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Abstract

Background: The increasing number of sequenced insect and vertebrate genomes of variable
divergence enables refined comparative analyses to quantify the major modes of animal genome
evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions
(losses), which can reveal lineage-specific traits.

Results: To consistently quantify losses of orthologous groups of genes, we compared the gene
repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that
represent insect orders outside the previously sequenced Diptera. We found hundreds of lost
Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses
correlates well with the species' rates of molecular evolution and radiation times, without
distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this
extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in
each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly
20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data
also suggests that the Urbilateria genome contained more than 7,000 genes.

Conclusion: Our results indicate that the seemingly higher number of observed gene losses in
insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound
effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.

Background retrotransposition [3], whereas unequal homologous recom-
The evolution of gene repertoires is mostly driven by gene  bination copies DNA segments of varying length. Gene prolif-
duplications and gene losses. Duplications can arise by short- eration, on the other hand, is balanced by gene losses, either

range copying of individual genes or of longer multigene DNA  through acquiring deleterious mutations that eventually dis-
segments, or even result from whole genome duplications able the genes or as a consequence of unequal homologous
[1,2]. Copies of single genes are frequently associated with ~ recombination.
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Massive gene losses of olfactory receptors were reported in
human and ape families compared to mice [4], which have
been speculated to be linked with the acquisition of full tri-
chromatic vision, lowering the demand for olfaction [5]. Ohl-
son's 'less-is-more' hypothesis emphasizes that loss-of-
function mutations may play a beneficial role in evolution [6];
an example for adaptive gene loss is the near-complete fixa-
tion of a null allele of CASP12 in the human lineage [7], pre-
sumably to confer protection from severe sepsis. Gene losses
have also been implicated in reproductive isolation of Dro-
sophila races [8].

The fast growing number of available vertebrate and insect
genomes allows increasingly refined comparisons and the
quantification of the major modes of animal genome evolu-
tion. The recent sequencing of the honeybee [9] and the Tri-
bolium beetle [10] genomes extends insect genomics from
only Dipteran species to the orders of Hymenoptera and Cole-
optera, which radiated about 300 million years ago [11]. This
allowed us to quantify and date losses of orthologous groups
across ten bilaterian species in the first analysis that consist-
ently compares five insects (phylum Arthropoda) and five
vertebrates (phylum Chordata). Previous studies of gene
losses have been focussed on mammals [12], vertebrates [13],
or included only a single insect [14], or two dipterans [15].
Reassuringly, our analysis recovered previously published
cases of gene losses, such as the loss of DNA methylation [16],
and the heavy rearrangement of the circadian clock [17] in
Diptera.

Results

Quantification of ortholog losses

To systematically identify gene losses in vertebrate and insect
representatives of Bilaterian species, we delineated ortholo-
gous groups based on all-against-all Smith-Waterman com-
parisons using the official gene sets of five vertebrates
(human, mouse, opossum, chicken and pufferfish) and five
insects (fruitfly, malaria mosquito, dengue/yellow fever mos-
quito, honeybee and red flour beetle) (see details in Materials
and methods). The species choice aimed to maximize the phy-
logenetic coverage with similar lineage radiation times in
both deuterostomia and protostomia. The fraction of genes
with recognized orthology among these species represents
about 70-80% of their predicted gene pools. The comparative
analysis of the shared content of gene repertoires across these
species is discussed in the study presenting the analysis of the
first beetle genome, that of Tribolium castaneum [10], and
here we focus on the analysis of losses of orthologous genes.
According to their phyletic distribution and gene copy-
number in each of the species, we considered the following
types of orthologous groups reflecting different selection
pressures: the universal single-copy orthologs (U); the uni-
versal multiple-copy orthologs (N); patchy orthologs (P) that
are present in both phyla in at least three species, in single or
multiple copies; and insect- or vertebrate-specific orthologs (I
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and V, respectively). While universal single-copy orthologs
(U) are evolving under a distinct pressure for copy-number
control, the number of universal multiple-copy orthologs (N)
under similarly strict copy-number control is extremely low
(only six groups have equal multiple-copy gene number in at
least nine species). Although U, N and P orthologs must all
have been present in the last common ancestor of insects and
vertebrates, the Urbilateria, losses in these fractions occur at
different rates.

Figure 1b shows the size distribution of the orthologous frac-
tions and the number of losses in each species and ortholog
category. The tree shown in Figure 1a illustrates the species
phylogeny, which allowed us to infer the number of losses on
the internal branches, assuming evolutionary parsimony,
which minimizes the number of events required to explain the
phyletic gene distribution in each orthologous group. The
phylogenetic tree was reconstructed using maximum-likeli-
hood analysis of the concatenated alignment of 1,150 univer-
sal single-copy orthologs [10] where the lengths of the
branches are proportional to the number of accumulated
mutations, allowing us to compare the gene loss rates with the
rates of lineage divergence (measured as the rate of protein
substitutions). For the branches closest to the root, the num-
bers of gene losses cannot be inferred without an additional
outgroup.

The analysis identified hundreds of differentially lost Urbila-
terian genes of U, N and P orthologs in each of the species (see
table of Figure 1). Overall, about 40% of ancient orthologous
groups have been lost in at least one (out of the ten) species,
illustrating the extent of the evolutionary flexibility of gene
pools. Moreover, there are dozens of genes lost in each of the
species that otherwise appear as universal single-copy
orthologs. Koonin et al. [14] noted that nearly all pan-eukary-
otic single-copy orthologs are subunits of known protein
complexes; nevertheless, the observed losses indicate that
even seemingly tightly constrained genes are, to a certain
degree, dispensable in evolution.

Number of losses correlate with molecular divergence
The inferred distribution of losses over the internal branches
of the species phylogeny allowed us to correlate them with the
estimated geological time of species radiations and the molec-
ular evolutionary rate in each of the lineages. The molecular
rates of evolution were quantified using genome-wide maxi-
mum-likelihood analysis of amino acid substitutions in the
well aligned regions of single-copy orthologs (see Materials
and methods). Figure 2a displays the correlation of the
number of losses of the different types of orthologs plotted
versus the protein sequence divergence. Losses of U and N
orthologs (Figure 2b) occur only at the terminal branches as
the fraction definition requires presence of the orthologous
genes in at least nine species, whereas losses of P orthologs
(Figure 2¢) occur at both internal and terminal branches. Cor-
relations are statistically significant for all categories (see
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Figure |

Quantification of orthologous gene losses in insects and vertebrates. (a) The phylogenetic relations among the organisms are illustrated by the tree, with
branch length proportional to the rate of amino acid substitutions estimated using the maximume-likelihood approach. The number of orthologous groups
lost on the internal phylogenetic branches were inferred using the Dollo parsimony principle and are shown on the phylogenetic tree above branches for
the I/V fraction, and below branches for the P fraction. *The presence in two species was sufficient to infer losses of I/V orthologous groups. (b) The
number of orthologous group losses in the five main categories: U, universal single-copy genes (blue, present in all species except the one in question); N,
universal multiple-copy genes (orange, present in at least nine species); P, patchy orthologs (yellow, present in both phyla in at least three species, in one
or multiple copies); I/V, insect- or vertebrate-specific orthologous groups (present only in insects (green) or vertebrates (violet), in at least three species.
The dark parts of the bars depict the number of contemporarily present orthologous groups, and the light parts depict the number of inferred losses.
AGAM, Anopheles gambiae; AAEG, Aedes aegypti; DMEL, Drosophila melanogaster; TCAS, Tribolium castaneum; AMEL, Apis meliferia; HSAP, Homo sapiens;
MMUS, Mus musculus; MDOM, Monodelphis domestica; GGAL, Gallus gallus; TNIG, Tetraodon nigroviridis.

Figure 2 legend for details), and there is no distinction
between insects and vertebrates. Moreover, although the
absolute numbers of insect- and vertebrate-specific losses
appear different, they in fact follow the same trend when nor-
malized to the total number of the phylum-specific ortholo-
gous groups (Figure 2d; see Additional data file 1 for a graph
with absolute numbers). The different slopes of the regres-
sion lines reflect the varying stringency of evolutionary con-
straints that differ between the postulated types of orthologs.
Despite the difference in the absolute numbers of lost U and
N orthologs, their rates of loss are indistinguishable when
normalized to the number of such orthologous groups, indi-
cating the same level of purifying selection (Figure 2b). The
data show that P orthologs are about 8-fold less constrained
than U and N orthologs; this roughly corresponds to about
20% of the common Bilateria gene pool evolving 8 times

faster than the remaining, more constrained fraction. I and V
orthologs appear to be about three-fold more constrained
than P orthologs, which is not surprising as they may repre-
sent a similar mixture of a slower evolving fraction of 80%
and a faster evolving minority. The level of correlation
between the number of losses and the protein sequence diver-
gence rates (Figure 2) is similar to that observed between
other genome-wide measures of species divergence [18].
Chicken was excluded from this and all following analyses as
a clear outlier (see Discussion).

Insects evolve two to three times faster than
vertebrates

Protein sequence divergence is significantly larger between
insects than between vertebrates (see the longer branch
lengths in Figure 1; Mann-Whitney U test, p = 0.009).

Genome Biology 2007, 8:R242
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Figure 2

The number of ortholog losses correlates with the rate of amino acid substitutions. The number of orthologous group (U, N, P, I/V) losses normalized
with the total size of the fraction is plotted versus the branch length of the maximum-likelihood phylogenetic tree (Figure I). (a) All ortholog types
combined; (b) U and N orthologs; (c) Patchy orthologs; (d) Insect- and vertebrate-specific orthologs. Filled symbols denote vertebrates and open symbols
denote insects. Spearman rank correlations: U orthologs, rs = 0.79, p = 0.015; N orthologs, rs = 0.67, p = 0.05; P orthologs, rs = 0.90, p < 0.01; I/'V
orthologs, rs = 0.83, p < 0.01. Regression slopes for U and N are not statistically different. Anc, ancestral.

Similarly, this is reflected in the observation of significantly
more frequent gene losses in insects than in vertebrates
(Mann-Whitney U test: N orthologs, p = 0.016; P orthologs, p
= 0.04). In comparison with vertebrates, the rate of evolution
in bee and beetle is about two-fold higher and up to three-fold
higher in Diptera. This especially high rate of evolution in
Diptera, particularly at the base of the Dipteran radiation, has
been noted previously [19].

Lower estimate of the Urbilateria number of genes
Despite inherent dating uncertainties, the correlation
between the number of lost orthologous groups and diver-

gence times is significant for U and P orthologs (Spearman
rank correlations: U orthologs, rs = 0.84, p = 0.007; N
orthologs, rs = 0.58, p = 0.11; P orthologs, rs = 0.57, p = 0.03),
indicating that losses of ancient genes occur in a roughly
clock-like manner. The good correlation between the rate of
losses with molecular rate and time indicates their stochastic
nature. Projection of these trends as shown in Figure 3 to 600
million years ago (MYA), presumably dating the radiation of
insects and vertebrates, suggests that over 1,000 (95% confi-
dence interval 799-1,456) Urbilaterian genes have been lost
from insects and only half this number (95% confidence inter-
val 404-678) from vertebrates. This leads to the lower

Genome Biology 2007, 8:R242
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Figure 3

Extrapolation of number of ancient (U, N and P) orthologs to Urbilateria. The regression lines (and their 90% confidence intervals) are drawn using the
number of U, N and P orthologous groups in current species, the estimates for putative ancestors, including the inferred number of losses (Figure 1), and
the assumed split of insects and vertebrates about 600 MYA against the species radiation time. Remarkably, the naive counting of orthologous groups that
have at least one insect and at least one vertebrate member results in 7,1 14 likely Urbilateria genes.

estimate of the number of Urbilaterian genes of just over
7,000 (remarkably, we obtained 7,114 orthologous groups
with at least one insect and one vertebrate member). This
estimate, however, does not take into account: genes that cur-
rently appear as insect- or vertebrate-specific, many of which
could be of Urbilaterian origin; closely related Urbilateria
paralogs that remain unresolved and are likely grouped
together in N groups; as well as fractions of fast diverging
genes that escaped our orthology classification.

Functional load of losses

Recovered known facts as positive controls

Reassuringly, closer inspection of several of the predicted
cases of lost genes pointed to recently published findings of
lineage-specific biology.

Hedgehog signaling pathway rearrangements in Drosophila
Hedgehog signaling pathway rearrangements in Drosophila
have been reported where orthologs of human Sil, Hip and

Gas1 are missing from Drosophila [20], and homologs of
polaris/TG737 (nompB) and Kif3a (Klp64D) appear to have
roles unrelated to hedgehog signaling [21,22].

Sid-1/tag-130 gene loss in all Diptera

Sid-1/tag-130 genes have been lost in all Diptera but are
present in bee and Tribolium as reported by Weinstock et al.
[9]. Sid-1 is implicated in the cellular import of RNA interfer-
ence signal and enables passive uptake of double-stranded
RNA (yet, Sid-1 is likely to be a Caenorhabditis elegans
invention as its inparalog, TAG130, is less derived (Additional
data file 2)).

DNA-methyltransferases DNMT| and DNMT3B lost in the
ColeopteralDiptera ancestor

DNA-methyltransferases DNMT1 and DNMT3B have been
lost in the Coleoptera/Diptera ancestor, consistent with their
loss reported in Diptera [23] and their surprising presence in
honeybee [9,16].

Genome Biology 2007, 8:R242
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Losses in Tribolium and its (Coleoptera/Diptera) ancestor mapped to pathways using human orthologs

Pathway Source  Genes Total Onlyin Significance
beetle

Neuroactive ligand-receptor interaction KEGG NPFFRI, NPFFR2, BZRP, TSPO, GALRI, GALR2, GALR3 6 6 0.099
ABC transporters - general KEGG  ABCAI, ABCA4, ABCAI2, ABCC5, ABCCI2 5 3 4.73E-005*
Oxidative phosphorylation KEGG  ATP6VOE, UCRC (7.2 kDa), NDUFA7, COX7C 4 4 0.04
Cell cycle KEGG  CDC7, CCNEI, DBF4 3 3 0.12
Folate biosynthesis/starch and sucrose metabolism  KEGG RAD54B, SETX 2 2 0.06
Alkaloid biosynthesis || KEGG  DDHDI, SLC27A2 2 0 0.02t
Regulation of actin cytoskeleton KEGG FGDI, IQGAPI 2 0

Cholera - infection KEGG ATP6VOEI, TRIM23 2 | 0.06
Purine metabolism KEGG PDEIC, POLR2L 2 2 0.49
Ribosome KEGG  RPL29, RPL39 2 2 0.53
Neurodegenerative disorders KEGG BCL2LI, NGFR 2 0 0.06
Propanoate metabolism KEGG  MLYCD, SLC27A2 2 0 0.07
Methionine metabolism KEGG DNMTI, DNMT3B 2 0

Oxidative stress induced gene expression via Nrf2  Biocarta HMOXI, NGFR 2 | 0.02t

The statistical significance of the coordinated losses of at least two genes per pathway was calculated using hypergeometric test (* p < 0.01,tp < 0.05).

A candidate insect telomerase reverse transcriptase
A candidate insect telomerase reverse transcriptase (TERT) is
present in honeybee and Tribolium but absent in all Dipter-
ans. The absence of TERT in Diptera seems to be correlated
with the loss of telomeric TTAGG repeats [24].

Sterol metabolism, NAD biosynthesis, and other losses

Sterol metabolism, NAD biosynthesis, and other losses pro-
posed earlier from the comparison of the fly and the mosquito
genomes [23] seem to have been lost in all insects sequenced
so far, that is, before the appearance of holometabolous
insects. Exceptions are a dihydroxyacetone kinase 1 lost from
both Drosophila and Anopheles, a C-5 sterol desaturase and
a histidine ammonia-lyase present in only Tribolium and two
genes present in only honeybee, an ornithine carbamoyl-
transferase and a malonyl-CoA decarboxylase.

Novel case stories

Below we describe some of the identified losses that are likely
to have had an impact on the functional divergence of the lin-
eages, exemplifying losses of different types of orthologs,
from the most conserved single-copy genes to orthologs with
a highly patchy phylogenetic distribution. It has been sug-
gested that secondary gene losses can be driven by the losses
of key players of particular pathways or complexes that disa-
ble their functionality [25-27]. Hence, we mapped losses to
the characterized biochemical pathways annotated for
human orthologs; the results for Tribolium and its ancestor
are overviewed in Table 1. However, having low numbers of
losses per pathway [26], we concentrated more on providing
examples of losses of directly interacting genes, reported for
Drosophila from protein-protein interaction screens [28] and
literature co-citations via human orthologs [29].

Losses of universal single-copy orthologs

An example of a universal single-copy ortholog missing in
Drosophila is a 35 kDa protein associated with U11 snRNPs.
U11 and Ui2 are components of the minor spliceosome
responsible for the splicing of a small number of U12-type
introns (<1% in both humans and flies) [30]. The minor spli-
ceosome is widely conserved from plants to humans, includ-
ing most insects but absent from C. elegans. Lack of a clear
ortholog of U11 snRNA and the associated 35 kDa protein has
been initially proposed [31], but Schneider et al. [32] identi-
fied a highly divergent U11 snRNA. The 31 kDa and 35 kDa
proteins seem to be missing from all Drosophila species and
a 25 kDa protein is absent from Diptera [33]. Interestingly,
the loss of U11/U12 spliceosomal proteins in Drosophila is
accompanied by the loss of the majority of U12-type introns
(33,341

Another example of a universal gene that seems to be missing
from the Drosophila genome is sortilin-related receptor LR11
(also known as SorLA), a member of the low-density lipopro-
tein receptor family. LR11 binds low-density lipoprotein, the
major cholesterol-carrying lipoprotein of plasma, and trans-
ports it into cells by endocytosis. Human LR11 also regulates
trafficking of amyloid precursor protein and its expression is
decreased in the brain of Alzheimer's disease patients [35].

Losses of universal multi-copy orthologs

An example is the Cdcy kinase and its regulatory subunit Dbfg
implicated in triggering DNA replication in G1 phase through
phosphorylation of Mcm proteins [36]. Cdcy is essential in
yeast in contrast to mice where homozygous null mutants for
the Cdc7 ortholog Nr2c2 show impaired spermatogenesis
[37]. Cdcy is a universal single-copy gene with two fly para-
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logs whereas Dbf4 is present in two copies in humans and
opossum. We confirmed the loss of both genes in Tribolium
by tBlastn search and phylogenetic analysis (Additional data
file 3). Cdc7 is also missing from the current Anopheles anno-
tation but tBlastn searches identified a Cdc7 candidate in the
genome. Dbfg appears to be missing from the Anopheles and
Tetraodon genomes. Interestingly, in yeast an allele of the
gene MCM5 (CDC46) has been identified that bypasses the
requirement for CDC7/DBF4 [38]. Although the Tribolium
MCMs5 ortholog TC_09146 does not feature the same muta-
tion, P86L, it is conceivable that a similar mutation has ren-
dered CDC7/DBF4 disposable in Tribolium.

Another example of a loss of an otherwise universal gene is
the Tribolium ortholog of human ATP-binding cassette trans-
porter A1 (ABCA1). ABCA1 is a cholesterol efflux transporter
and is also required for engulfment of apoptotic cells by mac-
rophages in mice and C. elegans [39,40]. In humans, the
turnover of ABCAL1 is regulated by Alphai-syntrophin [41],
and both genes encoding these proteins appear to be missing
from the beetle genome.

Losses of patchy and insect-specific orthologs

We observed numerous losses in Diptera, many of which
seem to be involved in the ubiquitin cycle, DNA repair (also
reported in [31]), actin cytoskeleton and transcription control
(Additional data file 4), which may point to substantial rear-
rangements of the ancestral pathways. An intriguing example
is the BRCC complex, a complex with ubiquitin E3 ligase
activity known to be involved in DNA repair, cell cycle regula-
tion and homology-directed repair in human that has lost
BRCA1, RBBP-8 and BRCC3 in the Dipteran lineage.

An example of insect-specific orthologous groups lost in Dip-
tera are genes associated with oxidoreductase activity, includ-
ing Aldo/keto reductases and several FAD dependent
oxidoreductases; this category of genes was enriched among
the 160 Diptera gene losses in a comparative Gene Ontology
(GO) analysis with the Tribolium genome (Additional data
file 5).

Extreme cases: exclusive insect models of human genes

At extremes, each novel insect genome sequence uncovers
previously invisible orthologous gene relationships to human
genes (see [10] for venn diagram that shows how many new
orthologous relations are uncovered by the honeybee and
beetle genomes). For example, we identified 45 orthologous
groups shared between honeybee and at least one vertebrate
but lost in the Coleoptera/Diptera ancestor, for example, an
ortholog of RAD18 (GB-14468) that is an E3 ubiquitin-pro-
tein ligase involved in postreplication repair of UV-damaged
DNA.

To complement the initial analysis of the Tribolium genome,
we further identified 62 genes that are present in all verte-
brates and Tribolium but lost from the other four insect
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Expression pattern of the F-box gene during embryogenesis of the beetle
T. castaneum. (@) F-box gene TC_04309 is initially expressed in the germ
rudiment at the rims of the invaginating mesoderm, a position where
activated Map-kinase is also seen [76]. Expression is strongest in the
posterior (white arrow) and weakens towards the anterior. Ventral view,
anterior is up posterior points down. Hl, head lobes. (b) Expression is
seen as spots in the thoracic legs (arrowhead), at the base of the labral
head appendages (small arrow head) and in segmentally repeated spots in
the lateral body wall. T3, thoracic segment 3. Only the anterior half of the
embryo is shown. (c) At a similar stage as shown in (b) where all body
segments are present, the F-box gene is expressed in the anlagen of the
hindgut (arrow). (d) When the legs have grown longer, F-box gene
expression is extended covering the distal end. As seen in (c, d),
expression in the labrum, in the hindgut-primordium and weakly at the
lateral sites of the abdominal segments persists. (e€) The hindgut has
invaginated and grows out, forming a tube where the F-box gene is
expressed in its posterior, proximal end around the future posterior gut
opening (arrow). (f) At the retracted germ band stage, F-box is expressed
around the anterior gut opening (white arrow) that has formed between
the head lobes. (g) In the same embryo shown in (f), F-box gene
expression is seen in the walls of the hindgut (arrow).

genomes. Examples include Yipf3, a natural killer cell-spe-
cific antigen expressed during embryonic hematopoiesis in
humans, and CENP-S, which in humans is a component of a
centromeric protein complex, CENPA-CAD [42], that
replaces histones in centromeres. In Tribolium, the orthologs
of the other five complex members [42] seem to be absent
from the genome, indicating a different mode of action.
CRLF3, a cytokine receptor-like factor 3, has also been lost in
all insects but Tribolium, as well as a regulator of the NF-xB
pathway, Tgf, which positively regulates I-kappaB kinase.
Because of structural and functional similarities in the mode
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of activation between insect and vertebrate NF-xB/Rel tran-
scription factors, they are thought to have countered infec-
tions in Urbilateria [43]. Another Tribolium gene,
TC_043009, absent in all sequenced arthropods, is an ortholog
of the human F-box only gene 7 (Fbxo7). The tBlastn search
and phylogenetic analysis of FBXO7 confirmed the lack of
clear orthologs in other insects (Additional data files 6 and 7).
FBXO7 is a component of modular E3 ubiquitin protein
ligases called SCFs and functions in phosphorylation-
dependent ubiquitination [44]. Human FBXO7 was also
reported to positively regulate the activity of cyclin D/CDK6
in order to facilitate entry into the cell cycle [45]. In Dro-
sophila, the cyclin D/CDK6 complex stimulates cell growth as
well as proliferation [46,47]. Amniotes have two cdksg
orthologs due to a gene duplication (cdk4 and cdké6) and two
cyclin D orthologs. Tribolium also encodes a cdk4 ortholog
and two cyclin D orthologs, in contrast to the other insects,
which have only one cyclin D ortholog (Additional data file 8).
It is tempting to speculate that the presence of FBXO7 and a
second cyclin D in the beetle are functionally linked.
TC_04309 is expressed in limbs and the hindgut of Tribolium
embryos (Figure 4). The function of TC_04309 is unknown
but, taken together, it is conceivable that it controls cell pro-
liferation in a tissue-specific manner as in mammals.

Robustness of estimates

Several factors can lead to an overestimation of gene losses:
incomplete annotations, genome sequence gaps and the lim-
ited sensitivity of protein sequence comparison methods.
Reassuringly, our estimates of number of gene losses for Dro-
sophila and human, the two most extensively studied and
curated model organisms, are similar to that of automatically
annotated species, indicating a fairly good quality of genome
annotations and their relative completeness. The chicken
genome, however, shows exceptionally high numbers of
losses in all categories that are likely to be overestimates due
to an incomplete genome sequence that was estimated to be
missing 5-10% of the genes [48], and, therefore, it was not
taken into account in the analysis presented above. A closer
inspection of 'missing' Tribolium genes from the universal
single-copy and insect-specific fraction allowed us to correct
about 30 Tribolium genes overlooked by the automatic anno-
tation and some 150 merged genes. Nevertheless, most 'miss-
ing' genes were confirmed to be absent from the genome
using tBlastn searches, indicating that the Tribolium annota-
tion is nearly complete for evolutionarily conserved genes.
Orthology misclassifications can also lead to inflated esti-
mates when orthologous groups are wrongly split up, or to
underestimates when several orthologous groups are spuri-
ously pooled together, 'hiding' losses. We compared the
results of our analysis with an independently derived and
hand curated set of about 100 gene losses in Diptera (Hugh
Robertson, personal communication). Detailed phylogenetic
examination revealed only two to three cases of likely errors
in our high throughput orthology identification pipeline and
a few complicated cases that could not be resolved even using
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phylogenetic methods as the proteins were too short or too
divergent.

Discussion

We present here the quantification of losses of orthologous
groups in five vertebrate and five insect genomes. Lineage-
specific gene duplications result in multi-copy orthologous
groups or fine-grained gene families. Here we focused on
complete losses of such gene families (requiring all ortholo-
gous genes to be lost in a lineage). Members of an orthologous
group are likely to share overlapping functions, and a com-
plete loss of all representatives is more likely to have biologi-
cal consequences [49,50] than a loss of a specific gene
member. The parsimonious interpretation of the losses in the
context of the species phylogeny suggests hundreds of gene
losses on each branch of the tree. Diptera species lost the
most genes, and placentals the least.

We show that the higher numbers of lost genes in insects can
be explained by their higher rates of evolution as the loss rate
is positively correlated with the molecular rate of evolution
for each ortholog category and branch of the phylogeny.
Interestingly, losses normalized for evolutionary rate and
total number of orthologous groups are similar between
insects and vertebrates, even for I and V orthologs. Therefore,
one can not exclude that gene losses are mainly driven by neu-
tral evolution [51,52], which should be taken as the null hypo-
thesis until proven otherwise. Our data also suggest that
about 20% of the gene repertoire evolves 8 times faster than
the rest. The fact that the overall number of losses of ortholo-
gous groups is in agreement with the model of neutral evolu-
tion does not, of course, mean that all losses are selectively
neutral. In that respect, it is noteworthy that some of the lost
genes we discuss, such as Cdc7/Dbf4 or Fboxoy7, seem to act
as positive regulators.

Several hypotheses have been put forward to explain differ-
ences in evolutionary rates across species [53]. A high evolu-
tionary rate might simply reflect differences in mutation
rates. The known contributors to the rate of mutations, meta-
bolic rate [54] and generation time [55], are clearly different
between dipterans and mammals. In addition, differences in
DNA methylation, fidelity of DNA-repair mechanisms or the
production of DNA-damaging agents have also been sug-
gested to explain different mutation rates in different species
[53,56]. We found a number of genes implicated in DNA
repair missing from Diptera. Although the functional conse-
quences of these losses in Diptera are unknown, they might
contribute to an increased mutation rate. A second hypo-
thesis is that the efficiency of selection against deleterious
mutants varies across species, due to differences in effective
population size and/or mode of reproduction. Finally, rate
variation across lineages could be caused by species-specific
differences in the timing and frequency of adaptive evolution.
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Indeed, theoretical models [57,58] have proposed that evolv-
ability is a selectable trait.

Conclusion

We showed that the gene loss rate correlates well with rates of
molecular evolution, explaining the significantly higher
number of gene losses in insects. The data also can not reject
that gene losses are dominated by neutral evolution.

The hundreds of lost genes we identified along the phyloge-
netic tree suggest common rearrangements and rewiring of
ancient pathways and signaling cascades. Such global
approaches are suitable for generating further experimentally
testable hypotheses, and will lead to a better understanding of
global evolutionary trends and detailed functional differences
among lineages.

Materials and methods

Orthology classification

Protein sets were retrieved from Ensembl for Drosophila,
Anopheles and all vertebrates as of 4 August 2006. Tribolium
and Apis proteins were retrieved from Baylor College of
Medecine and Aedes proteins from VectorBase. The assign-
ment to orthologous groups was performed as described ear-
lier [9,59,60]. Namely, we retained the longest open reading
frame per locus and performed all-against-all comparisons
using the Smith-Waterman algorithm as implemented in Par-
Align [61] with default parameters. The orthologous groups
were then assembled from the best reciprocal hits (BRHs;
reciprocally best maching genes in between-genome-compar-
isons) applying a COG-like [62] procedure to join BRHs
across three or more species, going from the best scoring ones
until an E-value cut-off of 106, and keeping single BRH pairs
only with E-values less than 10-10, Furthermore, the ortholo-
gous groups were expanded by genes that are more similar to
each other within a proteome than to any gene in any of the
other species, and by very similar copies that share over 97%
sequence identity, which were identified initially using CD-hit
[63]. All proteins in a group were required to have aligned
regions overlapping by at least 20 residues to avoid the
'domain walking' effect.

Species tree

A maximum likelihood species tree was calculated using the
concatenated multiple alignments of 1,150 orthologs present
in exactly one copy in all the organisms studied here. Multiple
protein alignments were produced using muscle [64] and
confidently aligned regions were extracted using Gblocks [65]
with default settings. Individual protein alignments were
concatenated into a 336,069 amino acid superalignment that
was then subjected to maximum-likelihood analysis using the
JTT model (G4+I+F) as implemented in PhyML [66] and we
used Tree-Puzzle [67] to join separate bootstrap analyses. All
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shown branchings have at least 99% bootstrap support esti-
mated from 500 replicates.

Quantification of losses and correlation with other
traits

Species radiation dates were taken from the literature: for
insects from [18] and for vertebrates from [68,69]. We used
MatLab version 7.2 (MathWorks, Natick MA, USA) for statis-
tical analysis and data plotting. Regression lines were
required to cross the origin. For each category of orthologs,
the slopes of the regression lines for insects and vertebrates
were compared based on a Student's t-distribution and were
found not to be significantly different. Because traits were not
normally distributed, we used non-parametric Spearman's
correlation coefficients and Mann-Whitney U tests. Chicken
data were excluded from graphs and statistical tests (see
Discussion).

Manual analysis of case studies

Selected orthologous groups were examined manually as fol-
lows. The absence of Tribolium proteins was verified by
screening the Tribolium proteome, genome (assembled and
single reads) and expressed sequence tags using the Baylor
College of Medicine blast server [70]. All sufficiently similar
sequences, including members of other orthologous groups,
were aligned using muscle v3.6 [64] with default settings and
all positions containing gaps were trimmed from conserved
blocks using Gblocks [65]. Phylogenetic trees were con-
structed using maximum likelihood as implemented in
PhyML [66] using the JTT model of amino acid substitution,
a gamma distribution of rates over four rate categories and
100 bootstraps.

Pathway mapping and database searches

We used pathway annotations from the KEGG database [71],
mapping genes to Biocarta and co-citation analysis using
Webgestalt [29] web interface. For data mining we used
Ensembl [72], Swiss-prot/UniProt [73], Flybase [74], the
Interactive Fly [22] and Online Mendelian Inheritance in
Man [75] annotations.

Abbreviations

ABCA1, ATP-binding cassette transporter A1; BRH, best
reciprocal hit; CRLF3, cytokine receptor-like factor 3; GO,
Gene Ontology; I, insect-specific orthologs; MYA, million
years ago; N, universal multiple-copy orthologs; P, patchy
orthologs; TERT, insect telomerase reverse transcriptase; U,
universal single-copy orthologs; V, vertebrate-specific
orthologs.
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Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a graph showing
the correlation between the absolute number of lost ortholo-
gous groups and and the rate of amino acid substitutions.
Additional data files 2 and 3 provide the phylogenetic analysis
of SID-1 and CDCy, respectively. Additional data file 4 is a
table listing GO analysis of insect-specific orthologous groups
lost in all Dipterans. Additional data file 5 is a table listing
functionally linked genes coeliminated in the Diptera and
Drosophila lineages. Additional file 6 provides the phyloge-
netic analysis of Fboxo7/cdk4/cyclin D. Additional data file 7
is a figure showing the alignment of Fboxo7 proteins.
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