
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 1950                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

On the Role of the Subsidiary Condition in Quantum Electrodynamics

Coester, F.; Jauch, Joseph-Maria

How to cite

COESTER, F., JAUCH, Joseph-Maria. On the Role of the Subsidiary Condition in Quantum 

Electrodynamics. In: Physical review, 1950, vol. 78, n° 2, p. 149–156. doi: 10.1103/PhysRev.78.149

This publication URL: https://archive-ouverte.unige.ch/unige:162194

Publication DOI: 10.1103/PhysRev.78.149

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:162194
https://doi.org/10.1103/PhysRev.78.149


P H YS ICAL REVI EW VOLUME 78, NUM BER 2 A P RI L 15, 1950

On the Role of the Subsidiary Condition in Quantum Electrodynamics

F. COESTER AND J. M. JAUCH
Department of Physics, State University of Ioua, Iowa CQy, Iowa

(Received January 9, 1950)

The S-matrix in quantum electrodynamics may be calculated alternatively from the Hamiltonian density
—J"(x)A„(x) and a Hamiltonian in which the Coulomb interaction of the charges and the interaction of
the currents with the transverse Geld are separated. Both procedures are equivalent. Care must be taken,
however, to deGne correctly the initial states, in particular the vacuum state. The deGnition of the vacuum
state in both representations is discussed and the equivalence of the corresponding S-matrices is proven.

I. INTRODUCTION

'HE elimination of divergencies in quantum elec-
trodynamics by the so-called renormalization

procedures makes it especially desirable to formulate
the theory in a completely relativistically covariant
way. '2 Since the treatment which has usually been
adopted in the past is unsymmetrical in the space and
time coordinates, the correct identification of the re-
normalization terms is exceedingly dificult for the
higher approximations. ' On the other hand in a rela-
tivistic theory the infinities which merely afkct the
normalization of mass and charge of the electron can be
easily identified by their invariance property. For this
reason it is highly desirable to have a consistent formal-
ism which is covariant through all stages of the calcu-
lation. In order to achieve this end the so-called super-
multiple time formalism was introduced. 4 This is a
straightforward generalization of the similar formalism
of Dirac, Pock, and Podolsky. ' In this theory the part
played by the hypersurfaces of simultaneity in con-
ventional quantum electrodynamics is taken over by a
one-parametric set of arbitrary space-like hypersurfaces.
The theory acquires thereby a covariant outlook but
this in itself does not assure us that the theory satisfies
the requirements of the relativity principle, i.e., that
the S-matrix is independent of the particular set of
hypersurfaces chosen. The independence of the 5-
matrix of the orientation of the hypersurfaces was
proven by Dyson' under the assumption that the
Hamiltonian density in the interaction representation
is invariant and independent of the orientation of the
hypersurfaces. If the time-like and the longitudinal
part of the vector potential are eliminated in the
conventional way with the help of the subsidiary condi-
tion the interaction Hamiltonian is no longer inde-

pendent of the orientation of the hypersurfaces. If
alternatively the time-like and the longitudinal part of
the vector potential. are not eliminated, the definition
of the vacuum state requires special attention. A diS-
culty in this respect does not arise when we are dealing
with a vector field with a finite although arbitrarily
small mass. The vector field with zero rest mass such
as the photon Geld cannot be regarded in a straight-
forward manner as the limiting case of a field with
finite mass, since the commutation rules of the latter
become singular as the rest mass tends to zero.

II. THE SUBSIDIARY CONDITION

Ke choose for the fundamental units h, c, and cm.
In the interaction representation the photon field vari-
ables are a set of four space and time dependent
Hermitian operators A„(x) transforming like a four
vector and satisfying the differential equation

A„(x)=0.

They satisfy further the commutation rules'

LA~(x) A (x)j= rg~ D(x-x) (2)

The state functional 4'(r) is considered a function of
an invariant parameter v which takes the role of the
time. Kith each value of v there is associated a space-
like hyperplane o(r) given by an equation of the form

n~x„+~=0,

where n& is a constant time-like four vector of magnitude
one.

nI'n„= —1. (4)

The Schrodinger equation for the state vector 4(r)
may be written in the form

i (B+/Br) =H(r) 4,' Koba, Tati, and Tomonaga, Prog. Theor. Phys. 1, 40 (1946);
2, 101 (1947};2, 198 (1947).' J. Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949};
76, /90 (1949), quoted as S I, S II, S III, respectively.

I The Grst calculations of the self-energy of a bound electron
were made with this conventional formulation of quantum
electrodynamics by H. A. Bethe, Phys. Rev. 72, 339 (1947);
¹ M. Kroll and %. E. Lamb, Phys. Rev. 75, 388 (1949); J. B.
French and V. F. Keisskopf, Phys. Rev. 75, 1240 (1949).

S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946).
Dirac, Fock, and Podolsky, Physik Zeits. Sowjetunion 2, 468

(1932).
~ F. J. Dyson, Phys. Rev. ?5, 492 (1949).

with

(6)H(r) = —
~

doj~(x)A„(x),
r(~)

where j(x) represents the current density and do is the

7 For the deGnition of the D-function see, for instance, %.
Pauli, Rev. Mod. Phys. 13, 211 (1941), Eq. (22). Also S II
Appendix. The sign of the D-function as deGned by Schwinger
is opposite to that used by Pauli which we follow here.
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invariant volume element of the hyperplane character-
ized by ~ and v.'

In order that the field strengths formed with the
expectation values of the potentials

(A.(*))= (+(r) A.(*)+(r)),x«(r),

satisfy Maxwell's equation, we must restrict +(r) by
the subsidiary condition

8&A„(x)%(r) '= 0 for all xpo (r) (8)

Eq. (2.22))

8&A„(x)
i

I do'(D(x —x')8'8„'A&(x')
yl —8„'A (x')8'D(x —x')) (14)

which holds for arbitrary p'. We choose o'=o(rp) and
x arbitrary, apply (14) on the state vector +(rp) and
substitute on the right-hand side (9) and (12). The
result is

which must hoM identically in v. The symbol 8& stands
for 8/(8x„). It can be shown that the subsidiary condi-
tion (8) is equivalent to two initial conditions or

8 A„(x)+( o)= ~ d 'n"j.(x')D(x —x')+( ), (15)

Q(x, r)%(r)=0 for r=rp
8&A„(x)@(rp)=0,

d8~A„(x)e(rp) =0,
for all xpa (r)

(9a) with

Q(x, r) =8&A„—d~'n"j. ( )xD(x x')—
~l

holding for one particular v =70. The symbol d denotes
the total derivative in the direction n defined by the
relations

d = n"d„, d„F=8„F i [H, F5n„— (10)

for any quantity Ii. The symbol d„ is defined in accord-
ance with the relation

(d.F)=8(F)/8x",

Equation (16) holds for arbitrary x and fixed r=rp. In
order to show that it holds also for arbitrary ~, we
consider the left-hand side of (16) as a function of r
for fixed x and show that its derivatives of all orders
are zero. Since

dQ(x, r)—(Q(x, &)e(r)) = e(r) e(», r—)a(.)e(r),
dg dT'

d—(Q(x, r)e(r)) = —iZ(r)Q(x, r)e(r),
dv[H(r), 8PA„(x)5= inPj„(x) for xp~(r), (12)

where the expectation values may be taken for any or working out the right-hand side
state vector 4'(r) which is a solution of (5). Since by
(2) and (6)

(9b) may be written as

I 88 "A.(x)—n j„(x)I%'(rp) =0, xpa (rp), (9b')

where 8=n"8„In order .to prove the equivalence of (8)
and (9) we show first that (8) implies (9). Differenti-
ating (8) with respect to x" we find

we obtain by induction for all higher order derivatives

( d"
Q(x, r)e(.) i =0, (n=o, 1, 2 ).).„

Hence

8(8"A„%'( ))= 8„8~A„%(r) q„8~A„(x)( —iH(r)) +(r)—
Q(x, r)%'(r) =0 for all x and all r.

From (17) follows (g) for x=x'.
(17)

=8.8~A„+(~) in„[H, 8~A—„]e(r)
=dg&A„(x) @(r)=0 (13).

From the last equation one finds by contraction with n"

d8"A„V(7.)=0

which is (9b) for r=rp In order to s.how that (8)
follows from (9) we use the following formula (see S I

For the relativistic covariance of the theory it is not necessary
to use the supermultiple time formalism. The reason is that a
plane in the Minkowski space is a relativistically invariant
concept. It is therefore sufBcIent to deane the state functional on
hyperplanes only. Moreover all the physical results calculated
vnth the super-multiple time formalism can also be obtained in
the simpler formulation adopted here.

GI. THE COULOMB INTERACTION ENERGY

4(r) = e'si'ic (r),

where Z is a hermitian operator. Substituting (18) into
(5) we find for C (r) the transformed Schrodinger
equation

(19)i(dc/dr) =G(r)C

with G(r) given by

d
G(&) e-ix(r)Ii(&)eix(r) ie-sz esz

dv

We shall now study the erat'ect of a r-dependent
canonical transformation on the Schrodinger Eq. (5).
Let a new state vector 4 (r) be defined by
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By developing the exponentials in a power series we (25) using the commutation rules (2)
may write

and

e 'xHe's=H+ [8—Z]+—[[8 Z] Z]+.
ff 2t

—ie 's—e'x=Z+ —[Z, Z]+
dT 2f

(22)

[8,Z]=i
J

do Jt do'j "(xj)"(x')nn„8 'D(x x—') (29)

and

[Z, Z]=iJt do
J

t do'j '(x)j "(x')n„8& 'D(x x'—) (.30)

Substituting these expressions into (20) we obtain

(&
G=H+( —[H, Z]+Z

~Ia! )

It is seen from these expressions that all the higher
commutators in (23) vanish since the currents commute
and the rema, ining terms in (29) and (30) are c-numbers
with respect to the photon variables. Collecting terms
we Gnd thus

Here we have bracketed the expressions together which
are of the same order in Z.

For Z we choose now the expression with

X (n„n,8 '+-2in„8& ')D(x -x') (3—1)

with

Z(r) =
J doj "(x)n„B(x)

B(x)= —8 'n"A„(x).

or since
Q„(x)=A„(x)+8„B(x);

(8„+n„8)8 'D(x -x') =0,—

if x and x' are on the same hyperplane,

(32)

(33)

Here 8 ' stands for the inverse of the operator 8=1"8„.
In order to Gx the still arbitrary integration constant
in this operator we stipulate that 8 'F(x) shall mean
the multiplication of each Fourier component of F(x)
with (ik„n") 'Thi—s .procedure defines 8 ' uniquely as
long as thereby no poles are introduced at the origin

G(r) = — t dog(x)A„(x)
J

2i JI d—a —
~doj'"(x)j"(x')n„n„8 'D(x x'). —(34)—

e'

d
Z= — doj&(x)n„B(x)= —

J
doj&(x)8„B(x) (27)

drJ
(35)e-"&~~II(x, r) e"~ &C (r) =0.

By (24), (25), and (2)

e-'x&'A„(x)e's&'&

The second term on the right is the covariant expression
With (24) we obtain for the Coulomb interaction.

Equation (33) is derived without use of the sub-

[8 Z] do do [j.(x)A (x) p(x&)n B(xI)] (26) sidiary condition (8) or (17). On the state vector 4(r)
J. of a Maxwell Geld we must impose the subsidiary

condition following from (17) by (18), that is

[Z, Z]= —Jtdo do'DI'(x)8~(x), j"(x')n„B(x')]. (28)
a

The second equality in (27) was obtained by a combined
application of Gauss' theorem and the continuity
equation, 8„j"(x)=0, for the current density. '

%e shall now make use of the fact that the currents
on a space-like surface commute. Thus we obtain with

'Gauss' theorem when applied for two in6nitesimally close
parallel hyperplanes yields for any vector P„

d dpi„n" — dcr8"Pg.
~& e(r)

The minus sign here comes from our de6nition of the normal
vector with the invariant scalar product e"ep,~ —1.

=A„(x)+i[A„(x),Z(r)]

=A„(x)+n„8 '
daj'"(x')n„D(x x') (36)— .

(37)

this may also be written

&'8„(x)C(r) =0. (38)

The new condition is, therefore,

8 A„(*)C(.)=0
identically in x and r Since by (32), (.25), and (1)
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The current dependent term in (17) is just canceled by
the second term on the right-hand side of (36).

We want to add two remarks concerning the canonical
transformation (18). It was pointed out that (33) was
obtained without use of the subsidiary condition (8).
It is therefore possible to carry out the same transfor-
mation for a vector Geld with rest mass leading to a
Yukawa interaction term. The Coulomb interaction
term has thus nothing whatsoever to do with the
subsidiary condition. The previous treatments have
not made this point sufficiently clear.

The second remark refers to the fact that the condi-
tion of obtaining a Coulomb potential in the trans-
formed Hamiltonian does not determine the transfor-
mation (18) uniquely. There exists actually a one-
parameter family of such transformations. In order to
verify this we define Z again (24) but replace (25) by

with
8=E'A„(x)

2 A

Sy= BJs8 ~Je8
4 2

(39)

where 0, is an arbitrary real number. Thus choice for
Z leads to the transformed Hamiltonian

G(r) = —
~' de~(x)A„(x)

with

+i) do)I daj'"(x)j&(x')n„S.(x x') (4—l)

5,(x—x') = ——((1—a)&&& '—nnP ')D(x —x'). (42)
2

Or by (33)

5 (x x') = n8——'D(x —-x')
2

(43)

if x and x' are on the same hyperplane. Inserting (43)
into (41) we have again (34).

The transformed subsidiary condition in this case
reads

)&)' dej'"(x')n„D(x—x') C(r)=0. (44)
0'

the definition (25) is contained in (39) with (40) as

The transformed potentials are

e-'*&'&A„(x)e'x&'&

+2
n„~' ltd j"e(*')n,D(*—*'), (45)

4

8"8„=0 and n48„= 0

as identities. Then

(47)

0! 2
+ && 'B„n"A, C(r). (48)

The right-hand side vanishes only if 4 satisfies the
subsidiary condition and n=2. We may therefore
replace S„by the transverse field 8„in this case.

IV. DEFINITION OF THE VACUUM

We shall now discuss the main problem of this note,
the correct definition of the vacuum. Since the electron
field does not present any di6iculties in this respect we
shall pay no attention to the electron variables. %e
refer instead to S II where this part of the problem is
fully discussed.

All state vectors which represent a physical situation
in a quantum mechanical system should be solutions of
the Schrodinger equation. This holds true in particular
for the vacuum state. It is, however, a well-known
fact that the Schrodinger Eq. (5) has no solution, at
least not in the ordinary sense of the word. Thus to
define the vacuum state as a solution of (5) is, to put
it mildly, not very convenient. In this sense the defini-
tion of the vacuum presents a difhculty which contains
the essential features of the difhculties common to all
problems in quantum electrodynamics. The existing
theory is inadequate in this respect.

Considerable progress has been made recently by
showing that it is possible to remove the undesirable
consequences of the incorrect theory by superimposing
on the theory a number of Lorentz- and gauge in-
variant rules. " All observable consequences of the
theory may be obtained from the S-matrix, that is the
unitary transformation which connects an initial state
at 1 p= —00 to a final state at sf=+ t70. From S calcu-
lated as a consequence of (5) the divergencies are
eliminated by appropriate renormalization procedures,
which leave S-Lorentz invariant, independent of n„and
unitary. Actually S is obtained from (5) by perturbation

' S II, III, F. J. Dyson, Phys. Rev. 75, 486 {1949);75, 1736
{1949);R. P. Feynmann, Phys. Rev. 76, 769 {1949);?4, 1430
{1948);W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 {1949).

the special case 0.=2. It is seen that this case is dis-
tinguished by the greatest simplicity since the sub-
sidiary condition takes the simple form (37). Moreover
only for o.=2 can our canonical transformation serve
to eliminate the time-like and longitudinal component
of the vector potential from the Hamiltonian. For let
8,„(x) be the transverse field defined by

8,„(x)=A„[&&—&B„n"A„+8 &(n„+8 '&t„)8"A„} (46)

satisfying
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theory in which the initial state 4(r'o) is the zero-order
approximation to +& i(r) for all r, 4'(ro) =4t (r).
Consequently it is in the spirit of this approach to
de6ne the vacuum as an initial state at r =ro (ro—r—oo ).

The photon field presents a characteristic difBculty
which arises from the fact that free photons are always
the eigenstates of transverse modes of vibration only
and thus a definition of the vacuum should not make

any explicit reference to longitudinal or time-like

photons. On the other hand a vacuum state defined in
terms of the transverse photons only is not obviously
independent of the normal vector n. Its actual inde-

pendence of e requires a special proof.
With the help of the transverse fiel.d 8„(x) introduced

in (46) and the decomposition into positive and negative
frequency parts

ated by the infinitesimal transformations, it is sufIIcient
to prove this theorem for the infinitesimal transforma-
tlons

6"=n"+co„"n" (52)

Gops+Coyp =0. (53)

The co„, are to be considered as infinitesimals of the
first order. Up to this order we obtain by development
in power series

O',„=g„+g 9gcv, ) nip„n"A„—g 9„A~„"n&
+(8 'r7iorp"n'n„+28 'Birop"n&8„)r7"A, ) (54)

or on account of (50) and (51)

Ct„&+&(x)Co (op"——8„(8 'Bin'n'A„&+& O'—Ai&+'n')4 o (5. 5)

Equation (46) yields in conjunction with (50) and (51)
p —p(+)+p(—) A„&+)4Q=8-9„n"A &+)Cp (56)

defined for any field operator in S II Eqs. (1.19) and
(1.16) we de6ne the vacuum state C o in the representa-
tion in which the Schrodinger equation has the form

(19) by requiring

alld
8&A„(x)C,= 0

8„&+&(x)Co
——0

(50)

(51)

identically in x."Equation (50) is the subsidiary con-
dition in the form (37); (51) states the absence of
transverse photons.

We shaB show first that the conditions (50), (51) are
independent of the vector m although this vector enters
explicitly in (51) through (46). More precisely we shall

prove the following theorem: Let 4 p be any state vector
satisfying (50) and (51) and n"=u„"n" a transformed
time-like unit vector connected with the original vector
e by a proper Lorentz transformation. Denote further

by 8„ the transverse field defined by the equation

K„=A„—{8 'B„n"A„+8 '(n„+r7 'B„)8"A,I. (46')

We state that under these assumptions we have"

where
CQ —8 +Pp

Zp ——— I doj&(x)n„8 'n"A„
4~p

(58)

(59)

and oo=o(ro) If 4p is .the vacuum state defined by
(50) and (51) then pro given by (58) satisfies

e'*oa~A„(x)o-"oe

and

a~A„— doj'"(x')n„D(x x') 4'p ———0, (60)
4~p

Zsxog ~+)Z-sxo@ O (+)@ 0 (61)

or substituting for 8„ its de6nition (46) and using (60)

Substitution of (56) into (55) finally gives

8,„&+&Cp= 0 q.e.d.

Turning now to the representation of the state vectors
+ satisfying (5) with (6) we see that a vector 4'o which
corresponds to 0'p is given by

e„&+&C,=o. (51')

Since any proper Lorentz transformation can be gener- A„'+& O'B„n'—A, '+'+(n„8 '+8„8 ')

"Strictly speaking a complete discussion of the vacuum prob-
lem requires both a proof that such a state exists and that it is
uniquely determined by (50) and (51). These questions were
discussed in various earlier papers, for instance, F. J. Belinfante,
Phys. Rev. 76, 226 (1949); Physica 12, 17 {1946};V. A. Pock
and B.Podolsky, Physik Zeits. Sowjetunion 1, 801 (1932};2, 275
(1932); S. T. Ma, Phys. Rev. 75, 535 {1949).From these discus-
sions it is obvious that Eqs. (50) and (51) imply that Co is not a
vector in Hilbert space since it cannot be normalized even in a
bounded system. The exact mathematical specifications to de6ne
the needed extension are not known. This state of affairs is
intimately connected with the ambiguity for the self-energy of
the electron discovered by Belinfante (Phys. Rev. 76, 226 {1949)).
These questions in.vite further study. Since they go beyond the
purpose of this paper, we shall content ourselves with this remark.

12 This theorem was also stated and proven by F. J. Belinfante,
Phys. Rev. 76, 228 (1949). As far as the essential content is
concerned the proof given here is little more than Belinfante's
proof written covariantly in x space,

XJt doj'"(x')n, D'+'(x —x') q o= 0. (62)

At this point the fact that the initial state in the
5-matrix theory is at 7 p= —~ becomes essential. For
we shall prove that the current dependent terms in (60)
and (62) vanish in the limit r~

p lT

A, —= I do'j" (x')n„D(x x') = dxj'"—(x')B„D(x x')—
4~p

for xoo (63)

by Gauss' theorem since D(x—x') =0 if xylo and x'err,
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By a simple adjustment of the origin we may choose 7

without loss in generality in such a way that o =e(0).
Since Ao is invariant under Lorentz transformations
we may evaluate it in the coordinate system in which
&oo= (1, 0 0 0). Substituting the Fourier series

(70)

(A„&+&(x)—8„8-'&o"A„&+&)4'o ——0. (71)

identically in x. Thus (60) and (62) reduce for r~
to

8"A„(x)%'o=0,
and

where

f
D(x—x') = dko(k)b(k"k„)e o&~o'&,

(2~)oJ

&+1 if wk„&0
o(k)= t

i-1 ~ ~k„&0,

1j"(x')= t dlj "(l)e
(2x)'&

(64)

(65)

(66)

The correct definition of the initial vacuum state at
ro —o—o—is therefore given by (70) and (71) (or (70)
and (61)). We see that for a hypersurface at inhnity
the deinition of the vacuum is identical for the state
vectors 4 and C." It should be emphasized that this
simple result, which is essential for the discussions of
the following section, does not hoM for a inite initial
time. Any initial state in which photons are present
will satisfy (70) but not (71).

IV. EVALUATION OF THE S-MATRIX

llIll Ao =— dx"j dP) dko(k)b(k"k„)
(2&r)'j

kj "(k, P) exp[—i(P—ko)x'o+ii& x]. (67)

The integration over x' gives

po z

j dx" exp[ —i(l' —k')x"]=&rb(P —k')+
P—k'

If this is substituted into (6/) the 6rst term with
8(P—k') gives zero since its eGect is simply to replace
the current term by kj"(k)=0 on account of the
continuity equation. The pole in the second term can
be removed if we substitute

k„j"(k, P) = —(P k')jo(k, l')—
which again follows from the continuity equation. We
are then left with an expression of the form

lim Ao —— ~ dP i dkjo(k, 1 )o(k)b(k"k„)H". (68)
re~ (2x)o—
This term vanishes also since the integration over k'
involves the integral

dk o(k)8(kok„) =—(o(k, o&)+ o(k, —o&)) =0
1

20J

o&+( )k&. We have therefore proven

lim " do'j "(x')&&„D(x x')=0—
go~ &o ( )

(69)

Ao —— ii dx'o l' d'x' ' dkj die(k)

X8(kok )ikj"(l)e*&~»*'+*

In this expression the three-dimensional integral over
x' can be carried out giving a three-dimensional
8-function 8(l—k). We are left with

According to Dyson' the nth order term in the
S-matrix calculated from (S) may be written in the form

(i)"
&

5&"&=
I dx. "dx„, t dx, P(jo.(x„) . jo (x,))

XP(A, (x ) Ao&(x&)) (72)

where I' stands for the permutation operator which
orders the factors for every set of n points x& ~ x„ in
such a way that the factors occur from right to left in
the same order in which xi. -.x occur in time. 5&")

shall be decomposed into a number of terms, each of
which contains a dehnite number of virtual photon
exchanges, by shifting in (72) the A„& ' to the left of
the A„&+'. We denote by (A,„(x„) A»(x&))»e the
arrangement where all negative frequency parts stand
to the left of all positive frequency parts. "Since this
de6nition determines the "ordered product" uniquely
we have

I&(A..(x.) A»(xl) Io d (Ap (x )' ' 'A»(x&));e. (73)

From the commutation rules (2) follows

[A„&+&(x),A.&-&(x')]8(x—x')
+[A.'+'(x'), A„' '(x)]8(x'—x) =-,'g„,De(x—x'), (74)

"Equation (69) is the reason why it is justifiable to speak in
some cases as if the currents were zero at infinity. This remark
has often occurred in the literature in connection with radiation
problems. It is in general hardly justified, however. The current
density as an operator is never zero anywhere. This would contra-
dict the commutation rules and the continuity equation. The
vanishing of surface integrals at infinity requires a special proof
of the sort given here for (69).

In a recent paper (Phys. Rev. ?6, 391 (1949)) N. Hu has made
an attempt to prove the equivalence of the two methods of
treating radiation problems. %'e feel that in this paper both the
surface integrals at infinity and the definition of the vacuum are
inadequately treated.

~4 F. J. Dyson, Phys. Rev. ?5, 492, 1737 (1949).
'~This notation has been introduced by A. Houriet and A.

Kind, Helv. Phys. Acta 22, 321 (1949). For instance

(A„(x)A,(x'),~ = A „& )(x')A„&+)(x)+A],&")A„&+&(x')
+A„&-)(s)A„&-)(x')+A„&+)(x)A,&+)(s').



where
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With the help of the Fourier transformation

i55

and"

i for MS~ +0
B(x)=

0 for e&x„&0,
(75) 1J"(x) = t dk J"(k) e''*

(2~)'~

Dp(x) =D &o(x) f—e(x)D(x) (76)

With the help of these definitions and relations
P(A) „(x„) .A»(xi)) can be replaced under the integral
(72) by

we get

F(x)=
(2)r)'~

1
' d/F(l)e)&~

L(n —1)/2]gpig2D p(x, —xm) P(A) .(x.) . A, a(xs))
+A, „& ~(x„)p(A,„,(x,) A„(x,))

+P(Ap i(x,) .A„(x,)A,„&+&(x.)). (77)

Here we use the fact that the integration variables may
be conveniently relabeled in each term. From (77) it
follows that we can replace P(A) „(x„) A»(xi)) by

dxJ"(x)B„F(x)= J~d—kk„J"(k)F( k)—

B„p(ju . .j))))=. 0 (83)

This vanishes if B„J"(x)=0and therefore k„J"(k)=0.
In order to prove (82) it is therefore only necessary to
show that

This is obviously a consequence of the continuity
equation as long as r„=7 (x„) is di6erent from any other
),. If r, approaches r„we may write in the neighborhood

&2k+I, !&,&2k+1J ' &n (~&JJo&tiy 4 ) of 7'g

g f(n) k)Dp(xi —x2) Dg(x2i i—x2i)

Therefore

where m= n/2 for even n and m= (n —1)/2 for odd n P(j)..(x )j) .(x,))=j) .(x )j) .(x )
The coeflicients f(n, k) are determined by the recursion --'B(x -x )[j"(x„)j"(x,)].
formula

f(n, k) =f(n —1, k)+L(n 1)/2—]f(n—2, k—1), (79)

in which f(n, k)=0 by definition for k)m or k&0.
Indeed, assuming that the substitution (78) is valid for
n —1, its validity for n follows from (77) and (79).
Equation (78) can be easily verified directly for n=2
a,nd one finds that f(2, 0) = 1, f(2, 1)=-,'.

f(n, k)=
2'"k!(n —2k)!

(80)

We claim that in (78) A„(x) can be replaced by the
transverse field S„(x)if S'"' operates on an initial state
W'& satisfying (70). According to (46) and (68)

A &+~(x)@"&=(8&~+8 8-'n"A &+')0&'& (81)

The second term gives no contribution in the S-matrix
since we shall show that

B,„p(j"(x,)P (x,))= --',Lj"(x„)j"(x.)]B„B(x.-x„).
Since 8 is constant except for 7-„=7-, where it jumps by
1 the derivative introduces a 8-type singularity multi-

plying the commutator of the currents which vanishes
for r, =r, Thus (83). holds for all x and consequently
(82) is established.

This argument can be applied successively to all
factors A„(+& in the "ordered products, " since C„&~

commutes with 8"A„&~' and rs"A„&+'. Thus after the
transformation (77) A„can be replaced in S&"' by the
transverse field 8„. The S-matrix commutes therefore
with 8"A„and the final state at r=+)x) satisfies (70)
as well as the initial state.

If, in particular, there are no photons present either
in the initial or in the final state, then only the S&"&

with even n are different from zero and in these only
the term with k=n/2 on the right-hand side of (77)
contributes anything to S&"&. Schwinger and Dyson
achieved this result by assuming the vacuum definition

J dx„P(j ""(x„)~ . j"'(x„) j"'(xi)). 2„&+~+0——0. (84)

XB,p 'n "A '+'(x ) =0 (82)

For (82) is of the general form

J dxJ"(x)B„F(x).

'6 For a de6nition of D('&(x) see, for instance, %'. PagH, Rev.
Mod. Phys. D, 212 (1941), Eq. (22').

Such a definition of the vacuum is not acceptable,
however, as was pointed out by Belinfante. "We men-
tion here only the fact that the sign of the commutation
rules for the 0-components Ao(x) implies that Ao&+' is
an emission operator. Consequently Ao&+&+0=0 implies
that 0'0=0.

Alternatively the 5-matrix might also be calculated
from (19) with (34). Since (19) and (5) are equivalent

"F. J. Belinfante, Phys. Rev. ?6, 228 (1949).
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Schrodinger equations and 4&'&=4&'&, the result must
be the same. The eGects of virtual photon exchange
and Coulomb interaction are combined in the expression
~zg„.Dr (x x').—If S is calculated from (19), they appear
separately.

%e have thus proven that the two 5-matrices
calculated from (5) and (19) are identicaL This result
rests essentially on the equivalence of the two Hamil-
tonians (6) and (34) and on the identity of the sub-
sidiary conditions (70) and (50) for the initial states.
It should be borne in mind that it holds therefore only
for the S-matrix connecting states at r= — and

r=+ but not for a unitary operator connecting
states at 6nite times.

The identity of the two S-matrices can also easily be
veri6ed by direct computation using the relation

~2g„.Dp(x —x') =(P(C„(x)C,(x'))o
+,' I (N„-8„+N,8„)8 '+8 '8„8.I Dp(x x')—. (85)

If the right-hand side of (85) is substituted into P2)
after transformation according to (77), S~"~ acquires
the form obtained directly from (19) with (34). The
second term on the right-hand side reduces to the
contribution from the Coulomb interaction.
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On the Forces Producing the Ultrasonic Wind
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The ultrasonic wind has been erroneously ascribed to a pumping action of the quartz oscillator. Eckart
has investigated it starting from the hydrodynarnical equations. Without adding anything essentially new to
his calculations, it is shown here that the cause of the wind is the linear momentum of the wave motion taken
up by the liquid through sound absorption.

'HE "ultrasonic wind" —the macroscopic Qow of a
gas or liquid due to the passage of ultrasonic

waves —is a well-known phenomena which complicates
the measurement of radiation pressures. ' It has been
ascribed' previously to a "pumping action" of the
vibrating quartz. On the other hand Eckart' has
recently published a detailed investigation in which the
hydrodynamic equations are considered from the view-
point of successive approximations, and he ascribes it
to forces acting directly on the liquid. From this view-
point the subject is directly related to the problem of
stresses in the liquid which has been investigated fre-
quently and includes, of course, the problem of radiation
pressure. ' It is our intention to show that it is possible
to give a very simple physical picture of the forces
which produce the ultrasonic wind, and con6rm this by
a simple calculation which has been made for other
purposes by Bopp. ' Similar but less detaiIed considera-
tions have been presented by Cady. '

' See e.g. F. E. Fox and G. D. Rock, Phys. Rev. 54, 223 (1938);
J. Acous. Soc. Am. 12, 505 (1941}.

~ See e.g. L. Bergmann, Der Ultraschall (Edwards Brothers,
Berlin, 1942; reprint, 1944), third edition, p. 79.

3 C. Eckart, Phys. Rev. 75, 68 (1948}.
'Lord Rayleigh, Phil. Nag. 3, 338 (1902); 2, 364 (1905).

P. Langevin, Rev. d'acoustique, 1, 93 (1932); 2; 315 (1933).
L. Brillouin, Les Tensevrs en Mecaniqge et en E/astic@e {Dover
Publications, ¹wYork, 1938, 1946). R. T. Beyer, Am. J. Phys.
18, 25 (1950).

For other literature, see Bergman, reference 2, pp. 72, 73. See
also a forthcoming paper of J.S.Mendousee of Catholic University.' F. Bopp, Ann. d. Physik 38, 495 (1940).

'%'. G. Cady, Final Report, Subcontract D.LC. 178 188, Rad.
Lab. OEM-Sr-262, pp. 33, 50.

(2njdr/V). (2)

According to this view, no force is exerted if there is no
absorption; on the other hand, if the beam is totally
absorbed, the total force exerted is equal to the whole

energy entering the liquid per second, divided by V.
The details of the hydrodynamic Qow set up are then

a problem in classical hydrodynamics, namely to cal-
culate the macroscopic Qow due to the volume force
given above. Since the absorption coefBcient 0. depends

The physical picture is as follows:
In a plane electromagnetic wave of intensity I in

vacuum, there exists a Qow of linear momentum in the
direction of wave propagation equal to

I c=U

per unit time and area. Here U is the time-averaged
energy density of the wave.

Similarly in a plane progressive sound wave of in-

tensity I and sound velocity V, there is transported,
per second, through a centimeter square normal to the
direction of propagation, the linear momentum

I/V= U. (1)

If this sound wave is propagated through a medium
which (partially) adsorbs it, the linear momentum due
to the adsorbed energy is taken out of the wave and
transferred to the medium, i.e. if 20. is the absorption
coefficient for intensity, then there is exerted on a vol-
ume element dv the volume force


