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ORIGINAL ARTICLE
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Abstract

A growing number of human infections incriminate environmental bacteria that have evolved virulent mechanisms to resist amoebae and

use them as a replicative niche. These bacteria are designated amoeba-resisting bacteria (ARB). Despite the isolation of these ARB in

various human clinical samples, the possible source of infection remains undetermined in most cases. However, it is known that the

ARB Legionella pneumophila, for instance, causes a respiratory infection in susceptible hosts after inhalation of contaminated water

aerosols from various sources. The Chlamydiales order contains many ARB, such as Parachlamydia acanthamoebae or Simkania

negevensis, previously implicated in human respiratory infections with no identified contamination sources. We thus investigated

whether domestic water systems are a potential source of transmission of these Chlamydiales to humans by using amoebal culture and

molecular methods. Other important ARB such as mycobacteria and Legionella were also investigated, as were their possible amoebal

hosts. This work reports for the first time a very high prevalence and diversity of Chlamydiales in drinking water, being detected in 35

(72.9%) of 48 investigated domestic water systems, with members of the Parachlamydiaceae family being dominantly detected.

Furthermore, various Legionella and mycobacteria species were also recovered, some species of which are known to be causal agents

of human infections.
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Introduction

Free-living amoebae are ubiquitous in the environment, espe-
cially water. In case of unfavourable growth conditions, such as
starvation or desiccation, these protists can exhibit a resistant

form, termed cysts. The cyst structure helps the amoebae to
survive various disinfection treatments [1–3]. Thus, amoebae

may bypass all the barriers present in drinking water treatment

plants [4] and may reach the water distribution system, where

they may colonize biofilms and sediments.
Amoebae have been shown to be natural hosts of different

bacteria that can resist intracellular killing through several
mechanisms [5]. Some of these amoeba-resisting bacteria (ARB)

have been shown to reside in the amoebal cyst, where they are
protected from biocides and disinfection treatments [6–8]. The
evolution of traits that result in bacterial resistance to amoebae

may explain the ability of some ARB to also resist other
phagocytic cells, such as macrophages [9–12]. The observation

that some ARB are able to infect both amoebae and macro-
phages supports this hypothesis [13,14].

Humans may be exposed to these ARB through various
water systems such as cooling towers, humidifier aerosols,

drinking water, spas or swimming pools, all of which have pre-
viously been shown to be reservoirs of ARB. For instance, the
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ARB Legionella pneumophila was discovered after an outbreak

of pneumonia in 1976 in Philadelphia in which dozens of
people were infected by a contaminated air-conditioning system

[15]. Breiman et al. [16] later showed a correlation between
Legionnaire’s disease due to Legionella pneumophila and the use

of showers. Newly discovered ARB are emerging as potential
respiratory pathogens, such as Parachlamydia acanthamoebae
[17] and Simkania negevensis [18], both able to replicate in

amoebae [7,19,20]. However, the mode of transmission of these
Chlamydia-related bacteria remains to be determined.

Recently a Chlamydiales-specific quantitative PCR was devel-
oped and was applied to 422 nasopharyngeal swabs from pa-

tients [21]. This study showed that 48 patients were positive for
a member of the Chlamydiales order, among which 38 corre-

sponded to Chlamydia-related bacteria, demonstrating that these
bacteria can reach the human respiratory tract.

Thus, in the present work, domestic drinking waters and

biofilms from plumbing systems were investigated for the
presence of Chlamydiales by PCR and culture methods. These

samples were also screened for other ARB belonging to the
families Legionellaceae and Mycobacteriaceae, from which several

members are established as human pathogens. Finally, the
screening of potential amoebal hosts was also performed.

Materials and Methods

Sample
Water (n = 48) and biofilm (n = 48) samples were collected
from 48 different domestic water systems in the regions of

Geneva (n = 37), Lausanne (n = 7) and Sion (n = 4), Switzerland.
Sampling was performed from September 2010 to August 2011.

One litre of first-flow water was first sampled from the shower,
filtered through a 0.22 μm membrane, which was then resus-
pended in 10 mL of filtrated water. The mean temperature of

the water was 20.6 ± 3.8°C. Then, using a sterile swab, biofilms
were collected from the flexible pipe connected to the shower

head (after unscrewing the shower head) and was then resus-
pended on site in about 3 mL of shower water. Aliquots of

100 μL of concentrated water and 100 μL of resuspended
biofilm were kept at −20°C for DNA extraction (Fig. 3) while

the samples were processed immediately for analyses.

Screening of ARB with amoebal co-culture
Acanthamoeba castellanii ATCC 30010 was used to cultivate

ARB. A. castellanii was grown in the rich peptone yeast-extract
glucose (PYG) medium [22,23], at 28°C without CO2, in

75 cm2 surface cell culture flasks (Becton Dickinson, Allschwil,
Switzerland). Amoebae were collected by centrifugation

(1500 × g, 10 minutes) and washed with phosphate-buffered

saline and finally resuspended in poor medium Page amoeba
saline (PAS) [22,23] to avoid extracellular overgrowth of bac-

teria. Amoebae were seeded in a 24-well culture microplate
(Milian, Wohlen, Switzerland) at 5 × 105 amoebal cells/mL. An

aliquot (100 μL) of biofilm or concentrated water sample was
then inoculated, and tenfold serial dilutions were performed.
The microplates were immediately centrifuged at 1790 × g for

15 minutes, and the cells were incubated for 1 hour at 28°C.
Cells were gently washed once with PAS and incubated at 32°C

in a humidified atmosphere without CO2. Amoebae were
observed daily for amoebal lysis, and the co-cultures were

reseeded on fresh confluent amoebae in PAS after 7 and 14 days
[24]. At day 7 and day 14, 100 μL of each amoebae-containing

well was collected and stored at −20°C until DNA extraction.

Screening of amoebae with amoebal enrichment
Nonnutrient agar plates were covered with a solution of live

Escherichia coli ATCC 25922. About 20 μL of concentrated
water or biofilm samples was seeded onto the agar and incu-

bated at 28°C in a humidified atmosphere. Plates were observed
daily under an optical microscope for the presence of amoebae.

When positive, subcultures were performed [24], and amoebae
were collected and frozen at −20°C until DNA extraction.

PCR on water samples and biofilms
DNAs were automatically extracted by the LC automated sys-
tem (Roche, Rotkreuz, Switzerland) and the MagNA Pure

LCDNA isolation kit 1 (Roche) using 100μL of water and 100 μL
of biofilm sample. For each run of extraction, a negative

extraction control was included. Water samples (n = 48)
and biofilm samples (n = 48) were analysed by 16S rRNA

gene-directed PCR for the presence of DNA from Legionella spp.
(Leg225/Leg858 primers [25]), Mycobacterium spp. (TB285F/
TB264R primers [26]) and Chlamydiales (panCh16F2/panCh16R2

primers and panCH16S probe [21]). Finally, amoebae were
identified by sequencing a part of the 18S rRNA gene, amplified

using the Ami6F1/Ami9R primers [43]. The Chlamydiales-specific
real-time PCR targeting the 16S rRNA gene was performed as

previously described [21]. Briefly, using the primers panCh16F2,
panCh16R2 and a probe panCh16S, 5 μL of DNAwas analysed in

duplicate with 50 cycles consisting of denaturing for 15 seconds
at 95°C, annealing for 15 seconds at 67°C and amplification for
15 seconds at 72°C.

When the PCR or quantitative real-time PCR was positive,
the PCR product was purified with the MSB Spin PCRapace kit

and sequenced with the same primers. In the case of positive
samples for mycobacteria with the 16S rRNA PCR, a second

PCR targeting the rpoB gene and using the primers MycoF/
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MycoR was used for precise identification by sequencing [28].

Concerning the PCR products obtained with the Chlamydiales-
specific real-time PCR, they were purified using the GenElute

PCR Clean-Up Kit (Sigma, Buchs, Switzerland), and sequencing
was performed with inner primers as described elsewhere [21].

All newly generated nucleotide sequences were submitted to
GenBank; the accession numbers may be found in the
Supplementary Tables.

PCR on amoebal culture and amoebal enrichment
Amoebal co-culture wells were screened by PCR for the

presence of Legionella spp., Mycobacterium spp. and Chlamydia-
related bacteria after 1 and 2 weeks of incubation. DNA was

extracted from 100 μL of the culture using the Wizard genomic
DNA purification kit (Promega, Duebendorf, Switzerland) in the
presence of proteinase K (20 mg/mL) following the manufac-

turer’s protocol for animal tissues. For each run of extraction, a
negative extraction control was included. Detection by PCR and

sequencing of mycobacteria, Legionella and amoebae was per-
formed as described above. For the Chlamydiales, the 16SigF/

Rp2Chlam primers were used, as described elsewhere [29].

Results

ARB documented in water and biofilm samples
The number of bacteria and amoebae detected in this study are

represented in Fig. 1. In addition, for each domestic water sys-
tem, all bacterial and amoebal species identified by sequencing

are presented in Table 1.

Chlamydiales species
Among the 48 domestic water systems investigated, 35 (72.9%)

were positive for Chlamydiales detected by specific real-time
PCR (rtPCR) in the water, the biofilm or both samples (Fig. 1

and Table 1). Sequencing of the rtPCR products gave a
sequence of about 200 bp that was used to classify the bacteria

at the family level following the criteria of Everett et al. [29]. A
total of 55 Chlamydiales sequences could be obtained for 33 of
these 35 positive households. The classification could be ach-

ieved for 51 DNA sequences (Table 1 and Supplementary
Table S1), and four remained unclassified. Among these 55

sequences, 28 (50.9%) may correspond to new species-level

FIG. 1. Distribution of type of samples and detection methods for each bacterial groups and amoebae detected. (A) Parts of whole representing

number of positive households for Chlamydiales, Legionella, Mycobacterium or amoeba, detected in water, biofilm or both in water and biofilm samples.

Corresponding number of positive samples is also indicated. (B) Distribution of detection methods among positive samples (water and biofilm) by PCR

only, culture only or both PCR and culture.
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TABLE 1. Summary of all Chlamydiales spp, Legionella spp., Mycobacterium spp. and amoebae detected in each water system of 48

households investigated

Household ID

Water Biofilm

Species Detection Species Detection

GE10016 Criblamydiaceae putative species 1 [Chlam] qP Criblamydiaceae putative species 2 [Chlam] qP
100% L. waltersii [Legio] P

GE10027 Criblamydiaceae [Chlam] qP
Parachlamydiaceae [Chlam] qP

GE10028 Parachlamydiaceae [Chlam] qP Parachlamydiaceae [Chlam] qP
99% uncultured bacterium clone ncd843d07c1 [Legio] C 95% M. moriokaense or M. barrassiaea [Myco] P

GE10032 Unclassified Chlamydiales [Chlam] qP
GE10037 100% Mycobacterium iranicum strain CCUG 52297a [Myco] C 100% M. gilvum [Myco] C

99% H. vermiformis [Amoeba] C 100% M. phocaicum strain MBWY-1b [Myco] C
GE10044 Criblamydiaceae [Chlam] qP

100% L. anisa [Legio] C
GE10049 Parachlamydiaceae [Chlam] qP

98% uncultured Legionella sp. [Legio] C
GE10056 Chlamydiales (failed sequencing) qP Parachlamydiaceae [Chlam] qP
GE10061 Criblamydiaceae [Chlam] qP 97% M. tusciaea [Myco] P

100% Mycobacterium sp. FI-10135a [Myco] C 100% H. vermiformis P+C
97% M. tusciaea [Myco] P

GE10062 Parachlamydiaceae [Chlam] qP
100% M. gilvum [Myco] P

GE10064 Unclassified Chlamydiales [Chlam] qP Unclassified Chlamydiales [Chlam] qP
100% L. taurinensis [Legio] C 100% L. taurinensis [Legio] C
99% H. vermiformis [Amoeba] P+C 99% H. vermiformis [Amoeba] P

GE10068 Criblamydiaceae putative species 1 [Chlam] qP Criblamydiaceae putative species 2 [Chlam] qP
98% uncultured bacterium clone F20 [Legio] P

GE10088 Criblamydiaceae [Chlam] qP Unclassified Chlamydiales [Chlam] qP
GE10096 Parachlamydiaceae [Chlam] qP

99% Mycobacterium sp. [Myco] C
GE10143 Parachlamydiaceae [Chlam] qP

Criblamydiaceae [Chlam] qP
98% L. longbeachae [Legio] C

GE10148 Criblamydiaceae putative species 1 [Chlam] qP Criblamydiaceae putative species 2 [Chlam] qP
100% L. waltersii [Legio] P

GE10150 Parachlamydiaceae putative species 1 [Chlam] qP 100% L. waltersii [Legio] P
Parachlamydiaceae putative species 2 [Chlam] qP
99% M. gordonaea [Myco] P

GE10159 Parachlamydiaceae [Chlam] qP Parachlamydiaceae [Chlam] qP
100% H. vermiformis [Amoeba] P 100% H. vermiformis [Amoeba] P

GE10160 100% uncultured Legionella sp. [Legio] P 99% H. vermiformis [Amoeba] P
GE10170 Parachlamydiaceae [Chlam] qP Parachlamydiaceae [Chlam] q P

100% L. pneumophila [Legio] C 100% H. vermiformis [Amoeba] P+C
97% M. tusciaea [Myco] C

GE10174 Failed sequencing [Chlam] qP Parachlamydiaceae [Chlam] qP
100% L. waltersii [Legio] C 99% L. waltersii [Legio] P

99% uncultured eukaryote clone TKR07M.106 [Amoeba] C
100% H. vermiformis [Amoeba] P

GE10175 98% L. gratiana [Legio] C 99% L. beliardensis [Legio] P
97% M. tusciaea [Myco] P+C
100% H. vermiformis [Amoeba] P

GE10179 99% H. vermiformis [Amoeba] P
GE11050 Chlamydiales (failed sequencing) [Chlam] qP

94% M. neoauruma [Myco] P
100% H. vermiformis [Amoeba] P+C

GE11064 Criblamydiaceae [Chlam] qP
98% uncultured bacterium clone 1C227246 [Legio] P

GE11093 Parachlamydiaceae [Chlam] qP Chlamydiales (failed sequencing) [Chlam] qP
98% L. fallonii strain LLAP10 [Legio] P 99% Stenamoeba CRIB 68 [Amoeba] P+C
99% M. abscessus subsp. bolletii 50594 [Myco] C

GE11103 Parachlamydiaceae putative species 1 [Chlam] qP Parachlamydiaceae putative species 1 [Chlam] qP
100% L. pneumophila [Legio] C Parachlamydiaceae putative species 2 [Chlam] qP
98% uncultured bacterium clone nbu179b03c1 [Legio] P
99% H. vermiformis [Amoeba] P+C

GE11112 100% L. waltersii [Legio] P
100% M. chelonaea [Myco] P

HE20032 Parachlamydiaceae species 1 [Chlam] qP Parachlamydiaceae species 2 [Chlam] qP
100% L. pneumophila [Legio] C 100% L. pneumophila [Legio] C
99% Mycobacterium sp. [Myco] C 100% H. vermiformis [Amoeba] P+C

HE20036 Chlamydiales (failed sequencing) [Chlam] qP Criblamydiaceae [Chlam] qP
99% M. senegalense strain MF-417 or
M. conceptionense strain PCH-033a [Myco]

C 100% L. waltersii [Legio] P

100% H. vermiformis [Amoeba] C 100% H. vermiformis [Amoeba] P+C
HE21001 Parachlamydiaceae [Chlam] qP Waddliaceae [Chlam] qP
HE21011 Criblamydiaceae [Chlam] qP Criblamydiaceae [Chlam] qP
HE21012 Parachlamydiaceae [Chlam] qP Criblamydiaceae [Chlam] qP

Waddliaceae [Chlam] qP 88% Stenamoeba amazonica strain P119 [Amoeba] C
HE21023 Criblamydiaceae [Chlam] qP Simkaniaceae [Chlam] qP
HE21032 Parachlamydiaceae [Chlam] qP Parachlamydiaceae [Chlam] qP
VS30003 100% L. waltersii [Legio] C Chlamydiales (failed sequencing) [Chlam] qP
VS30013 Parachlamydiaceae putative species 1 [Chlam] qP Parachlamydiaceae putative species 2 [Chlam] qP

100% Mycobacterium sp. [Myco] C
VS30044 Criblamydiaceae [Chlam] qP
VS30055 Parachlamydiaceae putative species 1 [Chlam] qP Parachlamydiaceae putative species 2 [Chlam] qP
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lineages if fully characterized because the sequences exhibit a
similarity with a previously reported species below 97% [17].

Figure 2 illustrates the number of bacteria detected in biofilm
or water samples, based on the number of 16S rRNA gene

copies quantified by the Chlamydiales-specific rtPCR. The ma-
jority of the sequences corresponded to members of the Par-
achlamydiaceae family (n = 30 sequences), which were detected

in 20 different water systems. Criblamydiaceae DNAs were
also amplified (18 sequences from 14 different domestic water

systems) as well as two sequences of theWaddliaceae family and
one sequence from the Simkaniaceae family. The highest num-

ber of bacteria was detected in biofilms and corresponded to
members of the Parachlamydiaceae family (Fig. 2).

Legionella species
In total, the presence of Legionella was found in 21 (43.8%)

drinking water systems. Legionella was detected by PCR and/or
by amoebal co-culture (but never as an amoebal endosymbiont
of amoebae grown using the amoebal enrichment method). The

results are shown in Table 1, and the identification of Legionella
species is detailed in Supplementary Table S2. By PCR and/or

amoebal co-culture, Legionella was detected in 29 samples (ten
biofilms and 19 waters); it corresponded to 15 different species

(Table 1 and Supplementary Table S2). The most common
species were Legionella waltersii (present in eight water systems)
and L. pneumophila (present in three water systems).

Mycobacterium species
Using PCR and amoebal methods, 15 (31.3%) domestic water

systems were positive for Mycobacterium species such as
Mycobacterium gordonae, chelonae or mucogenicum. The results

are summarized in Table 1, and complete identification can be
found in Supplementary Table S3. Of particular note, two
different mycobacteria (M. iranicum strain CCUG52297 and

M. phocaicum) were found within the amoeba Hartmannella
vermiformis, recovered from water and biofilm samples of the

same domestic water system (GE10037).

Amoebae isolated by amoebal enrichment and/or
detected by PCR
Using both PCR and amoebal enrichment, the presence of
amoebae was documented in 18 (37.5%) domestic water sys-

tems (Fig. 1). Amoebae were present in water and/or biofilm
samples (Fig. 1), with Hartmannella vermiformis being predomi-

nantly detected in 16 water systems (Table 1). Two Stenamoeba
species were also isolated from two different biofilms, one

being a potential new amoebal species. Finally, in a biofilm
already positive by PCR for H. vermiformis, an uncultured

eukaryote strain related to the Prostelium nocturnum amoeba
was isolated by culture (water system GE10174). The complete

identification of amoebae per type of sample can be found in
Supplementary Table S4.

Discussion

In this study, the presence of ARB belonging to the Chlamydiales
order as well as to the Legionellaceae and Mycobacteriaceae

TABLE 1. Continued

Household ID

Water Biofilm

Species Detection Species Detection

100% H. vermiformis [Amoeba] C
VS31006 Parachlamydiaceae [Chlam] qP Chlamydiales (failed sequencing) [Chlam] qP

Percentages of sequence identity with most similar GenBank sequence (for legionella, mycobacteria or amoebae) or classification at the family or family-level lineage (for Chlamydiales)
are indicated.
C, culture; P, PCR; qP, quantitative real-time PCR; [Chlam], Chlamydiales; [Legio], Legionella; [Myco], Mycobacterium.
aSpecies further identified by sequencing rpoB gene.
bSpecies found within amoeba by nonnutrient agar screening.

FIG. 2. Chlamydiales 16S ribosomal RNA gene copy number detected

by Chlamydiales-specific real-time PCR in water and biofilm samples.

Each symbol represents sample positive for Chlamydiales detected by

specific quantitative PCR and its corresponding gene copy number

expressed per litre of sample.
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families was investigated using amoebal culture methods and

PCR on water and biofilm samples collected from domestic
water systems of 48 different households. Overall, 39 (81.3%)

of the investigated domestic water systems were positive for
the presence of a Chlamydiales, a Legionellaceae and/or a Myco-

bacteriaceae. In 18 (46.2%) of these systems, the bacterium was
detected by culture. In the other systems, the bacteria were
only detected by PCR.

A Chlamydiales-specific rtPCR was used and allowed for the
first time to observe such a high prevalence and diversity of

Chlamydiales in domestic drinking water. The high sensitivity of
the rtPCR allowed the detection of a Chlamydiales in 35 (72.9%)

different domestic water systems, corresponding to members of
at least four different family-level lineages of the Chlamydiales

order. The dominant family-level lineage was the Para-
chlamydiaceae family. Members of the Parachlamydiaceae family
have been frequently isolated from environmental samples

[30,32,33]. The high prevalence of strains belonging to this
family compared to other Chlamydia-related bacteria was also

previously observed when using the same Chlamydiales-specific

rtPCR on nasopharyngeal swabs taken from children [21]. The

second family detected in 14 water systems was the Cri-
blamydiaceae. The presence of Criblamydiaceae species in water

and biofilm samples was not surprising because these bacteria
have been previously isolated from water and/or sediment

samples [33–35]. This result is particularly interesting because
serologic evidence indicates that Criblamydiaceae may be asso-
ciated with cases of pneumonia (Lienard et al., personal

communication).
We also detected two members of the Waddliaceae family.

To our knowledge, this is the first documentation of Wad-
dliaceae in drinking water systems. Although the bacterium

Waddlia chondrophila was previously associated with human and
bovine hosts [36–39], its potential presence in water was

suggested by its ability to also grow and survive in amoebae
[40,41]. Only one sequence corresponding to the Simkaniaceae
family was detected, which did not correspond to the species

Simkania negevensis. This result contrasts with a previous work
where S. negevensis was detected by PCR in the majority of tap

water samples [42]. However, this latter study was performed

FIG. 3. Protocol of collection and processing of water and biofilm samples. Samples were collected from distal water conduit after removal of shower

head. Cold water was concentrated 100× by filtration, and biofilms swabs were resuspended in 3 mL of collected shower water. Samples were then

directly inoculated in culture, or DNA was extracted for direct PCR approaches. After amoebal co-culture or enrichment methods, total DNA was

extracted from culture well and PCR performed. For positive results, bacterial or amoebal strains were identified by sequencing.
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in Israel, where the microbial ecology and drinking water

treatment processes may be different from those in
Switzerland.

Among the 55 sequences of Chlamydiales bacteria obtained in
this work, only two corresponded to bacteria currently grown

in our laboratory, which indicated that the sequences obtained
here did not result from a PCR contamination. Overall, 28
different sequences showed less than 97% similarity with a

previously reported species. Considering this 97% cutoff
[17,29], these latter 28 sequences may correspond to putative

new species, highlighting the broad and underestimated biodi-
versity of the Chlamydiales order [21]. This report suggests that

man-made drinking water could represent an important
ecological niche for Chlamydiales bacteria.

No Chlamydiales bacterium was recovered by amoebal co-
culture in this study. Another study on drinking water failed
to detect any Chlamydiales, either by amoebal co-culture with

A. castellanii or by classical PCR [43]. Kahane et al. [42] detected
Simkania negevensis in tap water but only by PCR and mem-

brane immunoassay. In the present work, the Chlamydiales-
specific quantitative PCR, which is more sensitive than regular

PCR, revealed the common occurrence of Chlamydiales DNA in
domestic drinking water systems. The growth of Chlamydiales

bacteria from environmental samples could have been
restricted here by the overgrowth of other environmental

bacteria within the co-cultures in A. castellanii. Furthermore, in
some cases, Chlamydiales bacteria were probably initially dead
or not cultivable. The amoebal co-culture using A. castellanii was

previously shown to be effective to recover Chlamydiales,
including Criblamydiaceae and Parachlamydiaceae [33,34], but is

clearly inadequate to grow all Chlamydiales. Indeed, considering
the large biodiversity of the Chlamydiales order highlighted in

the present study, only a few members have been isolated by
amoebal co-culture [27,30,33,34,44]. In addition, a restricted

amoebal host spectrum has already been shown for several
Chlamydiales bacteria [20,40,45,46], which suggests that multi-
ple amoebal strains should ideally be used to recover a higher

biodiversity of these strictly intracellular bacteria in culture. In
this work, an Acanthamoeba species was used, which is more

suitable for the amoebal co-culture method, as it is less prone
to encystment compared to Hartmannella spp. Furthermore,

Acanthamoeba spp. are known to be permissive to a large
number of bacteria [7,8,43,44,47,48]. Thus, other amoebae

such as Hartmannella and Naegleria should also be included in
future studies. Finally, several growth parameters such as

temperature and media can also be optimized to increase the
number of recovered ARB.

Legionella waltersii, which was previously associated with se-

vere pneumonia [49], was the most prevalent species, followed

by L. pneumophila, among all Legionella found in this study. In

addition, Legionella species considered as potential respiratory
pathogens such as L. anisa [50–52], L. longbeachae [51,53,54] or

L. fallonii [50] were also recovered. In all water systems positive
for L. pneumophila, the amoeba H. vermiformis was systematically

isolated by amoebal enrichment, supporting the importance of
this amoeba as a reservoir for L. pneumophila.

In addition, various nontuberculous mycobacteria have been

recovered using amoebal co-culture and amoebal enrichment,
including several human pathogens, such as M. mucogenicum

[55] and M. chelonae, which have mainly been shown to cause
respiratory [56,57] and soft tissue [58] infection. M. gordonae,

which is also sometimes considered pathogenic [59–63], has
been previously isolated from drinking water [43,64] and was

isolated in our study from water and biofilm samples. Other
nontuberculous mycobacteria were also recovered in the
present work, including M. conceptionense [65–68],

M. barrassiae [69] and M. neoaurum [70–72]. Finally, one of the
two mycobacteria recovered within the amoeba H. vermiformis

was M. iranicum. This species was recently described as a new
human pathogen; it was isolated from clinical samples such as

cerebrospinal fluid and sputum samples from patients from
different continents [73,74]. However, the source of infection

has not been determined for these previously reported cases;
drinking water should thus be considered.

Using amoebal enrichment and PCR, amoebae were docu-
mented in 18 systems (37.5%). Although the number of
recovered amoebae is particularly variable between studies

[75], the number of amoebae cultivated in this study (n = 15) is
higher compared to a previous study using the same culture

method [43]. However, the difference of water temperatures
between the present and the previous study, with mean tem-

peratures of 20.6°C and 56°C, respectively, may explain these
results. Most of the amoebae isolated in this work corre-

sponded to H. vermiformis, which is congruent with a previous
investigation of drinking water by amoebal enrichment [43].

In conclusion, the current study highlighted the large colo-

nization of drinking water points of use by ARB and amoebae.
This work also demonstrated the common occurrence and

large biodiversity of Chlamydiales bacteria in drinking water.
Thus, drinking water represents a potential infection source for

some Chlamydia-related bacteria. Because Parachlamydia acan-
thamoebae is associated with respiratory infections [17], the

common occurrence of Parachlamydiaceae observed here is
important in terms of public health. Larger prospective studies

including different settings are needed to better investigate the
role of domestic water systems or other systems generating
aerosols, such as cooling towers, in the transmission of Chla-

mydiales to humans and other susceptible hosts.
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