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The evolution of EEG/MEG source connectivity is both, a promising, and controversial

advance in the characterization of epileptic brain activity. In this narrative review we

elucidate the potential of this technology to provide an intuitive view of the epileptic

network at its origin, the different brain regions involved in the epilepsy, without the

limitation of electrodes at the scalp level. Several studies have confirmed the added value

of using source connectivity to localize the seizure onset zone and irritative zone or to

quantify the propagation of epileptic activity over time. It has been shown in pilot studies

that source connectivity has the potential to obtain prognostic correlates, to assist in the

diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity

in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation

studies in large and heterogeneous patient cohorts are still lacking and are needed

to bring these techniques into clinical use. Moreover, the methodological approach

is challenging, with several poorly examined parameters that most likely impact the

resulting network patterns. These fundamental challenges affect all potential applications

of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and

also its application to cognitive activation of the eloquent area in presurgical evaluation.

However, suchmethod can allow unique insights into physiological and pathological brain

functions and have great potential in (clinical) neuroscience.

Keywords: EEG/MEG source connectivity, epilepsy, interictal epileptiform discharges, seizures, resting state

INTRODUCTION

Epilepsy is commonly considered an archetypical network disease (1), with seizures and interictal
activity generated and spreading in networks involving one or both hemispheres. There is a growing
body of imaging evidence suggesting that epilepsy affects both structural (2, 3) and functional brain
network properties (4–7). Interestingly, even in idiopathic/genetic generalized epilepsy, there is a
certain level of focality both in resting-state imaging (7) as well as for generators of epileptiform
activity (8) and seizures (9, 10). These structural and functional network properties are investigated
using brain connectivity analysis.

Brain connectivity can be categorized into structural, functional and effective connectivity
(11). Structural connectivity refers to the white matter connections in the brain and can be
examined in vivo with MRI measuring the motion of water along the axons. Functional and
effective connectivity entangle the neuronal communication between brain regions. These types
of connectivity can be calculated when signals are sampled over multiple time points, such
as brain activity recorded via EEG, MEG, but also fMRI, or PET. According to Friston (12),
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“functional connectivity is defined as statistical dependencies
among remote neurophysiological events, while effective
connectivity refers explicitly to the influence that one neural
system exerts over another, either at a synaptic or population
level.” Functional or effective connectivity is measured in
terms of similarities between signals and shows complementary
information with regard to structural connectivity (13). With the
growing enthusiasm for connectivity it is often overlooked that
in reality, all we have are statistical interdependencies of signals,
which should be interpreted cautiously.

The main difference between functional and effective
connectivity is that functional connectivity characterizes whether
the activity of two units are linked, while effective connectivity
also examines the direction of communication, i.e., which is
the driver or receiver of information. This does not tell us
whether there exists a physical/structural connection (14), but
the size of the predictability lets us estimate how likely it is
that one unit influences the other. Therefore, the common
understanding is that effective connectivity entails directed
information flow from one system/region to another while
functional connectivity assesses undirected information flow.
Functional or effective connectivity can be time-resolved or
averaged over a certain period and optionally within a specific
frequency band.

The most classical measures for functional connectivity
are correlation and coherence, which reflects the similarity
between signals in the time and frequency domain, respectively.
Intuitively speaking, coherence is a correlation of two signals
in the frequency domain (15). Other connectivity measures
consider the phase of the oscillations in the electrophysiological
signals, the so-called measures of synchronization. The phase
indicates whether the oscillation is at a specific time point t at
a peak, trough, or transitions between these two states (such
as for instance, zero crossings). If two signals exhibit the same
phases at the same point in time, they are said to oscillate
synchronously. Determining the phase of two signals allows
calculating the difference in phase, the phase lag, which in turn
may inform us about propagation effects, if the one signal exhibits
a later phase than the other signal. The phase lag is suggested to
reflect signal propagation and can be studied to examine effective
connectivity. In addition to bivariatemeasures that consider pairs
of signals, multivariate measures are designed in order to remove
shared properties between multiple signals, such as, for example,
partial coherence (16). Most measures of effective connectivity
are described under the umbrella term Granger causality (17).
This concept considers two signals X and Y and examines
whether the activity at time point t of signal X can be predicted
(statistically) by the activity at the earlier time points t-k of signal
Y. Among them, partial directed coherence (18) and directed
transfer function (19) are commonly used to study epilepsy. Next
to these data driven analysis approaches, effective connectivity
can also be estimated based on underlying biophysical models
with a priori assumptions about the organization of the network
as in Dynamic Causal Modeling (DCM) and other neural mass
models. DCM in EEG or MEG takes biologically plausibility of
causal models into account, and thus yields an informed estimate
of connectivity (20).

The connectome estimated using functional or effective
connectivity algorithms contains a large amount of data, which
can complicate the biophysical interpretation. The connectome
is composed of values indicating the relatedness of each region-
by-region combination. In addition, each of these values can be
estimated optionally for defined time-windows and/or frequency
ranges. That is, the final result may characterize the data in
up to four dimensions: region × region × time × frequency.
In order to reduce the dimensionality of these complex data
and to extract meaningful patterns, topological graph analysis
can be performed. The importance of specific nodes and the
general architecture can be characterized by local and global
network characteristics (21). Local indices identify important
information hubs, which distribute or merge information to
a large number of other nodes, or select so-called rich-clubs
of highly interconnected nodes. Global indices measure the
organization of the network into small worlds where only
neighboring regions exchange information, or whether the
network is organized in a centralized way. Regions with high
outflow are considered drivers of information transfer in the
network. Efficient information transfer across the network is
measured by efficiency or path length. Segregation characterized
by groups of highly connected regions for specialization can be
measured by the clustering coefficient (22). The clear advantage
of deriving network characteristics is that it reduces the statistical
challenge posed by the multidimensional problem in terms
of multiple comparisons. High dimensional data can lead to
false discoveries when the statistical approach does not deal
adequately with the high dimensionality. However, a large degree
of integration can obscure localized phenomena. Therefore, the
degree of integration needs to be chosen carefully in line with the
current clinical problem or research question.

Functional and effective connectivity are commonly used to
gain insight into the network nature of epilepsy (23). On the
one hand, connectivity analysis is used to identify how epilepsy
and years of seizures and/or interictal activity affect the brain
network (24). Furthermore, cognitive improvement or decline
can be linked to changes in specific brain networks in epilepsy
patients (25). On the other hand, because seizures and spikes
spread rapidly in the brain, connectivity analysis is used as a tool
to localize the seizure onset zone (SOZ) and the irritative zone
(IZ) (26). Here, a big advantage is that non-invasive connectivity
analysis can be validated based on resections that rendered the
patients seizure free or intracranial EEG recordings that are often
available in these patients.

MEG/EEG SOURCE CONNECTIVITY

The electrical activity of active neurons can be recorded at the
scalp surface as voltage differences across EEG electrodes. In
addition, the neuronal currents in the brain generate magnetic
fields that can be measured outside the scalp surface by the
MEG sensors. Compared to other neuroimaging techniques such
as PET and fMRI, EEG, and MEG have a superior temporal
resolution but an inferior spatial resolution. Despite this inferior
spatial resolution, the temporal resolution and the fact that
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EEG and MEG directly measures neuronal activity makes them
highly valuable techniques to study functional and especially
effective connectivity. Combining neuroimaging techniques with
high spatial resolution with a technique with high temporal
resolution, such as EEG-fMRI, is a valid approach to examine
slow changes in blood supply based on spiking activity (27–29)
or at rest (30) and, therefore, provides an excellent validation for
localization accuracy of source connectivity (31). Nevertheless,
because MRI induces artifacts such as ballistocardiographic
artifact, the EEG signals recorded within the MRI scanner are
more noisy and therefore less suitable to be used for connectivity
analysis compared to EEG measured outside the MRI scanner.

There are a number of studies applying connectivity
algorithms to the electrophysiological signals recorded from the
MEG/EEG sensors, so called functional and effective connectivity
in sensor space. While this is the most straightforward
way to estimate connectivity, this approach suffers from
important methodological limitations and these studies should
be interpreted with caution. First, due to the volume conduction
effect, every source in the brain, i.e., activity in a brain region
large enough to generate measurable EEG/MEG signals, is picked
up by all recording EEG/MEG sensors simultaneously (32). The
main orientation of the activated neurons, the distance to the
sensors and the conductive properties of the tissue define how
much each source is picked up by each sensor. Because of this
volume conduction effect, connectivity analysis performed in
sensor space can potentially lead to false connections, given
the fact that distant electrode can share common information
from several sources (33, 34). Second, the choice of the EEG
reference can influence the estimated functional integration and
segregation (35). Therefore, the connectivity pattern derived
in sensor space does not necessarily reflect the connections of
underlying cortical regions. One (partial) solution is to apply
connectivity measures to the sensor signals that are specifically
designed to deal with the volume conduction effect such as
the imaginary part of the coherence (36). Another option
to circumvent the volume conduction effect is to study the
EEG/MEG signals in source space (37). First, EEG source imaging
is performed on the signals to project them into brain/source
space. It is of utmost importance to choose a proper forward
model and inverse technique to estimate the neuronal activity
in the volumes of interest. Even in source space it is important
to choose the measure for connectivity carefully, otherwise
the artifacts of volume conduction may still be present even
in reconstructed source time series as zero-lag correlations
(33, 37). Nevertheless, it is an advantage that source space
connectivity is a more direct representation of the connectivity
pattern between brain regions instead of electrodes as this clearly
augments the information gain for clinical and research questions
concerning epilepsy. This makes the information from source
space connectivity analysis much more intuitive to understand.

In the following, we provide a brief explanation on how
EEG/MEG source space connectivity can be calculated from EEG
and MEG measurements. In Figure 1 an example pipeline how
to extract source space connectivity patterns from EEG/MEG is
depicted. In a first step, EEG/MEG sensor signals are recorded.
In this step, it is important to assure optimal quality of the

measurements. These recordings are then usually preprocessed
to remove environmental and physiological noise. For example,
this is done by excluding segments of data contaminated by eye or
muscle artifacts. Decomposition techniques such as independent
component analysis (ICA) are frequently used to remove eye
blinks or cardiac artifacts. However, one should be cautious
since ICA might introduce spurious connectivity as it removes
shared activity from all sensors. In other words, ICA employs
a calculation on all channels that might introduce similarity
between the signals. The effects of ICA artifact removal on
subsequent connectivity analyses is not clearly quantified yet
and should be clarified in future studies. Also filtering of the
EEG and MEG signals should be done carefully in order to
prevent the introduction of phase differences. Therefore, it is
recommended to use zero-phase shift filters, for instance, to
remove 50/60Hz power line noise and to refrain from filtering
as much as possible (38).

In a second step, the EEG/MEG signals are projected
from sensor to source space using EEG/MEG source imaging
(ESI/MSI). ESI/MSI is applied to all time points of the chosen pre-
processed epoch. For each time point a source image is generated.
From the source images, the activity in the ROIs that are defined
based on a cortical parcellation (based on an atlas or specifically
defined for the study) can be estimated over time. It is also
possible to reconstruct EEG/MEG time courses on a voxel- or
vertex-level in higher spatial resolution, although this increases
the computational resources needed and is limited by the spatial
resolution of modalities. M/ESI requires a forward model that
characterizes the electrical and magnetic field propagation in the
subject’s head. From the individual’s MRI, this electromagnetic
headmodel is constructed that links brain activity to the recorded
scalp potentials. For EEG the use of a complex head model
that specifies each tissue class is recommended, while for MEG
simpler models usually suffice. This is because the spread of
magnetic fields are not affected by electric conductance, in
contrary to electric fields; i.e., the complex architecture of the
head, including cerebrospinal fluid, dura, skull, fatty tissue,
and skin, all of which having different conductance, does not
influence magnetic fields (39). This enables the use of much
simpler head models in MEG, even the very simple “single shell”
model are still frequently used (40, 41). Nevertheless, it has been
shown that not including CSF and not distinguishing gray and
white matter in the head models can introduce source space
connectivity errors both in EEG and MEG (42). The inverse
solution techniques depend on the forward model to estimate the
neuronal activity from the M/EEG. These head models can be
divided into dipole modeling techniques, where the number of
estimated sources in the brain is much smaller than the number
of sensors, and distributed inverse solution techniques that
estimate the activity in many sources in the brain using different
methods of regularization (43). Most commonly used inverse
techniques for M/EEG source space connectivity are distributed
techniques such as weighted minimum norm, beamforming and
low resolution brain electromagnetic tomography (LORETA). It
has been shown that the optimal choice of the inverse solution
depends both on the spatial and synchronization profile of the
interacting cortical sources (44). Also, the intrinsic difference
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FIGURE 1 | Pipeline to obtain EEG/MEG source connectivity. The EEG/MEG signals in sensor space are source imaged using a head model constructed based on a

template or patient specific MRI. In the brain regions of interest the neuronal activity is estimated over time and fed in the connectivity analysis to obtain the

connectivity pattern in source space.

between EEG andMEG influences the result. MEG is particularly
sensitive to tangential dipoles, whereas it is “blind” to pure
radial sources, while the EEG is more sensitive to radial sources
(45, 46). Hence, one could expect that some source connections
are particularly well detectable with MEG (if they are largely
tangential to the skull convexity), whereas others should be better
detectable with EEG or a combination of both techniques.

In a last step, connectivity measures, as introduced above,
can be applied to the estimated neuronal activity in the ROIs to
obtain the connectivity pattern in source space. Graph analysis
can be applied on this connectome to extract local and global
characteristics of the network.

For source-level analysis of EEG/MEG signals several
non-commercial software packages offer tools and functions.
For example, EEGLAB (47), CARTOOL (48), Fieldtrip (49),
Brainstorm (50), eConnectome (51), and the MNE software (52)
offer both, source-transformation and connectivity analysis.

SOURCE CONNECTOMES IN EPILEPSY

In this section, we provide an overview how EEG/MEG source
space connectivity has been used in epilepsy patients to study
ictal, interictal, and resting state activity.

Ictal
Ding et al. studied EEG source space connectivity in 20 seizures
of 5 patients (53). The brain source with highest outgoing
information flow was estimated within 15mm of the EZ that
was defined by lesions visible on MRI or hyper perfusion seen
in ictal SPECT. Given that the resection location in the patients
was not mentioned, it remains unclear if the presumed EZ
corresponded with the true EZ. In a follow-up study, Lu et al.
(54) showed the value of using more electrodes to localize the
SOZ based on EEG source space connectivity by comparing
different electrode setups (76, 64, 48, 32, and 21 electrodes).
In the 10 investigated patients with ILAE class 1 or 2 post-
operative outcome, the SOZ was estimated within 10mm of
the resection in 16/23 seizures and within 20mm in 22/23
seizures. The gain in sensitivity to localize the SOZ when
increasing the number of scalp electrodes has been confirmed
by Staljanssens et al. (26). However, the study compared the
same data with the full number of sponge-electrodes (265)
from a high-impedance amplifier to a reduced subset (reduced
sequentially up to 32 channels). The drawback of this approach is
that low-density systems typically used in a clinical setting have
different amplifiers and electrodes, such that the data quality is
not directly comparable between both situation and therefore the
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result of reducing the number of electrodes should be interpreted
with caution.

Currently, the recording length using high density EEG is
limited to overnight recordings, at most. The resulting difficulty
to record seizures with high density EEG pushed for ictal
connectivity analysis based on clinical video-EEG. The largest
cohort study so far was performed by Staljanssens et al. (55). One
hundred and eleven seizures in 27 patients all with Engel class 1
outcome were localized using EEG source connectivity and ESI
power. They showed that source space connectivity, compared
to ESI power, significantly increases the performance from 42 to
94% to localize the SOZwithin 10mm from the resection. Despite
the fact that several studies (26, 53–57) show the potential of
ictal source localization using EEG source connectivity, there is
only limited data available about their sensitivity and specificity
in extra-temporal lobe epilepsy or in patients that did not become
seizure free, which hampers the use of these methods in a
clinical setting.

EEG source connectivity has also been used to investigate
the network topology during a seizure as a marker of transient
functional reorganization. Elshoff et al. showed that the topology
changes from a star-like topography with the SOZ as the main
hub in the beginning of the seizure to a circular pattern with no
hub in the middle of the seizure (Figure 2). These results suggest
an important information transfer from the SOZ at seizure onset,
that was reduced during the seizure and resulted in a reduction
of the efficiency of information transfer (58). Japaridze et al.
used the same approach in 15 children with continuous spike
waves during sleep and reported network abnormalities involving
notably the thalamus although the possibility of EEG to estimate
activity in the thalamus remains very questionable (59). Klamer
et al. studied seizures and auras of a patient with musicogenic
epilepsy using DCM based on prior selection of regions of
interest from fMRI (60). In this application, the technique was
used to infer hidden neuronal states frommeasurements of brain
activity, to localize the SOZ from simultaneous high density
EEG/MEG. Two sources were apparent from previous functional
MRI investigation: one frontal and one mesiotemporal. Using
DCM they found that the best model explaining the recording
consisted in the mesiotemporal brain region driving the frontal
regions. In later invasive EEG recordings the right hippocampus
was confirmed as SOZ. It is important to note that the regions of
interest were selected based on results of the fMRI analysis and on
previous literature; without these priors, the results of the source
connectivity analysis might have been considerably different.

Interictal Epileptic Discharges
EEG and MEG are sensitive to different type of spikes. EEG
is more sensitive to spikes arising from cortex in which the
pyramidal neurons are aligned perpendicular to the skull, while
MEG is more sensitive to tangential sources. One recent study
reported that about 8% of spike types (from ∼300 patients)
were only visible in MEG (61), whereas another study reported
an added sensitivity of 18% for MEG vs. EEG in 22 epilepsy
patients (62). The problem with all studies is that EEG and MEG
channel count and coverage are often not directly comparable.
MEG usually has>250 sensors, while EEG is often recorded with

∼1/10 of these. A head-to-head comparison of MEG and high
density EEG is still lacking.

M/ESI applied to interictal spikes has been increasingly
validated by large independent studies showing its accuracy
as a surrogate marker of epileptic activity. M/ESI has high
sensitivity and specificity to predict epilepsy surgery outcome
by localizing the irritative zone that generates the spikes
(63–66). The feasibility to use MEG source connectivity to
localize spikes has been shown by Dai et al. (67). Dai et al.
selected time points of interest visually and, from these selected
epochs, regions of interest that—according to visual inspection—
exhibited significant activity. We stress that, in order to improve
objectivity of source connectivity, it is absolutely necessary
to follow standardized rules or statistical approaches to select
regions of interest.

Storti et al. (68) performed source analysis and Granger-
based connectivity on high density EEG in 12 patients with focal
epilepsy. They found that connectivity could distinguish between
spike onset and propagation zones. In this study, only half of the
patients were operated and post-operatively seizure free so that
validation was only partially available.

Given the fact that M/ESI is increasingly validated to localize
the irritative zone, using source connectivity will probably not
addmuch information to localize the origin of the spike but could
be used for mapping large-scale network aspects of interictal
activity and their clinical diagnostic and prognostic correlates.
Coito et al. studied the time-varying frequency specific directed
connectivity between brain regions during spikes in temporal
epilepsy using high density EEG (25). They found that the spike
network in 16 temporal lobe epilepsy patients was more bilateral
in right temporal epilepsy including some frontal connections
as shown in Figure 3. Interestingly, this pattern was concordant
with the neurocognitive profile of these patients showing more
verbal and visuospatial alterations as well as impaired executive
function (frontal) in right temporal lobe epilepsy at group
level. These results are promising but limited to patients with
a sufficient number of recorded spikes. So far, the clinical
relevance of spike-related connectivity analysis regarding the
risk of recurrence, drug treatment response, and prediction of
post-operative outcome has not been assessed.

A DCM study on children with centrotemporal spikes found
the strongest outflow in the central cortex, temporo-parietal
junction and temporal pole with projections toward frontal
regions and the contralateral hemisphere (69). The population
chosen in this study unfortunately prevents invasive validation
of this interesting approach based on a neural mass model.

Non Spiking “Resting State” and Cognition
Apart from studying the brain during seizures or interictal
“spiking” periods, there is an increasing interest to examine the
“resting state” of the brain. Studies of resting-state connectivity
could be interesting to understand more about the default state
of the brain that might influence spike and seizure generation. In
fact, there are several studies showing that network connectivity
is altered in resting epileptic brains.

High density EEG source connectivity identified the posterior
cingulate cortex as the strongest driver in healthy subjects (70),
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FIGURE 2 | Figure reproduced from Elshoff et al. (58). In the beginning of the seizure a star-shaped network topology with the SOZ as main hub is found, while during

the middle of the seizure a circular network was found. Permission granted to reproduce under the terms of the Creative Commons Attribution License.

while in 20 patients with temporal lobe epilepsy, the maximum
outflow was in the ipsilateral medial temporal lobe (24). It
needs to be considered that measures for connectivity that are
frequency specific such as the partial directed coherence in Coito
et al. (24) require selection of a frequency range of interest. In
their study, Coito et al. (24) selected the alpha range, because
the main drivers were found in this frequency band. The choice
of the frequency band may contribute to variation of results
across studies. However, a follow-up study used a classifier to
distinguish between patients and controls with a high accuracy of
91% and to lateralize the focus in 90% of patients in the absence
of visible EEG abnormality. This could offer a potential powerful
diagnostic biomarker (71) (Figure 4). It needs to be mentioned,
however, that classification analysis by use of machine learning
has undergone significant change over the last years. Initial
enthusiasm was often based on biased selection of characteristics
(features) by which the groups of interest would be separated.
The main problem consisted in inappropriate subset selection
approaches, leading to overfitting the results to the analyzed
sample, thus, great results of sensitivity and specificity, but poor
generalizability. Verhoeven et al. (71) illustrate that iterative
algorithms with a random selection procedure reveal instability
in the selected features—illustrating the effect of fitting the model

to the sample. To conclude, studies using machine learning
techniques should always be interpreted by taking into account
the feature subset selection algorithm and how cross-validation
is done.

In generalized epilepsy (19 patients with drug naive juvenile
myoclonic epilepsy), Clemens et al. performed source-based
connectivity analysis from EEG recordings (19 electrodes)
using correlation measures. They found increased alpha band
connectivity and decreased beta band connectivity as well as
larger integration compared to controls (72). These alterations
occurred mostly in the somatosensory integration areas.
Although not obtained with the same approach as the directed
connectivity study in temporal lobe epilepsy described above,
this study points out to a very different pattern of connectivity
alterations that strengthen the potential diagnostic role ofM/EEG
source connectivity analysis for epilepsy classification in the
absence of visible interictal activity.

However, some studies report increased connectivity (5,
7), and other studies report decreased connectivity (6, 73)
or complex patterns of increased and decreased connectivity
(24). It is likely that these differences are influenced by the
type of epilepsy studied (genetic/idiopathic vs. focal/lesional
epilepsy), clinical differences (e.g., seizure rate/freedom), the
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FIGURE 3 | Source connectivity pattern during interictal spikes at group level left temporal lobe epilepsy vs. right temporal lobe epilepsy. In the right temporal lobe

epilepsy group more contralateral connectivity can be seen compared to the left temporal lobe epilepsy group which corresponded with more contralateral

neuropsychological deficits in this group. Figure adapted from Coito et al. (25). Permission for reuse granted by John Wiley and Sons (License Number

4518770594674). Spike-related network patterns in (A) LTLE and (B) RTLE.

methods such as the choice of the frequency band, processing
variants used and, possibly, medication (74). All these factors
will need to be better addressed in future studies to allow
better comparability. Currently, there is no established standard
for this type of “resting-state” network analysis and there is
only a limited understanding of the confounding technical and
biological factors. Nevertheless, at least in some syndromes like
idiopathic generalized epilepsy there is a spatial overlap between
regions that show network alterations (3, 7) and spike sources (9)
suggesting a biological link between them.

Under physiological conditions, the brain is constantly active,
as is evident from EEG/MEG discharges even in the deepest
stages of sleep. Moreover, the “resting state,” i.e., the status of
the brain without an active external task, is not a homogenous,
single state but rather a combination/interplay of different states.
Indeed scalp EEG data can be decomposed into alternating
stable scalp voltage topographies called “microstates,” (75).
Future connectivity studies of the resting-state might gain
from considering the different microstates separately. In these
future studies, oversimplification of microstates to a few basic
configurations is not recommendable. Larger scale evaluation of
generalizability of microstates is first needed before choosing a
set of pre-defined resting-state patterns. Moreover, comparison

of microstates to the time-restricted view of source space
connectivity is of interest, as time scale plays an important role
in determining directed networks.

DISCUSSION

What Have We Learned (so Far) From the
Connectomes
Localization
For interictal epileptic activity and non-spiking periods, existing
studies have not focused at localizing pathological activity but
rather at describing the large-scale brain networks and the
patterns of connections across individual patients and groups
of patients vs. healthy subjects. It remains to be determined if
the analysis of interictal connectivity provides an added value
over “plain” source localization for estimating the epileptogenic
zone and post-operative outcome. For seizure analysis, very
promising localizing results have been found for ictal recordings,
using high density as well as low density recordings in patients
with good post-operative outcome. So far only retrospective ictal
connectivity studies were done in limited and homogeneous
cohorts. Prospective studies need to confirm these findings in
larger groups of patients with temporal and extra-temporal lobe

Frontiers in Neurology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 721

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


van Mierlo et al. M/EEG Source Connectivity in Epilepsy

FIGURE 4 | Patterns of connectivity in non-spiking high density EEG (24). Left: comparison between healthy controls, left temporal lobe epilepsy and right temporal

lobe epilepsy (20 subjects in each group). In controls, posterior cingulate and medial temporal structures are strong drivers of the network, the maximum being in the

posterior cingulate cortex. In patients, there is a global reduction of the drivers with the maximum located in the ipsilateral medial temporal structures at group level.

Right: the use of machine learning (two random forest classifiers) allowed achieving very high accuracy for the prediction of individual subjects suggesting a role of

this analysis as a biomarker (71). Permission for reuse granted by John Wiley and Sons (License Number 4518770257321).

epilepsy and a variety of post-operative outcome to bring these
techniques closer to clinical utility.

Diagnosis
The source connectivity during interictal spikes was shown to
be concordant with cognitive deficits at group level (25). More
contralateral spreading of the spikes was seen in right temporal
lobe epilepsy compared to left temporal lobe epilepsy, which
was in agreement with more contralateral neuropsychological
deficits in right temporal lobe epilepsy. This is an indication
that source connectivity has an additional potential diagnostic
value. Nevertheless, the diagnostic added value should surpass
the group level and be applicable to the individual patients before
it can be used in patient treatment and follow-up.

There are promising results supporting connectivity analysis
for improving the diagnosis of epilepsy and classification
in the absence of visible EEG abnormalities (71). Further
studies should include drug naive (first seizure) subjects, other
types of epilepsies (generalized and focal) as well as patients
with other neurological disorders (with and without structural

abnormalities) including non-epileptic seizures. This would
allow better estimating the sensitivity and specificity of such
non-spiking EEG connectivity analysis that could assist the
clinician in frequently difficult differential diagnoses. Indeed,
abnormal connectivity patterns have been reported in 18 patients
with non-epileptic seizures vs. controls (76). Abnormal findings
based on high density EEG and phase-lag/synchronization
measures affected mostly basal ganglia outflow although the
ability of EEG connectivity to map connections from subcortical
structures remains controversial. In patients with a first seizure, a
connectivity study based on synchronization likelihood between
scalp signals found that increased connectivity in the theta band
was associated with an epilepsy diagnosis. In the absence of
visible epileptic activity, connectivity could predict the diagnosis
of epilepsy with sensitivity of 51% and specificity of 73% (77).
In another study, increased theta band connectivity extracted
from MEG in sensor space was shown to correlate with a
higher number of epileptic seizures in brain tumor patients,
indicating the potential to be used as biomarker for tumor-
related epilepsy (78). Despite the methodological limitations
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related to scalp signal analysis, these studies pave the way for
similar investigations on the diagnostic and prognostic added
value of M/EEG connectivity analysis in source space. Also,
connectivity results in source space might be more intuitive for
the physician than in sensor space because connections between
brain regions are easier to understand than connections between
sensors that do not necessarily represent the connectivity of
proximal brain regions.

Predicting Outcome
The benefits of interictal, ictal, or resting state connectivity as
a predictor of disease evolution (recurrence after first seizure,
response to drug treatment, or epilepsy surgery) have not
been formally studied and the same needs for validation and
comparison of methods discussed in the previous section also
apply here.

Regarding vagal nerve stimulation, Wostyn et al. (79) studied
source activity and connectivity of the P300 response with the
vagal nerve stimulation system on/off and found that good
response to therapy was correlated with specific patterns of
source activity and connectivity, mostly involving the limbic
system, insula, and the orbitofrontal region. However, the study
only investigated EEG after implantation of the vagal nerve
stimulator. It remains unclear if effective connectivity patterns
can predict whether patients will respond or not to vagal
nerve stimulation.

Future Perspectives and Clinical
Application
M/EEG source space connectivity techniques allow studying
temporal patterns measured with M/EEG. For instance, it could
be used to investigate network aspects of specific phenomena
such as focal slowing [especially temporal, frontal, or occipital
intermittent rhythmic delta activity (80)] and link specific
patterns to specific forms of epilepsy (81). Furthermore, source
space connectivity patterns could shed more light on how these
M/EEG patterns are generated in the brain, and distinguish
which patterns of focal slowing are potential surface correlates
of epileptogenic activity from deeper regions.

Methodological Considerations
There exist a multitude of source localization methods and
connectivity methods. It remains unclear which techniques
should be used. Additional validation and comparison between
source space connectivity methods is crucially needed in large
patient cohorts with invasive validation. A pilot study showed
that weighted minimum norm approach and phase-lag value
were the best combination of inverse model and connectivity
analysis on simulated data with application in only one patient
(82). Such rigorous comparative approaches must be encouraged
in broader clinical populations.

Several studies used informed selection of regions of interest
in order to perform connectivity analysis, while others followed
a rather data-driven approach. The drawback of the data-
driven approach is that the selection of the interesting edges
of the network is typically based on the magnitude of activity

and/or interaction. However, the most meaningful regions do not
necessarily exhibit the largest activity/connectivity with respect
to the clinical question. For example, physiological process may
exhibit a more prominent network than the pathological epileptic
connection patterns. On this background, it is worth considering
hypothesis driven analysis of source connectivity. However, in
order to maintain objectivity, the grounds for selecting the
regions of interest must be well motivated. One approach is
to base the selection process on additional data. For example,
resting-state fMRI or EEG-fMRI can be used to identify regions
of interests that will be further investigated by MEG/EEG source
connectivity (30). DCM, originally developed for fMRI, can also
be understood as an informed approach and was earlier proposed
to be used for estimating source space connectivity (83) and was
used to determine the role of a-priori selected brain regions for
seizure generation (84).

Currently, there is a lack of validation studies to bring source
space connectivity into clinical practice. Even M/EEG source
localization is still only performed in a modest number of centers
worldwide, e.g., in the E-PILEPSY consortium electromagnetic
source localization is only used at 12 out of 25 centers
in the presurgical evaluation (85). Calculating source space
connectivity is more complex than source localization alone.
Given that the integration of source localization has already
proven to be difficult in clinical practice, it can be anticipated
that this will be an even larger challenge for source space
connectivity. First, well designed prospective studies should show
that source space connectivity has clear added value compared
to the visual analysis of the electrophysiologist today on a
patient specific level. Later, the methods should be available in
standardized software with appropriate clearance for clinical use.
Software for clinical use must come along with high usability,
so that clinical-technical staff can do the necessary steps of
processing (a) without risk of running into pitfalls that are
common in source imaging and (b) within a workable time
range, which is notoriously limited in clinical contexts. Next
to this, standardized paradigms must be defined and tested,
similarly to neuropsychological tests, in order to determine
whether eloquent areas can be mapped by source connectivity
analysis in pre-surgical evaluation. These paradigms must take
into account the fact that network analyses require temporal
information. Indeed, source-level connectivity needs different
data properties than simple source-transformation of single
events such as peaks of event related components. Only when
all these limitations are overcome, can source connectivity be
considered in clinical practice to assist in patient treatment
and follow-up.

On the upper end of the EEG frequency range there are also
promising fields of action for source connectivity: high frequency
oscillations (HFOs), occurring above 80Hz, have gathered great
interest over the last two decades (86–88). However, evidence that
HFOs might serve as an indicator for the region that needs to be
resected in order to achieve seizure freedom is limited to invasive
EEG recordings (89). MEG beamformer-based virtual sensors
allowed to distinguish infrequent HFOs inMEG, from noise (90).
It is of further interest whether measures of directed connectivity
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can inform us better about the very local propagation patterns
of HFOs. Multiple potential clinical as well as basic science
implications warrant the technical effort to approach this new
perspective. For instance, the differential propagation patterns of
HFOs might distinguish pathological from physiological HFOs
on surface recordings—a problem that is hard to tackle so
far (91).

A further crucial approach is the validation of the methods
applied to EEG and MEG by concurrently recorded intracranial
signals from regions deep within the brain. These studies offer
unique validation opportunities, by providing direct evidence
that the sources derived from surface recorded signals indeed
correlate with the neuronal activities linked to specific cognitive
functions recorded directly from the responsible brain areas. For
instance, Crespo-García et al. (92) used simultaneous intracranial
EEG and MEG and showed that hippocampal slow-theta activity
was negatively correlated with spatial accuracy for memorized
locations. Other studies mostly investigated the circumstances
in which intracranial epileptic discharges can be detected with
non-invasive recordings (93).Time-derived connectivity analysis
and single-event analysis would critically depend on such
simultaneous recordings for validation.

Brain Networks in Cognition
Epilepsy offers unique opportunities to examine the physiological
foundations of human cognition when basic science is conducted
in patients undergoing invasive recordings. Results obtained
from surface EEG in healthy participants can be source-
transformed, and the localization can serve to select patients
undergoing epilepsy surgery according to their medically
indicated placement of invasive electrodes. For example, Ponz
et al. (94) identified disgust-effects in event-related potentials
with generators in the left anterior insula, as localized by
source transformation of 64-channel surface EEG in 21 healthy
participants. Two patients suffering from left frontotemporal
epilepsy underwent presurgical investigation with depth cortical
electrodes. These case studies confirmed early emotion effects in
insular and orbitofrontal electrodes when undergoing the same
cognitive testing procedure. In another study, Dalal et al. (95)
demonstrated the localizability of sources derived from both,
MEG and EEG, obtained during self-paced finger movements to
the sensorimotor cortex, where the localization was confirmed
again by electrocorticography from two epilepsy patients.
Selecting patients with specific combination of intracranial
electrodes could also be used for investigating network
characteristics and validating connectivity analysis in these
cognitive processes.

Taking this approach into the other direction, knowledge
obtained in basic cognitive neurosciences can inform the
localization of eloquent areas for the surgical management of
patients who are candidates for epilepsy surgery (96). Adequate
design of cognitive paradigms to be used in order to activate
the eloquent area is often based on prior research in healthy
samples, as well as the validation of the respective analysis
pipeline. For example, MEG sources for language localization
and lateralization can guide preoperative decision making (97,
98). This technique, be it based on EEG or MEG, can easily

Box 1 | Summary Box

EEG/MEG source imaging is performed on signals to project them into

brain/source space.

Connectivity analysis can reveal epileptic networks, which show specific

patterns:

• ictal hyperconnectivity: higher connectivity and, specifically, higher

outgoing information flow from the epileptogenic zone (53, 54, 58)

reflects (initial) spreading activation patterns of seizures.

• interictal epileptic discharge propagation: directed connectivity

reveals propagation patterns of spikes and, thus, their origin (25, 68).

• diagnosis in the absence of epileptiform activity: source connectivity

patterns distinguish patients from healthy controls (3, 24, 70–72, 76–78).

Future directions should address outcome prediction (79), model

validation (82), concurrent recording with intracranial signals (92),

standardized cognitive stimulation protocols for assessing the eloquent

area, for bringing source connectivity analysis into clinical practice.

be extended to other questions regarding the boundaries of
eloquent and to-be resected tissue (99–101). However, there is
no report regarding the additional information that could be
gained by source-level connectivity. Coito et al. (25) reported that
the difference in source-level network patterns during interictal
spikes in right and left temporal lobe epilepsy overlapped with
neuropsychological deficits. However, whether such cognitive
correlates may be detectable also in the absence of spikes by
EEG/MEG source-level connectivity needs to be determined
in future studies. Research projects addressing source-level
connectivity and cognition in epilepsy are highly warranted, as
connections between eloquent areas and pathological regions
may significantly contribute to the outcome if the pathological
region or a crucial connection is targeted surgically.

CONCLUSION

Source connectivity derived from EEG or MEG opens up new
perspectives on the network disease epilepsy (see Box 1). We can
more intuitively “see” the origin and spread of pathological or
physiological activity and this information can be integrated into
clinical decision making. Studies in limited cohorts have shown
that source connectivity can be used to localize the epileptogenic
zone from ictal epochs and interictal spikes, and that diagnosis
of epilepsy from resting state M/EEG is feasible. Nevertheless,
several obstacles need to be overcome to bring these techniques
into clinical use: (i) source connectivity methods should be
standardized and validated with respect to invasive recordings in
large patient cohorts, (ii) software with appropriate clearance for
clinical use that has high usability and requires limited time of
the staff should be developed, (iii) prospective validation studies
that show the added value of source connectivity over visual
analysis need to be conducted in large heterogeneous patient
cohorts, and (iv) standard paradigms and the respective analysis
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pipelines that allow to test functioning of eloquent areas need to
be designed.
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