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Abstract 

Recent findings have demonstrated that stroke lesions affect neural communication in the 

entire brain. However, it is less clear whether network interactions are also relevant for 

plasticity and repair. This study investigated whether the coherence of neural oscillations at 

language or motor nodes is associated with future clinical improvement. 

Twenty-four stroke patients underwent high-density EEG recordings and standardised motor 

and language tests at 2-3 weeks (T0) and 3 months (T1) after stroke onset. In addition, EEG 

and motor assessments were obtained from a second population of eighteen stroke patients. 

The graph theoretical measure of weighted node degree (WND) at language and motor areas 

was computed as the sum of absolute imaginary coherence with all other brain regions and 

compared to the amount of clinical improvement from T0 to T1.  

At T0, beta-band WND at the ipsilesional motor cortex was linearly correlated with better 

subsequent motor improvement, while beta-band WND at Broca’s area was correlated with 

better language improvement. Clinical recovery was further associated with contralesional 

theta-band WND. These correlations were each specific to the corresponding brain area and 

independent of initial clinical severity, age, and lesion size. Findings were reproduced in the 

second stroke group. Conversely, later coherence increases occurring between T0 and T1 

were associated with less clinical improvement.   

Improvement of language and motor functions after stroke is therefore associated with 

interregional synchronization of neural oscillations in the first weeks after stroke. A better 

understanding of network mechanisms of plasticity may lead to new prognostic biomarkers 

and therapeutic targets. 
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Introduction 

Stroke lesions have impact on neural interactions in the entire brain (Grefkes and Fink, 2011; 

Corbetta, 2012; Carrera and Tononi, 2014; Dijkhuizen et al., 2014). Evidence that this is the 

case comes from modelling (Alstott et al., 2009), animal experiments (van Meer et al., 2010), 

as well as from imaging studies investigating neural interactions (i.e., functional connectivity, 

FC, or effective connectivity) between brain regions of human stroke patients.  

Functional magnetic resonance imaging (fMRI) has revealed disruptions in inter-hemispheric 

FC between homologous motor, language, and spatial attention areas, which were linearly 

associated with corresponding neurological deficits of the patients (He et al., 2007; Warren et 

al., 2009; Carter et al., 2010). Other studies have observed generally reduced interactions 

among nodes of the motor network (Sharma et al., 2009), and in particular between premotor 

and primary motor areas (Grefkes et al., 2008). These network changes evolve over time and 

seem to be maximal about 1 month after stroke onset (Park et al., 2011). In addition, stroke 

patients with severe motor deficit also build up enhanced inhibitory influence from the 

unaffected to the affected motor cortex in subacute to chronic stages (Grefkes et al., 2008; 

Rehme et al., 2011). Improvements of motor performance are associated with a reduction of 

pathological influences from contralesional motor cortex and a restitution of ipsilesional 

effective connectivity between premotor and primary motor areas (Grefkes et al., 2010). 

Changes in network interactions occur also at the time scales of actual neural oscillations. 

EEG and magnetoencephalography (MEG) recordings in a task-free resting-state have 

revealed reduced phase synchronization between the affected hemisphere and other brain 

areas in the alpha frequency band (Dubovik et al., 2012; Westlake et al., 2012). The 

magnitude of alpha-band phase synchronization between a given brain area and the rest of the 

brain was found to be linearly associated with behavioural performance in tasks depending on 

this brain area. For instance, the more spontaneous alpha oscillations in Broca’s area were 

phase synchronised with the rest of the brain, the better patients were able to produce words 

(Dubovik et al., 2012; Guggisberg et al., 2015). Improvement of neurological deficits during 

rehabilitation goes in parallel with increases in alpha-band phase synchronization (Westlake et 

al., 2012), and, vice versa, enhancing alpha-band coherence with neurofeedback seems to 

reduce motor deficits after stroke (Mottaz et al., in press). During movement tasks, network 

dynamics of beta oscillations seem to be affected and associated with movement performance 

(Gerloff et al., 2006; De Vico Fallani et al., 2013). 
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In contrast to the solid evidence that neurological deficits after stroke are associated with 

disturbed neural interactions among brain regions, it is less clear whether network interactions 

are also relevant for brain plasticity and repair after stroke. The identification of such network 

mechanisms of plasticity would be important as this might yield new therapeutic targets and 

help predict future improvement of stroke patients.  

Experiments in rats have suggested that axonal sprouting is associated with widespread 

synchronous neural activity at low oscillation frequencies on the first days after thermal-

ischemic lesions (Carmichael and Chesselet, 2002). In human stroke patients, correlations 

between different kinds of network interactions before therapy and clinical improvement 

during therapy periods have been observed at various time points after stroke (Wang et al., 

2010; Buch et al., 2012; Westlake et al., 2012; Várkuti et al., 2013). In particular, nodes 

associated with deficient neurological functions were found to enhance their overall 

importance in the brain network during recovery by increasing their functional connectivity 

with other areas (Wang et al., 2010; Buch et al., 2012; Westlake et al., 2012). However, it 

remains unknown whether these observations are robust across different populations and 

whether they are predictive for improvement of different neurological functions. Furthermore, 

the time course of adaptive network changes after stroke is unclear.   

The present study aimed to identify EEG network changes occurring within the first 2-3 

weeks after stroke indicative of subsequent clinical language and motor improvement. Based 

on current concepts of plasticity after stroke, we hypothesised that FC changes relevant for 

repair would involve primarily ipsilesional areas adjacent to the region normally responsible 

for the deficient function as well as homologous contralateral areas. Furthermore, we 

supposed that preserved or even enhanced FC between these areas and the rest of the brain 

should help reshape network interactions towards functional brain tissue and lead to more 

clinical improvement. Conversely, a functional disconnection of these critical areas from the 

rest of the brain would impede plasticity and lead to less clinical improvements. To test this, 

we calculated a global index of FC between critical brain areas and the rest of the brain: the 

graph theoretical measure of node degree in weighted networks (weighted node degree, 

WND) (Newman, 2004). We then investigated the association of WND with future clinical 

improvement in motor and language functions in 2 independent patient populations with acute 

to subacute stroke.  
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Materials and methods 

Patients and subjects 

The study comprised two independent groups of human stroke patients as well as group of 

age-matched healthy controls. All participants gave written informed consent to participate in 

this study. Procedures were approved by the Geneva Ethics Committee and conducted 

according to the Declaration of Helsinki. 

Stroke population 1 was used for main analyses and for an exploration of network correlates 

of clinical improvement. It was composed of twenty-four stroke patients (mean age 60.7 

years, range 37-81, 9 women, 15 had left hemispheric stroke). Mean National Institute Stroke 

Scale (NIHSS) was 13, range 3-27. Inclusion criteria were: (i) clinical diagnosis of first ever, 

territorial ischemic stroke, (ii) unilateral ischemic lesion in the territory of the middle cerebral 

artery (MCA) as demonstrated by structural MRI, (iii) at least mild motor or language 

impairment at the beginning of rehabilitation. Excluded were patients with neurological or 

psychiatric comorbidities, history of seizures, presence of metallic objects in the brain, or 

skull breach. Patients’ demographic and clinical characteristics are listed in Supplementary 

Table 1. The lesion distribution is shown in Supplementary Fig. 1. All patients received 

standard therapy at the stroke unit during the acute phase and an individually tailored 

multidisciplinary rehabilitation program in the sub-acute and chronic phases. Two patients 

took short-acting benzodiazepines exclusively at bed-time (>12h before EEG recordings), 

three patients received serotonin-reuptake inhibitors (Table 1). These drugs were treated as 

confounding covariates in statistical analyses. High-density EEG and standardised clinical 

assessments were obtained at two time-points: 2-3 weeks (T0) and three months (T1) after 

stroke onset.  

The second group of stroke patients was used for cross-validation of the findings in an 

independent group. It was composed of eighteen patients satisfying the same inclusion criteria 

and exclusion criteria as population 1, with the following exceptions: not only ischemic but 

also hemorrhagic strokes were accepted, and only motor recovery was examined. For this 

reason, patients with severe language comprehension deficits were excluded, and patients 

needed to have at least mild motor impairment at the beginning of rehabilitation. Mean age 

was 67 years (range 32-85), mean NIHSS 13.8 (range 3-22), 8 were women, and 7 had left 

hemispheric lesions. Patient’s demographic and clinical characteristics are listed in 

Supplementary Table 2. Three patients received benzodiazepines at bedtime, one of whom 
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also during the day, four patients took serotonin-reuptake inhibitors and one a low-dose 

neuroleptic at bedtime. Standardized clinical assessments of motor function were obtained at 

3 weeks (T0) and 3 months (T1) after stroke and high-density EEG at 3 weeks after stroke. 

As a control group, twenty-six age-matched volunteers without neurological or psychiatric 

disease were included. Their mean age was 62.4 years, range 32-88, 12 women. Age 

(F2,62=1.0, p=0.38) and gender (p>0.58, Fisher’s exact test) were not significantly different 

between patient and control populations.  

Clinical assessments 

Motor function was assessed with the following standardised measures: the Jamar 

dynamometer (Mathiowetz et al., 1985), the Fugl-Meyer motor assessment of the upper 

extremity (Fugl-Meyer et al., 1975), the Nine Hole Peg test (Oxford Grice et al., 2003), and 

the stroke rehabilitation assessment of movement (STREAM) instrument (Wang et al., 2002). 

The Nine Hole Peg test was expressed in pegs/sec. All scores were normalised to values of the 

unaffected arm of each patient. Since the four motor scores were highly correlated (r>0.7), we 

used the average of all items in our analyses as compound motor score.  

Language function was quantified with the Geneva Bedside Aphasia Score (GeBAS) 

(Boukrid and Laganaro, 2013). It was developed for quantification of overall performance in 

language comprehension and production in acute and subacute phases of neurological disease. 

Its subtests assess spontaneous language production, orientation, production of automatic 

series, denomination, repetition, verbal fluency, comprehension, writing, reading and 

calculating. The score for maximum performance is 100, minimum score is 0. 

Clinical improvement of patients was quantified by subtracting their corresponding scores at 

T1 from T0. Henceforth, we use the term recovery in reference to this measure. 

EEG acquisition  

EEG data was collected with a 128-channel Biosemi ActiveTwo EEG-system (Biosemi B.V., 

Amsterdam, Netherlands). Spontaneous activity in a task-free state was recorded with a 

sampling rate of 512 Hz. Participants were instructed to keep their eyes closed and to remain 

relaxed but awake. Data segments with artefacts or signs of reduced vigilance were excluded 

by visual inspection of the data. Five-minutes of artefact-free data were recalculated against 

the average reference.  
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Connectivity analysis 

Source functional connectivity (FC) was calculated in Matlab (The MathWorks Inc., Natick, 

USA) with the open-source toolbox NUTMEG (http://nutmeg.berkeley.edu) (Dalal et al., 

2011) and its functional connectivity mapping (FCM) toolbox (Guggisberg et al., 2011). The 

lead-potential with 10 mm grid spacing was computed using a spherical head model with 

anatomical constraints (SMAC) (Spinelli et al., 2000) in stroke population 1 and in healthy 

controls, and a boundary element model (BEM)  in stroke population 2. The BEM model was 

created with the Helsinki BEM library (http://peili.hut.fi/BEM/) (Stenroos et al., 2007).  

Artefact-free EEG segments were bandpass filtered between 1 and 20 Hz and projected to 

grey matter voxels with an adaptive spatial filter (scalar minimum variance beamformer) 

(Sekihara et al., 2004). The absolute imaginary component of coherence I (Nolte et al., 2004; 

Sekihara et al., 2011) between estimated source time series at each voxel x and all other 

voxels y was subsequently calculated as index of FC. From this, we computed the weighted 

node degree (WND) k at each voxel x as the sum of its coherence with all other cortical 

voxels (Newman, 2004): 

∑=
y

xyxk I  (1) 

WND can be seen as an index of the overall importance of an area in the brain network (Stam 

and van Straaten, 2012; De Vico Fallani et al., 2014).  

Separate values were obtained at each of seven frequency bands: delta (1-3 Hz), low theta (4-

5 Hz), high theta (6-7 Hz), low alpha (8-10 Hz), high alpha (11-12 Hz), low beta (13-16 Hz), 

and high beta (17-20 Hz). Between-subject variation in synchronization magnitude (and hence 

WND) can be due to variations in signal-to-noise ratios of the recordings. To avoid this 

potential confound in our analyses of the association between variations in WND and clinical 

improvement, we normalised WND maps. This was achieved by subtracting, for each subject, 

the mean WND across all voxels of the subject and by dividing by the standard deviation, 

hence yielding z-scores. Z-score maps were spatially normalised to canonical Montreal 

Neurological Institute (MNI) space using functions of the toolbox SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Ischemic lesions were masked during 

spatial normalization to avoid distortions (Brett et al., 2001).  
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Regions of interest (ROIs) 

Ipsilesional and contralesional ROIs were defined a priori for each clinical function with 

anatomical templates. They comprised the areas supposed to be responsible for the respective 

function and their homologous contralateral areas. For motor function, we used the 

ipsilesional and contralesional primary motor cortex (M1). Language ROI was the left 

posterior inferior frontal gyrus (Broca’s area) and its right homologue. Motor ROIs were 

defined with the human motor area template (Mayka et al., 2006), language ROIs using the 

automated anatomical labelling template (Tzourio-Mazoyer et al., 2002). WND at each ROI 

was calculated as the average of its voxels. 

Statistical analyses  

Our hypothesis postulated that greater WND should help reshape network interactions 

towards more clinical improvement while functional disconnection of critical areas would 

lead to less clinical improvements. Accordingly, we tested WND at T0 for positive 

correlations with changes in motor and language performance from T0 to T1 using a Pearson 

correlation analysis. All variables were normally distributed and parametric tests were 

therefore used. Only patients showing at least mild motor impairment at T0 (<90% of 

maximum compound motor score) were included for the correlation analysis of motor 

improvement (N=21). Left and right hemispheric lesions were relabelled as ipsilesional and 

contralesional and combined for analysis, but we verified that results hold true for both lesion 

sides. For correlation analysis of language improvement, only patients with left hemispheric 

stroke and with at least mild language impairment at T0 were included (N=14). In population 

1, correlations were performed at each of the seven frequency bands and at both ROIs of each 

function, using a Bonferroni correction to correct for multiple testing. In population 2, 

correlations were performed only at frequency bands found to be significant in population 1, 

and Bonferroni corrected for testing two ROIs.  

Next, we characterized the evolution over time of network predictors by analyzing their 

association with clinical variables at different time points. In twenty-one out of the twenty-

four patients of population 1, EEG recordings could also be obtained at T1. These patients 

were separated into two groups according to their clinical improvement, using a median split 

of their change in behavioural score from T0 to T1. WND values at frequency bands with 

significant correlations were tested for differences between good and bad recovery groups, 

both at T0 and T1, with unpaired t-tests. To further investigate the impact of changes in 
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network predictors over time with clinical improvement, we also correlated change in WND 

from T0 to T1 with clinical changes from T0 to T1.  

To assess the spatial specificity of ROI correlations, we performed voxel-wise correlations 

between WND and clinical recovery and reproduced voxel maps without correction for 

multiple testing to visualise the full spatial extent of network predictors. Furthermore, we 

verified whether correlations with recovery were different between language and motor ROIs 

using permutation tests. At each of 2000 permutation loops, we shuffled the order of the 

clinical scores across patients and recalculated the Pearson correlations between WND at each 

ROI and the clinical variable. The correlation coefficient difference between the two ROIs 

was then compared to the distribution of correlation coefficient differences obtained with 

permutation. Permutation tests were also performed on pairs of correlations at different 

frequency bands of the same ROI, in order to verify the frequency specificity of the 

associations.  

We verified that bivariate correlations were independent of initial motor/language score, 

initial NIHSS, age, lesion size, and CNS-active medication with a multivariate linear 

regression model using forward stepwise selection as well as with partial correlation analyses. 

In addition, WND at T0 was correlated with clinical scores at T0 and WND values at T1 with 

clinical scores at T1.  

In addition, we also compared WND of good and bad recovery groups to values of the age-

matched healthy control population. 

 

Results 

In accordance with our hypothesis, we observed areas with high WND in patients with good 

clinical improvement. This concerned ipsilesional as well as homologous contralateral areas. 

Fig. 1 shows two typical examples. 

The correlation analysis across all patients of population 1 showed that higher WND values in 

ipsilesional and contralesional ROIs were indeed linearly associated with better clinical 

improvement. In ipsilesional ROIs, correlations could be observed exclusively in the beta 

frequency band. The more beta oscillations in the ipsilesional motor areas were coherent with 

the rest of the cortex, the more patients improved in motor function (r=0.57, p=0.047, 

Bonferroni corrected, Fig. 2A, C). Similarly, the more left inferior frontal regions were 
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coherent with the rest of the cortex, the better patients improved in language function (r=0.69, 

p=0.042, Bonferroni corrected, Fig. 2B, D).  

Associations between WND and clinical scores were then followed over time in order to 

characterize their temporal evolution. When patients were segregated into 2 groups according 

to their clinical recovery, we found a trend for greater WND at T0 in the group with good 

compared to the group with bad corresponding improvement (t>1.9, p<0.084, Fig. 2E-F). This 

difference was not observed at T1. On the contrary, a delayed increase in WND from T0 to T1 

was significantly negatively correlated with the corresponding clinical recovery during the 

same period (r<-0.56, p<0.040, Fig. 2G-H). Hence, whereas high WND at 2-3 weeks after 

stroke was positively associated with recovery, the opposite was the case for later increases. 

A similar pattern was found in contralesional ROIs, but for theta oscillations. Language 

recovery was associated with larger WND in the right Broca homologue at 2 weeks (r=0.70, 

p=0.039, Bonferroni corrected, Fig. 3B, D, F). In the case of motor improvement, no 

correlation was at first observed in any frequency band. However, when we used a more fine 

graded template of motor areas and defined motor ROIs covering more exclusively upper 

extremity representations [Area 4p of the Jülich Anatomy Toolbox (Eickhoff et al., 2005)], 

we also found an association of theta-band WND with motor recovery, although it did not 

survive corrections for multiple testing (r=0.52, p=0.008, uncorrected, Fig. 3 A, C). Again, the 

association tended to be inversed for later increases occurring between 2-3 weeks and 3 

months post stroke onset (r<-0.4, p<0.110, Fig. 3G-H). 

Correlations were spatially specific: WND at motor areas did not correlate with language 

improvement (r<0.38, p>0.18), and language WND not with motor improvement (r<0.36, 

p>0.10). Correlation between motor ROI WND and motor improvement was significantly 

greater than the correlation between WND at Broca’s area and motor improvement 

(ipsilesiponal p<0.0001, contralesional p<0.06), and correlation between WND at language 

ROIs and language recovery tended to be greater than the correlation between motor WND 

and language improvement (ipsi- and contalesional p<0.06). Furthermore, a voxel-wise 

analysis showed that the correlations were regionally specific in that only voxels around 

motor areas correlated with motor improvement and only voxels around language areas 

correlated with language improvement (Fig. 4). Correlations were also frequency specific. In 

ipsilesional ROIs, correlation with recovery was significantly greater at the beta than at the 

theta frequency band (p<0.02), while the opposite was the case for contralesional ROIs 

(p<0.06). 
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In contrast to coherence, local oscillation power at the same ROIs and frequency bands was 

not correlated with recovery (r<0.28, p>0.17), thus confirming that our findings reflect 

interregional coherence, not local oscillation amplitude. 

In a multiple stepwise regression, only ipsi- and contralesional WND, but not initial 

motor/language scores, initial NIHSS, age, lesion size, and medication were retained as 

independent predictors of motor and language improvement (final model for motor 

improvement: F2,18=11, R2=0.55, p=0.0007; language improvement F2,11=9, R2=0.61, 

p=0.005). Similarly, a partial correlation analysis including these factors as confounding 

covariates remained significant (r>0.56, p<0.03). No significant correlations were found 

between WND values at T0 and clinical scores at T0 (r<0.36, p>0.19) or between WND at T1 

and clinical scores at T1 (r<0.21, p>0.49), confirming that the association with recovery was 

not merely due to severity at baseline or follow-up.  

We verified the robustness of these findings in a second stroke population (in whom only 

motor assessments were obtained). When using the same motor ROIs and frequency bands as 

in population 1, we reproduced similar positive correlations between WND at T0 and 

subsequent motor improvement (r>0.47, p<0.05, Fig. 5).  

Next, we compared ipsilesional beta-band WND and contralesional theta-band WND of 

stroke population 1 to an age-matched healthy control population. The bad recovery group 

had lower WND in contralesional M1 (t=-2.1, p=0.045), as well as in the ipsilesional Broca 

area (t=-2.6, p=0.015) and its contralesional homologue (t=-1.9, p=0.071) than healthy 

controls. The good language recovery group had significantly greater WND in Broca’s area 

than healthy controls (t=3.2, p=0.003). The difference in the remaining ROIs was not 

significant (p>0.16). 

 

Discussion  

Brain repair after stroke depends on a cascade of a growth-promoting molecular and cellular 

events (reviewed, e.g., in Carmichael (2006), Nudo (2007), Murphy and Corbett (2009)), on a 

transient recruitment of perilesional as well as contralesional brain areas (e.g., Nudo et al., 

1996; Feydy et al., 2002; Ward et al., 2003; Gerloff et al., 2006; Saur et al., 2006), as well as 

on early, intensive, and task-specific exercise (e.g., Kwakkel et al., 1999; Kleim and Jones, 

2008; Dancause and Nudo, 2011; Langhorne et al., 2011). Our study provides evidence that 
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plasticity is further associated with a synchronization of spontaneous neural oscillations 

between brain areas. The more neural oscillations in language and motor areas were coherent 

with the rest of the cortex at 2-3 weeks after stroke, the better patients improved in 

corresponding clinical functions during the subsequent weeks. This association was robust as 

it was reproduced in two different patient populations and two key neurological functions. 

Network interactions therefore seem to be relevant for brain plasticity. This might be a 

consequence of processes taking place on cellular and molecular levels. For instance, the 

creation of new synaptic connections might be associated with a transient increase in 

synchronous beta oscillations between the involved brain areas. In this case, EEG 

connectivity could be useful as non-invasive biomarker of cellular processes. In addition, 

oscillation synchrony might also contribute actively to plasticity. For instance, it might help 

preserve and strengthen newly-formed projections. A better understanding of these network 

processes could then eventually result in new or improved therapy procedures. 

We will first characterise connectivity changes associated with future recovery and then 

consider possible confounds and limitations. Finally, we will compare network markers of 

stroke recovery with previously described predictors. 

Characteristics of network plasticity 

Network analyses begin to reveal characteristics of stroke plasticity which have been hidden 

to local analyses. They show that critical brain areas enhance their overall importance and 

interactions in the brain network, probably to promote their reintegration. This is suggested 

not only by our finding of larger WND in patients with good recovery, but also by similar 

observations made in previous studies which have used fMRI (Wang et al., 2010), MEG 

(Buch et al., 2012), or EEG during motor tasks (De Vico Fallani et al., 2013) to reconstruct 

comparable graph theoretical measures of node degree or node centrality. This increase in 

overall interactions is therefore remarkably reproducible and observable during tasks and at 

rest, and in several recording techniques. 

Our study further suggests that specific oscillation frequencies are preferred for recovery-

related neural interactions in the first weeks after stroke. Thereby, ipsi- and contralesional 

hemispheres use different rhythms. This might reflect distinct molecular environments after 

unilateral stroke. Animal models of stroke have shown that two main synaptic signalling 

systems are implicated in stroke plasticity, but with opposing effects. Gamma-aminobutyric 

acid (GABA) mediated inhibition of the periinfarct tissue reduces recovery, while 
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glutamatergic excitation mediated by alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate (AMPA) receptors promotes plasticity (Clarkson et al., 2010; Carmichael, 2012; 

Kim et al., 2014). These neurotransmitters also modulate the amplitude and phases of EEG 

rhythms at specific frequencies. GABA influences beta rhythms in the motor cortex (Jensen et 

al., 2005; Yamawaki et al., 2008; Farzan et al., 2013; Ronnqvist et al., 2013) and seems to 

influence spike timing of individual neurones during theta oscillations (Kohl and Paulsen, 

2010). AMPA agonists have been reported to induce long-term theta oscillations (Li et al., 

2014). The association of ipsilesional beta coherence with clinical improvement might 

therefore reflect a GABAergic processes. The preference of the contralesional hemisphere for 

theta rhythms might also be related to neurotransmitter changes (Schiene et al., 1996; Kim et 

al., 2014). If such associations between neurotransmitters and coherence frequencies can be 

confirmed in future studies, they might enable us to link clinical observations with synaptic 

processes using non-invasive and convenient EEG recordings.  

In addition to the frequencies observed here, synchronous neural activity at delta and infra-

delta frequencies (0.1 – 2 Hz) have been reported during the first days after stroke in rats 

(Carmichael and Chesselet, 2002). It is unknown whether such slow frequency 

synchronization also occurs in humans. The fact the we did not observe it in our study may be 

due to later times of recordings, difficulties in obtaining artefact-free recordings of very slow 

rhythms at the skull, and our measure of functional connectivity which masks zero-lag 

synchrony. 

In healthy humans, alpha rhythms are the main carrier for phase synchronization during the 

task-free state. The healthy human brain has a prominent peak of resting-state oscillation 

coherence in the alpha frequency range (~7-13 Hz) (Guggisberg et al., 2008; Hillebrand et al., 

2012) corresponding to the prominence of the alpha rhythm in the human EEG. Moreover, the 

magnitude of resting-state alpha-band coherence is linearly associated with performance in 

subsequent tasks (Dubovik et al., 2013; Rizk et al., 2013; Guggisberg et al., 2015). The 

present study provides evidence that recent stroke lesions induce an adaptive deviation from 

the usual alpha frequencies towards beta and theta frequencies. This deviation is transient and 

limited to the first weeks after stroke. A return to usual alpha interactions has to occur during 

the period between 4 to 12 weeks after stroke. The negative correlation between changes in 

coherence and clinical improvement indicates that theta and beta coherence become 

maladaptive at these later stages. Moreover, previous studies have shown that, 3 months after 

stroke, motor and cognitive performance of stroke patients is again correlated with alpha-band 
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connectivity of critical nodes, as in healthy subjects (Dubovik et al., 2012). A study 

investigating mostly chronic stroke patients found also predictors of future recovery when 

focusing on alpha-band coherence (Westlake et al., 2012). In sum, EEG and MEG network 

analyses suggest that the brain uses several communication frequencies in order to adapt to 

stroke lesions, and that the involved frequencies evolve dynamically over time. The time 

course of adaptive network changes observed here corresponds to the time window of 

opportunity known from repair-related genetic, molecular, and cellular events which also peak 

during the first weeks after stroke onset (Carmichael, 2006; Cramer, 2008; Murphy and 

Corbett, 2009). This provides further evidence that EEG network markers are linked to 

molecular repair processes. 

Network changes associated with recovery also follow several principles of plasticity known 

from local processes. Increases in FC are functionally and regionally specific, such that nodes 

mediating a particular function are also specifically associated with recovery of the same 

function. Moreover, they involve ipsilesional and homologous contralesional brain areas, in 

accordance with findings from studies of local activity changes (Feydy et al., 2002; Ward et 

al., 2003; Gerloff et al., 2006; Saur et al., 2006).  

It is noteworthy that network plasticity takes place not only after stroke but also in other 

conditions such as traumatic brain injury, multiple sclerosis, and early Alzheimer’s disease.  

Some of the mechanisms observed in stroke seem to generalise to other pathologies. For 

instance, the hyperconnectivity of critical areas seems to be a general response to brain 

affections occurring also in traumatic brain injury and multiple sclerosis (Hillary et al., 2015). 

An adaptive shift of neural interaction frequency occurs also after traumatic brain injury 

(Castellanos et al., 2010; 2011) and in patients with early Alzheimer’s disease (Dubovik et 

al., 2013). Yet, the involved frequencies seem to differ among conditions. This opens the 

interesting possibility that network imaging with EEG or MEG might provide a fingerprint of 

frequency responses which are characteristic to particular conditions. 

Potential confounds 

We verified that the correlations observed here were not merely due to the presence of 

lesions, which might have led to a general suppression of oscillations and hence to trivially 

low coherence in patients with worse recovery. When ipsilesional ROIs were defined 

individually for each patient by masking voxels that were affected by anatomical lesions, this 

did not change our findings of correlations with clinical recovery (r>0.50, p<0.035). One may 
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argue that the limited spatial resolution of EEG source reconstruction leads to spread of 

reduced oscillations around lesions which would be difficult to control. However, this 

possibility is unlikely for several reasons. First, we used a measure of FC which is robust to 

artefacts resulting from the limited spatial resolution of source imaging (Sekihara et al., 

2011). Second, a general suppression of neural activity would likely concern all oscillation 

frequencies, whereas we observed selective correlations only at particular frequency bands. 

Third, the presence of lesions could not explain the fact that we found similar correlations in 

the contralesional hemisphere. Fourth, many patients with good recovery had increased FC 

(Fig. 1), which cannot be explained by a lesion-induced absence of neural oscillations.   

Our study reports the largest sample of stroke patients so far investigated for network 

plasticity and is the first to crossvalidate the findings in an independent population. Yet, the 

sample size remains moderate with variable lesions, clinical cofactors, and analyses 

procedures, which might partially influence some of the findings. 

Predictors of recovery 

Multiple parameters have been proposed as predictors of functional outcome after stroke (i.e., 

of the severity of deficits in the chronic stage), including initial clinical severity (Kwakkel et 

al., 2003; Nijland et al., 2010), lesion location (Shelton and Reding, 2001; Hope et al., 2013), 

diffusion tensor imaging of white matter tracts (Stinear et al., 2007; Liu et al., 2010; Marchina 

et al., 2011; Riley et al., 2011), magnetic resonance spectroscopy (Cirstea et al., 2011), 

functional magnetic resonance imaging (Saur et al., 2010), motor and somatosensory evoked 

potentials (Feys et al., 2000; Hendricks et al., 2002; Stinear et al., 2007), and EEG/MEG 

spectral power (Tecchio et al., 2007; Finnigan and van Putten, 2013). In the case of motor 

outcome, best prediction accuracy has been reported by a combination of clinical 

examinations and assessments of the cortico-spinal tract with diffusion tensor imaging and 

motor evoked potentials (Coupar et al., 2012; Stinear et al., 2012). 

In contrast, the prediction of clinical improvement from the acute/subacute to the chronic 

stage has proven more difficult. It seems to rely less on the severity of initial clinical deficits 

and local neural damage, and more on reparation processes in distributed areas. Functional 

magnetic resonance imaging (fMRI) can help identify patients with good likelihood of 

improvement if multivariate analyses of activation changes at multiple brain regions are used 

(Cramer et al., 2007; Marshall et al., 2009; Saur et al., 2010). Our and previous studies 

underscore the relevance of network interactions. Future studies will need to compare the 
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reliability of different markers and assess whether a combination can result in clinical 

applications.  
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Figure Captions 

 

Figure 1. Examples of hyperconnectivity after stroke resulting in increased WND in 

contralesional (A) and ipsilesional (B) hemispheres. Stroke lesions are marked with dark 

gray cubes, regions with increased WND with yellow and red colours. (A) Patient with 

paresis of the left arm resulting from a lesion involving the right internal capsule. EEG 

network imaging revealed hyperconnectivity of the contralesional motor cortex at 2-3 weeks 

after stroke onset. The patient improved from 7 points at 2 weeks to 21 points at 3 months in 

the Upper Extremity Fugl Meyer score. (B) Patient with Broca aphasia due to stroke in the 

territory of the left anterior middle cerebral artery. Hyperconnectivity was present in the 

perilesional tissue at 2 weeks and associated with an improvement in language performance 

from 40 to 78 out of 100 points in the subsequent weeks. Coronal slices are in neurological 

orientation. 
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Figure 2. Ipsilesional network correlates of clinical recovery. Global FC of the affected 

primary motor cortex (A) or of Broca’s area (B) with other areas (i.e., their WND) correlated 

with future clinical improvement at beta oscillation frequencies. Double asterisks indicate 

frequency bands with significant correlations (p<0.05, Bonferroni corrected). (C, D) Scatter 

plots illustrating the association between beta-band WND and clinical recovery. (E, F) 

Patients with good recovery tended to show greater WND at 2-3 weeks after stroke, but not at 

3 months. White circles denote marginally significant differences (p<0.09). (G, H) In contrast 

to the situation at T0, an increase of WND between T0 and T1 was associated with worse 

clinical improvement in the corresponding function. 
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Figure 3. Contralesional network correlates of clinical recovery. WND of the 

contralesional primary motor cortex (A) and the right Broca homologue (B) was correlated 

with corresponding future clinical improvement at theta oscillation frequencies. Asterisks 

indicate frequency bands with significant correlations: ** p<0.05, Bonferroni corrected; * 

p<0.05, uncorrected. (C, D) Scatter plots illustrating the association between theta-band 

WND and clinical recovery.  (E, F) Patients with good language recovery tended to show 

greater WND at 2-3 weeks after stroke, but not at 3 months. The asterisk indicates significant 

differences (p<0.05). (G, H) In contrast to the situation at T0, an increase of WND between 

T0 and T1 was associated with worse clinical improvement in language function. 
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Figure 4. Associations between network interactions and clinical improvement were 

regionally specific. A voxel-wise correlation between WND and clinical recovery shows that 

only voxels around motor areas correlated with motor improvement and only voxels around 

language areas correlated with language improvement. Functional maps are thresholded at 

p<0.05, uncorrected, to visualize the full extent of network predictors. 

 

 

Figure 5. Correlations in an independent population. Significant associations between FC 

at T0 and subsequent recovery were reproduced in the second stroke population, using the 

same regions of interest and the same frequency bands.  
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Supplementary Figures 

 

Supplementary Figure 1: Lesion distribution of stroke population 1. A Patients with 

motor deficits. B Patients with language deficits. The color encodes the number of patients 

with ischemic lesion at a given voxel. The lesion was cortical in 2 out of 24 patients, 

subcortical in 6, and mixed in 16. Images are presented in neurological convention (left is 

left). 

 
 

 

Supplementary Figure 2: Lesion distribution of stroke population 2.  The lesion was 

cortical in 1 patient, subcortical in 8, and mixed in 6. Images are presented in neurological 

convention (left is left).  
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Supplementary Tables 

Supplementary Table 1. Characteristics of patient population 1. 

Age Gender Lesion Side Admission 
NIHSS 

Handedness Suspected Stroke 
Etiology 

CNS-active 
medication 

67 M R 13 R Internal carotid artery 
stenosis 

- 

51 M L 15 L Internal carotid artery 
dissection 

- 

60 M L 16 R Cryptogenic - 

64 F L 7 R Cryptogenic - 

80 F R 5 R Atrial fibrillation Oxazepam 

68 M R 15 R Cryptogenic - 

74 F L 14 R Akinetic left 
ventricular segment 

Citalopram 

48 F L 27 R Cryptogenic - 

54 F L 6 R Patent foramen ovale - 

62 M R 9 R Internal carotid artery 
occlusion 

- 

68 M R 16 R Atrial fibrillation - 

37 M L 8 R Patent foramen ovale 
and DVT 

- 

63 M L 12 R Internal carotid artery 
occlusion 

- 

70 F L 14 R Atrial fibrillation Fluoxetin 

53 M L 20 R Internal carotid artery 
dissection 

Escitalopram 

79 M R 18 R Internal carotid artery 
occlusion 

- 

60 M R 18 R Internal carotid artery 
stenosis 

- 

46 M L 7 R Patent foramen ovale 
and DVT 

- 

73 F L 3 R Cryptogenic - 

78 F R 9 R Atrial fibrillation - 

56 M L 19 R Cryptogenic Zolpidem 
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67 F L 11 R 
Atrial flutter and 
mitral valve 

- 

43 M L 18 L 
Patent foramen ovale 
and DVT 

- 

52 M R 14 R 
Middle cerebral 
artery stenosis 

- 

 

 

Supplementary Table 2.  Characteristics of patient population 2. 

Age Gender Lesion Side Admission 
NIHSS 

Handedness Suspected Stroke 
Etiology 

CNS-active 
medication 

43 F R 43 R 
Common carotid 
artery dissection 

- 

65 M L 19 R Atrial fibrillation - 

64 F R 21 R 
Internal carotid artery 

occlusion 
- 

32 M L 3 R 
Middle cerebral 
artery stenosis 

Escitalopram 

67 F L 8 R Cryptogenic - 

77 F L 22 R Atrial fibrillation - 

56 M R 15 R 
Arterial hypertension 

(hemorrhage) 
- 

83 M R 16 R Atrial fibrillation - 

80 F R 10 R Cryptogenic - 

77 M R 6 R 
Internal carotid artery 

stenosis 
Citalopram 

77 F R 17 R 
Carotid artery 
atheromatosis 

Zolpidem, 
Quetiapin 

85 F L 13 R 
Carotid artery 
atheromatosis 

- 

51 F L 7 R 
Internal carotid artery 

thrombus 
Clonazepam, 

Fluoxetin 

83 M L 14 L 
Arterial hypertension 

(hemorrhage) 
- 

67 M R 18 R 
Arterial hypertension 

(hemorrhage) 
- 
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62 M R 17 R 
Carotid artery 
atheromatosis 

- 

49 F R 16 R Cryptogenic Escitalopram 

73 M R 9 R Atrial fibrillation Bromazepam 

 


