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In this work, we address the recent experiments [C. Altimiras et al., Nat. Phys. 6, 34 (2010); H. le Sueur
et al., Phys. Rev. Lett. 105, 056803 (2010); C. Altimiras et al., Phys. Rev. Lett. 105, 226804 (2010)], where
an electron distribution function at the quantum Hall (QH) edge at filling factor ν = 2 has been measured with
high precision. It has been reported that the energy of electrons injected into one of the two chiral edge channels
with the help of a quantum point contact (QPC) is equally distributed between them, in agreement with earlier
predictions, one being based on the Fermi gas approach [A. M. Lunde et al., Phys. Rev. B 81, 041311(R) (2010)]
and the other utilizing the Luttinger-liquid theory [P. Degiovanni et al., Phys. Rev. B 81, 121302(R) (2010)]. We
argue that the physics of the energy relaxation process at the QH edge may in fact be more rich, providing the
possibility for discriminating between two physical pictures in experiment. Namely, using the recently proposed
nonequilibrium bosonization technique [I. P. Levkivskyi et al., Phys. Rev. Lett. 103, 036801 (2009)], we evaluate
the electron distribution function and find that the initial “double-step” distribution created at a QPC evolves
through several intermediate asymptotics before reaching eventual equilibrium state. At short distances, the
distribution function is found to be asymmetric due to non-Gaussian current noise effects. At larger distances,
where noise becomes Gaussian, the distribution function acquires symmetric Lorentzian shape. Importantly, in
the regime of low QPC transparencies T , the width of the Lorentzian scales linearly with T , in contrast to the case
of equilibrium Fermi distribution, the width of which scales as

√
T . Therefore, we propose to do measurements

at low QPC transparencies. We suggest that the missing energy paradox may be explained by the nonlinearities
in the spectrum of edge states.

DOI: 10.1103/PhysRevB.85.075309 PACS number(s): 73.23.−b, 03.65.Yz, 85.35.Ds

I. INTRODUCTION

A two-dimensional electron gas (2DEG) in strong perpen-
dicular magnetic field exhibits the regime of quantum Hall
(QH) effect.1 One of the peculiar phenomena specific to this
regime is the appearance of one-dimensional (1D) chiral edge
states, which are quantum analogs of skipping orbits. Recent
extensive experimental studies2–6 of these states have led to the
emergence of a new field in condensed matter physics dubbed
the electron optics. On the theoretical side, there are two main
points of view on the physics of QH edge states. One group
of theories7 suggests that at integer values of the Landau-level
filling factor, the edge excitations are free chiral fermions. The
second group of theories is based on the concept of the edge
magnetoplasmon picture.8 The fundamental edge excitations
in these theories are the charged and neutral collective boson
modes.

The domain where these two approaches meet each other
is the low-energy effective theory.9 In the framework of this
theory, both fermion and boson excitations are two forms of
the same entity. Namely, they can be equivalently rewritten in
terms of each other:

ψ(x,t) ∼ exp[iφ(x,t)],

where ψ(x,t) is the fermion field and φ(x,t) is the boson
field. However, this transformation is highly nonlinear, and
in the presence of strong Coulomb interaction, fermions are
not stable and decay into the boson modes, which are the
eigenstates of the edge Hamiltonian.

Results of tunneling spectroscopy experiments10 reason-
ably agree with the free-electron description of edge states
at integer filling factors. However, the first experiment on
Aharonov-Bohm (AB) oscillations of a current through the

electronic Mach-Zehnder (MZ) interferometer2 has shown that
the phase coherence of edge states is strongly suppressed at
energies, which are inversely proportional to the interferom-
eter’s size. Moreover, several subsequent experiments on MZ
interferometers at filling factor ν = 2 have shown puzzling
results on finite bias dephasing3–6 theoretically studied in
Refs. 11–15. Namely, the visibility of AB oscillations in these
experiments is found to have a lobe-type pattern as a function
of the applied voltage bias. Such results are difficult to explain
in terms of the fermion picture, while they all follow naturally
from the plasmon physics,13 where the Coulomb interaction
plays a crucial role. Thus, the boson picture of edge excitations
might be more appropriate.

In contrast to the above-mentioned nonlocal experiments,
some local measurements seem to be not able to differentiate
between two physical pictures of edge states. For example,
both theories predict Ohmic behavior of the tunneling current,
unless it is renormalized by a nonlinear dispersion of plasmons.
Moreover, the equilibrium distribution of the bosons is equiv-
alent to that of fermions (see the demonstration of this fact
in Sec. IV C). Therefore, it might be interesting to investigate
nonequilibrium local properties of edge states.

Nonequilibrium behavior of 1D systems has been a subject
of intensive theoretical16 and experimental17 studies for a
long time. However, only recently has it become possible to
measure an electron distribution at quantum Hall edge f (ε) as
a function of energy ε with high precision.18 The main idea of
the experimental technique is to restore the function f (ε) by
measuring the differential conductanceG of tunneling between
two edges through a single level in a quantum dot:

G(ε) ∝ ∂f (ε)/∂ε, (1)
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FIG. 1. (Color online) Schematics of the experiments (Refs. 18
and 19). The shaded region is filled by the 2D electron gas in the
regime of the quantum Hall effect. At filling factor ν = 2, there are
two chiral edge states shown by the blue (the outer channel) and
the black (the inner channel) lines. The QPC of the transparency T

and biased with the voltage difference �μ injects electrons into the
outer channel, and thus creates a nonequilibrium electron distribution.
After the propagation along the QH edge, the distribution is detected
at distances L from the source with the help of a quantum dot with a
single level controlled by the gate voltage Vg .

where ε is the energy of the quantum-dot level, controlled
by the gate voltage Vg . This technique has been used in
experiments19 in order to investigate the energy relaxation at
QH edge states at filling factor ν = 2. The schematics of these
experiments is shown in Fig. 1. The main result is that the
electron distribution relaxes toward local equilibrium Fermi
distribution, and the energy splits equally between the two
edge channels.

The first theoretical models, based on the fermion picture20

and on the plasmon approach,21 have come qualitatively to
identical conclusions. Namely, both works predict equal distri-
bution of the energy between the edge channels, in agreement
with the experimental findings. In other words, based on the
results of Refs. 20 and 21 alone, the experimentalists are not
able19 to discriminate between two alternative descriptions of
the physics of QH edge. Thus, it seems to be important and
timely to reanalyze the problem of the energy relaxation at the
QH edge in order to make new, model-specific and distinct
predictions that can be verified experimentally. This is exactly
the purpose of this work.

Here, we show that the Coulomb interaction strongly affects
the spectrum of collective edge excitations and leads to the
formation of charged and dipole plasmons modes, which prop-
agate with different velocities.22 They carry away the energy
of electrons injected through the QPC and equally distribute
it between edge channels at distances Lex from the QPC. In
addition to this observation, which agrees with findings of
previous works,20,21 we stress that the same process splits the
wave packets of injected electrons and leads to strong coupling
of electrons to the noise of the QPC current. The regime of
weak injection, i.e., when the transparency of the QPC is
small T � 1, deserves a special consideration. In this regime,
the current noise at relevant time scales becomes Markovian
and, as a result, the function −∂f (ε)/∂ε acquires a Lorentzian
shape. (This effect resembles a well-known phenomenon of the

homogeneous level broadening.) Interestingly, the width of the
Lorentzian scales as T �μ at small T , where �μ is the voltage
bias applied to a QPC. In contrast, the width of the eventual
equilibrium Fermi distribution of thermalized electrons scales
as

√
T �μ. If thermalization takes place at longer distances

Leq � Lex, then the intermediate regime described here may
be observed in experiment with a weak injection. This would
indicate that interactions strongly affect the physics at the edge
and that the fermion picture becomes inappropriate.

In order to theoretically describe the experiments19 and
to quantitatively elaborate the physical picture, we use the
nonequilibrium bosonization technique, which has been intro-
duced in our previous work.23 The main idea of this approach
is based on the fact that in a 1D chiral system, one can find a
nonequilibrium density matrix by solving equations of motion
for plasmons with nontrivial boundary conditions. Then, one
can rewrite an average over the nonequilibrium state of an
interacting system in terms of the full counting statistics (FCS)
generators24 of the current at the boundary. In the situation
considered in this paper, because of chirality of QH edge states,
interactions do not affect the transport through the QPC alone.
This leads to a great simplification because, in the Markovian
limit, the FCS generator for free electrons is known.24

The structure of the paper is following: In Sec. II, we
describe the nonequilibrium bosonization technique in some
details. Next, we use this technique in Sec. III in order to
find the electron correlation function for different distances
from the QPC. Finally, we use these results to find the electron
distribution function in Sec. IV, and present our conclusions in
Sec. VI. Several important technical steps and the phenomena
resulting from the nonlinearity of the spectrum of plasmons
are described in Sec. V and the Appendices.

II. NONEQUILIBRIUM BOSONIZATION

We note that the relevant energy scales (voltage bias,
temperature, etc.) in recent mesoscopic experiments with the
QH edge states3–6,18 are much smaller than the Fermi energy.
Therefore, it is appropriate to use the low-energy effective
theory9 of the QH edge. One of the advantages of this theory
is that it allows us to take into account strong Coulomb
interactions in a straightforward way.13 However, an additional
complication arises from the fact that in experiments,18,19 the
injection into one of the two edge channels creates a strongly
nonequilibrium state. We, therefore, start by recalling in this
section the method of nonequilibrium bosonization, proposed
earlier in Ref. 23, which is suitable for solving the type of a
problem that we face. Throughout the paper, we set e = h̄ = 1.

A. Fields and Hamiltonian

According to the effective theory of QH edge,9 the
collective fluctuations of the charge densities ρα(x) of the two
edge channels, α = 1,2, at filling factor ν = 2 are the only
relevant degrees of freedom at low energies. These charge
densities may be expressed in terms of the chiral boson fields
φα(x),

ρα(x) = (1/2π )∂xφα(x), (2)
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which satisfy the following commutation relations:

[φα(x),φβ(y)] = iπδαβ sgn(x − y). (3)

The vertex operator

ψα(x) = 1√
a

eiφα (x) (4)

annihilates an electron at point x in the edge channel α. The
constant a in the prefactor is the ultraviolet cutoff, which
is not universal and will be omitted and replaced by other
normalizations. One can easily check, with the help of the
commutation relations (3), that the operators (4) indeed create
a local charge of the value 1 at point x, and satisfy fermionic
commutation relations.

Close to the Fermi level, the spectrum of electrons may be
linearized; therefore, the free-fermion part H0 of the total QH
edge Hamiltonian H = H0 + Hint takes the following form:

H0 = −ivF

∑
α

∫
dx ψ†

α∂xψα, (5)

where the bare Fermi velocity vF is assumed to be the same
for electrons at both edge channels. The second contribution to
the edge Hamiltonian describes the density-density Coulomb
interaction

Hint = (1/2)
∑
α,β

∫∫
dx dy Uαβ(x − y)ρα(x)ρβ(y), (6)

which is assumed to be screened at distances d smaller than
the characteristic length scale L in experiments,3–6,18,19 i.e.,
L � d. Therefore, we may write

Uαβ(x − y) = Uαβδ(x − y). (7)

Screening may occur due to the presence of either a back
gate or several top gates. We show in the following that
the assumption (7) results in the linear spectrum of charge
excitations. This approximation seems to be reasonable,
agrees well with some experimental observations such as
an Ohmic behavior of the QPC conductance at low voltage
bias, and eventually does not strongly affect our main results.
Nevertheless, we relax this assumption and investigate the
effects of weak and strong nonlinearities in the spectrum of
charge excitations.

After taking into account the relations (2) and (4) and
applying the point-splitting procedure, we arrive at the edge
Hamiltonian of the quadratic form in boson fields

H = 1

8π2

∑
α,β

Vαβ

∫
dx ∂xφα(x)∂xφβ(x), (8)

which nevertheless contains free-fermion contribution as well
as the Coulomb interaction potential

Vαβ = 2πvF δαβ + Uαβ. (9)

Equations (3), (4), (8), and (9) complete the description of the
QH edge at low energies.

The experimentally found18,19 electron distribution function
at the outmost QH edge channel is given by the expression

f (ε) =
∫

dt e−iεt 〈ψ†
1(L,t)ψ1(L,0)〉. (10)

By rewriting this expression via the boson fields, we finally
obtain

f (ε) =
∫

dt e−iεtK(t), (11a)

K(t) = 〈e−iφ1(L,t)eiφ1(L,0)〉. (11b)

where we have introduced the electron correlation function K ,
evaluated at coincident points at distance L from the QPC. The
proportionality coefficient in Eq. (11b) may be corrected later
from the condition that f (ε) takes a value 1 for energies well
below the Fermi level (see, however, the discussion in Sec. V
for further details). In equilibrium, in order to evaluate the
correlation function on the right-hand side of this equation, one
may now follow a standard procedure25 of imposing periodic
boundary conditions on the boson fields and diagonalizing
the Hamiltonian (8). In our case, however, the average in
(11) has to be taken over a nonequilibrium state created by
a QPC. Attempting to express such a state entirely in terms of
bosonic degrees of freedom is a complicated, and not a best,
way to proceed. We circumvent this difficulty by applying a
nonequilibrium bosonization technique proposed in our earlier
work.23 This technique is outlined in the following in some
detail.

B. Equations of motion, boundary conditions, and FCS

The Hamiltonian (8), together with the commutation
relations (3), generates equations of motion for the fields φα ,
which have to be complemented with boundary conditions26

∂tφα(x,t) = − 1

2π

∑
β

Vαβ∂xφβ(x,t), (12a)

∂tφα(0,t) = −2πjα(t). (12b)

The last equation follows from the charge continuity
condition ∂tρα + ∂xjα = 0 and the definition (2). Thus, the
operator jα(t) describes a current through the boundary x = 0
in the channel α. For convenience, we place a QPC in the outer
channel α = 1 right before the boundary, so that the operator
j1(t) describes an outgoing QPC’s current.

The key idea of the nonequilibrium bosonization approach
is to replace the average in Eq. (11) by the average over
temporal fluctuations of currents jα , the statistics of which is
assumed to be known. Indeed, although in general the fields φα

influence fluctuations of the currents jα , leading to such effects
as the dynamical Coulomb blockade27 and cascade corrections
to noise,28 in the case of chiral fields describing QH edge states,
no back-action effects arise.11,13 As a consequence, at integer
filling factors, the electron transport through a single QPC is
not affected by interactions, which seems to be an experimental
fact.6,18 Therefore, by solving Eqs. (12), one may express the
correlation functions of the fields φα in terms of the generator
of FCS (Ref. 24):

χα(λ,t) = 〈eiλQα (t)e−iλQα (0)〉. (13)

Here, averaging is taken over free electrons, and the operators

Qα(t) =
∫ t

−∞
dt ′jα(t ′) (14)
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may be viewed as a total charge in the channel α to the right
of the boundary at x = 0.

To prove the connection of the electron correlations in
(11) to the generating functions (13), we come back to the
discussion of the interaction effects, which are in fact encoded
in a solution of the equations of motion (12a). The long-range
character of the Coulomb interaction leads to the logarithmic
dispersion in the spectrum of collective charge excitations,
the physical consequences of which are discussed in Secs. IV
and V. For a moment, to simplify equations (12a), we have
assumed screening of the Coulomb potential at distances d

shorter than the characteristic length scale vF /�μ, which is of
the order of few microns in recent experiments. Nevertheless,
it is very natural to assume that the screening length d is much
larger than the distance a between edge channels d � a, which
does not exceed a few hundred nanometers. Therefore, one can
write

Uαβ = πu, u/vF ∼ ln(d/a) � 1, (15)

i.e., the in-channel interaction strength is approximately equal
to the intrachannel. As a result, the spectrum of collective
charge excitations splits into two modes: a fast charged mode
φ̃1 with the speed u and a slow dipole mode φ̃2 with the speed
v � vF .

It is important to stress that the condition d � a, leading to
(15), results in a sort of universality: the solution of equations
of motion (12a) in terms of the charged and dipole mode

φ1(x,t) = 1√
2

[φ̃1(x − ut) + φ̃2(x − vt)], (16a)

φ2(x,t) = 1√
2

[φ̃1(x − ut) − φ̃2(x − vt)] (16b)

is only weakly sensitive to perturbations of our model, in
particular to those that account for different bare Fermi
velocities of edge channels and slightly different interaction
strengths.

By applying now boundary conditions (12b) to the result
(16), we finally solve equations of motion in terms of the
boundary currents:

φ1(x,t) = −π

∫ tu

−∞
dt ′[j1(t ′) + j2(t ′)]

−π

∫ tv

−∞
dt ′[j1(t ′) − j2(t ′)], (17a)

φ2(x,t) = −π

∫ tu

−∞
dt ′[j1(t ′) + j2(t ′)]

+π

∫ tv

−∞
dt ′[j1(t ′) − j2(t ′)], (17b)

where we have introduced notations

tu = t − x/u, tv = t − x/v. (18)

Finally, using the definition (14), we arrive at the solution in
the compact form

φ1(x,t) = −π [Q1(tu) + Q2(tu) + Q1(tv) − Q2(tv)], (19)

and to a similar expression for the inner channel. The physical
meaning of this result is rather simple: when charges are
injected into the channel α = 1 and 2, they excite charged

FIG. 2. (Color online) Schematic illustration of the Coulomb
interaction effect at the QH edge at filling factor ν = 2. The electron
wave packet of the charge e created in the outer edge channel (black,
lower line) decays into two eigenmodes of the Hamiltonian (8), the
charged and dipole mode, which propagate with different speeds and
carry the charge e/2 in the outer channel. As a result, the wave packets
do not overlap at distances larger than their width, and contribute
independently to the electron correlation function with the coupling
constant λ = π (Ref. 29). A similar situation arises when an electron
is injected in the inner channel (blue, upper line), however, in this
case the charged and dipole states carry opposite charges at the
outer channel. Thus, there are four independent contributions to the
correlation function in the outer edge channel.

and dipole modes (note the minus sign in the fourth term on
the right-hand side), which have different propagation speeds
u and v. As a result, these charges arrive at the observation
point x with different time delays x/u and x/v, and make a
contribution to the field φ1 at different times (18).

When substituting this result into the correlation function
in Eq. (11b), one may use the statistical independence of
the current fluctuations at different channels and split the
exponential functions accordingly:

K(t) = 〈
eiπ[Q1(tu)+Q1(tv )]e−iπ[Q1(tu−t)+Q1(tv−t)]

〉
× 〈

eiπ[Q2(tu)−Q2(tv )]e−iπ[Q2(tu−t)−Q2(tv−t)]〉. (20)

In the rest of the paper, we will be interested in the correlation
function at relatively long distances L � vτc, where τc �
1/�μ is the correlation time of fluctuations of the current
through a QPC. (We show below that at this length scale,
the energy exchange between two channels takes place.) In
this case, the partitioned charges Qα , taken at different times
tu and tv , are approximately not correlated, as illustrated in
Fig. 2. This assumption is quite intuitive and may be easily
checked using Gaussian approximation. We, finally, arrive at
the following important result:

K(t) = χ2
1 (π,t)χ2(−π,t)χ2(π,t), (21)

i.e., the electronic correlation function (20) may indeed be
expressed in terms of the FCS generator (13).

III. ELECTRON CORRELATION FUNCTION

The expression (21) presents formally a full solution of
the problem of evaluation of an electron correlation function.
Generators of the FCS for free electrons in this expression, de-
fined as (13), may be represented as a determinant of a single-
particle operator,24 and eventually evaluated, e.g., numerically.
However, a further analytical progress is possible in a number
of situations, which are important for understanding physics
of the energy relaxation processes. In particular, we show in
this section that for the case of equilibrium fluctuations of
the boundary currents, the correlation function (21) as well as
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the electron distribution function (11) acquire an equilibrium
free-fermionic form. The electron correlation function may
also be found analytically away from equilibrium for the
case of a Gaussian noise. Interestingly, in the short-time limit
t � 1/�μ, the main contribution to the correlation function
comes from zero-point fluctuations of boundary currents, and it
behaves as a free-fermion correlator, i.e., it scales as 1/t . In the
long-time limit t � 1/�μ, the nonequilibrium zero-frequency
noise dominates, and the electron correlation function decays
exponentially with time. This is exactly the limit where a
non-Gaussian Markovian noise should also be taken into
account.

A. Gaussian noise

In the context of the noise detection physics,24,30 the
dimensionless counting variable λ in the expression (21) for
the FCS generator plays the role of a coupling constant.
Typically, it is small, λ � 1, so that the contributions of
high-order cumulants of current noise to the detector signal
are negligible.30 In contrast, in the physical situation that
we consider in this paper, λ = ±π , implying that the shape
of the distribution function may be strongly affected by
high-order current cumulants. Nevertheless, it is instructive
to first consider Gaussian fluctuations, simply truncating
the cumulant expansion at second order in λ. In this case,
the correlation function (20) may be evaluated exactly. There
are many reasons for starting the analysis from considering
an example of a Gaussian noise: First of all, in equilibrium,
the current fluctuations in a chiral 1D system are always
Gaussian. Second, as we show in Appendix C, the dispersion
of the charged and dipole modes leads to a suppression
of higher-order cumulants at large distances L. Finally, on
the Gaussian level, it is easier to investigate and compare
contributions of zero-point fluctuations and of nonequilibrium
noise to the electron correlation function.

Thus, by expanding the logarithm of the right-hand side of
Eq. (13) to second order in λ and accounting for Eq. (14), we
obtain

ln[χα(λ,t)] = iλ〈jα〉t − λ2Jα(t). (22)

Here, the Gaussian contribution of current fluctuations
δjα(t) ≡ jα(t) − 〈jα〉 is given by the following integral:

Jα(t) = 1

2π

∫
dω Sα(ω)

ω2 + η2
(1 − e−iωt ), η → 0 (23)

where the nonsymmetrized noise power spectrum is defined
as

Sα(ω) =
∫

dt eiωt 〈δjα(t)δjα(0)〉. (24)

In what follows, we apply this result for the evaluation of
the electron correlation function in the case of equilibrium
boundary conditions and in the case of a Gaussian noise far
away from equilibrium.

1. Equilibrium boundary conditions

One may propose the following simple test of the nonequi-
librium bosonization method: Let us consider an infinite QH
edge. In equilibrium, the charge densities and edge currents

exhibit thermal fluctuations. This is the case, in particular, for
the currents jα through the cross section x = 0, which are
considered to be boundary conditions for the field φα in our
theory. Therefore, one may evaluate the electron correlation
function using these boundary conditions and compare it
with the result of the standard equilibrium bosonization
technique,25 applied to a chiral 1D system.13

In equilibrium, 〈jα〉 = 0. The current noise power spectrum
is given by the fluctuation-dissipation relation31

Sα(ω) ≡
∫

dt eiωt 〈jα(t)jα(0)〉 = 1

2π

ω

1 − e−βω
. (25)

By substituting this expression into Eq. (23), one obtains

ln[χα(λ,t)] = − λ2

4π2

∫
dω

ω

1 − e−iωt

1 − e−βω
. (26)

This integral may be evaluated by expanding the integrand
in Boltzmann factors e±βω and integrating each term. By
substituting the result (for λ = π ) into Eq. (21), we arrive at
the following expression for the electron correlation function
in the case of equilibrium boundary conditions:

K(t) ∝ β−1

sinh(πt/β)
, (27)

which is, in fact, the equilibrium fermionic correlation func-
tion. The straightforward calculations of the integral (11a)
give, naturally, the equilibrium distribution function f1(ε) =
1/(1 + eβε) ≡ fF (ε), where we have fixed the normalization
constant, as explained above. Thus, for chiral, interacting
quasi-1D systems with linear spectrum equilibrium bosons
also implies equilibrium distribution of fermions.

It is instructive to compare this result with the known
expression for the electron correlation function at ν = 2, found
earlier in Ref. 13 with the help of the standard bosonization
technique

K(t) = β−1

[
sinh

(
x − y − vt

vβ/π

)
sinh

(
x − y − ut

uβ/π

)]−1/2

.

(28)

For x = y, details of the interaction leading to wave-packet
splitting (see Fig. 2) vanish, and one obtains the expression
(27), thus validating our approach. Moreover, the free-
fermionic character of the correlation function at coincident
points (27) justifies the assumption underlying the nonequi-
librium bosonization procedure that the FCS generators (13)
may be taken as for free electrons.

2. Gaussian noise away from equilibrium

For a QPC far away from equilibrium, β�μ � 1, one
may simply set the temperature to zero. Straightforward
calculations based on the scattering theory32 give the following
result for the spectral density of noise (24) of a QPC:

Sα(ω) = Sq(ω) + RαTαSn(ω), (29)

where Tα = 1 − Rα is the transparency of a QPC (i.e., the
average occupation in the channel α), Sq(ω) = (1/2π )ωθ (ω)
is the quantum, ground-state spectral function, and Sn(ω) =∑

± Sq(ω ± �μ) − 2Sq(ω), is the nonequilibrium contribu-
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FIG. 3. (Color online) Two contributions to the spectral density
of noise (29). Left panel: Quantum contribution Sq(ω) generated by
the incoming Fermi sea. This contribution vanishes at low frequencies
Sq(0) = 0, but dominates the behavior of the correlator (23) at short
times t�μ � 1. Right panel: Nonequilibrium contribution Sn(ω)
dominates at long times t�μ � 1, i.e., in the Markovian limit.

tion (see Fig. 3). Note that the noise power (29) differs from
that for a nonchiral case.30

Evaluating the integral (23), we arrive at the following
expression:

Jα(t) = (1/4π2)[ln t + 2RαTαf (�μt)], (30)

where the logarithm of time originates from the quantum
contribution Sq, and the dimensionless function f (�μt),
describing nonequilibrium noise, is given by the integral

f (�μt) =
∫ 1

0
ds

1 − s

s2
[1 − cos(�μts)]. (31)

This function has a quadratic behavior f (�μt) � (�μt)2/4
at short times �μt � 1, while in the long-time (Markovian)
limit �μt � 1, the dominant contribution to this function is
linear in time: f (�μt) � (π/2)|�μt |.

For the purpose of further analysis, we need the electron
correlation function in the long-time limit. Taking into account
that 〈jα〉 = �μTα/2π , we find the cumulant generating
function

ln[χα] = iλ

2π
�μTαt

−
(

λ

2π

)2

(ln t − πRαTα|�μt |), �μt � 1. (32)

Finally, substituting this result into Eq. (21), and setting T1 =
T and T2 = 1 according to the situation shown in Fig. 1, we
obtain the electron correlation function in the long-time limit:

K(t) ∝ t−1ei�μT t−πRT �μ|t |/2, �μt � 1. (33)

Note that the expression (33) contains the quantum contribu-
tion in the form of a single pole, as for free fermions, as well as
the nonequilibrium contribution in the form of an exponential
envelope, the width of which is determined by the noise power
at zero frequency S1(0) = RT �μ/2π . The phase shift of
the correlator is determined by the “average” voltage bias
〈�μ〉 = �μT of the incoming stream of electrons, diluted by
the QPC. In the next section, we show that this mean-field-like
effect of the dilution is strongly modified by a non-Gaussian
component of noise.

B. Non-Gaussian Markovian noise

Here, we consider non-Gaussian noise and show that
the contribution of high-order cumulants of current to the

correlation function is not small. Note that the quantum
ground-state part of the current noise Sq, which dominates
at short times, is pure Gaussian. Therefore, the denominator
in the expression (33) remains unchanged. In the long-time,
Markovian limit, the dominant contribution to the FCS gener-
ator comes from the nonequilibrium part of noise, which, e.g.,
is described by Sn in Gaussian case. For a QPC, the Markovian
FCS generator is given by the well-known expression24 for a
binomial process

χ1(λ,t) = (R + T eiλ)N, (34)

where N = �μt/2π is the total number of electrons that
contribute to noise. By applying the analytical continuation
λ → π , we obtain

ln[χ1(π,t)] = �μt

2π
[ln |T − R| + iπθ (T − R)]. (35)

By substituting this expression to the correlation function (21),
we arrive at the result

K(t) ∝ t−1eiθ(T −R)�μt+ln |T −R|�μ|t |/π , (36)

where the imaginary part of the exponent determines the
effective voltage bias, while the real part is responsible for
dephasing.

Interestingly, at the point T = 1/2, the dephasing rate
is divergent, and the effective voltage bias drops to zero
abruptly for T < 1/2. It has been predicted in Ref. 23 that
this behavior may lead to a phase transition in the visibility
of Aharonov-Bohm oscillations in electronic Mach-Zehnder
interferometers. We will argue in the following that no sharp
transition arises in the electron distribution function. However,
it leads to its strong asymmetry with respect to the average
voltage bias 〈�μ〉 = T �μ of the outer channel.

IV. ELECTRON DISTRIBUTION FUNCTION

In this section, we use the results (27), (33), and (36)
for the correlation function of electrons to evaluate and analyze
the electronic distribution function. We start by noting that
the experiments (Refs. 18 and 19) are done in a particular
regime of strong partitioning T ≈ 0.5 at the QPC injecting
current to the channel α = 1. This detail, which seems to be
irrelevant from the first glance, is in fact of crucial importance.
Indeed, as it follows from the expressions (33) and (36), the
main contribution to the integral (11a) for the correlation
function comes from times t of the order of the correlation
time τc � 1/�μ, where our results based on the Markovian
noise approximation are, strictly speaking, not valid. However,
the numerical calculations show that the nonequilibrium
distribution in this regime is very close to the equilibrium
one. Therefore, the actual equilibration of electrons, which is
reported in the experiment Ref. 18 to occur at distances v/�μ,
may in fact take place at even longer distances Leq � v/�μ

due to an unknown mechanism (not considered here).
Indeed, if the chiral Luttinger-liquid model considered

in our paper is valid, then neither the strong interaction
between electrons of two edges taken alone nor the weak
dispersion of plasmons resulting from a long-range character
of Coulomb interaction may lead to the equilibration because
the systems remain integrable. Thus, it seems to be reasonable
to assume that the equilibration length Leq may indeed be
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quite long. Therefore, in order to explore the physics of
collective charge excitations at intermediate distances, we pro-
pose to consider a regime of weak injection at the QPC: T � 1.
First, we note that in this case our results (33) and (36) may
indeed be used to evaluate the electron distribution function
because the main contribution to the integral (11a) arises from
Markovian time scales. Second, and more importantly, in this
regime the electron distribution function acquires a strongly
nonequilibrium form and the width of the order of T �μ, which
plays a role of the new energy scale. Moreover, the advantage
of the weak injection regime is that it allows us to investigate a
nontrivial evolution of the distribution function, which arises
due to bosonic, collective character of excitations and goes via
several well distinguishable steps.

A. Short distances

At distances of the order of the energy exchange length
scale

Lex ≡ v/�μ, (37)

the initial double-step distribution function is strongly per-
turbed by the interaction between channels. As we argued
in Sec. II B, at distances L � Lex, the charged and dipole
modes split and make independent contributions to the electron
correlation function. Therefore, we may rely on the result (36).
By applying the limit T � 1 to this expression and evaluating
the Fourier transform, we find

−∂f (ε)

∂ε
= �ng/π

ε2 + �2
ng

, �ng = 2T �μ/π. (38)

Here, the missing prefactor in the correlation function has
been fixed by the requirement that f (ε) = 1 at ε → −∞.
Thus, we conclude that the energy derivative of the distribution
function acquires a narrow Lorentzian peak, which is shifted
with respect to the average bias 〈�μ〉 = T �μ and centered at
ε = 0. The last effect is a unique signature of the non-Gaussian
character of noise. Because of the electron-hole symmetry
of the binomial process, in the limit R � 1 the Lorentzian
peak obviously has a width �ng = 2R�μ/π and centered at
ε = �μ.

We stress again that the result (38) holds only for small
enough energies close to the Fermi level, namely, for |ε| <

�μ, where the main contribution arises from the noise in the
Markovian limit. In fact, the result (38) fails at large energies
in a somewhat nontrivial way. Namely, it is easy to see that
any electron distribution function has to satisfy the sum rule

〈�μ〉 ≡ ε0 +
∫ ∞

ε0

dε f (ε) = −
∫ ∞

−∞
dε ε ∂f (ε)/∂ε, (39)

where ε0 is the cutoff well below the Fermi level, and the
“average” bias 〈�μ〉 = T �μ in the case of linear dispersion
of plasmons. This sum rule simply expresses the requirement
of the conservation of the charge current and implies a certain
amount of asymmetry in the distribution function. In the
present case, such an asymmetry arises in the power-law
tails of the function −∂f (ε)/∂ε and originates from quantum
nonequilibrium noise. It can be seen in Fig. 4.

Moreover, at energies of the order of �μ, the power-law
behavior of the function (38) has to have a cutoff because the

FIG. 4. (Color online) Energy derivative of the electron distri-
bution function −∂f/∂ε is shown for different distances L from the
QPC injecting current. The transparency of the QPC is set to T = 0.05
and voltage bias is �μ = 40 μV. Black line: −∂f (ε)/∂ε for short
distances Lex � L � Lg, so that the noise is non-Gaussian (38). Red,
dashed line: −∂f (ε)/∂ε for intermediate distances Lg � L � Leq,
where the noise is Gaussian (44). Blue, dotted line: The derivative
of the Fermi distribution function at the temperature given by Eq. (47).
The dashed line is a guide for the eyes at the energy equal to
the effective voltage bias 〈�μ〉 = T �μ = 2 μV . Inset: The same
distribution functions are shown in the integrated form. They are
shifted vertically by 0.2 intervals for clarity.

QPC does not provide energy much larger than the voltage
bias. Quantitatively, this follows from the conservation of the
energy. We demonstrate in the following that for the system
with linear dispersion of plasmons, the heat flux in the outer
channel can be written entirely in terms of the single-electron
distribution function (in units e = h̄ = 1)

Im = (1/2π )
∫

dε ε [f (ε) − θ (〈�μ〉 − ε)], (40)

as in the case of free electrons. We use the subscript “m” in
order to emphasize the fact that it is this quantity that has
been measured in the experiment (Ref. 19). In Sec. V, we
show that at distances L � Lex the total heat flux injected at
a QPC splits equally between two edge channels; therefore,
integrating Eq. (40) by parts and substituting the heat flux for
a double-step distribution, we obtain

Im = − (T �μ)2

4π
− 1

4π

∫
dε ε2 ∂f (ε)

∂ε
= T R(�μ)2

8π
(41)

for L � Lex. One can see from Eq. (38) that indeed the power-
law behavior has to have a cutoff at |ε| ∼ �μ. We stress,
however, that this summation rule is less universal than the one
given by Eq. (39) because it accounts only for a single-particle
energy of electrons and fails in the case of a nonlinear spectrum
of plasmons, considered in Sec. V in detail.

B. Intermediate distances

So far, we have considered the case of a linear spectrum of
plasmons. This is a reasonable assumption, taking into account
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the fact that nonlinear corrections in the spectrum of plasmons
lead to a nonlinear corrections in the Ohmic conductance of a
QPC. However, the experiments (Refs. 18 and 19) seem to be
done in the Ohmic regime. Nevertheless, even in the case of
a weak nonlinearity in the spectrum of the the both modes of
the sort33

kj (ω) = ω/vj + γjω
2sign(ω), v1 = u, v2 = v, (42)

barely seen in the conductance of a QPC, an intermediate
length scale Lg may arise at which high-order cumulants
of current are suppressed, and the noise becomes effectively
Gaussian. This situation occurs when the wave packets of the
original width v/(T �μ) overlap. A simple estimate using the
nonlinear correction (42) gives the length scale

Lg = 1/γ (T �μ)2, γ ≡ min(γj ). (43)

We support this conclusion by rigorous calculations in
Appendix C.

The nonlinearity in the spectrum is weak if γ vT �μ � 1.
This implies that Lg � Lex, and leads to the possibility
to observe non-Gaussian effects at distances Lex � L �
Lg discussed in the previous section. Obviously, the same
requirement also guarantees that dispersion corrections to
the Ohmic conductance of a QPC are small. This allows us
to neglect corrections to the quantum part of the electron
correlation function and to use the result (33) for a Gaussian
noise. By substituting this result to Eq. (11a), we obtain

−∂f (ε)

∂ε
= �ng/π

(ε − 〈�μ〉)2 + �2
g

, �g = πT �μ/2 (44)

in the case Lg � L � Leq. One can see that the width of the
function (44) is almost twice as large compared to that in the
function (38). Moreover, the function (44) satisfies the sum
rule (39). Therefore, we do not expect any asymmetry in the
high-energy tails of this function, in contrast to the situation
with the non-Gaussian noise. The comparison of distribution
functions in these two regimes is shown in Fig. 4.

So far, we have considered a situation where both charged
and dipole modes are dispersive. If for some reason the
dispersion of one of the modes is negligible, then higher-order
cumulants are suppressed only by a factor of 2. The derivative
of the electron distribution function in this situation is given
by the Lorentzian

∂f (ε)

∂ε
= (�ng + �g)/2π

(ε − 〈�μ〉/2)2 + (�ng + �g)2/4
(45)

centered at 〈�μ〉/2 = �μT/2 with the width (�ng + �g)/2 =
(1/π + π/4)�μT . This is because one mode brings only the
Gaussian component of the Markovian noise, while the other
one brings full non-Gaussian noise.

C. Long distances

Next, we consider the distribution function at long distances
L � Leq after the equilibration takes place. The temperature
of the eventual equilibrium distribution may be found from
the conservation of energy. In the next section, we show that
the heat flux produced at QPC splits equally between two edge

states. In the situation of linear dispersion, the distribution
function acquires the form

f (ε) = 1

1 + e(ε−〈�μ〉)/�eq
. (46)

The possibility of such an equilibration process is suggested
by the fact that the equilibrium distribution of bosons implies
the equilibrium distribution for electrons, as has been shown in
Sec. III A 1. Obviously, the distribution (46) satisfies the sum
rule (39), while the energy conservation condition (41) may
now be used in order to find the effective temperature:

�eq =
√

3T/2π2�μ, (47)

where we have used T � 1.
We conclude that the width of the equilibrium distribution

scales as
√

T , in contrast to the case of a nonequilibrium
distribution at shorter distances from the current source, where
it scales linear in T . Therefore, if T is small, equilibrium and
nonequilibrium distributions may easily be distinguished, as
illustrated in Fig. 4. In the situation where the dispersion can
not be neglected, the equilibrium distribution of fermions is
not given by the Fermi function (46). This situation deserves a
separate consideration, which is provided in the next section.

V. MEASURED AND TOTAL HEAT FLUXES

We have seen that in the case of weakly dispersive
plasmons γ vT �μ � 1, the nonlinearity in the spectrum
leads to the suppression of high-order cumulants of current
noise at relatively long distances, which strongly affects the
distribution function. On the other hand, the direct contribution
of the nonlinear correction in the spectrum to local physical
quantities, such as the QPC conductance and the heat flux,
is small and has been so far neglected. Nevertheless, it may
manifest itself experimentally in a quite remarkable way. In
this section, we show that the nonlinearity in the the plasmon
spectrum contributes differently to the measured heat flux (40)
and to the actual heat flux expected from the simple evaluation
of the Joule heat. As we demonstrate below, this may, under
certain circumstances, explain the missing energy paradox in
the experiment Ref. 19.

We start by noting that the measured flux (40) at the distance
L from the QPC may be expressed entirely in terms of the
excess noise spectrumSα(ω) ≡ Sα(ω) − (1/2π )ωθ (ω) of edge
channels right after the QPC, where Sα(ω) is defined in (24).
Namely, in Appendix B, we derive the following result:

Im(L) = 1

4

∫ ∞

−∞
dω{S1(ω)[1 + cos(�kL)]

+S2(ω)[1 − cos(�kL)]}, (48)

where �k ≡ k1(ω) − k2(ω) and kj (−ω) = −kj (ω). Impor-
tantly, this result holds for an arbitrary nonlinear spectrum
kj (ω) of the charged and dipole modes, and for a non-Gaussian
noise in general, i.e., high-order cumulants simply do not
contribute.

One can easily find two important limits of Eq. (48): for
L = 0, we immediately obtain an expected result

Im(0) = 1

2

∫ ∞

−∞
dω S1(ω), (49)
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while at L → ∞ the cosine in (48) acquires fast oscillations,
and we get

Im(∞) = 1

4

∫ ∞

−∞
dω[S1(ω) + S2(ω)]. (50)

To be more precise, this happens at L � Lex = v/�μ. At
zero temperature, S2 vanishes and the single-electron heat
flux Im, created at the QPC, splits equally between edge
channels: Im(∞) = Im(0)/2. Note also that in the case of linear
dispersion Sα = TαRαSn, where Sn is shown in Fig. 3.

In the next step, we rewrite the same measured flux in
terms of the plasmon distributions nj (k) = 〈ã†

j (k)ãj (k)〉 (see
Appendix B):

Im(∞) = 1

4π

∑
j

∫
dk

k
ω2

j (k)nj (k) + Iq, (51)

Iq = 1

8π

∑
j

∫
dk

k

[
ω2

j (k) − (vjk)2
]
, (52)

where vj = ∂ωj/∂k are the plasmon speeds at k = 0. The
term Iq is the contribution to the measured flux from quantum
smearing of the zero-temperature electron distribution function
f0(ε) close to the Fermi level, which originates from a
nonlinear dispersion of plasmons.

Here, an important remark is in order. The integral (52) may
diverge at large k and has to be cut off at the upper limit. This is
because there is no guarantee of the free-fermionic behavior of
the correlator K(t) at short times and of the zero-temperature
electron distribution function f0(ε) at large energies. Thus,
the integral (40) has to be also cut off, which is what in fact
is done in experiment. In contrast, the spectrum of plasmons
is linear at small k, and thus the distribution function f0(ε)
has a free-fermionic behavior close to the Fermi level. Our
definition of Iq corresponds to the normalization of f0(ε)
to have a discontinuity of the value −1 at ε = 〈�μ〉. The
experimentally measured Iq may differ from the one defined
in (52) by a constant, which is, on the other hand, independent
on the voltage bias �μ.

Next, we note that the actual total heat flux in the case of
a nonlinear dispersion of plasmons acquires the completely
different form34

Ih = 1

2π

∑
j

∫
dk

∂ωj

∂k
ωj (k) nj (k), (53)

and thus in general Im �= Ih/2, contrary to what has been
assumed in the experiment Ref. 19. This may explain the
missing energy paradox. Indeed, by assuming the low ω

spectrum of the general form

kj = ω/vj + γjω
�j , j = 1,2 (54)

where γj are small, and equilibration of plasmons at L → ∞,
i.e., nj (k) = nB(ωj/�eq) = 1/[exp(ωj/�eq) − 1], we obtain
the missing heat flux as

Im − Iq − Ih/2 =
∑
j=1,2

cjγjvj�
�j +1
eq , (55)

where the constants cj = (1/4π )
∫

dz z�j +1nB(z) are of the
order of 1. This result implies that experimentally, the missing

FIG. 5. (Color online) Typical spectrum of charged plasmon in
the case of the Coulomb interaction screened at distances d � 1/k.
This spectrum is concave, i.e., ∂ω/∂k < ω(k)/k.

heat flux may be found by investigating its bias dependence
and the spectrum of plasmons.

Let us consider an example where the dispersion of
charged plasmon at small k arises from the screened Coulomb
interaction8

ω/k = 2[K0(ka) − K0(kd)]

= 2 ln(d/a) − (1/2)(kd)2 ln(2/kd), (56)

where a is the high-energy cutoff, d is the distance to the gate,
such as ka � kd � 1, andK0 is the MacDonald function. The
low-k asymptotics of this spectrum is illustrated in Fig. 5. One
can see that the spectrum is concave, so that in this case the
measured heat flux (51) is larger than the half of the actual heat
flux (53). In addition, the effect is weak, because kd ∼ 0.1 in
the experiment Ref. 19. Thus, the dispersion of the Coulomb
interaction potential alone is not able to explain the missing
flux paradox. Various mechanisms of convex dispersion are
still possible and will be investigated elsewhere.

VI. CONCLUSIONS

Earlier theoretical works on quantum Hall edge states
at integer filling factors may be divided into two groups:
fermion-based and boson-based theories. Recent interference
experiments suggest that the boson approach might be more
appropriate for the description of the edge physics. However,
both groups of theories give the same predictions for the
local physical quantities at equilibrium. Moreover, the first
theoretical works based on fermion20 and boson21 approaches
and addressing the nonequilibrium local measurements have
not been able to make qualitatively distinct predictions. In
this paper, we show that it is nevertheless possible to test
and differentiate between two approaches with the local
nonequilibrium measurements.

We address recent experiments (Refs. 18 and 19) with
quantum Hall edge states at filling factor 2, where an energy
relaxation process has been investigated by creating a nonequi-
librium state at the edge with the help of a QPC and reading
out the electron distribution downstream using a quantum dot.
We use the nonequilibrium bosonization approach23 in order
to describe the gradual relaxation of initially nonequilibrium,
double-step electron distribution to its equilibrium form. In the
framework of this approach, the nonequilibrium initial state is
encoded in the boundary conditions for the equations of mo-
tions that depend on interactions. We show that the electrons
excite two plasmons: fast charged and slow dipole modes.
Thus, the electron correlation function (21) is expressed in
terms of the four contributions, each having the form of the
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FIG. 6. (Color online) Different length scales for energy relax-
ation processes and corresponding distribution functions in each
regime are schematically shown. Red curve: The initial double-step
distribution function. Black curve: At distances L � �μ/v, the dis-
tribution function is strongly asymmetric with respect to the “average”
bias 〈�μ〉 = T �μ. Green curve: At distances L � 1/γ (T �μ)2,
the distribution function is a Lorentzian with the width that scales
as T �μ. Blue curve: The final equilibrium Fermi function at large
distances. For small transparencies, its width scales as

√
T �μ.

generator of FCS of free electrons with the coupling constant
λ = π . By evaluating the Fourier transform of this function,
we find the electron distribution function.

Before reaching eventual equilibrium form, the distribution
function evolves via several steps, where its energy derivative
acquires a Lorentzian shape:

∂f (ε)

∂ε
= �/π

(ε − ε0)2 + �2
, |ε| � �μ. (57)

Here, the width � and centering ε0 take different values in
different regimes. Each of the regimes, summarized below
and illustrated in Fig. 6, has its own dominant process:

(i) First, after tunneling through the QPC, electrons excite
plasmons, which then split in two eigenmodes: one is charged
fast mode with the speed u, and the other is slow dipole
mode with the speed v. This process takes place at distances
Lex = v/�μ, where �μ is the voltage bias across the QPC.
In this regime, Eq. (21) applies, which eventually leads to
the the distribution (57) with the width � = �ng = 2�μT/π ,
centered at ε0 = 0.

(ii) Next, a weak dispersion of plasmons, e.g., of the form
k = ω/v + γω2sign(ω), leads to broadening of wave packets
of the energy width ε and to their overlap. This process
takes place at distances L � 1/γ ε2. As a result, high-order
cumulants of the current injected at the QPC are suppressed at
distances L � Lg = 1/γ (T �μ)2, the noise becomes Gaus-
sian, and the derivative of the electron distribution function
acquires the shape (57) with the width � = �g = π�μT/2,
centered at ε0 = �μT .

(iii) A situation is possible where the dispersion of one
mode, most likely of the charged mode, is much stronger
than the dispersion of the second mode, i.e., γ1 � γ2. In this
case, the previously described regime splits in two separate
regimes. First, at distances L = 1/γ1(T �μ)2, the contribution
of the charged mode to high-order cumulants of noise becomes
suppressed, which leads to the distribution (57) with the
parameters � = (�ng + �g)/2 and ε0 = �μT/2. Then, at
longer distances L = 1/γ2(T �μ)2, the noise becomes fully
Gaussian.

(iv) The interaction may lead to broadening of the wave
packets, but they do not decay, which implies that the
interaction alone does not lead to the equilibration. This means
that a different, weaker process may lead to the equilibration
at distances Leq much longer than the above-discussed length
scales. In the tunneling regime T � 1, the width of the
eventual equilibrium distribution scales as

√
T , in contrast

to the above regimes, where it scales as T . Thus, to observe
the described variety of regimes, we propose to perform
measurements at large voltage biases and low transparencies
of the QPC utilized to inject electrons.

Finally, we suggest a possible explanation of the paradox
of missing heat flux in the experiment Ref. 19. So far, we have
summarized the effects of weak dispersion, which lead to the
appearance of intermediate length scales. We have found that
in the case of a strongly nonlinear dispersion of plasmons,
the measured heat flux Im in the outmost edge channel,
experimentally determined with the procedure described by
Eq. (40), is different from the actual heat flux per channel
Ih/2, defined by Eq. (53). The screened Coulomb interaction
leads to a rather weak dispersion of the charged plasmon, and
the effect is of the opposite sign because the spectrum in this
case is concave. Nevertheless, other mechanisms of the convex
dispersion are possible. They will be considered elsewhere.
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APPENDIX A: SOLUTION OF EQUATIONS OF MOTION

In this Appendix, we solve the equations of motion (12a)
with the boundary conditions (12b) in the case of a potential
Uαβ(x − y) of a finite range, where the plasmon spectrum
is nonlinear. For doing this, we first write the normal mode
expansion for the edge boson fields as

φα(x) = ϕα + 2π · παx

+
∑

k

√
2π

kW
[aαke

ikx + a
†
αke

−ikx]. (A1)

We consider zero modes to be classical variable because the
commutator [πα,ϕα] = i/W vanishes in the thermodynamic
limit W → 0. Then, we rewrite the operators aαk in the new
basis ãjk , which diagonalizes the edge Hamiltonian (8):

ãjk(t) = ãjke
−iωj (k)t , (A2)

where j = 1,2 and ωj (k) is the dispersion of the j th mode. In
the case where the in-channel interaction strength is approxi-
mately equal to the intrachannel one, Uαβ(x − y) ≈ U (x − y),
and the interaction is strong, U (k) = ∫

dx eikxU (x) � 2πvF ,
the transformation to the new basis is simple and universal:

a1k(t) = 1√
2

(ã1ke
−iω1(k)t + ã2ke

−iω2(k)t ), (A3a)

a2k(t) = 1√
2

(ã1ke
−iω1(k)t − ã2ke

−iω2(k)t ). (A3b)
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Then, ω1(k) = k[vF + U (k)/π ] for the charged plasmon,
and ω2(k) = vk for the dipole mode, where v ≈ vF .

In the next step, we use the boundary conditions (12b) to
connect the current operators to the operators (A2):

ã1k = i

ω1

∂ω1

∂k

√
πk

W
[j1(ω1) + j2(ω1)], (A4a)

ã2k = i

ω2

∂ω2

∂k

√
πk

W
[j1(ω2) − j2(ω2)], (A4b)

where jα(ω) = ∫
dt eiωt jα(t), and we have used the obvious

relation jα(−ω) = j †
α(ω). Finally, substituting relations (A4)

into Eq. (A3a) and then to the expansion (A1), we find the
solution of the equations of motion for the boson fields. In
particular,

φ1(x,t) = −2π〈j1〉t + i

2

∫ ∞

−∞

dω

ω
{j1(ω)(eik1x + eik2x)

+ j2(ω)(eik1x − eik2x)}e−iωt , (A5)

where we set kj (−ω) = −kj (ω). In addition, we have omitted
the contribution of the zero mode π1 because we need local
correlators, and replaced the zero mode ϕ1(t) by its expectation
value.

APPENDIX B: EVALUATION OF THE MEASURED
HEAT FLUX

The experimentally found heat flux, defined in Eq. (40),
may be written in time representation as

Im = −i∂t

[
K(t) − ei〈�μ〉t

2πit

]
t=0

. (B1)

Since the Hamiltonian of tunneling at QPC is local, we may
use Eq. (11b) and results of Appendix A in order to evaluate
the correlation function K(t). The difficulty of finding this
function is related to the fact that, according to Eq. (A5),
the correlators of the operator φ1(t) are determined by the
currents jα(t), which are in general non-Gaussian. However,
in the present case, we need to take the limit t → 0 in
Eq. (B1). The high-order cumulants of currents originate from
a nonequilibrium process and are suppressed at short times
t�μ � 1. Therefore, we are allowed to evaluate K(t) in
Gaussian approximation.

This may be done by expanding the right-hand side of the
Eq. (11b) to second order in φ1:

ln K(t) = 〈[φ1(t) − φ1(0)]φ1(0)〉 + 2πi〈j1〉t, (B2)

where the averaging is over the fluctuations of the currents
jα . We then use Eq. (A5) and the stationary correlators of the
currents

〈jα(ω1)jβ(ω2)〉 = 2πSα(ω1)δαβδ(ω1 + ω2) (B3)

to present the electron correlation function in the following
form:

ln K = ln Kn + 2πi〈j1〉t − ln t. (B4)

Here, the fluctuation contribution reads as

ln Kn = π

∫ ∞

−∞

dω

ω2
(e−iωt − 1){S1(ω)[1 + cos(�kL)]

+S2(ω)[1 − cos(�kL)]}, (B5)

where we have introduced the excess noise spectral densities
Sα(ω) = Sα(ω) − ωθ (ω)/2π and �k = k1(ω) − k2(ω).

It is easy to see that for a nonvanishing contribution to
Im, given by the expression (B1), we need to expand ln Kn

to second order in t . Note, however, that the linear in t term
in this expansion adds to the corresponding term in Eq. (B4)
to give 2πi〈�μ〉t . This follows directly from the definition
(39) of the “average” bias, which in time representation may
be written as 〈�μ〉 = 2π∂t [tK(t)]t=0. Therefore, only the t2

term in ln Kn contributes to Im, and we obtain

Im = − 1

4π
∂2
t ln Kn(t)|t=0. (B6)

Finally, we use Eq. (B5) and obtain the result (48).
Next, we wish to rewrite the measured flux Im in terms of

the plasmon distributions nj (k) = 〈ã†
j (k)ãj (k)〉, j = 1,2. For

doing so, we now use Eqs. (A1) and (A3), repeat the steps that
lead to (B5), and take the limit of L � Lex. The result may be
presented in the form

ln Kn = −
∑

j

∫ ∞

0

dk

k
nj (k)[1 − cos(ωj t)]

+ 1

2

∑
j

∫ ∞

0

dk

k
(e−iωj t − e−ivj kt ), (B7)

where the last term is the quantum contribution due to
the nonlinear plasmon spectrum, and vj = ∂ωj/∂k are the
plasmon speeds at k = 0. By substituting expressions (B7)
into Eq. (B6), we obtain the final results (51) and (52) for the
measured heat flux.

APPENDIX C: SUPPRESSION OF
HIGHER-ORDER CUMULANTS

Here, we show that a weak dispersion of plasmon modes
leads to the suppression of the contribution of higher-order
cumulants of current jα to the electron correlation function at
long distances L from the source of currents. We demonstrate
this by using an example of a weakly dispersive spectrum
of plasmons in the form kj = ω/vj + γjω

2sign(ω), j = 1,2.
Since we are interested in the behavior of the electron
distribution function close to the Fermi level, we need to know
a long-time asymptotics of the electron correlation function
K(t). Therefore, the contributing currents jα can be considered
Markovian processes and fields φα can be treated as classical
variables.

Let us consider the nth cumulant

M (n)(L,t) ≡ 〈〈[φ1(L,t) − φ1(L,0)]n〉〉. (C1)

According to Eq. (A5), at large distances L � Lex = vj/�μ

and long times t�μ � 1, it may be written as

M (n)(L,t) =
∑

α

M (n)
α (L,t), (C2)
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where

M (n)
α (L,t) = 2πS(n)

α

∫ n∏
l=1

dωl

ωl

(i/2)(e−iωl t − 1)

× δ(ω1 + · · · + ωn)
[
ei

∑
l k1(ωl )L + ei

∑
l k2(ωl )L

]
(C3)

and S(n)
α ≡ 〈〈jn

α 〉〉. Here, we have neglected the cross terms
containing fast oscillating functions. These terms have the
same origin as fast oscillating terms in (48) and vanish at
distances L � Lex. Dropping those terms is also equivalent
to neglecting in (20) correlations of charges taken at different
times tu and tv . Finally, we note that in our particular case,
where the QPC is connected to the outmost edge channel only,
S

(n)
2 = 0 for n > 2.

One can easily see that
∑

l kj (ωl) = ∑
l γjω

2
l sign(ωl)

because the integrals in (C3) are limited to
∑

l ωl = 0. For
the second cumulant, this implies that kj (ω1) + kj (ω2) = 0,
i.e., the dispersion correction cancels too. Therefore, the
second cumulant is not suppressed at long distances. In
the following, we consider high-order cumulants. Using the
identity 2πδ(ω1 + · · · + ωn) = ∫

dτ exp[i(ω1 + · · · + ωn)τ ],
we can write

M (n)
α (L,t) = S(n)

α

∑
j

∫ ∞

−∞
dτ [Fj (τ,t,L)]n, (C4)

where we have introduced the integrals

Fj = i

2

∫
dω

ω
(e−iωt − 1)eiωτ+iγj Lω2sign(ω). (C5)

At large distances Lγj � t2, the contribution to the in-
tegrals Fj comes from small ω, where one can approxi-
mate e−iωt − 1 ≈ −iωt . Therefore, Eq. (C5) can be further
simplified:

Fj = (t/2)
∫

dω eiωτ+iγj Lω2sign(ω) ∝ t√
γjL

e±iτ 2/4γj L.

(C6)

By substituting this result into Eq. (C4) and then to (C2), we
find that

M (n)(L,t) ∝ t
∑

α

S(n)
α

∑
j=1,2

(
t2

γjL

) n−1
2

, n > 2 (C7)

where, we recall, the sum is over the plasmon eigenmode
number j and over the channel number α.

We note that, at large distances L, the cumulants
M (n)(L,t) are suppressed by the dimensionless small param-
eter t2/γjL � 1. Therefore, the distribution function at the
energy ε is determined by the Gaussian part of the noise, if
L � 1/γj ε

2. In our case, S
(n)
1 ∼ T �μ and S

(n)
2 = 0, and the

contribution of high-order cumulants to the correlator K(t)
may be neglected at distances larger than Lg = 1/γj (T �μ)2,
so that the noise may be considered Gaussian. Obviously, if
only one plasmon mode of two is dispersive, e.g., γ2 = 0,
then at distances L � Lg, the cumulant (C2) is suppressed
by the factor of 2. One can interpret the result (C7) as the
renormalization of the effective coupling constant λ in (13),
which is caused by spreading of plasmon wave packets due to
the dispersion.
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