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A B S T R A C T   

Objective: To investigate the impact of harmonization on the performance of CT, PET, and fused PET/CT radiomic 
features toward the prediction of mutations status, for epidermal growth factor receptor (EGFR) and Kirsten rat 
sarcoma viral oncogene (KRAS) genes in non-small cell lung cancer (NSCLC) patients. 
Methods: Radiomic features were extracted from tumors delineated on CT, PET, and wavelet fused PET/CT 
images obtained from 136 histologically proven NSCLC patients. Univariate and multivariate predictive models 
were developed using radiomic features before and after ComBat harmonization to predict EGFR and KRAS 
mutation statuses. Multivariate models were built using minimum redundancy maximum relevance feature se-
lection and random forest classifier. We utilized 70/30% splitting patient datasets for training/testing, respec-
tively, and repeated the procedure 10 times. The area under the receiver operator characteristic curve (AUC), 
accuracy, sensitivity, and specificity were used to assess model performance. The performance of the models 
(univariate and multivariate), before and after ComBat harmonization was compared using statistical analyses. 
Results: While the performance of most features in univariate modeling was significantly improved for EGFR 
prediction, most features did not show any significant difference in performance after harmonization in KRAS 
prediction. Average AUCs of all multivariate predictive models for both EGFR and KRAS were significantly 
improved (q-value < 0.05) following ComBat harmonization. The mean ranges of AUCs increased following 
harmonization from 0.87–0.90 to 0.92–0.94 for EGFR, and from 0.85–0.90 to 0.91–0.94 for KRAS. The highest 
performance was achieved by harmonized F_R0.66_W0.75 model with AUC of 0.94, and 0.93 for EGFR and 
KRAS, respectively. 
Conclusion: Our results demonstrated that regarding univariate modelling, while ComBat harmonization had 
generally a better impact on features for EGFR compared to KRAS status prediction, its effect is feature- 
dependent. Hence, no systematic effect was observed. Regarding the multivariate models, ComBat harmoniza-
tion significantly improved the performance of all radiomics models toward more successful prediction of EGFR 
and KRAS mutation statuses in lung cancer patients. Thus, by eliminating the batch effect in multi-centric 
radiomic feature sets, harmonization is a promising tool for developing robust and reproducible radiomics 
using vast and variant datasets.   
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1. Introduction 

Genomics status can critically impact and determine the manage-
ment of diseases and patients’ survival [1]. It is of utmost importance 
especially when malignant diseases, such as non-small cell lung cancer 
(NSCLC) are discussed [2]. To this end, molecular profiling is actively 
pursued and performed in many institutions [3]. Several studies have 
revealed that mutation statuses of epidermal growth factor receptor 
(EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) genes provide 
venues for personalizing and tailoring therapy of NSCLC patients [4,5]. 
At the same time, there are some drawbacks to the feasibility of 
molecular-based methods, such as low repeatability, invasiveness, and 
poor efficiency to detect whole tumor heterogeneity [6,7]. 

Radiomics is a growing field of medical imaging research, aiming to 
extract mineable quantitative biomarkers from single- [8–10] and most 
recently multi-modality [11–14] medical images to enable improved 
management of patients in several diseases, without having to use 
invasive methods, such as biopsy. Recent studies have indicated that 
radiomic features extracted from computed tomography (CT), magnetic 
resonance imaging (MRI), or positron emission tomography (PET) could 
potentially serve as markers to predict genomics status in several cancers 
[15–18]. In the case of NSCLC, there have been some investigations of 
CT and PET image features predicting EGFR and KRAS mutations [19]. 
Recently, we developed a framework based on radiomic features 
extracted from low-dose CT, contrast-enhanced diagnostic quality CT 
and PET in combination with machine learning algorithms for predic-
tion of EGFR and KRAS mutations in NSCLC patients [20]. The highest 
area under the receiver operator characteristic (ROC) curve (AUC) was 
0.82 for EGFR and 0.83 for KRAS mutation status prediction. In a study 
by Nair et al. [21], multivariate logistic regression models were devel-
oped to predict EGFR mutations in NSCLC by using PET/CT radiomics 
features. Their PET radiomics model depicted AUC, sensitivity, speci-
ficity, and accuracy performance of 0.87, 0.76, 0.66, and 0.71, respec-
tively. These values for CT radiomics model were 0.83, 0.84, 0.73, and 
0.78, respectively [21]. 

While the feasibility of using radiomic features as imaging genomics 
biomarkers were reported in a number of single-center studies, multi-
center studies provide a better insight and a faster route for the adoption 
of radiomics analysis in clinical setting through providing larger data-
bases compared to single center studies [22]. However, several technical 
problems in multicenter radiomics analyses need to be addressed before 
introduction in routine clinical practice [23,24]. In this light, radiomics 
studies have reported feature variability due to variations in image 
acquisition protocols, processing/reconstruction settings, and imaging 
scanners [25–27]. This variability will result in non-reproducible and 
non-robust radiomics models [28]. Meanwhile, in order to overcome 
these challenges, several standardization and/or harmonization ap-
proaches have been suggested and applied [29]. 

Harmonization used to be first applied to genetic studies, aiming to 
cope with problems that were present as of non-biological variations in 
multicenter experiments, also known as “batch effects” (e.g. different 
laboratories and centers, measurements at different time of the day) 
[30]. These batch effects can significantly alter genomics data analysis 
[31]. After the genetics area of studies, harmonization was introduced to 
neuroimaging [32,33], and finally, radiomics studies [34,35]. More 
recently, in a review article, Da-ano et al. [34] discussed the harmoni-
zation strategies for multicenter radiomics investigations. To find solu-
tions for robust radiomics modeling, they introduced harmonization 
approaches in two domains, including image and feature domains [34]. 
ComBat (a harmonization method in feature space, named for 
’’Combining Batches”) is a subtype of location-scale approach also 
known as the empirical Bayes method, which uses Bayes estimations for 
the location-scale parameters including mean and variance for each 
variable. 

A number of studies reported on the harmonization of radiomic 
features with respect to differences in various parameters, including the 

center and/or vendor [35–39], imaging protocol [40], and key acqui-
sition parameters [41]. ComBat was first used in radiomic studies by 
Orlhac et al. [39]. Mahon et al. [42] also applied this method to inde-
pendent phantom and lung cancer patient CT images. The following 
studies used ComBat harmonization to pool imaging data from different 
vendor/centers for radiomics modelling. 

Cackowski et al. [36] utilized ComBat harmonization for pooled 
radiomic features of T1-weighted MR images from two different sites. 
Shayesteh et al. [35] used ComBat to harmonize features from 
T2-weighted MRI enrolled from two cohorts, where one was used as 
training (scans acquired on a 3T MRI scanner) and the other as test 
(scans acquired on a 1.5T MRI scanner). Lucia et al. [37] harmonized 
features from PET and MR images from three centers to predict 
locoregional control and disease-free survival in locally advanced cer-
vical cancer patients. Dissaux et al. [43] utilized ComBat to pool 
radiomic features extracted from PET/CT scans of early-stage non–small 
cell lung cancer patients treated with stereotactic body from 4 different 
centers using different PET/CT scanners to build prognostic models. 
Orlhac et al. [39] pooled PET radiomic features of triple negative (TN) 
and non-TN breast lesions from two different departments using 
different PET scanners. Lastly, Robinson et al. [38] utilized ComBat to 
develop robust texture signatures across two different mammography 
units. 

Our hypothesis is that harmonized features can capture the biolog-
ical status more accurately owing to the elimination of bias-inducing 
issues. As such, we designed a study to apply this well-known harmo-
nization approach on both anatomical and functional and fused 
anatomical/functional radiomic features to examine its impact in terms 
of univariate and multivariate prediction performances. To summarize, 
the main aim of the present study is to examine the impact of ComBat 
harmonization on radiomic features extracted from CT, PET, and fused 
PET/CT images to predict EGFR and KRAS mutation status in NSCLC 
patients. 

2. Material and methods 

The workflow of this study is presented in Fig. 1. Radiomics features 
were extracted from the volume of interest segmented from CT, PET, and 
wavelet-based fusion images. Subsequently, ComBat harmonization was 
applied to each feature set to correct for the batch effect due to the 
multicentric nature of the dataset. Finally, prognostic models were 
developed to predict the EGFR and KRAS status of NSCLC patients using 
harmonized single- and multi-modality PET/CT radiomics. The different 
steps are provided in the following sections. 

2.1. Patient data and study design 

This study was conducted using 18F-FDG PET/CT imaging and 
genomic data of 211 histologically proven NSCLC patients provided by 
the Cancer Imaging Archive (TCIA) [44–47]. The dataset included pa-
tients from two independent institutions, referred to as dataset #1 and 
#2 in this work. Patients’ inclusion criteria are described in Fig. 2. The 
clinical characteristics of the patients are reported in Table 1 for both 
datasets. Regarding the imaging data, all patients underwent 18F-FDG 
PET/CT scans with detailed key acquisition parameters of the datasets 
presented in Table 2 based on DICOM headers of the datasets consid-
ering the exclusion criteria. For genomics analysis, tumor samples were 
excised with a slice thickness of 3–5 mm and were frozen for 30 min [20, 
44–47]. Exons 18, 19, 20, and 21 for EGFR and Exon 2 Positions 12 and 
13 with an amino acid substitution for missense KRAS mutations were 
analyzed [20,44–47]. 

2.2. Image segmentation 

PET and CT image segmentation was carried out by using OSIRIX® 
and 3D-slicer software, respectively. The lesions on PET images were 
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Fig. 1. Work flow of the present study. Radiomics features have been extracted from the volume of interest segmented from CT, PET, and wavelet based fusion 
images. Then ComBat harmonization is applied to each feature set to correct for the batch effect due to multicentric nature of the dataset. Finally, prognostic models 
are developed to predict the EGFR and KRAS status of the NSCLC patients using harmonized single- and multi-modality PET/CT radiomics. 

Fig. 2. Flowchart of NSCLC patient’s inclusion and exclusion criteria in different steps, patients were excluded because of image quality and image/gene data 
availability. 
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manually delineated whereas segmentations on CT images were carried 
out using an automatic region growing approach and modified manu-
ally. To minimize segmentation errors (for fused image) and in order to 
ensure that volumes of interest (VOIs) are equal in all models, a single 
mask combining the segmentation on CT and PET images was generated. 

2.3. Image fusion 

Prior to image fusion, image re-sampling and registration were per-
formed on PET and CT images. Prior to resolution matching between CT 
and PET images, zero padding was carried out on the smaller field-of- 
view modality to match the larger field-of-view modality. Then, as the 
resolution of PET images was considered as reference, CT images were 
down-sampled to PET resolution utilizing cubic interpolation and anti-
aliasing kernels. The motivation behind this choice was to avoid the 
generation of fake information in PET images during the up-sampling 
procedure at the cost of losing some anatomical information of CT im-
ages during the down-sampling procedure. Moreover, previous studies 
proved that the PET model outperformed the CT model for prediction of 

EGFR and KRAS mutation in NSCLC patients [20,21]. Hence, we 
attempted to keep PET intensities as intact as possible. 

To merge metabolic PET and anatomic CT images into a single scan, 
a publicly available 3D wavelet fusion technique was exploited1 [11, 
12]. Details of this technique is elaborated in previous studies [11–13]. 
Considering all possible combinations of three CT weights (W = 0.25, 
0.5, 0.75) and three wavelet band-pass filtering (WBPF) ratios (R = 0.66, 
1, 1.5), 9 different fused images were generated (a fusion model fused 
using CT weight W 0.5 and WBPF ratio (R) 0.66 is denoted as 
F_R0.66_W0.5). Therefore, 33 total radiomics models containing 3 
CT-only (16, 32 and 64 gray level bin discretization), 3 PET-only (16, 32 
and 64 gray level bin discretization), and 27 PET/CT fusion models 
(combination of 3 bins (16, 32 and 64 gray level bin discretization), 3 
wavelet coefficients (0.25, 0.5, and 0.75), and 3 band pass ratios (0.66, 
1, and 1.5)) were utilized. An example of PET, CT and fused images were 
shown in Supplemental Fig. 1. 

2.4. Feature extraction 

Prior to the extraction of radiomics features, images were interpo-
lated into an isotropic voxel spacing of 2 × 2 × 2 mm3 in order to obtain 
rotationally invariant texture features. Tumor intensity levels in all 
models were discretized into 16, 32, and 64 bins. Finally, 218 radiomics 
features, including 73 first-order features (morphology, statistical, his-
togram, and intensity-histogram features), 135 three-dimensional 
textural features (GLCM, GLRLM, GLSZM, GLDZM, NGTDM, NGLDM), 
and 10-moment invariant features were calculated. The Standardized 
Environment for Radiomics Analysis (SERA) Package [48] (a Mat-
lab®-based framework) was used for this purpose, in which features are 
consistent with the guidelines of Image Biomarker Standardization 
Initiative (IBSI). This package has been assessed in multi-center stan-
dardization studies [49,50] to ensure reproducibility of the features. 
Details of the extracted features are presented in Supplemental Table 1. 

2.5. ComBat harmonization 

Radiomic features are notorious to be significantly sensitive to batch 
effect (variability in imaging acquisition parameters in different centers, 
scanner models and reconstruction settings) [27]. A number of harmo-
nization methods have been proposed to correct for the batch effect to 
generate robust and reproducible models when using multi-center 
datasets [30,39]. ComBat harmonization originally proposed by John-
son et al. [30] for genetics studies was adopted later by Fortin et al. [32, 
33] for medical imaging applications, and used by Orlhac et al. [39] for 
PET radiomics studies, was reported to remove batch effects based on 
empirical Bayes framework. The assumption of ComBat is that the value 
of a given feature yij calculated from volume/region of interest 
(VOI/ROI) in patient j, imaged by center i is estimated as follows [32,33, 
39]: 

yij =α + Xijβ + γi + δiεij (1)  

where the average value of radiomics feature y is α, X accounts for a 
design matrix (vector) of biological covariate(s), β represents the co-
efficients of standard regression corresponding to design matrix, δi 
represents the multiplicative center effect [39], γi records the additive 
effect of center i on features, and εij is normally distributed with zero 
mean representing error term. As described in Fortin et al. [32,33], γi* 
and δi* are the estimated value of γi and δi using conditional posterior 
means of empirical Bayes formulation [39]. In the formulation below, 
yCombat

ij is the normalized value of feature yij for a given patient’s 
VOI/ROI j and center i, whereas estimations of parameters α and β are 

Table 1 
Clinical characterization of patients classified regarding dataset.  

Characteristic Subtype Dataset#1 Dataset#2 

Patient NO.  86 82 
Age(year) (Range)  68 (43–87) 68 (24–86) 
Sex Female 3 47 

Male 83 35 
Histology Adenocarcinoma 62 73 

Squamous cell 
carcinoma 

21 7 

NOS (not otherwise 
specified) 

3 2 

T Stage 
N Stage 

T1a, T1b, T2a, T2b, T3, 
T4, Tis, Not Collected 
N0, N1, N2, Not 
Collected 

26, 13, 24, 4, 
12, 4, 3, 0 
70, 7, 9, 0 

11, 10, 17, 6, 
6, 2, 2, 28 
41, 5, 8, 28 

M stage M0, M1b, M1a, Not 
Collected 

62, 1, 0, 0, 23 51, 2, 1, 28 

Histopathological 
Grade 

G1, G2, G3, Not 
Collected 

23, 39, 24, 0 10, 31, 13, 28 

EGFR Mutant 7 22 
Wildtype 64 43  
Unknown 14 16 
Not Collected 1 1 

KRAS Mutant 19 12 
Wildtype 51 53  
Unknown 14 16 
Not Collected 2 1  

Table 2 
Image acquisition parameters of CT and PET images in different centers.  

Scan Imaging parameter Dataset #1 Dataset #2 

CT kVp (min,max,avg) [120, 140, 121] [110, 140, 135] 
Tube current (min, 
max,avg) 

[30, 275, 109] [8, 497, 79] 

Matrix size [512 × 512] [512 × 512] 
Slice thickness (min, 
max,avg) 

[3.75, 3.75, 
3.75] 

[3.27, 5.0, 4.0] 

Pixel spacing (min, 
max,avg) 

[0.97, 1.37, 
0.98] 

[0.88, 1.17, 0.98] 

PET Injected activity 
(min,max,avg) 

[304, 673, 507] [304, 662, 434] 

uptake time (min, 
max,avg) 

[44,130, 78] [43, 109, 70] 

Matrix size [128 × 128, 
192 × 192] 

[128 × 128, 144 × 144, 168 ×
168, 192 × 192] 

Slice thickness (min, 
max,avg) 

[3.27, 3.27, 
3.27] 

[3.27,5.0,3.53] 

Pixel spacing (min, 
max,avg) 

[3.65, 5.47, 
4.81] 

[3.65, 5.47, 3.83]  

1 https://github.com/mvallieres/radiomics. 
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represented by α̂, β̂, respectively (full computational details are pro-
vided in Ref. [30]). 

yCombat
ij =

yij − α̂ − Xij β̂ − γi
*

δi
* + α̂ + Xij β̂ (2) 

This method considers the center effect of radiomics feature values 
and consequently transforms each radiomics feature individually [32, 
33,39]. In the current study, the ComBat method was applied using 
non-parametric setting and empirical Bayes estimates. In 
non-parametric modeling, there are no specific assumptions for γi, δi, 
and εij, whereas in parametric modeling, the assumptions are based on 
the above mentioned considerations. While both approaches have been 
applied to our datasets, we report the results for the non-parametric 
version publicly available ComBat R function only [30,39] since it 
produced the best results. Before ComBat harmonization due to some 
small variability of acquisition/reconstruction parameters in each cen-
ters we applied unsupervised hierarchical clustering previously sug-
gested by previous study [51], to be sure about batch for ComBat. 
Unsupervised clustering correctly identified two clusters of centers and 
only two patients incorrectly clustered to its correct center, so we used 
centers as batch for combat harmonization. In the current study, all 
features (except morphological) were fed into ComBat harmonization to 
correct for the batch effect of the total feature sets. ComBat harmoni-
zation was applied to the whole dataset prior to splitting into train/-
validation and test sets. The class of each patient with respect to 
KRAS/EGFR mutation status is not required, since harmonization was 
applied to correct for batch differences between datasets (dataset #1 
and #2) not the gene status (mutant or wild type). 

2.6. Analysis 

2.6.1. Univariate analysis 
For univariate analysis, first, Z-score normalization was employed to 

normalize all features. Student’s t-test statistical analysis was used for 
comparison, wherein features with p-values<0.05 were reported. False 
discovery rate (FDR) Benjamini-Hochberg (BH) correction was also 
considered, to correct for multiple comparisons, reporting q-values. AUC 
was calculated to analyze the performance of each feature and the AUC 
of features before and after ComBat harmonization were compared 
using Delong’s test. R 3.5.1 software (using “pROC” and “stats” pack-
ages) were utilized to perform the statistical analysis. 

2.6.2. Multivariate machine learning analysis 
For multivariate classification analysis, an in-house framework was 

developed in the R environment. First, the minimum redundancy- 
maximum relevance (MRMR) method was used to address the dimen-
sionality problem [52]. Then, for classification, a random forest classi-
fier with 1000 bootstrap and out-of-bag error calculation was applied to 
the selected features. This algorithm has been demonstrated as a reliable 
machine learning approach for developing predictive models in radio-
mics research studies [53,54]. Binary classes for mutations in each EGFR 
and KRAS were used. Classification performances were compared 
without and with the application of the ComBat harmonization. 

2.7. Model evaluation and validation 

The predictive power of models was assessed by computing the area 
under the receiver operating characteristic (AUC - ROC), accuracy 
(ACC), sensitivity (SEN), and specificity (SPE) before and after ComBat 
harmonization. For different models, we assessed statistically significant 
differences before vs. after ComBat harmonization, using the Wilcox 
rank test and p-value (along with q-value using FDR-BH given com-
parison of many models; statistical q-value significance threshold 
<0.05). The model evaluation was performed via randomized data 
splitting into training/validation (70%) and test (30%) dataset (unseen 

by the model). The procedure was repeated 10 times to reduce over-
fitting and enhance the generalizability of the results. To summarize the 
prognostic modeling procedure, at first, the data set were randomly split 
into train/validation and test. Then, using the train/validation split, a 
random forest model was trained 1000 times via bootstrapping to find 
the optimum model. Finally, the optimal model was tested on the unseen 
test set, while repeating the whole procedure 10 times. 

3. Results 

As mentioned earlier, 33 different radiomics models were developed 
(CT, PET, and 9 Wavelet fused scans, each coming in 3 modes with 16, 
32, and 64 discretized gray-level bins). Only the results of models with 
64 discretized gray-level bins are reported in this work, while the 
analogous complete results can be found in supplemental materials. 

3.1. Univariate analysis 

Supplemental Figs. S2-S4 and S6-S8 show the AUC, p-value, and q- 
values for univariate genetic mutations prediction (before and after 
harmonization) of EGFR and KRAS, respectively. In addition, AUCs of 
the features were compared before and after harmonization using 
Delong test. The results can be found in Supplemental Figs. S5 and S9, 
respectively. The number of features whose performance (as AUC) 
significantly increased, decreased, or did not result in any difference are 
reported in Table 3. For EGFR prediction, the number of features with 
significant improvement in performance after ComBat was higher than 
the number of features with significant decrease for all models, while for 
KRAS prediction, most of the features neither show decrease nor in-
crease in performance (number of features with no significant difference 
in performance is dominant). 

In Supplemental Figs. S10 and S11, we present univariate analysis 
depicted as AUC boxplots for both EGFR and KRAS mutation status 
prediction for finding the feature set with the most significant change 
after harmonization. In brief, based on our univariate analysis, shown as 
AUC boxplots, there were plenty of radiomic features with significant 
change after harmonization for EGFR. However, the sum of these 
changes wasn’t significant for all features and didn’t systematically 
improve the univariate results. 

3.2. Multivariate analysis 

The popularity of features (number of times a feature is selected by 
MRMR within different models) before and after harmonization is 
shown for EGFR and KRAS status prediction in Fig. 3. For both EGFR and 
KRAS prediction, moment invariant (mi), and gray-level size zone ma-
trix (szm) features were amongst the most repeated features both before 
and after ComBat Harmonization. 

The results of multivariate analysis including AUC, accuracy (ACC), 
sensitivity (SEN), and specificity (SPE) for models before and after 
harmonization to predict EGFR and KRAS mutation status are shown in 
Fig. 4 and Supplemental Fig. 12. Evidently, AUCs for both EGFR and 
KRAS mutation status prediction models have the highest values after 
harmonization. The mean ranges of AUC for EGFR, before and after 
harmonization were 0.87–0.90 and 0.92–0.94, respectively. For KRAS, 
these ranges changed to 0.85–0.90 and 0.91–0.94, respectively. The 
lower and upper values as well as Mean and standard deviations (Mean 
± Std) of AUC, ACC, SEN, and SPE for these models are shown in Table 4. 
Among the models with 64 discretized gray level bins, harmonized 
wavelet fusion model F_R0.66_W0.75 reached the highest performance 
with accuracy, AUC, sensitivity, and specificity equal to 0.88, 0.94, 0.84, 
0.91, respectively, for EGFR. Regarding KRAS status prediction, again 
F_R0.66_W0.75 reached the best performance with 0.86, 0.93, 0.81, 0.89 
for ACC, AUC, SEN, SPE, respectively. 

The box plot of the AUC of the models before and after harmoniza-
tion are presented in Figs. 5 and 6 for EFGR and KRAS mutation status 
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predictions, respectively. Moreover, the p-values corresponding to their 
Wilcoxon comparison are also shown. AUC performance improved 
significantly following harmonization (q-value < 0.05 for all models, 
reported in supplemental figures) in both EGFR and KRAS. 

More detailed results obtained in this study are presented in the 
supplemental material. The results of all models were presented as heat 
map in Supplemental Fig. 12 and also in Supplemental Tables 2 and 3. 
The multivariate results are shown in Supplemental Figs. S13-S16 and 
S17-S20 show box plots of AUC, ACC, SEN, and SPE before and after 
harmonization (with corrected p-value for comparison) of the different 
feature sets for the EGFR and KRAS mutation status prediction, respec-
tively. We also investigated significant changes between different 

feature sets (Wilcox rank test) before and after harmonization. Com-
parison of p-values in multivariate EGFR mutation status prediction 
among feature sets, for each of ACC, AUC, SEN, and SPE (before and 
after harmonization) are depicted in Figs. S21–S24. Similar comparisons 
of p-values in multivariate KRAS status prediction are shown in 
Figs. S25–S28. 

4. Discussion 

Variations in radiomic features across imaging settings pose issues in 
radiomics and radiogenomics analyses [34,55]. This limitation has the 
potential to significantly degrade multi-scanner/center-based predictive 

Table 3 
Results of the Delong test comparing the AUC of the features before and after ComBat harmonization. The number of features (out of 218) showed significantly lower, 
higher and comparable performance before and after the ComBat harmonization are listed.  

model EGFR KRAS 

Significantly decreased Significantly improved No difference Significantly decreased Significantly improved No difference 

CT 39 80 99 5 6 207 
F_R0.66_W0.25 23 112 83 0 2 216 
F_R0.66_W0.5 14 60 144 2 1 215 
F_R0.66_W0.75 39 77 102 13 3 202 
F_R1.5_W0.25 27 73 118 0 4 214 
F_R1.5_W0.5 15 59 144 5 4 209 
F_R1.5_W0.75 58 84 76 10 6 202 
F_R1_W0.25 20 77 121 0 3 215 
F_R1_W0.5 10 57 151 11 2 205 
F_R1_W0.75 57 104 57 11 2 205 
PET 32 68 118 5 0 213  

Fig. 3. Popularity of features (number of times a feature is selected by MRMR algorithm within different models) in multivariate modeling for (a) EGFR, and (b) 
KRAS status prediction. The maximum possible repetition for each feature was 330, since a total of 33 different single- and multi-modality models were developed 
and each model was trained and evaluated 10 times. 
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modeling. Using reliable approaches such as harmonization methods, 
researchers may pool their data to develop more accurate models given 
larger and harmonized datasets; otherwise, the power of clinical trials 
themselves may be significantly limited [56]. In this light, different data 
from different centers could be integrated, examining a wide range of 
radiomics/radiogenomics hypotheses with acceptable statistical power. 
Previous studies have identified inter/intra-scanner variability as one of 
the most problematic issues in radiomics studies. Radiomics reproduc-
ibility analysis efforts have suggested that a feature may be observed as 
robust against different imaging protocols, but the scanner effect can 
still be present, and therefore feature robustness has to be checked in 
multicenter studies [34]. For example, Orlhac et al. [39] found that 
Entropy, a robust feature as reported by several studies, had consider-
able variations across different scanners. 

Radiogenomics was proposed to enable a better personalization of 
the management of diseases [19]. It aims to enable the prediction of 
genomic status by using imaging features and correlating such features 
with genomics parameters [19]. NSCLC radiogenomics studies have 
revealed that CT radiomic features can predict EGFR and/or KRAS 
mutation status, which may be used as a feasible approach for decoding 
tumor heterogeneity, thus leading to more advantageous personalized 
treatment of patients [20]. Radiomics studies have revealed that fea-
tures of CT images are perfectly able to provide us with an EGFR/KRAS 
mutation status prediction in NSCLC patients; either radiomics alone 
[15] or with clinical parameters [57]. Another study has developed a 
model for mutation prediction based on the features extracted from CT 
images [58]. Finally, some researchers have used deep learning methods 
along with radiomics in order to create a more robust radiogenomic 
model for distinguishing EGFR/KRAS positive from negative CT scan 
lesions [59,60]. 

Tu et al. [61] enrolled 404 NSCLC patients to develop radiomics 
models based on unenhanced CT images for the prediction of EGFR 
mutation status using logistic regression analysis. They developed a 
model based on radiomics signature and other models integrating clin-
ical and radiomics features. They reached an AUC of 0.76 for their 
radiomics model and 0.80 for integrated radiomics + clinical model. Our 
CT radiomics model (after ComBat harmonization) achieved an AUC of 
0.94 for the prediction of EGFR status with a smaller dataset. Moreover, 
our study sheds light on multimodal radiomics models utilizing 
anatomical and metabolic information of tumors provided by CT and 
PET images, respectively. 

In addition Wang et al. [59] and Zhao et al. [59] utilized deep 
learning to develop EGFR prognostic models for NSCLC patients using 
CT scans and achieved an AUC of 0.81 and 0.75 on their independent 
test cohorts, respectively. To address the problem of small sample size 
owing to difficulties associated with gathering large datasets needed for 
the development of deep learning models, we attempted to combine 
handcrafted radiomic features from different imaging modalities with 
the aim to optimize model performance through the integration of 
harmonized data from multi-center datasets. We ultimately developed 
high performance models reaching AUCs of 0.94 and 0.93 for EGFR and 
KRAS prediction, respectively. Rizzo et al. [4] developed EGFR and 
KRAS predictive models based on 20 radiological handcrafted CT fea-
tures and obtained AUCs of 0.82 and 0.60 for EGFR and KRAS predic-
tion, respectively. Shiri et al. [20], proposed a radiomics model to 
predict EGFR and KRAS status in NSCLC patients using multi-modality 
PET and CT image features trained with multiple machine learning 
methods using the same dataset employed in the current study. The best 
model for EGFR prediction reached an AUC of 0.82 whereas it was 0.83 
for KRAS. The results of the present study reported improvements of 

Fig. 4. Heatmap of the performance of the multivariate models before and after ComBat harmonization; ACC: Accuracy, AUC: area under the curve, SEN: Sensitivity, 
SPE: Specificity. The color bar displays the range [0.6–1] where the blue range is representative of accuracy, AUC, sensitivity, and specificity of the models. 
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Table 4 
Accuracy, AUC, Sensitivity, and Specificity of models with their 95% Confidence Interval and Mean ± Sd, before and after ComBat harmonization.    

EGFR KRAS 

ACC AUC SEN SPE ACC AUC SEN SPE 

Before After Before After Before After Before After Before After Before After Before After Before After 

95% Confidence Interval 
of model performances 

CT-B64 0.79 _ 
0.82 

0.86 _ 
0.89 

0.87 _ 
0.89 

0.93 _ 
0.95 

0.72 _ 
0.77 

0.82 _ 
0.84 

0.84 _ 
0.87 

0.90 _ 
0.92 

0.81 _ 
0.83 

0.84 _ 
0.85 

0.88 _ 
0.90 

0.92 _ 
0.93 

0.72 _ 
0.76 

0.78 _ 
0.81 

0.87 _ 
0.89 

0.87 _ 
0.89 

F_R0.66_W0.25 0.78 _ 
0.79 

0.83 _ 
0.85 

0.86 _ 
0.88 

0.91 _ 
0.93 

0.69 _ 
0.73 

0.78 _ 
0.83 

0.83 _ 
0.85 

0.85 _ 
0.89 

0.78 _ 
0.80 

0.82 _ 
0.84 

0.85 _ 
0.87 

0.91 _ 
0.93 

0.71 _ 
0.73 

0.74 _ 
0.79 

0.83 _ 
0.86 

0.87 _ 
0.89 

F_R0.66_W0.5 0.78 _ 
0.81 

0.84 _ 
0.86 

0.87 _ 
0.88 

0.92 _ 
0.93 

0.70 _ 
0.74 

0.80 _ 
0.83 

0.84 _ 
0.87 

0.87 _ 
0.90 

0.79 _ 
0.81 

0.83 _ 
0.85 

0.86 _ 
0.88 

0.92 _ 
0.93 

0.71 _ 
0.74 

0.76 _ 
0.80 

0.85 _ 
0.87 

0.87 _ 
0.90 

F_R0.66_W0.75 0.78 _ 
0.81 

0.87 _ 
0.89 

0.86 _ 
0.88 

0.94 _ 
0.95 

0.72 _ 
0.75 

0.82 _ 
0.86 

0.82 _ 
0.85 

0.90 _ 
0.92 

0.80 _ 
0.82 

0.85 _ 
0.87 

0.88 _ 
0.90 

0.93 _ 
0.94 

0.71 _ 
0.75 

0.79 _ 
0.83 

0.86 _ 
0.88 

0.89 _ 
0.90 

F_R1.5_W0.25 0.80 _ 
0.81 

0.86 _ 
0.88 

0.87 _ 
0.89 

0.93 _ 
0.95 

0.71 _ 
0.74 

0.81 _ 
0.84 

0.85 _ 
0.88 

0.89 _ 
0.91 

0.76 _ 
0.79 

0.83 _ 
0.85 

0.84 _ 
0.87 

0.91 _ 
0.93 

0.66 _ 
0.71 

0.74 _ 
0.79 

0.83 _ 
0.86 

0.87 _ 
0.91 

F_R1.5_W0.5 0.78 _ 
0.81 

0.85 _ 
0.87 

0.87 _ 
0.88 

0.92 _ 
0.93 

0.70_ 
0.74 

0.81 _ 
0.82 

0.83 _ 
0.86 

0.87 _ 
0.90 

0.79 _ 
0.81 

0.83 _ 
0.85 

0.85 _ 
0.87 

0.91 _ 
0.92 

0.68 _ 
0.72 

0.76 _ 
0.80 

0.85 _ 
0.88 

0.86 _ 
0.89 

F_R1.5_W0.75 0.79 _ 
0.81 

0.86 _ 
0.89 

0.87 _ 
0.89 

0.93 _ 
0.95 

0.73 _ 
0.76 

0.80 _ 
0.85 

0.83 _ 
0.86 

0.90 _ 
0.92 

0.78 _ 
0.80 

0.83 _ 
0.86 

0.86 _ 
0.88 

0.91 _ 
0.93 

0.68 _ 
0.73 

0.78 _ 
0.81 

0.83 _ 
0.87 

0.87 _ 
0.89 

F_R1_W0.25 0.79 _ 
0.81 

0.84 _ 
0.86 

0.87 _ 
0.89 

0.92 _ 
0.93 

0.71 _ 
0.75 

0.79 _ 
0.82 

0.84 _ 
0.87 

0.87 _ 
0.89 

0.76 _ 
0.78 

0.83 _ 
0.85 

0.84 _ 
0.86 

0.91 _ 
0.93 

0.66 _ 
0.70 

0.76 _ 
0.80 

0.83 _ 
0.85 

0.87 _ 
0.89 

F_R1_W0.5 0.79 _ 
0.81 

0.84 _ 
0.86 

0.87 _ 
0.89 

0.91 _ 
0.92 

0.71 _ 
0.75 

0.79 _ 
0.82 

0.84 _ 
0.87 

0.87 _ 
0.89 

0.77 _ 
0.80 

0.82 _ 
0.84 

0.84 _ 
0.87 

0.92 _ 
0.93 

0.68 _ 
0.72 

0.75 _ 
0.80 

0.84 _ 
0.86 

0.86 _ 
0.89 

F_R1_W0.75 0.80 _ 
0.83 

0.87 _ 
0.88 

0.87 _ 
0.90 

0.93 _ 
0.94 

0.72 _ 
0.77 

0.80 _ 
0.84 

0.86 _ 
0.88 

0.91 _ 
0.92 

0.81 _ 
0.82 

0.84 _ 
0.86 

0.88 _ 
0.89 

0.92 _ 
0.94 

0.73 _ 
0.76 

0.80_ 
0.84 

0.86 _ 
0.87 

0.85 _ 
0.88 

PET 0.80 _ 
0.82 

0.85 _ 
0.87 

0.87 _ 
0.90 

0.92 _ 
0.94 

0.71 _ 
0.76 

0.79 _ 
0.83 

0.85 _ 
0.89 

0.87 _ 
0.90 

0.77 _ 
0.79 

0.82 _ 
0.84 

0.85 _ 
0.87 

0.91 _ 
0.92 

0.67 _ 
0.71 

0.74 _ 
0.78 

0.84 _ 
0.86 

0.87 _ 
0.89  

Mean ± STD values of 
model performances 

CT 0.81 ±
0.02 

0.87 ±
0.02 

0.88 ±
0.01 

0.94 ±
0.00 

0.74 ±
0.03 

0.83 ±
0.01 

0.86 ±
0.03 

0.91 ±
0.02 

0.82 ±
0.01 

0.84 ±
0.01 

0.89 ±
0.01 

0.92 ±
0.00 

0.74 ±
0.03 

0.79 ±
0.03 

0.88 ±
0.01 

0.88 ±
0.01 

F_R0.66_W0.25 0.78 ±
0.01 

0.84 ±
0.02 

0.87 ±
0.01 

0.92 ±
0.01 

0.71 ±
0.03 

0.80 ±
0.04 

0.84 ±
0.01 

0.87 ±
0.03 

0.79 ±
0.02 

0.83 ±
0.02 

0.86 ±
0.02 

0.92 ±
0.01 

0.72 ±
0.02 

0.76 ±
0.04 

0.84 ±
0.02 

0.88 ±
0.02 

F_R0.66_W0.5 0.80 ±
0.02 

0.85 ±
0.01 

0.87 ±
0.01 

0.92 ±
0.01 

0.72 ±
0.03 

0.81 ±
0.02 

0.85 ±
0.02 

0.89 ±
0.02 

0.80 ±
0.02 

0.84 ±
0.01 

0.87 ±
0.02 

0.93 ±
0.00 

0.72 ±
0.03 

0.78 ±
0.03 

0.86 ±
0.02 

0.88 ±
0.02 

F_R0.66_W0.75 0.79 ±
0.02 

0.88 ±
0.01 

0.87 ±
0.02 

0.94 ±
0.00 

0.73 ±
0.02 

0.84 ±
0.03 

0.84 ±
0.03 

0.91 ±
0.01 

0.81 ±
0.02 

0.86 ±
0.01 

0.89 ±
0.01 

0.93 ±
0.00 

0.73 ±
0.03 

0.81 ±
0.03 

0.87 ±
0.02 

0.89 ±
0.01 

F_R1.5_W0.25 0.81 ±
0.01 

0.87 ±
0.02 

0.88 ±
0.01 

0.94 ±
0.01 

0.73 ±
0.02 

0.83 ±
0.03 

0.86 ±
0.02 

0.90 ±
0.02 

0.78 ±
0.02 

0.84 ±
0.02 

0.85 ±
0.02 

0.92 ±
0.01 

0.69 ±
0.04 

0.77 ±
0.03 

0.84 ±
0.02 

0.89 ±
0.02 

F_R1.5_W0.5 0.79 ±
0.02 

0.86 ±
0.01 

0.87 ±
0.01 

0.93 ±
0.01 

0.72 ±
0.03 

0.82 ±
0.01 

0.85 ±
0.02 

0.89 ±
0.02 

0.80 ±
0.01 

0.84 ±
0.01 

0.86 ±
0.01 

0.92 ±
0.00 

0.70 ±
0.03 

0.78 ±
0.03 

0.87 ±
0.02 

0.88 ±
0.02 

F_R1.5_W0.75 0.80 ±
0.02 

0.87 ±
0.02 

0.88 ±
0.02 

0.94 ±
0.01 

0.75 ±
0.02 

0.82 ±
0.03 

0.85 ±
0.02 

0.91 ±
0.02 

0.79 ±
0.02 

0.85 ±
0.02 

0.87 ±
0.01 

0.92 ±
0.01 

0.71 ±
0.04 

0.8 ±
0.02 

0.85 ±
0.03 

0.88 ±
0.02 

F_R1_W0.25 0.80 ±
0.02 

0.85 ±
0.01 

0.88 ±
0.01 

0.93 ±
0.01 

0.73 ±
0.03 

0.80 ±
0.02 

0.86 ±
0.02 

0.88 ±
0.01 

0.77 ±
0.02 

0.84 ±
0.02 

0.85 ±
0.01 

0.92 ±
0.01 

0.68 ±
0.03 

0.78 ±
0.03 

0.84 ±
0.02 

0.88 ±
0.02 

F_R1_W0.5 0.80 ±
0.01 

0.85 ±
0.01 

0.88 ±
0.01 

0.92 ±
0.00 

0.73 ±
0.03 

0.80 ±
0.02 

0.86 ±
0.02 

0.88 ±
0.02 

0.79 ±
0.02 

0.83 ±
0.02 

0.85 ±
0.02 

0.92 ±
0.01 

0.70 ±
0.03 

0.77 ±
0.03 

0.85 ±
0.02 

0.88 ±
0.02 

F_R1_W0.75 0.82 ±
0.02 

0.87 ±
0.01 

0.89 ±
0.02 

0.94 ±
0.00 

0.74 ±
0.04 

0.82 ±
0.02 

0.87 ±
0.02 

0.91 ±
0.01 

0.81 ±
0.01 

0.85 ±
0.01 

0.88 ±
0.01 

0.93 ±
0.00 

0.74 ±
0.02 

0.82 ±
0.03 

0.86 ±
0.01 

0.87 ±
0.02 

PET 0.81 ±
0.02 

0.86 ±
0.02 

0.89 ±
0.02 

0.93 ±
0.01 

0.74 ±
0.04 

0.81 ±
0.03 

0.87 ±
0.03 

0.89 ±
0.02 

0.78 ±
0.00 

0.83 ±
0.01 

0.86 ±
0.01 

0.91 ±
0.00 

0.69 ±
0.03 

0.76 ±
0.03 

0.85 ±
0.02 

0.88 ±
0.02  
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AUC to 0.94 and 0.93 for EGFR and KRAS prediction, respectively, when 
taking advantage of the ComBat harmonization. As previously 
mentioned, “There is no one-fits-all machine learning method” [20], 
further optimization can be considered to increase the performance of 
models. 

Several studies have demonstrated that using harmonization 
methods, either in the image domain or in the feature domain, will help 
to design multicenter studies. In the image domain, the current litera-
ture review shows that standardization of imaging is of great assistance 
to harmonization in both PET [62,63] and PET/CT [64] imaging. There 
has also been plentiful research conducted in the area of “normalization 
in features definition”, e.g. SUVmax, which also counts for a method in 
the image domain [65,66]. However, there are a lot more studies that 
focus on the feature domain [39,40,42,43]. Recent studies concluded 
that ComBat is the best harmonization method among all other methods 
in the feature domain [67]. 

Based on current studies, ComBat harmonization is available and 
easy to use, with no need for feature re-calculation. The study of Dissaux 
et al. [43] revealed that ComBat was able to improve features’ 

performance in the prediction of NSCLC survival within PET/CT images. 
Similarly, in another study conducted by Orlhac et al. [39], it was shown 
that the same improvement is obvious when using ComBat to remove 
batch effect regarding vendor and imaging protocol difference within 
PET images of triple-negative and non-triple-negative breast cancers. 
For both healthy and lesion tissues, ComBat was able to remove batch 
effect from the features’ distribution. A more recent study performed by 
Orlhac et al. [55] to tackle multicenter variability in MRI radiomics 
using phantom and clinical studies. They reported that ComBat 
harmonization removed the inter-center technical inconsistencies and 
improved the discrimination between Gleason grades of prostate can-
cers. They could improve inter-department feature variations. Mahon 
et al. [42] also investigated harmonization of radiomic features in in-
dependent phantom and lung cancer patients CT datasets and concluded 
that ComBat harmonization reduced significantly different distributions 
to 0–2% and 0% for phantom and clinical studies, respectively. 

In the present study, we investigated the effect of ComBat harmo-
nization on the predictive power of CT, PET, and fused PET/CT-based 
radiomic features for EGFR and KRAS mutation status in NSCLC 

Fig. 5. Box plot of the AUCs of multivariate EGFR prediction models, before and after ComBat harmonization. P-value of their Wilcoxon comparison is presented.  
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patients. For the prediction of EGFR status, we observed improvements 
in the predictive power of several features after harmonization, while for 
KRAS prediction, the performance of most features remained un-
changed. Moreover, in some cases (for both KRAS and EGFR), the 
prognostic power of the features was significantly reduced after 
harmonization. These results suggest that the impact of harmonization is 
feature-dependent. We also used a ML-based feature selection and a 
classifier for multivariate predictive modeling. Previous radiomics 
studies have suggested that there is no unified ML-based method for 
radiomics modeling and that combinations of different feature selection 
and classification methods result in different prediction powers [14,20, 
68]. In this context, the effect of harmonization on ML prediction power 
requires further investigation. We also examined the harmonization 
effects on anatomical (CT), functional (PET), and hybrid (fused) feature 
sets. Based on our results, there were no significant differences between 
all three types of sets, and improvement was similarly observed on all 
datasets for multivariate analysis. Although the nature of these modal-
ities is different (Hounsfield unit, SUV, and fused value for pixel in-
tensity), harmonization leads to systematic statistical improvements in 

all multivariate models. The ranges of AUC for EGFR, before and after 
harmonization were 0.87–0.90 and 0.92–0.94, respectively. The same 
ranges for KRAS prediction were 0.85–0.90 and 0.91–0.94, respectively. 
Harmonized wavelet fusion model F_R0.66_W0.75 reached the highest 
performance with accuracy, AUC, sensitivity, and specificity equal to 
0.88, 0.94, 0.84, 0.91 and 0.86, 0.93, 0.81, 0.89 for EGFR and KRAS 
status prediction, respectively. 

The sample size of our study was a limiting factor. We used datasets 
from only two centers where external validation was lacking. Hence, the 
potential to generalize our produced results is to some extent limited. To 
tackle this, we used random forest algorithm using bootstrapping and 
out-of-bag error estimation and repeated ten times the evaluation on the 
test set to reduce overfitting and enhance the generalizability of the 
results. In addition, one intrinsic limitation of ComBat harmonization 
method is that it does not generate a transform method to translate new 
feature sets with different batches from previous datasets into the model 
[34]. This implies that when a new patient from a different center is 
added, it should be combined with previous groups and harmonization 
should be re-performed on the whole dataset. Recently, Da-Ano [69] 

Fig. 6. Box plot of the AUCs of multivariate KRAS prediction models, before and after ComBat harmonization. P-value of their Wilcoxon comparison is presented.  
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modified the ComBat harmonization method by integrating it with 
transfer learning. Their model is able to be applied on an unseen patient 
from known center. Another limitation of this study was the lack of 
multiple segmentations to assess the effect of segmentation variability 
on the extracted features and investigate the potential of harmonization 
strategies. It worth mentioning that one of the main challenges of ma-
chine learning algorithms is their black box nature. Future studies 
should be carried out to prove that the provided features utilize the 
informative parts of images and not noise and redundant information. 

5. Conclusion 

In this study, we investigated the effect of a harmonization method in 
feature space, known as ComBat harmonization, on the prognostic 
performance of univariate and multivariate single- and multi-modality 
PET/CT radiomics models toward EGFR and KRAS mutation status 
prediction of NSCLC patients. Our results demonstrated that regarding 
univariate modelling, while ComBat harmonization had generally a 
better impact on features for EGFR compared to KRAS status prediction, 
its effect is feature-dependent. Hence, no systematic effect was observed. 
Regarding the multivariate models, ComBat harmonization significantly 
improved the performance of PET, CT, and fused PET/CT-based radio-
mics models toward more successful prediction of EGFR and KRAS 
mutation statuses in lung cancer patients. Thus, by eliminating the batch 
effect in multi-centric radiomic feature sets, ComBat harmonization is a 
promising tool for developing robust and reproducible radiomics using 
vast and variant datasets. 
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[31] J. Čuklina, P.G. Pedrioli, R. Aebersold, Review of batch effects prevention, 
diagnostics, and correction approaches, in: Mass Spectrometry Data Analysis in 
Proteomics, Springer, 2020, pp. 373–387. 

[32] J.P. Fortin, D. Parker, B. Tunç, T. Watanabe, M.A. Elliott, K. Ruparel, D.R. Roalf, T. 
D. Satterthwaite, R.C. Gur, R.E. Gur, R.T. Schultz, R. Verma, R.T. Shinohara, 
Harmonization of multi-site diffusion tensor imaging data, Neuroimage 161 (2017) 
149–170. 

[33] J.P. Fortin, N. Cullen, Y.I. Sheline, W.D. Taylor, I. Aselcioglu, P.A. Cook, P. Adams, 
C. Cooper, M. Fava, P.J. McGrath, M. McInnis, M.L. Phillips, M.H. Trivedi, M. 
M. Weissman, R.T. Shinohara, Harmonization of cortical thickness measurements 
across scanners and sites, Neuroimage 167 (2018) 104–120. 

[34] R. Da-Ano, D. Visvikis, M. Hatt, Harmonization strategies for multicenter radiomics 
investigations, Phys. Med. Biol. 65 (2020) 24TR02. 

[35] S. Shayesteh, M. Nazari, A. Salahshour, S. Sandoughdaran, G. Hajianfar, 
M. Khateri, A. Yaghobi Joybari, F. Jozian, S.H. Fatehi Feyzabad, H. Arabi, I. Shiri, 
H. Zaidi, Treatment response prediction using MRI-based pre-, post-, and delta- 
radiomic features and machine learning algorithms in colorectal cancer, Med. 
Phys. 48 (2021) 3691–3701. 

[36] S. Cackowski, E.L. Barbier, M. Dojat, T. Christen, ComBat versus cycleGAN for 
multi-center MR images harmonization, in: Proceedings of Medical Imaging with 
Deep Learning Conference, 2021. 

[37] F. Lucia, D. Visvikis, M. Vallières, M.-C. Desseroit, O. Miranda, P. Robin, P. 
A. Bonaffini, J. Alfieri, I. Masson, A. Mervoyer, External validation of a combined 
PET and MRI radiomics model for prediction of recurrence in cervical cancer 
patients treated with chemoradiotherapy, Eur. J. Nucl. Med. Mol. Imag. 46 (2019) 
864–877. 

[38] K. Robinson, H. Li, L. Lan, D. Schacht, M. Giger, Radiomics robustness assessment 
and classification evaluation: a two-stage method demonstrated on multivendor 
FFDM, Med. Phys. 46 (2019) 2145–2156. 

[39] F. Orlhac, S. Boughdad, C. Philippe, H. Stalla-Bourdillon, C. Nioche, L. Champion, 
M. Soussan, F. Frouin, V. Frouin, I. Buvat, A postreconstruction harmonization 
method for multicenter radiomic studies in PET, J. Nucl. Med. 59 (2018) 
1321–1328. 

[40] F. Orlhac, F. Frouin, C. Nioche, N. Ayache, I. Buvat, Validation of a method to 
compensate multicenter effects affecting CT radiomics, Radiology 291 (2019) 
53–59. 

[41] A. Ibrahim, S. Primakov, B. Barufaldi, R.J. Acciavatti, R.W. Granzier, R. Hustinx, F. 
M. Mottaghy, H.C. Woodruff, J.E. Wildberger, P. Lambin, The effects of in-plane 
spatial resolution on CT-based radiomic features’ stability with and without 
ComBat harmonization, Cancers 13 (2021) 1848. 

[42] R. Mahon, M. Ghita, G. Hugo, E. Weiss, ComBat harmonization for radiomic 
features in independent phantom and lung cancer patient computed tomography 
datasets, Phys. Med. Biol. 65 (2020) 15010. 

[43] G. Dissaux, D. Visvikis, R. Da-Ano, O. Pradier, E. Chajon, I. Barillot, L. Duvergé, 
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