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G E N E T I C S

DNA methylation enables recurrent endogenization of 
giant viruses in an animal relative
Luke A. Sarre1, Iana V. Kim2, Vladimir Ovchinnikov1, Marine Olivetta3, Hiroshi Suga4,  
Omaya Dudin3, Arnau Sebé- Pedrós2,5,6, Alex de Mendoza1*

5- Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC 
has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. 
The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the 
protist closely related to animals Amoebidium appalachense features both transposon and gene body methyla-
tion, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in 
Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of 
the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these 
giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, high-
lighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for 
the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique 
model to understand the hybrid origins of eukaryotic DNA.

INTRODUCTION
5- Methylcytosine (5mC) is a common base modification among 
eukaryotes (1–3). 5mC is deposited by DNA methyltransferases 
(DNMTs), a family of enzymes with ancestral families conserved 
throughout eukaryotes (4, 5). Some DNMTs are maintenance 
type enzymes, perpetuating 5mC patterns, including DNMT1 and 
DNMT5, while other DNMTs have de novo activity, such as DNMT3 
(6, 7). However, the DNMT repertoire of an organism is not predic-
tive of 5mC function. In some eukaryotes, including plants and ani-
mals, 5mC is associated with gene regulation, exemplified by gene 
body methylation, where 5mC positively correlates with gene tran-
scriptional levels (1, 3, 8). However, the most widespread role of 5mC 
is in transposable element (TE) silencing, which is the assumed ances-
tral role in eukaryotes (9, 10).

Despite most attention being devoted to controlling endogenous 
parasitic elements, one of the first described functions of 5mC in 
eukaryotes was to silence retroviral insertions in mammals (11). 
Similarly, in bacteria, the main role of 5mC is to combat viruses 
(12). Therefore, controlling exogenous viral invasions is arguably as 
important as TE control for epigenetic silencing. It is increasingly 
recognized that many eukaryotic genes have viral origins, co- opted 
repeatedly throughout evolution (13). One of the most common 
sources for these acquisitions are giant viruses (Nucleocytoviricota). 
Giant viruses have a wide range of eukaryotic hosts and are present 
in almost all ecosystems, posing a widespread threat to eukaryotic 
cells (14, 15). Giant viruses are exceptional among viruses as they 
have enormous genomes (100 kb to 2.5 Mb) encoding many pro-
teins thought to be eukaryotic hallmarks such as histones (14, 15). 
Giant viruses originated before modern eukaryotes, and they have 

been proposed to have contributed essential genes to eukaryogene-
sis (16–18). Furthermore, recent reports indicate that giant viruses 
can endogenize into extant eukaryotes (19–21). However, how this 
potentially lethal DNA is incorporated into eukaryotic genomes is 
currently not understood.

Finding a link between viral control and epigenetic regulation, 
however, is hampered by the scarcity of reported recent giant virus 
endogenizations (19, 22). Moreover, 5mC is evolutionarily very plas-
tic, and many eukaryotic lineages have lost this epigenetic modifica-
tion (1, 2), possibly because of its mutagenic potential and cytotoxic 
off- target effects of DNMTs (23). Furthermore, 5mC function varies 
across lineages. In fungi, 5mC is restricted to silencing TEs (24), 
whereas in invertebrates 5mC is usually restricted to gene bodies, and 
most TEs remain unmethylated (1, 2, 25). To expand our knowledge 
of 5mC systems and to unravel how a potentially ancestral fungal- like 
methylation pattern gave rise to the animal 5mC system, we focused 
on protists of the holozoan clade. These close animal relatives form 
four major lineages: choanoflagellates, filastereans, ichthyosporeans, 
and pluriformeans (Fig. 1A) (26, 27). In recent years, unicellular holo-
zoan genomes have been shown to encode many genes previously 
thought to be unique to animals, informing the complex genomic na-
ture of the unicellular ancestors of animals (26–29). However, none of 
these genomes encode DNMTs, suggesting an evolutionary loss of 
5mC capacity (30). Here, we fill this gap by describing a unicellular 
relative of animals that has maintained 5mC, and unexpectedly find 
an unappreciated and potentially ancestral use of 5mC in regulating 
giant virus endogenizations.

RESULTS
The Amoebidium genome presents both gene body and 
TE methylation
To reconstruct the pre- animal roots of 5mC, we searched the available 
genomes and transcriptomes of unicellular holozoans for DNMT1 
orthologs (29, 31), the maintenance DNMT in animals. We discov-
ered that DNMT1 is expressed by Amoebidium appalachense (Fig. 1A), 
an ichthysoporean originally isolated from the cuticle of freshwater 
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arthropods that can be grown axenically (32). Like other Ichthyo-
sporea (33), Amoebidium are parasites or commensals of animal 
hosts, and show a coenocytic life cycle, with cells dividing their nuclei 
in a shared cytoplasm until forming a mature colony, which gives 
rise to unicellular and uninucleated cells (34). Yet, Amoebidium 
branches quite deep within the ichthyosporean lineage (Fig. 1A). 
Amoebidium DNMT1 sequence presents the same domain architec-
ture of animal DNMT1 orthologs, including a zinc finger CXXC ab-
sent in non- holozoan sequences (fig. S1A), which suggests that this 
domain architecture was an innovation of holozoans despite DNMT1 
being lost repeatedly. Additionally, we found DNMT1 orthologs in 
the metagenome- derived assemblies of the filastereans of the ge-
nus Pigoraptor (35), with the same domain architectures as 
Amoebidium (fig. S1A). Additionally, both Amoebidium and Pigoraptor 
encode UHRF1 orthologs with highly similar domain architectures 
to animal counterparts (fig. S1A), suggesting that DNMT1 and UHRF1 
heterodimerization is conserved. Unlike Amoebidium, Pigoraptor 
species can only be grown at low densities in association with diverse 
bacteria and eukaryotic prey, the kinetoplastid Parabodo caudatus, 

making functional approaches and reliable methylation profiling 
challenging (36).

To fully characterize the gene repertoire and investigate 
Amoebidium 5mC patterns, we sequenced the genome of this spe-
cies using a combination of nanopore long reads, Illumina short 
reads, and micro- C. We obtained a chromosome- scale assembly 
spanning 202 Mb, with 96.6% of the sequence contained in 18 chro-
mosomes and a 95% BUSCO score (Fig. 1B and fig. S2, A and B). 
When examining Amoebidium’s DNMT repertoire, we identified a 
total of 18 DNMTs, comprising orthologs of DNMT1, DNMT3, 
DNMT2, Dim- 2, and various lineage- specific clades (Fig.  1A and 
fig.  S1, B and C). Notably, unlike DNMT1, none of the other 
DNMTs exhibit additional domains. Specifically, DNMT3 lacks the 
protein domains found in animal DNMT3, such as PWWP or ADD 
(fig. S1A) (7, 30). In contrast, none of the ichthyosporeans with ge-
nomic data available show DNMTs other than the RNA- specific 
DNMT2 and DNMT6 (Fig. 1A) (3, 7, 37). Among other holozo-
ans, we could only find a putative DNMT3 in the transcriptome 
of the choanoflagellate Achanthoeca spectabilis (31) and both 
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Pigoraptor species (35), with the same domain architecture lacking 
additional protein domains as in Amoebidium (fig.  S1A). Thus, 
Amoebidium and Pigoraptor are the only sequenced unicellular ho-
lozoan species that retain the ancestral eukaryotic complement 
of DNMTs, highlighting the pervasive tendency of eukaryotes to 
lose 5mC.

Next, we performed whole- genome DNA methylation profiling 
to analyze the 5mC patterns in Amoebidium, as well as in three oth-
er ichthyosporean species lacking DNA DNMTs as negative con-
trols. In Amoebidium, global methylation levels soar to 40%, exclusively 
within the CG dinucleotide context, setting it apart from most in-
vertebrates and fungi and the other ichthyosporean species, which 
exhibit negligible levels of 5mC (Fig. 1B) (1, 24). Notably, not all CG 
dinucleotides exhibit uniform methylation levels. Specifically, the 
symmetrical mCGC and GmCG trinucleotides stand out with hy-
permethylation levels at around 70%, whereas the remaining CG 
dinucleotides maintain lower levels at approximately 20% (fig. S3A). 
This suggests that Amoebidium boasts elevated methylation levels 
with a wider sequence specificity beyond the CG dinucleotide, a 
context- dependent regionalization of 5mC reminiscent of hetero-
chromatin methylation in mammals (38), likely reflecting the se-
quence preferences of the diverse Amoebidium DNMTs.

Considering the high global methylation levels in Amoebidium, 
we proceeded to investigate which genomic regions exhibit enriched 
5mC. Protein- coding genes displayed a gene body methylation pat-
tern reminiscent of plants and animals, with relatively low levels of 
promoter methylation (Fig. 1C) (39, 40). However, Amoebidium’s 
gene body methylation is not positively correlated with transcrip-
tion as in plants or animals, as all active genes have similar methyla-
tion levels irrespectively of transcriptional level, whereas silent 
genes show higher methylation, including the promoter (Fig. 1C 
and fig. S3B). Therefore, gene body methylation appears not exclu-
sive to animals in the holozoan clade, yet its positive association 
with transcription is an animal- specific feature potentially linked to 
the domain acquisitions of animal DNMT3s (fig. S1A).

In contrast to most invertebrates (1, 2), Amoebidium exhibits tar-
geted methylation of TEs (Fig. 1D and fig. S3, B and C). Notably, 
methylation levels are highest in recent TE insertions and on tran-
scriptionally silent genes (Fig. 1D and fig. S3C), regardless of the 
adjacent CG sequence context. In contrast, gene body methylation 
of actively transcribed genes primarily occurs within the CGC/GCG 
trinucleotide context (Fig. 1C). This indicates that in Amoebidium, 
5mC of CGs in non- CGC/GCG trinucleotide context correlates 
with silencing, whereas CGC/GCG methylation is widespread. Fur-
ther supporting the link between 5mC and TE silencing, approxi-
mately 50% of Amoebidium’s genome is composed of TEs, a level 
unmatched in any unicellular holozoans, yet similar to vertebrates 
such as humans (50%) or zebrafish (Fig. 1B and fig. S2, C and D). 
Therefore, the genome of Amoebidium is possibly permissive to TE 
expansions because 5mC can silence these novel insertions by re-
ducing their potential deleterious effects, similar to what has been 
proposed for vertebrates (41),

Large hypermethylated regions uncover hundreds of 
viral insertions
To characterize the chromosome- level distribution of 5mC, we took 
advantage of the relative depletion of non- CGC/GCG methylation 
to locate regions of hypermethylation across the genome. We found 
many islands of hypermethylation spread across the chromosomes 

(Fig. 2A), many of which were consistent with regions of high TE 
content. However, many presented highly gene- rich areas spanning 
up to 200 kb, with most genes showing few to no introns, in clear 
contrast to the intron- rich Amoebidium genes (average 7.2 exon/
gene; fig. S4A). Further characterization of these areas revealed 
core giant virus genes, including poxvirus late transcription factor 
(VLTF3), A32- like packaging adenosine triphosphatase (ATPase), 
D5 DNA primase, or nucleocytoplasmic large DNA viruses 
(NCLDV) major capsid proteins (fig.  S4A) (14, 42). Using these 
core genes, we searched the National Center for Biotechnology In-
formation (NCBI) database and performed phylogenetic analyses 
using curated databases of giant virus marker genes (42). We 
found that these insertions could be classified as belonging to a lin-
eage belonging to the order pandoravirales, closely related to the 
Mamonoviridae family of Medusavirus and Clandestinovirus (infect-
ing amoebozoans; fig. S5, A and B) (43). Yet, not all the giant endog-
enous viral elements (GEVEs) in the Amoebidium genome originate 
from a single catastrophic insertion event or even a single viral lin-
eage, as they show high levels of sequence divergence among them 
(fig. S5C). Furthermore, there are insertions in almost all chromo-
somes (90 chromosomal insertions, with 42 sequences in unplaced 
contigs), some having accumulated secondary TE insertions 
(Fig. 2A). The disparity of insertion lengths, and the observation 
that none of them encode a full repertoire of core giant virus genes 
(Fig. 2B), suggests that complete viral genome integrations are rare 
or that gene loss occurs rapidly after insertion. Using ViralRecall to 
detect giant viruses solely based on sequence (44), we confirmed the 
presence of GEVEs in Amoebidium, yet we failed to recover any hits 
from other holozoans other than in Pigoraptor, which encodes for 
few giant virus markers, including a capsid protein or a VLTF3, yet 
these branch far from Amoebidium hits (fig. S5, A and B), suggesting 
that distant classes of giant viruses might endogenize into Pigoraptor 
genomes. However, the fragmented status and metagenomic source 
of Pigoraptor genome assemblies render confident GEVE identifica-
tion problematic, as some might belong to viruses or other species 
found in the complex cultures.

In addition to the giant viruses, other compact hypermethylated 
regions in the Amoebidium genome were characterized by genes en-
coding VLTF3, Dam methyltransferase, minor and major capsid 
proteins, and a DNA polymerase family B (fig. S4B). DNA poly-
merase sequences produced closest matches to adintovirus (family 
Adintoviridae), a group of recently described double- stranded DNA 
polinton- related viruses thought to exclusively infect animals 
(fig. S5D) (45). It is worth noting that many polinton- related viruses 
are virophages or descendants of these (46, 47), known to parasitize 
giant viruses, which could explain the abundance of these sequences 
in the Amoebidium genome. Similarly to the giant viruses, not all 
adintoviruses were closely related among each other (fig. S5E), sug-
gesting multiple independent insertion events. In contrast to 
GEVEs, some insertions kept long terminal repeats and were com-
plete (~30 kb; Fig. 2B), yet others were truncated and in the process 
of degeneration.

Then, we identified a third type of giant repeat in Amoebidium, 
consisting of tandem clusters of repetitive intron- poor genes up to 
50 kb long, usually flanked by a Plavaka transposase (fig. S4C) (48). 
Many of these genes encode for tyrosine recombinases, one of the 
major type of transposon integrases in eukaryotes (49), and interest-
ingly their only hits in the NCBI NR database belong to very dis-
tant eukaryotic lineages including dinoflagellates or red algae, thus 
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suggesting some form of lateral gene transfer as their source 
(fig. S4C). When we combine the three types of highly methylated 
giant repeats, they make up 3.1% of Amoebidium’s total DNA. Their 
contribution to the protein- coding genes constitutes 14% of the entire 
proteome, with the majority originating from viruses. The amount 
of giant virus insertions in Amoebidium is among the largest re-
ported in eukaryotes, at par with the moss Physcomitrium patens 
(Fig. 2C) (50).

Endogenized giant virus co- opted eukaryotic 
histone demethylases
To understand the potential contribution of endogenized genes to 
the Amoebidium gene repertoire, and also to better understand the 

gene complement of the original giant virus genomes that infect 
Amoebidium, we characterized the functional enrichment of genes 
encoded in these endogenized regions. An enrichment test of 
Pfam domains revealed many domain categories involved in the 
viral replication and integration process [recombinases, integras-
es, proliferating cell nuclear antigen (PCNA)], viral gene regulation 
(transcription factors), or some transporters [e.g., aquaporins/Major 
Intrinsic Protein (MIP)], which are likely critical to taking control of 
the host during infection (Fig. 2D) (51–53). Gene ontologies also 
suggested that these genes were enriched in membrane fission or 
tubulin depolymerization (fig. S6A). Notably, some of the most en-
riched categories were involved in chromatin regulation. Among 
these, 10 of the 18 DNMTs encoded in the Amoebidium genome 
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reside in GEVEs, which suggests that these could be used by the 
virus to modify its own DNA. Consistently, giant viruses, and 
members of the pandoravirales in particular, are known to use 
various forms of DNA methylation (N6- methyladenine and N4- 
methylcytosines) to methylate their own genomes (54), which 
might play a role in infection. However, the Amoebidium GEVE DN-
MTs form a sister group to other giant virus uncharacterized DNMTs 
(fig. S1B); thus, they were not recently acquired from the host and 
their sequence- substrate preferences remain unknown.

The most enriched endogenized domain is the Jumonji C 
(JmjC) domain. Although JmjC domains can perform many en-
zymatic functions, our phylogenetic analysis revealed that these 
are divergent paralogs of the histone lysine demethylase sub-
family 4 (KDM4). Notably, despite JmjC- containing proteins 
having been identified in giant viruses (55), we could not find 
any KDM4- like JmjC homologs in publicly available giant virus 
genomes. Amoebidium encodes a canonical KDM4 ortholog like 
those of other eukaryotes, including its characteristic histone- 
interacting domains (PHD, Tudor; Fig. 2E). However, the endo-
genized KDM4- like enzymes only contain the enzymatic JmjC 
domain (Fig. 2E). KDM4 enzymes are known to demethylate his-
tone 3 tail lysines, most commonly lysine 9 (H3K9me2/3) or lysine 
36 (H3K36me2/3) residues. Although many giant viruses encode 
all four eukaryotic nucleosome histones (H2A/B,H3,H4) (42, 56), 
we did not find any in the viral insertions. Furthermore, viral his-
tones present very divergent histone tails (57); thus, it is unlikely 
that KDM4- likes are used to control potential giant virus histones. 
Instead, given the conserved role of H3K9me3 in heterochromatin 
formation in eukaryotes, KDM4- like enzymes could be used by 
the virus to avoid silencing by the host chromatin. In KDM4- 
overexpressing cancer cells, depletion of H3K9me3 promotes 
DNA breaks and genome instability (58), a process that could 
serve the virus to integrate into the host genome, or explain the 
amount of endogenization events.

The KDM4- like enzymes stand out among the endogenized 
genes as they have preserved the multi- exon domain structure of 
eukaryotic genes (fig. S6C), unlike the vast majority of GEVE genes 
that lack introns. While most of the endogenized genes remain si-
lent in culture conditions, four of these KDM4- like genes are tran-
scribed [Transcripts Per Million (TPM) > 1] (fig. S6C). Moreover, 
JmjC genes are found in 39% (52) of the insertions, which could re-
flect a lower chance of purging those genes after the insertion 
event. A couple of KDM4- like genes are found outside hypermeth-
ylated giant virus regions and are flanked by normal host genes, 
showing almost exclusively mCGC/GmCG methylation (the de-
fault state for transcribed host genes; fig. S6C). Given their basal 
position in the phylogeny of KDM4- likes (Fig. 2E), these genes 
could be Amoebidium- specific KDM4 divergent paralogs that al-
ready lost the chromatin interaction domains compared to the ca-
nonical KDM4 copy, and were later co- opted by the giant viruses. 
Alternatively, the giant virus might have originally acquired a canon-
ical KDM4 gene from the host, which then lost some of its compan-
ion domains to perform virus- associated functions. Then, these 
basally branching KDM4- like genes are the remnants of past GEVE 
insertions, where most other viral genes have been purged and only 
JmjC loci are kept, being domesticated to become part of the host 
repertoire. Thus, the intricate interaction between the host chroma-
tin and the giant viruses is likely critical to explain the gene flow be-
tween the host and parasite.

DNA methylation removal is sufficient for viral 
transcriptional reactivation
Since dense 5mC demarcates the viral insertions and these are tran-
scriptionally silent, we wanted to directly investigate the causal rela-
tionship between 5mC and gene expression in Amoebidium. We 
tested the effect of cytidine analogs 5- azacytidine, zebularine, and 
decitabine [which block DNMTs and lead to passive dilution of 
5mC (59, 60)] to investigate the impact of 5mC on gene expression. 
A 3- day cytidine analog treatment spans at least two generations of 
Amoebidium colonies, covering two rounds of coenocytic develop-
ment starting from an uninucleate cell to colony maturation and cell 
release in ~30 hours (fig. S7A). Therefore, several rounds of nuclear 
division maximize the potential of obtaining sufficient passive 5mC 
loss. 5mCG remains constant across development, thus minimizing 
the potential confounding staging effects across treatments (fig. S7, 
B and C). We then used Enzymatic Methyl- seq to quantify 5mC of 
the treated cells and found that only 5- azacytidine showed a de-
crease in global methylation levels (from ~40 to 15%; Fig. 3A). 
Consistently, only the Amoebidium cells treated with 5- azacytidine 
showed growth defects and increased mortality (fig. S7D). How-
ever, 5- azacytidine can potentially be incorporated into RNA and 
be cytotoxic (61, 62). To control for those off- target effects, we 
also treated two ichthyosporean species lacking genomic 5mC with 
5- azacytidine, observing mild growth defects (fig. S7E).

We then used RNA sequencing (RNA- seq) to characterize the 
transcriptional response to 5- azacytidine in Amoebidium and 
Sphaeroforma arctica. Sphaeroforma is a closely related ichthyosporean 
that also has a relatively large amount of TEs and few instances of 
polinton- type viruses (63), yet lacks genomic 5mC (Fig. 1B). Both 
species showed hundreds of differentially expressed genes upon 
treatment (5630 in Amoebidium and 1807 in Sphaeroforma; false 
discovery rate < 0.01), but very few of these showed consistent 
dynamics across species (fig.  S8A), thus not suggesting generic 
stress response shared across species. Nevertheless, genes that 
were up- regulated upon 5- azacytidine treatment in Amoebidium 
have stress- associated gene ontologies, while a wide range of meta-
bolic processes are down- regulated (fig.  S8D). As observed in 
5- azacytidine–treated cancer cells, the stress response might be 
driven by TE reactivation (64). Focusing on TEs, only Amoebidium 
showed a drastic expression increase in almost all TE types after 
5- azacytidine (fig.  S8B), whereas Sphaeroforma did not show any 
particular enrichment in TE or viral up- regulation (most remain-
ing transcriptionally silent/unchanged; fig. S8B), suggesting that 
the TE response to 5- azacytidine is a direct consequence of 5mC loss. 
We further validated this observation by dividing Amoebidium genes 
according to their promoter methylation level in untreated condi-
tions. Genes that normally present unmethylated promoters had a 
mixed transcriptional response to DNA methylation removal sug-
gestive of indirect effects, whereas genes with hypermethylated 
promoters were almost exclusively up- regulated upon 5- azacytidine 
treatment (Fig. 3B). Thus, 5mC is a silencing mark in Amoebidium 
sufficient to repress methylated genes.

When inspecting giant virus and adintovirus endogenized genes, 
we saw a consistent transcriptional reactivation upon methylation 
removal. Seven hundred thirty- seven genes encoded in GEVEs 
(26%) were transcriptionally reactivated (Fig. 3C), with the majority 
of them being the JmjC genes, but also many genes involved in gene 
regulation (fig. S8C). Similarly, 144 adintovirus genes were reacti-
vated upon demethylation (32%). However, we did not observe 
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formation of viral particles through microscopy, and consistently, 
we did not see transcriptional reactivation of capsid proteins. This 
suggests that viral formation would require extra genes that might 
have been purged or have accumulated critical mutations since 
the insertion occurred. Alternatively, posttranscriptional silencing 
mechanisms could stop the formation of mature viral particles. In 
sum, direct manipulation of the host methylome demonstrates that 
5mC is instrumental for silencing and minimizing the consequence 
of viral DNA acquisition.

Giant virus endogenization is polymorphic and highly 
dynamic in Amoebidium
Maintaining a substantial quantity of potentially harmful viral DNA 
in the Amoebidium genome may serve as an adaptive mechanism with 
important roles. Conversely, it could also represent a passive outcome 
facilitated by epigenetic silencing. To assess these hypotheses, we set 
out to compare genetically distinct Amoebidium isolates from our ref-
erence genome. We first obtained the transcriptome of six isolates, 
four belonging to A. appalachense and two to A. parasiticum. Whereas 
the isolate’s 18S sequences were identical at the species level (fig. S9A), 
the rapidly divergent mitochondrial 16S revealed four clades, includ-
ing a slightly divergent A. appalachense lineage (Fig. 4A). We selected 
a member of the divergent A. appalachense lineage (isolate 9181) and 
one A. parasiticum (isolate 9257) for genome sequencing using nano-
pore long reads. Genome assembly size varied across isolates (Fig. 4A), 
yet annotation qualities and nanopore- assessed 5mC levels were con-
sistent (fig. S9B).

Annotation of the viral endogenizations in these alternative gen-
otypes revealed a dynamic and diverse history for GEVEs and adin-
toviruses associated with the Amoebidium lineage. Phylogenetic 
markers such as the major capsid proteins or VLTF3 revealed that at 
least six separate clades of giant viruses infect these protists, with 
some clades unique to one isolate (clade II) and others shared by the 

isolates (clade IV) but absent in the reference genome (Fig. 4B and 
fig. S9C). Similarly, four adintovirus clades are found across the iso-
lates, with some being shared across all three genomes (fig. S9D). 
Notably, isolate 9257 shows only 4 adintoviruses compared to the 44 
present in the reference genome. This reveals that viral diversity in-
fecting Amoebidium is not limited to a single lineage and is often 
endogenized in an isolate- specific manner.

Since sequence similarity and gene synteny between isolate 9181 
and the reference genome remains highly conserved (fig. S9E), we 
used this to assess the ancestral nature of endogenization events. 
Despite their close phylogenetic relationship, only a minority of en-
dogenization events were shared across the isolates, with most fea-
turing polymorphic insertions amidst synteny blocks (Fig. 4C). 
Giant viruses are not known to require integration into the host ge-
nome during their infectious cycles (14); this process appears to be 
stochastic, potentially occurring during unsuccessful infections and 
at various chromosome positions. Additionally, it underscores the 
dynamic nature of integration, which the host tolerates through 
multiple cycles, with most endogenized elements being quickly 
eliminated after insertion.

DISCUSSION
Here, we show how a unicellular eukaryote closely related to animals 
undergoes a recurrent process of mixing its genome with that of its 
giant virus predators. This foreign DNA is curbed by 5mC silencing, 
allowing for survival after these potentially lethal events. We propose 
that epigenetic silencing greatly reduces the lethality of these endoge-
nization events. Supporting this general hypothesis, many of the previ-
ously described large- scale giant virus endogenizations in eukaryotes, 
including early land plant lineages, the fungus Rhizophagus irregularis, 
green algae, or the amoebozoan Acanthamoeba castellanii, coincide 
with species that have retained 5mC as a silencing mechanism (Fig. 5) 
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(19–21, 65, 66). Plants that are not dependent on water for repro-
duction (Spermatophyta) or germline- segregating animals are likely 
protected from giant virus endogenization events despite carrying si-
lencing mechanisms (20), yet chromosome- scale genomes and direct-
ed searches might reveal exceptions to this rule. It is also possible that 
some eukaryotic lifestyles might make some species less likely to be 
infected by giant viruses, such as that of internal parasites, or that 

extreme genome compaction requirements make endogenizations 
unlikely to be fixed in a population, such as in prasinophytes. Giant 
viruses infect all kinds of eukaryotic groups, including species with 
and without DNMTs. However, eukaryotes that have secondarily 
lost 5mC silencing, as exemplified by most of the available unicel-
lular holozoan genomes, rarely present large giant viral DNA in-
sertions. Notably, most eukaryotic clades have genes derived from 
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giant viruses (13), or insertions of double- stranded medium size 
DNA viruses like polinton- like/virophages (63), suggesting that 
infection and endogenization are widespread, but the retention of 
these insertions is uneven across lineages. It is likely that other si-
lencing mechanisms other than 5mC, such as histone modifica-
tions (e.g., H3K27me3 or H3K9me3) or small interfering RNAs 
(siRNAs), can be used for silencing GEVEs, as exemplified by 
H3K79me2 in the brown algae Ectocarpus siliculosus GEVE (67–
69), a species that lacks DNMTs and 5mC. Yet, possibly the cost of 
integrating large amounts of viral DNA in epigenetically unpro-
tected species is coped with by extremely rapid purging or takeover 
by uninfected conspecific cells.

The 5mC patterns in Amoebidium also suggest that gene body 
methylation predates animal origins. Although this would poten-
tially support the hypothesis that gene body methylation was pres-
ent in the ancestor of eukaryotes (39), this pattern is very sparsely 
distributed (Fig. 5). Among chlorophytes, only Chlorella variabilis 
has a pattern similar to that of Amoebidium (39), while absent in 
Chlamydomonas and Prasinophytes (5, 40). Spermatophytes [angio-
sperms (70), conifers (71), and ferns (72)] show gene body methyla-
tion, whereas liverworts and mosses generally lack it (39, 73, 74). In 
contrast, the more basally branching streptophyte Klebsormidium 
nitens shows gene body methylation (65), albeit in a pattern quite 
divergent to land plants, which could suggest independent origins of 
gene body methylation in these lineages. Amoebidium, Chlorella 
(75), and Klebsormidium (65) present giant virus endogenization 
events, which suggests that gene body methylation might arise as a 
convergent response or by- product to recurrent infections and ex-
pansion of parasitic DNA (70), perhaps avoiding intra- genic ele-
ments hijacking transcription from the host genes (76). In particular, 
Amoebidium encodes DNMT3 and an animal- like DNMT1, which 
could support that gene body methylation across holozoans is ho-
mologous and deposited by orthologous DNMTs. In the future, if 
5mC data can be obtained from Pigoraptor species, it will help to 
elucidate if Amoebidium represents a case of convergent evolution of 
gene body methylation or this is ancestral to holozoans. With avail-
able data, the link with gene body and transcription appears an ani-
mal innovation, enabled through the acquisition of PWWP and 
ADD domains in animal DNMT3 orthologs, starting a feedback 
loop with histone modifications such as H3K36me2/3 (77–79). Reg-
ulation of host gene transcription in multicellular animals might 
have restricted and weakened the role of 5mC in TE silencing, sug-
gested by its absence across many invertebrate genomes (1, 2).

Giant viruses emerged before the origins of modern eukaryotes 
(16), and chromatin silencing mechanisms such as 5mC or histone 
modifications were present in the Last Eukaryotic Common Ances-
tor (1, 9, 55). Thus, these patterns of frequent giant virus endoge-
nization that we observe in modern eukaryotes must have been 
constant during the whole history of the lineage. Although domesti-
cation of giant virus–derived genes might be rare, we can see ex-
amples of this occurring throughout the tree of life (13, 80, 81). It is 
worth highlighting that despite giant virus–derived genes being 
widespread, their domestication potential is harder to assess, given 
the difficulty to test their roles and expression across divergent pro-
tist species. Thus, giant viruses, whose genetic material is itself a 
composite of various origins (82–84), serve as a source of genetic 
novelty via lateral gene transfer across eukaryotes (Fig. 5). Unlike 
plasmids or other forms of bacterial lateral gene transfer mecha-
nisms, giant viruses are a dangerous vessel for genetic interchange; 

thus, chromatin silencing mechanisms are probably required for a 
stepwise acquisition of foreign DNA. In turn, the host chromatin 
protection is likely counteracted by giant viruses, as exemplified by 
the histone demethylases present in Amoebidium GEVEs, or other 
examples of chromatin modifiers reported in giant virus genomes 
(55). Similarly, the presence of DNMTs in GEVEs, and the capacity 
of giant viruses to modify their own DNA (54), could be a protective 
response against eukaryotic chromatin, avoiding viral DNA to be 
recognized as a threat. Chromatin hijacking by giant viruses is a 
process reminiscent of cases in which TEs have co- opted host chro-
matin regulators (48, 65, 85, 86), highlighting the age- long conflict 
between eukaryotic chromatin and parasitic DNA. In summary, 
Amoebidium exemplifies the intricate network- like origins of eu-
karyotic DNA, challenging traditional notions of strict vertical in-
heritance within the clade.

MATERIALS AND METHODS
Cell culture, treatment, and nucleic acid extraction
Amoebidium isolates were grown on Brain Heart Infusion (10% 
BHI, Thermo Fisher Scientific CM1135) liquid medium at 25°C 
in 25- ml culture flasks. S. arctica, Creolimax fragrantissima, and 
Chromosphaera perkinsii were grown in liquid Marine Broth (Difco 
Marine Broth 2216) at 17°C. Six Amoebidium alternative isolates 
were obtained from the ARS Collection of Entomopathogenic 
Fungal Cultures.

DNA methylation drugs 5- azacytidine (ab142744), decitabine 
(ab120842), and zebularine (ab141264) were dissolved in dimethyl 
sulfoxide (DMSO). A. appalachense was grown with 0 M, 0.1 μM, 
1 μM, 10 μM, 100 μM, and 1 mM final concentration of each drug 
in 2 ml of 10% BHI with 10% DMSO in a 12- well plate, and effects 
were tracked daily for 5 days. Only 100 μM and 1 mM 5- azacytidine 
showed a growth phenotype. A. appalachense DNA and RNA were 
extracted from cultures grown for 3 days in 10 ml of 10% BHI with 
1% DMSO, and 1% DMSO with 100 μM of their respective drug, in 
triplicate. 5- Azacytidine (12 nmol) in 120 μl of DMSO was spread 
over 12- ml agar plates of BHI (A. appalachense) and Marine Broth 
(S. arctica, C. fragrantissima, C. perkinsii), and dilution assays for 
growth were done for all four ichthyosporean species using 1×, 10×, 
100×, 1000×, and 10,000× serial dilutions of saturated culture.

The developmental cell cycle of A. appalachense was deter-
mined using a combination of live and fixed- cell microscopy using 
a fully motorized Nikon Ti2- E epifluorescence inverted microscope 
equipped with a hardware autofocus PFS4 system, a Lumencor 
SOLA SMII illumination system, and a Hamamatsu ORCA- spark 
Digital CMOS camera. CFI Plan Fluor 20×, 0.50 NA (numerical ap-
erture), CFI Plan Fluor 40× Air, and CFI Plan Fluor 60× Oil, 0.5 to 
1.25 NA objectives were used for imaging. For live- cell microscopy, 
a 25- day- old culture was diluted 1:250 and imaged with bright field 
every 15 min for 72 hours at a controlled temperature of 23°C in 
600- μl wells using a cooling/heating P Lab- Tek S1 insert (Pecon 
GmbH) with Lauda Loop 100 circulating water bath. We examined 
120 videos counting events of spontaneous cell death, cellulariza-
tion, and cell release, and the number of released spores per colony 
(total 703 cells tracked; table S1). For fluorescent microscopy, sam-
ples were fixed in 4% formaldehyde, washed with phosphate- 
buffered saline (PBS), and stained with phalloidin and Hoechst to 
visualize and count actin and nuclei, respectively, every 4 to 5 hours 
over 72 hours. RNA and DNA were obtained for representative 
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stages of the life cycle: 5 hours after inoculation (unicell—uninucleated), 
14 hours (coenocyte), 20 hours (cellularization), 33 hours (cell 
release).

DNA for A. appalachense genome sequencing was extracted us-
ing liquid nitrogen grinding and Qiagen MagAttract HMW DNA 
Kit & QIAGEN Genomic- tip 20/G (10223), and for A. appalachense, 
S. arctica, C. perkinsii, and C. fragrantissima Enzymatic Methyl- seq 
samples, we used NEB Monarch Genomic DNA Purification Kit. 
DNA for Amoebidium isolates 9181 and 9257 was extracted with 
phenol chloroform extraction and further purification with NEB 
Monarch Genomic DNA Purification Kit. RNA for all samples was 
extracted using nitrogen grinding and Monarch Total RNA Mini-
prep Kit.

Micro- C library preparation
A. appalachense cells grown for 7 days were crosslinked for 10 min 
with 1% formaldehyde under vacuum conditions in a desiccator. 
The reaction was quenched with 128 mM glycine for 5 min under 
vacuum, followed by an additional incubation on ice for 15 min. 
Crosslinked cells were washed twice and subsequently resuspend-
ed in a 1/10 PBS solution. Coenocytic cell walls were disrupted by 
glass bead beating for 5 min followed by a second crosslinking 
step with 3 mM DSG (disuccinimidyl glutarate) for 40 min at room 
temperature.

Micro- C libraries were prepared as described (87) with the fol-
lowing modifications. In- nuclei chromatin digestion to achieve 
80% monomer/20% oligomer nucleosome ratio was performed 
with 100 U of MNase (Takara Bio, 2910a) per 4 M nuclei for 10 min. 
The digested chromatin ends were repaired and labeled with bioti-
nylated nucleotides. Before proximity ligation, the digested chroma-
tin was released from nuclei and permeabilized coenocytes by 
glass bead beating for 10 min. Next, proximal nucleosomes were 
ligated together, and unligated ends were treated with Exonuclease 
III (NEB, M0206) to remove biotin- dNTPs (Deoxynucleotide Tri-
phosphates). The chromatin was then decrosslinked and deprot-
einized, and ligated DNA fragments were captured with Dynabeads 
MyOne Streptavidin (Life Technologies, 65602). Libraries were bar-
coded using the NEBNext End repair/dA- tailing mix (NEB, E7546) 
and NEBNext Ultra II Ligation Module (NEB, E7595S). The final 
amplified libraries, comprising three biological replicates, were 
sequenced with NextSeq500 in paired- end format with a read 
length 42 bases per mate, obtaining a total of 131,547,803 se-
quenced reads.

Genome sequencing and assembly
High molecular weight genomic DNA from A. appalachense was 
ligated with the Nanopore SQK- LSK110 ligation kit and sequenced 
in Promethion R9 flowcells. Since pore clogging occurred quickly, 
we performed short sequencing runs followed by flowcell cleanup 
steps, and reloading of fresh library in intervals, requiring three 
flowcells. In parallel, a library of paired- end short reads was gener-
ated with the TruSeq kit and sequenced with an Illumina HiSeq2500. 
Nanopore reads were basecalled using the “sup” model with Guppy 
(v6.2.1) and assembled with Flye (v2.9- b1768) with the “- - nanopore_
hq” parameter and two rounds of polishing (88). The resulting 
genome was further polished with the short reads with Pilon (89) 
for two rounds, using BUSCO score (- m genome, v5) (90) to vali-
date improvements, obtaining a contig level N50 of 1.8 Mb. Micro-
 C data were mapped on the genome using Juicer (v1.6) (91) with 

the - p assembly option. The 3D- DNA pipeline (92), using the 
proximity ligation data, was used to scaffold the genome with - r3 
- editor- repeat- coverage 10. Final manual curation in the Juicebox 
Assembly Tool (93) resulted in 18 chromosomes. The genome was 
then polished using Medaka with the original nanopore reads.

For the isolates 9181 and 9257, we ligated the DNA using Nano-
pore SQK- LSK114 ligation kit and sequenced following the same 
strategy but using PromethIon R10 flowcells (table S2). Contig- level 
assembly was obtained using Flye with Guppy “sup” base called 
reads as above. Medaka polishing was discarded as it decreased 
BUSCO score. Then, D- GENIES was used to visualize the synteny 
with the reference genome (94). RagTag scaffolding using the refer-
ence genome was performed for both isolate contigs (95), yet only 
9181 was kept as 98% of the sequence were placed into chromo-
somes, whereas 9257 only got 54%, rendering the scaffolding unreli-
able. Extra scaffolding using P_RNA_scaffolder (96) was performed 
for 9257 using its transcriptomic data to further increase contiguity, 
and validated through BUSCO improvement criteria.

Genome annotation
We generated a de novo RepeatModeler2 (97) annotation with the 
LTR module to characterize A. appalachense repeat landscape. This 
was then mapped to the genome using RepeatMasker. In parallel, 
publicly available deep coverage RNA- seq from A. appalachense 
(SRR545192) was mapped to the genome using HISAT2 with the–
dta parameter, and Stringtie for reference based transcriptome as-
sembly (98). The resulting bam was processed with Portcullis to 
generate a list of high- quality intron junctions (99). In parallel, de 
novo Trinity assembly of the SRR545192 reads was mapped using 
gmap to the genome (100). The combination of introns, Stringtie, 
and Trinity mappings was fed to Mikado to choose the best collec-
tion of transcripts based on the UniProt Sprot database. The best 
transcripts were used to train Augustus model for Amoebidium 
(101). To inform Augustus annotation, we mapped protein align-
ments against the genome using MetaEuk (102), using closely relat-
ed high- quality ichthyosporean genomes as query, obtaining coding 
sequence hints. Portcullis introns and Mikado exons were also in-
troduced as hints for Augustus genome annotation. The resulting 
Augustus annotation was then updated using PASA with the Mika-
do transcripts, fixing broken gene models and adding untranslated 
regions. Annotation was visually inspected in the IGV genome 
browser. Functional annotation was obtained using hmmscan with 
Pfam- A database (103) and the eggNOG- mapper server (104).

To annotate the alternative isolate genomes, the same process 
was followed, using the reference annotation for the MetaEuk CDS 
hints, and the pre- trained Amoebidium Augustus model. All anno-
tations were evaluated using BUSCO v5 with eukaryota_odb10 
database.

Transcriptome sequencing, assembly, and analysis
We used 50 to 1000 ng of RNA from treated samples, developmen-
tal time points, and isolates to build mRNA- seq libraries (see table S3 
for details), first enriching for poly- A transcripts with the NEB 
Magnetic mRNA Isolation Kit S1550S, and then building the li-
braries with the NEBNext Ultra II Directional RNA Library Prep 
Kit for Illumina (E7760L) according to manufacturer’s instruc-
tions. Short- read Illumina reads were obtained with NovaSeq6000. 
De novo transcriptome assemblies were obtained with Trinity 
(strand- specific) for the isolates. The Trinity assemblies were searched 
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for 18S and 16S sequences using BLASTn with NCBI query 
sequences.

Drug treatment and developmental samples were mapped against 
the annotation using Kallisto to obtain TPMs (105). To perform dif-
ferential expression analysis of TEs and protein- coding genes, we 
used HISAT2 with the TElocal pipeline (106), obtaining gene counts 
that were then analyzed in DEseq2 (107). Only intergenic TEs above 
500 base pairs (bp) were kept for the analysis. Sphaeroforma treatment 
samples were done in the same way and mapped to the latest version 
of the genome (108).

Methylome sequencing and analysis
We sonicated genomic DNA from A. appalachense (control, de-
velopmental time points, DMSO/5- azacytidine treated), S. arctica, 
C. perkinsii, and C. fragrantissima, spiked with phage lambda DNA 
and methylated pUC19 controls, to obtain 300- bp fragments with 
Covaris M220. Then, we used the NEB Enzymatic Methyl- Kit to con-
vert all the unmethylated Cs into Ts as described in the manufacturer’s 
instructions (109). These libraries were then sequenced in Illumina 
NovaSeq6000 to various coverages (table S4). The reads were then 
mapped with fastp and mapped to the reference genomes (29, 108, 
110) using BS- Seeker2 backed with bowtie2 (111). Sambamba was 
used to remove polymerase chain reaction (PCR) duplicates, and 
CGmapTools was used to obtain the methyl calls (112). These files 
were processed in R using the bsseq package, and bigwig tracks using 
the BedGraphToBigWig UCSC utility.

In parallel, nanopore reads were basecalled and mapped for base 
modifications using the Guppy dna_r9.4.1_450bps_modbases_5mc_
cg_sup_prom.cfg and dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_
sup_prom.cfg models. The resulting read alignments were processed 
with modbam2bed the - - cpg - e - m 5mC parameters. These bed files 
were also processed in R using the bsseq package.

Giant virus identification and phylogenetic analysis
Visual inspection of hypermethylated blocks revealed core giant virus 
genes in unusual gene architecture patterns. To validate these poten-
tial claims, we used ViralRecall (44) that flagged just a few of these 
sequences as potential giant virus endogenization events. However, 
we observed that many events were not captured by that software, so 
we manually inspected the genome to obtain the longest potential in-
serts, filtering out TEs inserted within the viral region. We searched 
those consensus sequences against the genome using BLASTn to ob-
tain all potential regions of homology to giant viruses. Another round 
of manual inspection of all chromosomes using non- CGC/GCG 
methylation blocks as boundary demarcation was used to delimit in-
tegration sites. The same process was used for adintoviruses and 
Plavaka giant repeats. We ran ViralRecall on the genomes of 
other ichthyosporeans (C. fragrantissima, S. arctica, Ichthyopho-
nus hoferi, C. perkinsii, Abeoforma whisleri, Pirum gemmata) (29, 
110), Corallochytrium limacisporum, the filasterean Capsaspora owc-
zarzaki (113), and the choanoflagellates Monosiga brevicollis and Sal-
pingoeca rosetta (114, 115), and we did not obtain any reliable hit on 
this collection of holozoan genomes (table S5).

Hmmsearch was used to identify core viral genes, DNMTs 
(PF00145), and JmjC (PF02373)–containing proteins. DNMTs and 
core NCLDV genes were searched in a large collection of holozoan 
genomes and transcriptomes, including 22 choanoflagellates (31, 
116), 4 filastereans (35), 7 ichthyosporeans, and C. limacisporum 
(see table S5). The obtained genes were included to sequences from 

reference databases (42, 45, 55) and aligned using MAFFT in lins- i 
mode (117). Alignments were trimmed using TrimAL with the 
- gappyout mode (118). The resulting alignments were fed into IQ- 
TREE 2 with automatic model testing to build maximum likelihood 
phylogenetic trees using altr and uboot as nodal support measures 
(119). Adintovirus minor and major capsid proteins were annotated 
with HHpred against PDB_mmCIF70 database.

Comparative genomics among giant virus insertions (used as in-
dependent taxa) or across the isolate genomes was performed using 
OrthoFinder with DIAMOND as a search engine (120).

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
legends for tables S1 to S5

Other Supplementary Material for this manuscript includes the following:
tables S1 to S5
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