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Abstract

Background: Widespread misinformation in web resources can lead to serious implications for individuals seeking health
advice. Despite that, information retrieval models are often focused only on the query-document relevance dimension to rank
results.

Objective: We investigate a multidimensional information quality retrieval model based on deep learning to enhance the
effectiveness of online health care information search results.

Methods: In this study, we simulated online health information search scenarios with a topic set of 32 different health-related
inquiries and a corpus containing 1 billion web documents from the April 2019 snapshot of Common Crawl. Using state-of-the-art
pretrained language models, we assessed the quality of the retrieved documents according to their usefulness, supportiveness,
and credibility dimensions for a given search query on 6030 human-annotated, query-document pairs. We evaluated this approach
using transfer learning and more specific domain adaptation techniques.

Results: In the transfer learning setting, the usefulness model provided the largest distinction between help- and harm-compatible
documents, with a difference of +5.6%, leading to a majority of helpful documents in the top 10 retrieved. The supportiveness
model achieved the best harm compatibility (+2.4%), while the combination of usefulness, supportiveness, and credibility models
achieved the largest distinction between help- and harm-compatibility on helpful topics (+16.9%). In the domain adaptation
setting, the linear combination of different models showed robust performance, with help-harm compatibility above +4.4% for
all dimensions and going as high as +6.8%.

Conclusions: These results suggest that integrating automatic ranking models created for specific information quality dimensions
can increase the effectiveness of health-related information retrieval. Thus, our approach could be used to enhance searches made
by individuals seeking online health information.

(JMIR AI 2024;3:e42630) doi: 10.2196/42630
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Introduction

In today’s digital age, individuals with diverse information
needs, medical knowledge, and linguistic skills [1] turn to the

web for health advice and to make treatment decisions [2]. The
mixture of facts and rumors in online resources [3] makes it
challenging for users to discern accurate content [4]. To provide
high-quality resources and enable properly informed
decision-making [5], information retrieval systems should
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differentiate between accurate and misinforming content [6].
Nevertheless, search engines rank documents mainly by their
relevance to the search query [7], neglecting several health
information quality concerns. Moreover, despite attempts by
some search engines to combat misinformation [8], they lack
transparency in terms of the methodology used and performance
evaluation.

Health misinformation is defined as health-related information
that is inaccurate or misleading based on current scientific
evidence [9,10]. Due to the lack of health literacy for
nonprofessionals [11] and the rise of the infodemic phenomenon
[12]—the rapid spread of both accurate and inaccurate
information about a medical topic on the internet [13]—health
misinformation has become increasingly prevalent online.
Topics related to misinformation, such as “vaccine” or “the
relationship between coronavirus and 5G” have gained scientific
interest across social media platforms like Twitter and Instagram
[14-16] and among various countries [17]. Thus, the
development of new credibility-centered search methods and
assessment measures is crucial to address the pressing challenges
in health-related information retrieval [18].

In recent years, numerous approaches have been introduced in
the literature to categorize and assess misinformation according
to multiple dimensions. Hesse et al [19] proposed 7 dimensions
of truthfulness, which include correctness, neutrality,
comprehensibility, precision, completeness, speaker
trustworthiness, and informativeness. On the other hand, van
der Linden [20] categorized an infodemic into 3 key dimensions:
susceptibility, spread, and immunization. Information retrieval
shared tasks, such as the Text Retrieval Conference (TREC)
and the Conference and Labs of the Evaluation Forum (CLEF),
have also started evaluating quality-based systems for health
corpora using multiple dimensions [21,22]. The CLEF eHealth
Lab Series proposed a benchmark to evaluate models according
to the relevance, readability, and credibility of the retrieved
information [23]. The TREC Health Misinformation Track 2021
proposed further metrics of usefulness, supportiveness, and
credibility [24]. These dimensions also appear in the TREC
Health Misinformation Track 2019 as relevancy, efficacy, and
credibility, respectively. Additionally, models by Solainayagi
and Ponnusamy [25] and Li et al [26] incorporated similar
dimensions, emphasizing source reliability and the credibility
of statements. These metrics represent some of the initial efforts
to quantitatively assess the effectiveness of information retrieval
engines in sourcing high-quality information, marking a shift
from the traditional query-document relevance paradigm [27,28].
Despite their variations, these information quality metrics focus
on the following 3 main common topics: (1) relevancy (also
called usefulness or informativeness) of the source to the search
topic, (2) correctness (also called supportiveness or efficacy)
of the information according to the search topic, and (3)
credibility (also called trustworthiness) of the source.

Thanks to these open shared tasks, several significant
methodologies have been developed to improve the search for
higher-quality health information. Although classical
bag-of-words–based methods outperform neural network
approaches in detecting health-related misinformation when
training data are limited [29], more advanced approaches are

needed for web content. Specifically, research has proven the
effectiveness of a hybrid approach that integrates classical
handcrafted features with deep learning [18]. Further to this,
multistage ranking systems [30,31], which couple the system
with a label prediction model or use T5 [32] to rerank Okapi
Best Match 25 (BM25) results, have been proposed. Particularly,
Lima et al [30] considered the stance of the search query and
engaged 2 assessors for an interactive search, integrating a
continuous active learning method [33]. This approach sets a
baseline of human effort in separating helpful from harmful
web content. Despite their success, these models often do not
take into account the different information quality aspects in
their design.

In this study, we aimed to investigate the impact of
multidimensional ranking on improving the quality of retrieved
health-related information. Due to its coverage of the main
information quality dimensions used in the scientific literature,
we followed the empirical approach proposed in the TREC 2021
challenge, which considers usefulness, supportiveness, and
credibility metrics, to propose a multidimensional ranking
model. Using deep learning–based pretrained language models
[34] through transfer learning and domain adaption approaches,
we categorized the retrieved web resources according to different
information quality dimensions. Specialized quality-oriented
ranks obtained by reranking components were then fused [32]
to provide the final ranked list. In contrast to prior studies, our
approach relied on the automatic detection of harmful (or
inaccurate) claims and used a multidimensional information
quality model to boost helpful resources.

The main contributions of this work are 3-fold. We propose a
multidimensional ranking model based on transfer learning and
showed that it achieves state-of-the-art in automatic (ie, when
the query stance is not provided) quality-centered ranking
evaluations. We investigated our approach in 2 learning
settings—transfer learning (ie, without query relevance
judgments) and domain adaptation (ie, with query relevance
judgments from a different corpus)—and demonstrated that
they are capable of identifying more helpful documents than
harmful ones, obtaining +5% and +7% help and harm
compatibility scores, respectively. Last, we investigated how
the combination of models specialized in different information
dimensions impacts the quality of the results, and our analysis
suggests that multidimensional aspects are crucial for extracting
high-quality information, especially for unhelpful topics.

Methods

In this section, we introduce our search model based on
multidimensional information quality aspects. We first describe
the evaluation benchmark. We then detail the implementation
methodology and describe our evaluation experiments using
transfer learning and domain adaptation strategies.

TREC Health Misinformation Track 2021 Benchmark

Benchmark Data Set
To evaluate our approach, we used the TREC Health
Misinformation Track 2021 benchmark [35] organized by the
National Institute of Standards and Technology (NIST) [36].
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The TREC Health Misinformation Track 2021 benchmark
simulates web searches for specific health issues and
interventions against a collection of English web documents
[37]. For each topic, the benchmark annotates the quality of the
retrieved web documents using a pooling approach, in which
the top retrieved documents by systems participating in the
challenge are evaluated according to their usefulness,
correctness, and credibility and subsequently labeled as helpful
or harmful. In this context, helpful documents are defined as
those supportive of helpful treatments or that try to dissuade
the reader from using unhelpful treatments, while harmful
documents encourage the use of unhelpful treatments or dissuade
the reader from using helpful treatments [24]. See Table S1 in
Multimedia Appendix 1 for more detail on the annotation.

Health-Related Topics
A topic in the TREC Health Misinformation Track 2021
benchmark consists of a health issue, an intervention, a query

that connects the corresponding intervention to the health
problem, and a description that resembles the web search
question using natural language. NIST only provided
assessments for 35 of the initial 50 topics. Among the assessed
topics, 3 were further excluded due to the absence of harmful
documents. Consequently, the benchmark consisted of 32 topics:
14 labeled as helpful and 18 labeled as unhelpful. For these
queries, a total of 6030 query-document pairs were
human-annotated according to different scales of usefulness,
correctness, and credibility scores. A “helpful topic” refers to
an intervention beneficial for treating a health issue, while an
“unhelpful topic” indicates an ineffective intervention. The
stance is supported by evidence from a credible source. Table
1 presents examples of the queries and descriptions of helpful
and unhelpful topics.

Table 1. Examples of helpful and unhelpful topics with query and description.

StanceDescriptionQueryNumber

HelpfulCan vitamin b12 and sun exposure together help treat vitiligo?vitamin b12 sun exposure vitiligo106

UnhelpfulIs a tepid sponge bath a good way to reduce fever in children?tepid sponge bath reduce fever children102

Web Corpus
We used the Colossal Clean Crawled Corpus (C4), a collection
of English-language web documents sourced from the public
Common Crawl web scrape [38]. The corpus comprises 1 billion
English documents from the April 2019 snapshot. To illustrate

the contradictory nature of the web information within the
corpus, in Table 2, we present 2 documents relevant to topic
102: “tepid sponge bath reduce fever in children.” Although an
article advises against the intervention (“Do Not Use Sponging
to Reduce a Fever”), another article advises it could be a viable
option (“Sponging is an option for high fevers”).

Table 2. Examples of useful but contradictory documents for Topic 102: “Is a tepid sponge bath a good way to reduce fever in children?”.

Article 2Article 1Article information

en.noclean.c4-train.00001-of-07168.126948en.noclean.c4-train.07165-of-07168.96468Doc ID

2019-04-23T20:13:31Z2019-04-25T18:00:17ZTime stamp

[...] Sponging With Lukewarm Water: Note: Sponging is an
option for high fevers, but not required. It is rarely needed.
When to Use: Fever above 104° F (40° C) AND doesn’t come
down with fever meds. Always give the fever medicine at least
an hour to work before sponging. How to Sponge: Use luke-
warm water (85 - 90° F) (29.4 - 32.2° C). Sponge for 20-30
minutes. If your child shivers or becomes cold, stop sponging.
[...]

[...] Do Not Use Sponging to Reduce a Fever. It is not rec-
ommended that you use sponging to reduce your child’s
fever. There is no information that shows that sponging or
tepid baths improve your child’s discomfort associated with
a fever or an illness. Cool or cold water can cause shivering
and increase your child’s temperature. Also, never add rub-
bing alcohol to the water. Rubbing alcohol can be absorbed
into the skin or inhaled, causing serious problems such as a
coma. [...]

Text

https://childrensclinicofraceland.com/https://patiented.solutions.aap.org/URL

Quality-Based Multidimensional Ranking Conceptual
Model

Phases
The quality-based multidimensional ranking model proposed
in this work is presented in Figure 1A. The information retrieval
process can be divided into 2 phases: preprocessing and
multidimensional ranking. In the preprocessing phase, for a

given topic j, ND documents were retrieved based on their
relevance (eg, using a BM25 model) [39]. In the
multidimensional ranking phase, we further estimated the quality
of the retrieved subset of documents according to the usefulness,
supportiveness, and credibility dimensions. In the following
sections, we describe the multidimensional ranking approach
and its implementation using transfer learning and domain
adaption. We then describe the preprocessing step, which can
be performed based on sparse or dense retrieval engines.
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Figure 1. Quality-based multidimensional ranking models: (A) general pipeline, (B) supportiveness model for the transfer learning approach. BERT:
Bidirectional Encoder Representations from Transformers; C4: Colossal Clean Crawled Corpus; NIST: National Institute of Standards and Technology.

Multidimensional Ranking
To provide higher-quality documents at the top ranks, we
proposed using a set of machine learning models trained to
classify documents according to the usefulness, supportiveness,
and credibility dimensions. For the initial rank list obtained in
the preprocessing phase (see details in the following sections),
the documents were reranked in parallel according to the
following strategies for usefulness, supportiveness, and
credibility.

Usefulness

The usefulness dimension is defined as the extent to which the
document contains information that a search user would find
useful in answering the topic’s question. In this sense, it defines
how pertinent a document is to a given topic. Thus, to compute
the usefulness of retrieved documents, topic-document similarity
models based on pretrained language models, such as
Bidirectional Encoder Representations from Transformers
(BERT)–base [40], mono-BERT-large [41], and ELECTRA
[42], could be used. Given a topic-document pair, the language
model infers a score that gives the level of similarity between
the 2 input text passages. Although bag-of-words models, such
as BM25, provide a strong baseline for usefulness, they do not
consider word relations by learning context-sensitive
representations as is the case with the pretrained language
models, which are used to enhance the quality of the original
ranking [28].

Supportiveness

The supportiveness dimension defines whether the document
supports or dissuades the use of the treatment in the topic’s
question. Therefore, it defines the stance of the document on
the health topic. In this dimension, documents are identified
under 3 levels: (1) supportive (ie, the document supports the
treatment), (2) dissuasive (ie, the document refutes the
treatment), and (3) neutral (ie, the document does not contain
enough information to make the decision) [35]. To compute the
supportiveness of a document to a given query, the system
should be optimized so that documents that are either supportive,
if the topic is helpful, or dissuasive, if the topic is unhelpful,
are boosted to the top of the ranking list, which means that
correct documents are boosted and misinforming documents
are downgraded.

Credibility

The credibility dimension defines whether the document is
considered credible by the assessor, that is, how trustworthy
the source document is. To compute this dimension, the content
of the document itself could be used (eg, leveraging language
features, such as readability [43]), which is assessable using the
Simple Measure of Gobbledygook index [44]. Moreover,
document metadata could be also used, such as incoming and
outcoming links, which can be calculated with link analysis
algorithms [45], and URL addresses considered to be trusted
sources [46].
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Transfer Learning Implementation
To implement the multidimensional ranking model in scenarios
in which relevance judgments are not available, we proposed
multiple (pretrained) models for each of the quality dimensions
using transfer learning.

Usefulness

In this reranking step, we created an ensemble of pretrained
language models—BERT-base, mono-BERT-large, and
ELECTRA—all fine-tuned in the MS MARCO [47] data set.
Each model then predicted the similarity between the topic and
the initial list of retrieved documents. Their results were finally
combined using reciprocal rank fusion (RRF) [32].

Supportiveness

In this reranking step (Figure 1B), we created an ensemble of
claim-checking models—robustly optimized BERT approach
(RoBERTa)–Large [48], BioMedRoBERTa-base [49], and
SciBERT-base [50]—which were fine-tuned on the FEVER
[51] and SciFact [52] data sets. Claim-checking models take a
claim and a document as the information source and validate
the veracity of the claim based on the document content [53].
Most claim-checking models assume that document content is
ground truth. Since this is not valid in the case of web
documents, we added a further classification step that evaluates
the correctness of the retrieved documents. We used the top-k
assignments [44] provided by the claim-checking models to
define whether the topic should be supported or refuted. The
underlying assumption is that a scientific fact is defined by the
largest number of evidence available for a topic. A higher rank
is then given to the correct supportive or dissuasive documents,
a medium rank is given to the neutral documents, and a lower
rank is given to the incorrect supportive or dissuasive
documents. The rank lists obtained for each model were then
combined using RRF.

Credibility

In this step, we implemented a random forest classifier trained
on the Microsoft Credibility data set [54] with a set of
credibility-related features, such as readability, openpage rank
[45], and the number of cascading style sheets (CSS). The data
set manually rated 1000 web pages with credibility scores
between 1 (“very noncredible”) and 5 (“very credible”). We
converted these scores for a binary classification setting—that
is, scores of 4 and 5 were considered as 1 or credible, and scores
of 1, 2, and 3 were considered as 0 or noncredible. For the
readability score, we relied on the Simple Measure of
Gobbledygook index [44], which estimates the years of
education an average person needs to understand a piece of
writing. Following Schwarz and Morris [54], we retrieved a
web page’s PageRank and used it as a feature to train the
classifier. We further used the number of CSS style definitions
to estimate the effort for the design of a web page [55]. Last, a
list of credible websites scrapped from the Health On the Net
search engine [46] for the evaluated topics was combined with
the baseline model to explore better performance. The result of
the classifier was added to the unitary value of the Health On
the Net credible sites [46].

Domain Adaptation Implementation
To implement the multidimensional ranking model in scenarios
in which relevance judgments are available, we compared
different pretrained language models—BERT, BioBERT [56],
and BigBird [57]—for each of the quality dimensions using
domain adaptation. In this case, each model was fine-tuned to
predict the relevance judgment of a specific dimension (ie,
usefulness, supportiveness, and credibility). Although the input
size was limited to 512 tokens for the first 2 models, BigBird
allows up to 4096 tokens.

We used the TREC 2019 Decision Track [33] benchmark data
set to fine-tune our specific quality dimension models. The
TREC 2019 Decision Track benchmark data set contains 51
topics evaluated across 3 dimensions: relevance, effectiveness,
and credibility. Adhering to the experimental design set by [58],
we mapped the 2019 and 2021 benchmarks as follows. The
relevance dimension (2019) was mapped to usefulness (2021),
with highly relevant documents translated as very useful and
relevant documents as useful. The effectiveness dimension
(2019) was mapped to supportiveness (2021), with effective
labels reinterpreted as supportive and ineffective as dissuasive.
The credibility dimension (2019) was directly mapped to
credibility (2021) using the same labels.

The 2019 track uses the ClueWeb12-B13 [59,60] corpus, which
contains 50 million pages. More details on the TREC 2019
Decision Track [33] benchmark are provided in Table S2 in
Multimedia Appendix 1.

In the training phase, the language models received as input
were the pair topic-document and a label for each dimension
according to the 2019-2021 mapping strategy. At the inference
time, given a topic-document pair from the TREC Health
Misinformation Track 2021 benchmark, the model would infer
its usefulness, supportiveness, or credibility based on the
dimension on which it was trained.

Preprocessing or Ranking Phase
In the preprocessing step, which is initially executed to select
a short list of candidate documents for the input query, a BM25
model was used. This step was performed using a bag-of-words
model due to its efficiency. For the C4 snapshot collection, 2
indices were created, one using standard BM25 parameters and
another fine-tuned using a collection of topics automatically
generated (silver standard) from a set of 4985 indexed
documents. For a given document, the silver topic was created
based on the keyword2query [61] and doc2query [41] models
to provide the query and description content, respectively. Using
the silver topics and their respective documents, the BM25
parameters of the second index were then fine-tuned using grid
search in a known-item search approach [62] (ie, for a given
silver topic, the model should return in the top-1 the respective
document used to generate it). The results of these 2 indices
were fused using RRF.

Evaluation Metric
We followed the official TREC evaluation strategy and used
the compatibility metric [46] to assess the performance of our
models. Contrary to the classic information retrieval tasks, in
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which the performance metric relies on the degree of relatedness
between queries and documents, in quality retrieval, harmful
documents should be penalized, especially if they are relevant
to the query content. In this context, the compatibility metric
calculates the similarity between the actual ranking R provided
by a model and an ideal ranking I as provided by the query
relevance annotations. According to Equation 1, the
compatibility is calculated with the rank-biased overlap (RBO)
[63] similarity metric, which is top-weighted, with greater
weight placed at higher ranks to address the indeterminate and
incomplete nature of web search results [64]:

where the parameter p represents the searcher's patience or
persistence and is set to 0.95 in our experiments and K is the
search depth and is set to 1000 to bring pK-1 as close to 0 as
possible. As shown in Equation 2, an additional normalization
step was added to accommodate short, truncated ideal results,
so when there are fewer documents in the ideal ranking than in
the actual ranking list, it does not influence the compatibility
computation results:

To ensure that helpful and harmful documents are treated
differently, even if both might be relevant to the query content,
the assessments were divided into “help compatibility” (help)
and “harm compatibility” (harm) metrics. To evaluate the ability
of the system to separate helpful from harmful information, the
“harm compatibility” results were then subtracted from the
“help compatibility” results, which were marked as “help-harm
compatibility” (help-harm). Overall, the more a ranking is
compatible with the ideal helpful ranking, the better it is.
Conversely, the more a ranking is compatible with the ideal
harmful ranking, the worse it is.

Experimental Setup
The BM25 indices were created using the Elasticsearch
framework (version 8.6.0). The number of documents ND

retrieved per topic in the preprocessing step was set to 10,000
in our experiments. The pretrained language models were based
on open-source checkpoints from the HuggingFace platform
[65] and were implemented using the open-source PyTorch
framework. The language models used for the usefulness
dimension and their respective HuggingFace implemations were
BERT base (Capreolus/bert-base-msmarco), BERT large
(castorini/monobert-large-msmarco-finetune-only), and
ELECTRA (Capreolus/electra-base-msmarco). The language
models used for the supportiveness dimension were RoBERTa
base (allenai/biomed_roberta_base), RoBERTa large
( r o b e r t a - l a r g e ) ,  a n d  S c i B E R T
(allenai/scibert_scivocab_uncased). For the credibility
dimension, we used the random forest algorithm of the
scikit-learn library. In the domain adaptation setup, we
partitioned the 2019 labeled data set into training and validation
sets using an 80%:20% split ratio; the latter was used to select
the best models. We then fine-tuned BioBERT

(dmis-lab/biobert-base-cased-v1.1) with a batch size of 16,

learning rate of 1-5, and 20 epochs with early stopping set at 5
and utilizing the binary cross-entropy loss, which was optimized
using the Adam optimizer. The BigBird model
(google/bigbird-roberta-base) was fine-tuned with a batch size
of 2, keeping all the other settings the same as the BioBERT
model. All language models were fine-tuned using a single
NVIDIA Tesla V100 graphics card with 32 GB of memory (see
Multimedia Appendix 2 for more details). Results are reported
using the compatibility and normalized discounted cumulative
gain (nDCG) metrics. For reference, they were compared with
the results of other participants of the official TREC Health
Misinformation 2021 track, which have submitted runs for the
automatic evaluation (ie, without using information about the
topic stance). The code repository is available at [66].

Ethical Considerations
No human participants were involved in this research. All data
used to build and evaluate the deep language models were
publicly available and open aceess.

Results

Performance Results
In Table 3, we present the performance results of our
quality-based retrieval models using the TREC Health
Misinformation 2021 benchmark. Helpful compatibility (help)
considers only helpful documents of the relevant judgment,
while harmful compatibility (harm) considers only harmful
documents and help-harm considers their compatibility
difference (see Table S1 in Multmedia Appendix 1 for further
detail). Additionally, we show the nDCG scores calculated using
helpful (help) documents or harmful (harm) documents of the
relevant judgment. The helpfulT, unhelpfulT, and allT terms
denote helpful topics, unhelpful topics, and all topics,
respectively. HU, HS, and HC rankings represent the combination
of the preprocessing (HP) results with the rerankings results for
usefulness (HU’), supportiveness (HS’), and credibility (HC’),
respectively. For reference, we show our results compared with
the models participating in the TREC Health Misinformation
Track 2021: Pradeep et al [31] used the default BM25 ranker
from Pyserini. Their reranking process incorporated a mix of
mono and duo T5 models as well as Vera [67] on different topic
fields. Abualsaud et al [68] created filtered collections that focus
on filtering out nonmedical and unreliable documents, which
were then used for retrieval with Anserini’s BM25. Schlicht et
al [69] also used Pyserini’s BM25 ranker and Bio Sentence
BERT to estimate usefulness and RoBERTa for credibility. The
final score was a fusion of these individual rankings.
Fernández-Pichel et al [70] used BM25 and RoBERTa for
reranking and similarity assessment of the top 100 documents,
trained an additional reliability classifier, and merged scores
using CombSUM [71] or Borda Count. Bondarenko et al [72]
used Anserini’s BM25 and PyGaggle’s MonoT5 for 2 baseline
rankings, then reranked the top 20 from each using 3
argumentative axioms on seemingly argumentative queries.
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Table 3. Performance results for the quality-based retrieval models.

CompatibilitynDCGaModel

Help-harm ↑Harm ↓Help ↑Harmc ↓Helpb ↑

all  unhelpfulT
fhelpfulT

eallTallTallTallT
d

–0.022–0.1620.1580.1440.1220.3600.516BM25g [39]

0.043–0.1060.234h0.1530.195h0.3780.602Pradeep et al [31]

0.040–0.0670.1790.1230.1640.185h0.302Abualsaud et al [68]

0.018–0.0890.1570.1030.1210.3090.438Schlicht et al [69]

0.008–0.1130.1630.1550.1630.3630.603hFernández-Pichel et al [70]

–0.015–0.1440.1500.1440.1290.2260.266Bondarenko et al [72]

Transfer learning

0.056h–0.022h0.1560.087h0.142j0.3240.538jHU
i

0.038–0.0490.1510.0920.1300.315j0.477HU + HS
k

0.042–0.0570.169j0.0950.1370.3200.484HU + HS + HC
l

Domain adaptation

0.029–0.0630.1460.1000.1280.3270.510H U

0.019–0.0500.1080.0890.1080.3190.482HU + HS

0.037–0.0480.1470.0940.1310.3250.502HU + HS + HC
l

anDCG: normalized discounted cumulative gain.
bHelp: results considering only helpful documents in the relevance judgment.
cHarm: results considering only harmful documents in the relevance judgment.
dallT: all topics.
ehelpfulT: helpful topics.
funhelpfulT: unhelpful topics.
gBM25: Best Match 25.
hBest performance.
iHU: usefulness model.
jBest performance among our models.
kHS: supportiveness model.
lHC: credibility model.

Our approach provides state-of-the-art results for automatic
ranking systems in the transfer learning setting, with help-harm
compatibility of +5.6%. This result was obtained with the
usefulness model (HU), which is the combination of
preprocessing and usefulness reranking. It outperformed the
default BM25 model [39] by 7% (P=.04) and the best automatic
model from the TREC 2021 benchmark (Pradeep et al [31]) by
1%. In this case, although the help and harm compatibility
metrics individually exhibited statistical significance (P=.02
and P=.01, respectively), the improvement in help-harm
compatibility compared with the best automatic model was not
statistically significant (P=.70). The usefulness model also stood
out by achieving the best help and harm compatibility metrics
among our models (14.2% and 8.7%, respectively; P=.50).
Notice that, for the latter metric, the closest to 0, the better the
performance. Interestingly, the usefulness model attained the

highest nDCG score on help for all topics as well (P=.03). The
combination of usefulness, supportiveness, and credibility
models (HU + HS + HC) provided the best help-harm (+16.9%)
for helpful topics among our models (HU: P=.40; HU + HS:
P=.04).

Meanwhile, when calculating nDCG scores on harm, the
combination of usefulness and supportiveness model (HU + HS)
in the transfer learning and domain adaption settings
outperformed the other model combinations (P=.50), indicating
a different perspective of the best-performing model. Last,
differently from what would be expected, in the domain adaption
setting, the performance was poorer than the simpler transfer
learning approach (2% decrease on average for the compatibility
metric; P=.02). See Table S4 in Multimedia Appendix 3 for
more information about using nDCG as a metric in a
multidimensional evaluation.
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Performance Stratification by Quality Dimension
In Table 4, we show the help, harm, and help-harm compatibility
scores for the individual quality-based reranking models, which
disregarded the preprocessing step (prime index). Additionally,

we provide the nDCG scores for a more comprehensive view
of the models’ performance. HP represents the preprocessing,
and HU’, HS’, and HC’ stand for rerankings for usefulness,
supportiveness, and credibility, respectively.

Table 4. Performance results for the individual ranking models.

CompatibilitynDCGaSetting and model

Help-harm ↑Harm ↓Help ↑Harmc ↓Helpb ↑

allTunhelpfulT
fhelpfulT

eallTallTallTallT
d

0.015–0.0720.127h0.1110.126h0.3410.538hHP
g

Transfer learning

0.036–0.0200.1060.0800.1150.2640.438HU’i,j

0.002–0.0130.0210.0240.0260.102h0.140HS’j,k

–0.003–0.0320.0330.0350.0310.1130.131HC’j,l

Domain adaptation

0.039h–0.0080.0990.0380.0770.2770.436HU’

0.0140.003h0.0300.015h0.0300.2510.368HS’

0.014–0.0550.1040.0640.0790.2960.443HC’

anDCG: normalized discounted cumulative gain.
bHelp: results considering only helpful documents in the relevance judgment.
cHarm: results considering only harmful documents in the relevance judgment.
dallT: all topics.
ehelpfulT: helpful topics.
funhelpfulT: unhelpful topics.
gHp: preprocess.
hBest performance.
iHU’: usefulness model.
jUnlike HU, HS, and HC,HU’, HS’, and HC’ rankings are not combined with Hp.
kHS’: supportiveness model.
lHC’: credibility model.

In the transfer learning setting, the usefulness model (HU’)
achieved the highest help-harm compatibility (+3.6%; P=.20).
The preprocessing model gave the best help compatibility
(+12.7%; HU’: P=.70; HS’ and HC’: P<.001). Additionally, the
preprocessing model yielded the highest nDCG score for help
(HU’: P=.10; HS’ and HC’: P<.001). On the other hand, the
preprocessing model showed the highest harm compatibility
(+11.1%; HU’: P=.33; HS’ and HC’: P<.01). The combination
of the preprocessing and usefulness models (ie, HU=+5.6%)
improved the preprocessing model by 4.1% (from +1.5% to
+5.6% on the help-harm compatibility; P=.06). For harm
compatibility, the supportiveness model (HS’) achieved the best
performance among the individual models (+2.4%; Hp: P<.001;
Hu’: P=.03; HC’: P=.34).

In the domain adaptation setting, the usefulness model (HU’)
reached help-harm compatibility of +3.9%, similarly
outperforming the other models (P=.32). The supportiveness

model (HS’) achieved the best performance on harm
compatibility (+1.5%; P=.07) and on help-harm compatibility
for unhelpful topics (+0.3%; P=.50). Notice that +0.3% is the
only positive help-harm compatibility for harmful topics
throughout all the individual and combined models on both
settings including the preprocessing step. Last, in the domain
adaption setting, the performance of individual models was
better than the simpler transfer learning approach (1% increase
on average for the compatibility metric; P=.19).

Reranking of the Top-N Documents
To further illustrate the effectiveness of the supportiveness and
credibility dimensions, in Figure 2, we reranked only the top-n
documents using the results of the usefulness model (HU) as the
basis. As we can see in Table 4, the overall effectiveness of the
supportiveness (HS’) and credibility (HC’) models were
considerably lower than that of the usefulness (HU’) model. The
reason is that the relevance judgments were created using a
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hierarchical approach: Only useful documents were further
considered for supportiveness and credibility evaluations. As
we reranked the documents in supportiveness and credibility
dimensions without taking this hierarchy into account, their
results might not be optimal. For example, low-ranking
documents (ie, not useful) could have high credibility and,
during the reranking process, could be boosted to the top ranks.
Thus, we applied the supportiveness (HS’) and credibility (HC’)
models to the usefulness model (HU) results to rerank the top
10, 20, 50, 100, and 1000 documents, obtaining 2 new rankings,
which were combined using RRF.

As the reranking depth increased from 10 to 1000, we observed
a decrease in both help and harm compatibility. This suggests

that both helpful and harmful documents were downgraded due
to the inclusion of less useful but potentially supportive or
credible documents. In the transfer learning setting, as the
reranking depth increased, the help-harm compatibility
decreased until the depth reached 100. Beyond this point, we
observed a slight increase at the depth of 1000. In the domain
adaptation setting, the help-harm compatibility increased above
+6% when the reranking depth was between 20 and 50. This
implies that, following the procedure of human annotation, by
considering only the more useful documents, the supportiveness
and credibility dimensions can help retrieve more helpful than
harmful documents.

Figure 2. Compatibility performance for the top 10, 20, 50, 100, and 1000 reranking depths taking the results of usefulness as the basis.

Quality Control
One of the advantages of the proposed multidimensional model
is that we can optimize the results according to different quality
metrics. In Figure 3, we show how the compatibility
performance varies by changing the weight of the specific
models (HP, HU’, HS’, and HC’). We normalized the score of
the individual models to the unit and combined them linearly
using a weight for 1 model between 0 and 2 while fixing the
weight for the other 3 models at 0.33. For example, to see the
influence of HP in the final performance, we fixed the weights
of HU’, HS’, and HC’ at 0.33 and varied the weight of HP

between 0 and 2. With weight 0, the reference model did not
account for the final rank, while with weight 2, its impact was
twice the sum of the other 3 models.

In the transfer learning setting, when we increased the weight
of preprocessing and usefulness models, the help-harm
compatibility increased to the best performance (+4.1% and
+5.6%) then decreased slightly. For the supportiveness and

credibility dimensions, the help-harm compatibility began to
decrease once the weight was added. These results imply that
the compatibility decreases with the weight addition regardless
of whether it is helpful compatibility, harmful compatibility, or
the difference between the 2.

In the domain adaptation setting, when we increased the weight
of preprocessing, supportiveness, and credibility models
individually, the help-harm compatibility increased then
converged to +6.6%, +5.9%, and +4.8%, respectively. For the
usefulness model, the help-harm compatibility decreased once
the weight was added until it converged to +4.4%. It is worth
noticing that, by combining the rankings linearly, the help-harm
compatibility obtained from the domain adaptation setting may
exceed the results we obtained when performing ranking
combination with RRF (+3.7%), as well as the state-of-the-art
result (+5.6%) in the transfer learning setting. The highest
help-harm compatibility scores for each weighting combination
were +6.6%, +6.8%, +6.5%, and +5.9% when varying the
weights of HP, HU’, HS’, and HC’, respectively.

JMIR AI 2024 | vol. 3 | e42630 | p. 9https://ai.jmir.org/2024/1/e42630
(page number not for citation purposes)

Zhang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Compatibility in the transfer learning approach (A-C) and compatibility in the domain adaptation approach (D-F), all with weights added to
specific models.

Model Interpretation
To semantically explain the variation of help-harm
compatibility, we set the search depth    to 10. The help, harm,
and help-harm compatibility of the 3 models are shown in Table
5. The help-harm compatibility was 1 when only helpful
documents were retrieved in the top 10. Conversely, the
help-harm compatibility was –1 when only harmful documents
were retrieved in the top 10. A variation of 10% in the help or
harm compatibility corresponded roughly to 1 helpful document
exceeding the number of harmful documents retrieved in the
top 10. Overall, the results show that retrieving relevant
documents for health-related queries is hard, as, on average,

only 1.5 of 10 documents were relevant (helpful or harmful) to
the topic. In addition, we interpreted that the 3 models retrieved,
on average, twice the number of helpful documents as harmful
documents. Particularly, HU had, on average, around 1 more
helpful than harmful document in the top 10, of the 1.5 relevant
documents retrieved. We also present the same analysis results
for the domain adaptation setting, which also implies that, when
the rankings were combined with RRF, the transfer learning
approach outperformed the domain adaptation approach. See
more details about the average compatibility for all the topics
as the search depth K varied in Figure S1 in Multimedia
Appendix 3.
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Table 5. Help, harm, and help-harm compatibility with search depth set to 10 for the transfer learning setting and domain adaptation setting.

Help-harm ↑Harmb ↓Helpa ↑Setting and model

Transfer learning

0.065d0.047d0.112dHU
c

0.0380.0500.088HU + HS
e

0.0440.0560.099HU + HS + HC
f

Domain adaptation

0.0340.0600.094H U

0.0030.0700.074HU + HS

0.0110.0760.087HU + HS + HC

aHelp: results considering only helpful documents in the relevance judgment.
bHarm: results considering only harmful documents in the relevance judgment.
cHU: usefulness model.
dBest performance.
eHS: supportiveness model.
fHC: credibility model.

Discussion

We propose a quality-based multidimensional ranking model
to enhance the usefulness, supportiveness, and credibility of
retrieved web resources for health-related queries. By adapting
our approach in a transfer learning setting, we showed
state-of-the-art results in the automatic quality ranking
evaluation benchmark. We further explored the pipeline in a
domain adaptation setting and showed that, in both settings, the
proposed method can identify more helpful than harmful
documents, as measured by +5% and +7% help-harm
compatibility scores, respectively. By combining different
reranking strategies, we showed that multidimensional aspects
have a significant impact on retrieving high-quality information,
particularly for unhelpful topics.

The quality of web documents is biased in terms of topic stance.
For all models, helpful topics achieve higher help compatibility,
while unhelpful topics achieve higher harm compatibility. The
implication is that web documents centered around helpful
topics are more likely to support the intervention and are helpful.
On the other hand, web documents focusing on unhelpful topics
present an equal chance of being supportive or dissuasive on
the intervention and are helpful or harmful. Among other
consequences, if web data are used to train large language
models without meticulously crafted training examples using
effective data set search methods [73], as the one proposed here,
they are likely to further propagate health misinformation.

Automatic retrieval systems tend to find more helpful
information on helpful topics with the information biased toward
helpfulness and find more harmful information on unhelpful
topics with the information slightly biased toward harmfulness.
The help-harm compatibility ranged from +2.3% to +15.3% for
helpful topics and from –5.7% to +0.2% for unhelpful topics.
The difference shows that, for the improvement of
quality-centered retrieval models, it is especially important to

focus on unhelpful topics. Moreover, although specialized
models might provide enhanced effectiveness, their combination
is not straightforward. In our experiments, we showed that
supportiveness and credibility models should be applied only
in the top 20 to 50 retrieved documents to achieve optimal
performance.

Finding the correct stance automatically is another key
component of the automatic model. Automatic models show
the ability to prioritize helpful documents, resulting in positive
help-harm compatibility. However, they are still far from
state-of-the-art manual models, with help-harm compatibility
scores ranging from +20.8% [68] to +25.9% [31]. We
acknowledge that the help-harm compatibility can improve
significantly with the correct stance given. This information is
nevertheless unavailable in standard search environments; thus,
the scenario analyzed in this work is more adapted to real-world
applications.

This work has certain limitations. In the domain adaptation
setting, we simplified the task to consider 2 classes within each
dimension for the classification due to the limited variety
available in the labeled data set. Alternatively, we could add
other classes from documents that have been retrieved.
Moreover, the number of topics used to evaluate our models
was limited (n=32), despite including 6030 human-annotated,
query-document pairs, and thus reflects only a small portion of
misinformation use cases.

To conclude, the proliferation of health misinformation in web
resources has led to mistrust and confusion among online health
advice seekers. Automatic maintenance of factual discretion in
web search results is the need of the hour. We propose a
multidimensional information quality ranking model that utilizes
usefulness, supportiveness, and credibility to strengthen the
factual reliability of health advice search results. Experiments
conducted on publicly available data sets show that the proposed
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model is promising, achieving state-of-the-art performance for
automatic ranking in comparison with various baselines
implemented on the TREC Health Misinformation 2021
benchmark. Thus, the proposed approach could be used to
improve online health searches and provide quality-enhanced

information for health information seekers. Future research
could explore more granular classification models for each
dimension, and a model simplification could provide an
advantage for real-world implementations.
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