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Abstract 

 

The Wechsler Intelligence Scale for children (WISC-IV) remains the most widely used test in 

the field of intelligence assessment. The interpretation of the WISC-IV is based on a 4-factor 

model which is only partially compatible with the Cattell-Horn-Carroll (CHC) model of 

intelligence measurement. Several confirmatory factor analytic studies (CFA) have shown 

that CHC-based models were more adequate than the 4-factor model on several cognitive 

batteries and in particular the Wechsler scales. Additionally, some degree of controversy also 

remains on the exact nature of constructs measured by each subtest.  

In typical CFA, in order to prevent model under-identification, many loadings between latent 

variables and measures are fixed to zero. However, small but nonzero loadings could be 

equally compatible with theory. Inappropriate zero loadings can contribute to poor model fit, 

distorted factors and biased factor correlations. The goal of this study was to address these 

limitations in the comparison of CHC-based and classical models and thus get better insight 

on the constructs measured by each subtest of the French WISC-IV. We used Bayesian 

structural equation modelling (BSEM). With BSEM, zero-fixed loadings between latent 

variables and measures are replaced by approximate zeros based on informative, small-

variance priors. BSEM is therefore a less restrictive approach that is still guided by theory. 

Results on a sample of 249 French-speaking Swiss children (8-12 yr) show that the CHC-

based model is better than the 4-factors solution. Additionally, the BSEM-derived model is 

less complex than typical CFA-derived models and thus may have greater generalisability. 

 

Keywords: WISC-IV, Bayesian structural equation modelling, confirmatory factor analysis, 

CHC theory 



 

Further insight on the French WISC-IV factor structure through Bayesian structural equation 

modelling (BSEM) 

 

The last decade has seen the emergence of the Cattell-Horn-Carroll theory as the mainstream 

approach in the field of intelligence assessment. This model has proven influential in the 

organisation and interpretations of several cognitive batteries (inserer exemples et ref). The 

last revision of the Wechsler intelligence scale for children, 4th edition (WISC-IV) did 

nevertheless not include CHC theory in the definition of the four index scores (VCI, verbal 

comprehension index; POI, perceptual organisation index; WMI, working memory index & 

PSI, processing speed index). However confirmatory factor analytic studies (CFA) have 

shown that models based on the CHC framework showed closer fit to the data than the 

classical four factor structure. On the WISC-IV (exemples). A CHC-based structure also 

proved to show closer fit to the data on the French Wechsler adult intelligence scale (WAIS-

III) (Golay & Lecerf, 2010). Nevertheless, it subsist some degree of controversy on the nature 

of constructs measured by each subtests. Arithmetic has been shown to load on the Gsm 

factor, on the Gf factor or on both. It has also been show that (continuer avec des examples). 

On the French version of the WAIS, it has been shown to load both on the Gf and Gsm factor 

(Golay & Lecerf, 2010) and on the French WISC-IV (ajouter ref sur article echantillon de 

standardisation).  

 

The CFA approach 

In typical CFA studies and in order to achieve model identification, f2 restrictions (f = number 

of factors) have to be placed on the model parameters. Usually each variable only load on one 

factor. Cross-loadings are fixed to exact zeroes in order to attain the necessary number of 

restrictions for model identification. However, small but nonzero loadings could be equally 



 

compatible with theory, thus theses zero loadings can be considered as unnecessary strict 

restrictions to reflect the researchers’ hypotheses (Muthén & Asparouhov, 2010). It has also 

been shown that inappropriate zero loadings can contribute to poor model fit, distorted factors 

and biased factor correlations (Marsh, et al., 2010). The latter issue has already been subject 

of great debate in the domain of personality research. Residual correlations within the big five 

measures (supposedly independent) have been referred as method variance artefact (McCrae, 

et al., 2008) because CFA may be overly restrictive: the independent cluster model requires 

each indicator to load on only one factor. This results in models with a huge number of exact 

zero loadings. Such models can show poor fit to the data because factor indicators may also 

measure many secondary factors. After rejection of the initial model because of inappropriate 

fit, the researcher can be tempted to engage in a series of modifications that may capitalize on 

chance. Modification indices can be used as a basis to improve the model by freeing 

parameters, one at a time. Nevertheless it can be argued that the use of modification indices to 

improve model fit is not a strictly confirmatory approach anymore. Because a serie of 

modification may be tested, one at a time, improvements may result of capitalizing on chance. 

Thus, these model refinements may not be generalised to the population. This is often refered 

as “overfitting” and it improves the risk that the final model has only sample-specific validity.  

Overly sample specific models can contribute to the lack of consensus between studies. 

 

The BSEM approach 

The goal of this study was to address CFA limitations in the comparison of CHC-based and 

classical models on the French WISC-IV. The second objective was to get much needed 

insight on the constructs measured by each subtest of the French adaptation of the battery. To 

compare different models, we used Bayesian structural equation modelling (BSEM). In 

BSEM, parameters are not viewed as fixed values but as variables. BSEM therefore replaces 



 

zero-fixed cross-loadings with approximate zeros based on informative, small-variance 

distributions. Cross-loadings are considered to be close but not necessary equal to zero. Major 

hypothesized loadings are freely estimated without prior information. The are refered as 

diffuse, non informative priors. Bayesian structural equation modelling is therefore less 

restrictive than CFA but still encompasses strong theory because researchers knowledge 

guides the analysis. Exploratory factor analysis (EFA) on the other hand may be seen as even 

less restrictive because the only way to incorporate theory is on the selection of the number of 

factors. BSEM then can be seen as an “in-between” CFA and EFA approach. 

Because with BSEM all parameters are freed and estimated simultaneously, modifications can 

be implemented in a single step. Finally BSEM does not rely on large sample theory as 

Maximum-likelihood CFA estimation does and can accommodate heavily skewed 

distributions of parameters estimates. The difference between typical Maximum-Likelihood 

CFA and BSEM are presented in Table 1. 

 

Method 

Participants 

249 french speaking children aged from 8 years to 12 years were assessed. AJOUTER 2-3 

DETAILS. 

The standards scores of the 15 subtests were used to conduct the analysis and there was no 

missing data. This dataset is part of a larger project described in Reverte, Favez, Rossier & 

Lecerf (submitted). For scaling reason in relation on the choice of prior variances, subtests 

standard scores were standardised. 

 

Bayesian structural equation modeling  



 

Muthen and Asparouhov (2010) give an excellent introduction to BSEM from a user 

perspective and the method used here closely draws on the approach described there. Yuab & 

MacKinnon also gives a very comprehensive introduction to the fundamental concept of 

Bayesian inference (Yuan & MacKinnon, 2009). The reader more interested in the technical 

implementation of BSEM can refers to the very detailed technical report (Asparouhov, 2010) 

of the software used for BSEM estimation (Mplus 6.1). 

 

In typical Maximum-Likelihood (ML) estimation, parameters are viewed as constants. In 

BSEM, they are regarded as variables quantified as distributions (Yuan & MacKinnon, 2009). 

On the basis of previous studies, researchers can incorporate their prior knowledge into prior 

distributions. For example, on the basis of the literature, a researcher can assume that the 

score of a processing speed subtest (e.g Coding) is likely to only show a very small loading on 

a visualization factor. In ML-CFA, the usual practice would be to fix the loading to zero. In 

BSEM, the researcher will reflect this initial belief as a prior distribution. The parameter’s 

distribution is believed to follow a normal distribution with a mean of zero and a small 

variance. The loading is essentially considered as close but not necessarly zero. After the 

experiment, new observed data is used to update researchers’ knowledge on the parameters 

through Bayes theorem (for a detailed summary, see (Yuan & MacKinnon, 2009)). The 

posterior distribution is the updated representation of the researcher’s belief after 

incorporating the experiment data. The greatest similarity between typical CFA and BSEM is 

that with CFA researchers also have to set cross-loadings to zero on the basis of their prior 

knowledge. These exact fixed zeros can be seen as normal distribution with zero mean and 

zero variance. Theses fixed loadings are also necessary because many restrictions have to be 

put on the parameters for the sake of model identification. In summary, the basic idea of 

BSEM is to acknowledge that there is little uncertainly on the value of the parameters. A prior 



 

distribution, with a defined mean of and variance, will therefore better reflect theory than a 

fixed parameter. Fixed zeros are considered as unnecessary strict operationalization of the 

researcher’s hypotheses. 

 

Informative small variance priors 

The BSEM implementation follows the same logic of typical ML-CFA with two additional 

steps. For the WISC-IV, the researcher starts with defining which subtests are to be associated 

to which factors. For example, Coding, Symbols and Cancellation are set to load on the 

processing speed factor (PSI). In typical CFA, it would be assumed that the loadings of every 

other subtest on the PSI factor are zero. Within BSEM, cross-loadings are specified to follow 

a prior distribution of mean zero and a moderate variance. This prior is informative in the 

sense that it implies that the cross loading value is small or close to zero but not exactly zero. 

Using informative, small-variance priors for all cross-loadings brings information into the 

analysis which would be unidentified otherwise (Muthén & Asparouhov, 2010). The choice of 

the prior variance is a reflect of initial beliefs and knowledge. A very small variance may not 

allow some cross-loadings to sufficiently differ from zero. On the opposite, a too large 

variance would not contribute enough information so that the model gets closer to being non-

identified (Muthén & Asparouhov, 2010). In such cases, the MCMC estimation algorithm will 

fail to reach convergence. The prior variance that was chosen is 0.04 which results in 95% 

confidence internal of  0.39 (figure 1) which allow small to moderate loadings. We 

considered it was important to allow cross-loadings to sufficiently escape of zero in order to 

identify potential significant cross-loadings. We also followed Muthen and Asparouhov 

recommendation of varying the variance priors to study the sensitivity of the results. Smaller 

values (0.1 & 0.3) showed similar pattern of results but at the cost of slightly worst model fit 



 

(PPP). With larger values (0.5), the MCMC process failed to reach convergence (model 

unidentification). 

 

Markov Chain Monte Carlo and convergence 

The posterior distribution of Bayesian estimation was achieved through Markov Chain Monte 

Carlo (MCMC) algorithm with the Gibbs sampler Method (Muthen & Muthen, 2010). “The 

idea behind MCMC is that the conditional distribution of one set of parameters given other 

sets can be used to make random draws of parameters values, ultimately resulting in an 

approximation of the joint distribution of all parameters” (Muthén & Asparouhov, 2010). 

Three MCMC chains with 50’000 iterations were used, with different starting values and 

different random seeds. Theses chains were used to monitor convergence. Convergence was 

assessed using the Gelman-Rubin convergence diagnostic (Gelman, Carlin, Stern, & Rubin, 

2004; Gelman & Rubin, 1992). The potential scale reduction factor (PSR) is computed and 

takes into account between- and within-chain variation. Convergence is achieved when PSR is 

comprised between 1 and 1.1. Such PSR values indicates that the between chain variation is 

small relative to the within-chain variation. Convergence did not proved to be an issue with 

the tested models. We checked that the PSR values were already down to convergence (<1.1) 

after the first half (25’000) of the iterations to insure that the chosen number of iteration was 

sufficiently large. The first half of the chain was discarded as a burnin phase (Muthen & 

Muthen, 2010) and the second part was used to estimate the posterior distribution.  

 

 

Comparison of model fit 



 

Model fit was assessed using Posterior Predictive Checking (PPC) (Gelman, Meng, & Stern, 

1996). The Posterior Predictive p-value (PPP) of model fit is computed and can be used to test 

the structural model for misspecification. A small positive value (e.g 0.004) indicates poor fit. 

A PPP value around 0.5 indicates excellent fit (Muthén & Asparouhov, 2010). Contrarily to 

standard fit indexes such as the Root Mean Square Error of Estimation (RMSEA), there is no 

clear-cut PPP value that may indicate whether model fit is acceptable or not. Therefore PPP is 

more to be interpreted like a structural equation modeling fit index (bigger PPP indicates the 

better model). We additionally used the Deviance Information Criterion (DIC) (Gelman, et 

al., 2004; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). . The DIC is a Bayesian 

generalization of the AIC which balance the largeness of the likelihood and adds a penalty for 

model complexity (number of parameters). The number of parameters that is used to penalize 

for model complexity in the DIC if the effective number of parameter, referred as pD 

(Asparouhov & Muthén, 2010). Models with smaller values of DIC are to be preferred. 

 

BSEM tested models 

We first tested models based on the classical 4-factor solution. Model 1 was a correlated four-

factor structure (VCI, POI, WMI, PSI). Similarities, Vocabulary, Comprehension, 

Information and Word Reasoning were placed on the VCI factor. Block Design, Picture 

Completion, Matrix Reasoning and Picture concept were placed on POI. Digit Span, Letter 

Number and Arithmetic were put on WMI and Coding, Symbol Search and Cancellation on 

the PSI factor. Cross-loadings where first fixed as zero to be in line with typical CFA practice. 

In Model 2, cross-loadings were allowed to differ from zero and the variance of priors were 

set to 0.4. The objective was to assess gains in term of model fit that could be achieved when 

cross-loadings were freely estimated instead of being fixed to zero. We also tested higher 



 

order models that are more compatible with the existence of a general factor. Higher order 

models are considered more restrictive because they assume a unitary source of factor 

correlation. First order factors (VCI, POI, WMI, PSI) were defined the same way as in model 

1 and 2. Model 3 (figure 2) did not allow cross-loadings to differ from zero and in Model 4 

they were replaced by zero-mean small variance (0.4) priors. 

 

The next step is to compare the four factor model to a CHC-based five factor model. On 

model 5, Similarities, Vocabulary, Compehension, Information, Word Reasoning were placed 

on the Gc factor. Block design and Picture Completion were put on the Gv factor. Matrix 

Reasoning, Picture Concept and Arithmetic were placed on the Gf factor. (ajouter justification 

du crossloading parce que Gf, RG). Arithmetic was also placed on the Gsm factor with Digit 

Span and Letter Number. Finally Coding, Symbol Search and Cancellation were placed on the 

Gs factor (figure 3). 

 

Parameters are considered to have substantive backing when the 95% credibility interval of 

the parameter does not cover zero (Muthén & Asparouhov, 2010). Significant cross-loadings 

can then be freely estimated while keeping small variance priors for other cross-loadings in a 

final run. Hypothesized major loadings that failed to reach significance can also be modified 

at this time. They are not set to zero as it is typically done with CFA but they are rather 

replaced by an informative small variance cross-loadings that still allows the variable to show 

small non-zero loading on the factor. The goal of the estimation of this second and final 

model is to get slightly better estimation of the parameters distributions. Slight positive 

changes in model fit may occur and can be expected but are not of prime interest. Because 

every parameters are freed and estimated at the same time in both models, the base and the 

final model basically have the same meaning. 



 

 

Results 

 

The first WISC correlated four-factor structure was tested first. The first model was clearly 

rejected (ppp = 0.004). When cross-loading were allowed to differ from zero (model 2) the fit 

dramatically increased (PPP= 0.464). The value of DIC in model 2 (9617.454) was also lower 

than in model 1 (9645.974) indicating that freely estimated cross-loading were to be preferred. 

Model 3 was a higher-order variant of model 1. It was also rejected because of very low PPP 

value (0.005). The value of the DIC (9645.043) was also very close of model 1. Once again, 

by allowing cross-loadings to be freely estimated, model fit greatly increased (model 4) as 

indicated by a PPP of 0.456 and DIC of 9616.227. On both model 2 and 4, the 95% 

confidence interval of the loading of Picture concept on the POI factor failed to exclude zero 

(95% C.I from 0.076 to 0.421 and -0.055 to 0.417). However, and still in both model 2 and 4, 

the loading of Picture concept on the Gsm factor did exclude zero (95% C.I from 0.007 to 

0.343 and 0.001 to 0.329), suggesting that Picture Concept may first of all measure working 

memory and not perceptual reasoning. Additionally, we noticed that the correlations between 

the 4 factors were substantially reduced when the cross-loadings were freely estimated. This 

indicates that the relation between a specific item and a non-target factor that would be 

accounted by a cross-loading was represented instead through the factor correlation between 

the two factors (Marsh, et al., 2010). The correlations between the 4 factor in model 1 and 3 

are likely to have been inflated.  

On model 2, PSI did not showed substantive correlation with the three other factors (the 95% 

credibility interval did cover zero). We observed the same on model 4 were the 95% 

confidence interval of the loading of PSI on g also failed to exclude zero. This suggests that, 

when adopting a 4-factor framework, PSI is indeed a poor estimate of the g factor. 



 

Next we compared the CHC-base model (model 5) and the same model with small variance 

priors on the cross-loadings (model 6). Although better than both the WAIS 4-factor models, 

the model 5 showed poor fit (PPP = 0.028, DIC = 9632.226). On this model, Arithmetic got 

significant loadings on both Gf and Gsm. Free estimation of the cross-loadings (model 6) 

greatly increased the fit (PPP = 0.529, DIC = 9601.477). Detailed results are provided on 

table 3. All hypothesized major loadings except one got substantive backing because the 95% 

confidence interval excluded zero. Nonetheless, the loading of Arithmetic on the Gf factor 

was very low (0.115, 95% C.I from -0.319 to -0.519). This suggests that Arithmetic is not a 

measure of Gf in the French WISC-IV. No other cross-loading could be considered as 

substantive because the 95% C.I always included zero. Theses non-zero cross-loadings do not 

have much clinical significance (because their magnitude is small) but they are nevertheless 

statistically important for correct and non-biased estimation of the model parameters. 

Furthermore, saturations of first order factors were reduced in comparison of model 5 

suggesting that inappropriate fixed zero increased first order factors correlations and thus 

loadings on the g factor. Décrire saturation des 5 facteurs sur g. 

 

The final step was to estimate a modified and final CHC model were the free loading of 

Arithmetic on the Gf factor was removed. Once again, we first ran a first model in line with 

typical CFA practice (no cross-loadings, model 7) and a derivate with small variance priors 

(model 8).  The loading of Arithmetic on the Gf factor was fixed to zero in model 7 and 

replaced by a non-zero small variance cross-loading in model 8 to still allow for small loading 

on the Gf factor. The first important thing to notice is that the fit of model 7 (PPP = 0.008, 

DIC = 9641.561) is worst than model 5 (base CHC model with arithmetic on both gsm and 

gf). This suggest that, with a CFA approach, the researcher would probably have kept 

Arithmetic on both Gsm and Gf because of better fit, resulting in a more complicated model. 



 

The estimates of the final CHC model with cross loading (model 8) are presented in table 4. 

The fit slightly increased (PPP = 0.568, DIC = 9585.435), and the same pattern of substantive 

loadings could be seen. No major hypothesized loading were rejected and again, no cross-

loadings got substantive enough backing to be freely estimated as a major loading. The goal 

of this final estimation was to get better parameters estimates. The meaning of the model 6 

and 8 is still basically the same because Arithmetic is allowed to slightly load on the Gf factor 

in both the base and final model. It was nevertheless considered that freely estimating the 

loading of arithmetic on Gf gives too much probability that it takes an exaggerated value. The 

value of this loading on model 8 is somewhat smaller than in model 6. It is important to 

empathise that the typical CFA approach (as represented in model 5 and 7) suggests adopting 

a more complicated model (with Arithmetic loading on two factors) while the BSEM 

approach (model 6 and 8) suggest a more simple model (Arithmetic is only a measure of 

Gsm). 

 

Discussion 

 

Results show reasonably small cross-loading values. These results support a parsimonious 

final model. Even if the value that was chosen for the prior variance was not particularly 

small, no cross-loadings took exaggerated or significant values in model 6 and 8.  

 

Comparaison avec article Reverte : 3 différences : 

 

1. Small cross-loadings instead of exact zeroes 

a. Not necessarily clinical significance but 

b. Allow a better model estimation without factor distortion and correlation bias 



 

2. 3 cross loadings en moins, gf sur ari (comme illustré) mais aussi gs sur les cubes et 

matrice sur gv. Rappeler que les liens entre construits ne passent pas que par des 

cross-loadings mais également à travers les correlations entre facteurs => pas 

necessaire d’ajouter trop de fleches (c’est toute la difference entre une matrice pattern 

et une matrice de structure, la première pour être correctement interprétée necessite 

une prise en compte des correlations entre facteurs mais retranscris de façon plus 

proche la conception theorique du chercheur).  

3. Saturation de gf sur le facteur g revue à la baisse car les fixed zero font augmenter les 

correlation entre facteurs et donc les saturations sur le facteur g. Lorsqu’on en tient 

compte, le biais est suprimé et les saturations sont un peu réduites. Citer article 

puissance stat permet pas forcement de distinguer g et gf pour des raisons de puissance 

statistique (Matzke, Dolan, & Molenaar, 2010). Les inappropriate zero loadings sont 

une explication supplémentaire parce qu’elles poussent les saturations des facteurs de 

premier ordre sur g vers le haut. 
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Table 1. Summary of Maximum Likelihood CFA and BSEM principal differences  

 

 CFA BSEM 

Parameters viewed as Constants Variables 

Cross-loading Exact zeros 
Informative priors (zero mean and 

small variance) 

Major loadings Freely estimated 
Diffuse non informative priors 

(zero mean and infinite variance) 

Model modification 
Improvement with modification 

indices one parameter at a time.  

All parameters freed and 

estimated simultaneously. 

Modification in a single step 

Parameters estimates 
Assumed to be normally 

distributed 

Based on percentiles of the 

posterior distribution, does not 

assume a normal distribution 

 

 



 

 

Table 2. Comparisons of Model fit for the French WISC-IV Structure 

Model 

Number of 

free 

parameters 

Posterior 

Predictive 

P-Value 

Difference between 

observed & replicated 

2 95% C.I. 
DIC 

Estimated 

number of 

parameters 

(pD) Lower 

2.5% 

Upper 

2.5% 1. WISC-IV (4 factors) 51 0.004 13.776 89.296 9645.974 48.802 

2. WISC-IV (4 factors) with 

cross-loadings (variance of 

priors = 0.4) 

96 0.464 -40.029 42.186 9617.454 70.800 

3. WISC-IV (higher order) 49 0.005 13.262 90.287 9645.043 47.335 

4. WISC-IV (higher order) 

with cross-loadings (variance 

of priors = 0.4) 

94 0.456 -39.380 43.376 9616.227 68.984 

5. CHC-base model 51 0.028 -0.993 75.815 9632.226 49.016 

6. CHC-base model with 

cross-loadings (variance of 

priors = 0.4) 

110 0.529 -43.061 38.097 9601.477 58.621 

7. CHC -final model 50 0.008 9.469 85.211 9641.561 48.265 

8. CHC-final model with 

cross-loadings (variance of 

priors = 0.4) 

110 0.568 -45.553 36.628 9585.435 44.432 

 



 

Table 2. Bayesian analysis using informative, small-variance priors for cross-loadings – 

CHC base model 

  
Estimate 

Posterior 

S.D 

One-Tailed P-

Value 

95% C.I. 

  
Lower 

2.5% 

Upper 

2.5% 

Gc       

 Similarities 0.631 0.085 0.000 0.461 0.791 

 Vocabulary 0.806 0.080 0.000 0.656 0.976 

 Comprehension 0.722 0.084 0.000 0.569 0.901 

 Information 0.743 0.084 0.000 0.586 0.917 

 Word Reasoning 0.661 0.079 0.000 0.503 0.817 

 Block Design -0.069 0.098 0.238 -0.260 0.127 

 Picture Completion 0.107 0.098 0.138 -0.088 0.299 

 Matrix Reasoning 0.039 0.109 0.355 -0.183 0.246 

 Picture Concept 0.071 0.102 0.246 -0.137 0.260 

 Digit Span -0.025 0.091 0.390 -0.209 0.151 

 Letter Number Sequencing 0.023 0.097 0.405 -0.173 0.212 

 Arithmetic 0.128 0.094 0.088 -0.064 0.308 

 Coding -0.078 0.088 0.184 -0.251 0.095 

 Symbol Search 0.002 0.089 0.492 -0.174 0.178 

 Cancellation 0.054 0.083 0.255 -0.109 0.217 

Gv       

 Similarities 0.130 0.090 0.065 -0.037 0.318 

 Vocabulary -0.061 0.087 0.238 -0.234 0.112 

 Comprehension -0.117 0.088 0.086 -0.298 0.052 

 Information 0.136 0.090 0.055 -0.031 0.324 

 Word Reasoning 0.045 0.087 0.298 -0.126 0.216 

 Block Design 0.665 0.128 0.000 0.430 0.929 

 Picture Completion 0.530 0.133 0.000 0.287 0.810 

 Matrix Reasoning 0.139 0.114 0.111 -0.094 0.356 

 Picture Concept -0.037 0.103 0.351 -0.256 0.153 

 Digit Span -0.083 0.099 0.192 -0.283 0.108 

 Letter Number Sequencing 0.032 0.105 0.374 -0.171 0.244 

 Arithmetic -0.004 0.098 0.485 -0.198 0.191 

 Coding -0.007 0.101 0.474 -0.202 0.199 

 Symbol Search 0.106 0.102 0.139 -0.089 0.313 

 Cancellation 0.017 0.096 0.425 -0.163 0.213 

Gf       

 Similarities 0.045 0.081 0.234 -0.071 0.248 

 Vocabulary 0.010 0.073 0.426 -0.130 0.174 

 Comprehension -0.007 0.073 0.449 -0.166 0.136 

 Information -0.021 0.078 0.354 -0.208 0.109 

 Word Reasoning 0.031 0.079 0.300 -0.091 0.228 

 Block Design 0.004 0.082 0.474 -0.181 0.162 

 Picture Completion 0.013 0.078 0.409 -0.128 0.195 

 Matrix Reasoning 0.500 0.233 0.018 0.048 0.920 

 Picture Concept 0.385 0.179 0.000 0.083 0.756 

 Digit Span 0.022 0.080 0.351 -0.114 0.215 

 Letter Number Sequencing 0.001 0.078 0.490 -0.155 0.173 

 Arithmetic 0.115 0.258 0.260 -0.319 0.519 

 Coding 0.001 0.076 0.491 -0.154 0.161 

 Symbol Search -0.007 0.077 0.446 -0.169 0.148 

 Cancellation 0.015 0.075 0.392 -0.124 0.184 

Gsm       

 Similarities 0.018 0.080 0.410 -0.135 0.178 

 Vocabulary 0.059 0.080 0.222 -0.097 0.221 

 Comprehension 0.049 0.081 0.263 -0.106 0.215 

 Information 0.004 0.079 0.482 -0.149 0.163 

 Word Reasoning 0.011 0.077 0.443 -0.143 0.163 



 

 Block Design 0.037 0.098 0.347 -0.164 0.221 

 Picture Completion -0.098 0.091 0.124 -0.290 0.069 

 Matrix Reasoning 0.023 0.099 0.404 -0.182 0.212 

 Picture Concept 0.096 0.092 0.146 -0.090 0.276 

 Digit Span 0.642 0.112 0.000 0.435 0.873 

 Letter Number Sequencing 0.749 0.123 0.000 0.528 1.011 

 Arithmetic 0.400 0.196 0.002 0.173 0.690 

 Coding 0.040 0.092 0.327 -0.133 0.231 

 Symbol Search 0.035 0.090 0.345 -0.141 0.215 

 Cancellation -0.131 0.085 0.053 -0.304 0.029 

Gs       

 Similarities 0.000 0.070 0.497 -0.138 0.139 

 Vocabulary 0.023 0.071 0.374 -0.116 0.162 

 Comprehension -0.007 0.072 0.456 -0.151 0.134 

 Information -0.003 0.071 0.485 -0.141 0.137 

 Word Reasoning -0.036 0.070 0.298 -0.178 0.099 

 Block Design 0.126 0.085 0.069 -0.041 0.291 

 Picture Completion 0.002 0.079 0.491 -0.157 0.153 

 Matrix Reasoning -0.028 0.080 0.356 -0.193 0.124 

 Picture Concept 0.041 0.075 0.292 -0.109 0.188 

 Digit Span 0.021 0.081 0.397 -0.137 0.181 

 Letter Number Sequencing -0.111 0.082 0.081 -0.278 0.045 

 Arithmetic 0.106 0.074 0.074 -0.037 0.254 

 Coding 0.630 0.089 0.000 0.456 0.809 

 Symbol Search 0.657 0.095 0.000 0.483 0.861 

 Cancellation 0.494 0.087 0.000 0.326 0.668 

G       

 Gc 0.725 0.138 0.000 0.352 0.915 

 Gv 0.694 0.177 0.003 0.248 0.937 

 Gf 0.880 0.241 0.014 0.285 0.996 

 Gsm 0.623 0.169 0.002 0.236 0.905 

 Gs 0.386 0.200 0.047 -0.072 0.706 

 



 

Table 3. Bayesian analysis using informative, small-variance priors for cross-loadings – 

CHC final model 

  
Estimate 

Posterior 

S.D 

One-Tailed P-

Value 

95% C.I. 

  
Lower 

2.5% 

Upper 

2.5% 

Gc       

 Similarities 0.624 0.085 0.000 0.455 0.783 

 Vocabulary 0.797 0.081 0.000 0.647 0.969 

 Comprehension 0.719 0.086 0.000 0.564 0.903 

 Information 0.750 0.088 0.000 0.589 0.934 

 Word Reasoning 0.652 0.080 0.000 0.492 0.811 

 Block Design -0.066 0.098 0.246 -0.257 0.130 

 Picture Completion 0.108 0.097 0.132 -0.085 0.297 

 Matrix Reasoning 0.050 0.106 0.317 -0.167 0.251 

 Picture Concept 0.048 0.102 0.322 -0.161 0.239 

 Digit Span -0.032 0.090 0.355 -0.212 0.141 

 Letter Number Sequencing 0.018 0.096 0.423 -0.173 0.205 

 Arithmetic 0.153 0.084 0.034 -0.011 0.320 

 Coding -0.078 0.087 0.181 -0.250 0.092 

 Symbol Search 0.004 0.088 0.484 -0.171 0.179 

 Cancellation 0.051 0.083 0.263 -0.111 0.214 

Gv       

 Similarities 0.125 0.090 0.072 -0.041 0.315 

 Vocabulary -0.061 0.089 0.239 -0.236 0.116 

 Comprehension -0.114 0.089 0.092 -0.296 0.056 

 Information 0.145 0.091 0.045 -0.023 0.338 

 Word Reasoning 0.041 0.088 0.313 -0.132 0.215 

 Block Design 0.670 0.131 0.000 0.432 0.943 

 Picture Completion 0.522 0.135 0.000 0.278 0.806 

 Matrix Reasoning 0.150 0.112 0.090 -0.079 0.366 

 Picture Concept -0.062 0.102 0.260 -0.281 0.125 

 Digit Span -0.090 0.099 0.171 -0.290 0.100 

 Letter Number Sequencing 0.027 0.103 0.392 -0.174 0.236 

 Arithmetic 0.023 0.090 0.393 -0.148 0.207 

 Coding -0.006 0.102 0.476 -0.203 0.200 

 Symbol Search 0.108 0.103 0.134 -0.088 0.317 

 Cancellation 0.017 0.096 0.428 -0.166 0.214 

Gf       

 Similarities 0.071 0.088 0.176 -0.072 0.270 

 Vocabulary 0.022 0.082 0.377 -0.134 0.199 

 Comprehension -0.011 0.083 0.436 -0.185 0.151 

 Information -0.046 0.086 0.266 -0.241 0.104 

 Word Reasoning 0.054 0.088 0.236 -0.092 0.257 

 Block Design 0.002 0.095 0.489 -0.209 0.177 

 Picture Completion 0.027 0.089 0.364 -0.137 0.223 

 Matrix Reasoning 0.469 0.204 0.004 0.103 0.895 

 Picture Concept 0.476 0.166 0.000 0.176 0.810 

 Digit Span 0.031 0.089 0.341 -0.131 0.230 

 Letter Number Sequencing 0.001 0.089 0.496 -0.176 0.189 

 Arithmetic 0.020 0.085 0.392 -0.145 0.199 

 Coding 0.002 0.086 0.490 -0.172 0.180 

 Symbol Search -0.016 0.086 0.416 -0.190 0.160 

 Cancellation 0.027 0.085 0.356 -0.135 0.207 

Gsm       

 Similarities 0.017 0.081 0.414 -0.139 0.180 

 Vocabulary 0.060 0.081 0.222 -0.098 0.225 

 Comprehension 0.053 0.082 0.248 -0.103 0.221 

 Information 0.012 0.081 0.438 -0.143 0.175 

 Word Reasoning 0.010 0.079 0.449 -0.147 0.165 



 

 Block Design 0.039 0.099 0.343 -0.164 0.225 

 Picture Completion -0.098 0.091 0.125 -0.292 0.069 

 Matrix Reasoning 0.032 0.098 0.373 -0.174 0.216 

 Picture Concept 0.080 0.094 0.197 -0.114 0.259 

 Digit Span 0.646 0.111 0.000 0.444 0.877 

 Letter Number Sequencing 0.748 0.123 0.000 0.530 1.016 

 Arithmetic 0.440 0.100 0.000 0.251 0.642 

 Coding 0.042 0.093 0.323 -0.134 0.235 

 Symbol Search 0.039 0.091 0.332 -0.140 0.221 

 Cancellation -0.134 0.086 0.053 -0.309 0.030 

Gs       

 Similarities -0.001 0.071 0.492 -0.138 0.139 

 Vocabulary 0.023 0.071 0.371 -0.115 0.164 

 Comprehension -0.006 0.072 0.464 -0.149 0.136 

 Information -0.001 0.071 0.496 -0.138 0.141 

 Word Reasoning -0.036 0.070 0.300 -0.178 0.099 

 Block Design 0.125 0.086 0.072 -0.045 0.291 

 Picture Completion 0.002 0.079 0.489 -0.156 0.153 

 Matrix Reasoning -0.024 0.079 0.376 -0.185 0.127 

 Picture Concept 0.035 0.077 0.322 -0.118 0.184 

 Digit Span 0.017 0.081 0.414 -0.141 0.177 

 Letter Number Sequencing -0.113 0.082 0.075 -0.280 0.042 

 Arithmetic 0.114 0.074 0.058 -0.028 0.261 

 Coding 0.629 0.090 0.000 0.455 0.809 

 Symbol Search 0.657 0.096 0.000 0.482 0.864 

 Cancellation 0.494 0.087 0.000 0.326 0.669 

G       

 Gc 0.720 0.154 0.000 0.247 0.911 

 Gv 0.686 0.182 0.004 0.225 0.931 

 Gf 0.860 0.173 0.003 0.350 0.994 

 Gsm 0.643 0.157 0.001 0.274 0.891 

 Gs 0.385 0.204 0.050 -0.080 0.711 

 



 

Figure captions 

Figure 1. Informative normal prior for cross-loadings parameters. 

Figure 2. Four factor higher-order model for the French WISC-IV (models 3 & 4) 

Figure 3. CHC-based final model for the French WISC-IV (models 7 & 8) 
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