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Abstract Germline mutations of the tumor suppressor gene
LKB1/STK11 are responsible for the Peutz–Jeghers syn-
drome (PJS), an autosomal-dominant disorder characterized
by mucocutaneous pigmentation, hamartomatous polyps,
and an increased risk of associated malignancies. In this
study, we assessed the presence of pathogenic mutations in
the LKB1/STK11 gene in 46 unrelated PJS families, and
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also carried genotype–phenotype correlation in regard of
the development of cancer in 170 PJS patients belonging
to these families. All LKB1/STK11 variants detected with
single-strand conformational polymorphism were confirmed
by direct sequencing, and those without LKB1/STK11 muta-
tion were further submitted to Southern blot analysis for
detection of deletions/rearrangements. Statistical analysis
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for genotype–phenotype correlation was performed. In 59%
(27/46) of unrelated PJS cases, pathogenic mutations in
the LKB1/STK11 gene, including 9 novel mutations, were
identified. The new mutations were 2 splice site deletion–
insertions, 2 missenses, 1 nonsense, and 4 abnormal splice
sites. Genotype–phenotype analysis did not yield any sig-
nificant differences between patients carrying mutations in
LKB1/STK11 versus those without mutations, even with re-
spect to primary biliary adenocarcinoma. This study presents
the molecular characterization and cancer occurrence of a
large cohort of PJS patients, increases the mutational spec-
trum of LKB1/STK11 allelic variants worldwide, and pro-
vides a new insight useful for clinical diagnosis and genetic
counseling of PJS families.

Keywords Cancer . Genotype–phenotype analysis .

Pathogenic LKB1/STK11 gene mutations . Peutz–Jeghers
syndrome

Pathologic germline mutations in the LKB1/STK11 gene
lead to Peutz–Jeghers syndrome (PJS; MIM 17500), which
is a dominantly inherited disorder occurring in 1 of every
120,000 births [1]. PJS is characterized by peroral pigmen-
tation and hamartomatous polyposis and predisposes to dif-
ferent cancers in various organs [2–4].

The first locus responsible for PJS was mapped to chro-
mosome 19p13.3 by the combination of comparative ge-
nomic hybridization, loss of heterozygosity, and by targeted
linkage analysis [5]. Subsequently, direct cDNA selection,
positional cloning experiments, and mutation analysis of can-
didate genes revealed that the gene responsible for PJS en-
codes for a serine/threonine kinase termed LKB1 or STK11
[6, 7], which has growth-suppressing activity [8]. It has been
shown that mutations result in inactivation or loss of function
in LKB1/STK11 [9, 10] and that the genetic defect cannot
be linked to the 19p13.3 locus in all PJS families, and when
linked to this locus, not all the patients have detectable muta-
tions in the LKB1/STK11 gene [9, 11, 12]. There is evidence
for a second PJS locus at 19q13.4 [13], which was reinforced
by the absence of mutations in the LKB1/STK11 gene in those
families that showed linkage to this locus [9]. Recently, addi-
tional evidence implicating this locus has been accumulated
by the findings of a translocation (11:19) (q13:q13.4) in-
volving this region in a PJS polyp from the small bowel of
a newborn girl [14]. Taken together, these data suggest that
Peutz-Jeghers syndrome can be caused by mutations in more
than one gene, which often complicates genetic counseling
[12, 15].

To assess contributions of LKB1/STK11 gene mutations
to PJS, we analyzed a cohort of 46 unrelated PJS fami-
lies. Mutation analysis was performed using single-strand
conformational polymorphism (SSCP) and subsequently all
variants were subjected to DNA sequencing for confirma-

tion and characterization. All families that did not have any
obvious change in the LKB1/STK11 gene were further stud-
ied using Southern blot analysis to detect deletions and/or
rearrangements. Moreover, genotype–phenotype correlation
in regard of the development of cancer were also analyzed
in a total of 170 PJS affected individuals belonging to these
families.

Patients and methods

Families and patients

A total of 46 unrelated families exhibiting mucocutaneous
pigmentation and hamartomatous polyposis were referred
by gastroenterologists, gastrointestinal surgeons, and geneti-
cists to the laboratory for genetic analysis. The histologic
aspects of PJS polyps were unambiguous in all cases. Clin-
ical data were collected using a questionnaire and through
access to patients’ medical records. Characteristic features
defining the clinical diagnosis were age at first symptoms,
initial symptoms, presence of pigmentation, localization of
the polyps, histology of the polyp biopsy, presence of cancer,
histology type, organ involved, age at cancer diagnosis, and
the follow-up period (Table 1). Criteria for exclusion were
absence of hamartomatous polyps typical of PJS and pres-
ence of only mucocutaneous pigmentation in isolated cases.
When ≥2 individuals were affected in the same family, they
were considered as familial cases. In families with 1 indi-
vidual with PJS, those who had only gastrointestinal hamar-
tomatous polyposis were also counted as affected members.
A PJS patient was defined as a sporadic case caused by
a de novo mutation only if the parents were clinically, en-
doscopically, and radiologically free from hamartomatous
polyps and mucocutaneous pigmentation and/or if the mu-
tation was known and not present in parents after exclusion
of nonpaternity or nonmaternity. The study was performed
with ethical committee approval from the relevant authority
in each institution. After informed consent, blood samples
were obtained from the patients and their relatives. DNA
was extracted from 10 mL of peripheral blood using the
Gentra kit (Amersham, Buckinghamshire, UK) according to
the manufacturer’s recommendations.

Single-strand conformational polymorphism analysis,
southern blot, and sequencing

A combination of SSCP analysis and direct sequencing was
used to screen the 9 LKB1/STK11 exons and flanking intronic
sequences in germline genomic DNA extracted from blood
leukocytes or tissue samples. Polymerase chain reaction
(PCR) and gel conditions have been previously reported [9].
Genomic Southern blots were prepared after endonuclease
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digestion with EcoRI, HindIII, and BamHI/PstI, and were
probed with a cloned cDNA fragment that comprised the
entire coding region of LKB1/STK11 gene.

The100 Caucasians used as controls were all from the
same ethnic origin (European) as the missense and splice site
mutation carriers. Mutations in the LKB1/STK11 gene identi-
fied in the PJS families were coded according to the published
sequence of the gene (Genbank accession numbers: exon
1, AF032984; exons 2–8, AF032985; exon 9, AF032986)
following the standard nomenclature [16]. STK11 protein
sequences of Homo sapiens (GenBank accession no. NP
000446), Mus musculus (NP 035622), and Xenopus XEEK1
(Q91604) were obtained from the National Center for
Biotechnology Information protein database (available:
www.ncbi.nlm.nih.gov/). Alignments were made by using
the Clustal W (1.8) multiple sequence alignment program
accessed at Baylor College of Medicine Search Launcher
(available: www.hgsc.bcm.tmc.edu/SearchLauncher/).

Paternity and maternity testing

Paternity and maternity testing were performed for all fami-
lies in which LKB1/STK11 mutations were found in sporadic
patients and in which parental DNA samples were available.
This was done by analysis of ≥3 highly informative mi-
crosatellite markers (D19S886, D19S878, D19S565), but in
the case that these markers were not informative or any suspi-
cion of nonpaternity or nonmaternity is detected, then further
markers in other chromosomes were done. We used radioac-
tively labeled primers, and genotypes were determined by
gel electrophoresis and autoradiography [13].

Autophosphorylation assays

Autophosphorylation assays were done in the same way as
in Mehenni et al. [9], except that HA-PCDNA3 (PCDNA3
modified to include a HA-tag), HEK293 cells, mono-
clonal antibodies to the HA tag (Santa Cruz Biotech), and
horseradish peroxidase-conjugated goat anti-mouse kappa
light chain antibodies (Bethyl, Montgomery, TX) were used.

DNA isolation from tissue sample

Formalin-fixed and paraffin-embedded tissues were available
for study from the biliary adenocarcinoma. The samples were
cut into 5-µm sections, mounted on glass slides, and stained
with hematoxylin and eosin. Cancer tissue was carefully
microdissected using a laser capture microscope. The mi-
crodissected tissue was collected into microcentrifuge tube
containing 50–200 µL DNA isolation buffer (50 mmol Tris-
HCl, pH 8.0, 0.2% Tween-20, and 100 mg/mL proteinase
K), and incubated overnight at 56◦C. The sample was heated

to 96◦C for 10 minutes to inactivate the proteinase K. The
lymphocyte DNA was used as normal control.

Loss of heterozygosity analysis

Three polymorphic markers spanning a physical distance
of ∼4 cM flanking LKB1/STK11 gene locus were ana-
lyzed for loss of heterozygosity (LOH) analysis. The mark-
ers are ordered from telomeric to centromeric (available:
www.-genome.wi.mit.edu): D19S886-D19S878-D19S565.
PCR conditions for the microsatellite markers have been
previously described [13]. PCR products were resolved by
electrophoresis and visualized by autoradiography.

Statistical and phenotypic analysis

Statistical comparisons between the various subgroups were
made with Fisher’s exact test and Student’s t-test. P < .05
was considered statistically significant.

Results

Clinical characteristics of Peutz–Jeghers
syndrome patients

To study the prevalence and the nature of germline mutations
in 46 unrelated PJS families were analyzed for LKB1/STK11
mutations. These families represent a total of 170 affected
individuals; 97 are females and 73 males. The median age
of onset of the disease in the probands was 24 years (range,
4–44 years). The clinical details and cancer cases among PJS
families are summarized in Table 1. Of the cohort (168 of
170), 99% reported mucocutaneous pigmentation. Moreover,
we identified 27 cases of cancer based on histology in 25
affected individuals. Gastrointestinal cancer was noted in
17 cases, including stomach (n = 3), small intestine (n =
5), colorectal cancer (n = 8), and primary biliary cancer
(n = 1). Extra-intestinal cancer occurred in 10 different
patients. Two patients were diagnosed with malignancy at
2 sites. The cancer prevalence per person among affected
individuals was 15% (25 of 170). The mean patient age at
cancer onset was 36 years (median, 31.5 years; range, 5–
58). The median follow-up interval from the diagnosis of
PJS to the last routine follow-up examination or death was
20.5 years (range, 7–34 years) for the whole cohort and the
compliance rate was 96% (163 of 170).

LKB1/STK11 germline mutations

Sequencing of the 9 exons and the exon–intron junctions led
to the identification of 27 unique pathologic germline mu-
tations including 9 novel mutations (see Table 1). The new
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mutations were 2 splice site deletion–insertions, 2 missenses
(H174R and V150L), 1 nonsense (Q112X), and 4 abnormal
splicings. In addition to the new mutations, 18 mutations
were found, consisting of 12 mutations predicted to result in
a truncated protein (1 nonsense mutation, 7 frame shift mu-
tations, and 4 mutations in consensus splicing sites), 5 mis-
sense mutations, and 1 in-frame deletion of 6 nucleotides.
One missense mutation (R304W) was found in 2 indepen-
dent sporadic cases. There is no evidence that these 2 muta-
tions have a common ancestry [17]. Similar situations have
been reported by others [10, 18–20]. In 11 of 17 apparently
sporadic cases, the DNA from both parents of the affected
individuals did not have these mutations and the possibil-
ity of nonpaternity or nonmaternity was excluded using mi-
crosatellite markers. These mutations can therefore be con-
sidered de novo mutations. In addition, none of the siblings
(the mean siblings number in these sporadic PJS cases is 5;
range, 1–8) carried the mutation, which makes it unlikely that
there was parental mosaicism for these molecular defects.

The identified mutations in the consensus splice sites are
not common polymorphisms, because they were not detected
in the DNA of the 100 normal Caucasians controls from the
same ethnic origin. The unavailability of RNA samples in
the carriers of splice site mutations rendered the assessment
of the consequences on mRNA level not possible. Missense
mutations have occurred within the kinase domain in highly
conserved residues of diverse species (human, mouse, xeno-
pus). When assayed by autophosphorylation, the protein ki-
nase activities of the normal and mutant LKB1/STK11s show
a complete absence of autophosphorylation, leading to inac-
tivation of the protein kinase of the mutants but not the
LKB1/STK11 wild type [9, 21] (Fig. 1).

These pathologic mutations were found in 16 familial
and 11 sporadic cases. In the 16 families, the mutations
cosegregated well with the disease. No LKB1/STK11 muta-
tion carriers without phenotypic expression were observed.
Moreover, the substitution mutations were not detected in
100 normal Caucasians controls. There was a higher preva-
lence of LKB1/STK11 mutations in sporadic PJS patients
(64.7%; 11 of 17) compared with familial cases (5.2%; 16
of 29), but the difference was not statistically significant
(P = .55).

Southern blot analysis in LKB1/STK11
mutation-negative Peutz–Jeghers syndrome patients

A rare anecdotal case of a PJS patient with a large heterozy-
gous germline deletion of 250 kb including LKB1/STK11
was reported by Le Meur et al. [22]. Furthermore, several
gross deletions that escaped the sequencing were also
described [7, 10]. Thus, all LKB1/STK11 mutation-negative
probands in the present study (n = 19) were analyzed
by Southern blot for the possibility of such deletions that
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Fig. 1 Autophosphorylation assays of the wild-type and mutant
LKB1/STK11 recombinant proteins, as described in patients and Meth-
ods. Autophosphorylation assays. A: Autoradiography showing that
only the LKB1/STK11 wild type is autophosphorylated, whereas all mu-

tants were not autophosphorylated. The PCDNA3-HA vector was used
as negative control. B: Western blot using anti-HA tag antibodies dis-
playing that equal amounts of the wild-type and different LKB1/STK11
mutant’s proteins were used

would not be detected by the combination of SSCP and a
sequencing. They comprised 13 of the 29 familial and 6 of
the 17 sporadic probands. To assess for gross deletions, the
genomic DNA of the 19 LKB1/STK11 mutation negative
was digested with EcoRI, HindIII, and BamHI/PstI and
subsequently probed with a cloned cDNA fragment that
comprised the entire coding region of LKB1/STK11. Hence,
using a Southern blot, no whole-gene or whole-region
deletions and small deletions were detected.

Loss of heterozygosity at the STK11/LKB1 locus in the
biliary adenocarcinoma

A DNA sample from the biliary carcinoma was evaluated
for LOH at the STK11/LKB1 locus using 3 polymorphic mi-
crosatellite markers. These markers span approximately 4.0
Mb within chromosome 19p13.3 and D19S886 is localized
closest to the STK11/LKB1 (approximately 190 kb telom-
eric). The results of the LOH analysis are shown in Fig. 2.
Allelic loss of 19p13.3 markers was observed in the DNA
extracted from biliary adenocarcinoma of the patient with
PJS (GE12). This sample (GE12) showed LOH with only 1
marker but not with 2 other markers.

LKB1/STK11 germline mutation does not correlate
with cancer

To assess potential genotype–phenotype correlation, the dis-
tributions of cancer development in affected PJS families
and sporadic cases with or without LKB1/STK11 mutations
were compared. Of 107 clinically affected individuals with
LKB1/STK11 mutations, 19 (18%) were diagnosed with
cancers. Of 63 clinically affected individuals with symp-
tomatic hamartomatous polyps and mucocutaneous pigmen-

tation but without mutations, 12 (19%) developed cancer.
There was no difference in cancer-associated risk between
the 2 groups (P = .84). Moreover, among the 107 sub-
jects with an LKB1/STK11 mutation, there was no correla-
tion between the type or location of the LKB1/STK11 muta-
tion and the frequency or type of cancer. In fact, there was
considerable variability in cancer phenotype among subjects
with LKB1/STK11 mutations of all types and locations, even
among affected parents and siblings with identical mutations.

Discussion

Of the 46 PJS families in this study, an LKB1/STK11 mutation
was identified in 59%, which is similar to the 50–90% fre-
quency reported in other studies of LKB1/STK11 mutations
in individuals with PJS [12, 15, 20, 23]. The identification of
LKB1/STK11 mutations in only 50–90% of probands (except
for the study by Boardman et al. [15]) with PJS is attributable
to technical limitations of the testing methods presently used
and also to genetic heterogeneity [9, 10, 15, 23]. The evi-
dence for the heterogeneity is provided by the linkage studies
that excluded the 19p13.3 locus and confirmed the absence
of LKB1/STK11 mutations in same families [9, 11, 13, 15].
However, some PJS families are still linked to the 19p13.3 lo-
cus despite the absence of mutations in the LKB1/STK11 cod-
ing region [12]. Conceivable alternative mechanisms leading
to inactivation of the LKB1/STK11 gene include mutations
in the regulatory unit or promoter, mutations in a deep in-
tron that was not surveyed in the mutational analysis, and
methylation of the promoter region. The latter has yet to be
described as a germline mechanism of gene regulation in
syndromes where imprinting is not involved. Although mu-
tations in the promoter region in LKB1/STK11 gene seems
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Fig. 2 LOH analysis in the
biliary carcinoma. A
PJS-associated biliary
carcinoma (GE12) exhibits
LOH at D19S886 (arrow), but
not at D19S565 and D19S878

unlikely to contribute to PJS [14, 24], we did not look for
mutations in the promoter region of LKB1/STK11 gene in
our collection of noncarrier cases; therefore, we cannot ex-
clude such a possibility. Another explanation is the existence
of a second gene close to LKB1/STK11 gene that remain
to be identified in the PJS families linked to 19p13.3 lo-
cus. Among the genes that could be a good candidate for
PJS LKB1-negative mutation carriers in this latter locus are
BRAF35 and GIPC3. BRAF35 has structural domains sim-
ilar to those of BAF75, a subunit of the SWI/SNF complex
that was shown to be involved in LKB1–BRG1 interaction
[25]. GIPC3 gene was shown to modulate WNT signaling
[26] where LKB1 is connected [27, 28]. However, mutation
search will definitely clarify whether or not these genes are
responsible for PJS LKB1-negative carriers. Recently, many
LKB1-interacting proteins have been reported [25, 29–32].
One of these proteins could be a good candidate; some have
already been excluded [14, 33–35]. In addition, we previ-
ously reported that 1 PJS family was linked to 19q.13.4
locus [13] and some of the genes located in this area were
excluded [14, 33], but the candidate gene approach is still
in progress. Further strategy is to screen the genes that are
found upregulated or downregulated in the microarray stud-
ies done either on hamartomatous polyps from the knockout
lkb1 mouse [36] or cancer cell lines from human lung cancer
with STK11/LKB1 mutations [37]. However, the list of these
candidate genes is exhaustive so that 1 gene could emerge as
the best candidate.

Among the LKB1/STK11 mutation carriers, there was no
correlation between the type or location of the LKB1/STK11
mutation and the presence or type of cancer. This finding is
not surprising, given that cancer status can vary markedly
between family members sharing the same mutation [9, 10,
23].

A wide range of cancers associated with PJS have been
reported in PJS families [38]. Most of these cancers can arise
in gastrointestinal organs such as colon, stomach, small in-
testine, and pancreas or in extra-intestinal organs such as
breast, ovaries, testis, and kidney. Interestingly, cancers of
the biliary tract were only recently reported in PJS fam-
ilies and to date, germline mutations in the LKB1/STK11

gene associated with primary biliary adenocarcinoma have
not been found in PJS families [20], although somatic mu-
tations in the LKB1/STK11 gene in a subset of primary
biliary adenocarcinoma (also termed cholangiocarcinoma)
have been characterized [39, 40]. In one PJS family with
an LKB1/STK11 gene insertion mutation of one nucleotide
(GE12 family in Table 1) included in the present study, 2
members developed cancer (1 right kidney carcinoma and 1
rectal carcinoma) and third female member developed pri-
mary cholangiocarcinoma. Such tumors are rare. Intrahepatic
cholangiocarcinoma prevalence ranges from 0.01–0.50% in
autopsy series [41] and has a frequency of approximately
10% among primary liver tumors [42]. There were no pre-
disposing factors that could contribute to the development
of cholangiocarcinoma such as anatomic anomalies, chronic
inflammatory conditions, parasites, hepatolithiasis, autoim-
mune disease (primary sclerosing cholangitis), nonbiliary
cirrhosis, or carcinogens (thorium dioxide that was used be-
fore 1955) [41, 42]. We cannot exclude with certainty the
possible involvement of other environmental factors in this
PJS case.

According to Knudson’s model, 2 hits are required for the
development of tumors [43]. Consistent with this hypothesis,
these somatic mutations would be expected to involve the al-
lele that does not already harbor the germline mutation. Two
mechanisms were suggested to explain the inactivation of the
second hit; the first is the loss or inactivation of the second
copy of the gene through mutations. The second mechanism
is the inactivation through the hypermethylation of the CpG
island in the promoter region of the gene. This second possi-
bility is less frequent with STK11/LKB1 [44]. Interestingly,
LOH at STK11/LKB1 locus has been reported in sporadic
cancers originating from the breast, colon, ovary, and pan-
creas in PJS patients [39, 45–48]. In our biliary adenocarci-
noma, we found 1 marker that showed a clear LOH at LKB1
locus (see Fig. 2), indicating that the PJS gene STK11/LKB1
is a tumor suppressor gene involved in the development of
biliary adenocarcinoma. This latter finding is in line with
the hypothesis that the PJS gene STK11/LKB1 is a tumor
suppressor gene involved in the development of primary bil-
iary adenocarcinoma [39, 40] but contrasting with the recent
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study that did not find germline mutations in the DNA of
PJS patients with primary biliary adenocarcinoma [20]. In
addition, it would be interesting to see if LOH at 19p13.3
locus was present on the DNA of these cancers. Recently,
several studies have addressed the question whether LOH
near STK11/LKB1 occurs in PJS-associated gastrointestinal
cancer [45, 49]. Among these studies, 1 study group inves-
tigated 5 PJS-associated gastrointestinal adenocarcinomas
(from stomach, small bowel, colon, colon, and pancreas)
and 39 gastrointestinal hamartomatous polyps. LOH near
STK11/LKB1 was identified in all cancer found in PJS pa-
tients [45]. To our best knowledge, this is the first reported
case of a PJS patient with an LKB1/STK11 germline muta-
tion who developed primary biliary adenocarcinoma. There-
fore, it is likely that PJS families without any LKB1/STK11
germline mutations are not more prone to developing epithe-
lial cancer than families with such mutations, as suggested
elsewhere [20].

The present findings should assist the gastroenterologist,
gastrointestinal surgeon, and geneticist in counseling fami-
lies and providing appropriate evaluation and follow-up for
patients with PJS. Finally, detailed examination of the clini-
cal and endoscopic phenotype in this cohort should facilitate
future studies correlating clinical outcome with molecular
pathogenesis.
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