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We consider a two-dimensional (2D) ballistic and quasiballistic structures with spin-orbit-related splitting of
the electron spectrum. The ballistic region is attached to the leads with a voltage applied between them. We
calculate the edge spin density which arises in the presence of a charge current through the structure. We solve
the problem with the use of the method of scattering states and clarify the important role of the unitarity of
scattering. In the case of a straight boundary it leads to exact cancellation of long-wavelength oscillations of the
spin density. In general, however, the smooth spin oscillations with the spin precession length may arise, as it
happens, e.g., for the wiggly boundary. We show that there is no relation between spin current in the bulk and

the edge spin density.
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I. INTRODUCTION

Currently, there is a great interest, both experimental and
theoretical, in spin currents and spin accumulation in various
mesoscopic semiconductor structures.'> Both phenomena are
due to spin-orbit (s-0) coupling and are of great importance
for the future of spin electronics. The edge electron spin-
density accumulation, related to the Mott asymmetry in
electron scattering off impurities, has been recently measured.’
Moreover, the edge spin density in the two-dimensional (2D)
hole system, which is due to the intrinsic mechanism* of the
s-0 interaction, has also been observed.’ It is well known? that
in the diffusive regime (and when a spin diffusion length is
much larger than a mean-free path), the spin density appearing
near the boundary is entirely determined by the spin flux
coming from the bulk. In the case of the Rashba Hamiltonian,
depending on boundary conditions either the spin current and
the spin-density component perpendicular to the plane is zero
everywhere down to the sample boundary,® or there is net spin
flux within spin precession length near the boundary which is
directed towards the boundary and is precisely the source of
the finite S, component at the edge.’” This spin flux is caused
by the electric field existing in the bulk.

In an opposite case, when the spin precession length is much
shorter than the mean-free path, the situation is much less clear.
An example of such a system is a mesoscopic structure with
s-o-related splitting of the electron spectrum Ag, in the limit
Agt, > 1, where 7, is the mean-free time. It includes the
case of finite size ballistic structures, when the mean-free path
is much larger than the sample size (a mesoscopic spin Hall
effect). The existing literature for the ballistic case includes
several papers®’ where the problem is treated numerically, but
the system size is comparable or less than the spin precession
length. The quasiballistic case is treated in Ref. 10. It is hard to
find in these papers clear answers to the following important
questions: What is the characteristic scale in the problem?
Is it Fermi wavelength or spin precession length? How do
the results depend on the boundary conditions, etc.? On the
other hand, most authors, if not all, believe that the edge spin
density in a mesoscopic spin Hall effect is a result of the
spin current flowing towards the boundaries. We show below
that this is not true in the ballistic case, in contrast to the
diffusive limit. Moreover, there is an apparent discrepancy
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between the analytical results obtained in Ref. 11, where only
edge spin oscillations with 2kr were found, and numerical
results of Ref. 8, where obviously some smooth spin density
S, component is present.

In order to answer questions formulated above, we solve
analytically the problem of edge spin accumulation in purely
ballistic regime and when the size of the structure is much
larger than the spin precession length. The boundary conditions
are arbitrary, they include specular scattering for the straight
boundary or diffusive scattering for the wiggly one. The
obtained exact results allow us to clarify the meaning of the
results obtained in Ref. 8.

In the presence of the s-o interaction, the boundary
scattering itself is the source of appearance of the spin
density. It is obvious that the characteristic length near a
boundary, where the spin density arises, is the spin precession
length Ly = hvp/Ag, with vp being the Fermi velocity. This
mechanism of the spin-density generation is the subject of our
paper. We show that various situations may arise, depending
on the form of the s-o Hamiltonians.

We start with a 2D system described by the Rashba
Hamiltonian in the ballistic limit, where a mean-free path
is much larger than the sample sizes. The ballistic region is
attached to the leads, and a voltage V applied between the
leads causes a charge current through the structure, as shown
in Fig. 1. Since the electric field is absent inside an ideal
ballistic conductor, the edge spin polarization appears not as
a result of the acceleration of electrons by an electric field,
but rather due to the difference in populations of left-moving
and right-moving electrons. The combined effect of boundary
scattering and spin precession leads to oscillations of the edge
spin polarization.

The problem of the spin-density accumulation in a ballistic
system and for a straight boundary has been considered
analytically earlier in Ref. 11 with the help of the Green’s
functions method. Surprisingly, in this case the final result
contains only Friedel-like oscillations with the momentum
2kp. This effect may be interpreted as s-o splitting of the
Friedel oscillations in the charge density: two charge oscilla-
tions corresponding to spin-up and spin-down orientations get
shifted with respect to each other in the presence of the s-o
interaction. Therefore, strictly speaking, this phenomenon is
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FIG. 1. (Color online) (Left) Schematics of the boundary specular
scattering in the presence of spin-orbit coupling. Plus and minus
modes are shown for the same energy and the same wave vectors
along the boundary. (Right) Geometry of system.

different from a s-o—related accumulation of the spin density
upon boundary scattering. Besides, the method used in Ref. 11
does not allow us to understand the reason for the cancellation
of long-wavelength oscillations of the spin density.

We solve the problem of edge spin accumulation by
using scattering theory, with scattering states coming from
different leads of the structure and, therefore, having different
occupations. The simplicity of the method allows us to gain
an insight into the underlaying physics. We show that it is
the unitarity of scattering that leads to the exact cancellation
of long-wavelength oscillations of the spin density with the
period L, in the case of a straight boundary. It should be
also mentioned that the observed behavior is closely related to
the effective one-dimensional character of scattering, arising
from the translational invariance along the boundary. However,
the case of a straight boundary appears to be a rather
exceptional one. In general, smooth spin oscillations with the
spin precession length L; arise, as it happens for example, for
the wiggly boundary or for scattering off a circular impurity
in a 2D electron system.!>'* This is a consequence of the
fact that in higher dimensions the conditions of the unitarity
of scattering take a different form, as explained below. In all
these situations, the spin density decays as a power law of the
distance from the scatterer.

II. STRAIGHT BOUNDARY

The Rashba s-o Hamiltonian in the bulk of a ballistic 2D
electron system takes the following form:

2
Hp) = 2=+ Zils x pl. (1)
2m 2
where 7 is the normal to the plane, ¢ are the Pauli matrices,
and p is the 2D momentum. The solutions of this Hamiltonian
corresponding to the helicity values M = £ have the form
exp(ipr/h) xm(p), where r = x, y. The explicit form of the
spinors and their eigenenergies are

(90) - ! ! (P) - : 4
—_ L. , € = — + —auap,
X \/—2 :Flew) M 2m 2

with ¢ being the angle between the momentum p and the
positive direction of the x axis.
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We consider the semi-infinite system and choose the x axis
to be directed perpendicular to the boundary (x = 0) of the
2D system (see Fig. 1). The wave functions, which obey zero
boundary conditions at x = 0, are obviously the scattering
states, which constitute the complete set of the orthonormal
functions. Two scattering states corresponding to incident plus
and minus modes with given wave vector along the boundary
and the same energy are

Py) = el — @)™ 4 Ff (o)
+F x-(ene®™], 900y =0.

PO,y) = e [x_(r — g ™% + FFy (g™
+ F-x_(pne*], 9Q0,m=0. (3)

Here, the wave vectors are defined as follows:

R= - K=& -k, hki=m<vp$%), @)

where py = hky are the momenta at the Fermi energy in the
plus and minus modes. The angles ¢, ¢; may be expressed as
sin(p) = ky/ k. and sin(p;) = k,/k_ (see Fig. 1).

From Egs. (2) and (3), one finds the scattering amplitudes
F} and F:

(el — e™1%)

(gi(ﬂl +ei‘ﬁ) ’

- 2cosg )

+ _
F+ = + = (e +e"‘ﬁ)'

One can check that the amplitudes F~ and F for the incident
minus mode with the same k, and the same energy are obtained
from F; and F by replacing ¢ <> ¢;. Then, the components
of the unitary scattering matrix S acquire the following form:

ST=St=F; |22 (6
Ux,+

where v, ; = d¢€;/dp, are the group velocities. For the Rashba
model one has v, _ /vy + = cos @/ cos .

St=F!, S”_=F_,

A. Spin density

The wave functions (2) and (3) may now be used to
calculate the average z component of the spin as a function
of coordinates:

dk, d . .
(S.(x)) = Z f (——E fre )08 [V (),
i=+

27T)2 Ux,i ’
(7

where fr(€,k,) is the Fermi distribution function, which takes
either of two values: fr(e — u —eV/2)or fr(e — u +eV/2),
depending on the sign of k,. We find that one may distinguish
various contributions to (S,(x)) with different oscillation
periods, which originate from an interference of different terms
in Egs. (2) and (3). The smooth part of (S,(x)),, which involves
the interference of the outgoing waves [two last terms in
Egs. (2) and (3)], reads

1
(S:(x))s OC/dkdefF(G,ky)ﬁ

x [A(x— (@IS x4 (@) fcc],  (8)
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where
A=ST- (S + 8T (SO).

Here we used the fact that the distribution function fr(e€,k,),
describing a particular lead, has the same value at given
energy for the plus and minus modes. Note that the period
of oscillations of the exponential factor ¢/ —¥¥ in Eq. (8) is of
the order of the spin precession length. However, the term (8)
vanishes because the expression A is nothing but a nondiagonal
component of the identity matrix $S8T. Thus, we obtain the
interesting result that the only reason for the cancellation of
the long-wave length oscillations with the period L, in (S,(x))
is the unitarity of scattering.

By taking into account in Eq. (7) the terms responsible for
the interference between incoming and the outgoing waves
[for example, between the first and second terms in Eq. (2)]
and adding the contribution from the evanescent modes, ! we
reproduce Eq. (16) of Ref. 11. It can be written in the form
(S;(x)) = [eV/(Snzmv%)]Im I, where

k- 2 _

I = / dky k+k_ + k_\’ kkl (eikx _ eikl)C)Z.
0 ky

Note that in the interval k, < k, < k_, the quantity k has
purely imaginary value, which corresponds to the evanescent
modes. From this of the presentation, we can immediately see
that (S,(x)) contains only the 2kr component, while all the
long-wavelength oscillations cancel exactly. Indeed, with the
branch cut along the real k, axis between the points —k_ and
—+k_ (see Fig. 2), the integrand function in / is an analytical
function of the variable k, in the right half plane Rek, > 0
(for positive x). Since we need the imaginary part of /, the
integration is going along the upper edge of the branch cut
from O up to +k_ and then back along the lower edge of the
branch cut. Because of the analyticity mentioned above, this
integral is equal to the one taken along the imaginary axis of
ky = ik. Then, for x > A the latter integral is determined by
small ¥k < kp:

I~ _z(eik,x _ eik+X)2 /AoodKKei)c;(z/kF7
0
which gives for the spin density (S,(x)) = [eV/ Qr?vpx)]
cos(2mvpx)sin’(amx/2), coinciding with the result of

Ref. 11. Therefore, the total spin per unit length along the
boundary scales as f0°° dx(S.(x)) o< o®>. Note that the main

Im ky

Rek
y

FIG. 2. The original contour I'; along the real axis can be
deformed into the part I', going along the imaginary axis and the
part I'; going far from the origin.
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contribution to this integral comes from small distances from
the boundary, x >~ Ap.

B. Spin current

It is important to note that the spin flux incoming from
the bulk to the boundary is simply zero, since only diagonal
components of the spin-density matrix are supplied by the
leads. By no means the edge spin density can be considered as
a result of this flux. The spin current, which is finite only due

to the evanescent modes, is
_ /12 2
= Jky —ki.

The spin current density oscillates with & = (k> — ki)’l/ 2
period and is localized basically over this length near the
boundary, Lp < & < L;. At distances larger than £ from
the boundary it has the form [eV /(47 2%€ )] cos(x /&) (i /mx?),
where at x ~ L; its magnitude is parametrically smaller
(a?/ v% <« 1) than the quantity vp(S,(x)). The latter quantity
follows from naive considerations. Therefore, spin and spin
current densities are not related to each other in the purely
ballistic case, in strong contrast with the diffusive limit.

eV e _
(@xz (X)) = dkyne ™ coskix,

47'[2va kg

C. Quasiballistic case

The cancellation of smooth spin-density oscillations in
case of the Rashba Hamiltonian and straight boundary occurs
also in the quasiballistic situation: L > [ > L, where L is
the sample size, and / is the mean-free path. In this case, the
electric field in the bulk of the sample is finite. Therefore, the
distribution functions for the plus and minus modes, f; + (k+)
and f,,(k ), are determined by the electric field and by
scattering off the 1mpur1tles in the bulk of a system.'® The
wave vectors k+ and k_, shown in Fig. 1, correspond to a given
energy and a given wave vector along the boundary. In the
quasiballistic case considered here, these functions are equal,
ie., fii(ky) = f,,(k ), similar to a ballistic situation. Under
such a condition, the unitarity of scattering, see Eq. (8), leads
to the cancellation of smooth edge spin-density oscillations,
in contrast to what has been stated in the literature.'” Indeed,
when the electric field is parallel to the boundary, the distribu-
tion functions in questions are f++(k+) fiy(ky)sing, and
f__(k )= f__(k_)sing; [see Eq. (9) of Ref. 16]. For the
case of the Rashba Hamiltonian, the following relation has
been obtained: ky f—_(k_) = k_ f1(k;)."® Then, the ratio is

f++(k+)/f,,(k ) =kysing/k_sing; =ky/ky = 1.

D. Cubic Hamiltonian

Depending on the form of the s-o Hamiltonian, the unitarity
may show up in totally different ways, leading, in general, to
different patterns of the edge spin density. Let us consider 2D
holes for the case of a normal incidence, where the cubic (in 2D
momentum) s-0 Hamiltonian has the form p?/(2m) + a6, p3.
We consider the ballistic case and an abrupt straight boundary.
For the plus incident mode and zero boundary conditions one
obtains F; =0, F_ =1i,1i.e., the helicity value changes sign.
For the charge flux to be conserved, one needs the equality
of the group velocities v, and v_, corresponding to the plus
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and minus modes at the same energy. In contrast to the case of
the Rashba Hamiltonian, those velocities are not equal for the
cubic Hamiltonian: v, — v_ = a(p4 + p_)>. The formal way
to resolve the trouble is to note that the cubic Hamiltonian has
three solutions for a given energy, one of them corresponding
to a fast mode with a momentum larger than k¢ (for small spin-
orbit coupling). Thus, in general, the unitarity of scattering in
slow plus and minus channels is violated, and smooth spin-
density oscillations occur.

III. SCATTERING BY WIGGLY BOUNDARY

Let us consider now scattering off a wiggly boundary,
shown in Fig. 3, for the case of the Rashba Hamiltonian.
In this case the translational invariance is broken, therefore
the condition of the unitarity of scattering takes a different
form as compared to the case of a straight boundary. As a
result, the cancellation of the smooth spin-density oscillations
does not take place, leading to the total spin that is not
small in the parameter .'®*" In order to demonstrate this
effect, we consider the mathematically simple case of the
abrupt impenetrable boundary described by the equation x =
¢(y) = Wsin(2ry/A). To the lowest order in W, the boundary
condition reads

b(0.y) + aww
x
We are looking for the solution in the perturbative form
\ili(x,y) = \ilf)(x,y)—}- ‘ilf_p(x, y), where the zeroth-order
functions are given by Eqgs. (2) and (3). The first-order
correction, proportional to W, is the superposition of scattering
waves with the wave vectors along the boundary shifted by
427 /A (see Fig. 3), and with the k vectors in the x direction
given by

- 27\? E 27\?
k:= ki-(ky:l:T) N kl<: k2_<ky:|:T> .

—0. )

FIG. 3. Schematics of scattering of plus incident mode by a
wiggly boundary, x = W sin(2ry/A). Apart from the main scattering
channels (solid lines), there are additional scattering waves with the
wave vectors along the boundary shifted by +27 /A (dashed lines).
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From now on, we assume Ar < L; < A. In addition, in
order to obtain an analytical expression for the spin density,
we consider the case x/+/ALr < 1. In contrast to the case of
the straight boundary, there are oscillations with three different
periods: 2k - oscillations, and the oscillations with two long
periods, & and L. Here & = (k* — k%)~'/? is the new length
scale. Under the conditions considered in the paper we obtain
the set of inequalities A < & < Ly, where Ly = 1/(k_ —
ky) =h/(ma) is the spin precession length. If k, — ki (i.e.,
k — 0), then k; tends to 1/&, which clarifies the physical
meaning of &.

For the contribution of the long-wavelength oscillations, we

obtain?!
eV 2 W 2wy
(S:(x,y)) = @n oy (T) cos (T) Tiong (%),

fes () = 25in(§) N 2cos(;é) N T N X 1

long 1) = & X 2L ! Ly X
2x 8 ! V=22

+—x—/ dze /9 cos Y- X 0 (10)

§ dax Jo &

where the last term is the contribution of the evanescent modes,
and N;(x) is a Bessel function of the second kind. At the
distances x < &, we obtain the following dependence: Ijong =
—2x2/(3$3) + [x/(2Lf)]{y + In[x/(2L;)]}. In the opposite
limit, x 3> &, we find fiong = 57— N1(x/Ly) — 1 + 2 cos(x/§).
At even larger distances x >> L, one obtains smooth oscilla-
tions with the period of the order of L, with the amplitude
being proportional to /. Note that the total spin per unit
length along the boundary is proportional to the integral

vy

/dxlk,ng(x) ~ (7'[/2LS)/‘oo dxNy(x/Ly) —/ dx/x
& H

[

—In(Ly /&) — In(v/ArE/§)
~ —(1/2)In(A/1F),

i.e., it is not small in s-o coupling, in contrast with the case of
a straight boundary.

In conclusion, we have considered the problem of the edge
spin accumulation in mesoscopic structures with spin-orbit—
related splitting of the energy spectrum, when the associated
spin precession length is much smaller than the mean-free
path. In the presence of the charge current, the spin density
develops oscillations near an edge in the direction transverse
to the boundary. The result crucially depends on the form of
s-0 Hamiltonian and the boundary conditions. The unitarity
of scattering in the case of a straight boundary and Rashba
Hamiltonian leads to the cancellation of long-wavelength spin-
density oscillations. On the contrary, the spin density in the
case of wiggly boundary oscillates with a large period of the
order of the spin precession length. The results obtained in our
work clarify the meaning of the results obtained previously
by other authors for related problems. The point is that the
geometry of the structure plays crucial role for the form of
the unitarity conditions. In particular, the finite length of the
structures studied, for example, in Ref. 8 (with the scattering at
the interface between the s-o region and the longitudinal lead),
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and presence of the transverse Hall leads change the form of
the unitarity conditions, and are the most probable reasons
for an appearance of the observed smooth S, spin density
component. On the other hand, it seems that the finite width of
the structure itself in the case of translational invariance along
the structure cannot cause the appearance of the smooth spin
density.
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