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Work and quantum correlations are two fundamental resources in thermodynamics and quantum information
theory. In this work we study how to use correlations among quantum systems to optimally store work. We
analyse this question for isolated quantum ensembles, where the work can be naturally divided into two contri-
butions: a local contribution from each system, and a global contribution originating from correlations among
systems. We focus on the latter and consider quantum systems which are locally thermal, thus from which any
extractable work can only come from correlations. We compute the maximum extractable work for general
entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives
an advantage for small quantum ensembles, this gain vanishes for a large number of systems.

I. INTRODUCTION

Traditional, macroscopic thermodynamics is strikingly ro-
bust to the underlying mechanics: its three laws hold true
while switching from classical to quantum mechanics [1]. On
the other hand, one would hope for the opposite, since thermo-
dynamics is intimately connected to information theory [2],
and quantum phenomena, such as entanglement, have a dras-
tic effect on the latter, irrespective of the scale [3].

Recently much attention has been dedicated to the problem
of understanding thermodynamics of small quantum systems.
This has led notably to the development of a resource theoret-
ical formulation of quantum thermodynamics [4–6] and, in a
more practical vein, to the study of quantum thermal machines
[7–15]. The role and significance of quantum effects to ther-
modynamics is still to be fully understood, although progress
has recently been achieved [13–22].

A problem of particular importance in quantum thermo-
dynamics is to understand which quantum states allow for
the storage and extraction of work from quantum systems
[23, 24]. Such states are called non-passive, while states from
which no work can be extracted are referred to as passive. Re-
markably, the latter have the property of activation: when con-
sidered as a whole, several copies of passive states can become
non-passive. The only states lacking this property are the ther-
mal (also referred to as completely passive) states [23, 24].

The situation changes when considering ensembles that can
also be correlated. There, even a collection of locally ther-
mal states can be non-passive [25–27]. The main goal of
the present work is to understand how to optimally make
use of correlations among quantum systems for work storage.
Specifically, we consider a quantum ensemble composed of n
subsystems (particles or modes). Each subsystem is assumed
to be in a thermal state, at the same temperature T . The to-
tal system, however, is correlated, because otherwise its state
would also be thermal hence passive. This is in fact the natu-
ral scenario to study the role of correlations for work storage,
as they become the only source of non-passivity.

First, we show that if no restriction on the global state is
made, then it is possible to store in the system the maximal
amount of work compatible with the requirement that the re-
duced states are thermal. In other words, at the end of the
protocol, the system is left in the ground state and, thus, all
energy has been extracted. Notably this is possible thanks to
quantum entanglement. It is then natural to ask if the same
amount of work can be stored using a separable, or even a
purely classical state diagonal in the product energy eigenba-
sis, that is, with no coherences among different energy lev-
els. We will see that, although the amount of work that can be
stored in unentangled states is strictly smaller than the amount
that can be stored in entangled states for any finite n, the gain
decreases with the size of the system and in the thermody-
namic limit (n → ∞) purely classical states already become
optimal. In fact, quantum resources offer a significant advan-
tage only for small n, while neither entanglement nor energy
coherences are needed for optimal work storage in the thermo-
dynamic limit. We also consider additional natural constraints
on the global state, such as limiting the entropy or requiring
the decohered (classical) version of the state to be thermal,
and investigate the role of quantum coherence and entangle-
ment in these cases.

Finally, we show that our results are also applicable in the
scenario where the system has an access to a thermal bath.
There the connection between work extraction and correla-
tions have been studied before [11, 19, 28–36] Given access
to global operations on the subsystems, the extractable work is
proportional to the mutual information [28, 31]. That is, only
the strength of the correlations is relevant, and not the type
(i.e. quantum or classical). Here, in contrast, we show that
when the bath (a macroscopic object) is not available and one
has only a few subsystems, quantum correlations do provide a
sizeable advantage. This brings new insights in the quantum-
to-classical transition in thermodynamics.
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II. FRAMEWORK

We consider an isolated quantum system which consists
of n d-level subsystems. The local Hamiltonian h =∑
aEa|a〉〈a| is taken to be the same for each subsystem and,

without loss of generality, it is assumed that the ground state
energy is zero. We consider the situation where there is no in-
teraction Hamiltonian between the subsystems, such that the
total Hamiltonian H is simply the sum of the individual local
Hamiltonians H =

∑
i hi.

The class of operations that we consider is the class of
cyclic Hamiltonian processes, i.e. we can apply any time de-
pendent interaction V (t) between the n subsystems for a time
τ , such that V (t) is non-vanishing only when 0 ≤ t ≤ τ . The
corresponding evolution can be described by a unitary oper-
ator U(τ) = −→exp

(
−i
∫ τ

0
dt (H + V (t))

)
, where −→exp denotes

the time-ordered exponential. By varying over all V (t) we
can generate any unitary operator U = U(τ) and therefore
this class of operations can alternatively been seen as the abil-
ity to apply any global unitary on the system.

The task we are interested in is work extraction via a cyclic
Hamiltonian process. Since the system is taken to be isolated,
there are no other systems to exchange energy with, therefore
the extracted work is the change in average energy of the sys-
tem under such a process [37]. More precisely, we define the
extracted work W as

W = Tr (ρH)− Tr
(
UρU†H

)
. (1)

Within this framework, it is well known that work can be ex-
tracted from a system if and only if the system is non-passive,
where a passive system with Hamiltonian H =

∑
α Eα|α〉〈α|

(Eα ≤ Eα+1) is the one whose state is of the form

ρpassive =
∑
α

pα|α〉〈α| with pα+1 ≤ pα. (2)

In other words, a system is passive if and only if its state is
diagonal in the energy eigenbasis and has eigenvalues non-
increasing with respect to energy. Now it easily follows that,
given a non-passive state ρ, the extracted work (1) is maxi-
mized by [38]:

Wmax = Tr(ρH)− Tr(ρpassiveH) (3)

where ρ and ρpassive have the same spectrum and therefore
there exists a unitary operator taking the former to the lat-
ter. Equation (3) defines the energy that can be potentially
extracted from the state via cyclic hamiltonian (unitary) pro-
cesses. This quantity will be the main focus of this article,
and we will refer to it as extractable work, stored work or
work content (the term ergotropy is also used in the literature
[38]).

Importantly, we see that passivity is a global property of
a system, and thus this raises interesting possibilities when
considering a system comprised of a number of subsystems,
as we do here. Indeed, global operations are capable of ex-
tracting more work than local ones, as a state can be locally
passive but globally not. Such an enhancing may have two

origins: activation or correlations between subsytems. Acti-
vation occurs when (ρpassive)⊗k becomes a non-passive state
for some k. Interestingly, thermal states are the only passive
states that do not allow for activation, as any number of copies
of thermal states is also thermal [23, 24]. On the other hand,
states that are locally passive but have a non-product structure
(i.e., they are correlated) also offer the possibility for work ex-
traction. An extreme case, which is the focus of this article,
is a set of correlated locally thermal states, as in such a case
the global contribution uniquely comes from correlations. Our
goal, in fact, is to understand how correlations allow for work
extraction in systems that are locally completely passive [39].

We will therefore focus on the subset of all possible states
of the system, comprised by locally thermal states, that is all
ρ such that the reduced state of subsystem i satisfies

ρi = Tri ρ = τβ (4)

for all i, where Tri denotes the partial trace over all sub-
systems except subsystem i. Here τβ is the thermal state of
the subsystem at (a fixed but arbitrary) inverse temperature
β = 1/T ,

τβ =
1

Z
e−βh, (5)

where Z = Tr e−βh is the partition function.
Now, if ρ is locally thermal (4), and since H is a sum of lo-

cal Hamiltonians, the first term of the right hand side of (3) is
fixed and is given by Tr (ρH) = nEβ , where Eβ = Tr(τβh)
is the average energy of the local thermal state. Note also that
given our convention that the ground state has zero energy,
the second term of the right hand side of (3), that is, the final
average energy, is always nonnegative. This implies that the
extractable work is upper bounded by

Wmax ≤ nEβ . (6)

This bound is attainable if and only if the final state is the
ground state, denoted by |0〉⊗n.

Apart from understanding how to exploit the general corre-
lations to store work in the system, we will also study the par-
ticular role of entanglement and energy coherences in these
processes. We consider three natural sets of correlated states:
(i) arbitrary states, thus including entangled ones, (ii) sepa-
rable states and a subset of them: (iii) states diagonal in the
product energy eigenbasis. We will study work extraction for
these three different sets of correlated quantum states.

Before proceeding further, we will end by noting that in
the present context our quantity of interest is the average ex-
tractable work. This allows us to obtain precise and quanti-
tative results about the relation between work and quantum
correlations in the initial state. The question of how to ob-
tain similar results, for example about the full work probabil-
ity distribution, in general remains a difficult open problem.
Essentially, at the moment there is no framework allowing to
obtain the full work distribution function of the process with-
out destroying the initial coherences (and entanglement) of
the state (see [40] for a discussion on how to extent fluctua-
tion theorems for coherent states).
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III. EXTRACTABLE WORK FROM CORRELATIONS

We first show that within the above framework quantum
correlations are capable of making all the energy in the sys-
tem available for extraction in the form of work, as they allow
saturating the bound (6). As mentioned above, it can only be
saturated if and only if UρU† is the ground state. Now ob-
serve that the state

|φ〉 =
1√
Z

d−1∑
a=0

e−
βEa

2 |a〉⊗n. (7)

is locally thermal, i.e., such that Tri |φ〉〈φ| = τβ for all i.
Moreover, since it is pure, there exists a unitary matrix U such
that U |φ〉 = |0〉⊗n. Thus all the energy nEβ can be extracted
from state |φ〉 and Wmax = nEβ .

However, it is clear that the state (7) is entangled. Hence
it is natural to ask whether the amount of extractable work
would change if we restrict ourselves to separable, or even
classical states. If this is the case, then entanglement is neces-
sary for optimal work extraction.

IV. EXTRACTABLE WORK FROM SEPARABLE AND
CLASSICAL STATES

A simple argument shows that separable states, contrary to
entangled, do not allow for maximal work extraction. Separa-
ble states have the property that the global entropy is greater
than all the local entropies [41]. Now, if the system is initially
in a separable state ρ, then S(ρ) ≥ S(τβ). This condition,
first of all, indicates that the global state cannot be pure [42],
implying that the bound (6) cannot be reached by separable
states. So, what is the best that classical correlations can do?

In Appendix A we show that the locally thermal separable
state with the highest extractable work is

ρsep =
1

Z

d−1∑
a=0

e−βEa |a〉〈a|⊗n, (8)

which is simply the state (7) after being dephased in the
(global) energy eigenbasis. Notice that (8) saturates the in-
equality S(ρ) ≥ S(τβ(h)), and in Appendix A 2 we show that
it is the only separable state with thermal reduced states that
saturates it. The extractable work from (8), Wsep, is found, as
before, by finding its associated passive state, and then com-
puting the average energy difference, see (3). Since ρsep is
already diagonal (with d non-zero eigenvalues), it is only nec-
essary to rearrange these non-zero eigenvalues to the lowest
possible energy levels. Let us assume that n ≥ d−1, (i.e. that
we are in the regime of sufficiently many subsystems [43]).
The d − 1 largest eigenvalues can then simply be moved into
the first excited subspace (with energy E1), giving

Wsep = nEβ − E1(1−Z−1). (9)

Note also that ρsep has no coherences, which means that diag-
onal and separable states have the same capacity.
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FIG. 1. Extractable work from entangled (blue), separable (red), and
entangled but having the same entropy as the separable (green) states
in units of the initial total energy of the system. Specifically, we take
the states (7), (8), and (11) for d = 2, βE1 = 1. As n increases,
classical states become able to store essentially the same amount of
work as quantum ones.

Moreover, as the number of subsystems, n, increases,
we see that Wsep and Wmax become essentially the same:
Wsep/Wmax = 1 − O

(
n−1

)
(see Fig. 1). This shows that,

in the thermodynamic limit (n→∞), the difference between
the extractable work from an entangled state and from a di-
agonal one vanishes, hence quantum coherences and entan-
glement play essentially no role here. However, for finite n
there will always be a difference. In particular, in the regime
of n relatively small, the ability to store work in entanglement
offers a significant advantage (see Fig. 1).

At this point let us note that for diagonal initial states (such
as (8)), the (average) extractable work as given by the defini-
tion (1) coincides with the first moment of work distribution
functions introduced in [44, 45].

V. EXTRACTABLE WORK FROM STATES WITH FIXED
ENTROPY

The previous results can be intuitively understood from en-
tropy considerations. When the correlations in the state are
not restricted, it is possible to satisfy the requirement of local
thermality with pure entangled states, therefore attaining op-
timal work extraction. When the state is separable, the global
entropy of the state cannot be zero as it is lower bounded by
the local entropy and optimal work extraction becomes im-
possible. Note also that the separable state optimal for work
extraction (9) has global entropy equal to the local one, which
means that its global entropy does not scale with the num-
ber of subsystems. In other words, its entropy per subsystem
tends to zero with the number of subsystems, which intuitively
explains why the state tends to be optimal in this limit.

In view of these considerations, it is important to under-
stand how one can store work in correlations when the en-
tropy of the state is fixed. On the one hand, having states
whose global entropy scales with the number of subsystems
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seems more realistic. On the other hand, this allows a more
fair comparison between entangled and separable states. In
this section we will show that quantum coherences and entan-
glement enhance the work storage capacity even if the entropy
of the global state is fixed. This implies that the entropy gap
between separable and entangled states mentioned above is
not the only factor making classical states generically worse.
However, as in the case of non-restricted entropy, the gain pro-
vided by entangled states or energy coherences vanishes in the
thermodynamic limit.

Stated otherwise, the question is whether locally thermal
quantum states subject to the constraint S(ρ) = S can store
more work than (9) when S = S(τβ). Now, keeping in mind
that local thermality fixes the initial energy to be nEβ , find-
ing the extractable work, Wmax(S), amounts to minimizing
the final energy, Tr(Hσ), over all σ = UρU† with U being
unitary and ρ satisfying the conditions above.

One can readily lower bound Tr(Hσ) by relaxing all the
constraints except S(σ) = S. Then, as is well known from
standard statistical mechanics, the state with the least energy
compatible with a given entropy is the thermal state [23, 24]

ρth = τ⊗nβ′ (10)

with β′ = β′(S) being the (unique [46]) solution of the en-
tropy constraint S(τβ′) = S/n. So, Tr(Hσ) ≥ Tr(Hρth) =
nTr(hτβ′). This implies a bound on the extractable work

Wmax(S) ≤ nEβ
(

1− 1

Eβ
Tr (τβ′h)

)
. (11)

In principle, it is not clear if the previous bound is attainable,
as the way we found ρth does not guarantee it to be unitarily
achievable from any of the allowed initial states. Nevertheless,
as we show below, for any given S and any number n of qubits
[47] there always exists a locally thermal quantum state that
can be transformed to ρth by a suitable unitary operator, i.e.
the bound (11) is tight.

Before moving to explicit protocols, let us show a di-
rect consequence of the bound (11). As the maximal ex-
tractable work from separable states, given in equation (9),
is obtained for S = S(τβ), one can easily compare it to
Wmax(S(τβ)). The result is illustrated in Fig. 1, showing
that Wsep < Wmax(S(τβ)). Therefore, even if the entropy
is fixed, classical states are generically weaker than entan-
gled quantum states in terms of work storage as the states
delivering Wmax(S(τβ)) are necessarily entangled. To un-
derstand the reason for this difference, notice that the separa-
bility condition restricts the set of locally thermal states (see
Appendix A 2), thereby limiting their possible spectra, which,
in turn, determine (according to Eq. (3)) the extractable work.

Now, let us show an explicit protocol that delivers (11).
Since to reach the bound in (11) the system has to neces-
sarily end up in the state (10), we, for clarity, construct the
backwards unitary, which takes the final state τ⊗nβ′ to an initial
state ρ which is locally thermal, at any temperature β ≤ β′.
In what follows it will be convenient to introduce the local pa-
rameter z = 〈0|τβ |0〉 − 〈1|τβ |1〉, i.e. the “bias” of the local
(qubit) subsystem in state τβ . It is a monotonic function of the

temperature: z = tanh(βE/2) (from now on, we concentrate
on qubits and, therefore, drop the index of E1).

We first consider the simplest case of two qubits. Define
the unitary transformation Uα to be a rotation by an angle α,(

cosα sinα
− sinα cosα

)
, in {|00〉, |11〉} (the subspace spanned by

|00〉 and |11〉) and an identity on the rest of the space.
If as an initial state we take ρ = Uατ

⊗2
β′ U

†
α, then since

Uα only generates coherences in the subspace where both
qubits are flipped, it is clear that the reduced state of each
qubit is diagonal. A straightforward calculation shows that
under the action of Uα, the state τβ′ (with bias z′) transforms
to an initial state ρ with bias z = cos (2α) z′. That is, we
can achieve any bias z such that |z| ≤ z′. As such, the lo-
cal temperature of the initial state, which is simply given by
β = 2

E tanh−1(cos (2α) z′), can take any temperature β ≤ β′
by an appropriate choice of α.

The above protocol can be readily generalised to the case
of n qubits. Let us denote by i = i1 · · · in an n-bit string,
with |i| =

∑
k ik being the Hamming weight (number of 1s)

of the string. The states |i〉 = |i1〉 · · · |in〉 run over all 2n

energy eigenstates of H . We also introduce ī—the bit-wise
negation of i (i.e. |̄i〉 = σ⊗nx |i〉). As we show in Appendix B,
if we now apply an Uα in each of the subspaces {|i〉, |̄i〉} with
0 ≤ |i| < n/2 [48], the resulting state is locally thermal, and,
exactly as in the case of two qubits, the local bias z is given
by z = cos (2α) z′. Again, any bias |z| ≤ z′ and therefore
any temperature β ≤ β′ can be reached.

Notice that the protocol exploits coherence in all two-
dimensional subspaces spanned by |i〉 and |̄i〉. We expect these
optimal states to be entangled in general and, in fact, they are
entangled for the scenario depicted in Figure 1. Moreover, we
can also show that in the limit of large n the optimal states are
necessarily entangled (see Appendix B 1).

Despite this result, in the thermodynamic limit, the bound
(11) can always be asymptotically reached by (purely classi-
cal) diagonal states. To prove this, we distinguish two qualita-
tively different situations of the global entropy S being macro-
scopic (S ∝ n) and sub-macroscopic (S/n→ 0). In the latter
case, as is detailed in Appendix B 2, the proof is conducted
by analysing a generalized version of the state (8). Whereas
the former case of macroscopic entropy can be treated by a
simple adaptation of the above protocol. Specifically, as final
state one chooses ρth = τ⊗nβ′ with S(τβ′) = limn→∞ S/n
and, by applying Uπ

2
, inverts the populations in one subspace

{|i〉, |̄i〉} with |i| = k ' ne−β
′E/Z ′. This changes the bias

from z′ to z′−O(1/
√
n). So, by performingO(

√
n) popula-

tion inversions, one can approximate any |z| < z′ and, hence,
any temperature β < β′ (see Appendix B 3 for details).

By running the above protocol backwards, one immediately
notices that the work extraction from correlations is related to
the process of their creation from a product of thermal states.
In fact, the problem of correlating the latter states as much as
possible for a given amount of invested work is considered in
[49, 50]. There it is shown that the process is optimal when the
final state is locally thermal, which is our starting point here.
On the other hand, work extraction becomes optimal when
the final state is (globally) thermal. That is, the two processes
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become the reverse of each other only when they are both op-
timal. This situation is in fact common in thermodynamics.
For example, a heat engine working at Carnot efficiency can
be seen as an optimal refrigerator running backwards [1].

VI. EXTENSION TO OTHER SCENARIOS

Before concluding, we show how our techniques can be ap-
plied to other relevant scenarios again in the context of opti-
mal work storage in correlations. In particular, we consider
systems where (i) all moments of the energy distribution are
equal to those of a global thermal state and (ii) one has access
to a thermal bath.

A. Work from energy coherences

We first consider states whose diagonal (in the energy
eigenbasis) is set to be equal to that of a global thermal state,
together with the initial condition of local thermality. More
formally, this approach is equivalent to imposing that all mo-
ments of the energy distribution are those of the global thermal
state: Tr(Hkρ) = Tr(Hkτ⊗nβ ), for all k. This contrasts with
the previous sections where only the first moment (i.e. the av-
erage energy) was fixed by local thermality. Moreover, notice
that the entropy of the initial state is here unconstrained.

Focusing again first on the case of n qubits, we consider
states which are maximally entangled in every degenerate sub-
space:

ρdeg =

n∑
k=0

Cknp
k(1− p)n−k|Dn,k〉〈Dn,k| (12)

where p = e−βE/Z , and |Dn,k〉 ∝
∑
|i|=k |i〉 is the normal-

ized Dicke state of n qubits with k excitations. It is straight-
forward to verify that the above state satisfies equation (4) and
has the required diagonal elements.

The passive state associated to (12) can be found as follows.
Notice that the state (12) is a mixture of n + 1 orthogonal
states. Therefore the optimal unitary amounts to rotating each
of these states to the n+1 lowest energy levels one of which is
the ground state with zero energy and the other n have energy
E. Therefore the energy of the transformed state is smaller
thanE, which means that it is possible to extract all the energy
contained in the initial state up to a correction of O(1):

Wdeg = nEβ −O(1)E. (13)

A similar result holds for the general case of n qudits (see
Appendix C).

An interesting question is whether the state ρdeg features
entanglement. Intuition suggests that this may be the case, as
large coherences are crucial in this scenario. However, using
the techniques developed in [54], we have not been able to
witness entanglement for n ≤ 50. Based on this evidence,
it seems that in this case entanglement may not provide an
advantage for any number of subsystems.

B. Access to a bath

Finally, we consider an extended scenario in which the sys-
tem is no longer isolated and can be put in contact with a bath
at the same (local) temperature. Here, we ask what is the max-
imal work that can be extracted via unitaries acting jointly on
the system and the bath. Then it is well known that the ex-
tractable work is upper bounded by the difference between
initial and thermal free energies:

W ≤ F [ρ]− F [τ⊗nβ ], (14)

where F [ρ] = Tr(Hρ) − β−1S(ρ) and the inequality can be
saturated (e.g. via infinitely slow isothermal processes [51])
[1, 45, 52, 53].

In the present case, the extractable work from any locally
thermal state with entropy S is given by

Wβ,max(S) = β−1(nS(τβ)− S), (15)

where the expression in parentheses is nothing else but a mul-
tipartite generalization of the quantum mutual information.
This enforces our argument that the origin of the extractable
work are the correlations in the state. The bound (15) is
strictly bigger than (11), which is natural, as we consider a
larger set of operations. On the other hand, the states (7) and
(8) maximize the right hand side of (15), i.e. the free energy
content is maximal, for entangled and separable states respec-
tively, and thus our previous considerations also hold in this
framework.

For the case of extracting work from energy coherences,
one can readily use (15) by computing the entropy of (12). As
ρdeg is a mixture of n + 1 pure states, its entropy cannot ex-
ceed (and, as can easily be shown, actually scales as) ln(n+1).
Therefore, ρdeg allows for storing all work in coherences ex-
cept for a O(lnn) correcting term. We note that this optimal
state can not be expressed as a tensor product of many coher-
ent states, a situation which was considered previously in the
literature [4, 45].

Notice that, when given access to a bath, the extractable
work only depends on a single global property, namely the
free energy of the state, which here reduces to the generalized
mutual information (15). Therefore, the strength of the corre-
lations become the only important property, and not whether
they are quantum or not. This is in contrast to our previous
results in Sec. V. In order to reconcile both results, imagine
that a bath at temperature β′ is attached to our system. Then,
the bound (14) (with β substituted by β′) will reduce exactly
to (11). Therefore we see that separable states can saturate
(11) when a macroscopic object, i.e. a bath, is available. This
corroborates our result in Sec. V, namely that in the thermody-
namic limit [55] the difference between quantum and classical
correlations vanishes.

Our results in this section thus complement a previous
study [32] in a similar setting, and also the works [19, 28–
31, 33, 36], which, although in a completely different con-
text, also deal with the problem of work extraction from ther-
mal environments utilizing correlations. Finally, it is worth
mentioning that when the correlations are not present between
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subsystems but rather between the system and the bath, they
become a source of irreversibility [16].

VII. CONCLUSIONS

In this work we investigated and compared the work storing
capacities of quantum and classical correlations. To eliminate
all sources of work except correlations, we considered sys-
tems which are locally thermal. The latter condition is both
necessary and sufficient to ensure that the system becomes
passive once the correlations are removed. This gives a new
perspective on the problem of passivity, in particular for the
case of composite systems.

We first show that correlations are powerful enough to al-
low for the extractable work to be equal to all the energy
present in the system (see Sec. III). For that to happen, the
state of the system must not only be entangled but also pure,
which is impossible for locally thermal separable states due
to an entropy constraint. Entanglement is also useful when
the state of the system is mixed, as in this case we show that
separable states can not generically store the maximal work
compatible with the entropy of the system and local thermal-
ity.

Furthermore, we prove that in all cases the quantum advan-
tage, significant for small ensembles, becomes irrelevant in
the thermodynamic limit, thereby corroborating that macro-
scopic thermodynamics is insensitive to the microscopic me-
chanics underlying it. This “classical” view is complemented
by a previous result by some of us [18] stating that maximal
work can be extracted from diagonal states without generating
entanglement during the whole process.

The considered scenario, a set of correlated yet locally ther-
mal states, is ideal to identify the role of quantum effects in
thermodynamics and naturally allows for extensions. In this
respect, first we have studied the role of coherences by further
restricting the diagonal of the state in the energy eigenbasis
to be identical to a thermal state. Interestingly, in this case
it turns out that, in the thermodynamic limit, essentially all
the energy can be stored in the off-diagonal terms. Secondly,
we have discussed the situation when the system is allowed
to interact with a thermal bath at the local temperature of the
reduced states. Then, work is directly related to the strength
of the correlations as measured by (15).

An interesting open question is to investigate the scenario
in which not only local marginals are thermal, but so are also
k-body reduced states (in particular the case of nearest neigh-
bours). This may give an insight into the role of different types
of multipartite entanglement in the context of work extrac-
tion. Another interesting question is to derive bounds in the
other direction, i.e., correlated states with minimal work con-
tent [58]. A promising line of further research is to study the
process of converting correlations into work beyond average
quantities, for example from the point of view of fluctuation
theorems [44], or deterministic work extraction [53, 56, 57].
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Appendix A: Maximal work from separable states

In this appendix we find the maximal work that can be
stored in separable states subject to being locally thermal.

1. The set

In other words, we want to find the maximum of the er-
gotropy (3),

Wmax(ρ) = Tr(Hρ)− Tr(Hρpassive), (A1)

over all those ρs that belong both to the set of separable states
(we denote it as SEP) and to

LT H = {ρ : Tri ρ = τβ , i = 1, ..., n} . (A2)

Now observe that, along with SEP [59], LT H is a convex
set. Indeed, if ρ1 and ρ2 are arbitrary two states belonging to
LT H, then for ∀t ∈ [0, 1]

Tri(tρ1 + (1− t)ρ2) = tτβ + (1− t)τβ = τβ (A3)

for all i, immediately implying that tρ1 + (1 − t)ρ2 ∈ LT H
for all t ∈ [0, 1] which, by definition, means LT H is a convex
set. Moreover, since the conditions defining LT H are linear,
it is also a closed set.

We will need also the following set:

ENT (S) = {ρ : S(ρ) ≥ S} . (A4)

Due to convexity of the von Neumann entropy, ENT is also
convex and the not strict inequality in the definition ensures
that it is also closed.
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Another observation is that since the entropy of the separa-
ble states is greater than all the local entropies, we have that if
ρ ∈ SEP ∩ LT H then S(ρ) ≥ S(τβ). Otherwise:

SEP ∩ LT H ⊂ ENT (S(τβ)). (A5)

Moreover, the intersection of the boundaries of all three sets
in (A21) is nonempty and consists of only one element which
we find in the next subsection.

2. Maximally pure separable state

Here we determine the separable state ρsep of N sys-
tems (all having the same d level Hamiltonian h =∑d−1
a=0Ea|a〉〈a|) such that it has the minimal entropy com-

patible with marginals all being τβ (5):

τβ =
1

Z
e−βh =

d−1∑
a=0

e−βEa |a〉〈a|

d−1∑
b=0

e−βEb
≡

d−1∑
a=0

pa|a〉〈a|. (A6)

Considering, e.g., the first system (S1) versus the rest (R =
S2 ⊗ · · · ⊗ SN ) and keeping in mind that the partial states of
Ss are all τβ , we have

S(ρsep)− S(τβ) = −S
(
ρsep

∣∣∣∣ τβ ⊗ IR
dR

)
+ ln dR. (A7)

Since ρsep is separable, it can be written in the following form:

ρsep =
∑
x

λxρ
S1

x ⊗ ρRx =
∑
x

λxρ
S1

x ⊗ ρS
2

x ⊗ · · · ⊗ ρS
N

x (A8)

for some discrete index x, nonnegative λxs summing up to 1,
and some normalised states ρS

i

x over Si. Given the condition
that the state of S1,

∑
x λxρ

S1

x , is equal to τβ and the joint
convexity of the relative entropy [60], we have

S(ρsep)− S(τβ) =

ln dR − S

(∑
x

λxρ
S1

x ⊗ ρRx
∣∣∣∣ ∑

x

λxρ
S1

x ⊗
IR
dR

)
≥

ln dR −
∑
x

λxS

(
ρS

1

x ⊗ ρRx
∣∣∣∣ ρS1

x ⊗
IR
dR

)
=∑

x

λxS(ρRx ) ≥ 0. (A9)

So, the minimal possible value for S(ρsep) is S(τβ); and to
find the purest ρsep we have to saturate both inequalities in
the chain (A9). The second inequality is resolved trivially,
giving that ρRx = ρS

2

x ⊗ · · ·⊗ ρS
N

x for all values of x are pure.
We denote these states as |Rx〉 = |S2

x〉 ⊗ · · · ⊗ |SNx 〉. Doing
the same with respect to, e.g., S2, we will get that all ρS

1

x are
also pure (and, as above, are denoted as |S1

x〉).

The equality conditions for the first inequality of (A9) are
less trivial [60]. If we only consider the nonzero λxs and de-
note their number by L, Theorem 8 of [60] will give us(
λxρ

S1

x ⊗ ρRx
)it(

λxρ
S1

x ⊗
IR
dR

)−it
= ρitsep

(
τβ ⊗

IR
dR

)−it
for ∀t > 0 and x = 0, ..., L− 1;

(A10)

where the equality holds in the support of ρS
1

x ⊗ ρRx =
|S1
x · · ·SNx 〉〈S1

x · · ·SNx | = |Sx〉〈Sx| = Px (in this notation
ρsep =

∑
x λxPx). The latter is the projector onto that sub-

space. Bearing in mind that we consider only nonzero λxs and
doing the same procedure for all other N − 1 systems, we get
from (A10):

PxρsepPx = Px(τβ ⊗ IS2 ⊗ · · · ⊗ ISN )Px = · · · =
= Px(IS1 ⊗ IS2 ⊗ · · · ⊗ τβ)Px. (A11)

We will now concentrate on the first equality and, for sim-
plicity, drop the index enumerating the subsystems. With
that, and taking into account that PxρsepPx = λxPx and
Px(τβ ⊗ IS2 ⊗ · · · ⊗ ISN )Px = 〈Sx|τβ |Sx〉Px, we have

λx = 〈Sx|τβ |Sx〉. (A12)

Now we take {|a〉}d−1
a=0, the eigenbasis of τβ in the Hilbert

space of the subsystem (A6), and construct the matrix mxa =

|〈Sx|a〉|2 ≥ 0. With this we rewrite (A12) as

d−1∑
a=0

mxapa = λx. (A13)

Also, from the normalization we have∑
a

mxa = 1 for ∀x. (A14)

Finally, the condition that all partial states are τβ :∑
x λx|Sx〉〈Sx| = τβ , leads us to

L−1∑
x=0

λxmxa = pa. (A15)

First, let us show that L > d cannot be true. Indeed, substitute
(A13) into (A15),

∑
xbmxamxbpb = pa, multiply the LHS by

mxa and sum over a and use
∑
x λx = 1 =

∑
xamxapa:

∑
x

(∑
a

m2
xa

)(∑
b

mxbpb

)
= 1. (A16)

Given that it must hold that
∑
xamxapa = 1 we see that

(A16) can be true only if∑
a

m2
xa = 1 for ∀x. (A17)

But we have (A14) and that 0 ≤ mxa ≤ 1 so (A17) can be
true only if each row consists of zeroes and only one 1. Since
none of pa is zero, (A15) implies that there must be at least
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one 1 on each column of m. Let arrange the x so that the first
d rows of m look like an identity matrix. Then we get

λx = px for x = 0, ..., d− 1. (A18)

Since
∑
x λx = 1 we have that λx = 0 for all x ≥ d + 1.

Which is impossible because of (A13) and the fact that there
must be at least one 1 on each row.

With the same argument, also d > L is not possible. So,
d = L and (A18) holds. Also, since now m = I , |Sx〉 = |x〉,
rendering

ρsep =

d−1∑
a=0

pa|a · · · a〉〈a · · · a|. (A19)

Moreover, since ρsep is unique,

∂ENT (S(τβ)) ∩ SEP ∩ LT H = {ρsep}, (A20)

where ∂ denotes the boundary of the set.

3. Convexity of ergotropy

In this section we take another step towards finding the
maximum of the ergotropy W (ρ) (3, A1) over SEP ∩ LT H.
To that end we prove a general result which does not depend
on the particular structure of the system we discuss in this ar-
ticle: on the set of states with equal energy, ergotropy is a
convex function.

So, say we are given the Hamiltonian H =
∑
α Eα|α〉〈α|

with Eα+1 ≥ Eα, α = 0, 1, .... Now, for any ρ1 and ρ2 st
Tr(Hρ1) = Tr(Hρ2) and ∀t ∈ [0, 1],

Wmax(tρ1 + (1− t)ρ2) ≤ tWmax(ρ1) + (1− t)Wmax(ρ2).(A21)

To prove this, observe that (A21) is equivalent to

Tr(H[tρ1 + (1− t)ρ2]passive) ≥ (A22)

tTr(Hρpassive
1 ) + (1− t) Tr(Hρpassive

2 ) = (A23)

Tr(H[tρpassive
1 + (1− t)ρpassive

2 ]). (A24)

On the other hand, as is shown in [38], for two diagonal states
ρ and σ,

ρ ≺ σ ⇒ Tr(Hρ) ≥ Tr(Hσ), (A25)

where ρ ≺ σ is read as ρ is majorized by σ and means that

A∑
α=0

ραα ≤
A∑
α=0

σαα, for all A = 0, 1, .... (A26)

Now, as a direct consequence of the Theorem G.1. of chapter
9 of [61], we have

[tρ1 + (1− t)ρ2]passive ≺ tρpassive
1 + (1− t)ρpassive

2 , (A27)

which, in view of (A25), leads to (A22, A24), which prove
(A21)—the main result of this subsection.

4. Maximization of work over SEP ∩ LT H

We are now ready to prove the main claim of this section,
namely:

max
ρ∈SEP∩LT H

Wmax(ρ) = Wmax(ρsep), (A28)

where ρsep is from (A19).
Consider the set

Σ(S) = ENT (S) ∩ SEP ∩ LT H. (A29)

As a union of closed convex sets, Σ is a closed convex set.
Eq. (A21) implies that Σ(S(τβ)) = SEP ∩ LT H. Also,
obviously, when S(ρ) > nS(τβ), ρ cannot be in LT H and
therefore Σ(S) = ∅ for all S > nS(τβ), and Σ(nS(τβ)) =
{τ⊗nβ }.

A convex function has its maximum over a closed convex
set on the boundary (more precisely on one of the extremal
points) of that set [62]. Now, since all ρs in SEP ∩ LT H
are by definition locally thermal, they all have the same en-
ergy Tr(Hρ) = nEβ , which, according to the previous sub-
section, ensures that W (ρ) is a convex function on the whole
set LT H. Moreover, it has its maximum, W(S), over Σ(S)
on ∂Σ(S). Also, since this maximum changes with S, the
point delivering it lies on the boundary of ENT (S). On
the other hand, since Σ(S1) ⊂ Σ(S2) when S1 > S2, then
W(S1) < W(S2). Finally, as W(S) is a monotonically de-
creasing function of the global entropy, it has its maximal
value at S = S(τβ)—the minimal possible entropy. Further-
more, because Σ(S(τβ)) = SEP ∩ LT H,

W(S(τβ)) = max
ρ∈SEP∩LT H

Wmax(ρ), (A30)

and this maximum is attained on the boundary of
ENT (S(τβ)). Since the latter intersects SEP ∩LT H in only
one point, ρsep (see (A20)), means that the latter is the point
where W (ρ) attains its maximal value, which proves (A28).

Appendix B: Protocol for maximal work extraction given an
entropy constraint

In this appendix we will show that the unitary Uα, with
α = α · · ·α, given by

Uα|i〉 = cosα|i〉+ sinα|̄i〉, 〈i|H0|i〉 < n
2

Uα |̄i〉 = − sinα|i〉+ cosα|̄i〉, 〈i|H0|i〉 < n
2 (B1)

Uα|i〉 = |i〉, 〈i|H0|i〉 = n
2

produces a state ρ = Uατβ′(HS)⊗nU†α that is locally thermal
with local bias z and temperature β given by

z = cos (2α) z′ (B2)

β = 2
E tanh−1(cos (2α) z′)

where z′ = 〈0|τβ′ |0〉 − 〈1|τβ′ |1〉 = Tr(σzτβ′) is the bias of
τβ′ (where, for the sake of brevity, we now write τβ′ in place
of τβ′(HS) since no confusion should arise). To see that this is
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the case, we note first that ρ is symmetric under permutations,
since both the initial state τβ′(HS)⊗n and Uα are symmetric.
Therefore it suffices to calculate z1 = 〈0|ρ1|0〉−〈1|ρ1|1〉. We
note first that this can be re-written as follows

z1 = Tr (σzρ1) = Tr (σz ⊗ 11n−1ρ)

=
∑
i1···in

〈i|(−1)i1ρ|i〉

Now, it is straightforward to see that

〈i|ρ|i〉 = 〈i|Uατ⊗nβ′ U
†
α|i〉

= cos2 α〈i|τ⊗nβ′ |i〉+ sin2 α〈̄i|τ⊗nβ′ |̄i〉 (B3)

holds for all |i〉, and futhermore that 〈i|τβ′ |i〉 = 1
2 (1 +

(−1)iz′), which follows from the definition of z′ as the bias.
Put together, this allows one to re-express z1 as

z1 =
∑
i1···in

(−1)i1

(
cos2 α

2n

∏
k

(1 + (−1)ikz′)

+
sin2 α

2n

∏
k

(1 + (−1)ik(−z′))

)
(B4)

which, upon interchanging the order of the product and sum
becomes

z1 =
cos2 α

2n

∏
i1···in

∑
ik

(−1)i1(1 + (−1)ikz′)

+
sin2 α

2n

∏
i1···in

∑
ik

(−1)i1(1 + (−1)ik(−z′)) (B5)

For k 6= 1,
∑
ik

(−1)i1(1 + (−1)ikz′) = 2, whilst for k =

1,
∑
ik

(−1)i1(1 + (−1)ikz′) = 2z′, from which we finally
obtain

z1 = cos2(α)z′ + sin2(α)(−z′)
= cos(2α)z′ (B6)

1. Presence of entanglement in the state

Consider the state ρ = Uατ
⊗n
β′ U

†
α. As it has an X-like

shape, applying the criterion of positivity under partial trans-
position (PPT) [63, 64] with respect to a bipartition A|Ā to ρ
will yield an independent positivity condition for each pair of
coherences 〈i|ρ|̄i〉, 〈̄i|ρ|i〉, given by

|〈i|ρ|̄i〉| −
√
〈i|〈̄i|ΠA|Āρ

⊗2ΠA|Ā|i〉|̄i〉 ≥ 0 (B7)

where ΠA|Ā is the permutation operator acting on the two-
copy Hilbert space exchanging partition A between the two
copies. Focusing on |i〉 = |0...0〉, |̄i〉 = |1...1〉 and on the bi-
partition (n/2|n/2), the condition for non-separability reads:

sin(2α)(1− e−β
′εn)− 2e−β

′εn/2 ≥ 0. (B8)

For sufficiently large n, entanglement will be present in the
state for any α. Indeed, when S(ρ) ∝ n, β′ is a constant,
and so is α. So, for n large enough, the LHS of (B8) will
be ≈ sin(2α) which is ≥ 0. In all other cases, i.e. when
S(ρ) 6∝ n, which means S(τβ′) = S(ρ)

n → 0 (with n → ∞),

e−β
′ε decreases, so z′ = 1−e−β

′ε

1+e−β′ε
increases, so cos(2α) = z

z′

decreases, so sin(2α) increases. All in all, the LHS of (B8)
increases with n, becoming positive starting from some value
of n.

2. Maximal work extraction from states with submacroscopic
entropy

Here we show that when the entropy of the global state,
S(ρ), is sub-macroscopic, i.e.

xn =
S(ρ)

n
→ 0 when n→∞, (B9)

The maximal works extractable from locally thermal separa-
ble states, Wsep(S(ρ)), and from general entangled locally
thermal states, Wmax(S(ρ)) (11), asymptotically coincide:

lim
n→∞

Wsep(S(ρ))

Wmax(S(ρ))
= 1. (B10)

First we observe that, trivially,

Wsep(S(ρ))

Wmax(S(ρ))
≤ 1 (B11)

We then start by asymptotically expanding Wmax(S(ρ)). For
that we will need the asymptotics of Eβ′ when S(τβ′) = xn.
Denote p′ = e−β

′E/Z ′. Then Eβ′ = p′E. Now, since xn →
0, p′ also has to→ 0. Therefore

xn = −p′ ln p′ − (1− p′) ln(1− p′) = p′ ln
1

p′
+O(p′).

Hence,

p′ =
xn

ln 1
xn

[
1 +O

(
ln ln 1

xn

ln 1
xn

)]
. (B12)

And since the final energy is simply nEβ′ = np′E, we have

Wmax = nEβ −
S

lnn− lnS
(1 + o(1)) ∼ nEβ . (B13)

Let us now consider the following three parameter family
of diagonal states:

Ω(ε, δ, γ) = ε|0〉〈0|⊗n + δ|1〉〈1|⊗n +
γ

CDn

∑
|i|=D

|i〉〈i|, (B14)

where D is the smallest number satisfying lnCDn ≥ S, and ε,
δ, and γ are nonnegative and, from normalization condition:

ε+ δ + γ = 1. (B15)
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Furthermore, the local thermality requires

δ + γ
D

n
=
e−βE

Z
≡ p. (B16)

And finally, the entropy must be S:

− ε ln ε− δ ln δ − γ ln γ + γ lnCDn = S. (B17)

Resolving (B15) and (B16) we reformulate (B17) as

f(γ) = S (B18)

where

f(γ) =−
(

1− p− γ n−D
n

)
ln

(
1− p− γ n−D

n

)
−
(
p− γD

n

)
ln

(
p− γD

n

)
− γ ln γ + γ lnCDn .

Now, f(γ) is a continuous function on [0, 1], and f(0) =
−p ln p− (1− p) ln(1− p) = S(τβ) ≤ S and f(1) = lnCDn
which, by the very definition of D, exceeds S. Note also,
that local thermality places an upper bound on S: S ≤ So,
S ∈ [f(0), f(1)] and, due to the continuity of f(γ), ∃γ such
that (B18) is satisfied. We denote that value of γ via γ0, and
the state Ω it (uniquely) determines—via Ω0.

Finally, we note that since the rank of Ω0 is at most 2+CDn ,
the passive state associated to it will occupy the first 2+CDn <
CD+1
n energy levels. Therefore the energy of Ω0 is < (D +

1)E. Hence

Wsep > nEβ − (D + 1)E. (B19)

On the other hand,D < S. Indeed, due to the general inequal-
ity Ckn ≥

(
n
k

)k
, we have lnCSn ≥ S ln n

S . Since S/n → 0,
for sufficiently big n we will have n/S > e, which yields to
lnCSn > S implying that D < S. Thereby, we end up with

Wsep > nEβ − SE, (B20)

which, taking into account (B13), leaves us with

1− S
n
E
Eβ

1− S
n

1+o(1)
lnn−lnS

<
Wsep(S(ρ))

Wmax(S(ρ))
≤ 1. (B21)

In view of S/n→ 0, (B21) finalizes the proof of (B10).

3. Maximal work extraction from states with macroscopic
entropy

In what follows we will show that in the asymptotic limit it
is possible to approximately achieve maximal work extraction
given an entropy constraint from a state which is classical. To
do so we shall apply the unitary Uα with α chosen appropri-
ately. Consider that αk is non zero (and equal to π/2) only for
k = np′−µ ≡ `, i.e., between the subspaces with |i| = np′−µ
and |̄i| = n(1 − p′) + µ, where p′ = 〈1|τβ′ |1〉 = 1

2 (1 − z′)
is the excited state probability in τβ′ . That is, we consider the
unitary V

V |i〉 = |̄i〉, V |̄i〉 = −|i〉 if |i| = np′ − µ
V |i〉 = |i〉 if |i| 6= np′ − µ.

Obviously, after applying V the state is still diagonal and sym-
metric. This means that the transformed state is again locally
thermal, but now with the new bias z′′ = 1 − 2p′′. To find
it, we observe that the energy of the global state is given by
nEp′′. On the other hand, V swapped the population of the
level `E, C`n(p′)`(1−p′)n−`, with Cn−`n (p′)n−`(1−p′)`, the
population of (n − `)E. As a result, the initial energy np′E
increased by C`n

(
(p′)`(1− p′)n−` − (p′)n−`(1− p′)`

)
(n −

2`)E. This implies, that

p′′ = p′

+ C`n
(
(p′)`(1− p′)n−` − (p′)n−`(1− p′)`

)
(1− 2`/n),

or, equivalently,

z′′=z′

−2C`n(z′ + 2µ/n)
(
(p′)`(1−p′)n−`− (p′)n−`(1−p′)`

)
.

(B22)

Now, let us focus on µ ≤ O(
√
n) (we will see that this

set is enough for our purposes). We then have the asymptotic
expansion

(p′)np
′−µ(1−p′)n(1−p′)+µCnp

′−µ
n =

e
− µ2

2p′(1−p′)n+O(µn)√
2πnp′(1−p′)

, (B23)

using which it is straightforward to obtain from (B22) that

z′′ = z′ − z′ e
− µ2

2p′(1−p′)n+O( µn )√
2πnp′(1− p′)

(
1− e−β

′(nz′+2µ)E
)
.

Clearly, for µ ≤ O(
√
n),

z′′ = z′ −O(1/
√
n). (B24)

On the other hand, observe that the left hand side of (B23)
is the population of the level np′ − µ, and the summation of
these values over all µ ≤ O(

√
n), will produce 1−O(1/

√
n).

Hence, if we apply the inversions described by V on all levels
with µ ≤ O(

√
n), we will arrive at a state with local bias be-

ing −z′ + O(1/
√
n). Now, since each inversion changes the

initial bias by O(1/
√
n) (B24), we conclude that by conduct-

ing a sequence O(
√
n) steps, one can change the initial local

bias z′ to any |z| < z′, with the precision increasing with n.
Therefore, in thermodynamic limit there exist diagonal states
which asymptotically saturate the thermodynamic bound (11).

Appendix C: Correlations in degenerate subspaces

Consider the total Hamiltonian

H =

n∑
i=1

hi =

nl∑
i=1

EiΠi, (C1)

where each hi = h :=
∑d−1
a=0 εa|a〉〈a| (with ε0 = 0) has local

dimension d, which we assume to be finite. The number of
different global energies, nl is found to be

nl = Cd−1
n+d−1 =

(n+ d− 1)!

n!(d− 1)!
, (C2)
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which corresponds to the number of non-zero eigenvalues of
(12). In order to find the passive state associated to (12),
one has to move such eigenvalues to the lowest energy lev-
els. This operation requires knowledge of the spectrum of hi.
Nevertheless, it will suffice for our purposes to move them
to a sufficiently degenerated energy. The degeneracy of a

global energy Ei =
∑
j k

(i)
j εj is equal to C

k
(i)
1 ,k

(i)
2 ,...,k

(i)
d

n .
The point is then to find the lowest energy, Emin, satisfying
C
kmin
1 ,kmin

2 ,...,kmin
d

n ≥ Cd−1
n+d−1, so that the work extracted after

such a transformation is simply given by

Wdeg ≥ Eρdeg
− Emin. (C3)

Now, notice that for large n

lim
n→∞

Cd−1
n+d−1

C
n−d,k′2,...,k

′
d

n

= 0,

d∑
j=2

k
′

j = d (C4)

with E′ =
∑d
a=2 k

′

aεa. Observe that E′ is of the order of the
energy of one subsystem (for instance, choosing k′2 = d and
k′j = 0 for j > 2, we obtain E′ = dε2). Therefore we can
take Emin = E′ obtaining the desired result.

In the case of d = 2 the expression for Emin is particularly
simple:

Wmin =
[
1− Cpnn pnp(1− p)(1−p)n

]
E. (C5)
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