. (168) and (169) are
reduced to Eqs. (164) and (165), respectively.

These expressions can be interpreted as follows. The
part of the normal metal between the NS interface and
the tunnel barrier serves as an Andreev resonant dou-
ble barrier. The electron entering this region travels
to the NS interface, is converted into a hole, then this
hole makes a round-trip, and is converted to an electron,
which returns to the barrier. The total phase gain during
this trip is αn(E). The “transmission probability” of this
process (the integrand in Eq. (168)) shows a pronounced
resonance structure near the energies where the phase
αn(E) equals 2πm with integer m. Explicitly, for each
channel n, we have a set of resonances (Andreev – Ku-
lik bound states [173]) Em = (πh̄vn/4d)(2m+ 1). Thus,
the behavior of the transmission probability is similar to
that describing resonant tunneling in the double barrier
normal system.

Specializing further to the case of one channel with
velocity vF and transmission coefficient T ≪ 1, we write
the analog of the Breit-Wigner formula

I =
eT 2

πh̄

∑

m

∫ eV

0

dE

T 2 + (4d/h̄vF )2(E − Em)2
, (170)

and

S =
4e2T 2

πh̄

(

4d

h̄vF

)2
∑

m

×
∫ e|V |

0

(E − Em)2dE

[T 2 + (4d/h̄vF )2(E − Em)2]2
. (171)

We see that both the current and the noise power show
plateaus as a function of applied voltage; sharp tran-
sitions between the plateaus take place at resonances,
when e|V | = Em. In particular, when the voltage eV lies
between the resonances (plateau regime), EM < e|V | <
EM+1, we have I = eTvF/(4d), and S = 2eI. Thus, al-
ready after the first resonance, the Fano factor assumes
the value F = 1, the same as for the normal structure.
The explanation is that the transport through Andreev
bound states, which dominates in this regime, is not ac-
companied with the formation of Cooper pairs, and thus
the usual classical Schottky value is restored. These con-
siderations should be supplemented by an analysis of the
charge and its fluctuations and the role of screening (see
Section V).
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ND interfaces. Zhu and Ting [175] considered shot
noise of the interface between a normal metal and a su-
perconductor with a d-wave symmetry. For this purpose,
they generalized the scattering approach for this situa-
tion and subsequently performed numerical studies. Now
the shot noise depends on the orientation of the super-
conducting order parameter at the interface. Zhu and
Ting [175] investigated only one particular orientation,
when the gaps felt by electrons and holes are of the same
magnitude but of different signs.

The results they found are drastically different from
those for s-wave superconductors. In the tunneling
regime, the Fano factor is zero (rather than 2) for low
voltages. It grows with voltage and saturates at F = 1
for e|V | ≫ ∆. Thus, shot noise is below the Poisson
value, defined with respect to the normal metal, for all
voltages. In contrast, in the ballistic limit the Fano factor
is enhanced as compared with s-wave superconductors.

To our knowledge, Ref. [175] is the only paper address-
ing shot noise in hybrid structures with non-trivial sym-
metry of the order parameter.

Frequency dependence. The frequency dependence
of the noise of NS interfaces is easy to find in the situation
when the scattering matrices of the normal region may
be assumed to be energy independent. Lesovik, Martin
and Torrès [176] have investigated this case. Generalizing
Eq. (125) to the case of NS interface, we write

S(ω) =
e2

πh̄

{

∑

n

D2
n

∫

dE [fee(E,ω) + fhh(E,ω)] (172)

+
∑

n

Dn (1 −Dn)

∫

dE [feh(E,ω) + fhe(E,ω)]

}

,

with Dn ≡ T 2
n(2−Tn)−2. Performing the integration, we

obtain

S(ω) =
e2

πh̄

{

2h̄ω coth

(

h̄ω

2kBT

)

∑

n

D2
n (173)

+

[

(h̄ω + 2eV ) coth

(

h̄ω + 2eV

2kBT

)

+ (h̄ω − 2eV ) coth

(

h̄ω − 2eV

2kBT

)]

∑

n

Dn (1 −Dn)

}

,

which gives the noise frequency spectrum for arbitrary
frequencies, voltages, and temperatures (provided all of
them are much below ∆). For V = 0 Eq. (173) agrees
with the fluctuation-dissipation theorem. At zero tem-
perature, we obtain [176]

S(ω) =
2e2

πh̄
(174)

×
{

h̄|ω|∑nD
2
n + 2e|V |∑nDn(1 −Dn), h̄|ω| < 2e|V |,
h̄|ω|∑nDn, h̄|ω| > 2e|V |.

This expression is quite similar to Eq. (129) which de-
scribes zero temperature noise frequency spectrum in the
normal contact. One evident difference is that the trans-
mission coefficients Tn are replaced by Dn, due to the
modification of scattering by Andreev reflections. An-
other observation is that the electron charge is now dou-
bled. Thus, instead of the singularity at the frequency
h̄ω = ±eV in a normal metal we have now the singular-
ity at h̄ω = ±2eV . This is yet one more manifestation of
the fact that transport in NS structures is related to the
transmission of Cooper pairs.

Even more interesting effects are expected when the
frequency becomes of order ∆. In this case the total
scattering matrix, however, can by no means assumed to
be energy independent, and the self-consistent treatment
of interactions41 is needed, as we discussed in Section
III. A step in this direction has been done in Ref. [177],
which analyzes noise of a NS interface measured at a
capacitively coupled gate and only considers the charge
self-consistency. In accordance with the general conclu-
sions of Section III, the leading order in frequency for this
noise is given by SGG = 2C2

µω
2RV e|V |, where RV is de-

termined by the properties of the interface. In particular,
when the normal part contains a quantum point contact
and a new channel opens, RV = 9πh̄/2e2, whereas for a
normal quantum point contact RV = 0 in this situation.

Multi-terminal devices. Consider now a multi-
probe hybrid structure, which contains a number of nor-
mal and a number of superconducting leads (the super-
conducting leads are taken at the same chemical poten-
tial). The current operator Eq. (157) can be written
for each lead of a multi-terminal structure connected to
a superconductor. This leads to a second quantization
formulation of the current-current correlations put forth
by Anantram and Datta [174]. At each normal contact,
labeled α, the current is the sum of an electron current Ie

α

and a hole current Ih
α . In terms of the scattering matrix

the resulting current correlations are

〈∆Iµ
α∆Iν

β 〉 =
qµqν

πh̄

∑

γλ
δκ

∫ ∞

0

dE Tr [Aγλ,δκ(αµ)Aδκ,γλ(βν)]

× fλ
γ (E) [1 − fκ

δ (E)] , (175)

where qe = −e and qh = e. Here the indices α, β, γ, δ la-
bel the terminals, and κ, λ, µ, ν describe the electron-hole
decomposition and may assume values e and h. Basing
on Eq. (175), Anantram and Datta predict that, though
correlations at the same contact are always positive, like
in the case of normal structures, those at different con-
tacts also may in certain situations become positive. (We
remind the reader that cross-correlations are quite gen-
erally negative in normal devices, as discussed in Sec-

41By this now we mean self-consistency in both the charge
and the superconducting order parameter ∆.
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tion II). Similar results have been obtained by Martin
[171] using statistical particle counting arguments.

Qualitatively, this conclusion may be understood in
the following way. There are two types of processes con-
tributing to noise. First, an electron or hole can be sim-
ply reflected from the interface without being Andreev
reflected. In accordance with the general considerations,
this reflection tends to make the cross-correlation nega-
tive. On the other hand, processes involving Andreev re-
flection (an electron is converted into a hole or vice versa)
provide transport of particles with opposite charges. Due
to Eq. (175), these processes are expected to push the
cross-correlations towards positive values. This inter-
play between normal scattering and Andreev reflections
determines the total sign of the cross-correlations. This
is, indeed, seen from the expressions of Anantram and
Datta [174], who decompose current correlations at dif-
ferent contacts into a sum of positive definite and nega-
tive definite contributions.

The interpretation which may be found in the litera-
ture, that positive cross-correlations in hybrid structures
are due to the bosonic nature of Cooper pairs, does not
seem to be plausible. Indeed, the microscopic theory of
superconductivity never uses explicitly the Bose statistics
of Cooper pairs. In particular, Eq. (175) only contains
the (Fermi) distribution functions of electrons and holes,
but not the distribution function of Cooper pairs.

Quantitative analysis of this effect would also require
the next step, which is to express the scattering matrix s
through the scattering matrices of the normal part of the
device (multi-terminal analog of Eq. (163)). The multi-
terminal correlations could then be studied for various
systems, similarly to the discussion for the normal case
(see Section II). Analytical results are currently only
available for systems with an ideal NS interface, where
the matrix s is fully determined by Andreev reflection.

Anantram and Datta [174] consider a three-terminal
device with two normal contacts and a contact to the su-
perconductor. The superconductor connects to the nor-
mal system via two NS-interfaces forming a loop which
permits the application of an Aharonov-Bohm flux. The
conductor is a perfect ballistic structure and the NS in-
terfaces are also taken to be ideal. In this system, shot
noise is present for arbitrary voltages, since the electron
emitted from the normal contact 1, after (several) An-
dreev reflections may exit through the normal contact 1
or 2, as an electron or as a hole. Specifically, Ref. [174]
studies cross-correlations of current at the two normal
contacts, and finds that they may be both positive and
negative, depending on the phases of Andreev reflection
which in their geometry can be tuned with the help of an
Aharonov-Bohm flux.

Another three-terminal geometry, a wave splitter con-
nected to a superconductor, is discussed by Martin [171]
and Torrès and Martin [178]. The cross-correlation in
the normal leads depends on the parameter ǫ which de-
scribes the coupling to the superconducting lead (see Eq.
(113)), 0 < ǫ < 1/2 [120,121]. For an ideal NS interface,

Ref. [178] finds that the cross-correlations are positive

for 0 < ǫ <
√

2 − 1 (weak coupling) and negative for√
2 − 1 < ǫ < 1/2. Torrés and Martin [178] also report

numerical results for disordered NS interfaces, showing
that disorder enhances positive cross-correlations.

A particularly instructive example has been analyzed
in Ref. [179] by Gramespacher and one of the authors of
this Review. They investigate the shot noise measure-
ment with a tunneling contact (STM tip) which couples
very weakly to a normal conductor which is in turn cou-
pled to a superconductor. If both the normal reservoir
and the superconductor are taken at the same potential
µ0, and the tunneling tip at potential µ, they find from
Eq. (175) the following correlations,

〈∆Ie
1∆Ie

tip〉 = α4π2νtip|t|2ν(xe, 1e) , (176)

〈∆Ih
1 ∆Ie

tip〉 = −α4π2νtip|t|2ν(xe, 1h) , (177)

〈∆Ie
1∆Ih

tip〉 = 〈∆Ih
1 ∆Ih

tip〉 = 0 , (178)

with α = −(e2/πh̄)∆µ, ∆µ = µ − µ0, and |t|2 the cou-
pling energy of the tip to the sample. Here ν(xe, 1e) is the
electron density generated at the coupling point x due to
injected electrons and ν(xe, 1h) is the electron density at
the coupling point due to holes injected by the normal
reservoir. The total correlation of the currents at contact
1 and 2 is the sum of all four terms. In the absence of
a magnetic field, the correlations are proportional to the
injected net charge density q(x) = ν(xe, 1e) − ν(xh, 1e),
and given by

〈∆I1∆Itip〉 = − e2

πh̄
∆µ4π2νtip|t|2q(x)

= −2G0∆µ
q(x)

p(x)
(179)

where p(x) = ν(xe, 1e) + ν(xh, 1e) is the total particle
density of states and G0 = (e2/2πh̄)4π2νtip|t|2p(x) is the
tip to sample conductance. This result states, that if at
the point x the electrons injected from contact 1 gener-
ate a hole density at x which is larger than the electron
density at x, the injected charge becomes negative and
the corresponding correlation becomes positive. A more
detailed analysis suggest that this effect is of order 1/N ,
where N is the number of channels.

Up to now positive correlations in hybrid structures
have been theoretically demonstrated only for single
channel conductors. This leaves open the question, on
whether or not, ensemble averaged shot noise spectra can
in fact have a positive sign in hybrid structures.

Experiments. The only experiment on shot noise in
NS structures currently available was performed by Vys-
tavkin and Tarasov [180] long before the current interest
on shot noise in mesoscopic systems started. For this
reason, they did not study noise systematically, and only
concluded that in certain samples it was suppressed be-
low the value 2e〈I〉.

Recently, Jehl et al [181] experimented with an
Nb/Al/Nb structure at temperatures above the critical
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temperature for Al, but below that for Nb. They esti-
mate that the length of the Al region was longer than the
thermal length, which means that the multiple Andreev
reflection processes (see below) are suppressed. Thus,
qualitatively their SNS structure acts just as two inco-
herent NS interfaces, and the expected effective charge
is 2e (the Fano factor for the diffusive system is 2/3).
Indeed, the measurements show that the Fano factor for
high temperatures is 1/3 for all voltages (in accordance
with the result for a metallic diffusive wire), while for
lower temperatures it grows. The low-temperature be-
havior is found to be in better agreement with the value
F = 2/3 for an NS interface, than with the F = 1/3
prediction for normal systems, though the agreement is
far from perfect. The experimental results are shown in
Fig. 28.
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FIG. 28. Experimental results of Jehl et al [181]. Solid
and dotted lines are theoretical curves corresponding to the
effective charges 2e and e, respectively.

A clear experimental demonstration of the shot noise
doubling with clean NS interfaces remains to be per-
formed.

B. Noise of Josephson junctions

Josephson junctions are contacts which separate two
superconducting bulk electrodes by an insulating bar-
rier. We briefly describe here noise properties for the
case when the transmission of this barrier is quite low;
other, more interesting, cases are addressed in the next
subsection.

The transport properties of Josephson junctions can be
summarized as follows. First, at zero voltage a Joseph-
son current may flow across the junction, I = I0 sinφ,
where φ is the difference of the phases of the supercon-
ducting order parameter between the two electrodes. In
addition, for finite voltage tunneling of quasiparticles be-
tween the electrodes is possible. For zero temperature
this quasiparticle current only exists when the voltage

exceeds 2∆/e; for finite temperature an (exponentially
small) quasiparticle current flows at any voltage.

The Josephson current is a property of the ground
state of the junction, and therefore it does not fluctu-
ate. Hence, shot noise in Josephson junctions is due to
the quasiparticle current42, and basically coincides with
the corresponding shot noise properties of normal tunnel
barriers. For zero temperature, there is no shot noise
for voltages below 2∆/e. Thermal and shot noise in
Josephson junctions are analyzed in detail by Rogovin
and Scalapino [26], and have been measured by Kanter
and Vernon, Jr. [183,184].

For completeness, we mention that if a voltage V (t)
is applied across the junction, as a consequence of
gauge invariance, the Josephson current becomes time-
dependent,

I(φ) = I0 sin

[

φ+
2e

h̄

∫ t

0

V (t)dt

]

.

Then, due to any fluctuations of the voltage V (t) (like
thermal and shot noise) the Josephson junction starts
to radiate. If the voltage V is time-independent on
average, the spectral density of this radiation is cen-
tered around the resonant frequencies ω = 2enV/h̄,
and fluctuations determine the width of the maxima,
the linewidth of the Josephson radiation. This effect,
analyzed by Stephen [185,186], turned out to be an
effective experimental tool for detecting voltage fluc-
tuations in Josephson junctions. It is the subject of
many theoretical [23,24,187,26,188–191] and experimen-
tal [192,24,193–195] papers.

C. Noise of SNS hybrid structures

Now we address the limit in which the two supercon-
ducting electrodes are separated by a region in which the
motion is ballistic, or, at least, the transmission proba-
bility is not too small; for definiteness we will consider
the quantum point contact connected to superconduct-
ing banks. To make a distinction between the tunnel
Josephson junction described in the previous subsection
and the case of interest here, we refer to these systems
as SNS structures; for convenience, we only describe the
one-channel case, and first consider the perfect contact
for which the transmission probability is equal to one.
Furthermore, we consider the case of a constriction with
a length (distance between superconducting electrodes)
small compared to the superconducting coherence length.

42As stated by Likharev in his 1979 review [182], “the most
important results of all the theories of fluctuations in the
Josephson effect is that the only intrinsic source of fluctua-
tions is the normal current rather than the supercurrent of
the junction”.
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Equilibrium noise. In many respects, SNS struc-
tures are different from the tunnel Josephson junctions.
A phase-coherent SNS structure supports a discrete set
of subgap states. Carriers are trapped between two NS
interfaces which act as Andreev mirrors. An electron
reaching one of the interfaces is reflected as a hole and
travels back to the other interface where it is reflected as
an electron. The subgap states are known as Andreev-
Kulik states [196]. In the particular case of interest
here, there are two subgap states [197] with energies
ǫ±(φ) = ±∆ cos(φ/2), which carry Josephson current.
These states have a width γ(φ) ≡ γ[ǫ(φ)], which can ap-
pear, for instance, due to electron-phonon interactions
(see e.g. Ref. [198]). As a consequence the SNS system
can undergo fluctuations between a ground state and an
excited state. The situation encountered here exhibits
a close analogy to the low-lying excitations in a normal
metal ring penetrated by an Aharonov-Bohm loop. If
the ring is closed, the excitation away from the ground
state has to be described in a canonical ensemble. If the
ring is coupled via a side branch to an electron reservoir,
carrier exchange is permitted, and the discussion has, as
in the problem at hand, to be carried out in the grand-
canonical ensemble [199,200]. At equilibrium the occu-
pation probability of the two states is f+ = f(ǫ+(φ)) and
f− = f(ǫ−(φ)), where f is the Fermi distribution with
energy measured away from the center of the gap of the
superconductor. Note that f− = 1 − f+. To investigate
the dynamics of this system, in the presence of a bath
permitting inelastic transitions, we investigate the relax-
ation of the non-equilibrium distribution ρ± towards the
instantaneous equilibrium distribution function with the
help of the Debye-Boltzmann-like equations

dρ±/dt = −γ(ρ± − f
±

(t)). (180)

If the system is driven out of equilibrium, the instanta-
neous distribution function is time-dependent. Eq. (180)
states that the non-equilibrium distribution tries to fol-
low the instantaneous distribution but can do that at
best with a time lag determined by γ−1. The time-
dependent readjustment of the distribution ρ is achieved
with inelastic processes and is thus dissipative. To
find the resulting noise we investigate the response of
the current to a small oscillating phase δφ(ω)eiωt su-
perimposed on the dc phase. The current is I =
−(e/h̄)[(dǫ+/dφ)ρ+ + (dǫ−/dφ)ρ−]. The Josephson re-
lation, dφ/dt = −(2e/h̄)V , leads to a conductance which
in the zero frequency limit is given by [200]

G(φ) =

(

2e2

γh̄2

)(

dǫ

dφ

)2(

−df
dǫ

)

∣

∣

∣

∣

∣

ǫ=ǫ+

. (181)

The resulting thermal noise of the Josephson current
follows from the fluctuation dissipation theorem S =
4kBTG and, as found by Averin and Imam [201] and

Mart́in-Rodero, Levy Yeyati, and Garćia-Vidal [202], is
given by

S =
2

γ(φ)

(

e∆

h̄

sin(φ/2)

cosh(ǫ0/2kBT )

)2

. (182)

The peculiar feature of both the conductance (181) and
the noise (182) is their divergence as the damping γ tends
to zero. Furthermore, since (−df/dǫ) in Eq. (181) is
proportional to 1/kBT , the Nyquist noise given by Eq.
(182) is not proportional to kBT , as in open systems.
Since in the zero temperature limit γ can be expected
to tend rapidly to zero, the Nyquist noise may actually
grow as the temperature is lowered.

Instead of a small amplitude ac oscillation of the phase,
we can also consider a phase that linearly increases with
time, φ = 2eV t/h̄. In a junction without dissipation, we
now have an ac Josephson effect. In a system which per-
mits inelastic transitions, the ac Josephson current will
be accompanied by a dissipative current. If the induced
voltage is small, we can to linear order in V again de-
termine the conductance GJ , where the index J is to
remind us that this conductance occurs in parallel with
the ac Josephson effect. Note that the two energy bands
ǫ± cross at φ = ±π. To describe this crossing, we extend
the range of φ from −2π to 2π. Ref. [200] finds that GJ

and G, as given by Eq. (181), are related,

GJ =
1

4π

∫ 2π

−2π

dφG(φ) =
e2

2πγh̄2

∫ 2π

−2π

(

d2ǫ+
dφ2

)

f+(φ)dφ.

(183)

Thus, GJ is inversely proportional to the “effective
mass” (weighted by the equilibrium distribution func-
tion). We could of course derive this result directly from
Eq. (180). In the zero temperature limit the effective
mass is 1/m∗ = 2∆/π, and the conductance GJ is finite
and given by GJ = 2e2∆/πγh̄2. From the fluctuation
dissipation theorem, we obtain an equilibrium noise

S =
4e2∆kBT

πh̄2γ
, (184)

which (unlike Eq. (182)) is proportional to the tempera-
ture. Eq. (184) was obtained by Averin and Imam [201]

and Cuevas, Mart́in-Rodero, and Levy Yeyati [203].
Non-equilibrium noise. For larger voltages but still

eV ≪ ∆ (V > 0), the average dc current becomes a non-
linear function of voltage. The current peaks for eV ∼ h̄γ
when dissipation due to the mechanism described above
is maximal. We can no longer invoke the fluctuation-
dissipation theorem to find the noise. Instead, a di-
rect calculation of the current-current correlation func-
tion 〈Î(t1)Î(t2)+ Î(t2)Î(t1)〉 is needed. Since the current
oscillates with frequency 2eV/h̄ and its harmonics, the
correlation function depends not only on the time differ-
ence t− t′, as for noise away from stationary states, but
also periodically on the total time t = (t1 + t2)/2. Averin

and Imam [201], and Cuevas, Mart́in-Rodero, and Levy
Yeyati [203] used the Green’s function technique to ob-
tain results for the noise power S(ω) which is this corre-
lation function averaged over t and Fourier-transformed
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with respect to t1− t2. For the discussion of this far from
equilibrium noise, we refer the reader to Refs. [201,203].
For low voltages eV ≪ h̄γ, and for an energy indepen-
dent damping constant γ, the calculation reproduces Eq.
(184), whereas for h̄γ ≪ eV ≪ ∆ the noise actually de-
creases with voltage43,

S =

(

3 − 8

π

)

γ∆2

h̄V 2
. (185)

The voltage dependence of the noise is quite unusual in
this case, and exhibits a peak for eV ∼ h̄γ.

The result (185) has the following interpretation. The
mechanism of charge transport in SNS structures for
eV ≪ ∆ is multiple Andreev reflections (MARs) [204].
Imagine an electron with energy E, ∆ < E < ∆ + eV
(measured from the chemical potential of the right con-
tact), emanating from the right contact. During the mo-
tion in the normal region it loses the energy eV , and
thus when it arrives at the left superconducting bank
it has an energy below ∆. This electron may only be
Andreev reflected and converted into a hole, which (due
to the opposite sign of the charge) loses the energy eV
again. The hole is again Andreev reflected at the right
interface, and this process goes on44, until the energy
of the initial electron falls below −∆. The number of
these MARs is equal to 2∆/eV . In each individual An-
dreev reflection the charge 2e is transferred to or from
the condensate, and to avoid double counting, we must
only take the reflections happening at the same interface.
Therefore the whole MAR process is accompanied by a
transfer of charge 2∆/V (for eV ≪ ∆). In view of this,
the noise (185) may be interpreted [201] as “shot noise”
of the 2∆/eV ≫ 1 charge quanta. In this sense this noise
is giant: it greatly exceeds the Poisson value 2eI. The
general expression for noise can be written explicitly as
a sum of contributions of Andreev reflections of different
orders [201,203].

Now we briefly discuss the case of a non-ideal contact,
i.e. when the two electrodes are separated by a barrier
of arbitrary transparency. First, for a finite but small re-
flection coefficient 1 − T an additional source of noise is
given by Landau-Zener transitions between the two sub-
gap states, as discussed by Averin [205]. The probability
of these transitions, which exist even at zero tempera-
ture, is ν = exp(−π(1−T )∆/eV ), and noise is caused by
the randomness of these transitions. Naveh and Averin
[206] obtained the following result for the noise due to
this mechanism,

43This expression is not explicit in Ref. [201], but can be
easily derived in the limit of strictly zero temperature.

44MAR is a fully coherent process. It cannot take place, for
instance, if the length of the junction is longer than the phase
breaking length. In this limit the systems acts rather as two
independent NS interfaces. Another limitation is eV ≫ h̄γ.

S =
8e∆2

πh̄V
ν(1 − ν).

They also considered the generalization to the multi-
channel case and analyzed a structure with a normal dif-
fusive conductor between the two superconductors. Tak-
ing into account the distribution of transmission eigen-
values (87) of a normal conductor yields [206]

S =
(2∆)3/2

(eV )1/2
G(

√
2 − 1),

where G is the Drude conductance of the normal region.
The noise diverges for low voltages as V −1/2.

If the transparency of the barrier is low, we return to
the case of a classical Josephson junction. The amplitude
of a MAR process containing n Andreev reflections is pro-
portional to T n, where T is the transmission probability
of the junction. Thus, for the classical case MAR’s are to-
tally suppressed. The case of arbitrary transparency was
investigated by Cuevas, Mart́in-Rodero and Levy Yey-
ati [203], who described the crossover between these two
regimes.

Bezuglyi et al [207] considered a tunnel barrier (an in-
sulating layer) inserted in the middle of a long SNS con-
striction. This geometry is different from the standard
Josephson junction problem. Instead, bound Andreev
states (similar to what has been discussed before for the
NS interface with a barrier) are formed in both parts of
the normal region, separated by the insulating layer. An
electron in the left part, before being converted to a hole
at the left NS interface, is oscillating many times before
it tunnels (as an electron or a hole) through the bar-
rier, and starts oscillating again. This picture resembles
[207] transport in a diffusive metallic wire, which gives
us a hint that shot noise may be suppressed in compar-
ison with its “giant Poisson” value, i.e. the value cor-
responding to the effective charge 2∆/V . Indeed, Ref.
[207] finds that in the limit of low voltages the effective
charge is 2∆/3V , which surprisingly reminds us of the
1/3–suppression of shot noise in metallic diffusive wires.

For high voltages eV ≫ ∆ imperfect Andreev re-
flections lead to the saturation of noise, similar to NS
structures. For an ideal junction the saturation value
S = 8e2∆/(15πh̄), found by Hessling et al [208], is two
times as large as for an ideal NS interface (167). For
a non-ideal contact, shot noise in this regime equals its
normal state value S = 2e〈I〉; there is also a voltage inde-
pendent contribution (excess noise) [203,206]. The origin
of this excess noise are MAR processes, and the physics
is similar to that encountered in the discussion of excess
current (see e.g. Ref. [204]).

Experiments. Recently a number of efforts have been
made to observe the giant shot noise, caused by multi-
ple Andreev reflections. Experiments by Misaki, Saito,
and Hamasaki [209], and Misaki et al [210] used a sand-
wich of Nb and NbN superconducting films, separated
by a point contact. However, the giant shot noise was
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not observed in these experiments, possibly because of
additional scattering inside the point contact.

An experimental observation of MAR-enhanced shot
noise is reported by Dieleman et al [211]. They investi-
gate noise in a NbN/MgO/NbN structure, where the two
superconducting layers (NbN) are separated by an insu-
lator. The main feature observed in this experiment was
a decrease of the Fano factor (which is theoretically pre-
dicted to be 2∆/eV for eV ≪ ∆) for voltages up to 2∆.
For voltages eV ∼ 2∆/n, n ∈ Z, a step-like structure is
observed (Fig. 29).

Hoss et al [212] carried out measurements on
Nb/Au/Nb, Al/Au/Al, and Al/Cu/Al junctions, where
the Au and Cu layers were essentially diffusive conduc-
tors. They observe a well pronounced peak in the voltage
dependence of the shot noise for low voltages (much less
than ∆/e). In addition, they also plot the Fano factor,
which turns out to be linear in V −1 in the whole range of
voltages, but with the coefficient higher than 2∆/e. This
discrepancy with theory is not understood.

FIG. 29. Experimental results of Dieleman et al [211]. The
Fano factor (plotted here as an effective charge, black squares)
is compared with the theoretical prediction (solid line).

In the experiments by Jehl et al [181] on long
Nb/Al/Nb SNS contacts, the two NS interfaces act effec-
tively independently, and MAR processes are suppressed.
Thus, the physics of this experiment resembles more that
of a single NS interface, as we have discussed above.

V. LANGEVIN AND MASTER EQUATION
APPROACH TO NOISE: DOUBLE-BARRIER

STRUCTURES

A. Quantum-mechanical versus classical theories of
shot noise

In this and the next Section, we consider classical the-
ories of shot noise in various systems. By doing this,
we leave the main road that started from basic quantum

mechanics and, through a number of exact transforma-
tions and well-justified approximations, lead us to the
final results for shot noise. In contrast, classical theories
are mostly based on the Langevin approach, which has
a conceptually much weaker and less transparent foun-
dation. Indeed, the Langevin equation is equivalent to
the Fokker-Planck equation under the condition that the
random Langevin sources are Gaussian distributed45 (see
e.g. Ref. [213]). In turn, the Fokker-Planck equation is
derived from the master equation in the diffusion approx-
imation, and this procedure determines the pair correla-
tion function of Langevin sources. In practice, however,
such a basic derivation is usually not presented. The
correlation function is written based on some ad hoc con-
siderations rather than derived rigorously. For double-
barrier structures, which are considered in this Section,
many results have been derived directly from the mas-
ter equation, and thus are far better justified than many
discussions for other structures. The next Section is de-
voted to the Boltzmann-Langevin approach in disordered
conductors, and, to our knowledge, no attempt to ob-
tain the final results from the master equation, or to
justify microscopically the starting Boltzmann equation
with Langevin sources, has ever been performed46.

The reality, though it may be surprising to some read-
ers, is that in all available cases when the results of clas-
sical calculations of shot noise can be compared to exact
quantum results averaged over an ensemble, based on the
scattering or Green’s functions approaches, they turn out
to be identical. It is the fact that for many systems the
ensemble averaged quantities are classical which makes
classical Boltzmann-Langevin theories of shot noise in
mesoscopic conductors credible even in those situations,
where quantum results are not available. The fact that
the ensemble averaged quantum result and the classical
result agree is best illustrated by considering for a mo-
ment a metallic diffusive wire. A calculation of the con-
ductance can be performed purely quantum-mechanically
by finding the scattering matrix computationally or us-
ing random matrix theory. After ensemble averaging the
leading order result for the conductance is just the Drude
result for the conductance of the wire which we can find
by solving a diffusion equation. This situation persists

45Given the results for the distribution of transmitted charge
(Appendix A), it is apparent that the Langevin sources are
not Gaussian distributed. Possibly, this does not affect the
shot noise, which is related to the second cumulant of the
Langevin sources.
46Quite recently Nagaev [214] has shown that the zero fre-

quency results for shot noise in metallic diffusive wires which
are obtained in a quantum-mechanical Green’s functions tech-
nique, are equivalent to those available from the Boltzmann-
Langevin approach, even if the interactions are taken into
account. This is a considerable step forward, but it still does
not explain why the Boltzmann-Langevin approach works.
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if we consider the noise: the leading order of the noise,
the 1/3-suppression of shot noise in a metallic diffusive
wire can be found by ensemble averaging a quantum-
mechanical calculation [74] and/or from a classical con-
sideration [75]. If the two procedures would not agree to
leading order, it would imply a gigantic quantum effect.
Of course, effects which are genuinely quantum, like the
Aharonov-Bohm effect, weak localization, or the quan-
tum Hall effect, cannot be described classically. This
consideration also indicates the situations where we can
expect differences between a quantum approach and a
classical approach: Whenever the leading order effect is
of the same order as the quantum corrections we can ob-
viously not find a meaningful classical description.

The Langevin approach essentially takes the Poisso-
nian incoming stream of particles and represents it as a
random fluctuating force acting even inside the system.
In the language of the scattering approach, this would
mean that the Poissonian noise of the input stream is con-
verted into the partition noise of the output stream. An-
other possible classical approach to the shot noise would
be to take the Poissonian input stream as a sequence
of random events, and to obtain the distribution of the
carriers in the output stream after the scattering events
took place. To our knowledge, this approach has not
been realized precisely in this form. Landauer [215] dis-
cusses noise in diffusive metallic conductors from a simi-
lar point of view, but does not calculate the distribution
of outgoing particles. Chen et al [216] attempt to mod-
ify the distribution function in ballistic systems to take
into account the Pauli principle, assuming that the time
the particle spends inside the system is finite. Barkai,
Eisenberg, and Schuss [217] and van Kampen [218] con-
sider the case when the electrons may arrive from two
reservoirs, and are transmitted or reflected with certain
probabilities. The Pauli principle forbids two electrons
to be in the channel simultaneously.

Though there is no doubt that this approach, if re-
alized, would yield the same value of the shot noise as
more powerful methods, it would still help to visualize
the results and it might allow a simple generalizations to
the interacting systems. Raikh [219] and Imamoḡlu and
Yamamoto [220] have suggested a generalization to the
Coulomb blockade regime. Raikh [219] shows how the
noise in the Coulomb blockade regime may be expressed
if the transformation from the Poisson input stream to
the correlated output stream is known for non-interacting
electrons. Imamoḡlu and Yamamoto [220] assume that
the Poisson distribution is modified in some particular
way by the finite charging energy, and are able to ob-
tain sub-Poissonian shot noise suppression. We treat shot
noise in the Coulomb blockade regime later on (Section
VII) by more elaborate methods.

B. Suppression of shot noise in double-barrier
structures

We consider now transport through quantum wells,
which were described quantum-mechanically in Section
II. The tunneling rates through the left ΓL and the right
ΓR barrier are assumed to be much lower than all other
characteristic energies, including temperature47. Intro-
ducing the distribution function in the well fw(E), we
write the charge of the well Qw in the form

Qw = eν2A
∑

n

∫ ∞

0

dEzdE⊥fw(Ez + E⊥)δ(Ez − Er
n),

(186)

where the energy Ez in the well is counted from the band
bottom eU in the well48 (Fig. 8), and the sum is taken
over all the resonant levels.

Now we introduce the charges QL(t) and QR(t) which
have passed through the left and right barriers, respec-
tively, from the time t = −∞ until the time t. At
any instant of time the charge of the well is Qw(t) =
QL(t) − QR(t). The time evolution of the charge QL is
determined by the rate equation,

Q̇L = e (γL→ − γL←) , (187)

where γL→ and γL← are transition rates through the left
barrier, from the reservoir to the well and from the well
to the reservoir, respectively. We have

γL→ =
ν2A
h̄

∑

n

∫ ∞

e(V−U)

dEz

∫ ∞

0

dE⊥ΓLnδ(Ez − Er
n)

× fL(Ez + E⊥ + eU − eV ) [1 − fw(Ez + E⊥)] ,

γL← =
ν2A
h̄

∑

n

∫ ∞

e(V−U)

dEz

∫ ∞

0

dE⊥ΓLnδ(Ez − Er
n)

× [1 − fL(Ez + E⊥ + eU − eV )] fw(Ez + E⊥). (188)

Here we wrote the distribution function of the left (right)
reservoir in such a way that the energy is counted from
the chemical potential of the left (right) reservoir. Sim-

ilarly, Q̇R = e(γR→ − γR←) is expressed in terms of the
transition rates through the right barrier, which are writ-
ten analogously to Eq. (188).

Further progress is easy in two cases: either the tunnel-
ing rates ΓL,Rn do not depend on n (and equal ΓL,R), or
there is only one resonant level of the longitudinal motion

47In terms of the quantum-mechanical derivation, this would
mean that the transmission coefficient (75) is replaced by
T (E) = 2πΓLnΓRnΓ−1

n δ(E − Er
n).

48Note that the notations here and below differ from those
introduced in Section II: All the energies are measured from
the corresponding band bottoms.
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in the relevant range of energies. Taking into account Eq.
(186), we obtain

Q̇L = IL − h̄−1ΓL(QL −QR),

Q̇R = IR + h̄−1ΓR(QL −QR), (189)

where we have introduced

IL =
eν2A
h̄

ΓL

∑

n

∫ ∞

e(V−U)

dEz

×
∫ ∞

0

dE⊥δ(Ez − Er
n)fL(Ez + E⊥ + eU − eV ),

IR = −eν2A
h̄

ΓL

∑

n

∫ ∞

0

dEz

×
∫ ∞

0

dE⊥δ(Ez − Er
n)fR(Ez + E⊥ + eU). (190)

Note that we derived the rate equations (189) without
specifying the distribution function fw. Thus, within
the approximations used here, the rate equations are the
same, independently of the relaxation rate in the well
(which determines the distribution fw).

The current, for instance, through the left barrier, is
given by the sum of the particle current ILp = Q̇L and

the displacement current ILd = cLQ̇w/(cL + cR), where
we have introduced the capacitances cL and cR of the left
and the right barrier, respectively. Using this gives for
the total current

I =
cLQ̇R + cRQ̇L

cL + cR
, (191)

which is often cited as Ramo–Shockley theorem49. The
calculation of the current through the right barrier yields
the same result, demonstrating that the total current is
conserved.

Up to now, we have only discussed average quantities.
The idea of the Langevin approach is that the (current)
fluctuations can be calculated from the same rate equa-
tions (189), if random currents (Langevin sources) are
added to their right-hand sides. We write

Q̇L = IL − h̄−1ΓL(QL −QR) + ξL(t),

Q̇R = IR + h̄−1ΓR(QL −QR) + ξR(t), (192)

where the Langevin sources ξL,R(t) have the following
properties. They are zero on average, 〈ξα(t)〉 = 0, α =

49Many papers in the field are flawed since they use I =
(Q̇L+Q̇R)/2 and subsequently claim the validity of the results
for arbitrary barriers. Similarly, evaluating Eq. (191) with
the help of the free electron results for Q̇L and Q̇R leads to a
current conserving answer but not to a self-consistent result.
Compare Eqs. (195) and (201).

L,R. Furthermore, they are correlated only for the same
barrier, and the correlation function describes Poissonian
shot noise at each barrier,

〈ξα(t)ξβ(t′)〉 = e〈I〉δ(t− t′)δαβ , (193)

where 〈I〉 is the average current. To find the noise
power, we do not need to specify higher cumulants of the
Langevin sources. As we mentioned above, the definition
(193) is intuitive rather than the result of a formal deriva-
tion. However, the results we obtain in this way coincide
with those found by ensemble averaging the quantum-
mechanical results.

The equations (192) are linear and can be easily solved.
The average current is

〈I〉 =
ΓRIL + ΓLIR

Γ
, (194)

where again Γ = ΓL+ΓR. The finite frequency shot noise
power is found to be

S(ω) = 2e〈I〉
[

c2L + c2R
c2

+
2

Γ2 + (h̄ω)2

(

Γ2 cLcR
c2

− ΓLΓR

)

]

, (195)

with the definition c ≡ cL + cR.
For zero frequency Eq. (195) gives the result (78),

F = (Γ2
L +Γ2

R)/Γ2. For high frequencies h̄ω ≫ Γ we have
S(ω) = 2e〈I〉(c2L + c2R)/c2. This expression can be ob-
tained from Eq. (191) based on the assumption that the

particle currents Q̇L and Q̇R fluctuate independently and
according to the Poisson shot noise. The crossover fre-
quency between these regimes is ω ∼ Γ/h̄: In accordance
with general expectations, the frequency dependence of
the shot noise is governed by time-scales inherent to the
conductor. We note finally that for a symmetric double
barrier, cL = cR and ΓL = ΓR, the noise power (195) is
frequency independent and equal to S(ω) = e〈I〉.

Note also that Eq. (195) does not contain the high-
frequency Nyquist noise (129), which is proportional to
h̄|ω|: Zero-point noise is quantum-mechanical and cannot
be reproduced by a classical discussion.

The classical derivation of Eq. (195), based on the
master equation approach, was given independently by
Chen and Ting [134] (cL = cR, zero frequency limit) and
by Davies et al [54] (general case), and later by Chen [221]
(cL = cR, arbitrary frequency) and Müller et al [222]
(ω = 0). Sun and Milburn [223,224] and Milburn [225]
developed a quantum master equation approach and also
derived the same result (195). The Langevin approach
was applied to double-barrier structures in Ref. [226];
here we have given an extended version of the deriva-
tion. We also remark that the frequency dependence of
the noise of the double-barrier structure (195) was ob-
tained by Runge [57] (cL = cR) and by Lund Bø and
Galperin [58] (general case) using the non-equilibrium
Green’s functions method.
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Beenakker and de Jong [89,90] consider the two-barrier
suppression using the conceptually similar Boltzmann-
Langevin approach, described in the Section VI. They
also investigate the case of n identical barriers in series
and obtain for the Fano factor

F =
1

3

[

1 +
n(1 − T )2(2 + T ) − T 3

[T + n(1 − T )]3

]

,

where T is the transmission coefficient of a barrier. This
expression gives F = 1−T for n = 1, F = 1/3 for n→ ∞
(which mimics a diffusive wire), and reduces to F = 1/2
for T ≪ 1 for the two-barrier case, n = 2. Thus, the
crossover of the ensemble averaged shot noise between a
two-barrier and many-barrier (diffusive) system can be
described classically.

The theory we have presented above has a number of
drawbacks, which we discuss now. First, the charges QL

and QR are assumed to be continuous, and thus Coulomb
blockade effects cannot be treated in this way (see Sec-
tion VII). Even the charging effects which exist if charge
quantization can be neglected are not properly taken into
account. The discussion thus far has neglected to include
the response to the fluctuating electric potential in the
well. Thus the Ramo-Shockley theorem, as it has been
used here, and is applied in much of the literature, leads
to a current conserving, but, as we discuss below, not to a
self-consistent result for the frequency dependence of the
shot noise. In the next subsection we show that charging
effects can lead to the enhancement of shot noise above
the Poisson value.

Furthermore, our consideration is limited to zero tem-
perature50, and it is not immediately clear how the
Langevin approach should be modified in this case to
reproduce correct expressions for the Nyquist noise. An-
other limitation is that our derivation assumes that the
tunneling rates through each of the resonant levels are
the same. If this is not the case, the rate equations do
not have the simple form (189), but instead start to de-
pend explicitly on the distribution function fw. Whereas
the above derivation does not require any assumptions on
the distribution of the electrons in the well fw (i.e. any
information on the inelastic processes inside the well),
generally this information is required, and it is not a pri-
ori clear whether the result on noise suppression depends
on the details of the inelastic scattering.

The last two issues are relatively easily dealt with in
the more general master equation approach. Chen and
Ting [134], Chen [227], and independently Davies et al
[54] solved the master equation in the sequential tunnel-
ing limit, when the electrons, due to very strong inelas-
tic scattering inside the well, relax to the equilibrium
state. They found the results to be identical to those ob-
tained by quantum-mechanical methods (which require

50To use the kinetic equation formalism, we had to assume
kBT ≫ Γ; on the other hand Eq. (193) states kBT ≪ eV .

quantum coherence, i.e. absence of inelastic scatter-
ing), and concluded that inelastic processes do not af-
fect shot noise suppression in quantum wells. Later, Ian-
naccone, Macucci, and Pellegrini [228] solved the master
equation allowing explicitly for arbitrary inelastic scat-
tering, and found that the noise suppression factor is
given by Eq. (78) at zero temperature for arbitrary in-
elastic scattering provided the reservoirs are ideal. They
also studied other cases and temperature effects. This
picture seems to be consistent with the results obtained
quantum-mechanically by attaching voltage probes to the
sample (subsection II G).

We note here, however, that there is no consensus in
the literature concerning this issue. First, we discuss
the results obtained quantum-mechanically by Davies,
Carlos Egues, and Wilkins [229]. They start from the
exact expression (74) and average it over the phase φ,
allowing for inelastic scattering (dephasing). Instead
of assuming that the phase is a uniformly distributed
random variable, they postulated 〈exp(iφ1 + φ2)〉 =
〈exp(iφ1)〉〈exp(iφ2)〉. For the Fano factor (at zero fre-
quency) they obtain in this way

F = 1 − 2ΓLΓR

Γ2

(

Γ

Γ + Γin/2

)

,

where Γin is the rate of inelastic scattering, proportional
to 1 − 〈exp(iφ)〉. Thus, in their model inelastic scatter-
ing enhances the Fano factor, driving noise towards the
Poisson value. While it is clear that for certain models of
inelastic scattering shot noise is affected by interactions,
we do not see a direct relation of the model of Ref. [229]
to the voltage probe models which we consider in subsec-
tion II G and which yield the result that the Fano factor
is interaction insensitive.

Furthermore, Isawa, Matsubara, and Ohuti [230], us-
ing the Green’s functions approach, find that inelastic
processes leading to sequential tunneling affect the Fano
factor. Their theory, however, is explicitly not current
conserving. We mentioned already the result by Lund
Bø and Galperin [59], who report suppression of the
Fano factor by electron-phonon interactions. Their re-
sults clearly contradict the conclusions based on the volt-
age probe models.

A related issue is investigated by Sun and Milburn
[223,224], who apply the quantum master equation to the
analysis of noise in a double-well (triple-barrier) struc-
ture. With this approach, they are able to study the case
when the two wells are coupled coherently. Their results
show an abundance of regimes depending on the relation
between the coupling rates to the reservoirs, elastic rates,
and the coupling between the two wells.

To conclude this subsection, we address here one more
problem. The result (78) predicts that the noise sup-
pression factor may assume values between 1/2 and 1,
depending on the asymmetry of the double barrier. The
question is whether interaction effects, under some cir-
cumstances, may lead to Fano factors above 1 (super-
Poissonian noise) or below 1/2. Relegating the problem
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of super-Poissonian noise to the next subsection, we only
discuss here the possible suppression of shot noise below
1/2. Experimentally, noise suppression below 1/2 was
observed in early experiments by Brown [231], and re-
cently by Przadka et al [68] and by Kuznetsov et al [232].

Early papers on the subject (Han and Barnes [233],
Alam and Khondker [234], Sheng and Chua [235], Jahan
and Anwar [236] ) predict shot noise suppression down
to zero either with frequency or even at zero-frequency.
Following Ref. [233], these works treat current fluctua-
tions as a superposition of density and velocity fluctua-
tions, with a self-consistent treatment of interaction ef-
fects. However, apparently they did not include the par-
tition noise (T (1 − T )) in their consideration. Since it is
precisely the partition noise which produces the minimal
suppression of 1/2, it is not quite surprising that their
theory predicts lower suppression factors.

Sugimura [237] and, independently, Carlos Egues, Her-
shfield, and Wilkins [238] propose a model in which the
states in the well are inelastically coupled to the degrees
of freedom of the reservoirs. This model, indeed, yields
noise suppression below 1/2 in a limited parameter range.
The minimal suppression factor given in Ref. [238] is 0.45,
which is still above the experimental data. This direction
of research looks promising, but certainly requires more
efforts.

C. Interaction effects and super-Poissonian noise
enhancement

Prior to the discussion of charging effects, we briefly
comment on how quantum wells operate in the strongly
non-linear regime (eV ∼ EF ), provided charging effects
are not important. For simplicity, we assume that there
is only one resonant level of the longitudinal motion E0 ≡
Er

0 in the relevant range of energies, and all others levels
lie too high to be of importance, Er

n ≫ eV,EF for n > 0.
We assume also E0 > EF , and V > 0, then electrons
from the right reservoir cannot enter the well.

Modifying Eq. (79) to take into account that the band
bottoms eV in the left reservoir and U in the quantum
well are now finite, and substituting the transmission co-
efficient, T (Ez) = 2πΓLΓRΓ−1δ(Ez − E0), we obtain for
the average current

〈I〉 =
eν2A
h̄

ΓLΓR

Γ
(eV − eU + EF − E0) , (196)

provided E0 + eU − EF < eV < E0 + eU , and zero oth-
erwise. This dependence, which, of course, could also
be obtained classically from the rate equations, is shown
in Fig. 30a, solid line. The current drops abruptly to
zero for eV = E0 + eU , which corresponds to the pas-
sage of the band bottom of the left reservoir through the
resonant level in the well. When the smearing of the res-
onance due to finite tunneling rates is taken into account
(the transmission coefficient is not replaced by a delta-
function), the I–V curve becomes smeared (dashed line

in Fig. 30a), and the region of negative differential resis-
tance develops around eV ∼ E0 +eU . This was noted by
Tsu and Esaki in their early paper [52], and subsequently
observed experimentally in Ref. [53].

Now we consider charging effects. The new ingredient
is now that the electrostatic potential in the well U is not
an independent parameter any more, but is a function
of voltage, which must be calculated self-consistently.
Moreover, it has its own dynamics and may fluctuate;
we are going to show that the fluctuations of U may con-
siderably enhance noise. Theoretical papers emphasizing
the necessity of charging effects for the I–V curve are
too numerous to be cited here. For noise, the necessity
of a self-consistent treatment in the negative differential
resistance region was illustrated in the Green’s function
approach by Levy Yeyati, Flores, and Anda [239], who,
however, did not take into account the fluctuations of
U . Iannaccone et al [240] suggested that these fluctua-
tions may lead to the enhancement of noise above the
Poisson value, and provided numerical results support-
ing this statement. A self-consistent analytical theory
of noise in quantum wells including the fluctuations of
the band bottom was developed by the authors [241] in
the framework of the scattering approach51. The classi-
cal theory yields the same results [226]; here we give the
classical derivation.
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FIG. 30. I–V characteristics of the quantum well: (a)
charging effects are neglected; (b) charging effects are taken
into account. The values of parameters for (b) are aL = aR,
cL = cR, EF = 2E0/3, e2ν2A = 10cL. For this case
eV ∗ = 2.70E0.

In the strongly non-linear regime which we discuss
here, the energy dependence of the tunneling rates be-
comes important. To take this into account, we use a
simple model and treat each barrier as rectangular. The
transmission probability through a rectangular barrier
determines the partial decay width of the resonant level,

ΓL(Ez) = aLE
1/2
z (Ez + eU − eV )1/2

× θ(Ez)θ(Ez + eU − eV );

51The quantity U serves then as an operator which obeys an
operator Poisson equation.
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ΓR(Ez) = aRE
1/2
z (Ez + eU)1/2θ(Ez)θ(Ez + eU), (197)

where aL and aR are dimensionless constants (the case
of a symmetric well corresponds to aL = aR, not to ΓL =
ΓR). We emphasize that the partial decay widths ΓL,R

are now functions of V and U .
Consider first the average, stationary quantities.

Equations (189) are still valid for our case (now IR = 0,
since E0 > EF ). However, U is no longer an independent
variable, but is related to the charge in the well QL−QR.
Assuming that the interaction effects can be described by
a charging energy only, we write this relation in the form

(QL −QR) = cL(U − V ) + cRU. (198)

This equation just states that the total charge of the ca-
pacitor equals the sum of charges at the left and the right
plates. Equations (189) and (198) must now be solved to-
gether, using the expressions for the partial decay widths
(197). Combining them, we obtain a closed equation for
U ,

h̄cU̇ = eν2AΓL (eV − eU + EF − E0)

× θ(eV − eU + EF − E0)θ(E0 + eU − eV )

− (ΓL + ΓR) [cL(U − V ) + cRU ] , (199)

where ΓL,R ≡ ΓL,R(E0).
We analyze now the stationary solutions52 of Eq.

(199). For 0 < eV < eVa ≡ c(E0−EF )/cR the only solu-
tion is U = U0 ≡ cLV/c, which corresponds to the charge
neutral well (see Eq. (198)): The resonant level is pushed
up too high to allow any charge in the well. At V = Va

the resonant level passes through the Fermi level of the
left reservoir, and with a further increase of voltage, the
well is charged, U > U0. For eVa < eV < eVb ≡ cE0/cR,
Eq. (199) has only one stationary solution; however, for
V > Vb three solutions develop. One of them is U = U0

and corresponds to the charge neutral well; two other so-
lutions U1 < U2 describe the charged well. It can be seen
from Eq. (199) that the solution U1 is unstable, while U0

and U2 are stable. As the voltage V grows, the solutions
U1 and U2 move towards each other, and at the voltage
V ∗ (which is referred below as the instability threshold)
merge. For higher voltages V > V ∗, the only stationary
solution is U0: The well is charge neutral again, since the
resonant level lies too low.

Thus, the new feature due to charging effects is the
multi-stability of the system in the range of voltages be-
tween Vb and V ∗. The I–V characteristics of the quan-
tum well with charging are shown in Fig. 30b; in the

52Analytic expressions for the stationary solutions may be
obtained, since they obey a cubic equation. However, these
expressions are to cumbersome and not very transparent. In-
stead, we have chosen to give a qualitative discussion, illus-
trating it by numerical results.

multi-stability range the marks 0, 1, and 2 refer to the so-
lutions U0, U1, and U2, respectively. The current is only
non-zero if the well is charged. The instability is man-
ifest in the hysteretic behavior shown by dashed lines
in Fig. 30b: when the voltage is increasing, the well
stays charged (solution U2) until V ∗, and then jumps to
the zero-current state (U0); if the voltage is decreasing,
the current is zero until Vb, and then the jump to the
charged state (U2) happens. This hysteresis was appar-
ently observed experimentally [242]. A finite value of the
tunneling rates smears all these features, causing a fi-
nite current for all values of voltage. Furthermore, the
instability range shrinks, and a region of negative differ-
ential resistance appears close to the instability threshold
V ∗. For Γ ∼ (V ∗ − Vb) the instability disappears, and
the I–V characteristics resemble the dashed curve in Fig.
30a: The multi-stable regime is only pronounced for wells
formed with high tunnel barriers.

Now we turn to the calculation of noise. The principal
difficulty which we encounter for the charged well is the
following. Equations (189) are now non-linear, since they
depend on the potential in the well U in a non-linear
way, and U , in turn, is related to the charges QL and
QR via Eq. (199). The Langevin sources, however, can
only be added to linear equations [213]. Thus, we have
to linearize our set of equations53. Restricting ourselves
to the voltage range Va < V < V ∗, we write for the
potential in the well

U(t) = U2 + ∆U(t),

where U2(V ) is a stable stationary solution corresponding
to the charged well, and ∆U(t) are fluctuations. Expand-
ing in ∆U and adding the Langevin sources with the same
properties as before to the resulting linear equations, we
write

Q̇L = 〈I〉 +
1

h̄c
[h̄J − ΓL(c+ c0)] (QL −QR) + ξL(t);

Q̇R = 〈I〉 +
1

h̄c
[h̄J + ΓR(c+ c0)] (QL −QR) + ξR(t),

(200)

where the U -dependent tunneling rates ΓL,R are eval-
uated for U = U2, and the quantities c0 = −∂Q̄/∂U
and J = ∂(ΓRQ̄)/h̄∂U (also taken for U = U2; Q̄ ≡
eν2A(eV − eU +EF −E0)ΓL/Γ is the average charge of
the well) are the response of the average charge and cur-
rent to the increment of the potential in the well. The
average current in Eq. (200) is 〈I〉 = ΓRQ̄/h̄.

The noise spectrum, which follows from Eqs. (200), is

S(ω) = 2e〈I〉
{

c2L + c2R
c2

+
2

c2h̄2ω2 + Γ2(c+ c0)2
(201)

53The quantum-mechanical theory [241] also has been devel-
oped in linear approximation.
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×
[

(c+ c0)2
[

−ΓLΓR +
cLcRΓ2

c2

]

− h̄J(c+ c0)(ΓL − ΓR) + h̄2J2
]}

.

The noise power (201) is strongly voltage dependent via
the quantities c0, J , and Γ. In particular, for V → V ∗

the combination c + c0 tends to zero, as it is seen from
Eq. (199). If the charging effects do not play a role, we
may set c0 = J = 0 and recover the result (195).

The frequency structure of Eq. (201) is identical to
that of Eq. (195); the crossover frequency is h̄ω ∼
Γ(c + c0)/c, and drops down to zero for V = V ∗. For
high frequencies the usual result S = 2e〈I〉(c2l + c2R)/c2

is recovered. For zero frequency, we obtain a voltage de-
pendent Fano factor,

F =
1

2
+ 2

(Λ − ∆Γ)2

Γ2
, ∆Γ ≡ (ΓL − ΓR)/2. (202)

We have introduced the “interaction energy”

Λ ≡ h̄J

cL + cR + c0
,

which has the form of a dimensionless conductance h̄J/e2

multiplied by an effective charging energy of the well
e2/(cL + cR + c0). This quantity contains the relevant
information about the charging effects of the well. Eq.
(201) is a self-consistent result in contrast to Eq. (195)
found by inserting the free electron currents into the
Ramo-Shockley formula. We reproduce this result for
Λ = 0. We re-emphasize that a calculation of ac conduc-
tance or noise using the free-electron results for the cur-
rents and the Ramo-Shockley formula is not in general
a sound procedure: It assumes that the self-consistent
contribution to the currents arising from the internal po-
tential oscillations or fluctuations can be neglected.

V V V V0

1

F

a b
*

FIG. 31. Voltage dependence of the Fano factor (202) for
the same set of parameters as Fig. 30 (solid line); Fano factor
(78) for a charge neutral quantum well (dashed line).

For V → V ∗ the denominator c+ c0 of the interaction
energy Λ(V ) quite generally diverges as (V ∗ − V )−1/2,

while the numerator J stays finite. Thus, the Fano fac-
tor diverges according to (V ∗−V )−1. In particular, close
enough to the instability threshold V ∗ the Fano factor in-
creases above one: The noise becomes super-Poissonian.
At the onset of current, for V = Va the Fano factor can be
calculated in closed form, and one has 1/2 < F (Va) < 1.
Thus, we describe the transition from sub-Poissonian to
super-Poissonian noise. The minimal possible value of
the Fano factor in this theory is F = 1/2. It can be
shown that the voltage dependence of the Fano factor
is peculiar, and, depending on the relative value of the
charging effects e2ν2A/c, noise may be either suppressed
as compared with the non-interacting value (78) for low
voltages and enhanced for high voltages (“weak inter-
action scenario”),or enhanced, then suppressed, and only
after that enhanced again (“strong interaction scenario”).
For details, see Ref. [241]. The voltage dependence of the
Fano factor is illustrated in Fig. 31. The divergence of
noise is clearly seen.

The finite value of the partial decay widths (tunnel-
ing rates) smears the singularities, and, in particular,
induces a finite value of the Fano factor for V = V ∗.
Another source of deviations from the experimental re-
sults is our linearization procedure. For voltages close
to the instability threshold the linear approximation is
clearly insufficient, and large fluctuations (transitions be-
tween the state U2 and the state U0) must be taken into
account. These fluctuations also would induce a finite
value of noise for V = V ∗. We do not see any reason,
however, why these processes should suppress noise be-
low the Poisson value in the whole range of voltages.

Now we briefly review various predictions of the pos-
sibility of super-Poissonian noise enhancement in quan-
tum wells. Brown [231] theoretically predicted that noise
can be enhanced above the Poissonian value because the
energy dependence of transmission probabilities will be
affected by the applied voltage in a non-linear way. He,
however, did not include partition noise in his consider-
ation, so that for the energy independent transmission
probabilities noise is fully Poissonian. Jahan and Anwar
[236], who also found super-Poissonian noise enhance-
ment, included self-consistent effect at the level of the sta-
tionary transmission probabilities, but also did not take
partition noise into account. As we already mentioned,
an explanation of the super-Poissonian noise in terms
of the potential fluctuations was given by Iannaccone et
al [240], and the analytical theory of this enhancement,
identifying the relevant energy scales, was proposed in
Refs. [241,226].

Experimentally, enhancement of noise in quantum
wells, as the voltage approaches the range of negative
differential resistance, was observed already in the early
experiments by Li et al [64] and by Brown [231]. The
super-Poissonian shot noise in the negative differential
resistance range was observed by Iannaccone et al [240].
Kuznetsov et al [232] have presented a detailed investi-
gation of the noise oscillations from sub-Poissonian to
super-Poissonian values of a resonant quantum well in
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the presence of a parallel magnetic field. The magnetic
field leads to multiple voltage ranges of negative differen-
tial resistance and permits a clear demonstration of the
effect. Their results are shown in Fig. 32.

To conclude this Section, we discuss the following is-
sue. To obtain the super-Poissonian noise enhancement,
we needed multi-stable behavior of the I–V curve; in
turn, the multi-stability in quantum wells is induced by
charging effects. It is easy to see, however, that the
charging (or, generally, interaction) effects are not re-
quired to cause the multi-stability. Thus, if instead of a
voltage controlled experiment, we discuss a current con-
trolled experiment, the I–V characteristics for the un-
charged quantum well (Fig. 30) are multi-stable for any
external current. For the case of an arbitrary load line
there typically exists a finite range of external parameters
where multi-stable behavior is developed. Furthermore,
the quantum wells are not the only systems with multi-
stability; as one well-known example we mention Esaki
diodes, where the multi-stability is caused by the struc-
ture of the energy bands [243].

FIG. 32. Experimental results of Kuznetsov et al [232]
which show noise in resonant quantum wells in parallel mag-
netic field. A dotted line represents the Poisson value. It is
clearly seen that for certain values of applied bias voltage the
noise is super-Poissonian.

Usually such bistable systems are discussed from the
point of view of telegraph noise, which is due to sponta-
neous random transitions between the two states. This is
a consideration complementary to the one we developed
above. Indeed, in the linear approximation the system
does not know that it is multi-stable. The shot noise
grows indefinitely at the instability threshold only be-
cause the state around which we have linearized the sys-
tem becomes unstable rather than metastable. This is
a general feature of linear fluctuation theory. Clearly
the divergence of shot noise in the linear approximation
must be a general feature of all the systems with multi-
stable behavior. Interactions are not the necessary in-
gredient for this shot noise enhancement. On the other

hand, as we have discussed, the transitions between dif-
ferent states, neglected in the linear approximation, will
certainly soften the singularity and drive noise to a finite
value at the instability threshold. To describe in this way
the interplay between shot noise and random telegraph
noise remains an open problem.

VI. BOLTZMANN-LANGEVIN APPROACH TO
NOISE: DISORDERED SYSTEMS

A. Fluctuations and the Boltzmann equation

In this Section we describe the generalization of the
Langevin method to disordered systems. As is well
known, the evolution of the (average) distribution func-
tion f̄(r,p, t) is generally described by the Boltzmann
equation,

(∂t + v∇ + eE∂p) f̄(r,p, t) = I[f̄ ] + Iin[f̄ ]. (203)

Here E is the local electric field, Iin[f̄ ] is the inelastic col-
lision integral, due to the electron-electron and electron-
phonon scattering (we do not have to specify this integral
explicitly at this stage), and I[f̄ ] is the electron-impurity
collision integral. For a d-dimensional disordered system
of volume Ω it is written as

I[f̄(r,p, t)] = Ω

∫

dp′

(2πh̄)d

[

J̄(p′,p, r, t) − J̄(p,p′, r, t)
]

,

J̄(p,p′, r, t) ≡ W̃ (p,p′, r)f̄(r,p, t)
[

1 − f̄(r,p′, t)
]

,

(204)

where we have introduced the probability W̃ of scattering
per unit time from the state p to the state p′ due to the
impurity potential U ,

W̃ (p,p′, r) =
2π

h̄
|Upp′ |2δ [ǫ(p) − ǫ(p′)] .

Thus, the impurity collision integral can be considered
as the sum of particle currents J to/from the state p

from/to all the possible final states p′, taken with appro-
priate signs.

The fluctuations are taken into account via the
Boltzmann-Langevin approach, introduced in condensed
matter physics by Kogan and Shul’man [244]. This ap-
proach assumes that the particle currents between the
states p and p′ fluctuate due to the randomness of the
scattering process and partial occupation of the electron
states. We write

J(p,p′, r, t) = J̄(p,p′, r, t) + δJ(p,p′, r, t), (205)

where the average current J̄ is given by Eq. (204), and
δJ represents the fluctuations. Then the actual distribu-
tion function f(r,p, t), which is the sum of the average
distribution f̄ and fluctuating part of the distribution δf ,
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f(r,p, t) = f̄(r,p, t) + δf(r,p, t), (206)

obeys a Boltzmann equation which contains now in ad-
dition a fluctuating Langevin source ξ on the right hand
side,

(∂t + v∇ + eE∂p) f(r,p, t) = I[f ] + Iin[f ] + ξ(r,p, t),

ξ(r,p, t) = Ω

∫

dp′

(2πh̄)d
[δJ(p′,p, r, t) − δJ(p,p′, r, t)] .

(207)

These Langevin sources are zero on average, 〈ξ〉 = 0.
To specify the fluctuations, Kogan and Shul’man [244]
assumed that the currents J(p,p′, r, t) are independent
elementary processes. This means that these currents
are correlated only when they describe the same process
(identical initial and final states, space point, and time
moment); for the same process, the correlations are taken
to be those of a Poisson process. Explicitly, we have

〈δJ(p1,p2, r, t)δJ(p′1,p
′
2, r
′, t′)〉

=
(2πh̄)2d

Ω
δ (p1 − p′1) δ (p2 − p′2)

× δ(r − r′)δ(t− t′)J̄(p1,p2, r, t). (208)

Eq. (208) then implies the following correlations between
the Langevin sources,

〈ξ(r,p, t)ξ(r′,p′, t′)〉 = δ(r − r′)δ(t− t′)G(p,p′, r, t),

(209)

where

G(p,p′, r, t) = Ω

{

δ(p − p′)

∫

dp′′

×
[

J̄(p′′,p, r, t) + J̄(p,p′′, r, t)
]

−
[

J̄(p,p′, r, t) + J̄(p′,p, r, t)
]}

. (210)

Note that the sum rule
∫

dpG(p,p′, r, t) =

∫

dp′G(p,p′, r, t) = 0, (211)

is fulfilled. This sum rule states that the fluctuations
only redistribute the electrons over different states, but
do not change the total number of particles.

These equations can be further simplified in the im-
portant case (which is the main interest in this Section)
when all the quantities are sharply peaked around the
Fermi energy. Instead of the momentum p, we introduce
then the energy E and the direction of the momentum
n = p/p. The velocity and the density of states are
assumed to be constant and equal to vF and νF , respec-
tively. We write

ΩW̃ (p,p′, r) = ν−1
F δ(E − E′)W (n,n′, r),

where W is the probability of scattering from the state
n to the state n′ per unit time at the space point r.

Furthermore, we will be interested only in the stationary
regime, i.e. the averages f̄ and J̄ (not the fluctuating
parts) are assumed to be time independent. Eliminating
the electric field E by the substitution E → E − eϕ(r),
with ϕ being the potential, we write the Boltzmann-
Langevin equation in the form

(∂t + vF n∇) f(r,n, E, t) = I[f ] + Iin[f ] + ξ(r,n, E, t),

(212)

where the Langevin sources ξ are zero on average and are
correlated as follows,

〈ξ(r,n, E, t)ξ(r′,n′, E′, t′)〉 =
1

νF
δ(r − r′)δ(t− t′)

× δ(E − E′)G(n,n′, r, E), (213)

G(n,n′, r, E) ≡
∫

dn′′ [δ(n − n′) − δ(n′ − n′′)]

×
[

W (n,n′′, r)f̄(1 − f̄ ′′) +W (n′′,n, r)f̄ ′′(1 − f̄)
]

.

(214)

We used the notations f̄ ≡ f̄(r,n, E) and f̄ ′′ ≡
f̄(r,n′′, E). The expression for the current density,

j(r, t) = evF

∫

dn dE nf(r,n, E, t) (215)

(with the normalization
∫

dn = 1), completes the system
of equations used in the Boltzmann-Langevin method.
We remark that in this formulation the local electric
potential does not appear explicitly: for systems with
charged carriers such as electric conductors the electric
field is coupled to the (fluctuating) charge density via the
Poisson equation. We will return to this point when we
discuss situations in which a treatment of this coupling
is essential.

B. Metallic diffusive systems: Classical theory of 1/3
– noise suppression and multi-probe generalization

Equations (212), (213), and (214) are very general and
may be applied to a large variety of systems. Now we
turn to the case of metallic diffusive systems, where these
equations may be simplified even further and eventually
can be solved. A classical theory of noise in metallic diffu-
sive wires was proposed by Nagaev [75], and subsequently
by de Jong and Beenakker [89,90]. Sukhorukov and Loss
[113,114] gave another derivation of the shot noise sup-
pression for the two-terminal wire and, more importantly,
generalized it to treat conductors of arbitrary geometry
and with an arbitrary number of contacts. Below we give
a sketch of the derivation, following Ref. [114], to which
the reader is addressed for further details.

The distribution function in metallic diffusive systems
is almost isotropic. We then separate it into symmetric
and asymmetric parts,
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f(r,n, E, t) = f0(r, E, t) + nf1(r, E, t). (216)

For simplicity, we consider here the relaxation time ap-
proximation for the electron-impurity collision integral,

I[f ] = −nf1

τ(r)
,

nα

τ(r)
=

∫

dn′ W (n,n′, r) [nα − n′α] ,

where τ is the average time a carrier travels between
collisions with impurities. This approximation is valid
when the scattering is isotropic (W depends only on the
difference |n − n′|). The full case is analyzed in Ref.
[114]. Integrating Eq. (212) first with

∫

dn, and then
with

∫

n dn, we obtain

D∇ · f1 = lĪin[f ], Īin[f ] ≡
∫

dn Iin[f ],

f1 = −l∇f0 + τd

∫

n ξdn, (217)

where we have introduced the mean free path54 l = vF τ
and the diffusion coefficient D = vF l/d. We assume the
system to be locally charge neutral. Integrating Eq. (217)
with respect to energy, we obtain for the local fluctuation
of the current

δj + σ∇δϕ = δjs, ∇ · δj = 0,

δjs(r, t) = elνF

∫

n ξ(r,n, E, t) dn dE. (218)

Here σ = e2νD is the conductivity, and ϕ(r) is the elec-
trostatic potential. The currents js are correlated as fol-
lows,

〈δjs
l (r, t)δjs

m(r′, t′)〉 = 2σδlmδ(r − r′)δ(t− t′)Π(r),

(219)

where the quantity Π is expressed through the isotropic
part of the average distribution function f̄ ,

Π(r) =

∫

dEf̄0(r, E)
[

1 − f̄0(r, E)
]

. (220)

The distribution f̄0 obeys the equation

D∇2f̄0(r, E) + Īin[f̄0 − ln · ∇f̄0] = 0. (221)

The standard boundary conditions for the distribution
function are the following. Let Ln denote the area of
contact n (1 ≤ n ≤ N), and Ω the rest of the surface of
the sample. At contact n, the non-equilibrium distribu-
tion function f̄0 is determined by the equilibrium Fermi

54This is the transport mean free path; this definition differs
by a numerical factor from that used in Section II. Following
the tradition, we are keeping two different definitions for the
scattering approach and the kinetic equation approach.

distribution function in the reservoir n, f̄0|Ln
= fn(E),

whereas away from the contacts the current perpendicu-
lar to the surface must vanish and thus N · ∇f̄0|Ω = 0,
where N is the outward normal to the surface.

Eqs. (218) and (219) can be used to find the current-
current fluctuations if the non-equilibrium carrier distri-
bution is known. Thus we proceed first to find the non-
equilibrium distribution function, solving Eq. (221). We
follow then Ref. [113] and find the characteristic poten-
tials55 φn, which on the ensemble average obey the Pois-
son equation ∇2φn = 0, with the boundary conditions

φn|Lm
= δmn; N · ∇φn|Ω = 0.

In terms of the characteristic potentials the electrostatic
potential is [136]

ϕ(r) =
∑

n

φn(r)Vn,

where Vn is the voltage applied to the reservoir n. Note
that

∑

n φn(r) = 1 at every space point as a consequence
of the invariance of the electrical properties of the con-
ductor under an arbitrary overall voltage shift. With
the help of the characteristic potentials, the conductance
matrix (which we, as before, define as Im = GmnVn, Im
being the current through Lm directed into the sample),
we obtain

Gmn = σ

∫

dr∇φm∇φn (222)

(the integration is carried out over the whole sample).
The conductances are independent of the electrical (non-
equilibrium) potential inside the conductor. To see this
one can re-write Eq. (222) in terms of a surface integral.

Multiplying Eq. (218) by ∇φn and integrating over
the whole volume we obtain the fluctuation of the cur-
rent through the contact n. The potential fluctuations
δϕ(r) actually play no role and are eliminated due to
the boundary condition that they vanish at the contacts.

55For an arbitrary conductor the electrostatic potential can
be expanded as ϕ(r) =

∑

φn(r)Vn; Ref. [136] calls the co-
efficients φn characteristic potentials. We remark that in the
absence of inelastic processes, the average distribution func-
tion can be written as a linear combination of the equilibrium
reservoir functions fn, f̄(r) = ν−1

F

∑

νn(r)fn. Refs. [110,111]
call the coefficients νn injectivities. In the diffusive metallic
conductor of interest here the characteristic potentials and in-
jectivities are the same functions up to a factor given by the
local density of states νF . Such an equivalence does not hold,
for instance, in systems composed of different metallic diffu-
sive conductors, and in general the characteristic potentials
and injectivities may have a quite different functional form.
Here the use of the characteristic potentials has the advan-
tage that it takes effectively the local charge neutrality into
account.
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At zero temperature, and to linear order in the applied
voltage, this is exact: Internal potential fluctuations play
a role only in the non-linear voltage dependence of the
shot noise and in its temperature dependence. Taking
into account the form of the correlation function (219),
we find the noise power,

Smn = 4σ

∫

dr∇φn(r)∇φm(r)Π(r). (223)

Eq. (223), together with the equation (221) for the dis-
tribution function f̄0, is the general result for the multi-
terminal noise power within the classical approach. At
equilibrium Π(r) = kBT , and Eq. (223) reproduces the
fluctuation-dissipation theorem.

We next apply Eq. (223) to calculate noise suppression
in metallic diffusive wires, for the case when the inelastic
processes are negligible, Īin = 0. We consider a wire of
length L and width56 W ≪ L, situated along the axis x
between the point x = 0 (reservoir L) and x = L (R).
The voltage V is applied to the left reservoir. There are
only two characteristic potentials,

φL = 1 − φR = 1 − x/L, (224)

which obey the diffusion equation and do not depend
on the transverse coordinate. The average distribution
function is found as f0(x) = φL(x)fL + φR(x)fR, and
thus the quantity Π for zero temperature is expressed as

Π(x) = eV φL(x)[1 − φL(x)].

Subsequently, we find the conductance GLL = σW/L,
and the shot noise

SLL =
4eσWV

L2

∫ L

0

dx
x

L

(

1 − x

L

)

=
2e〈I〉

3
. (225)

As we mentioned earlier, this expression is due to Nagaev
[75]. The Fano factor is 1/3, in accordance with the
results found using the scattering approach (Section II).

For purely elastic scattering the distribution function
f̄0 in an arbitrary geometry quite generally can be written
as

f̄0(r, E) =
∑

n

φn(r)fn(E). (226)

This facilitates the progress for multi-probe geometries.
Sukhorukov and Loss [113,114] obtain general expres-
sions for the multi-terminal noise power and use them
to study the Hanbury Brown – Twiss effect in metallic
diffusive conductors. The quantum-mechanical theory of
the same effect can be found in Ref. [78].

56We use two-dimensional notations, d = 2.

C. Interaction effects

Interaction effects are relatively easy to deal with in
the Boltzmann-Langevin approach, in contrast to the dif-
ficulties encountered by the scattering theory.

Electron-electron interactions. An important fea-
ture of electron-electron interactions is that they do not
change the total momentum of the electron system57.
Generally, therefore, electron-electron scattering alone
cannot cause transport, and in particular it cannot cause
noise. Technically, this is manifested in the fact that the
form of current-current fluctuations is given by the same
expression (223), as in the non-interacting case. However,
electron-electron scattering processes alter the distribu-
tion function f̄0, and thus the value of the shot noise.

The inelastic collision integral for electron-electron in-
teractions Īin[f ] (which we denote Īee[f ]) generally has
the form

Īee[f(E)] =

∫

dE′dωK(ω) {f(E)f(E′)

× [1 − f(E − ω)] [1 − f(E′ + ω)] (227)

− f(E − ω)f(E′ + ω) [1 − f(E)] [1 − f(E′)]} ,

where the kernel K(ω) for disordered systems must be
found from a microscopic theory. For three-dimensional
metallic diffusive systems it was obtained by Schmid
[245]; for two- and one-dimensional systems the zero-
temperature result may be found in Ref. [246]. For fi-
nite temperatures, a self-consistent treatment is needed
[247]. This kernel turns out to be a complicated function
of disorder and temperature. In particular, in 1D for zero
temperature it diverges as K(ω) ∝ ω−3/2 for ω → 0. The
strength of the interaction is characterized by a time τee,
which we call the electron-electron scattering time.

Thus, one needs now to solve Eq. (221) for f̄0, calculate
the quantity Π(r), and substitute it into the expression
(223) to obtain the noise. Up to now, only two limiting
cases have been discussed analytically. First, for weak
interactions D/L2 ≫ τ−1

ee (with L being the typical size
of the system) the collision integral in Eq. (221) may be
treated perturbatively. Since electron-electron interac-
tions are of minor importance, the distribution function
f̄0 in this case is still given by Eq. (226). Nagaev [248],
assuming a specific form of K(ω), found that the shot
noise power is enhanced due to the electron-electron in-
teractions compared to the non-interacting result.

Another regime where progress is possible is that of
strong scattering, D/L2 ≪ τ−1

ee . In this situation, elec-
trons undergo many scattering events before leaving the

57This is only correct if Umklapp processes can be neglected.
The influence of Umklapp processes on shot noise in meso-
scopic systems has not been investigated.
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system, and one can expect that the distribution func-
tion at every point is close to the equilibrium distribu-
tion. Indeed, in the leading order, the diffusion term in
Eq. (221) can be neglected, and the distribution func-
tion must then be one for which the collision integral is
zero. The collision integral (227) vanishes identically for
the Fermi distribution, and thus the distribution function
assumes the form of a local equilibrium Fermi function
with the potential ϕ(r) and a local effective temperature
T (r),

f̄0(r, E) =

[

exp

(

E − eϕ(r)

kBT (r)

)

+ 1

]−1

. (228)

In the literature this distribution function is also referred
to as a hot electron distribution. Eq. (221) is now used
to find the effective temperature profile T (r). Consider
the quantity

w(r) =

∫

dE E
[

f̄0(E) − θ(E − eϕ(r))
]

, (229)

which up to a coefficient and an additive constant is the
total energy of the system. The substitution of Eq. (228)
gives w(r) = π2T 2(r)/6. Then the application of Eq.
(221) yields

π2

6
∇2
[

T 2(r)
]

= −e
2

2
∇2ϕ2(r) = −e2E2(r), (230)

where we have taken into account ∇2ϕ = 0 to obtain
the final result. Actually, the term on the right-hand
side is proportional to the Joule heating jE, and the
equation states that this energy losses are spent to heat
the electron gas.

In the following, we again specialize to the case of
a quasi-one-dimensional metallic diffusive wire between
x = 0 and x = L. In this case E = V/L, and
Eq. (230) must be solved with the boundary conditions
T (0) = T (L) = T0, with T0 being the bath temperature.
For the temperature profile we then obtain

T (x) =

[

T 2
0 +

3

π2

(

eV

L

)2

x(L − x)

]1/2

. (231)

Substituting this into Eq. (223), we find the shot noise for
hot electrons. In particular, when the bath temperature
T0 equals zero, we find for the Fano factor

F =

√
3

4
≈ 0.43. (232)

The result (231) is due to Kozub and Rudin [249,250] and
Nagaev [248]. The multi-terminal generalization is given
by Sukhorukov and Loss [113,114]. Eq. (231) states that
shot noise for hot electrons is actually higher than for
non-interacting electrons. This agrees with the notion
which we obtained considering the scattering approach
(Section II): Electron heating enhances the shot noise.

Indeed, enhanced (as compared to the 1/3–suppression)
shot noise was observed experimentally by Steinbach,
Martinis, and Devoret [80]. Their experimental data are
shown in Fig. 33 for a particular sample. Shorter samples
in the same experiment [80] exhibit Fano factors which

are between 1/3 and
√

3/4. The 1/3–suppression of shot
noise and crossover from the diffusive to the hot-electron
regime was very carefully studied by Henny et al [81], see
subsection II F 4.

The hot-electron result (232) is actually independent
of the details of electron-electron interaction (indepen-
dent of the kernel K(ω) in Eq. (227)). The crossover

between F = 1/3 and F =
√

3/4 does depend on this ker-
nel. Nagaev [143] and Naveh [144] studied this crossover
numerically for a particular form of K(ω) which assumes
that there is no interference between elastic and electron-
electron scattering. They suggested that information on
the strength of the electron-electron scattering may be
extracted from the zero-frequency noise measurements.

FIG. 33. Shot noise observed at the same sample for three
different temperatures by Steinbach, Martinis, and Devoret
[80]. Dashed and solid lines indicate the 1/3–suppression and
the hot electron result F =

√
3/4. The temperature is the

lowest for the lowest curve.

At this point, we summarize the information we ob-
tained from the scattering and Boltzmann-Langevin ap-
proaches about the effects of the electron-electron inter-
actions on noise. There are two characteristic times, one
responsible for dephasing processes, τφ, and another one
due to inelastic scattering (electron heating), τee. We
expect τφ ≪ τee. Dephasing does not have an effect on
noise, and thus for short enough samples, D/L2 ≫ τ−1

ee ,
the Fano factor is 1/3 (irrespectively of the relation be-
tween D/L2 and τφ). For long wires, D/L2 ≪ τ−1

ee , the

Fano factor equals
√

3/4 due to electron heating. For
even longer wires the electron-phonon interactions be-
come important (see below), and shot noise is suppressed
down to zero.

The microscopic theory, however, predicts three char-
acteristic times responsible for electron-electron scatter-
ing in disordered systems (for a nice qualitative explana-
tion, see Ref. [251]). One is the dephasing time τφ, an-
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other one is the energy relaxation time, τE , and the third
one, for which we keep the notation τee, has the mean-
ing of the average time between electron-electron colli-
sions. While the dephasing time is quantum-mechanical
and cannot be accounted for in the classical theory, the
information about τee and τE is contained in the col-
lision integral (227). For three-dimensional disordered
systems, all the three times coincide: The presence of de-
phasing always means the presence of inelastic scattering
and electron heating. The situation is, however, different
in two- and one-dimensional systems, where the three
times differ parametrically, with the relation [251,247]
τee ≪ τφ ≪ τE . This is in apparent contrast with the in-
tuitive predictions of the scattering approach, and opens
a number of questions. First, it is not clear whether τE
or τee is responsible for the 1/3 –

√
3/4 crossover in the

classical theory. Then, the role of dephasing, which is not
taken into account in the Boltzmann-Langevin approach,
may need to be revisited. These questions may only be
answered on the basis of a microscopic theory.

We must point out here that interactions, besides alter-
ing the amplitude of shot noise, also create an additional
source of noise in diffusive conductors, since the mov-
ing electrons produce fluctuating electromagnetic field, as
discovered by von Oppen and Stern [252]. Referring the
reader to Ref. [252] for details, we mention that this noise
is proportional to V 2 for low voltages, and to |ω|2/(4−d)

for D/L2 ≪ h̄|ω| ≪ kBT . As a function of frequency,
this noise saturates for low frequencies, and vanishes for
h̄|ω| ≫ kBT .

Electron-phonon interactions. In contrast to
electron-electron scattering, electron-phonon interactions
do change the total momentum of electrons and cause a fi-
nite resistance and noise by themselves. Noise in ballistic,
one-channel quantum wires due to electron-phonon in-
teractions within the Boltzmann-Langevin approach was
studied by Gurevich and Rudin [253,254], who start di-
rectly from Eq. (212) with the electron-phonon collision
integral on the right-hand side (no impurity scattering).
They consider only the situation of weak interactions,
when the electron distribution function is not modified
by inelastic scattering. They discover that, for this case,
the main effect is the absence of noise when the Fermi en-
ergy lies below the threshold energy Eth = 2pF s, where
s is the sound velocity. The appearance of this thresh-
old is due to the fact that the maximal wave vector of
acoustic phonons which interact with electrons is 2pF /h̄.
For EF > Eth shot noise grows. The suppression of shot
noise in long wires, which is a consequence of the equili-
bration of the electron distribution function due to strong
interactions, was beyond the scope of Refs. [253,254].

In disordered systems, one has to take into account
three effects. First, elastic scattering modifies the
electron-phonon collision integral [255], which assumes
different forms depending on the spatial dimension and
degree of disorder. Then, it affects the distribution func-
tion of electrons. Finally, interactions modify the resis-
tance of the sample, and the expression for the shot noise

does not have the simple form of Eq. (223). The distri-
bution function of phonons, which enters the electron-
phonon collision integral, must be, in principle, found
from the Boltzmann equation for phonons, which cou-
ples with that for electrons.

The standard approximations used to overcome these
difficulties and to get reasonable analytical results are as
follows. First, for low temperatures, the contribution to
the resistance due to electron-phonon collisions is much
smaller than that of electron-impurity scattering. Thus,
one assumes that Eq. (223) still holds, and electron-
phonon collisions only modify the distribution function
for electrons and the form of the collision integral. Fur-
thermore, phonons are assumed to be in equilibrium at
the lattice temperature. This approach was taken by Na-
gaev, who calculates the effects of electron-phonon scat-
tering on the shot noise of metallic diffusive wires for
the case when electron-electron scattering is negligible
[75], and subsequently for the case of hot electrons [248].
In addition, careful numerical studies of the role of the
electron-phonon interaction in noise in metallic diffusive
conductors (starting from the Boltzmann-Langevin ap-
proach) are performed by Naveh, Averin, and Likharev
[256], and Naveh [145]. The results depend on the rela-
tion between temperature, applied voltage, and electron-
phonon interaction constant, and we refer the reader
to Refs. [75,248,256,145] for details. The only feature
we want to mention here is that for constant voltage
eV ≫ kBT and strong electron-phonon scattering, the
Fano factor decreases with the length of the wire. For
both non-interacting and hot electrons the specific form
of the collision integral which was assumed leads to the
dependence F ∝ L−2/5, which is different from the pre-
diction F ∝ L−1 of the simple model of voltage probes
(Section II). The exponent 2/5 is, however, strongly
model dependent, and should not be taken very seriously.

A simple way to see that shot noise is suppressed by the
electron-phonon scattering is [249,90] to assume that, in
the limit of strong interactions, the distribution function
of electrons is the Fermi function with the temperature
equal to the bath temperature. Eq. (223) gives then a
noise power which is just the Nyquist value, i.e. in this
case the shot noise is completely suppressed.

Experimentally, for low temperatures, electron-phonon
scattering is less effective than electron-electron colli-
sions, and therefore one expects that, with the increase
of the length of the wire, one first goes from the non-
interacting regime F = 1/3 to the hot-electron regime,

F =
√

3/4. For even longer wires electron-phonon colli-
sions play a role, and the Fano factor decreases down to
zero.

D. Frequency dependence of shot noise

While discussing the classical approach to the shot
noise suppression, we explicitly assumed that the sample
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is locally charge neutral: Charge pile-up is not allowed in
any volume of any size. As a result, we obtained white
(frequency independent) shot noise.

In reality, however, there is always a finite (though
small) screening radius, which in the case when the
system is locally three-dimensional has the form λ0 =
(4πe2ν)−1/2. As Naveh, Averin, and Likharev [140] and
Turlakov [257] point out, if one of the dimensions of a dis-
ordered sample becomes comparable with λ0, the pile-up
of the charge may modify the frequency dependence of
noise, though it leaves the zero-frequency noise power un-
changed. If all the dimensions of the sample exceed the
screening radius (which is typically the case for metal-
lic, and often also for semiconducting) mesoscopic sys-
tems, the charge pile-up inside the sample is negligible,
and noise stays frequency independent until at least the
plasma frequency, which in three-dimensional structures
is very high.

The situation is different if the sample is capacitively
connected to an external gate. As we have seen in the
framework of the scattering approach (Section III), the
fact that the sample is now charged, leaves the zero-
frequency noise unchanged, but strongly affects the fre-
quency dependence of the shot noise. An advantage of
the Boltzmann-Langevin approach is that it can treat
these effects analytically, calculating the potential distri-
bution inside the sample and making use of it to treat the
current fluctuations. The general program is as follows.
Instead of the charge neutrality condition, one uses the
full Poisson equation, relating potential and density fluc-
tuations inside the sample. In their turn, density fluc-
tuations are related to the current fluctuations via the
continuity equation. Finally, one expresses the current
fluctuations via those of the potential and the Langevin
sources. Thus, the system of coupled partial differential
equations with appropriate boundary conditions needs to
be solved. The solution is strongly geometry dependent
and has not been written down for an arbitrary geometry.
Particular cases, with a simple geometry, were consid-
ered by Naveh, Averin, and Likharev [140,142], Nagaev
[141,143], and Naveh [144,145]. Without even attempt-
ing to give derivations, we describe here the main results,
referring the reader to these papers for more details.

A conductor in proximity to a gate can be charged vis-
a-vis the gate. We can view the conductor and the gate
as the two plates of a capacitor. In the limit where the
screening length is much larger than the wire radius, only
a one-dimensional theory is needed. It is this atypical
situation which is considered here. For a wire of cross-
section A and a geometrical capacitance c per unit length
its low frequency dynamics is characterized by the elec-
trochemical capacitance58 c−1

µ = c−1+(e2Aν)−1 which is

58For a discussion of electrochemical capacitance and ac con-
ductance see Refs. [157] and [165]; see also Section III.

the parallel addition of the geometrical capacitance and
the quantum capacitance (e2Aν)−1. Here we have as-
sumed that the potential is uniform both along the wire
and more importantly also in the transverse direction of
the wire. Any charge accumulated in the wire can dy-
namically relax via the reservoirs connected to the wire
and via the external circuit which connects the wire and
the gate. For a zero-external impedance circuit this re-
laxation generates a charge relaxation resistance Rq (see
the discussion in Section III) which for a metallic diffu-
sive conductor is of the order of the sample resistance
R = L(σA)−1. With these specifications we expect that
a metallic diffusive wire in proximity of a gate is char-
acterized by a frequency ωRC = 1/RqCµ which is given
by ωRC = σA/(cL2) + σ/(e2νL2). (Refs. [140,142] ex-
press ωRC in terms of a generalized diffusion constant
D′ = D + σA/c using the Einstein relation σ = e2νD,
such that h̄ωRC = h̄D′/L2 has the form of a Thouless
energy). For ω ≪ ωRC , noise measured at the con-
tacts to the wire is dominated by the white-noise zero-
frequency contribution (the Fano factor equals 1/3 for

independent electrons or
√

3/4 for hot electrons). For
frequencies higher than ωRC the spectrum measured at
the contacts of the wire starts to depend on the details
of the system, and for infinite frequency the Fano fac-
tor tends to a constant value, which may lie above as
well as below the non-interacting value. This is because
the zero-temperature quantum noise S ∝ h̄|ω| cannot
be obtained by classical means: Thus, all the results of
this subsections are applicable only outside of the regime
when this source of noise is important. In particular, for
zero temperature this means ω < e|V |. The crossover to
the quantum noise was recently treated by Nagaev [214]
using the Green’s functions technique.

It is also assumed that the frequency is much below
the inverse elastic scattering time, ω ≪ τ−1; outside
this regime, the diffusion approximation is not valid. As
emphasized in work on chaotic cavities [98] experiments
which measure the noise at the gate can also be envi-
sioned: This has the advantage that even for frequencies
much smaller than ωRC the noise is frequency dependent
and in fact can for metallic systems also be expected to
be determined by Rq and Cµ.

Nagaev [141,143] considers a circular conductor of
length L and radius R, surrounded by a circular gate.
For L ≪ R (short wire) he finds that the noise spec-
trum measured at a contact is frequency independent.
However, generally the frequency dependence is quite
pronounced. Thus, for the case when the distribution
function is described by Eq. (226), and wires are long,
L ≫ R, the correlation of currents taken at the same
contact, SLL, for ω ≫ ωc tends to the Poisson value
2e〈I〉, while the current correlation at different contacts,
SLR, rapidly falls off with frequency, and is exponentially
small for ω ≫ ωc. Note that the current is not conserved
in this system, since an ac current is also generated at
the gate. For hot electrons, the high-frequency noise is
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given by [143] SLL ∼ e〈I〉α1/6, where α is a dimension-
less parameter proportional to the interaction strength.
This result seems paradoxical, since for the hot electrons
the distribution function is independent of the form of
the collision integral, and thus the results for noise at
any frequency are not expected to depend on this form.
The resolution of this paradox, as pointed out by Nagaev
[143], is that close to the contacts for hot electrons the
term ∇2f diverges, and in some sense the electrons close
to the contacts are never hot.

Naveh, Averin, and Likharev [142] consider analyti-
cally a geometry in which a planar contact is situated
above a gate. Instead of solving the Poisson equation,
they assumed that the potential profile ϕ(x) is propor-
tional to the charge density ρ(x) in the insulating layer
which separates the sample from the gate. Thus, the
screening radius is set to be zero, and the charge pile-
up in the sample is effectively forbidden59. They studied
the current correlation at the same cross-section, S(x).
For non-thermalized electrons, the high-frequency noise
(ω ≫ ωc) inside the conductor grows even for zero tem-
perature, S(x) ∝ (ω/ωc)

1/2[x(L − x)]1/2. At the con-
tacts this noise power turns to zero, and one obtains
SLL ≡ S(x = 0) = e〈I〉. Note that this value is the
same as for a double-barrier structure with symmetric
capacitances. The difference with the result SLL = 2e〈I〉
originates from the fact that in this mode the charge pile-
up in the contact is forbidden. In addition, the frequency
dependent noise in the same model is studied numerically
by Naveh for electron-electron [144] and electron-phonon
[145] interactions.

E. Shot noise in non-degenerate conductors

Diffusive conductors. Recently, González et al
[258], motivated by the diversity of proofs for the 1/3
noise suppression in metallic diffusive wires, performed
numerical simulations of shot noise in non-degenerate dif-
fusive conductors. They have taken the interaction ef-
fects into account via the Poisson equation. For the dis-
order a simple model with an energy independent scat-
tering time was assumed. They found that the noise
suppression factor for this system, within the error bars,
equals 1/3 and 1/2 in three- and two-dimensional sys-
tems, respectively. A subsequent work [259] gives the
suppression factor 0.7 for d = 1.

An analytic theory of shot noise in these conduc-
tors was proposed by Beenakker [260], and subse-
quently by Nagaev [261] and Schomerus, Mishchenko,
and Beenakker [262,263]. The general conclusion is as

59Numerical results for the same model with charge pile-up
(only non-thermalized electrons) were previously provided by
Nagaev [141].

follows. Shot noise in non-degenerate diffusive conduc-
tors is non-universal in the sense that it depends on the
details of the disorder (the energy dependence of the elas-
tic scattering time) and the geometry of the sample. In
the particular case, when the elastic relaxation time is
energy independent (corresponding to the simulations by
González et al [258,259]), the suppression factors are close
to 1/3, 1/2, and 0.7, but not precisely equal to these
values. Below we give a brief sketch of the derivation,
following Ref. [262].

We start from the Boltzmann equation (203) and add
Langevin sources on the right-hand side. Three points
now require special attention: (i) for a degenerate gas
f̄ ≪ 1, and thus the factors (1 − f̄) in the collision in-
tegral (204) can be taken equal to 1; (ii) since carriers
are now distributed over a wide energy range, all the
quantities must be taken energy-dependent rather than
restricted to the Fermi surface. In particular, the ve-
locity is v(E) = (2E/m)1/2, and the energy dependence
of the mean free path matters, (iii) the screening length
is energy dependent, and the system generally may not
be regarded as charge neutral. We employ again the
τ -approximation for the electron-impurity collision inte-
gral. For a while, we assume the relaxation time τ to be
energy independent. We also neglect all kinds of inelas-
tic scattering. Separating the distribution function into
symmetric and asymmetric parts (216), and introducing
the (energy resolved) charge and current densities,

ρ(r, E, t) = eν(E)f0(r, E, t);

j(r, E, t) =
1

d
ev(E)ν(E)f 1(r, E, t),

we obtain two equations, analogous to Eq. (217),

∇ · j + eE(r, t)∂Ej = 0 (233)

and

j = −D(E)∇ρ− σ(E)E(r, t)∂Ef0 + δj(r, E, t) = 0.

(234)

Here D(E) = 2Eτ/md and σ(E) = e2ν(E)D(E) are the
energy dependent diffusion coefficient and conductivity,
respectively. The electric field E is coupled to the charge
density via the Poisson equation,

∇ · E(r, t) =

∫

dEρ(r, E, t), (235)

and the energy resolved Langevin currents δj are corre-
lated in the following way (cf. Eq. (219)),

〈δjl(r, E, t)δjm(r′, E′, t′)〉 = 2σ(E)δlmδ(r − r′)

× δ(E − E′)δ(t− t′)f̄0(r, E, t). (236)

Equations (233), (234), and (235) describe the re-
sponse of the system to the fluctuations (236) of the
Langevin currents. The main complication as compared
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to the degenerate case is that the fluctuations of the elec-
tric field now play an essential role, and cannot be ne-
glected. For this reason, results for the shot noise depend
dramatically on the geometry.

Further progress can be achieved for the quasi-one-
dimensional geometry of a slab 0 < x < L, located
between two reservoirs of the same cross-section. One
more approximation is the regime of space-charge limit-
ing conduction, corresponding to the boundary condition
E(x = 0, t) = 0. This condition means that the charge
in the contacts is well screened, L ≫ Ls ≫ Lc, with Lc

and Ls being the screening length in the contacts and the
sample, respectively. Equations (233), (234), and (235)
are supplemented by the absorbing boundary condition
at another contact, ρ(x = L, t) = 0.

Now one can calculate the potential profile inside the
sample and subsequently the shot noise power. In this
way, within the approximation of energy independent re-
laxation times, Schomerus, Mishchenko, and Beenakker
[262] obtain the following results,

F =

{

0.69, d = 1
0.44, d = 2
0.31, d = 3

. (237)

The numerical values (237) are, indeed, close to 0.7, 1/2
and 1/3, respectively, in accordance with the numerical
results by González et al [258,259], but not precisely equal
to them.

It is now worthwhile to mention that the results (237),
in contrast to the 1/3–suppression of shot noise in the de-
generate diffusive conductors, are not universal. Whereas
the 1/3 suppression is independent of the geometry of the
sample, degree of the disorder, or local dimensionality,
the values (237), being geometry independent, do depend
on the dimensionality of the sample. Furthermore, they
do depend on the disorder, and this dependence enters
through their sensitivity to the energy dependence of the
relaxation time60, as noticed by Nagaev [261]. Schome-
rus, Mishchenko, and Beenakker [263] investigated the
case τ(E) ∝ Eα, −1/2 ≤ α ≤ 1, which are the only val-
ues of α compatible with the regime of space-charge lim-
ited conduction. In particular, α = −1/2 corresponds to
scattering on short-ranged impurities. They found that
the Fano factor in d = 3 crosses over monotonically from
F = 0.38 (α = −1/2) to F = 0 (α = 1). There is no shot
noise in this model for α > 1.

This example clearly demonstrates that Fermi statis-
tics are not necessary to suppress shot noise, in accor-
dance with general expectations.

Ballistic non-degenerate conductors. Bu-
lashenko, Rub́i, and Kochelap [264] address the noise in

60In the case of metallic diffusive wires, this dependence is
irrelevant since the relaxation time is evaluated at the Fermi
surface.

charge limited ballistic conductors. They consider a two-
terminal semiconductor sample with heavily doped con-
tacts. Carriers in the semiconductor exist only due to
injection from the contacts which thus determine the po-
tential distribution inside the sample. The self-consistent
field determines a barrier at which carriers are either
completely reflected or completely transmitted (no tun-
neling). This system is thus a close analog of the charge
limited shot noise in vacuum tubes.

It is easy to adapt the Boltzmann-Langevin formula-
tion to this problem: Since carrier motion inside the con-
ductor is determined by the Vlasov equation (collisionless
Boltzmann equation),

(∂t + vx∂x + eEx∂px
) f(x,p, t) = 0, (238)

the distribution function f(x,p, t) at any point inside the
sample is determined by the distribution function at the
surface of the sample. The only source of noise arises
from the random injection of carriers at the contacts.
Thus the boundary conditions are

f(0,p, t)|vx>0 = fL + δfL(p, t),

f(L,p, t)|vx<0 = fR + δfR(p, t). (239)

The stochastic forces δfL,R are zero on average, and their
correlation is

〈δfα(p, t)δfβ(p′, t′)〉 ∝ δαβδ(px − p′x)δ(t− t′)fα(px),

(240)

where fα(px) is the Maxwell distribution function re-
stricted to px > 0 (α = L) or px < 0 (α = R). Note
that in the degenerate case we would have to write an
extra factor 1 − fα on the right-hand side of Eq. (240),
thus ensuring that there is no noise at zero temperature.
We have checked already in Section II that this statement
is correct. On the contrary, in the non-degenerate case
fα ≪ 1, and thus (1−fα) ∼ 1. The results for this regime
do not of course allow an extrapolation to kBT = 0. The
crossover between the shot noise behavior in degener-
ate and non-degenerate conductors was investigated by
Gonzàlez et al [265] using Monte Carlo simulations.

Eq. (238) is coupled to the Poisson equation,

− dEx/dx = 4π
∑

p

f(x,p, t). (241)

Solving the resulting equations, Bulashenko, Rub́i, and
Kochelap [264] found that interactions, at least in a cer-
tain parameter range, suppress shot noise below the Pois-
son value. The suppression may be arbitrarily strong in
long (but still ballistic) samples. The results are in good
agreement with previous numerical studies of shot noise
in the same system by González et al [266,268] and Bu-
lashenko et al [267].

The crossover between the ballistic and diffusive be-
havior of the non-degenerate Fermi gas was numerically
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studied by González et al [268,259]. Analytical results on
this crossover are presently unavailable.

A similar problem, a ballistic degenerate conductor in
the presence of a nearby gate, was posed by Naveh, Ko-
rotkov, and Likharev [269].

We conclude this subsection by recalling that the effect
of interactions on noise arises not only in long ballistic
structures but already in samples which are effectively
zero dimensional, like resonant tunneling diodes [78] or
in quantum point contacts [98]. The added complication
in extended structures arises from the long range nature
of the Coulomb interaction.

F. Boltzmann-Langevin method for shot noise
suppression in chaotic cavities with diffusive

boundary scattering

Now we turn to the classical derivation of the 1/4–
shot noise suppression in chaotic cavities. In standard
cavities, which are regular objects, the chaotic dynamics
arises due to the complicated shape of a surface. Thus
scattering at the surface is deterministic and in an in-
dividual ensemble member scattering along the surface
of the cavity is noiseless. Thus it is not obvious how to
apply the Boltzmann-Langevin equation.

α

θ

L

R

0
N

α
L
/2

/2
R

FIG. 34. Geometry of the chaotic cavity with diffusive
boundary scattering.

However, recently a model of a random billiard — a cir-
cular billiard with diffusive boundary scattering — was
proposed [270,271] to emulate the behavior of chaotic
cavities61. It turned out that the model can be relatively
easily dealt with, and Refs. [270,271] used it to study
spectral and eigenfunction properties of closed systems.
Ref. [99] suggests that the same model may be used to
study the transport properties of the open chaotic cav-
ities and presents the theory of shot noise based on the

61Earlier, a similar model was numerically implemented to
study spectral statistics in closed square billiards [272,273].

Boltzmann-Langevin approach.
We consider a circular cavity of radius R connected to

the two reservoirs via ideal leads; the angular positions
of the leads are θ0 − αL/2 < θ < θ0 + αL/2 (left) and
−αR/2 < θ < αR/2 (right), see Fig. 34; θ is the polar
angle. The contacts are assumed to be narrow, αL,R ≪ 1,
though the numbers of the transverse channels, NL,R =
pFRαL,R/πh̄, are still assumed to be large compared to
1. Inside the cavity, motion is ballistic, and the average
distribution function f̄(r,n) obeys the equation

n∇f̄(r,n) = 0. (242)

At the surface (denoted by Ω) we can choose a diffu-
sive boundary condition: the distribution function of the
particles backscattered from the surface is constant (in-
dependent of n) and fixed by the condition of current
conservation62,

f̄(r,n) = π

∫

(Nn′>0)

(Nn′)f̄(r,n′)dn′, Nn′ < 0,

(243)

where r ∈ Ω, N is the outward normal to the surface, and
∫

dn = 1. Furthermore, we assume that the electrons
coming from the leads are described by the equilibrium
distribution functions, and are emitted uniformly into all
directions. Explicitly, denoting the cross-sections of the
left and the right leads by ΩL and ΩR, we have

f̄(r,n) = fL,R, r ∈ ΩL,R; Nn < 0. (244)

Now we can find the average distribution function.
Since motion away from the boundary is ballistic, the
value of the distribution function Eq. (242) at a point
away from the boundary, is determined by the distribu-
tion function at the surface associated with the trajectory
that reaches this point after a scattering event at the sur-
face. With the boundary conditions (243) and (244), we
can then derive an integral equation for f̄(θ),

f̄(θ)
∣

∣

Ω
=

1

4

∫

Ω+ΩL+ΩR

f̄(θ′)

∣

∣

∣

∣

sin
θ − θ′

2

∣

∣

∣

∣

dθ′, (245)

subject to the additional conditions f̄(θ)|ΩL,R
= fL,R.

This exact equation may be considerably simplified in
the limit of narrow leads, αL,R ≪ 1. Integrals of the
type

∫

ΩR
F (θ)dθ can now be replaced by αRF (0). This

gives for the distribution function

f̄(θ) =
αLfL + αRfR

αL + αR

62This is the simplest possible boundary condition of this
kind. For a review, see Ref. [274]. We expect similar results
for any other diffusive boundary condition.
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+
g(0) − g(θ0)

4π

αLαR(αL − αR)

(αL + αR)2
(fL − fR)

+
g(θ) − g(θ − θ0)

4π

αLαR

(αL + αR)
(fL − fR) , (246)

with the notation

g(θ) =

∞
∑

l=1

cos lθ

l2
=

1

12
(3θ2 − 6πθ + 2π2), 0 ≤ θ ≤ 2π.

The first part of the distribution function (246) does not
depend on energy and corresponds to the random matrix
theory (RMT) results for the transport properties. The
second two terms on the right hand side are not univer-
sal and generate sample-specific corrections to RMT [99],
which we do not discuss here.

The conductance is easily found to be

G =
e2

2πh̄

NLNR

NL +NR
,

which is identical to the RMT result.
The main problem we encounter in attempting to cal-

culate noise via the Boltzmann-Langevin method is that
the system is not described by a collision integral of the
type (204). Instead, the impurity scattering is hidden
inside the boundary condition (243), which, in princi-
ple, itself must be derived from the collision integral.
This difficulty can, however, be avoided, since we can
calculate the probability W (n,n′, r) of scattering per
unit time from the state n to the state n′ at the point
r (which is, of course, expected to be non-zero only
at the diffusive boundary). Indeed, this probability is
only finite for Nn > 0 and Nn′ < 0. Under these
conditions it does not depend on n′, and thus equals63

W (n,n′, r) = 2W ′(n, r), with W ′ being the probability
per unit time to scatter out of the state n at the space
point r. Imagine now the (short) time interval ∆t. Dur-
ing this time, the particles which are closer to the surface
than vF nN∆t are scattered with probability one, and
others are not scattered at all. Taking the limit ∆t → 0,
we obtain

W (n,n′, r) =

{

vF nN δ(R − r), nN > 0,n′N < 0
0, otherwise

.

(247)

Imagine now that we have a collision integral, which is
characterized by the scattering probabilities (247). Then,
the fluctuation part of the distribution function δf obeys
the equation64 (212) with the Langevin sources corre-
lated according to Eq. (213). A convenient way to pro-
ceed was proposed by de Jong and Beenakker [89,90],

63The coefficient 2, instead of π−1, is due to the
normalization.

64We assume that there is no inelastic scattering, Iin ≡ 0.

who showed that quite generally the expression for the
noise can be brought into the form

S = 2e2νF

∫

dE

∫

dndn′drTR(n, r)TR(n′, r)

× G(n,n′, r, E), (248)

where the function G is given by Eq. (214), and TR is
the probability that the particle at (n, r) will eventu-
ally exit through the right lead. This probability obeys
n∇TR = 0 with the diffusive boundary conditions at the
surface; furthermore, it equals 0 and 1 provided the par-
ticle is headed to ΩL and ΩR, respectively. In the leading
order TR = αR/(αL + αR); however, this order does not
contribute to the noise due to the sum rule (211). The
subleading order is that for n pointing out of the left
(right) contact, TR = 0(1). Substituting the distribution
function f̄ = (αLfL + αRfR)/(αL + αR) into Eq. (248),
we obtain for the Fano factor

F =
NLNR

(NL +NR)2
.

We have thus presented a purely classical derivation of
the Fano factor of a chaotic cavity (96). This result was
previously derived with the help of the scattering ap-
proach and RMT theory (subsection II F 5).

To what extent can the billiard with diffusive boundary
scattering also describe cavities which exhibit determin-
istic surface scattering? As we have stated above, if we
consider an ensemble member of a cavity with specular
scattering at the surface, such scattering is determinis-
tic and noiseless. Thus we can definitely not expect the
model with a diffusive boundary layer to describe an en-
semble member. However, to the extent that we are inter-
ested in the description only of ensemble averaged quan-
tities (which we are if we invoke a Boltzmann-Langevin
equation) the diffusive boundary layer model can also de-
scribe the ensemble averaged behavior of cavities which
are purely deterministic. While in an individual cavity,
a particle with an incident direction and velocity gener-
ates a definite reflected trajectory, we can, if we consider
the ensemble average, associate with each incident tra-
jectory, a reflected trajectory of arbitrary direction. In
the ensemble, scattering can be considered probabilistic,
and the diffusive boundary model can thus also be used
to describe cavities with completely deterministic scat-
tering at the surface. This argument is correct, if we can
commute ensemble and statistical averages. To investi-
gate this further, we present below another discussion of
the deterministic cavity.

G. Minimal correlation approach to shot noise in
deterministic chaotic cavities

In cavities of sufficiently complicated shape, determin-
istic chaos appears due to specular scattering at the sur-
face. To provide a classical description of shot noise in
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this type of structures, Ref. [99] designed an approach
which it called a “minimal correlation” approach. It is
not clear whether it can be applied to a broad class of sys-
tems, and therefore, we decided to put it in this Section
rather than to provide a separate Section.

In a mesoscopic conductor, in the presence of elastic
scattering only, the distribution function is quite gener-
ally given by [110,111]

f0(r) =
∑

n

νn(r)

ν(r)
fn, (249)

where νn(r) is the injectivity of contact n (the contri-
bution to the local density of states ν(r) of contact n.)
For the ensemble averaged distribution which we seek,
we can replace the actual injectivities and the actual lo-
cal density of states by their ensemble average. For a
cavity with classical contacts (Nn ≫ 1 open quantum
channels), the ensemble averaged injectivities are [138]
〈νn(r)〉 = νFNn/

∑

n Nn, where νF is the ensemble av-
eraged local density of states. This just states that the
contribution of the n-th contact to the local density of
states is proportional to its width (number of quantum
channels). Thus the ensemble averaged distribution func-
tion, which we denote by fC , is

fC =
∑

n

βnfn, βn ≡ Nn/
∑

n

Nn. (250)

To derive this distribution function classically, we first
assert that the ensemble averaged distribution inside the
cavity, called fC , is a spatially independent constant.
This is a consequence of the fact that after ensemble av-
eraging at any given point within the cavity there are no
preferred directions within the cavity if carriers conserve
their energy (no inelastic scattering). On the ensemble
average the interior of the cavity can be treated as an
additional dephasing voltage probe (see subsection II G).
The interior acts as a dephasing probe since we assume
that there is no inelastic scattering at the probe. Conse-
quently at such a probe the current in each energy inter-
val is conserved [90]. Thus we must consider the energy
resolved current.

Let us denote the current at contact n in an energy
interval dE by Jn(E). The total current at the contact
is In =

∫

JndE. In terms of the distribution function of
the reservoirs and the cavity the energy-resolved current
is

Jn(E) = e−1Gn (fn − fC) , (251)

where Gn = e2Nn/(2πh̄) is the (Sharvin) conductance of
the nth contact, and Nn = pFWn/πh̄ is the number of
transverse channels. For energy conserving carrier mo-
tion the sum of all currents in each energy interval must
vanish (subsection II G). This requirement immediately
gives Eq. (250).

Using the distribution function Eq. (250) gives for the
conductance matrix

Gmn = (δmn − βm)Gn. (252)

This conductance matrix is symmetric, and for the two-
terminal case becomes GLL = (e2/2πh̄)(NLNR/(NL +
NR)), as expected.

Now we turn to the shot noise. The fluctuation of the
current through the contact n is written as

δIn = − epF

2πh̄2

∫

Ωn

dndrdE (nNn)δf(r,n, E, t), (253)

where Ωn and Nn denote the surface of the contact n
and the outward normal to this contact. Here δf is the
fluctuating part of the distribution function, and for fur-
ther progress we must specify how these fluctuations are
correlated.

The terms with nNn < 0 describe fluctuations of
the distribution functions of the equilibrium reservoirs,
fn(E). These functions fluctuate due to partial occu-
pation of states (equilibrium noise); the fluctuations of
course vanish for kBT = 0. The equal time correlator of
these equilibrium fluctuations quite generally is (see e.g.
Ref. [275])

〈δf(r,n, E, t)δf(r′,n′, E′, t)〉
= ν−1

F δ(r − r′)δ(n − n′)δ(E − E′)

× f̄(r,n, E, t)
[

1 − f̄(r,n, E, t)
]

, (254)

where in the reservoirs f̄ = fn(E). In particular, the
cross correlations are completely suppressed.

On the other hand, the terms with nNn > 0 describe
fluctuations of the distribution function inside the cavity.
These non-equilibrium fluctuations resemble Eq. (254)
very much. Indeed, in the absence of random scatter-
ing the only source of noise are the fluctuations of the
occupation numbers. Furthermore, in the chaotic cav-
ity the cross correlations should be suppressed because
of multiple random scattering inside the cavity. Thus,
we assume that Eq. (254) is valid for fluctuations of the
non-equilibrium state of the cavity, where the function
fC(E) (250) plays the role of f̄(r,n, E, t). In contrast
to the true equilibrium state, these fluctuations persist
even for zero temperature, since the average distribution
function (250) differs from both zero and one.

Furthermore, for t 6= t′ the correlator obeys the kinetic
equation, (∂t + vF n∇)〈δf(t)δf(t′)〉 = 0 [275]. We obtain
the following formula,

〈δf(r,n, E, t)δf(r′,n′, E′, t′)〉
= ν−1

F δ [r − r′ − vF n(t− t′)]

×δ(n − n′)δ(E − E′)fC(1 − fC), (255)

which describes strictly ballistic motion and is therefore
only valid at the time scales below the time of flight. An
attempt to use Eq. (255) for all times and insert it to
Eq. (253) immediately leads to the violation of current
conservation.
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Thus, we must take special care of the fluctuations of
the distribution function inside the cavity for the case
when t − t′ is much longer than the dwell time τd. In
this situation, the electron becomes uniformly distributed
and leaves the cavity through the nth contact with the
probability βn. For times t ≫ τd (which are of interest
here) this can be described by an instantaneous fluctua-
tion of the isotropic distribution δfC(E, t), which is not
contained in Eq. (255). We write then

δf(r,n, E, t) = δf̃(r,n, E, t) + δfC(E, t),

nNn > 0, r ∈ Ωn, (256)

where δf̃ obeys Eq. (255).
The requirement of the conservation of the number of

electrons in the cavity leads to minimal correlations65 be-
tween δfC(E, t) and δf̃(r,n, E, t). The requirement that
current is conserved at every instant of time,

∑

n δIn = 0,
eliminates fluctuations δfC . After straightforward calcu-
lations with the help of Eq. (255) we arrive at the expres-
sion [99]

Smn = 2GmnkB(T + TC), kBTC =

∫

dEfC(1 − fC).

(257)

It is easy to check that Eq. (257) actually reproduces all
the results we have obtained in Section II with the help
of the scattering approach. Explicitly, we obtain

kBTC =
e

2

∑

m,n

βmβn(Vn − Vm) coth

(

e(Vn − Vm)

2kBT

)

.

At equilibrium TC = T , and the noise power spectra
obey the fluctuation-dissipation theorem. For zero tem-
perature, in the two-terminal geometry we reproduce the
noise suppression factor (96); in the multi-terminal case
the Hanbury Brown–Twiss results [115], described in Sec-
tion II, also follow from Eq. (257).

The perceptive reader notices the close similarity of the
discussion given above and the derivation of the classical
results from the scattering approach invoking a dephas-
ing voltage probe [90,115] (subsection II G). The correla-
tions induced by current conservation are built in in the
discussion of the dephasing voltage probe model of the
scattering approach. The discussion which we have given

65Minimal means here that the correlations are minimally
necessary — the only non-equilibrium type fluctuations are
induced by the current conservation requirement. This kind
of fluctuations was discussed by Lax [276]. The approach
similar to what we are discussing was previously applied in
Ref. [277] to the shot noise in metallic diffusive wires, where
it does not work due to the additional fluctuations induced
by the random scattering events.

above, is equivalent to this approach, with the only differ-
ence that fluctuations are at every stage treated with the
help of fluctuating distributions. In contrast, the scat-
tering approach with a dephasing voltage probe invokes
only stationary, time-averaged distributions.

The comparison of the Boltzmann-Langevin method
with the dephasing voltage probe approach also serves
to indicate the limitations of the above discussion. In
general, for partial dephasing (modeled by an additional
fictitious lead) inside the cavity connected via leads with
a barrier [115], even the averaged distribution function
fC can not be determined simply via Eq. (251): even on
the ensemble average, injectivities are not given simply
by conductance ratios.

VII. NOISE IN STRONGLY CORRELATED
SYSTEMS

This Section is devoted to the shot noise in strongly
correlated systems. This is a rather wide subject due
to the diversity of the systems considered. There is no
unifying approach to treat strongly correlated systems.
Typically, the shot noise in interacting systems is de-
scribed by methods more complicated than the scatter-
ing or Langevin approaches. An attempt to present a
detailed description of the results and to explain how
they are derived would lead us to the necessity to write
a separate review (if not a book) for each subject. Our
intention is to avoid this, and below we only present some
results for particular systems without an attempt to de-
rive them. The discussion is qualitative; for a quanti-
tative description, the reader is referred to the original
works. As a consequence, this Section has the appear-
ance of a collection of independent results.

A. Coulomb blockade

The term Coulomb blockade is used to describe phe-
nomena which show a blockage of transport through a
system due to the electrostatic effects. We recall only
some basic facts; the general features of the Coulomb
blockade are summarized in the early review article [278].
The most common technique to describe Coulomb block-
ade effects is the master equation approach.

Tunnel barriers. The simplest structure for which
one might think that the Coulomb blockade is significant
is a tunnel junction. The junction is characterized by a
capacitance C. From the electrostatic point of view, the
system can be regarded as a capacitor where the tunnel-
ing between the electrodes is allowed, i.e. the equivalent
circuit is the capacitor C connected in parallel with a
resistor R ∝ (

∑

n Tn)−1. Due to the additional charg-
ing energy Q2/2C, where Q is the charge of the junc-
tion, the current through the junction is blocked (i.e.
exponentially small for kBT ≪ e2/C) for voltages below
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Vc = e/2C (for simplicity, we only consider V > 0). The
I–V curve is essentially I = R−1(V − Vc)θ(V −Vc). The
singularity at V = Vc is smeared at elevated tempera-
tures and finite resistances (see below). The shot noise is
Poissonian for low voltages (since the junction is opaque)
and crosses over to the usual (1−T ) suppression (for one
channel) for high voltages. We note, however, that this
description only applies to junctions with T ≪ 1, and,
thus, technically shot noise is Poissonian in the whole
range of voltages.

The Coulomb blockade picture given above holds only
provided the resistance of the sample is much greater
than the quantum of the resistance, R ≫ Rk ≡ 2πh̄/e2,
and breaks down in the opposite limit, where the I–V
characteristics are Ohmic and (for zero frequency) in-
sensitive to the charging effects. This latter limit is the
subject of work by Ben-Jacob, Mottola and Schön [147]
and Schön [27].

Lee and Levitov [28] investigate the effect of the exter-
nal impedance (active resistance Rex) on the noise prop-
erties of the tunnel junction. They consider the case
R ≫ Rk and describe the crossover between the Ohmic
regime (Rex ≪ R) to the Coulomb blockade regime
(Rex ≫ R). They also consider finite frequency effects,
but do not take into account the displacement currents.
They arrive at the remarkable conclusion that the cur-
rent conservation for noise is violated for high enough
frequencies, (iωC)−1 ≪ |Z(ω)|, where Z is the external
impedance. Thus, this is an illustration of the statement
(Section III) that one has to take care of the displace-
ment currents, even when the scattering matrices are
not energy dependent, for frequencies higher than the in-
verse collective response time, in this particular situation
(RexC)−1.

Quantum dots. An equivalent circuit for a quantum
dot with charging (cited in the Coulomb blockade liter-
ature as the single-electron transistor, SET) is shown in
Fig. 35a. The SET is essentially a two-barrier structure
with the capacitances included in parallel to the resis-
tances; in addition, the quantum dot is capacitively cou-
pled to a gate. We assume R1,2 ≫ Rk. In the simplest
approximation, the role of the gate is simply to fix the
number of electrons which are in the dot in the absence
of the driving voltage V , Ng = CVg/e, C = C1 +C2 +Cg.
For a moment we assume now Vg = Ng = 0. Then for
low voltages V < e/2C the tunneling is blocked. The
point V = e/2C is degenerate, since the energies of an
empty dot and a dot with one electron are equal. For
e/2C < V < 3e/2C there is one electron in the dot, and
so on. Consequently, the I–V curve shows steps (the
Coulomb staircase, Fig. 35b). The steps are smeared
by the temperature and finite resistance. Actually, the
Coulomb staircase is only well pronounced when the dot
is asymmetric, R1 ≪ R2, and in addition, C1 ≤ C2. In
the opposite case, there is no current until e/2C, but the
I–V characteristics for higher voltages are regular, sim-
ilarly to the tunnel junction. Finite (fixed) gate voltage
shifts the I–V curve; for Ng = 1/2 the degeneracy point

happens to be at V = 0, i.e. the system shows Ohmic
behavior.

For the case when there is no Coulomb staircase, shot
noise was investigated by Belogolovskii and Levin [279].
Based on the master equation approach, they report a
shot noise suppression. However the paper is too concise
to provide an understanding of the origin of the noise
suppression. Independently, for this case shot noise was
investigated by Korotkov et al [280] and Korotkov [281]
using the master equation approach, and subsequently
by Korotkov using the Langevin approach [282]: He adds
Langevin sources to the rate equations, each number of
electrons in the dot is described by an individual fluc-
tuating source. In this case the shot noise is absent for
V < e/2C, Poissonian at the onset of current (since the
tunneling rate through one of the barriers dominates, see
below), and for high voltages is described by a Fano fac-
tor

F =
R2

1 +R2
2

(R1 +R2)2
. (258)

The result (258) is genuinely the double-barrier Fano fac-
tor (78), since R1,2 ∝ T−1

1,2 . This high-voltage behavior

was independently obtained by Hung and Wu [284] us-
ing the Green’s function technique. Korotkov [281] also
studied the frequency dependence of shot noise and found
that it is a regular function, which for high frequencies
(RC)−1 ≪ ω ≪ e2/h̄C, R−1 = R−1

1 +R−1
2 , saturates at

an interaction-dependent value.
For the general case (Coulomb staircase regime), shot

noise was (independently) analyzed by Hershfield et al
[283] using a master equation. In the plateau regimes,
the transport is via the only state with a fixed number of
electrons, and the shot noise is Poissonian (up to expo-
nentially small corrections); in particular, for V < e/2C
noise is exponentially small. The situation is, however,
different close to the degenerate points (at the center
of the step of the staircase), since there are now two
charge states available. Hershfield et al [283] find that
the Fano factor in the vicinity of the degenerate points
is F (V ) = (Γ2

1 + Γ2
2)/(Γ1 + Γ2)2. Here Γ1 and Γ2 are

the (tunneling) rates to add an electron through barrier
1 and remove an electron through barrier 2. Though this
result looks similar to the expression for the resonant
double-barrier structure (78), the important difference
is that the rates Γ1,2 are now strongly voltage depen-
dent due to the Coulomb blockade. In particular, at the
onset of the step Γ1 ≪ Γ2, and F = 1. The Fano fac-
tor thus shows dips in the region of the steps. For high
voltages the Coulomb blockade is insignificant, and the
Fano factor assumes the double-barrier suppression value
(258). The resulting voltage dependence of the Fano fac-
tor is sketched in Fig. 35b, upper curve. Hershfield et
al [283] also perform extensive numerical simulations of
shot noise and show that the structure in the Fano factor
disappears in the symmetric limit R1 ∼ R2.
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FIG. 35. (a) Equivalent circuit for the single-electron tran-
sistor; (b) A sketch of the I–V characteristics (lower curve)
and the Fano factor voltage dependence (upper curve) for the
very asymmetric case R1 ≪ R2, C1 ≪ C2, Vg = 0.

Similar results were subsequently obtained by Galperin
et al [285], Hanke et al [286], and Hanke, Galperin, and
Chao [287], who also investigate the frequency depen-
dence of shot noise. They point out that the quan-
tity ∂2S/∂ω2 is more sensitive to the voltage near the
Coulomb blockade steps than the noise spectral power S.
Sub-Poissonian shot noise suppression in the Coulomb
blockade regime is numerically confirmed by Anda and
Latgé [288], however, at high bias, they find that the
average current tends to zero.

Another option is to consider transport properties as
a function of the gate voltage Vg. Both current and
noise are periodic functions of Vg with the period of
e/C (which corresponds to the period of 1 in Ng). As
pointed out by Hanke, Galperin, and Chao [287], shot
noise is then periodically suppressed below the Poisson
value. Wang, Iwanaga, and Miyoshi [289] consider shot
noise in the Coulomb blockade regime in a semiconduc-
tor quantum dot, where the single-particle level spacing
is relatively large. In this situation it is not enough to
write the interaction potential in the dot in the form
Q2/2C, and the real space-dependent Coulomb interac-
tion must be taken instead. The current as a function
of the gate voltage exhibits a number of well-separated
peaks, and, consequently, shot noise is Poissonian every-
where except for the peak positions, where the Fano fac-
tor has dips. Surprisingly enough, the numerical results
of Wang, Iwanaga, and Miyoshi [289] show that the Fano
factor in the dip may be arbitrarily low, certainly below
1/2. They explain this as being due to the suppression
of the shot noise by Coulomb interactions.

We also mention here the papers by Krech, Hädicke,
and Müller [290] and Krech and Müller [291], who, based
on a master equation, conclude that the Fano factor may
be suppressed down to zero in the Coulomb blockade
regime; in particular, the Fano factor tends to zero for
high frequencies. Though we cannot point out an explicit
error in these papers, the results seem quite surprising to
us. We believe that in the simple model of the Coulomb
blockade, when the electrostatic energy is approximated

by Q2/2C, it is quite unlikely that the shot noise is sup-
pressed below 1/2, which is the non-interacting suppres-
sion factor for the symmetric double-barrier structure.
Clearly, to answer these questions, an analytic investiga-
tion, currently unavailable, is required.

FIG. 36. Experiments by Birk, de Jong, and Schönenberger
[30]. Left: shot noise in the quantum dot with R2 = 2R1

(diamonds); the inset shows the I–V characteristics. Right:
I–V curve (top) and shot noise (bottom) in a very asymmetric
quantum dot. Solid curves show the theory of Hershfield et al
[283]. Dashed lines in all cases show the Poisson value 2e〈I〉
and the value e〈I〉.

Experiments on shot noise in the Coulomb block-
ade regime were performed by Birk, de Jong, and
Schönenberger [30]. They put a nanoparticle66 between
the STM tip and metallic surface, and were able to
change the capacitances C1 and C2 and resistances R1

and R2. For R2 = 2R1 they found the “smooth”
Coulomb blockade I-V characteristics (no traces of the
Coulomb staircase), with the noise crossing over from
Poissonian to Eq. (258) with the increasing voltage
(Fig. 36, left). In contrast, for the very asymmetric

66The difference of this setup with a SET is that there is no
gate.
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case R1 ≪ R2 Birk, de Jong, and Schönenberger [30] ob-
serve the Coulomb staircase and periodic shot noise sup-
pression below the Poisson value (Fig. 36, right). They
compare their experimental data with the theory of Her-
shfield et al [283] and find quantitative agreement.

Arrays of tunnel barriers. Consider now a one-
dimensional array of metallic grains separated by tunnel
barriers. This array also shows Coulomb blockade fea-
tures: The current is blocked below a certain threshold
voltage Vc (typically higher than the threshold voltage
for a single junction), determined by the parameters of
the array. Just above Vc, the transport through the ar-
ray is determined by a single junction (a bottleneck junc-
tion), and corresponds to the transfer of charge e. Thus,
the shot noise close to the threshold is Poissonian, the
Fano factor equals one. With increasing voltage more
and more junctions are opened for transport, and even-
tually a collective state is established in the array [278]:
An addition of an electron to the array causes the po-
larization of all the grains, such that the effective charge
transferred throughout the array67 is e/N , with N ≫ 1
being the number of grains. In this regime, the Fano
factor is 1/N . The crossover of shot noise from Poisso-
nian to 1/N–suppression was obtained by Matsuoka and
Likharev [292], who suggested these qualitative consider-
ations and backed them by numerical calculations.

Other interesting opportunities for research open up
if the frequency dependence of shot noise is consid-
ered. First, in the collective state these arrays exhibit
single-electron tunneling oscillations with the frequency
ωs = I/e, I being the average current. These oscillations
are a consequence of the discreteness of the charge trans-
fer through the tunnel barrier. The increase of charge
on the capacitor is the result of the development of a
dipole across the barrier. This is a polarization process
for which the charge is not quantized. However, when the
polarization charge reaches e/2 the Coulomb blockade is
lifted and the capacitance is decharged by the tunneling
transfer of a single electron. Both the continuous polar-
ization process and the discrete charge transfer process
give rise to currents in the external circuit. It is dif-
ference in time scale for the two processes which causes
current oscillations. The polarization process is much
slower than the decharging process. The discreteness of
the charge transfer process is, as we have seen, a key in-
gredient needed to generate shot noise. However here,
in contrast to the Schottky problem, the charge transfer
occurs at time intervals which are clearly not given by
a Poisson distribution. Instead, here, ideally the charge
transfer process is clocked and there is no shot noise.
However in an array of tunnel junctions, there exists the
possibility to observe both current oscillations and shot

67This can be viewed as a transport of solitons with the
fractional charge.

noise: In an array charge transfer occurs via a soliton (a
traveling charge wave). Korotkov, Averin, and Likharev
[293] and Korotkov [294] find that arrays of tunnel barri-
ers exhibit both a current that oscillates (on the average)
at a frequency ωs = I/e, and shot noise which is strongly
peaked at the frequency ωs.

Another type of oscillations are Bloch oscillations,
which are due to the translational symmetry of the array.
Their frequency is proportional to the voltage drop across
each contact; if the array is long and V ≪ Ne2/C, this
frequency is approximately ωB = e2/4πh̄C, ωB ≫ ωs.
The shot noise also peaks at ωB, as found by Korotkov,
Averin, and Likharev [293].

Hybrid structures. Qualitatively, the behavior of a
superconducting SET – the same structure as shown in
Fig. 35a but with the normal central grain replaced by a
superconducting grain – is different from the behavior of
the normal SET, since the system is now sensitive to the
parity of the number of electrons on the island. If this
number is odd, there is always an unpaired electron, and
thus the energy of these odd states is shifted up by the
superconducting gap ∆ as compared to the even states.
Thus, odd states are unfavorable, and for e2/C, eV < ∆,
kBT ≪ ∆ cannot be occupied. This parity effect [295] is
superimposed on the usual Coulomb blockade behavior,
and the general picture can be very complex. In partic-
ular, in the limiting case e2/C ≪ ∆ and for Ng = 0, we
anticipate the following behavior of noise. For V < e/C
the current is Coulomb blocked, and the shot noise is thus
Poissonian. To determine the Fano factor in this case, we
must find the processes which give rise to current slightly
above the threshold Vc = e/C. The dominant process is
an electron coming from a reservoir which is Andreev re-
flected at the interface, and generates a Cooper pair in
the superconducting grain, which is again converted to
an electron and a hole pair at the interface. This process
results in the transfer of an effective charge of 2e; the
Fano factor is thus 2. For e2/C < eV ≪ ∆, the Fano
factor is expected to be smaller as the voltage is increased
and the Coulomb blockade is lifted. For eV ∼ ∆ single-
electron tunneling starts to play a role; eventually, for
eV ≫ ∆ shot noise is determined by the double-barrier
value of the Fano factor (258).

With the help of the gate, the polarization charge can
be adjusted to be Ng = 1. In this case, the system is at
the degeneracy point, since the energies of two ground
states with an even number of carriers are the same.
The current is then finite for any bias [296], and there
is no Coulomb blockade behavior: Cooper pair tunneling
starts from zero voltage.

These considerations are qualitative, and must be con-
firmed by quantitative calculations. Presently, there are
not many results available on noise in interacting hybrid
structures. The investigations of shot noise in SNS and
NSN systems in the Coulomb blockade regime were pio-
neered by Krech and Müller [297]. They use the same
master equation technique as in their previous works
[290,291], and arrive at the same unphysical result that
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the shot noise is always suppressed for high frequencies
down to zero.

Hanke et al [298,299] perform numerical calculations
of the shot noise in superconducting SETs in the regime
e2/C < ∆, Ng = 1. In this case, there are several thresh-
old voltages, and the Fano factor is found to peak at
each threshold. Strangely, Refs. [298,299] find that the
Fano factor may lie well above 2. We do not currently
understand this result.

Ferromagnetic junctions. Recently, junctions in
which one or several electrodes are ferromagnetic have
become of interest in mesoscopic physics. Many different
structures have been proposed and, in principle, one may
discuss shot noise for all these structures; presently, only
one theoretical and one experimental paper exist.

Bu lka et al [300] consider a structure in which two elec-
trodes are separated by a quantum dot in the Coulomb
blockade regime (a ferromagnetic analog of the SET).
They assume that there is no spin-flip scattering in the
dot. The difference between the two spin polarizations in
the electrodes is phenomenologically modeled as a differ-
ence in resistances: Thus, if the ferromagnetic reservoir
1 is spin-up polarized, the resistance R1↓ for spin-down
electrons is much higher than the resistance R1↑ for spin-
up electrons. Assuming that all the resistances are much
higher than Rk, Bu lka et al [300] generalize the master
equation approach to the case of spin-dependent trans-
port, and present results of a numerical calculation.

In structures in which both electrodes are ferromag-
netic (FNF junction), the orientation of the magnetic
moments of the electrodes becomes important. To un-
derstand what happens, we discuss first the shot noise
suppression in a non-interacting FNF junction [301]. We
have already seen that it is relevant at the steps of the
Coulomb staircase. We assume that both electrodes are
made of the same ferromagnetic material, so that the
ratio of the resistances for spin-up and spin-down prop-
agation is the same. The junction is also assumed to
be very asymmetric. Thus, for the parallel orientation
(when the magnetic moments of both reservoirs are spin-
up), we have the resistances R1↑ = R0, R1↓ = αR0,
R2↑ = βR0, and R2↓ = αβR0. The constants α and β de-
scribe the asymmetry of the spin-up and spin-down prop-
agation, and the asymmetry of the barrier, respectively.
For a given spin projection, the current is proportional
to R1R2/(R1 +R2), while the shot noise is proportional
to R1R2(R2

1 + R2
2)/(R1 + R2)3. Here R1 and R2 must

be taken for each spin projection separately; the total
current (shot noise) is then expressed as the sum of the
currents (shot noises) of spin-up and spin-down electrons.
Evaluating in this way the Fano factor, we obtain

F↑↑ =
1 + β2

(1 + β)2
, (259)

which is precisely the double-barrier Fano factor (78),
since the Fano factors for spin-up and spin-down elec-
trons are the same.

Similarly, for the anti-parallel (↑ −N− ↓) orientation
we write R1↑ = R0, R1↓ = αR0, R2↑ = αβR0, and R2↓ =
βR0. The Fano factor is

F↑↓ =

(

1 + α2β2

(1 + αβ)3
+
α2 + β2

(α+ β)3

)(

1

1 + αβ
+

1

α+ β

)−1

,

(260)

and depends now on α. In the strongly asymmetric junc-
tion, α, β ≫ 1, the Fano factor for the parallel orientation
(259) becomes 1. At the same time, for the anti-parallel
orientation Eq. (260) is entirely determined by spin-down
electrons, and takes the form F↑↓ = (α2 + β2)/(α+ β)2.
Thus, the shot noise in the anti-parallel configuration is
suppressed as compared to the parallel case. This sit-
uation is, of course, the same in the Coulomb blockade
regime, and this is precisely what Bu lka et al [300] find
numerically.

In these discussions, it is assumed that both spin chan-
nels are independent. In reality, spin relaxation processes
which couple the two channels might be important.

It is interesting to consider the structure in which one
of the reservoirs is ferromagnetic and the another one
is normal (FNN junction). Bu lka et al [300] only treat
the limiting case when, say, spin-down electrons cannot
propagate in the ferromagnet at all (R1↓ = ∞). They
find that the I–V curve in this case shows negative differ-
ential resistance, and shot noise may be enhanced above
the Poisson value, similarly to what we have discussed in
Section V for quantum wells.

Experimentally, the main problem in ferromagnetic
structures is to separate shot noise and 1/f–noise.
Nowak, Weissman, and Parkin [302] measured the low-
frequency noise in a tunnel junction with two ferromag-
netic electrodes separated by an insulating layer. They
succeeded in extracting information on shot noise, and
report sub-Poissonian suppression for low voltages, but
they did not perform a systematic study of shot noise,
and the situation, both theoretically and experimentally,
is very far from being clear.

Concluding remarks on the Coulomb blockade.
A patient reader who followed this Review from the be-
ginning has noticed that we have considerably changed
the style. Indeed, in the previous Sections we mostly
had to deal with results, which are physically appeal-
ing, well established, cover the field, and in many cases
are already experimentally confirmed. Here, instead, the
results are contradictory, in many cases analytically un-
available, and, what is more important, fragmentary —
they do not systematically address the field. To illus-
trate this statement, we only give one example; we could
have cited dozens of them. Consider a quantum dot un-
der low bias; it is typically Coulomb blocked, unless the
gate voltage is tuned to the degenerate state, so that
Ng is half-integer. As we have discussed above, the cur-
rent dependence on the gate voltage is essentially a set of
peaks, separated by the distance of approximately e/C.
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Between the peaks (in the valleys), as we implicitly as-
sumed, the zero-temperature current is due to quantum
tunneling, and is exponentially small. We concluded
therefore, that the Fano factor is 1 — the shot noise
is Poissonian. In reality, however, there are cotunneling
processes — virtual transitions via the high-lying state
in the dot — which are not exponentially suppressed and
thus give the main contribution to the current. Cotun-
neling is a genuinely quantum phenomenon, and cannot
be obtained by means of a classical approach. It is clear
that the cotunneling processes may modify the Fano fac-
tor in the valleys; moreover, it is a good opportunity to
study quantum effects in the shot noise. This problem,
among many others, remains unaddressed68.

B. Anderson and Kondo impurities

Anderson impurity model. In the context of meso-
scopic physics, the Anderson impurity model describes a
resonant level with a Hubbard repulsion. It is sometimes
taken as a model of a quantum dot. Commonly the en-
tire system is described by the tight-binding model with
non-interacting reservoirs and an interaction Un̂↓n̂↑ on
the site i = 0 (resonant impurity), with n̂↓ and n̂↑ be-
ing the operators of the number of electrons on this site
with spins down and up, respectively. Tunneling into
the dot is described, as in the non-interacting case, by
partial tunneling widths ΓL and ΓR, which may be as-
sumed to be energy independent. The on-site repulsion
is important (in the linear regime) when U ≫ E0, where
E0 is the energy of the resonant impurity relative to the
Fermi level in the reservoirs. In this case, for low tem-
peratures T < TK the spin of electrons traversing the
quantum dot starts to play a considerable role, and the
system shows features essentially similar to the Kondo ef-
fect [304,305]. Here TK is a certain temperature, which is
a monotonous function of U , and may be identified with
the effective Kondo temperature. For T < TK the ef-
fective transmission coefficient grows as the temperature
is decreased, and for T = 0 reaches the resonant value
Tmax = 4ΓLΓR/(ΓL + ΓR)2 (see Eq. (75)) for all impuri-
ties which are closer to the Fermi surface than ΓL + ΓR.
Subsequent averaging over the impurities [304] gives rise
to the logarithmic singularity in the conductance for zero
temperature. A finite bias voltage V smears the singu-
larity [304,306]; thus, the differential conductance dI/dV
as a function of bias shows a narrow peak around V = 0
and two broad side peaks for eV = ±U .

68A more complicated problem – transport through the dou-
ble quantum dot in the regime when the cotuneling dominates
– was investigated by Loss and Sukhorukov [303] with the
emphasis on the possibility of probing entanglement (see Ap-
pendix B). They report that the Fano factor equals one.

Theoretical results on shot noise are scarce. Hershfield
[307] performs perturbative analysis in powers of U of
the shot noise, based on the Green’s function approach.
His results are thus relevant for the high-temperature
regime, but do not describe the Kondo physics, which
is non-perturbative in U . He finds that the noise, apart
from the non-interacting contribution (described by the
Fano factor (78)) contains also an interacting correction.
This correction is a non-trivial function of the applied
bias voltage; it is always positive for a symmetric barrier
ΓL = ΓR, but may have either sign for an asymmet-
ric barrier. This interacting correction is zero for zero
bias, and peaks around a certain energy Er, which is the
bare resonant energy E0, renormalized by interactions.
For higher voltages it falls off with energy, and in the
limit eV ≫ U,E0 the Fano factor returns to the non-
interacting value (78). Thus, in this case the interactions
may either enhance or suppress the noise. We also point
out the analogy with the Coulomb blockade results: In
the symmetric case R1 = R2, the actual Coulomb block-
ade noise suppression is always stronger, than the non-
interacting suppression (258); generally, it may be either
stronger or weaker. Yamaguchi and Kawamura [308,309]
perform a complementary analysis by treating the tun-
neling Hamiltonian perturbatively. They find that the
shot noise is strongly suppressed as compared with the
Poisson value for voltages eV ∼ E0 and eV ∼ E0+U (the
latter resonance corresponds to the addition of the sec-
ond electron to the resonant state, which is then shifted
upwards by U).

For the Kondo regime, we expect that, since the ef-
fective transmission coefficient tends to Tmax for zero
temperature, the shot noise is a sensitive function of
kBT , which for a symmetric barrier decreases and even-
tually vanishes as the temperature tends to zero. This
regime is investigated by Ding and Ng [310], who com-
plete the Green’s functions analysis by numerical simula-
tions. They only plot the results for the symmetric case
ΓL = ΓR and only for T = TK ; the shot noise in this
regime is, indeed, suppressed below the non-interacting
value for any applied bias. Yamaguchi and Kawamura
[309], treating the tunneling Hamiltonian perturbatively,
report that the Fano factor is suppressed down to zero
at zero bias. Results concerning averages over impurities
are unavailable.

Kondo model. In mesoscopic physics, this is the
model of two non-interacting reservoirs which couple
to the 1/2-spin in the quantum dot via exchange in-
teraction. The interacting part of the Hamiltonian is

Ĥint = Jαβ
λ sλ

αβσ
λ, where λ = x, y, z and α, β = L,R.

Here sλ
αβ are the matrix elements of the electron spin op-

erator in the basis of the reservoir states, and σλ is the
spin of the Kondo impurity. In physical systems the cou-
pling Jλ is symmetric; however, to gain some insight and
use the exact solutions, other limits are often considered.

To our knowledge, the only results on shot noise in the
Kondo model are due to Schiller and Hershfield [311],
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who consider a particular limiting case (Toulouse limit),
Jαβ

z = Jαβ
y , JLR

z = JRL
z = 0, and JLL

z = JRR
z . As a func-

tion of the bias voltage, the Fano factor is zero at zero
bias, and grows monotonically. In the high-bias limit the
noise is Poissonian rather than suppressed according to
Eq. (78). The transport properties of the Kondo model
are strongly affected by an applied magnetic field, which
may drive the Fano factor well above the Poisson value.
The frequency dependence of the shot noise is sensitive
to the spectral function of the Kondo model, and exhibits
structure at the inner scales of energy. The studies [311],
though quite careful, do not, of course, exhaust the op-
portunities to investigate shot noise in strongly correlated
systems, offered by the Kondo model.

C. Tomonaga–Luttinger liquids and fractional
quantum Hall edge states

Many problems concerning (strictly) one-dimensional
systems of interacting electrons may be solved exactly by
using specially designed techniques. As a result, it turns
out that in one dimension, electron-electron interactions
are very important. They lead to the formation of a new
correlated state of matter, a Tomonaga–Luttinger liquid,
which is characterized by the presence of gapless collec-
tive excitations, commonly referred as plasmons. In par-
ticular, the transport properties of the one-dimensional
wires are also quite unusual. We only give here the re-
sults which we subsequently use for the description of
noise; a comprehensive review may be found e.g. in
Ref. [312]. Throughout the whole subsection we assume
that the interaction is short-ranged and one-dimensional,
V (x− x′) = V0δ(x − x′), and the voltage V > 0.

For an infinite homogeneous Luttinger liquid the “con-
ductance” is renormalized by interactions, G = ge2/2πh̄,
where the dimensionless interaction parameter,

g =

(

1 +
V0

πh̄vF

)−1/2

, (261)

will play an important role in what follows. This parame-
ter equals 1 for non-interacting electrons, while g < 1 for
repulsive interactions. However, if one takes into account
the reservoirs, which corresponds to a proper definition
of conductance, the non-interacting value e2/2πh̄ is re-
stored, and thus the interaction constant g cannot be
probed in this way.

If one has an infinite system (no reservoirs) with a bar-
rier69, the situation changes. Even an arbitrarily weak
barrier totally suppresses the transmission in the inter-
acting case g < 1, and for zero temperature there is no
linear dc conductance. The two limiting cases may be

69This barrier is routinely called “impurity” in the literature.

treated analytically. For strong barriers (weak tunnel-
ing), when the transmission coefficient is T ≪ 1, the
I–V curve in the leading order in V is

〈I〉 =
e2

2πh̄
aTV 2/g−1, (262)

where a is a non-universal (depending on the upper en-
ergy cut-off) constant. In the opposite case of weak re-
flection, 1 − T ≪ 1, the interactions renormalize the
transmission coefficient, so that the barrier becomes
opaque, and for low voltages we return to the result (262).
On the other hand, for high voltages the backscattering
may be considered as a small correction, and one obtains

〈I〉 =
ge2

2πh̄
V − e2

2πh̄
bTV 2g−1, (263)

where b is another non-universal constant. Eq. (263) is
only valid when the second term on the right-hand side
is small. To emphasize the difference, we will refer to
the weak and strong tunneling cases (which describe the
regimes (262) and (263), respectively), rather than to the
cases of transparent and opaque barriers. In particular,
whatever the strength of the barrier, for low voltages and
temperatures the tunneling is weak70.

For the transmission through a double-barrier struc-
ture resonant tunneling may take place, but the reso-
nances become infinitely narrow in the zero-temperature
limit.

What is extremely important for the following is that
weak tunneling is accompanied by a transfer of charge ge
between left- and right-moving particles (we can loosely
say that there are quasiparticles with the charge ge which
are scattered back from the barrier), while in the case of
the strong tunneling the charge transfer across the barrier
is e — there is tunneling of real electrons.

Whereas the Luttinger liquid state may, in princi-
ple, be observed in any one-dimensional system, the
most convenient opportunity is offered by the fractional
quantum Hall effect (FQHE) edge states. Indeed, the
edge state of a sample in the FQHE regime is a one-
dimensional system, and it may be shown that for the
bulk filling factor ν = 1/(2m + 1), m ∈ Z (Laughlin
states), the interaction parameter g takes the same value
g = 1/(2m + 1). The difference with the ordinary Lut-
tinger liquid is that the FQHE edge states are chiral: the
motion along a certain edge is only possible in one direc-
tion. Thus, if we imagine a FQHE strip, the electrons
along the upper edge move, say, to the right, and the

70For the FQHE case (see below) this should not cause any
confusion: Strong tunneling regime means strong tunneling
through the barrier, which is the same as weak backscattering,
or weak tunneling of quasiparticles between the edge states.
Conversely, the weak tunneling regime means that the edge
states are almost not interconnected (Fig. 37).
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electrons along the lower edge move to the left. For the
transport properties we discuss this plays no role71, and
the expressions (262) and (263) remain valid.
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FIG. 37. The tunneling experiment with the FQHE edge
states: (a) strong tunneling; (b) weak tunneling. The shaded
areas denote the location of the FQHE droplet(s).

In particular, for the FQHE case the quasiparticles
with the charge νe may be identified with the Laughlin
quasiparticles. The distinction between the strong and
weak tunneling we described above also gets a clear inter-
pretation (Fig. 37), which is in this form due to Chamon,
Freed and Wen [313]. Indeed, consider a FQHE strip with
a barrier. If the tunneling is strong (Fig. 37a), the edge
states go through the barrier. The backscattering corre-
sponds then to the charge transfer from the upper edge
state to the lower one, and this happens via tunneling
between the edge states inside the FQHE strip. Thus, in
this case, there are Laughlin quasiparticles which tunnel.
In principle, the electrons may also be backscattered, but
such events have a very low probability (see below). In
the opposite regime of weak tunneling, the strip splits
into two isolated droplets (Fig. 37b). Now the tunneling
through the barrier is again the tunneling between two
edge states, but it only may happen outside the FQHE
state, where the quasiparticles do not exist. Thus, in this
case, one has tunneling of real electrons.

Theory of dc shot noise. Shot noise in Luttinger
liquids was investigated by Kane and Fisher [314] using
the bosonization technique72. The conclusion is that for
an ideal infinite one-dimensional system there is no shot
noise73. Shot noise appears once the barrier is inserted.
For the strong tunneling regime the shot noise is

S = 2ge

(

ge2

2πh̄
V − 〈I〉

)

, (264)

where the average current 〈I〉 is given by Eq. (263) in the
regime in which the latter is valid. If we introduce the
(small) backscattering current Ib = (e2/2πh̄)bTV 2g−1,
the shot noise is written as

71A difference for shot noise is that any experiment with the
FQHE edge states is always four-terminal. The behavior of
all correlation functions which we discuss below is the same.

72Ref. [314] also considers the finite-temperature case and
describes the crossover between thermal and shot noise.

73The same is, of course, also true for a system between the
two reservoirs.

S = 2geIb, (265)

which physically corresponds to the Poisson backscatter-
ing stream of (Laughlin) quasiparticles with the charge
ge. Eq. (265) is precisely the analog of the two-terminal
expression S = (e3V/πh̄)T (1−T ) for the non-interacting
case, which may be written as S = 2eIb for 1 − T ≪ 1
and corresponds to a Poissonian distributed stream of
backscattered electrons. As we have mentioned already,
there is also a contribution to the shot noise (264) due to
the tunneling of electrons; as explicitly shown by Auer-
bach [315], this contribution is exponentially suppressed.
Thus, the shot noise experiments in the strong tunnel-
ing regime open the possibility to measure the fractional
charge. This possibility has been experimentally realized
(see below).

For the case of weak tunneling, the shot noise is Pois-
sonian with the charge e, S = 2e〈I〉: It is determined by
the charge of tunneling electrons. Expressions for noise
interpolating between this regime and Eq. (264), as well
as a numerical evaluation for g = 1/3, are provided by
Fendley, Ludwig, and Saleur [316]; Fendley and Saleur
[317] and Weiss [318] generalize them to finite tempera-
tures.

For the resonant tunneling process, at resonance, the
shot noise is given by [314]

S = 4ge

(

ge2

2πh̄
V − 〈I〉

)

= 4geIb, (266)

which corresponds to the effective charge 2eg. This re-
flects the fact that in resonance the excitations scatter
back in pairs. Safi [319] argues, however, that the contri-
bution due to the backscattering of single quasiparticles
is of the same order; this statement may have implica-
tions for the Fano factor, which is then between g and
2g.

Sandler, Chamon, and Fradkin [320] consider a situa-
tion in the strong tunneling regime with a barrier sep-
arating the two FQHE states with different filling fac-
tors ν1 = 1/(2m1 + 1) and ν2 = 1/(2m2 + 1). One of
the states may be in the integer quantum Hall regime,
for instance m1 = 0. In particular, the case of ν1 = 1
and ν2 = 1/3 may be solved exactly. They conclude
that the noise in this system corresponds to a Poisso-
nian stream (265) of backscattered quasiparticles which
are now, however, not the Laughlin quasiparticles of any
of the two FQHE states. The charge of these excita-
tions, which is measured by the shot noise, is g̃e, with
g̃−1 = (ν−1

1 + ν−1
2 )/2 = m1 + m2 + 1. Thus, for ν1 = 1

and ν2 = 1/3 the effective charge is e/2. This also implies
that the shot noise experiment cannot distinguish certain
combinations of filling factors: the effective charge of the
1/3–1/3 junction is the same as that of the 1–1/5 junc-
tion.

We also note that the above results were obtained for
infinite wires (or FQHE edges). Taking into account the
electron reservoirs, as we have mentioned above, changes
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the conductance of an ideal wire. However, it is not ex-
pected to affect the Fano factor of a wire with a bar-
rier, which is determined by the scattering processes at
the barrier. On the other hand, Ponomarenko and Na-
gaosa [321] present a calculation which implies that the
shot noise in the wire connected to reservoirs is Poisso-
nian with the charge e. In our opinion, this statement is
not physically appealing, and we doubt that it is correct.
Nevertheless, it deserves a certain attention, and more
work is needed in this direction.

Frequency-dependent noise. The frequency depen-
dence of noise was studied by Chamon, Freed, and Wen
[322,313], who first derived results perturbative in the
tunneling strength, and subsequently were able to find an
exact solution for g = 1/2. Lesage and Saleur [323,324]
and Chamon and Freed [325] developed non-perturbative
techniques valid for any g. We briefly explain the main
results, addressing the reader for more details to Refs.
[313,323]. The frequency dependence of noise is essen-
tially similar to that for non-interacting electrons in the
case when the scattering matrices are energy indepen-
dent. There is the |ω| singularity for zero frequency; the
singularity itself is not changed by the interaction, but
the coefficient in front of this singularity is interaction-
sensitive74. Furthermore, there is a singularity at the
frequency ω = eV/h̄, which corresponds to the motion of
electrons. One could expect that the role of interactions
consists in the creation of yet one more singularity at the
“Josephson” frequency ωJ = geV/h̄, reflecting the quasi-
particle motion. Indeed, as shown by Chamon, Freed,
and Wen [313], shot noise exhibits structure at this fre-
quency. This structure is, however, smeared by the finite
tunneling probability, and does not represent a true sin-
gularity75. Lesage and Saleur [323] also predict some
structure at the multiple Josephson frequency ngeV/h̄,
which could be a clear signature of interactions.

FQHE: Other filling factors. An interesting ques-
tion is what happens for the edge states in the FQHE
regime with filling factors different from 1/(2m+ 1). In
this case, the structure of edge states is more compli-
cated. Although currently there is no general accord on
the precise form of this structure, it is clear that for the
non-Laughlin FQHE states there are two or several edge
states, propagating in the same or opposite directions.
Furthermore, it is not quite clear whether different as-
sumptions for the edge structure would lead to different

74There is a discrepancy in the literature concerning this is-
sue: Chamon, Freed, and Wen [322] and Chamon and Freed
[325] report that the coefficient in front of |ω| is proportional
to V 4(g−1), while Lesage and Saleur find that the singular-
ity is V 4(1−1/g). The reason for this discrepancy is currently
unclear.

75In the perturbative calculation it appears as a true singu-
larity, though. Chamon, Freed and Wen [313] call this a “fake
singularity”.

predictions for the shot noise. If this is the case, the shot
noise measurements can be used to test the theories of
the structure of the FQHE edge.

Imura and Nomura [326] apply a Luttinger liquid de-
scription for the investigation of shot noise in the FQHE
plateau regime with the filling factor ν = 2/(2m±1),m ∈
Z. They predict that, as the gate voltage which forms the
barrier changes, the conductance of the sample crosses
from the plateau with the value (1/(m± 1))(e2/2πh̄) to
another plateau (2/(2m ± 1))(e2/2πh̄). These expres-
sions apply in the weak scattering regime, and the full
Poissonian noise is determined by the effective charges
q = e/(m±1) and q = e/(2m∓1) (rather than νe) at the
first and second plateaus, respectively. Their results are
in agreement with the experimental data for ν = 2/5, and
also with the picture emerging from the phenomenolog-
ical consideration of transport in the composite fermion
model (see below).

Fractional statistics. After we have shown that
the shot noise experiments with the FQHE edge states
may probe fractional charge of Laughlin quasiparticles,
one may naturally ask the question: Can the fractional
statistics, which the Laughlin quasiparticles are known
to obey, also be probed in the shot noise experiments?
This problem was addressed by Isakov, Martin and Ou-
vry [327], who consider the two-terminal experiment for
the independent charged particles obeying the exclusion
statistics. They obtain that the crossover between zero-
temperature shot noise and Nyquist noise is sensitive to
the statistics of quasi-particles. We believe that the pa-
per [327] has a number of serious drawbacks. To start
with, the statistical particle counting arguments which
the paper takes as a departing point, are unable to re-
produce the exact results which follow from the scattering
matrix approach for bosons, and thus had to add ad hoc
certain terms to reproduce these results in the limiting
case. Then, the exclusion statistics apply to an ensem-
ble of particles and not to single particles; it is not clear
whether the notion of independent particles obeying the
exclusion statistics is meaningful. Finally, in the scatter-
ing problem one needs to introduce the reservoirs, which
are not clearly defined in this case. Having said all this,
we acknowledge that the question, which Isakov, Martin
and Ouvry [327] address, is very important. Presumably
to attack it one must start with the ensemble of parti-
cles; we also note that the effects of statistics are best
probed in the multi-terminal geometry rather that in the
two-terminal case. A demonstration of the HBT-type ef-
fect with the FQHE edge states would clearly indicate
the statistics of the quasiparticles.

Experiments. Saminadayar et al [328] and, indepen-
dently, de-Picciotto et al [329] performed measurements
on a FQHE strip with the filling factor ν = 1/3 into which
they inserted a quantum point contact. The transmis-
sion coefficient of the point contact can be modified by
changing the gate voltages. In particular, Saminadayar
et al [328] obtained the data showing the crossover from
strong tunneling to the weak tunneling regime. Their
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results, shown in Fig. 38, clearly demonstrate that in
the strong tunneling (weak backscattering) regime the
effective charge of the carriers is e/3. As the tunneling
becomes weak, the effective charge crosses over to e, as
expected for the strong backscattering regime. They also
carefully checked the crossover between the shot noise
and the equilibrium noise, and found an excellent agree-
ment with the theory.

Though the results of Refs. [328] and [329] basically co-
incide, we must point out an important difference which
is presently not understood. The transmission in the ex-
periment by de-Picciotto et al [329] is not entirely per-
fect: they estimate that for the sets of data they plot
the transmission coefficients are T = 0.82 and T = 0.73.
Taking this into account, they phenomenologically insert
the factor T in the expression for the shot noise and fit
the data to the curve S = (2e/3)TIB. In this way, they
obtain a good agreement between the theory and exper-
iment. On the other hand, Saminadayar et al [328] fit
their data to the curve S = (2e/3)IB (without the fac-
tor T ). An attempt to replot the data taking the factor
T into account leads to an overestimate of the electron
charge. The theory we described above predicts a more
complicated dependence than just the factor T ; there-
fore it may be important to clarify this detail in order to
improve our understanding of the theory of FQHE edge
states.

FIG. 38. Experimental results of Saminadayar et al [328]
for ν = 1/3 (strong tunneling – weak backscattering regime).

Reznikov et al [330] performed similar measurements
in the magnetic field corresponding to the filling fac-
tor ν = 2/5. Changing the gate voltage (and thus
varying the shape of the quantum point contact) they
have observed two plateaus of the conductance, with
the heights (1/3)(e2/2πh̄) and (2/5)(e2/2πh̄), respec-
tively. The noise measurements showed that the effective

charges at these plateaus are e/3 and e/5, respectively.
These results are in agreement with the subsequent the-
ory of Imura and Nomura [326], and also with the predic-
tions of the composite fermion model (see below): They
assumed that there are two transmission channels which
in turn open with the gate voltage. This experiment is
important since it clearly shows that what is measured in
the FQHE shot noise experiments is not merely a filling
factor (like one could suspect for ν = 1/3), but really the
quasiparticle charge.

D. Composite fermions

An alternative description of the FQHE systems is
achieved in terms of the composite fermions. Start-
ing from the FQHE state with the filling factor ν =
p/(2np± 1), n, p ∈ Z, one can perform a gauge transfor-
mation and attach 2n flux quanta to each electron. The
resulting objects (an electron with the flux attached) still
obey the Fermi statistics and hence are called compos-
ite fermions (CF). The initial FQHE state for electrons
corresponds in the mean field approximation to the fill-
ing factor ν̃ = p for CF, i.e. the composite fermions are
in the integer quantum Hall regime with the p Landau
levels filled. In particular, the half-filled Landau level
corresponds to the CF in zero magnetic field. Composite
fermions interact electrostatically via their charges, and
also via the gauge fields, which are a measure of the dif-
ference between the actual flux quanta attached and the
flux treated in the mean field approximation. It is impor-
tant that, at least in the mean field approximation, the
composite Fermions do not form a strongly interacting
system, and therefore may be regarded as independent
particles. One can then proceed by establishing an anal-
ogy with the transport of independent or weakly inter-
acting electrons.

Von Oppen [331] considers the shot noise of composite
fermions at the half-filled Landau levels, assuming that
the sample is disordered. He develops a classical the-
ory based on the Boltzmann-Langevin approach76 (see
Section VI), incorporating interactions between them.
Though the fluctuations of both electric and magnetic
fields now become important, in the end he obtains the
same result as for normal diffusive wires: In the regime of
negligible interactions between the CF’s, the Fano factor
equals 1/3 and is universal. Likewise, in the regime when
the CF distribution function is in local equilibrium (ana-
log of the hot electron regime), the suppression factor is√

3/4.

76To this end, he has to assume implicitly the existence of
two CF reservoirs, described by equilibrium Fermi distribu-
tion functions.
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Kirczenow [332] considers current fluctuations in the
FQHE states, appealing to statistical particle counting
arguments. However, he does not take into account any
kind of scattering, and only treats equilibrium (Nyquist)
noise for which the result is known already.

Shot noise in the FQHE strip (ν = 2/(2p + 1)) with
a tunnel barrier was discussed by de Picciotto [333] who
assumed that the composite Fermions are transmitted
through the quantum point contact similarly to the non-
interacting electrons. Namely, there are p channels cor-
responding to the p CF Landau levels. Each channel is
characterized by an individual transmission coefficient.
As the gate voltage is changed the channels open (the
corresponding transmission coefficient crosses over from
0 to 1), and the conductance exhibits plateaus with the
height (e2/2πh̄)l/(2l + 1), 1 < l < p). The shot noise at
the plateau l is then given as the Poisson backscattered
current with the effective charge e/(2l+ 1). Though this
paper is phenomenological and requires further support
from microscopic theory, we note that all the features pre-
dicted in Ref. [333] are not only in agreement with the
Luttinger liquid approach by Imura and Nomura [326],
but also were observed experimentally [330] for ν = 2/5
(see above). In this case there are two channels corre-
sponding to p = 1 and p = 2, which implies conductance
plateaus with heights (1/3)(e2/2πh̄) and (for higher gate
voltage) (2/5)(e2/2πh̄); the corresponding charges mea-
sured in the shot noise experiment are e/3 and e/5, re-
spectively.

VIII. CONCLUDING REMARKS, FUTURE
PROSPECTS, AND UNSOLVED PROBLEMS

A. General considerations

In this Section, we try to outline the directions along
which the field of shot noise in mesoscopic systems has
been developing, to point out the unsolved problems
which are, in our opinion, important, and to guess how
the field will further develop. A formal summary can be
found at the end of the Section.

Prior to the development of the theory and the experi-
ments on shot noise in mesoscopic physics, there already
existed a considerable amount of knowledge in condensed
matter physics, electrical engineering, and especially op-
tics. Both theory and experiments are available in these
fields, and the results are well established. Similarly in
mesoscopic physics, there exists a fruitful interaction be-
tween theory and experiment. However, presently there
are many theoretical predictions concerning shot noise,
not only extensions of the existing theories, but which
really address new sub-fields, which are not yet tested
experimentally. Below we give a short list of these pre-
dictions. Like every list, the choice reflects very much
our taste, and we do not imply that the predictions not
included in this list are of minor importance.

• 1/4–suppression of shot noise in chaotic cavities;

• Multi-terminal effects probing statistics (exchange
Hanbury Brown – Twiss (HBT) effect; shot noise
at tunnel microscope tips; HBT effect with FQHE
edge states);

• Frequency dependent noise beyond Nyquist-
Johnson (noise measurements which would reveal
the inner energy scales of mesoscopic systems); cur-
rent fluctuations induced into gates or other nearby
mesoscopic conductors;

• Shot noise of clean NS interfaces; mesoscopic na-
ture of positive cross-correlations in hybrid struc-
tures;

• Shot noise in high magnetic fields at the half-filled
Landau level;

• Shot noise in hybrid magnetic structures.

The theory, in our opinion, is generally well developed
for most of the field and adequately covers it. However,
a number of problems persist: For instance, there is no
clear understanding under which conditions the cross-
correlations in multi-terminal hybrid structures may be
positive. Recent work [179] suggests that it is only a
mesoscopic quantum contribution which is positive, but
that to leading order the correlations will be negative
as in normal conductors. Considerably more work is re-
quired on the frequency dependence of shot noise and on
strongly correlated systems. The former (Section III) of-
fers the opportunities to probe the inner energy scales
and collective relaxation times of the mesoscopic sys-
tems; only a few results are presently available. As for
the strongly correlated systems (including possibly un-
conventional superconductors), this may become (and is
already becoming) one of the mainstreams of mesoscopic
physics; since even the dc shot noise measurements pro-
vide valuable information about the charge and statistics
of quasiparticles, we expect a lot of theoretical develop-
ments in this direction concerning the shot noise. Some
of the unsolved problems in this field may be found di-
rectly in Section VII, one of the most fascinating be-
ing the possibility of probing the quasiparticle statistics
in multi-terminal noise measurements with FQHE edge
states.

One more possible development, which we did not men-
tion in the main body of this Review, concerns shot
noise far from equilibrium under conditions when the
I–V characteristics are non-linear. The situation with
non-linear problems resembles very much the frequency
dependent ones: Current conservation and gauge invari-
ance are not automatically guaranteed, and interactions
must be taken into account to ensure these properties
(for a discussion, see e.g. Ref. [153]). Though in the
cases which we cited in the Review the non-linear re-
sults seem to be credible, it is still desirable to have a
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gauge-invariant general theory valid for arbitrary non-
linear I–V characteristics. It is also desirable to gain
insight and develop estimates of the range of applica-
bility of the usual theories. Recently Wei et al [334]
derived a gauge invariant expression for shot noise in
the weakly non-linear regime, expressing it through func-
tional derivatives of the Lindhard function with respect
to local potential fields. They apply the results to the
resonant tunneling diode. Wei et al [334] also discuss the
limit in which the tunneling rates may be assumed to be
energy independent. Apparently, the theory of Wei et al
does not treat the effect of fluctuations of the potential
inside the sample, which may be an important source of
noise. Furthermore, Green and Das [335–337] proposed
a classical theory of shot noise, based on a direct solu-
tion of kinetic equations. They discuss the possibility
to detect interaction effects in the cross-over region from
thermal to shot noise. It is, however, yet to be shown
what results this approach yields in the linear regime and
whether it reproduces, for instance, the 1/3–suppression
of shot noise in metallic diffusive wires. An application
of both of these approaches to specific systems is highly
desirable.

What we have mentioned above, concerns the devel-
opment of a field inside mesoscopic physics. We ex-
pect, however, that interesting connections will occur
across the boundaries of different fields. An immediate
application which can be imagined is the shot noise of
photons and phonons. Actually, noise is much better
studied in optics than in condensed matter physics (see
e.g. the review article [338]), and, as we have just men-
tioned previously, the theory of shot noise in mesoscopic
physics borrowed many ideas from quantum optics. At
the same time, mesoscopic physics gained a huge experi-
ence in dealing, for instance, with disordered and chaotic
systems. Recently a “back-flow” of this experience to
quantum optics started. This concerns photonic noise
for the transmission through (disordered) waveguides, or
due to the radiation of random lasers or cavities of chaotic
shape. In particular, the waveguides and cavity may be
absorbing or amplifying, which adds new features as com-
pared with condensed matter physics77. For references,
we cite a recent review by Patra and Beenakker [339].
Possibly, in the future other textbook problems of meso-
scopic physics will also find their analogies in quantum
optics. Phonons are less easy to manipulate with, but,
in principle, one can also imagine the same class of prob-
lems for them. Generally, shot noise accompanies the
propagation of any type of (quasi)-particles; as the last

77One has to take, of course, also into account the differences
between photon and electron measurements: Apart from the
evident Bose versus Fermi and neutral versus charged parti-
cles, there are many more. For example, the photon mea-
surement is accompanied by a removal of a photon from the
device, while the total electron number is always conserved.

example, we mention plasma waves.

B. Summary for a lazy or impatient reader

Below is a summary of this Review. Though we en-
courage the reader to work through the whole text (and
then she or he does not need this summary), we under-
stand that certain readers are too lazy or too impatient
to do this. For such readers we prepare this summary
which permits to acquire some information on shot noise
in a very short time-span. We only include in this sum-
mary the statements which in our opinion are the most
important.

• Shot noise occurs in a transport state and is due
to fluctuations in the occupation number of states
caused by (i) thermal random initial fluctuations;
(ii) the random nature of quantum-mechanical
transmission/reflection (partition noise), which, in
turn, is a consequence of the discreteness of the
charge of the particles. The actual noise is a com-
bination of both of these microscopic sources and
typically these sources cannot be separated.

• Shot noise provides information about the kinet-
ics of the transport state: In particular, it can be
used to obtain information on transmission chan-
nels beyond that contained in the conductance. In
two-terminal systems, zero-frequency shot noise for
non-interacting electrons is suppressed in compari-
son with the Poisson value S = 2e〈I〉.

• For quantum wells the noise suppression is F =
S/2e〈I〉 = (Γ2

L + Γ2
R)/(ΓL + ΓR)2. The suppression

is universal for metallic diffusive wires (F = 1/3)
and chaotic cavities (F = 1/4).

• Far from equilibrium, in the vicinity of instability
points the shot noise can exceed the Poisson value.

• In the limit of low transmission, the shot noise is
Poissonian and measures the charge of transmitting
particles. In particular, for normal metal – super-
conductor interfaces this charge equals 2e, whereas
in SNS systems it is greatly enhanced due to mul-
tiple Andreev reflections. In the limit of low re-
flection, the shot noise may be understood as Pois-
sonian noise of reflected particles; in this way, the
charge of quasiparticles in the fractional quantum
Hall effect is measured.

• For carriers with Fermi statistics, in multi-terminal
systems the zero-frequency correlations of currents
at different terminals are always negative. For Bose
statistics, they may under certain circumstances
become positive. These cross-correlations may be
used to probe the statistics of quasiparticles.
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• The ensemble averaged shot noise may be described
both quantum-mechanically (scattering approach;
Green’s function technique) and classically (mas-
ter equation; Langevin and Boltzmann-Langevin
approach; minimal correlation approach). Where
they can be compared, classical and quantum-
mechanical descriptions provide the same results.
Classical methods, of course, fail to describe gen-
uinely quantum phenomena like e.g. the quantum
Hall effect.

• As a function of frequency, the noise crosses over
from the shot noise to the equilibrium noise S ∝
|ω|. This is only valid when the frequency is low as
compared with the inner energy scales of the sys-
tem and inverse times of the collective response.
For higher frequencies, the noise is sensitive to all
these scales. However, the current conservation
for frequency dependent noise is not automatically
provided, and generally is not achieved in non-
interacting systems.

• Inelastic scattering may enhance or suppress noise,
depending on its nature. In particular, in macro-
scopic systems shot noise is always suppressed down
to zero by inelastic (usually, electron-phonon) scat-
tering. When interactions are strong, shot noise is
usually Poissonian, like in the Coulomb blockade
plateau regime.

• We expect that the future development of the field
of the shot noise will be mainly along the following
directions: Within the field of mesoscopic electrical
systems: (i) experimental developments; (ii) fre-
quency dependence; and (iii) shot noise in strongly
correlated systems; and more generally (iv) shot
noise in disordered and chaotic quantum optical
systems, shot noise measurements of phonons (and,
possibly, of other quasiparticles).
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APPENDIX A: COUNTING STATISTICS AND
OPTICAL ANALOGIES

The question which naturally originates after consid-
eration of the shot noise is the following: Can we ob-
tain some information about the higher moments of the
current? Since, as we have seen, the shot noise at zero
frequency contains more information about the transmis-
sion channels than the average conductance, the studies
of the higher moments may reveal even more informa-
tion. Also, we have seen that in the classical theories of
shot noise the distribution of the Langevin sources (el-
ementary currents) is commonly assumed to be Gaus-
sian, in order to provide the equivalence between the
Langevin and Fokker-Planck equations [213]. An inde-
pendent analysis of the higher moments of the current
can reveal whether this equivalence in fact exists, and
thus how credible the classical theory is.

A natural quantity to study is the k-th cumulant of
the number of particles n(t) which passed through the
barrier during the time t (which is assumed to be large).
In terms of the current I(t), this cumulant is expressed
as

〈〈nk(t)〉〉 =
1

ek

∫ t

0

dt1 . . . dtk〈〈I(t1) . . . I(tk)〉〉, (A1)

where 〈〈. . .〉〉 means the cumulant (irreducible part). For
the following, we only consider the time-independent
problems, i.e. the noise in the presence of a dc voltage.
Then the first cumulant is 〈〈n(t)〉〉 = 〈I〉t/e, and the sec-
ond one is expressed through the zero-temperature shot
noise power,

〈〈n2(t)〉〉 =
St

2e2
.

In particular, the ratio of 〈〈n2(t)〉〉 and 〈〈n(t)〉〉 gives the
Fano factor. The cumulants with k > 2 in Eq. (A1) con-
tain additional information about the statistics of cur-
rent. Thus, if the distribution of the transmitted charge
is Poissonian, all the cumulants have the same value; for
the Gaussian distribution all the cumulants with k > 2
vanish.

The general expression for the cumulants of the num-
ber of transmitted particles was obtained by Lee, Levi-
tov, and Yakovets [340], who followed the earlier paper78

by Levitov and Lesovik [341]. We only give the results
for zero temperature. Consider first one channel with
the transmission probability T . The probability that m
particles pass through this channel during the time t is
given by Bernoulli distribution, as found by Shimizu and
Sakaki [343] and Levitov and Lesovik [341],

Pm(t) = Cm
N T

m(1 − T )N−m, m ≤ N, (A2)

78The paper [341] corrects Ref. [342].
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whereN(t) is the “number of attempts”, on average given
by 〈N〉 = eV t/2πh̄. Actually, N(t) fluctuates, but in the
long-time limit N ≫ 1 these fluctuations are insignificant
[341], and thereforeN in Eq. (A2) must be understood as
the average value. The expression (A2) gives the prob-
ability that out of N attempts m particles go through
(with the probability T ) and N −m others are reflected
back.

The next step is to define the characteristic function,

χ(λ) =

N
∑

m=0

Pm exp(imλ) =
[

Teiλ + 1 − T
]N

. (A3)

If we have several independent79 channels, the character-
istic function is multiplicative,

χ(λ) =
∏

j

[

Tje
iλ + 1 − Tj

]N
, (A4)

where the product is taken over all the transmission chan-
nels. The coefficients in the series expansion of lnχ are
the cumulants that we are looking for,

ln χλ =

∞
∑

k=1

(iλ)k

k!
〈〈nk(t)〉〉, (A5)

and Lee, Levitov, and Yakovets [340] obtain in this way
the explicit expression,

〈〈nk(t)〉〉 = N
∑

j

[

T (1 − T )
d

dT

]k−1

T

∣

∣

∣

∣

∣

∣

T=Tj

. (A6)

We see from Eq. (A6) that 〈〈n(t)〉〉 = N
∑

Tj, and
〈〈n2(t)〉〉 = N

∑

Tj(1−Tj), which are the results for the
average current and the zero frequency shot noise power.
However, higher cumulants do not vanish at all. Though
they generally cannot be calculated in a closed form, the
distributions are studied for many systems, and we give
a brief overview below.

For the tunnel barrier, when Tj ≪ 1 for any j, all the
cumulants are equal, 〈〈nk(t)〉〉 = N

∑

Tj, and thus the
distribution of the transmitted charge is Poissonian.

De Jong [344] analyzes the counting statistics for
double-barrier structures using the concept of the dis-
tribution function for the transmission probabilities. For
the symmetric case (ΓL = ΓR = Γ) he finds 〈lnχ〉 =
2N⊥Γt(exp(iλ/2) − 1), and explicitly for the cumulants
〈〈nk(t)〉〉 = N⊥Γt/2k−1. Here N⊥ is the number of trans-
verse channels at the Fermi surface. The cumulants de-
crease exponentially with k, and thus the statistics are
closer to Gaussian than to Poissonian. De Jong [344] was

79In the sense that we can diagonalize the matrix t†t and
define the transmission eigenvalues.

also able to obtain the same results classically, starting
from the master equation.

The case of metallic diffusive wires is considered by
Lee, Levitov, and Yakovets [340], and subsequently by
Nazarov [345]. They find that the disorder-averaged log-
arithm of the characteristic function is80

〈lnχ(λ)〉 =
〈I〉t
e

arcsinh2
√

eiλ − 1. (A7)

The expressions for the cumulants cannot be found in
a closed form. As expected, from Eq. (A7) we ob-
tain 〈〈n2〉〉 = 〈I〉t/3e, in agreement with the fact that
the Fano factor is 1/3. For the following cumulants
one gets, for instance, 〈〈n3〉〉 = 〈I〉t/15e and 〈〈n4〉〉 =
−〈I〉t/105e. For high k the cumulants 〈〈nk〉〉 behave
as (k − 1)!/((2π)kk1/2), i.e. they diverge! Moreover,
Lee, Levitov, and Yakovets [340] evaluate the sample-
to-sample fluctuations of the cumulants, and find that
for the high-order cumulants these fluctuations become
stronger than the cumulants themselves. Thus, the far
tails of the charge distributions are strongly affected by
disorder. Nazarov [345] generalizes the approach to treat
weak localization corrections.

For the transmission through the symmetric chaotic
cavity, Ref. [347] finds

〈lnχ(λ)〉 =
4〈I〉t
e

ln
eiλ/2 + 1

2
, (A8)

with the explicit expression for the cumulants

〈〈n2l〉〉 =
〈I〉t
e

22l − 1

22l−1l
B2l, (A9)

and 〈〈n2l+1〉〉 = 0 (l ≥ 1). Here Bk are the Bernoulli
numbers (B2 = 1/6, B4 = −1/30). Indeed, for the sec-
ond cumulant we obtain 〈〈n2〉〉 = 〈I〉t/4e, in accordance
with the 1/4–shot noise suppression in symmetric chaotic
cavities. Eq. (A9) can be also obtained classically [347],
using the generalization of the minimal correlation ap-
proach.

Muzykantskii and Khmelnitskii [169] investigate the
counting statistics for the NS interface and find

χ(λ) =
∏

j

[

TAje
2iλ + 1 − TAj

]N
, TAj ≡

2T 2
j

(2 − Tj)2
.

(A10)

80The characteristic function is not self-averaging; the ex-
pansion of ln〈χ(λ)〉 yields different expression for the cumu-
lants, as found by Muttalib and Chen [346]. As Levitov, Lee,
and Yakovets [340] argue, the correct quantity to average is
ln χ(λ), rather than χ(λ), since it is linearly related to the
cumulants of the transmitted charge.
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It is clearly seen from the comparison with Eq. (A4)
that the particles responsible for transport have effective
charge 2e.

Other important developments include the generaliza-
tion to the multi-terminal (Levitov and Lesovik [341])
and time-dependent (Ivanov and Levitov [348]; Levitov,
Lee, and Lesovik [349]; Ivanov, Lee, and Levitov [350])
problems, and numerical investigation of the counting
statistics for the non-degenerate ballistic conductors (Bu-
lashenko et al [267]).

Thus, the counting statistics certainly reveal more in-
formation about the transport properties of conductors
than is contained in either the conductance or the sec-
ond order shot noise. The drawback is that it is not
quite clear how these statistics can be measured. A pro-
posal, due to Levitov, Lee, and Lesovik [349], is to use
the spin-1/2 galvanometer, precessing in the magnetic
field created by the transmission current. The idea is to
measure the charge transmitted during a certain time in-
terval through the evolution of the spin precession angle.
However, the time dependent transport is a collective
phenomenon (Section III), and thus the theory of such
an effect must include electron-electron interactions. In
addition, this type of experiments is not easy to realize.

On the other hand, measurements of photon numbers
are routinely performed in quantum optics. In this field
concern with counting statistics has already a long his-
tory. However, typical mesoscopic aspects — disorder,
weak localization, chaotic cavities — and effects partic-
ular to optics, like absorption and amplification, make
the counting statistics of photons a promising tool of re-
search. Some of these aspects (relating to disorder and
chaos, where the random matrix theory may be applied),
have been recently investigated by Beenakker [351]; how-
ever, there are still many unsolved problems.

APPENDIX B: SPIN EFFECTS AND
ENTANGLEMENT

A notion which mesoscopic physics recently borrowed
from quantum optics is entanglement. States are called
entangled, if they cannot be written simply as a prod-
uct of wave functions. For our purpose, we will adopt
the following definition. Imagine that we have two leads,
1 and 3, which serve as sources of electrons. The entan-
gled states are defined as the following two-particle states
described in terms of the creation operators,

|±〉 =
1√
2

(

â†3↓(E2)â†1↑(E1) ± â†3↑(E2)â†1↓(E1)
)

|0〉, (B1)

where â†ασ(E) is the operator which creates an electron
with the energy E and the spin projection σ in the source
α. The state corresponding to the lower sign in Eq. (B1)
is the spin singlet with the symmetric orbital part of the
wave function, while the upper sign describes a triplet
(antisymmetric) state.

Such entangled states are very important in the field
of quantum computation. Condensed matter systems are
full of entangled states: there is hardly a system for which
the ground state can be expressed simply in terms of a
product of wave functions. The key problem is to find
ways in which entangled states can be generated and ma-
nipulated in a controlled way. Optical experiments on
noise have reached a sophisticated stage since there ex-
ist optical sources of entangled states (the production of
twin photon-pairs through down conversion). It would
be highly desirable to have an electronic equivalent of
the optical source and to analyze to what extent such
experiments can be carried out in electrical conductors
[352,108]. An example of such source is a p-n junction
which permits the generation of an electron-hole pair and
the subsequent separation of the particles. The disadvan-
tage of such an entangled state is that the electron and
hole must be kept apart at all times. Similarly, a Cooper
pair entering a normal conductor, represents an entan-
gled state. But in the normal conductor it is described
as an electron-hole excitation and there is to our knowl-
edge no deterministic way to separate the electron and
the hole. To date most proposals in condensed matter re-
lated to quantum computation consider entangled states
in closed systems.

Theoretically, entanglement opens a number of inter-
esting opportunities. One of the questions is: Provided
we were able to prepare entangled states, how do we know
the states are really entangled? Since we deal with two-
particle states, it is clear that entanglement can only be
measured in the experiments which are genuinely two-
particle. Burkard, Loss, and Sukhorukov [353,354] in-
vestigate the multi-terminal noise. Indeed, add to the
structure two more reservoirs (electron detectors) 2 and
4, and imagine that there is no reflection back to the
sources (the geometry of the exchange HBT experiment,
Fig. 15(b), with the additional “entangler” creating the
states (B1)). The system acts as a three-terminal device,
with an input of entangled electrons and measuring the
current-current correlation at the two detectors.

Since the shot noise is produced by the motion of the
electron charge, it is plausible that the noise measure-
ments are in fact sensitive to the symmetry of the orbital
part of the wave function, and not to the whole wave
function. Thus the noise power seen at a single contact
is expected to be enhanced for the singlet state (sym-
metric orbital part) and suppressed for the triplet state
(anti-symmetric orbital part). It is easy to quantify these
considerations by repeating the calculation of Section II
in the basis of entangled states (B1). Assuming that the
system is of finite size, so that the set of energies E is dis-
crete, and the incoming stream of entangled electrons is
noiseless, Burkard, Loss, and Sukhorukov [353] obtained
the following result, 〈I2〉 = 〈I4〉, S22 = S44 = −S24, with

S22 = 2eT (1 − T ) (1 ∓ δE1,E2
) . (B2)

Thus, indeed, the shot noise is suppressed for the triplet
state and enhanced for the singlet state, provided the
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electrons are taken at (exactly) the same energy. For the
singlet state this suppression is an indication of the en-
tanglement, since there are no other singlet states. One
can also construct the triplet states which are not entan-
gled,

| ↑↑〉 = â†3↑(E2)â†1↑(E1)|0〉, (B3)

and an analogous state with spins down. These states, as
shown by Burkard, Loss, and Sukhorukov [353], produce
the same noise as the entangled triplet state. Thus, the
noise suppression in this geometry is not a signature of
the entanglement.

Another proposal, due to Loss and Sukhorukov [303],
is that the entangled states prepared in the double quan-
tum dot can be probed by the Aharonov-Bohm transport
experiments. The shot noise is Poissonian in this set-up,
and both current and shot noise are sensitive to the sym-
metry of the orbital wave function.

More generally, one can also ask what happens if
one can operate with spin-polarized currents separately.
(Again, presently no means are known to do this).
Burkard, Loss, and Sukhorukov [353] considered a trans-
port in a two-terminal conductor where the chemical po-
tentials are different for different spin projections. In
particular, if V↑ = −V↓, the total average current is
zero (the spin-polarized currents compensate each other).
Shot noise, however, exists, and may be used as a means
to detect the motion of electrons in this situation.

APPENDIX C: NOISE INDUCED BY THERMAL
TRANSPORT

Sukhorukov and Loss [114] consider shot noise in
metallic diffusive conductors in the situation when there
is no voltage applied between the reservoirs, and the
transport is induced by the difference of temperatures.
To this end, they generalize the Boltzmann-Langevin ap-
proach to the case of non-uniform temperature. For the
simplest situation of a two-terminal conductor, when one
of the reservoirs is kept at zero temperature, and the
other at the temperature T , their result reads

S =
4

3
(1 + ln 2)GkBT (C1)

for the purely elastic scattering, with G being the Drude
conductance. This shows, in particular, that the noise
induced by thermal transport is also universal — the ra-
tio of the shot noise power to the thermal current does
not depend on the details of the sample. This is an ex-
periment that would be interesting to realize.

Another prospective problem concerning the noise in-
duced by the non-uniform temperature, is that the ap-
plied temperature gradient would cause not only the
transport of electrons, but also transport of phonons.
Thus, in this kind of experiments one can study shot
noise (and, possibly, also counting statistics) of phonons.

This really looks very promising, and, to our knowledge,
by now has never been discussed.
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Teor. Fiz. 48 (1988) 403 [JETP Lett. 48 (1988) 445].
[64] Y. P. Li, A. Zaslavsky, D. C. Tsui, M. Santos, and

M. Shayegan, Phys. Rev. B 41 (1990) 8388.
[65] T. G. van de Roer, H. C. Heyker, J. J. M. Kwaspen,

H. P. Joosten, and M. Henini, Electron. Lett. 27 (1991)
2158.

[66] P. Ciambrone, M. Macucci, G. Iannaccone, B. Pelle-
grini, M. Lazzarino, L. Sorba, and F. Beltram, Electron.
Lett. 31 (1995) 503.

[67] H. C. Liu, J. Li, G. C. Aers, C. R. Leavens,
M. Buchanan, and Z. R. Wasilewski, Phys. Rev. B 51
(1995) 5116.

[68] A. Przadka, K. J. Webb, D. B. Janes, H. C. Liu, and
Z. R. Wasilewski, Appl. Phys. Lett. 71 (1997) 530.

[69] S.-T. Yau, H. B. Sun, P. J. Edwards, and P. Lynam,
Phys. Rev. B 55 (1997) 12880.

[70] O. N. Dorokhov, Solid State Commun. 51 (1984) 381.
[71] Y. Imry, Europhys. Lett. 1 (1986) 249.
[72] C. W. J. Beenakker, Rev. Mod. Phys. 69 (1997) 731.
[73] A. D. Stone, P. A. Mello, K. A. Muttalib, and J.-

L. Pichard, in: Mesoscopic Phenomena in Solids, ed.
by B. L. Altshuler, P. A. Lee, and R. A. Webb (North-
Holland, Amsterdam, 1991) 369.

[74] C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46
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[241] Ya. M. Blanter and M. Büttiker, Phys. Rev. B 59 (1999)

10217.
[242] V. J. Goldman, D. C. Tsui, and J. E. Cunningham,

Phys. Rev. Lett. 58 (1987) 1256.
[243] P. Hänggi and H. Thomas, Phys. Repts. 88 (1982) 207.
[244] Sh. M. Kogan and A. Ya. Shul’man, Zh. Éksp. Teor.
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