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A B S T R A C T   

Objective: Identifying participants who will progress to advanced stage in knee osteoarthritis (KOA) trials remains 
a significant challenge. Current tools, relying on total knee replacements (TKR), fall short in reliability due to the 
extraneous factors influencing TKR decisions. Acknowledging these limitations, our study identifies a critical 
need for a more robust metric to assess severe KOA. The end-stage KOA (esKOA) measure, which combines 
symptomatic and radiographic criteria, serves as a solid indicator. To enhance future trials that use esKOA as an 
endpoint, our study focuses on developing and validating a machine-learning tool to identify individuals likely to 
develop esKOA within 2 to 5 years. 
Design: Utilizing the Osteoarthritis Initiative (OAI) data, we trained models on 3,114 participants and validated 
them with 606 participants for the right knee, and similarly for the left knee, with external validation from the 
Multicentre Osteoarthritis Study (MOST) involving 1,602 participants. We aimed to predict esKOA onset at 2-to- 
2.5 years and 4-to-5 years, defining esKOA by severe radiographic KOA with moderate/severe symptoms or 
mild/moderate radiographic KOA with persistent/intense symptoms. Our analysis considered 51 candidate 
predictors, including demographics, clinical history, physical examination, and X-ray evaluations. An online tool 
predicting esKOA progression, based on models with ten and nine predictors for the right and left knees, 
respectively, was developed. 
Results: External validation (MOST) for the right knee at 2.5 years yielded an Area Under Curve (AUC) of 0.847 
(95 % CI 0.811 to 0.882), and at 5 years, 0.853 (95 % CI 0.823 to 0.881); for the left knee at 2.5 years, AUC was 
0.824 (95 % CI 0.782 to 0.857), and at 5 years, 0.807 (95 % CI 0.768 to 0.843). Models with fewer predictors 
demonstrated comparable performance. The online tool is available at: https://eskoa.shinyapps.io/webapp/. 
Conclusion: Our study unveils a robust, externally validated machine learning tool proficient in predicting the 
onset of esKOA over the next 2 to 5 years. Our tool can lead to more efficient KOA trials.   

Introduction 

Knee Osteoarthritis (KOA) is a prevalent musculoskeletal condition, 
affecting an estimated 654 million individuals over the age of 40 
worldwide in 2020 [1]. This condition significantly impacts those 
affected, leading to substantial disability [2] and imposing considerable 
financial burdens on healthcare systems due to increased healthcare 
expenses [3,4]. Although various treatments, including total knee 
replacement (TKR), offer symptomatic relief, the quest for effectively 
halting, delaying, or reversing the progression of the disease continues 

[5]. 
KOA is a heterogeneous disease, characterized by a wide range of 

pathways and a slow progression course that can span several years, 
marked by periods of accelerated worsening and stability [5,6]. This 
variability presents a significant challenge in KOA research, especially in 
identifying who requires treatment and is likely to show progression. 
Traditional inclusion criteria in clinical trials are often inadequate in 
effectively selecting these individuals. As a result, the development of 
tools that can accurately predict the progression of KOA is critical. 

These predictive tools have the potential to significantly enhance the 
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efficacy of clinical trials by enabling the identification of candidates 
likely to experience clinical outcomes (e.g., end stage KOA). Ensuring 
that participants are those most likely to exhibit disease progression 
potentially reduces the required sample size and cost for those trials. 
Such precise selection is crucial to accurately assess the impact of 

various therapies on the trajectory of the disease [6]. 
Recent years have seen the development of prediction tools, espe

cially with the advancement of machine learning techniques. These 
machine learning models have been used to predict structural outcomes, 
including those assessed by radiography (e.g., a decrease in joint space 

Fig. 1. A summary of the methodology throughout the process of creation of trained models for the prediction of the onset of esKOA at 2-to-2.5 years and 4-to-5 
years, for the right knee analysis. The figure shows the data sources, selection of knees, and data pre-preprocessing for the creation of the Training Dataset, Validation 
Dataset, and External Validation Dataset. The shaded area indicates MOST data. EsKOA: End-stage Knee Osteoarthritis; MOST: Multicenter Osteoarthritis Study; OAI: 
Osteoarthritis Initiative; TKR: Total Knee Replacement. 
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[6,7], an increase in Kellgren-Lawrence (KL) grade [8]), and, predomi
nantly, the incidence of TKR [8–15]. While TKR can signify a severe KOA 
stage, the determinants for receiving a TKR extend beyond disease 
progression and include an array of extraneous factors (e.g., education, 
surgery readiness, income, and health insurance) [16,17]. 

Given the complexities and potential pitfalls of the multifaceted 
decision-making behind TKR, a more comprehensive measure was 
sought. End-stage KOA (esKOA) emerged as this solution, integrating 
both symptomatic and radiographic criteria to robustly signify severe 
KOA [18,19]. A knee is classified as having esKOA under either of the 
following conditions: (1) it displays moderate to severe symptoms as 
assessed by pain and disability measurements, coupled with radio
graphically confirmed severe KOA; or (2) it exhibits intense symptoms 
alongside persistent knee pain, with radiography revealing mild to 
moderate KOA. Importantly, esKOA is not merely an alternative to the 
incidence of TKR. Instead, it is an outcome that denotes the advanced 
stage of KOA, uninfluenced by external factors that might drive TKR 
decisions. 

Building on this foundation, our study aimed to develop and validate 
a machine learning tool to predict the onset of esKOA in 2-to-2.5 years 
and 4-to-5 years. Such a tool would be pivotal to improving efficiency in 
KOA clinical trials. 

Materials and methods 

Data sources 

This research utilized data from two prominent multicenter USA- 
based prospective cohort studies focused on individuals with, or at 
high risk of, KOA: the Osteoarthritis Initiative (OAI) and the Multicentre 
Osteoarthritis Study (MOST). The OAI study enrolled 4976 participants 
aged between 45 and 79 from February 2004 to May 2006 across four 
clinical sites. The MOST study registered 3026 participants aged be
tween 50 and 79 from April 2003 to April 2005 at two locations. Both 
studies aimed to recruit individuals with or at risk of symptomatic 
femoral-tibial KOA. The original OAI and MOST studies received ethical 
approval from their institutional boards. All participants in the original 
OAI and MOST studies provided informed written consent. 

In this current study, we selected both the right and left knees of 
participants from the OAI and MOST datasets. We excluded the partic
ipants with TKR or esKOA at right or left knees at baseline (Figs. 1 and 
S1). After these exclusions, we had 4192 participants in the OAI cohort 
and 2172 participants in the MOST cohort. 

Definition of esKOA 
We used an esKOA definition developed and validated by Driban 

et al. [19], which was based on earlier works that determined criteria for 
TKR appropriateness by Escobar et al. [20] and then by Riddle et al. 
[21]. Driban et al. adapted these criteria to represent esKOA [18]. In 
their criteria for esKOA [18], Driban et al. defined and validated an 
esKOA definition that consists of pain and functional limitations, 
structural alterations of the knee joint assessed by radiography, or other 
clinical factors such as knee range of motion and instability. In subse
quent research [19], Driban et al. eliminated the assessments for knee 
range of motion and instability from their earlier definition of esKOA 
[18]. Furthermore, using the OAI data, Driban et al. demonstrated that 
esKOA and changes in esKOA predict future TKR [22]. We adopted that 
later esKOA definition by Driban et al. [19], which integrates (1) the 
Western Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC) scores [23], evaluating KOA symptoms, (2) self-reported 
persistent knee pain, and (3) the KL grade [24], a radiographic assess
ment of knee structure. The esKOA definition uses the thresholds for 
interpreting knee symptoms based on Riddle et al. [21], classifying knee 
symptoms into four categories based on an aggregate score of WOMAC 
pain and function (aggregate score range=0 to 88): mild (< 11), mod
erate (12 to 22), severe (23 to 33), and intense (> 33) symptoms. 

Persistent knee pain in the esKOA definition was defined as frequent 
knee pain for at least three months in the past year, with knee symptoms 
on most days of the month. As the MOST dataset does not have pain 
chronicity information, we modified the definition of persistent knee 
pain in our current study as frequent knee pain for at least one or more 
months in the past year, with knee symptoms on most days of the month. 
Radiographic assessments in the esKOA definition were based on 
weight-bearing, bilateral, fixed-flexion, and posterior-anterior knee ra
diographs and were scored for KL grades (0 to 4) [24]. The esKOA 
definition used in this study was validated in a separate study that 
investigated the relationship between weight loss and esKOA, also using 
OAI and MOST data [25]. In that study [25], our esKOA definition was 
also shown to be a strong predictor of future TKR. 

A knee was classified as having esKOA if it met either of the following 
criteria: (1) Displaying moderate to severe KOA symptoms (defined as a 
combined WOMAC pain and disability score of 12 or above) in 
conjunction with the most severe radiographic KOA (i.e., KL grade = 4, 
the maximum KL grade); (2) Exhibiting intense KOA symptoms (a 
combined WOMAC pain and disability score of 23 or more) alongside 
persistent knee pain and either mild or moderate radiographic KOA (i.e., 
KL grade = 2 or 3). 

Outcomes and follow-up 
Our primary outcomes were the occurrence of esKOA in the right 

knee and left knee (assessed separately) between the baseline and two 
distinct follow-up periods. The first follow-up was set at 2 years for the 
OAI dataset and 2.5 years for the MOST dataset. We refer to this follow- 
up time point as a ‘2-to-2.5-year’ follow-up. The second follow-up 
occurred at 4 years for OAI and 5 years for MOST. We refer to this 
follow-up time point as a ‘4-to-5-year’ follow-up. The outcomes were 
binary, indicating ‘yes’ or ‘no’ for any esKOA occurrence in the right 
knee and left knee during these periods. 

It should be noted that based on the esKOA definition provided, an 
esKOA status might improve in later assessments due to symptom alle
viation. However, in our study, if a knee was determined to have esKOA 
at any point between the baseline and a follow-up, we retained that 
classification for all future follow-ups. This approach ensured consistent 
and clear monitoring of esKOA occurrences throughout the study 
duration, not just those observed at specific follow-up periods (i.e., at 2- 
to-2.5-year and 4-to-5-year follow-up). 

Data-preprocessing 

We performed data preprocessing and subsequent analyses sepa
rately for the right and left knees. Fig. 1 depicts the summary of the 
methodology for creating trained models to predict the onset of esKOA 
at 2-to-2.5 years and 4-to-5 years for the right knee. Fig. S1 provides a 
corresponding summary for the left knee analysis. 

We used 51 predictors, already identified in a previous study that 
investigated the prediction of TKR using the OAI and MOST data [12]. 
These 51 predictors were systematically organized into four domains: 
demography, intervention history, medical history, and radiographic 
assessment. Of the 51 predictors, six were related to radiographic 
assessment across both the right and left knee: (1) KL grade, (2) joint 
space narrowing (JSN) grade at the lateral tibiofemoral compartment, 
and (3) JSN grade at the medial compartment, assessed separately for 
each knee. While we used the right and left knee information for pre
dictors, for limited activity predictor (limited activities due to pain, 
aching, or stiffness, past 30 days), we used the information for either 
knee as specific right or left knee information was not commonly 
available in both cohorts. Additionally, the predictor of steroid injection 
history was available for 12 months in OAI and 6 months in MOST. We 
investigated any correlation between the predictors, using the absolute 
correlation value 0.75 as the threshold. No correlation between the 
predictors was identified. 

After establishing the 51 predictors, we removed the participants 
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with missing outcomes from the OAI and MOST datasets (Figs. 1 and S1). 
With that, we had 3892 right knees in the OAI dataset and 2156 in the 
MOST dataset (Fig. 1); and 3892 left knees in the OAI dataset and 2153 
in the MOST dataset (Fig. S1). Additionally, we partitioned the OAI 
dataset, reserving 80 % for model development and optimization (n =
3114 for the right and left knee) and the remaining 20 % for validation 
(n = 778 for the right and left knee). In the split process, we used random 
stratification to ensure a balanced representation of positive (presence 
of esKOA) and negative (absence of esKOA) cases. The 80 % set aside for 
model development and optimization established our ‘Training Dataset’ 
(n = 3114 for the right and left knee) (Figs. 1 and S1). In the Training 
Dataset, missing continuous predictors were imputed using mean values, 
while categorical predictors used mode values. We excluded the par
ticipants with missing predictors for the 20 % set aside for validation (n 
= 172 for right knee and n = 158 for left knee) (Figs. 1 and S1). The 
remaining 606 right knees established our ‘Validation Dataset’ for right 
knee analysis (Fig. 1) and 620 left knees established our ‘Validation 
Dataset’ for left knee analysis (Fig. S1). The MOST dataset was exclu
sively used for external validation. From the MOST dataset, we excluded 
the participants with missing predictors (n = 554 for right knee and n =
551 for left knee). The remaining 1602 right knees in the MOST dataset 
established our ‘External Validation Dataset’ for right knee analysis 
(Fig. 1) and 1602 left knees established our ‘External Validation Dataset’ 
for left knee analysis (Fig. S1). 

Machine learning model development and training 

Model configuration and optimization 
A supervised machine learning model, eXtreme Gradient Boosting 

(XGBoost) [26], was employed to predict the outcome of esKOA at 
2-to-2.5-year and 4-to-5-year time points, for the right and left knees 
separately. The performances of the models were refined by adjusting a 
range of tuneable parameters and hyperparameters. Specifically, the 
maximum tree depth was varied over 3, 5, 7, and 9 values. The number 
of boosting rounds ranged from 50 to 500, in increments of 50. The 
learning rate was tested at 0.2, 0.3, and 0.4. The gamma, setting the 
minimum loss reduction required for further partitioning, was consid
ered at levels 0, 1, and 2. The subsample ratio of columns when con
structing each tree and subsample (the fraction of training samples used 
in any boosting round) were explored over values of 0.5, 0.8, and 1. 
Lastly, the minimum sum of instance weight needed in a child was 
adjusted over 1, 3, and 5 values. The model optimizations were per
formed using the Training Datasets for each knee. 

Evaluation metrics 
The performances of the models for each knee across the Training 

Dataset, Validation Dataset, and External Validation Dataset were 
assessed using the area under the receiver operating characteristic 
(ROC) curve (i.e., the area under curve [AUC]) for discrimination. An 
AUC exceeding 0.7 was deemed to offer clinically satisfactory perfor
mance [27]. Precision-Recall F measures (F1-scores) were computed as a 
harmonic mean of the precision and sensitivity, indicating positive 
predictive power. 

We have extracted and reported the key predictors from the models. 
One of the advantageous attributes of XGBoost is its inherent ability to 
rank the importance of predictors within the training dataset. Predictor 
importance in XGBoost provides a score indicating how useful or valu
able each predictor was in constructing the boosted decision trees within 
the model. The more an attribute is used to make key decisions with 
decision trees, the higher its relative importance. The resulting impor
tance scores reflect the contribution of each predictor to the model, 
allowing us to rank and understand which predictors were most influ
ential in predicting esKOA at the 2-to-2.5-year and 4-to-5-year models. 

Model calibration 
We set an ’optimal threshold’ for our models, essentially a fine-tuned 

setting that helps us make the most accurate predictions possible. This 
optimal threshold helps us distinguish between positive and negative 
cases. Finding this ’sweet spot’ is especially important because the 
number of positive and negative cases can vary greatly across different 
datasets. We used the F1-score as our guide to ensure the tool makes the 
best positive predictions. We determined this optimal threshold by 
testing it on the Validation Datasets separately for the right and left 
knees. Once confident in this setting, we applied it to the External 
Validation Datasets again separately for the right and left knees to 
confirm that it works effectively in different scenarios. 

Models with fewer predictors and online tool 
To provide practical benefit, we developed an online tool that pre

dicts the probability of progression to esKOA for the right and left knees 
in 2-to-2.5 years and 4-to-5 years. For the online tool, we used models 
with fewer predictor variables. For that purpose, we selected the pre
dictors above 4% on their importance in the models with 51 predictors. 

Simulated trial participant selection and comparison against conventional 
trial participant selection 

We conducted a simulation study to compare the selection of par
ticipants based on machine learning models and conventional selection 
for a trial. We only focused on the right knees for the simulated study. 
For the simulation of the conventional trial participant selection, we 
specified that a right knee must meet the following three conditions: (1) 
A modified version of the American College of Rheumatology (ACR) 
clinical classification criteria for knee OA [28]; (2) KL grade of 1, 2, or 3; 
and WOMAC pain score of 5 or more (on a scale of 20). The modified 
version of the ACR criteria was as follows: any pain in the right knee in 
the past 12 months, age over 50 years or older, or the presence of 
morning stiffness or osteophytes. We used the models with fewer pre
dictors to simulate the selection by machine learning. For data in 
simulation, we used the OAI and MOST datasets, which were used to 
develop the models with fewer predictors. We reported the performance 
metrics of both selection methods (i.e., using machine learning models 
and conventional selection) for comparison. 

Statistical analysis and software 

We used STATA/BE 18.0 for Windows (64-bit x86–64) software for 
data preparation. All machine learning analysis, online tool develop
ment, and simulated trial selections were performed using R (version 
4.3.1). 

95 % Confidence Intervals (CI) for AUC were calculated using 
bootstrap resampling. We set the number of bootstrap samples as 1000. 
We used stratified bootstrapping to ensure that the proportion of the 
different classes (e.g., positive and negative cases) in each resampled 
dataset mirrors that in the original datasets. 

We used the following packages in R: 1) For XGBoost, we used 
XGBoost (version 1.7.5.1); 2) for ROC curves, pROC (version 1.18.4), 
and 3) for correlations heatmap corrplot (version 0.92). The key pre
dictors were derived using the varImp function from the caret package 
(version 6.0–94) in R by scaling to 100 (the original scale is 1). For the 
development of the online tool, we used the shiny (version 1.7.5) and 
shiny.js (version 2.1.0) packages. 

Tool, data, and code availability 

The online tool can be found at the following link: https://eskoa.shi 
nyapps.io/webapp/. The datasets were derived from sources in the 
public domain: OAI public use data sets are available through the Na
tional Institute of Mental Health Data Archive, and MOST public use 
data sets are available through the NIA Aging Research Biobank. The R 
code for the models creation can be found at https://github.com/ 
Zube-Geneve/predict_esKOA.git. 
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Results 

Data distribution across the training dataset, validation dataset, and 
external validation dataset 

Table 1 presents the distribution of predictors and outcomes for the 
Training Dataset, Validation Dataset, and External Validation Datasets 
for right knee, while Table S1 provides the corresponding information 
for the left knee. On average, participants fell into the overweight 
category for BMI and were predominantly female, white, married, 
employed, with no signs of KOA (KL grade 0) at baseline, in datasets for 
the right and left knees. 

From the training data (OAI dataset) consisting of 3114 participants 
for each of the right and left knees, 160 participants (5.1 %) developed 
esKOA within 2 years and 255 participants (8.2 %) within 4 years for the 
right knee (Table 1). Similarly, for the left knee; 161 participants (5.2 %) 
developed esKOA within 2 years and 257 participants (8.3 %) within 4 
years (Table S1). The Validation Dataset from OAI for the right knee 
included 606 participants, with 35 (5.8 %) developing esKOA within 2 
years and 64 (10.6 %) within 4 years (Table 1). The left knee Validation 
Dataset: with 620 participants, showed 31 (5.0 %) developing esKOA 
within 2 years and 56 (9.0 %) within 4 years (Table S1), indicating 
similar trends to the right knee. In the External Validation Datasets from 
MOST, with 1602 participants for each knee, 111 (6.9 %) developed 
esKOA within 2.5 years and 162 (10.1 %) within 5 years for the right 
knee (Table 1). For the left knee, 99 (6.2 %) developed esKOA within 2.5 
years and 157 (9.8 %) within 5 years (Table S1). 

Model metrics from the training datasets 

Right knee 
Our model for the right knee had an AUC of 0.996 (95 % Confidence 

Intervals [CI]s 0.992 to 0.999) using the Training Dataset at 2 years. The 
optimized parameters were as follows: maximum tree depth: 9; the 
number of boosting rounds: 50; the learning rate 0.2; the gamma setting: 
2; the subsample ratio of columns: 0.8; subsample: 0.5; and the mini
mum child weight: 1. 

Our model at 4 years had an AUC of 0.959 (95 % CIs 0.949 to 0.968). 
The optimized parameters were as follows: maximum tree depth: 3; the 
number of boosting rounds: 50; the learning rate 0.2; the gamma setting: 
1; the subsample ratio of columns: 1; subsample: 1; and the minimum 
child weight: 3. 

Left knee 
Our model for the left knee had an AUC of 0.973 (95 % CIs 0.964 to 

0.982) using the Training Dataset at 2 years. The optimized parameters 
were as follows: maximum tree depth: 9; the number of boosting rounds: 
50; the learning rate 0.2; the gamma setting: 0; the subsample ratio of 
columns: 0.5; subsample: 0.5; and the minimum child weight: 5. 

Our model at 4 years had an AUC of 0.939 (95 % CIs 0.925 to 0.951). 
The optimized parameters were as follows: maximum tree depth: 3; the 
number of boosting rounds: 50; the learning rate 0.2; the gamma setting: 
2; the subsample ratio of columns: 0.5; subsample: 0.5; and the mini
mum child weight: 5. 

Performance of model with the Validation Datasets 

Right knee 
We determined the optimal threshold values from the Validation 

Dataset as 0.029 and 0.045 for the 2-to-2.5-year and 4-to-5-year models, 
respectively. Our model had an AUC of 0.894 (95 % CIs 0.851 to 0.933) 
at 2 years (Fig. 2a) and an AUC of 0.873 (95 % CIs 0.834 to 0.906) at 4 
years (Fig. 2b). The F1 scores for the positive class were 0.898 at 2 years 
(Fig. 2a) and 0.849 at 4 years (Fig. 2b). 

Table 1 
Data distribution of predictors and outcomes in the Training Dataset, Validation 
Dataset, and External Validation Dataset (right knee analysis).  

Predictor/outcome Training 
data 

Validation 
dataset 

External 
Validation 
Dataset 

Participants n ¼ 3114 n ¼ 606 n ¼ 1602 

Demographics n (%) or 
Mean ± SD 

n (%) or 
Mean ± SD 

n (%) or Mean 
± SD 

Age, years 61.1 ± 9.2 60.3 ± 9.2 61.4 ± 7.9 
Blood pressure    
Normal 1081 (34.7) 220 (36.3) 620 (38.7) 
Elevated 479 (15.4) 96 (15.8) 289 (18.0) 
Hypertension Stage 1 940 (30.2) 183 (30.2) 391 (24.4) 
Hypertension Stage 2 600 (19.3) 107 (17.7) 294 (18.4) 
Hypertensive crisis 14 (0.4) 0 (0.0) 8 (0.5) 
Body Mass Index (BMI), kg/m2 28.2 ± 4.6 27.9 ± 4.6 29.5 ± 5.1 
Education    
Less than high school 72 (2.3) 16 (2.6) 34 (2.1) 
High School 357 (11.5) 59 (9.7) 326 (20.3) 
College/associate degree / 

technical school after high 
school 

692 (22.2) 142 (23.4) 346 (21.6) 

College Graduate 687 (22.1) 133 (21.9) 411 (25.7) 
Some graduate degree 264 (8.5) 52 (8.6) 148 (9.2) 
Graduate school 1042 (33.5) 204 (33.7) 337 (21.0) 
Employment status    
Works for pay 1924 (61.8) 401 (66.2) 981 (61.2) 
Ethnicity    
White/Caucasian 2595 (83.3) 498 (82.2) 1399 (87.3) 
Black/African American 434 (13.9) 92 (15.2) 176 (11.0) 
Hispanic/Latino 32 (1.0) 5 (0.8) 9 (0.6) 
Other 53 (1.7) 11 (1.8) 18 (1.1) 
Living status alone/with others    
Live with other(s) 2447 (78.6) 493 (81.4) 1353 (84.5) 
Marital status    
Married 2142 (68.8) 441 (72.8) 1243 (77.6) 
Widowed 238 (7.6) 35 (5.8) 114 (7.1) 
Divorced 409 (13.1) 82 (13.5) 174 (10.9) 
Separated 48 (1.5) 8 (1.3) 5 (0.3) 
Never married 277 (8.9) 40 (6.6) 66 (4.1) 
Gender    
Female 1801 (57.8) 337 (55.6) 905 (56.5) 
Smoking, pack years 9.0 ± 15.1 8.8 ± 17.6 8.8 ± 16.3 
History of intervention    
History of intervention - 

medication    
Analgesic medication 

(Salicylates, NSAIDs, COX2, 
Opioids, other) 

717 (23.0) 131 (21.6) 1267 (79.1) 

Arthritis medication (Oral 
corticosteroids, supplements 
(SAMe, MSM, Fluorides, 
Glucosamine)) 

217 (7.0) 62 (10.2) 479 (29.9) 

Osteoporosis medication 
(Vitamin, Bisphosphonate, 
Estrogen, Raloxifene, 
Calcitonin, Teriparatide) 

432 (13.9) 78 (12.9) 510 (31.8) 

Steroid injection in right knee 
(in past 12 months in OAI, in 
6 months in MOST) 

27 (0.9) 3 (0.5) 21 (1.3) 

Steroid injection in left knee (in 
past 12 months in OAI, in 6 
months in MOST) 

25 (0.8) 3 (0.5) 16 (1.0) 

History of intervention – 
knee-related surgery    

Arthroscopy, ever, right knee 277 (8.9) 58 (9.6) 111 (6.9) 
Arthroscopy, ever, left knee 254 (8.2) 56 (9.2) 110 (6.9) 
Ligament repair surgery, right 

knee 
41 (1.3) 9 (1.5) 21 (1.3) 

Ligament repair surgery, left 
knee 

51 (1.6) 15 (2.5) 23 (1.4) 

Meniscectomy, ever, right knee 244 (7.8) 52 (8.6) 106 (6.6) 
Meniscectomy, ever, left knee 220 (7.1) 49 (8.1) 97 (6.1) 
Other kind of surgery, ever, 

right knee 
42 (1.3) 10 (1.7) 20 (1.2) 

(continued on next page) 
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Left knee 
We determined the optimal threshold values from the Validation 

Dataset as 0.013 and 0.052 for the 2-to-2.5-year and 4-to-5-year models, 
respectively. Our model had an AUC of 0.841 (95 % CIs 0.767 to 0.903) 
at 2 years (Fig. S2a) and an AUC of 0.862 (95 % CIs 0.817 to 0.901) at 4 
years (Fig. S2b). The F1 scores for the positive class were 0.758 at 2 
years (Fig. S2a) and 0.857 at 4 years (Fig. S2b). 

Performance of model with External Validation Dataset 

Right knee 
Performances on the External Validation Dataset for the right knee, 

using the threshold values obtained from the Validation Dataset, showed 
that our model yielded an AUC of 0.847 (95 % CIs 0.811 to 0.882) at 2.5 
years (Fig. 2c) and 0.853 (95 % CIs 0.823 to 0.881) at 5 years (Fig. 2d). 
The F1 scores for the positive class were 0.896 at 2.5 years (Fig. 2c) and 
0.851 at 5 years (Fig. 2d). 

Left knee 
Performances on the External Validation Dataset for the left knee, 

using the threshold values obtained from the Validation Dataset, showed 

Table 1 (continued ) 

Predictor/outcome Training 
data 

Validation 
dataset 

External 
Validation 
Dataset 

Participants n ¼ 3114 n ¼ 606 n ¼ 1602 

Other kind of surgery, ever, left 
knee 

46 (1.5) 13 (2.1) 17 (1.1) 

Medical history    
Medical history – arthritis 

specific    
Arthritis past medical history    
No arthritis history 1662 (53.4) 319 (52.6) 796 (49.7) 
At least one OA/degenerative 

disease 
1120 (36.0) 218 (36.0) 467 (29.2) 

Gout/other 129 (4.1) 30 (5.0) 91 (5.7) 
OA/degenerative disease and 

gout/other 
90 (2.9) 15 (2.5) 70 (4.4) 

Unknown 113 (3.6) 24 (4.0) 178 (11.1) 
Injury (Right knee, ever injured 

badly enough to limit the 
ability to walk for at least two 
days) 

836 (26.8) 175 (28.9) 402 (25.1) 

Injury (Left knee, ever injured 
badly enough to limit the 
ability to walk for at least two 
days) 

741 (23.8) 155 (25.6) 324 (20.2) 

Limited activity (Either knee, 
limited activities due to pain, 
aching, or stiffness, past 30 
days) 

2434 (78.2) 454 (74.9) 1356 (84.6) 

Symptoms (Right knee, pain, 
aching or stiffness, ever had 
more than half the days of a 
month) 

1898 (61.0) 336 (55.4) 1151 (71.8) 

Symptoms (Left knee, pain, 
aching or stiffness, ever had 
more than half the days of a 
month) 

1893 (60.8) 360 (59.4) 1186 (74.0) 

Medical history – clinical 
examination    

Clinic 20-meter walk 
assessment 

15.5 ± 2.9 15.4 ± 3.0 16.3 ± 2.9 

Timed chair stands (Potential 
risk) 

2039 (65.5) 382 (63.0) 896 (55.9) 

Medical history - 
comorbidities    

Asthma 257 (8.3) 47 (7.8) 114 (7.1) 
Diabetes 200 (6.4) 37 (6.1) 124 (7.7) 
Emphysema, Chronic 

Obstructive Pulmonary 
Disease (COPD), chronic 
bronchitis 

58 (1.9) 15 (2.5) 50 (3.1) 

Heart attack 59 (1.9) 8 (1.3) 47 (2.9) 
Heart failure 53 (1.7) 9 (1.5) 38 (2.4) 
Kidney problems 33 (1.1) 13 (2.1) 68 (4.2) 
Stomach ulcer 69 (2.2) 10 (1.7) 63 (3.9) 
Stroke 83 (2.7) 18 (3.0) 57 (3.6) 
Medical history – 

questionnaires    
Center for Epidemiological 

Studies Depression (CESD) 
Score 

248 (8.0) 49 (8.1) 137 (8.6) 

Physical Activity Scale for the 
Elderly Score (PASE) 

162.7 ±
80.6 

169.5 ± 86.2 184.9 ± 88.6 

Short-Form 12 Mental 
Component (SF12mental) 

53.8 ± 7.6 53.8 ± 7.6 54.2 ± 8.4 

Short-Form 12 Physical 
Component (SF12physical) 

50.6 ± 8.0 51.0 ± 7.2 48.7 ± 9.4 

Total Western Ontario and 
McMaster Universities 
Osteoarthritis Index 
(WOMAC) right knee 

8.5 ± 10.8 8.9 ± 11.2 12.6 ± 12.9 

Total Western Ontario and 
McMaster Universities 
Osteoarthritis Index 
(WOMAC) left knee 

8.2 ± 11.8 8.2 ± 11.6 12.4 ± 12.8 

Radiography     

Table 1 (continued ) 

Predictor/outcome Training 
data 

Validation 
dataset 

External 
Validation 
Dataset 

Participants n ¼ 3114 n ¼ 606 n ¼ 1602 

Kellgren Lawrence (KL) grade 
right knee    

0 1393 (44.7) 270 (44.6) 890 (55.6) 
1 615 (19.7) 112 (18.5) 310 (19.4) 
2 702 (22.5) 144 (23.8) 219 (13.7) 
3 348 (11.2) 66 (10.9) 170 (10.6) 
4 56 (1.8) 14 (2.3) 13 (0.8) 
Kellgren Lawrence (KL) grade 

left knee    
0 1338 (43.0) 250 (41.3) 963 (60.1) 
1 615 (19.7) 110 (18.2) 287 (17.9) 
2 755 (24.2) 152 (25.1) 197 (12.3) 
3 335 (10.8) 76 (12.5) 139 (8.7) 
4 71 (2.3) 18 (3.0) 16 (1.0) 
Joint space narrowing (JSN) 

grade right knee-lateral    
0 2913 (93.5) 559 (92.2) 1508 (94.1) 
1 121 (3.9) 29 (4.8) 53 (3.3) 
2 62 (2.0) 16 (2.6) 36 (2.2) 
3 18 (0.6) 2 (0.3) 5 (0.3) 
Joint space narrowing (JSN) 

grade left knee-lateral    
0 2903 (93.2) 552 (91.1) 1535 (95.8) 
1 104 (3.3) 28 (4.6) 42 (2.6) 
2 82 (2.6) 20 (3.3) 21 (1.3) 
3 25 (0.8) 6 (1.0) 4 (0.2) 
Joint space narrowing (JSN) 

grade right knee-medial    
0 2177 (69.9) 416 (68.6) 1192 (74.4) 
1 605 (19.4) 126 (20.8) 267 (16.7) 
2 293 (9.4) 52 (8.6) 133 (8.3) 
3 39 (1.3) 12 (2.0) 10 (0.6) 
Joint space narrowing (JSN) 

grade left knee-medial    
0 2111 (67.8) 402 (66.3) 1231 (76.8) 
1 696 (22.4) 134 (22.1) 236 (14.7) 
2 261 (8.4) 58 (9.6) 121 (7.6) 
3 46 (1.5) 12 (2.0) 14 (0.9) 
Outcomes    
End-stage Knee Osteoarthritis 

within 2-to-2.5 years (right 
knee) 

160 (5.1) 35 (5.8) 111 (6.9) 

End-stage Knee Osteoarthritis 
within 4-to-5 years (right 
knee) 

255 (8.2) 64 (10.6) 162 (10.1) 

Data are presented as mean ± standard deviation or count (percentage). 
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that our model yielded an AUC of 0.824 (95 % CIs 0.782 to 0.857) at 2.5 
years (Fig. S2c) and 0.807 (95 % CIs 0.768 to 0.843) at 5 years 
(Fig. S2d). The F1 scores for thepositive class were 0.756 at 2.5 years 
(Fig. S2c) and 0.877 at 5 years (Fig. S2d). 

Key predictors 

Using the XGBoost algorithm, we ranked predictors based on their 
relative influence in predicting esKOA at 2-to-2.5 years and 4-to-5 years. 
The relative influence scores are scaled up to 100 for ease of interpre
tation. The relative influence scores indicate the contribution of each 

Fig. 2. Receiver operating characteristic (ROC) curves showing performance of models for prediction of esKOA at 2-to-2.5 years and 4-to-5 years, using 51 pre
dictors, for the right knee. (A) Validation Dataset (OAI) at 2 years. (B) Validation Dataset (OAI) at 4 years. (C) External Validation Dataset (MOST) at 2.5 years. (D) 
External Validation Dataset (MOST) at 5 years. Red Points show the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for the selected thresholds. 
AUC: Area Under Curve; MOST: Multicenter Osteoarthritis Study; OAI: Osteoarthritis Initiative. 
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predictor to the model. The higher the percentage score, the more im
pactful the predictor is in determining the outcome of esKOA. Table 2 
lists the predictors with an importance score greater than zero for the 2- 
to-2.5-year and 4-to-5-year models for the right knee, while Table S2 
presents the corresponding predictors for the left knee. Our top three 
predictors for the right knee were KL grade for right knee (relative in
fluence 12.57 % and 35.30 %), Short-Form 12 (SF12) physical score 
(11.84 % and 8.85 %), and total WOMAC score for right knee (11.73 % 
and 18.82 %) for the 2-to-2.5-year model and 4-to-5-year model, 
respectively (Table 2). Our top three predictors for the left knee were 
total WOMAC score for left knee (relative influence 13.94 % and 20.08 
%), KL grade for left knee (13.48 % and 20.08 %), and total WOMAC 
score for right knee (11.47 % and 11.70 %) for the 2-to-2.5-year model 
and 4-to-5-year model, respectively. (Table S2). 

We have selected the predictor variables with an importance score 
greater than four percent whether they are for the 2-to-2.5-year and 4- 
to-5-year models for the online tool. For the right knee, there were ten 
predictors. Five of these predictors (KL grade right knee, short-form 12 
physical component score, total WOMAC score right knee, clinic 20- 
meter walk assessment, and total WOMAC score left knee) were com
mon to both the 2-to-2.5-year and 4-to-5-year models, four predictors 
(Physical Activity Scale for the Elderly Score (PASE) Body Mass Index 
(BMI), short-form 12 mental component score, and age) were unique to 
the 2-to-2.5-year model, and one predictor (KL grade left knee) was 
specific to the 4-to-5-year model (Table 2). For the left knee, there were 
nine predictors. Six of these predictors (total WOMAC left knee, KL 
grade left knee, total WOMAC right knee, short-form 12 physical 
component score, BMI, and PASE) were common to both the 2-to-2.5- 
year and 4-to-5-year models, two predictors (clinic 20-meter walk 
assessment and age) were unique to the 2-to-2.5-year model, and one 
predictor (KL grade right knee) was specific to the 4-to-5-year model 
(Table S2). Using these fewer predictor variables, we have trained our 
models and assessed their performance. Given that their performance 
was comparable to the models with 51 predictors, we used the models 
with fewer predictors to develop an online tool. 

Performance of the models with fewer predictors 

Right knee 
The performance metrics obtained for our models with ten predictors 

were very close to those obtained from our model with 51 above- 
mentioned predictors. Our model with ten predictors had an AUC of 
0.959 (95 % CIs 0.948 to 0.969) using the Training Dataset at 2 years. 
The optimized parameters were as follows: maximum tree depth: 3; the 
number of boosting rounds: 50; the learning rate 0.2; the gamma setting: 
2; the subsample ratio of columns: 0.5; subsample: 1; and the minimum 
child weight: 5. The model at 4 years had an AUC of 0.945 (95 % CIs 
0.932 to 0.957) at 4 years. The optimized parameters were as follows: 
maximum tree depth: 3; the number of boosting rounds: 50; the learning 
rate 0.2; the gamma setting: 2; the subsample ratio of columns: 0.8; 
subsample: 0.8; and the minimum child weight: 5. 

When applied to the Validation Dataset, we determined the optimal 
threshold values from the Validation Dataset as 0.040 and 0.073 for the 
2-to-2.5-year and 4-to-5-year models, respectively. Our model with ten 
predictors had an AUC of 0.887 (95 % CIs 0.848 to 0.923) at 2 years 
(Fig. 3a) and an AUC of 0.869 (95 % CIs 0.835 to 0.903) at 4 years 
(Fig. 3b). The F1 scores for the positive class were 0.872 at 2 years and 
0.873 at 4 years. 

Performances on the External Validation Dataset, using the threshold 
values obtained from the Validation Dataset, showed that our model 
with ten predictors yielded an AUC of 0.847 (95 % CIs 0.813 to 0.876) at 
2.5 years (Fig. 3c) and 0.848 (95 % CIs 0.822 to 0.874) at 5 years 
(Fig. 3d). The F1 scores for the positive class were 0.887 at 2.5 years and 
0.882 at 5 years. 

Table 2 
The predictors and their relative influence at 2-to-2.5 years and 4-to-5 years 
(right kne analysis).  

No 2-to-2.5 years 4-to-5 years 
Predictor Relative 

Influence 
(%) 

Predictor Relative 
Influence 
(%) 

1 Kellgren Lawrence 
(KL) grade right knee 

12.57 Kellgren Lawrence 
(KL) grade right knee 

35.30 

2 Short-Form 12 
Physical Component 
(SF12physical) 

11.84 Total Western Ontario 
and McMaster 
Universities 
Osteoarthritis Index 
(WOMAC) right knee 

18.82 

3 Total Western Ontario 
and McMaster 
Universities 
Osteoarthritis Index 
(WOMAC) right knee 

11.73 Short-Form 12 
Physical Component 
(SF12physical) 

8.85 

4 Clinic 20-meter walk 
assessment 

7.85 Kellgren Lawrence 
(KL) grade left knee 

5.19 

5 Total Western Ontario 
and McMaster 
Universities 
Osteoarthritis Index 
(WOMAC) left knee 

7.18 Clinic 20-meter walk 
assessment 

4.64 

6 Physical Activity 
Scale for the Elderly 
Score (PASE) 

5.83 Total Western Ontario 
and McMaster 
Universities 
Osteoarthritis Index 
(WOMAC) left knee 

4.57 

7 Body Mass Index 
(BMI) 

5.82 Body Mass Index 
(BMI) 

3.87 

8 Short-Form 12 Mental 
Component 
(SF12mental) 

5.14 Short-Form 12 Mental 
Component 
(SF12mental) 

3.62 

9 Age 4.23 Symptoms (Left knee, 
pain, aching or 
stiffness, ever had 
more than half the 
days of a month) 

1.86 

10 Smoking, pack years 3.24 Physical Activity 
Scale for the Elderly 
Score (PASE) 

1.80 

11 Kellgren Lawrence 
(KL) grade left knee 

2.90 Smoking, pack years 1.52 

12 Joint space narrowing 
(JSN) grade right 
knee-medial 

2.71 Age 1.52 

13 Education status 2.37 Center for 
Epidemiological 
Studies Depression 
(CESD) Score 

1.12 

14 Arthritis past medical 
history 

2.22 Arthritis past medical 
history 

1.05 

15 Joint space narrowing 
(JSN) grade left knee- 
medial 

1.52 Education status 0.91 

16 Analgesic medication 
(Salicylates, NSAIDs, 
COX2, Opioids, other) 

1.32 Meniscectomy, ever, 
right knee 

0.79 

17 Symptoms (Left knee, 
pain, aching or 
stiffness, ever had 
more than half the 
days of a month) 

1.19 Blood pressure 0.69 

18 Timed chair stands 
(Potential risk) 

1.11 Joint space narrowing 
(JSN) grade right 
knee-medial 

0.67 

19 Gender 1.03 Joint space narrowing 
(JSN) grade right 
knee-lateral 

0.65 

20 Symptoms (Right 
knee, pain, aching or 
stiffness, ever had 
more than half the 
days of a month) 

0.97 Living status alone/ 
with others 

0.49 

(continued on next page) 
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Left knee 
The performance metrics obtained for our models with nine pre

dictors were very close to those obtained from our model with 51 above- 
mentioned predictors. Our model with nine predictors had an AUC of 
0.951 (95 % CIs 0.935 to 0.964) using the Training Dataset at 2 years. 
The optimized parameters were as follows: maximum tree depth: 3; the 
number of boosting rounds: 50; the learning rate 0.2; the gamma setting: 
1; the subsample ratio of columns: 1; subsample: 0.5; and the minimum 
child weight: 5. The model at 4 years had an AUC of 0.942 (95 % CIs 
0.928 to 0.954) at 4 years. The optimized parameters were as follows: 
maximum tree depth: 3; the number of boosting rounds: 50; the learning 
rate 0.2; the gamma setting: 2; the subsample ratio of columns: 0.5; 
subsample: 1; and the minimum child weight: 3. 

When applied to the Validation Dataset, we determined the optimal 
threshold values from the Validation Dataset as 0.045 and 0.085 for the 

2-to-2.5-year and 4-to-5-year models, respectively. Our model with nine 
predictors had an AUC of 0.858 (95 % CIs 0.805 to 0.910) at 2 years 
(Fig. S3a) and an AUC of 0.870 (95 % CIs 0.831 to 0.904) at 4 years 
(Fig. S3b). The F1 scores for the positive class were 0.887 at 2 years and 
0.885 at 4 years. 

Performances on the External Validation Dataset, using the threshold 
values obtained from the Validation Dataset, showed that our model 
with nine predictors yielded an AUC of 0.822 (95 % CIs 0.781 to 0.860) 
at 2.5 years (Fig. S3c) and 0.811 (95 % CIs 0.780 to 0.842) at 5 years 
(Fig. S3d). The F1 scores for the positive class were 0.911 at 2.5 years 
and 0.890 at 5 years. 

Online tool 

Using our models with fewer predictors, we developed an online tool 
that predicts the development of esKOA at 2-to-2.5 years and 4-to-5 
years, specifically for either the right or the left knee. On entering the 
inputs for those predictors, the tool then provides the probabilities of 
developing esKOA as a percentage and binary (i.e., high risk or low risk). 
The tool also allows to change the default threshold values (i.e., 0.040 
and 0.073 for the 2-to-2.5-year and 4-to-5-year models for the right 
knee, respectively, and 0.045 and 0.085 for the 2-to-2.5-year and 4-to-5- 
year models for the left knee, respectively). 

Comparison with conventional trial participant selection 

Our results indicate that our machine learning models significantly 
outperform conventional trial participant selection methods in accu
rately identifying individuals at risk of developing esKOA (Table 3). The 
true positive rates (TPR) for the machine learning models are 2.7 to 3.6 
times higher than those achieved by conventional methods across both 
the OAI and MOST datasets for the forecast periods of 2-to-2.5 years and 
4-to-5 years. For instance, using the machine learning model, 75–90 % 
of participants who would develop esKOA within 4-to-5 years were 
correctly identified (based on the TPR), in stark contrast to only 24–25 % 
identified by conventional selection methods. Furthermore, the machine 
learning models demonstrated superior performance as evidenced by 
higher F1 scores, indicating enhanced precision and recall in identifying 
participants at risk. 

Discussion 

Our study successfully utilized a machine learning model to predict 
the onset of esKOA with notable accuracy. With AUCs exceeding the 
threshold of 0.7 which was deemed to offer clinically satisfactory per
formance at 2.5 and 5 years, and robust F1 scores at the same intervals, 
the high predictive capability of our model is evident. Moreover, our 
models with fewer predictors had similar performance metrics as models 
with 51 predictors. Except for two radiographic variables (KL grades for 
the right and left knees), other remaining variables (8 for the right and 7 
for the left knees) can be obtained in a clinical setting. Using the models 
with fewer predictors, we created a practical online tool that predicts the 
development of esKOA in 2-to-2.5 years and 4-to-5 years. Notably, by 
moving away from the limitations and complexities of TKR-based de
cisions, our model introduces a transformative approach to predicting 
progression to severe KOA. Our simulated participant selection showed 
that our models were superior in identifying the individuals who will 
progress to esKOA compared to conventional trial selection. Our online 
tool (available at: https://eskoa.shinyapps.io/webapp/) could have 
important implications in future clinical trials by improving their effi
ciency in selecting participants. 

Previously, Dunn et al. [29] developed a risk score algorithm to 
predict the progression of esKOA using data from the OAI. Their defi
nition of esKOA, which was adopted from Driban et al. [18]. included 
information on knee range of motion and instability. They achieved a 
similar AUC (0.87) for both 2 and 4 years as our study, using internal 

Table 2 (continued ) 

No 2-to-2.5 years 4-to-5 years 
Predictor Relative 

Influence 
(%) 

Predictor Relative 
Influence 
(%) 

21 Blood pressure 0.91 Analgesic medication 
(Salicylates, NSAIDs, 
COX2, Opioids, other) 

0.43 

22 Joint space narrowing 
(JSN) grade left knee- 
lateral 

0.74 Symptoms (Right 
knee, pain, aching or 
stiffness, ever had 
more than half the 
days of a month) 

0.38 

23 Employment status 0.65 Heart attack 0.28 
24 Marital status 0.53 Timed chair stands 

(Potential risk) 
0.25 

25 Living status alone/ 
with others 

0.51 Meniscectomy, ever, 
left knee 

0.21 

26 Heart attack 0.49 Medical history - 
Asthma 

0.19 

27 Limited activity 
(Either knee, limited 
activities due to pain, 
aching, or stiffness, 
past 30 days) 

0.47 Gender 0.14 

28 Medical history - 
Asthma 

0.47 Employment status 0.11 

29 Ethnicity 0.41 Stroke 0.08 
30 Injury (Left knee, ever 

injured badly enough 
to limit the ability to 
walk for at least two 
days) 

0.35 – – 

31 Arthroscopy, ever, left 
knee 

0.34 – – 

32 Joint space narrowing 
(JSN) grade right 
knee-lateral 

0.33 – – 

33 Osteoporosis 
medication (Vitamin, 
Bisphosphonate, 
Estrogen, Raloxifene, 
Calcitonin, 
Teriparatide) 

0.23 – – 

34 Meniscectomy, ever, 
right knee 

0.22 – – 

35 Kidney problems 0.17 – – 
36 Stroke 0.14 – – 
37 Medical history - 

Diabetes 
0.10 – – 

38 Injury (Right knee, 
ever injured badly 
enough to limit the 
ability to walk for at 
least two days) 

0.10 – – 

39 Center for 
Epidemiological 
Studies Depression 
(CESD) Score 

0.08 – –  

Z. Salis et al.                                                                                                                                                                                                                                     

https://eskoa.shinyapps.io/webapp/


Seminars in Arthritis and Rheumatism 66 (2024) 152433

10

validation data. However, their study lacked external validation, unlike 
ours, which was validated using the MOST dataset. Additionally, their 
algorithm depended on knee range of motion and instability informa
tion, which OAI does not measure annually. Our study avoids this lim
itation by not relying on knee range of motion and instability 
information. Furthermore, while they utilized information from the 

opposite knee, their methodology was dependent on the selection of a 
target knee. In contrast, our study evaluates the progression of esKOA in 
both knees of an individual. To our knowledge, only one other study by 
Widera et al. [6] developed a model to predict the progression of KOA 
based on combining radiography and symptom outcomes, as in our 
study. While their performance, measured using the F1 score, was 

Fig. 3. Receiver operating characteristic (ROC) curves showing the performance of models for prediction of esKOA at 2-to-2.5 years and 4-to-5 years, for the right 
knee, using ten predictors. (A) Validation Dataset (OAI) at 2 years. (B) Validation Dataset (OAI) at 4 years. (C) External Validation Dataset (MOST) at 2.5 years. (D) 
External Validation Dataset (MOST) at 5 years. Red Points show the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for the selected thresholds. 
AUC: Area Under Curve; MOST: Multicenter Osteoarthritis Study; OAI: Osteoarthritis Initiative. 
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commendable (0.584 with Cohort Hip and Cohort Knee Study dataset 
and 0.689 with OAI), it still fell short of our results. A critical distinction 
is their reliance on data collection over extended periods, which in
troduces practical complexities due to logistical challenges such as 
limited equipment access and participant availability. In contrast, our 
esKOA model efficiently predicts progression individually, offering a 
more streamlined and practical approach. Additionally, the study by 
Widera et al. [6] applied one-hot encoding (a method of data trans
formation provided to machine learning algorithms to improve pre
dictions) broadly, even to continuous attributes, which can potentially 
limit the adaptability of their decision trees to new data. Furthermore, 
they acknowledged certain issues of feature misuse in their methodol
ogy. On the other hand, our esKOA model emphasizes precise data 
encoding and judicious feature selection, enhancing its precision and 
potential applicability in clinical scenarios. 

Our study differs from previous models that predicted the progres
sion of KOA based on incidence of TKR in several ways. Several studies 
also investigated the prediction of TKR but were not externally validated 
and mainly used the OAI dataset [9–11,13,14,22], and some required 
magnetic resonance images (MRI) data [13]. One notable study by 
Mahmoud et al. [12] aimed at predicting the need for TKR within 2 and 
5 years, using OAI for training and MOST data for external testing, 
similar to our study. They achieved AUCs of 0.913 and 0.873, respec
tively, using the Gradient Boosting Machine (GBM) model. While their 
AUC was higher than ours, their positive predictive ability was lower 
(F1-score: 0.171 and 0.287 for 2 and 5 years, respectively). Rajamohan 
et al. [15] also used OAI and MOST datasets for training and validation 
to predict future TKR, but they require MRI data for prediction. 

Our tool has the potential to significantly impact clinical trials in 
KOA. Our models outperformed conventional selection methods by 
accurately identifying candidates who would develop esKOA with 2.7 to 
3.6 times greater precision. This potentially equates to a reduction in 
sample sizes, compared to conventional selection methods. This 
enhanced predictive capability can streamline participant selection for 
trials focused on disease-modifying drugs or other interventions, 
ensuring that chosen participants are more likely to exhibit disease 
progression. Additionally, future studies should explore using this tool 
as an outcome measure in clinical trials with a shorter duration or 

participants with milder disease. For instance, the efficacy of a 3-month 
intervention could be gauged by observing changes in the likelihood of 
developing esKOA at 2.5 and 5-year intervals, measured both at baseline 
and trial conclusion. This allows for a quicker, yet still reliable, assess
ment of intervention efficacy, thereby accelerating clinical research. 
Given its versatility, our tool has the potential for broad applications in 
KOA research and clinical practice. 

Despite the promising results, our study is not without limitations. 
The dominant demographic, leaning towards older, female, and white 
participants, may restrict the generalizability of our findings to a 
broader populace. Moreover, the United States of America (USA)-centric 
datasets utilized necessitate further investigations to validate the 
applicability of our models beyond the USA. We acknowledge the 
imbalance in our dataset, with fewer instances of esKOA. While we did 
explore balanced alternatives using techniques such as Synthetic Mi
nority Over-sampling Technique (SMOTE) and Adaptive Synthetic 
(ADASYN) methods, we found that the original unbalanced dataset, with 
its naturally higher sample size, provided better predictive performance 
for esKOA. Finally, one limitation of our study is the lack of MRI features 
in our predictive models. Incorporating MRI data, which provides 
detailed insights into joint structures, could enhance the predictive ac
curacy of esKOA. We recommend that future studies consider including 
MRI data to improve the prediction of esKOA development. 

In summary, our study unveils a robust, externally validated ma
chine learning tool proficient in predicting the onset of esKOA using 
transparent and readily available data. Our tool has the potential to 
improve the efficiency of osteoarthritis trials. Subsequent research could 
focus on refining these models in diverse global populations. 
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