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Ensuring that people have access to sufficient and nutritious
food is necessary for a healthy life and the core tenet of food se-
curity. With the global population set to reach 9.8 billion by
2050, and the compounding effects of climate change, the planet
is facing challenges that necessitate significant and rapid
changes in agricultural practices. In the effort to provide food in
terms of calories, the essential contribution of micronutrients
(vitamins and minerals) to nutrition is often overlooked. Here,
we focus on the importance of thiamine (vitamin B1) in plant
health and discuss its impact on human health. Vitamin B1

is an essential dietary component, and deficiencies in this
micronutrient underlie several diseases, notably nervous sys-
tem disorders. The predominant source of dietary vitamin B1

is plant-based foods. Moreover, vitamin B1 is also vital for
plants themselves, and its benefits in plant health have received
less attention than in the human health sphere. In general, vita-
min B1 is well-characterized for its role as a coenzyme in meta-
bolic pathways, particularly those involved in energy production
and central metabolism, including carbon assimilation and res-
piration. Vitamin B1 is also emerging as an important compo-
nent of plant stress responses, and several noncoenzyme roles
of this vitamin are being characterized. We summarize the im-
portance of vitamin B1 in plants from the perspective of food
security, including its roles in plant disease resistance, stress tol-
erance, and crop yield, and review the potential benefits of bio-
fortification of crops with increased vitamin B1 content to
improve human health.

The autotrophic (i.e. self-sustaining) ability of plants allows
them to take elements from the soil and atmosphere and build
them into complex macromolecules through electromagnetic
energy harvested from the sun. Through this assembly of com-
plex organic compounds driven by photosynthesis, plants pro-
duce nutrients that allow them to survive, grow, and reproduce.
In their role as producers at the base of the food chain, plants
provide the predominant dietary source of the same nutrients
to humans, in turn allowing us to also survive, grow, and repro-
duce. An intermediate step in this transfer might exist through
our consumption ofmeat or fish, but as animals are also hetero-
trophs, the source of these nutrients and energy can always be
traced back to autotrophic plants, bacteria or fungi. The essen-
tial macronutrients (carbohydrates, fats, protein, and fiber)
originating from plants provide us with energy and the building

blocks of growth, whereas inorganic (minerals) and organic
(vitamins) micronutrients are also vital to human health.
Although the organic micronutrients essential to health and

survival are alike in both plants and animals, they are only clas-
sified as vitamins in relation to animals. To be classified as a
vitamin, the organism must both need the organic micronu-
trient and also lack the capacity to synthesize the compound de
novo or only be able to produce insufficient quantities, instead
relying on dietary consumption of precursors or analogs to
meet their needs (1). Nonetheless, for ease of understanding,
we will use the term vitamin here also when referring to these
compounds in a generic way in plants. The biochemical func-
tions derived from vitamins and their forms are hugely varied
and include antioxidant (e.g. ascorbate/vitamin C and toco-
chromanols/vitamin E), coenzyme (e.g. thiamine/vitamin B1

and riboflavin/vitamin B2), regulator of gene transcription (e.g.
retinol/vitamin A), and hormone (e.g. calciferol/vitamin D).
Deficiencies in vitamins can cause severe and deadly disorders;
for example, of the 500,000 children who develop blindness
each year from vitamin A deficiency, half will die within 12
months (World Health Organization (2013) Micronutrient defi-
ciencies, https://www.who.int/nutrition/topics/vad/en/; accessed
March 25, 2020). Similarly, in plants, deficiencies in vitamins also
impact overall fitness and growth, causing deleterious pheno-
types and even lethality (2–7).
For scientists, researching vitamin compounds in plants

themselves offers a broad reach, with potential research appli-
cations in improving human health. Furthermore, vitamin
compounds have important roles in plant disease resistance
and yield (8), which are key to increasing agricultural produc-
tivity and improving global food security, especially in a chang-
ing climate. Understanding how vitamins are synthesized and
salvaged in plants has been intensively researched (for reviews,
see Refs. 3 and 9), but how they are transported and regulated
has received only scant attention, particularly for the B vitamin
family (10). Many of the advances in plant vitamin research
have been coupled with breakthroughs in genetic modification
techniques (11–13) and improved understanding of plant met-
abolic networks (14–16), which have paved the way for biotech-
nological exploitation of a plant’s natural vitamin physiology.
Due to the breadth of this field, this review will predominantly
focus on the importance of plant thiamine (vitamin B1) in food
security, covering its roles in plant disease resistance, stress tol-
erance, and crop yield, and continuing onto the potentials of
biofortification of crops with increased thiamine content for
human consumption.
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Vitamins and vitamers

The classification and naming of vitamins is largely anach-
ronistic and has little chemical basis. The term vitamin was
coined from the incorrect hypothesis that these “vital” com-
pounds were comprised of “amines” and led to the portman-
teau “vitamine” (17). However, non-amine vitamins, such as
ascorbate, resulted in the terminal “e” being dropped. Today 13
vitamins are recognized, which are commonly divided into
those that are either fat-soluble (vitamins A, D, E, and K) or
water-soluble (vitamin C and the vitamin B complex) (Fig. 1).
The B vitamin complex itself is comprised of eight vitamins (B1,
B2, B3, B5, B6, B7, B9, and B12), which bear no chemical similar-
ities to one another but were primarily grouped due to their
similar ability to function as coenzymes. Notably, among the
individual vitamins, there are structural analogs that have pro-
ven vitamin activity (i.e. can remedy a deficiency in that vita-
min) and are described as vitamers. Therefore, each B vitamin
is actually a family of compounds (e.g. the vitamer and coen-
zyme thiamine diphosphate (TDP) within the vitamin B1 fam-
ily) (Fig. 2). Originally, more compounds were classified as vita-
mins; however, many of these were removed, having since been
found to be nonessential and/or able to be synthesized by the
human body. This has resulted in gaps in the current alphabeti-
cal (vitamins F–J and L–Z) and numerical (vitamin B4, B10, and
B11) nomenclature. These historical relics in the classification
system demonstrate the extent to which the field has moved
since the discoveries of each vitamin.

Thiamine

The earliest written descriptions of thiamine deficiency, now
known as beriberi disorder, date back to the 3rd century, but it
only became prevalent in the 19th century, when sailors were
fed on monotonous unvaried diets (18). Beriberi affects the
nervous, cardiovascular, and digestive systems, causing numb-
ness, weakness, atrophy, and eventually death. A paradigm
shift, away from the long-held germ theory, led to the accep-
tance that diseases could also be caused by lack of “accessory
food factors” as well as by pathogens (19). It was not until 1901
that beriberi was proposed to be a deficiency syndrome arising
from poor diet (19), which could be avoided by consumption of
rice bran, which is normally removed during the conversion of
brown rice to white, polished rice (17). Many attempts to char-

acterize and isolate the specific rice bran chemical and “anti-
beriberi compound” were made, until the final structure was
determined in 1936 and named thiamine (20).
Thiamine (chemical formula C12H17N4OS; name 2-[3-[(4-

amino-2-methylpyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-
3-ium-5-yl]ethanol) is an organo-sulfur compound com-
prising pyrimidine and thiazolium heterocycles linked by a
methylene bridge (Fig. 2). Six vitamer forms of thiamine
are currently known, varying in their phosphorylation and
adenosylation states (Fig. 2) (21–23). Although thiamine
biosynthesis has been covered in depth in other reviews
(detailing the different pathways that bacteria, fungi, yeasts, and
plants utilize (24–26)), we will briefly describe thiamine biosyn-
thesis de novo in plants (specifically Arabidopsis) here. First, the
thiazole moiety (hydroxyethylthiazole phosphate, HET-P) and
pyrimidine moiety (hydroxymethylpyrimidine pyrophosphate,
HMP-PP) are biosynthesized through separate pathways in the
chloroplast (5, 27) (Fig. 3). Although primarily based on bio-
chemical evidence from yeast rather than in planta data, HET-P
is synthesized by the THI1 protein (27), and an as yet unknown
NUDIX hydrolase (28), using NAD1, glycine, and a sulfur atom
from a cysteine in the THI1 protein backbone itself (29) (Fig. 3).
The backbone sulfur donation renders THI1 catalytically inac-
tive, and the protein is therefore referred to as a “suicide
enzyme” due to its single turnover (29), rather than an enzyme
per se, which by definition would catalyze multiple turnovers.
On the other side, the first step in HMP-PP formation is cata-
lyzed by the THIC enzyme, which rearranges aminoimidazole
ribonucleotide to hydroxymethylpyrimidine phosphate (HMP-
P) enabled by a 59-deoxyadenosyl radical and a [4Fe-4S]1 cluster
within the enzyme (5, 30). The HMP-P moiety is then further
phosphorylated to generate HMP-PP by the TH1 enzyme (31).
TH1 is a bifunctional enzyme that also catalyzes the condensa-
tion of HMP-PP and HET-P to form thiamine monophosphate
(TMP) (31, 32) (Fig. 3). Interestingly, TMP is not directly phos-
phorylated to TDP; rather, it is first dephosphorylated to thia-
mine by a phosphatase (Fig. 3). Although this was originally
thought to be a phosphatase of broad specificity (33, 34), the elu-
cidation of the role of TH2—a mutant of which was one of the
classical thiamine-requiring mutants isolated in 1969 (th2-1)—
demonstrated that it is its specific function (35, 36). That TH2
encodes a specific TMP phosphatase was supported in an inde-
pendent study with the isolation of the Arabidopsismutant pale-
green1 (pale1) (37). Intriguingly, these studies have shown that
TH2/PALE1 is localized to the mitochondria and perhaps also
the cytosol (36, 37). Thus, as TMP is made in the chloroplast,
either it is transported to the site of TH2, or other TMP phospha-
tases also exist in plastids (Fig. 3). In Arabidopsis, conversion of
thiamine into TDP by the thiamine kinase TPK is reported to
occur in the cytosol (38) (Fig. 3). To date, thiamine kinases have
not been studied in other plant species, so it is not knownwhether
TPKs are exclusive to the cytosol among plantae. However, if the
sole localization of TPKs is to the cytoplasm, then as TDP is a polar
molecule, it needs to be actively imported into the organelles to
furnish enzymes dependent on it as a coenzyme (Fig. 3).
Transporters specific for TDP at the mitochondrial mem-

brane are known and are annotated as thiamine pyrophosphate
carriers (TPCs) (39). Arabidopsis has two members (TPC1 and

Figure 1. Broad classification of vitamins. Vitamins are divided into two
general groups, those that are fat-soluble (A, D, E, and K) and those that are
water-soluble (B1, B2, B3, B5, B6, B7, B9, B12, and C).
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TPC2), which have recently been shown to be vital for plant
survival (40) (Fig. 3). Additional transporters involved in thia-
mine metabolism may be present on the plastid envelope, in
particular for import of TDP to furnish the enzymes dependent
on it as a coenzyme, but have not been characterized. Interest-
ingly, the nucleotide cation symporter NCS1 (also annotated as
PLUTO) (41, 42) is localized to the plastid (Fig. 3) and was
recently implicated in transport of the thiamine precursor
HMP, as well as TDP when plants are compromised in biosyn-
thesis de novo (40, 43). However, transporters at the plastid
membrane that import TDP biosynthesized de novo in the
cytosol remain elusive and would be expected to be essential
for plant survival. Due to the numerous substrates and suicide
enzymes involved, thiamine biosynthesis de novo incurs rela-
tively high energy costs (44, 45). A consequence of this is that
TDP appears to only be biosynthesized when required and is
under tight control. In plants, one way to regulate TDP abun-
dance is through the only riboswitch known to exist in plants,
and which is present in the 39-UTR (UTR) of the biosynthesis
gene THIC (46, 47). When there is an elevated level of free TDP
(although this level remains undefined), it can bind to the 39-
UTR ofTHIC pre-mRNA in the nucleus, modifying the second-
ary structure in a way that promotes splicing of an intron and
forming an unstable mRNA, which lowers the amount of THIC
and, in turn, the biosynthesis of the pyrimidine precursor in a
negative feedback loop (Figs. 3 and 4). In addition, many com-
ponents of the TDP biosynthesis machinery in plants are under
the control of the genetically encoded circadian clock at the
transcriptional level (40, 48) (Fig. 4). Interestingly, the peaks in
abundance of the biosynthesis components and known trans-
porters are at distinct times of the day (evening and morning,
respectively), which may serve to coordinate supply with the
needs of the cell (40). It is also noteworthy that thiamine salvage
pathways have undergone investigation in plants (49–51) and

may provide roles in maintaining vitamer homeostasis, bypassing
the significant energetic costs required in biosynthesis de novo.
Such pathways deserve further attention because theymay confer
an adaptive advantage to plants in times of environmental stress.
From published profiles of B1 vitamers, TDP appears to be

the most abundant form in both shoots and roots of plants, fol-
lowed by TMP and thiamine (34, 52), although thiamine is the
most abundant form in seeds by far (53). The other analogs of
thiamine (Fig. 2) have been reported to exist in several organ-
isms, but it is thought that they have messenger activity rather
than acting as potential vitamer forms that could contribute to
TDP biosynthesis. Among these is thiamine triphosphate
(TTP) (Fig. 2), which is implicated in nerve cell biochemistry in
animals, andmuch work has been done to elucidate its function
therein (21, 54). Interestingly, it is thought that TTP may func-
tion as an allosteric effector of metabolic enzymes (55). More
specifically, it is thought that TTP binds distal to the active site
of enzymes, such as pyridoxal kinase, malate dehydrogenase, and
glutamate dehydrogenase, where in the case of the latter, it acts as
a positive effector of activity (55). TTP has also recently been
characterized by our group in plants (115). In plants, the abun-
dance of TTP increases during the light period, and its synthesis
may be coupled to the protonmotive force and TDP levels, as has
been shown in bacteria (56). It is possible that TTP may play a
role in plant metabolic homeostasis (see below), similar to its role
in animal cells, but this remains to be demonstrated. Notably,
homologs for the three target proteins in humans mentioned
above are also present in plants. Another vitamer form is adeno-
sine thiamine triphosphate (ATTP) (Fig. 2), which has been char-
acterized mainly in bacteria, where it appears under nutritional
stress (22), but its precise function remains elusive. ATTP has
been detected in root material of Arabidopsis (22), but it could
not be detected in a recent study of these compounds from our
group and awaits further characterization in plants (115). It has

Figure 2. Chemical structures of the vitamin B1 family. The basic unit thiamine (blue) is shown at the top, comprising pyrimidine (purple) and thiazolium
(pink) heterocycles linked by a methylene bridge (green). Thiamine derivatives vary in their phosphorylation states (black) and adenosylation states (red) and
include TMP, TDP, TTP, ATDP, and ATTP. Thosemarkedwith an asterisk have been implicated as signalingmolecules.
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also been reported that adenosine thiamine diphosphate exists
(57) (Fig. 2), but it has not undergone rigorous characterization.

The role of thiamine in plant metabolism, crop yield,
and plant health

Thiamine and its vitamers have many roles in plant cells, the
best-characterized of which is in the form of TDP, a coenzyme
for many central metabolic enzymes (Fig. 3). Such enzymes
include those involved in both photosynthesis (transketolase,

TK) and respiration (pyruvate dehydrogenase, PDH; a-ketoglu-
tarate dehydrogenase, a-KGDH) in the Calvin and TCA cycles
of chloroplasts and mitochondria, respectively. The abundance
of TDP in plant cells and organelles can affect flux through
these key metabolic pathways. Indeed, a-KGDH exhibits one
of the highest flux control coefficients of plant TCA cycle
enzymes (58), and low TDP has been attributed to reduced flux
through the TCA cycle via modulation of a-KGDH activity
(59). Conversely, elevated levels of TDP are attributed to
increased flux and a general increase in respiration rate (48).

Figure 3. Biosynthesis, transport, and roles of the coenzyme thiamine diphosphate in the model plant Arabidopsis. TDP biosynthesis (black) and its
roles in the plant cell (blue dashed arrows, coenzyme activity) are displayed, with currently uncharacterized aspects of the pathways shown in gray. TMP is gener-
ated from the condensation of HMP-PP and HET-P, catalyzed via TH1 in the chloroplast. HET-P is synthesized by THI1 and a NUDIX hydrolase using NAD1, glycine,
and a sulfur atom from the THI1 backbone, which renders this protein inactive as a catalyst for this reaction after one cycle (*). HMP-PP is formed from aminoimida-
zole ribonucleotide (AIR) by THIC and the phosphorylation activity of TH1. To generate the coenzyme form, TDP, TMP is first dephosphorylated to thiamine cata-
lyzed by TH2/PALE1 in the cytosol (or mitochondrion) or uncharacterized phosphatases (in the chloroplast or cytosol) before phosphorylation to TDP by TPK in the
cytosol. TDP has many roles in the cell, including in a negative feedback loop whereby TDP regulates thiamine biosynthesis through THIC gene expression in the
nucleus via a riboswitch. TDPmay be transported from the cytosol into the plastid via the nucleotide cation symporter 1 (NCS1), and into themitochondrion by thi-
amine phosphate carriers (TPC1 and TPC2), whereas other thiamine vitamer transporters have not yet been characterized, particularly at the chloroplast envelope
(gray). Enzymes requiring TDP as a coenzyme (dashed arrows) take key positions in central metabolism; in the chloroplast, TDP is involved in carbon assimilation,
acting as a coenzyme for the Calvin cycle enzyme transketolase (TK) and for the TDP-dependent enzymes 2-deoxyxylulose 5-phosphate synthase (DXPS) and aceto-
hydroxyacid synthase (AHAS) for isoprenoid and branched-chain amino acid biosynthesis, respectively. Another TDP-dependent enzyme, pyruvate dehydrogenase
(PDH), is involved in lipid biosynthesis in the chloroplast. In the cytosol, TDP-dependent enzymes include TK in the pentose phosphate pathway, important for gen-
erating NADPH and pentoses, and also pyruvate decarboxylase (PDC) involved in anaerobic respiration/fermentation. In the mitochondrion, the TDP-dependent
enzyme PDH is involved in feeding carbon into the TCA cycle, and a-ketoglutarate dehydrogenase (a-KGDH) is a key enzyme thatmodulates flux through the TCA
cycle, affecting the redox, energy, and nitrogen balance of the cell. Branched-chain oxy-acid dehydrogenase (BCOADH) is a mitochondrial TDP-dependent enzyme
complex that is involved in branched-chain amino acid catabolism.
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Moreover, TDP modulation has been demonstrated to directly
alter plant metabolite abundance, in particular several photo-
synthetic pigments (40). However, it is not yet clear whether
this remodeling is adaptive or responsive (i.e. are thiamine
vitamer levels actively controlled by the cell to modulate, redis-
tribute, or promote fluxes?) (54, 59). If this is the case, then cel-
lular thiamine vitamers could play an exciting role in the active
coordination of carbon catabolism (respiration) and anabolism
(photosynthesis) and exert control over the carbon budget in
plant cells and even organelles.
Indeed, the apparent homeostasis of TDP in plants is begin-

ning to appear increasingly important (Fig. 4). In particular,
organellular levels of the coenzyme TDP appear to be rate-lim-
iting, resulting in flux remodeling through central metabolism
(59). As mentioned above, intracellular TDP concentrations
are modulated by a riboswitch, diel (i.e. daily) rhythms in the
biosynthesis and organellular transport machinery, and the cir-
cadian clock (40, 48) (Fig. 4). So many layers of functional re-
dundancy in control can serve to show the importance of TDP
abundance to plant function and may even play a role in diel
metabolite rhythms. The latter occur as a function of the light-
dark cycle iterations that plants need to endure, being sessile,
by reconfiguring metabolism on a daily basis (60). Indeed, loss
of one of the TDP control systems—as demonstrated through a
defective riboswitch—prevented plants from adapting to vari-

able photoperiods and had dramatic negative effects on plant
health and growth (48, 61) (Fig. 4). Interestingly, although in
a mechanistically different context, overexpression of TK
appears to result in the hoarding of cellular TDP reserves,
depriving other enzymes of the coenzyme and leading to
stunted growth and chlorophyll deficiencies (62). Therefore,
tight regulation of cellular TDP concentrations appears to be
key to metabolic homeostasis, photoperiod adaptation, and
plant health (40, 61). Nonetheless, it can also present an oppor-
tunity for exploitation; might slight modifications and fine-tun-
ing of TDP allow us to modulate processes that it is involved
in, such as photosynthesis or carbon assimilation? As TDP con-
centrations affect metabolite abundances, can we use this rela-
tionship to increase plant sugars, amino acids, and lipid
reserves that could improve crop yields?
To avoid a Malthusian crisis (i.e. Thomas Robert Malthus’s

theory on population), growing demands are expected to neces-
sitate an increase in food production by 40–70% (63). More-
over, the compounding effects of climate change and the
impact of agricultural land use on biodiversity, soil erosion, and
water use emphasize the need to change agricultural practices
imminently. Increasing plant productivity and crop yield has
been a strong focus of plant scientists for several decades.
Efforts in enhancing crop productivity and yields have largely
concentrated on increasing photosynthetic carbon assimilation

Figure 4. Importance of maintaining thiamine diphosphate balance in plants. TDP levels are regulated by the circadian clock, light/dark cycles, and a
riboswitch. Balancing of TDP levels is important and may in turn be integrated into the balance of carbon (C) and nitrogen (N) that yields healthy thriving
plants possibly mediated through a-ketoglutarate (a-KG) abundance. a-KG lies at the intersection between carbon and nitrogen metabolism and is metabo-
lized by a-ketoglutarate dehydrogenase (not shown) during carbonmetabolism by the TCA cycle or GDH during nitrogenmetabolism. ATTP and TTP act as al-
losteric activators of GDH in mammalian systems, but a similar function in plants has not yet been explored. Application of thiamine primes plants against
biotic stress via up-regulation of PR genes and salicyclic acid (SA). Thiamine also positively influences against abiotic stress via abscisic acid (ABA). Inhibition of
riboswitch function (red line) leads to TDP imbalance. Inappropriate perturbation of TDP levels impacts carbon/nitrogen balance, plant health, and yield. This
figure wasmade with BioRender.
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in the Calvin cycle and transfer of this carbon into storage sinks,
such as starchy cereal grains or tubers (64, 65). Efforts have also
been made to reduce the respiratory losses of plants and their
maintenance costs, allowing more resources to be directed into
biosynthesis and growth (66). In the context of thiamine, it has
recently been proposed that reengineering more stable and
nonsuicide versions of thiamine biosynthesis enzymes offers
the potential to reduce the energetic costs of thiamine biosyn-
thesis and puts forward ideas of how it could impact crop yield
potential (67). Indeed, as thiamine has roles across key meta-
bolic processes in plants, including both carbon assimilation
(photosynthesis) and respiration (TCA cycle), and with its
coordinated and wide-reaching responses throughout central
plant metabolism, it presents an attractive target in the efforts
to increase crop yield. However, plant macromolecules are not
made of carbon alone, and the provision of carbon skeletons by
the TCA cycle into biosynthetic molecules, such as amino acids
for proteins, demonstrates the need to balance and coordinate
carbon and nitrogen assimilation for optimal yield increases.
The metabolite a-ketoglutarate (a-KG) (or 2-oxoglutarate) lies
at the intersection of the main carbon and nitrogen metabolic
pathways (Fig. 4). Although coordination of carbon and nitro-
gen metabolism in plants has not fully been elucidated, the
abundance of a-KG appears to be a master regulator in the
maintenance of this balance, at least in bacteria (68, 69). Fun-
neling of a-KG either through the TCA cycle, by the TDP-de-
pendent a-KGDH, or into nitrogen assimilation, by glutamate
dehydrogenase (GDH), is integrated into the energy status of
the cell. Intriguingly, in mammalian cells, the noncoenzyme
thiamine vitamers TTP and ATTP have been demonstrated to
be able to allosterically activate GDH and thereby may also
have a role in the fate of a-KG (54, 55) (Fig. 4). In bacteria, TTP
appears transiently in amino acid–starved cultures supple-
mented with glucose and is proposed to have a signal function
(70, 71); however, it is not known what this function is.
Although recently our group has characterized TTP in Arabi-
dopsis, it is also not known yet what its physiological role is.
ATTP, on the other hand, is present under general starvation
conditions in bacteria (i.e. cultures devoid of amino acids and
carbon), and it has also been proposed to be a signal molecule,
but its function also remains to be elucidated (71). An early
report claims to have detected ATTP in Arabidopsis (22), but it
could not be detected under the conditions used in our recent
study. Notwithstanding, the specific roles and potential influ-
ence of these thiamine derivatives on the nitrogen and carbon
status in plants could represent a novel research area that could
offer significant biotechnological opportunities.
Thiamine is also implicated in abiotic and biotic plant stress

responses, with up-regulation of thiamine biosynthesis under
stress conditions. In terms of abiotic stress, salt, temperature,
and osmotic and oxidative stress have been shown to up-regu-
late thiamine biosynthetic genes in plants (72). In particular,
THIC and THI1 transcript abundance is rapidly induced in
Arabidopsis by these stresses and appears to be an early stress
response mediated by abscisic acid (73). In this latter study, up-
regulation of these thiamine biosynthesis genes under stress is
thought to provide more TDP to furnish metabolic enzymes
dependent on it as a coenzyme, which may in turn support abi-

otic defense responses. Recently, it was proposed that thiamine
compounds may act as antioxidants themselves (74), but there
is currently no direct evidence for this, and it remains to be
demonstrated in the future. On the other hand, exogenous thia-
mine supplementation has been shown to be beneficial in
improving plant pathogen resistance. Thiamine-treated crops
display increased resistance to biotic infections via up-regulation
of pathogenesis-related (PR) genes, effects that last for up to 15
days after treatment and prime the plant against infection via
whole-plant systemic-acquired resistance mediated by salicylic
acid production (75, 76) (Fig. 4). This response is widespread
across many crops, with increases in wheat, pea, barley, oat, and
millet resistance to herbivory and fungal infections after thiamine
application (77–79). Conversely, rice plants with diminished thia-
mine contents had increased susceptibility to bacterial blight
infections (80). Furthermore, and also of significance for plant
health, thiamine has recently been implicated in both root nodule
and the arbuscular mycorrhizal (an endophytic fungus) symbio-
ses (81, 82). The impact of thiamine on these symbioses could
have profound effects on nutrient uptake, particularly nitrogen
and phosphorus, and thereby influence plant growth and devel-
opment. Therefore, thiamine is emerging as an important mole-
cule for plant resistance and adaptation under abiotic and biotic
stress, which directly impacts crop yields. Increasing thiamine
content of plants may thus have the potential to improve crop
defense, yield reliability, and plant metabolic robustness in a
changing climate and is discussed further in the next section.

Thiamine biofortification in crops for human health

As a water-soluble vitamin, thiamine cannot be stored by the
body and is readily excreted. Therefore, consistent consump-
tion of thiamine is necessary to avoid deficiencies, as depletion
in the body can occur within just 2–3 weeks (83). Asmentioned
above, clinical manifestations of thiamine deficiency can take
the form of beriberi disease. Notably, the disease presents itself
in two types: wet beriberi affects the cardiovascular system and
results in symptoms ranging from a shortness of breath to rapid
heart rates and palpitations; dry beriberi affects the nervous
system, causing numbness, difficulty moving, amnesia (Korsak-
off syndrome), and brain lesions (Wernicke encephalopathy)
(84). These extreme forms of thiamine deficiency can ulti-
mately cause death (84). Clinical deficiencies appear to have
become less frequent and are thought to be largely limited to
populations adhering to sustenance diets high in carbohydrate
content (37, 83). Although subclinical deficiencies are less
extreme, they still have significant negative effects on human
metabolism and health and are thought to be more widespread
(84); 16% of diets from the elderly in the United States were
found to contain insufficient thiamine (85, 86), and in the
United Kingdom, 21% of randomly selected patients admitted
to an emergency department were found to have thiamine defi-
ciencies (87). These can be due to poor diets or medical condi-
tions such as alcoholism (88), vomiting, and diarrhea, which
all limit the absorbance of thiamine (83, 84). Deficiencies in
micronutrients, thiamine included, are commonly described as
“hidden hunger” due to their chronic manifestation, which is
often invisible until serious or fatal, compounded by a lack of
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sufficient methods to efficiently perform diagnoses (84, 89). This
differs from hunger per se, which is used to refer to reduced
intake of food in terms of calories. Hidden hunger is derived from
a lack of food that is nutritious (i.e. in terms of micronutrients,
stemming from a lack of access to a varied diet). Hidden hunger
is becoming more prevalent due to the burgeoning population,
especially over the last 5–6 decades, many of whom are poverty-
stricken, in addition to the global dependence on just a few high-
calorie but low-in-micronutrient content crops, and the global
drift to consuming highly processed foods (89).
Of the staple crops that constitute most of humanity's diet,

many are low in thiamine abundance (3, 90). Indeed, based on
the documented thiamine content of the world’s most con-
sumed staple crops, excessive quantities of rice, corn, wheat,
potatoes, and the orphan food crop, cassava, would need to be
consumed tomeet the recommended daily allowance (Table 1).
For example, 5.5–7.5 kg of boiled white rice would need to be
consumed daily to provide sufficient dietary thiamine (Table
1). Further significant losses of thiamine result from refining
and polishing of cereal; during the processing of brown rice to
white rice, the thiamine-rich bran and germ components of the
grain are removed, and in the production of white flour, the
germ and aleurone layers are discarded, leaving the endosperm,
which is relatively thiamine-poor (3, 28, 92) (Table 1). More-
over, processing and cooking can reduce thiamine content even
further (Table 1); for example, baked bread made from white
wheat flour contains 15–48% less thiamine than its dough, due
to heat degradation and yeast-driven conversion of thiamine to
the more heat-labile TDP (93). Preserving food in tins or cans
can also reduce thiamine content due to the alkaline pH from
sulfate preservatives causing degradation, and boiling of food
results in the leeching of thiamine (Table 1) (World Health Or-
ganization (2013) Micronutrient deficiencies, https://www.
who.int/nutrition/topics/vad/en/; accessed March 25, 2020).
To counteract these processing steps, it is common to reintro-
duce thiamine to food after processing via fortification and
enrichment with synthetic forms of the vitamin (Table 1), which

is even mandated by some governments (84). However, the costs
of supplementation can be prohibitive, and crops still make up
the main source of thiamine in most diets. Notably, the provision
of vitamin pills as an alternative is short-term,may not be sustain-
able, requires continuous financing, and in many cases cannot be
delivered to those in most need. Therefore, there remains signifi-
cant and wide-reaching public health benefits from the produc-
tion of food crops with increased thiamine contents.
Biofortification is one mechanism to provide a solution, as it

offers a one-time investment to improve crop micronutrients
that avoids changes in diet with minimal (if any) impact on agri-
cultural practices or the costly fortification of food during proc-
essing. Biofortification can be achieved through breeding strat-
egies if the trait exists (e.g. higher thiamine content in a related
variety) and can be exploited in this manner, although breeding
strategies can be limited by their lengthy generation times and
only exploit beneficial cisgenes that can be introduced if sexual
compatibility allows. As an alternative, introduction of novel
genes and rapidmodification of crop phenotypes can be achieved
through genetic engineering. However, the success of genetic
modification relies on how well-characterized the metabolism
and physiology of the plant is. Fortunately, the understanding of
thiamine biosynthesis, transport, salvage, regulation, andmetabo-
lism in plants has progressed significantly in recent years, as
described above, and has been matched with advances in bioen-
gineering techniques.
Readily available and improved genomic toolkits, such as the

publication of crop genomes and quantitative trait locus (QTL)
mapping, have enabled the identification and sequencing of
genes behind phenotypic variation. Through these methods,
it is increasingly possible to identify the alleles that convey
advantageous traits; QTL mapping has successfully identified
several loci that correlate with increased thiamine content in
modern wheat varieties (94). Similarly, analysis of thiamine
content across cassava accessions identified cultivars with a
170% increase in thiamine content (95), which could be intro-
duced to other cultivars by introgressive hybridization and

Table 1
Minimum daily consumption (kg) of each of the five most consumed staple crops required to meet the recommended daily amounts (RDA)
of thiamine for males, females, and lactating females
Amounts were calculated from the United States Department of Agriculture Food Data Central using recommended daily allowances of thiamine from theWorld Health
Organization. Each crop can be identified using the United States Department of Agriculture National Database Number (NDB number). Amounts were calculated using
mg of thiamine per kg of each crop divided by the recommended daily allowance of thiamine (mg).

Crop (USDANDB number) (91)

Potato Rice

Potatoes, white,
flesh and skin,
raw (11354)

Potatoes, white,
flesh and skin,
baked (11357)

Rice, white,
medium-grain, raw,
unenriched (20450)

Rice, white, medium-
grain, cooked,

unenriched (20451)

Rice, brown,
medium-grain,
raw (20040)

Rice, brown,
medium-grain,
cooked (20041)

Thiamine content (mg/kg crop) 0.71 0.48 0.7 0.2 4.13 1.02
Males (RDA 1.2 mg) (kg) 1.69 2.50 1.71 6.00 0.29 1.18
Females (RDA 1.1 mg) (kg) 1.55 2.29 1.57 5.50 0.27 1.08
Lactating females (RDA 1.5 mg) (kg) 2.11 3.13 2.14 7.50 0.36 1.47

Crop (USDANDB number) (91)

Corn Wheat Cassava

Corn,
raw

(787790)

Corn,
cooked
(788178)

Wheat flour, white,
all-purpose,

unenriched (169761)
Flour, whole wheat,
unenriched (790085)

Wheat flour, white,
all-purpose, enriched,
bleached (1 68894)

Cassava,
raw

(169985)

Cassava,
cooked
(787178)

Thiamine content (mg/kg crop) 1.55 0.35 1.2 5.04 7.85 0.87 0.7
Males (RDA 1.2 mg) (kg) 0.77 3.43 1.00 0.24 0.15 1.38 1.71
Females (RDA 1.1 mg) (kg) 0.71 3.14 0.92 0.22 0.14 1.26 1.57
Lactating females (RDA 1.5 mg) (kg) 0.97 4.29 1.25 0.30 0.19 1.72 2.14

JBC REVIEWS: The importance of thiamine in plant health

12008 J. Biol. Chem. (2020) 295(34) 12002–12013

https://www.who.int/nutrition/topics/vad/en/
https://www.who.int/nutrition/topics/vad/en/


backcrossing. Undomesticated relatives of crop plants also
offer large pools of genetic variation to exploit, and targeted
breeding programs are being pursued to cross modern potato
varieties with wild cultivars that have over 2-fold increases in
their thiamine content (91). Understanding the molecular
and physiological basis of these differences in thiamine con-
tent may also serve to help direct metabolic engineering
efforts in other crops.
Modulation of riboswitch control of THIC expression was an

obvious target to test for an increase in thiamine content upon
its discovery. However, in Arabidopsis, only a modest increase
in thiamine content was observed in plants with a nonfunc-
tional riboswitch (48) or upon overexpression of THIC by plac-
ing its expression under the constitutive cauliflower mosaic vi-
rus 35S promoter (48, 96). Moreover, these approaches led to
modified B1 vitamer profiles, and the plants suffered from
stunted growth, chlorosis (i.e. loss of green color), and delayed
development (48) (Fig. 4). Furthermore, central metabolism
was perturbed, and in the case of the nonfunctional riboswitch
lines, plants could not acclimate to an abrupt change in photo-
period (61), implying that these lines would not perform well if
faced with an environmental challenge. This rendered the
manipulation of THIC alone as an undesirable target for
rational vitamin B1 biofortification of plants. However, we have
previously proposed that a balance of precursors was required
to appropriately increase thiamine content (92). This was sup-
ported by experimentation inArabidopsis, where supplementa-
tion with both thiamine precursors, HET and HMP (Fig. 3), led
to an 8-fold increase in thiamine vitamer content, but no
change was observed if each was supplemented alone (92).
Importantly, there was no obvious impact on growth or pheno-
type, and there was no significant alteration of the coenzyme
form, TDP, which could negatively influencemetabolic homeo-
stasis (92). Later studies simulated this work by overexpression
of both THIC and THI1 in either Arabidopsis or rice (97, 98).
Indeed, thiamine vitamer content increased by 3.4- and 5-fold
in Arabidopsis leaves (97) and rice leaves (98), respectively.
However, whereas this increased thiamine content could also
be observed in the rice unpolished grain, it was not found in the
polished grain, suggesting that the elevated thiamine content
was derived from the rice bran or embryo and had not reached
the endosperm. Therefore, whereas it appears that both the
pyrimidine and thiazole branches of thiamine biosynthesis
are necessary targets to modify in tandem to maximize thia-
mine abundance in plants (28, 92), further strategies need to
be explored to increase thiamine content in the endosperm
of rice (i.e. the part left after polishing of the grain). As men-
tioned above, with current technologies, mining of the thou-
sands of rice varieties available may reveal cultivars with
increased thiamine contents (99), the molecular basis of which
could be used to increase endosperm thiamine content in this
food crop through engineering or breeding. To date, a set of cas-
sava cultures have been examined for their diversity in vitamin B1
content (95), as well as a small set of rice and potato cultivars (91,
100–102). However, only up to 3-fold variation was observed in
the varieties analyzed in these studies; thus, further genetic
resources remain to be examined for their thiamine content.

It is essential to note that metabolic engineering of individual
pathways is futile unless the metabolic system offers the
capacity to support these changes; overexpression of the thia-
mine biosynthesis pathways alone will not elevate thiamine
abundance if the supply of upstream precursors is not also bal-
anced. For example, HET production needs to bematched with
NAD1 biosynthesis, and expression changes in the suicide
enzyme THI1 need to be matched with changes in energy pro-
duction to meet the associated protein synthesis costs. Simi-
larly, HMP production relies on purine biosynthesis and the
need to furnish the THIC enzyme with an iron-sulfur cluster
and SAM, which should not create a dearth in supply for
other enzymes. To avoid simply moving a metabolic bottle-
neck to elsewhere in the system and to successfully realize
biotechnological aims, a network approach may prove useful
for rational engineering. Advances in computational model-
ing of the plant metabolic network (e.g. by flux balance analy-
sis) are identifying suites of genes required to achieve suc-
cessful biotechnological outcomes (103, 104), and similar
approaches could be useful in identifying targets to achieve
vitamin B1 biofortification in plants and their edible organs.
An attempt at this approach has already been made, and pre-
liminary testing was carried out using cassava as a model with
the convenience of altering gene expression using virus-
induced genomic silencing (105), but the desired outcome of
effectively increasing thiamine content was not achieved
(106), and this approach would need refinement if it were to
be explored further. In particular, some of the targets identi-
fied (purine metabolism) are part of essential metabolic path-
ways and, when silenced completely, appeared to cause dele-
terious effects. The use of weak promoters or targets with
altered desired activity may provide a solution.
Conventional methods of plant genetic modification previously

employed cloning genes into the tumor-inducing plasmid of
Agrobacterium tumefaciens, exploiting its DNA transmission
capabilities to insert novel genes into plant genomes (107). How-
ever, the introduction of CRISPR/Cas9 technologies for genetic
engineering (108) has enabled targeted insertion of transgenes at
specific locations throughout plant genomes (11, 13) and without
additional insertion of bacterial flanking DNA (109). Recently,
these techniques were successful in inserting a carotenoid biosyn-
thesis cassette into rice, which yielded processed rice grains with
high carotenoid (vitamin A) content and had no deleterious
effects on crop yield or physiology (109). Once appropriate genes
are identified for thiamine enhancement, a similar approach could
be used. Although these advances have improved genetic engi-
neering outcomes and show success in vitamin biofortification
attempts, the remaining issues with public perception, regulation,
and cost still hinder biofortification efforts achieved in this way.
Plants are able to uptake thiamine from their surroundings, as

demonstrated by the better growth of thiamine biosynthesis
mutants in soil compared with that in culture and supported by
experiments in vitro where thiamine supplementation rescues
the severe phenotypes of stunted growth and chlorosis (5). How-
ever, soil pH,mineral content, and pesticide use are likely to affect
thiamine distribution in soil (79). Interestingly in this context,
root exudates (i.e. secretions) of crop plants are known to contain
thiamine, but it is not clear if this is from the plants themselves or
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secreted from microbes associated with plant roots (110). Plant
growth–promoting rhizobacteria (PGPR) (i.e. bacteria that
inhabit the area around plant roots) have been demonstrated to
secrete thiamine into the rhizosphere, and direct exchange of
vitamins between PGPR and plants has been reported (110). It is
possible to hypothesize that plants could become, or already are,
involved in symbiotic exchange of thiamine with rhizobacteria
and maybe also with mycorrhizal fungi (i.e. fungi that inhabit the
area around plant roots) (81, 82, 110, 111). Considering that
between 2 and 12% of total plant maintenance energy demands
have solely been attributed to thiamine biosynthesis enzyme
turnover (THIC and THI1), out-sourcing thiamine anabolism
might confer significant benefits to the plant (45, 67). Moreover,
application of exogenous thiamine is known to decrease expres-
sion of the THIC gene, as demonstrated in Arabidopsis (5) and
cassava cultivars (95), thus switching off thiamine biosynthesis de
novo. Therefore, the perception of an alternative thiamine source
by plants may have the same effect (i.e. switch off the expensive,
energy-draining biosynthesis de novo pathway within the plant
itself). In turn, it is possible to envisage how this situation would
also benefit the associated bacteria, as they would receive more
carbon exudates from larger and healthier plants, keeping in
mind that 12–40% of photosynthetic carbon is released by plants
as exudates to support soil biota (112). In a different view, there is
also evidence for the exploitation of plants by microbes. For
example, root colonization of oil palm seedlings with the endo-
phytic (i.e. the life cycle is completed within plants) fungus Hen-
dersonula toruloidea resulted in increased endogenous expres-
sion of thiamine biosynthesis genes and a 2-fold increase in
thiamine vitamers in the plant as a response to colonization
(113). Although the mechanism behind this is unknown and will
certainly be interesting to elucidate, it suggests that nonbeneficial
(i.e. pathogenic) microbes could exploit plants by increasing thia-
mine content for their own purposes. Although the wider
impacts on crop yield and health need to be considered, farming
practices that promote microbial interactions (i.e. fewer pesti-
cides) have been shown to yield spinach crops with higher thia-
mine contents than alternatives grown conventionally (114).
Thus, application of beneficial thiamine-synthesizing bacteria to
agricultural fields may offer a method to improve thiamine con-
tent of crops but has not been explored. Nonetheless, thinking
beyond biofortification sensu stricto may provide novel ways to
alsomanipulate crop thiamine content.

Conclusion

Thiamine and its vitamers appear to have vital roles in plant
health and metabolism, both through a role as an essential en-
zymatic coenzyme and as molecules for plant stress resistance.
The full extent of the effect of thiamine modulation on plant
metabolism and defense responses is still not fully understood,
but it is clear that thiamine is essential for plant health and sur-
vival. Here we present an emerging idea that thiamine vitamers
may be involved in the coordination of carbon metabolism in
plants and even in the balance between carbon and nitrogen
assimilation. Further experimental validation will be necessary
to properly characterize the importance of thiamine in balanc-
ing plant energy and anabolism and any possible involvement

in crop yield. Additionally, the intrinsic role of TDP across sev-
eral central plant metabolic processes and in different cellular
organelles presents it as a molecule that, if modified, could
be used to create coordinated and wide-reaching responses
throughout plant metabolism. Modulation of thiamine abun-
dance through biotechnological methodsmay be used to increase
crop yields or increase plant tolerance to changing environmental
conditions or biotic stresses. Similarly, these novel technologies
and improved understanding in both thiamine and plantmetabo-
lism have created opportunities to address thiamine dietary defi-
ciencies through biofortification. Indeed, engineering thiamine
enhancementmay not only assist in improving nutritional quality
but also provide insight into the role of thiamine in central meta-
bolic processes. Thiamine in plants is therefore highly important
to both public health and food security. Finally, although we have
focused on thiamine here, we would also like to mention again
that the other B vitamins are also vital and likely to have similar
important contributions to plant central metabolism, while also
being targets for nutritional enhancement. Moreover, there is
even likely to be cross-talk between the B vitamins, as key path-
ways and even some individual enzymes use several B vitamins as
coenzymes. The ongoing investigation of all vitamers within a B
vitamin family and engineering for nutritional needs will help to
decipher these communication pathways. It can be envisioned
that perception and even signaling of vitamin B status is transmit-
ted to trigger a specific outcome and provides a fertile area of
research for the future with the potential for great impact in
terms of fundamental understanding and access to sustainable
nutritious food.
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