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Abstract

In this paper we discuss some statistical pitfalls that may occur in modeling cross-dependences
with copulas in financial applications. In particular we focus on issues arising in the esti-

mation and the empirical choice of copulas as well as in the design of time-dependent copulas.
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1 Introduction

In modern finance and insurance, the identification and modeling of dependence structures
between assets is one of the main challenges we are faced with. Dependence structures must
be unveiled for several purposes : control of risk clustering 2, pricing and hedging of credit
sensitive instruments, particularly n-th to default credit derivatives and Collateralized Debt
Obligations (CDO’s) 3, pricing and hedging of basket derivatives and structured products 4,
credit portfolio management ®, credit and market risk measurement 6. In that respect, copulas
have been recently recognized as key tools to analyze dependence structures in finance. They
are becoming more and more popular among academics and practitioners because it is well
known that the returns of financial assets are non-Gaussian and exhibit strong nonlinearities.
Clearly, multivariate Gaussian random variables do not provide suitable building blocks from
an empirical point of view, and copulas appear as a natural modeling device in a non-Gaussian
world 7.

The concept of “copulas” or “copula functions” as named by Sklar [58] originates in
the context of probabilistic metric spaces. The idea behind this concept is the following:
for multivariate distributions, the univariate margins and the dependence structure can be
separated and the latter may be represented by a copula. The word copula, resp. copulare,
is a latin noun, resp. verb, that means “bond”, resp. “to connect” or “to join”. The term
copula is used in grammar and logic to describe that part of a proposition which connects
the subject and predicate. In statistics, it now describes the function that “joins” one-
dimensional distribution functions to form multivariate ones, and may serve to characterize

several dependence concepts. The copula of a multivariate distribution can be considered

%see Denuit and Scaillet [15] for testing procedures of positive quadrant dependence, and Cebrian et al. [6]

for testing procedures of concordance ordering.
3see Li [45] for a Gaussian copula-based methodology to price first-to-default credit derivatives as well as

Laurent and Gregory [43] and the references therein.
“for instance, Rosenberg [51] estimates copulas for the valuation of options on DAX30 and S&P500 indices.

Cherubini and Luciano [9] calibrate Frank’s copula for the pricing of digital options and options that are based
on the minimum on some equity indices. Genest et al. [33] study the relation between multivariate option

prices and several parametric copulas, by assuming a GARCH type model for individual returns.

®see e.g. Frey and McNeil [29].

Ssee Schénbucher [55], Schénbucher and Schubert [56], among others.

"see Embrechts et al. [16], [17] and Bouyé et al. [4] for a survey of financial applications, Frees and Valdez [28]
for use in actuarial practice, Patton [46, 47] and Rockinger and Jondeau [50] for introducing copulas in the

modeling of conditional dependencies.



as the part describing its dependence structure as a complement to the behavior of each of
its margins. Formally Sklar’s Theorem states that a d-dimensional cumulative distribution

function F' evaluated at point x = (z1, ..., z4) can be represented as
F(x) = C(Fi(z1),..., Fa(za)), (1.1)

where C' is the copula function and Fj, i = 1, ..d, are the margins. In most cases the latter
function is uniquely defined by (1.1).
One attractive property of copulas is their invariance under strictly increasing transfor-

8. Actually, the use of copulas allows to solve a difficult problem,

mations of the margins
namely to find a whole multivariate distribution, by performing two easier tasks. The first
task starts with modeling each univariate marginal distribution either parametrically or non-
parametrically. The second task consists of specifying a copula, which summarizes all the
dependencies between margins. However this second task is still in its infancy for most of
multivariate financial series, partly because of the presence of temporal dependencies (serial
autocorrelation, time varying heteroskedasticity,...) in returns of stock indices, credit spreads,
or interest rates of various maturities.

Without any doubt, copulas consist of a powerful tool to model dependence structures.
They are however subject to some statistical pitfalls if used without appropriate care in
financial applications. In this paper our aim is to discuss some of these pitfalls. In particular

we analyze issues arising in the estimation (Section 2) and the empirical choice of copulas

(Section 3) as well as in the design of time-dependent copulas (Section 4).

2 How to estimate copulas?

If the true copula is assumed to belong to a parametric family C = {Cy, 6 € O}, consistent and
asymptotically normally distributed estimates of the parameter 6 (assumed to live in some
parameter space ) can be obtained through maximum likelihood methods. There are mainly
two ways to achieve this : a fully parametric method and a semiparametric method. The
first method relies on the assumption of parametric univariate marginal distributions. Each
parametric margin is then plugged in the full likelihood and this full likelihood is maximized
with respect to the parameter 6. Alternatively and without any parametric assumptions

for margins, the univariate empirical cumulative distribution functions can be plugged in

8Recall that is is not true for the standard Pearson’s correlation coefficient.



the likelihood to yield a semiparametric method. These two commonly used methods are
detailed in Genest et al. [32] and Shi and Louis [57]. At first glance, the task looks easy.
Nonetheless, the result of the first method depends on the right specification of all margins.
This may induce too severe constraints, and this aspect lessens the interest of working with
copulas. The semiparametric estimation procedure where margins are left unspecified does
not suffer from this inconvenient feature, but suffers from a loss of efficiency (see [31]). Note
further that there is no guarantee in both cases that the specified copula is indeed the true
one. If not the asymptotic variance should be modified adequately (see Cebrian et al. [6]
for inference under misspecified copulas). Besides standard inference for independent and
identically distributed (i.i.d.) data does not hold with time-dependent data (see Chen and
Fan [7] for inference with S-mixing processes). This means that test statistics delivered by
standard maximum likelihood routines under the usual assumption of i.i.d. data and/or the
assumption of a well specified modeling should be handled with care.

In Table 1 we gather the results of a small Monte Carlo study designed to assess the
potential impact of misspecified margins on the estimation of the copula parameter. The
assessment relies on measuring estimation performance in terms of Bias and Mean Square
Error (MSE). The number of Monte Carlo experiments is set equal to 1000, and the sample
size n equal to 200, 500 and 1000, respectively. The true model corresponds to a bivariate
Frank copula ¥ and two Student margins. The parameter 6 of the copula is set equal to one
(Kendall’s p = 0.1645, Kendall’s 7 = 0.1100) and two (p = 0.3168, 7 = 0.2139), while the
number v of degrees of freedom on the Student is set equal to three for both margins. The
pseudo model for the margins is chosen to be Gaussian N (u,0). This means that we assume
the margins to be normal instead of Student to get the misspecified model. We compare
the results delivered by a full (one-step) ML procedure and a two-step ML procedure. In
the first case the likelihood is simultaneously maximized over the copula parameter and the
margin parameters. In the second case the margin parameters are estimated in a first step by
optimizing separately the two Gaussian marginal likelihoods. The second step consists then
of optimizing the concentrated likelihood over the copula parameter only. We also report the
results yielded by the semiparametric method which is by construction well specified. Finally
we run the full ML procedure on the true model (likelihood with Student margins) to get the

best theoretical benchmark, at least asymptotically.

9This copula is often used in actuarial and financial applications and permits quick simulations (Gen-
est [30]).



The results of Table 1 show that the misspecification may lead to a severe bias. The bias
is positive and leads to an overestimation of the dependence in the data. This bias seems to
be more pronounced in the one step case. MSEs are also much higher when compared to the
two well-specified cases. Note further that MSEs of the semiparametric method are close to
the ones of the one-step parametric method when the model is true, and the efficiency loss is
small in large samples. This suggests that if one has any doubt about the correct modeling
of the margins, there is probably little to loose but lots to gain from shifting towards a

semiparametric approach.

TABLE 1: Bias and MSE of copula parameter estimators

Sample size: n = 200

0 =1 | one-step two-step  semi true
Bias 0.7012 0.6094 -0.0206 -0.0164
MSE | 1.5119 1.0591  0.1754  0.1797
0 =2 | one-step two-step semi true
Bias 1.1144 0.9292  -0.0202 -0.0124
MSE | 2.2869 1.4851 0.1913  0.1928

Sample size: n = 500

0 =1 | one-step two-step semi true
Bias 0.7720 0.6931  -0.0081 -0.0067
MSE | 1.1114 0.8184  0.0673 0.0684
0= one-step two-step  semi true
Bias 1.2165 1.0354  -0.0067 -0.0045
MSE | 2.0494 1.3977  0.0730 0.0729

Sample size: n = 1000

0= one-step two-step semi true
Bias 0.7904 0.7190  -0.0046 -0.0048
MSE | 0.9647 0.7397  0.0360 0.0360
0= one-step two-step semi true
Bias 1.2553 1.0784  -0.0037 -0.0037
MSE 1.9702 1.3853 0.0387  0.0382




3 How to choose copulas empirically?

One of the main issue with copulas is to choose the “best” one, namely the copula that
provides the best fit with the data set at hand. The choice among possible copula specifica-
tions can be done rigorously via so-called goodness-of-fit (GOF) tests 9. With the previous
notations, usually, a GOF test for multivariate distributions tries to distinguish between two

assumptions :
Ho : F = Fy, against H, : F' # Fy, when the null hypothesis is simple, or

Ho : F € F, against H, : I ¢ F, when the null hypothesis is composite.

Here, Fjy denotes some known cumulative distribution function, and F = {Fy, 0 € ©} is some
known parametric family of multivariate cumulative distribution functions.

Let us first work with d = 1. The problem is then relatively simple. By considering the
transformation of X; by F}, the corresponding empirical process tends weakly to a uniform
Brownian bridge under the null hypothesis. Then, a lot of well-known distribution-free GOF
statistics are available : Kolmogorov-Smirnov, Anderson-Darling...

In a multidimensional framework, it is more difficult to build distribution-free GOF tests,
particularly because the previous transformation F(X) fails to work. More precisely, the
law of the transformed variable is no longer distribution-free. Thus, several authors have
proposed some more or less satisfying solutions, see e.g. Justel et al. [39], Saunders and
Laud [54], Foutz [27], Polonik [49], and Khmaladze ( [40, 41] and especially [42]).

Actually, the simplest way to build GOF composite tests for multivariate random vari-
ables is to consider multidimensional chi-square tests, as in D’Agostino and Stephens [10]
or Pollard [48]. To do this, it is necessary to choose some disjoint subsets Ay,..., A, in R¢

and to consider
Pn(X c Ak) — Po(X S Ak))2

p
2 _ (
X _”k; Po(X € Ay) ’

computed from a sample of size n. Under the null hypothesis, the test statistic x? tends in

law towards a chi-square distribution.

10An informal test can be done by examining whether the plot of the estimated parametric copula is not
too far from the plot of a copula function estimated nonparametrically via kernel methods, see Fermanian and
Scaillet [24] for suggestions. One may also rely on a strong a priori for the type of dependence structure one

wishes for the data or the application in mind, and choose the type of copulas accordingly.



To deal with the corresponding composite assumption, it is necessary to consider some
estimates of # in a first step. The simplest solution is to build the above chi-square test
statistic based on a cumulative distribution function with a parameter estimated by maximum
likelihood. Note that the limiting distribution remains chi-square only if the estimation is
performed over grouped data ''. When it is not the case, the limiting distribution of the test
statistic x? is bounded above by a chi-square distribution, which means that the use of the
latter distribution leads to reject too often the null hypothesis. Unfortunately this aspect is
often overlooked by empirical researchers.

A natural idea would be to handle the GOF problem for copulas in a similar way, say to

distinguish between two assumptions :
Ho : C = Cy, against H, : C' # Cp, when the null hypothesis is simple, or

Ho : C €C, against H, : C € C, when the null hypothesis is composite.

Here, C( denotes some known copula, and C = {Cp,0 € O} is some known parametric
family of copulas. Since the copula is the cumulative distribution function of (uq, ..., uq) =
(F1(X1),...,Fq(X4)), one may think of designing testing procedures as before with C' substi-
tuted for F' and u = (uq, ..., uq) substituted for X = (X1, ..., X4). The difficulty comes from
the univariate cumulative distribution functions F; being unknown. More specifically, the
chi-square testing procedure will not work anymore, after replacing the unknown marginal
cumulative distribution functions by their empirical counterparts. The limiting law of the
previous test statistic x? will not be a chi-square distribution, and thus any inference made
as if will be misleading. Actually, the limiting law is a lot more complex, and depends on Cj

and its derivatives 2. Note that some authors use crude criteria like
SP - / ‘Cﬂ - CO’p7

for some p > 0, where C,, denotes the so-called empirical copula function (see Deheuvels [11,
12, 13] for a definition). In general these statistics provide testing procedures with poor
statistical properties since they suffer from the same drawback as the one of the test statistic

x?2, namely their asymptotic laws are not distribution-free.

1 which often necessitates some ad-hoc estimation procedures.
12The rigorous rationale lies in the difference between the behavior of standard empirical processes and

copula empirical processes, see Fermanian et al. [23] for details.



For all these reasons, the general problem of GOF test for copulas has not yet been tackled
rigourously from an explicit asymptotic point of view. Some authors however suggest to use
the bootstrap procedure to gauge the limiting distribution of the test statistic (Andersen et
al. [2], e.g.). Genest and Rivest [31] solve the problem for the case of Archimedian copulas.

13 and some standard

For this type of copulas the problem can be reduced to a univariate one
methods are available. For instance, Frees and Valdez [28] use Q-Q plots to fit the “best”
Archimedian copula. None of these authors have dealt with the case of time-dependent
copulas 4. Recently, some authors have applied Rosenblatt’s transformation (cf [52]) to the
original multivariate series, like in Justel et al. [39], before testing the copula specification:
Breymann et al. [5], Chen et al. [8]. Nonetheless, the use of Rosenblatt’s transformation is
a tedious preliminary step, especially with high dimension variables, and this step is model
specific. Thus the test methodology cannot be really viewed as distribution-free.

Note that we could build testing procedures based on some estimates of the joint cumula-
tive distribution function by modeling the marginal distributions simultaneously. This seems
to be a good idea, because some “more or less” standard tests are available to check the GOF
of the cumulative distribution function itself. However, this does not directly suit our pur-
pose. Indeed, doing so produces tests for the whole specification - the copula and the margins
- but not for the dependence structure itself - the copula only-. A slightly different point of
view would be to test each marginal separately in a first step. If each marginal model is ac-
cepted, then a test of the whole multidimensional distribution can be implemented (through
the previously cited methodologies). Yet, such a procedure is heavy, and it is always necessary
to deal with a multidimensional GOF test. Moreover, it is interesting to study dependence in
depth first, independently of the modeling of the margins. For instance, imagine the copula
links the short term interest rate with some credit spreads. It should be useful to keep the
possibility to switch from one model of the short term interest rate to another one without
affecting the dependence structure vis-a-vis the credit spreads. Since this research area is
very active, new term structure models appear regularly, others are forgotten, and current
models are often improved. By choosing the copula independently of the marginal models,
such evolutions are clearly easier to incorporate, and modeling maintenance is facilitated.

There exists a simple direct way to circumvent the previous difficulties in testing a copula

!3see the survey of de Matteis [14].
Mwith the exception of Patton [46, 47], but he tests the whole joint specification and not only the copula

itself.



specification. This method exploits a smoothing of the empirical copula process, which
delivers an estimate of the copula density itself (see Gijbels and Mielniczuc [34]). By definition

the kernel estimator of a copula density 7 at point u is

Ta(u) = % /K (‘T) Cu(dv) = # ilK (“_h“”) , (3.1)

where K is a d-dimensional kernel, h = h(n) is a bandwidth sequence and the transformed
data u,;, i = 1,...,n, are obtained from applying the empirical margins to the original data
points X;, i = 1,...,n, component per component 1°. More precisely, we take [K = 1,
h(n) > 0, and h(n) — 0 when n — oco. As usual, we denote Kj(-) = K(-/h)/h%. In

Fermanian [25], it is proved that:

Theorem 1. Under some conditions of regqularity and Hy, for every m and every vectors
ug,...,u, n]0,1[%, such that 7(uy) > 0 for every k, we have

(nh)Y2 (1 — ) (W), ..., (1 — 7) (W) 2% N(0,Z),

T—o0

where ¥ is diagonal, and its k-th diagonal term is T2(uy) [ K2.

Now, imagine we want to build a procedure for a GOF test with some composite null
hypothesis. Under Hy, the parametric family is C = {Cy, 0 € ©}. Assume we have estimated

0 consistently by 6 at the usual parametric rate of convergence, namely
0 — 0y = Op(n="/?). (3.2)

We denote by 7(+,0y) (or 7 in short, when there is no ambiguity) the “true” underlying copula

density. Clearly, 7(u,8) — 7(u, 6p) tends to zero faster than (7, — 7)(u). Thus, a simple GOF
test could be

nh® & (a(ag) = 7(uy, 0))?
ITE? = r(ay,0)?
Corollary 2. Under some conditions of regularity, S tends in law towards a m-dimensional

chi-square distribution under the composite null hypothesis Hy.

The points (uy)g=1,.. m are set arbitrarily. They could be chosen in some particular areas

of the d-dimensional unit square, where the user seeks a nice fit. For instance, for risk

5The vector u,,; is in fact made of the stack of the ranks componentwise of the i-th observation X;.



management purposes, it is fruitful to focus on the dependencies in the tails 6. For the
particular copula family C, it is necessary to specify these areas.

It is possible to build another test that does not depend on any particular choice of points.
This test is based on the proximity between the smoothed copula density and the estimated
parametric density. Under Hjg, they will be near each other. To measure such a proximity,
we will invoke the L2-norm. To simplify, denote the estimated parametric 7(-, é) density by

7. Consider the statistic
T = [0 = K ) (w)eo(u) du,

where w is a weight function, viz a measurable function from [0,1]¢ towards R*. Note that
we consider the convolution between the kernel K}, and 7 instead of 7 itself. This trick allows
to remove a bias term in the limiting behavior of J,, (see Fan [18]).

The minimization of the criterion J,, is known to produce consistent estimates in numerous
situations. These ideas appear first in the seminal paper of Bickel and Rosenblatt [3] for
the univariate density with i.i.d. observations. Rosenblatt [53] extends the results in a
two-dimensional framework and discusses consistency with respect to several alternatives.
Fan [18] deals with various choices of the smoothing parameter. The comparison of some
nonparametric estimates-especially estimates of nonparametric regression functions- and their
parameter-dependent equivalents has been formalized in a lot of papers in statistics and
econometrics : Hirdle and Mammen [38], Zheng [59], Fan and Li [19] 17, to name a few.

More recently similar results have been obtained for dependent processes, see e.g. Fan
and Ullah [22], Hjellvik et al. [37], Gouriéroux and Tenreiro [35], and Fan and Li [20]. For
instance, Ait-Sahalia [1] applies these techniques to find a convenient specification for the
dynamics of the short term interest rate. Besides, Gouriéroux and Gagliardini [36] use such a
criterion to estimate possibly infinite dimensional parameters of a copula function 8. Instead
of having inference purposes in mind, we will use .J,, as a test statistic, like in Fan [18].

Let us assume that we have found é, a convenient estimator of . When 7 and its
derivatives with respect to # are uniformly bounded on [0,1]% x V(6y), w can be chosen

arbitrarily. Unfortunately, this is not always the case, a leading example being the bivariate

16Generally speaking, the tails are related to large values of each margin, so the ug should be chosen near
the boundaries. Nevertheless, some particular directions could also be of interest (the main diagonal, for

instance).
!"see numerous references in Fan and Li [21]
Bfor instance, the univariate function defining an Archimedian copula

10



Gaussian copula density. To avoid technical troubles, we reduce the GOF test to a strict

subsample of [0, 1]%, say w’s support. In Fermanian [25], it is proved that:

Theorem 3. Under some technical assumptions and Hy,

d
nh?/2 (Jn - nlhde%).(m)(u — ht) db du + nih /7%. Z/ﬁ) 1, 7(0,20%),
r=1

02—/7'20(1-/{/K(u)K(u—i—v)alu}2 dv.

Thus, a test statistic could be

n2h? (Jn — (nh~! [ K2(t).(7w)(u — ht) dt du + (nh)~' [#2w. 394, [ K3)2

T= 2
27w [{/ K(u)K(u+v)du}” dv

Corollary 4. Under the assumptions of Theorem 3, the test statistic T tends in law towards

a chi-square distribution.

In the next lines we develop a small Monte Carlo study, where we compare three informal,
but simple, methods to choose a parametric family of copulas by exploiting the aforemen-
tioned GOF criteria.

Let us consider C; = {C(Sj),ﬁj € 0; C R%}, j =1,...,m, where each §; is estimated
consistently by ;.

The first “crude” rule is based on a choice of the family (and its associated parameter éj)

such that
fieg-cu
is minimal for some p > 0. Here, we take a quadratic distance: p = 2.
The second method is based on the “naive” statistics

b (CF) = Cu)*(Ay)

So(0;) angl z oA

for some disjoint subsets Aj,..., A C [0, l]d. Again we use Sy as a comparative measure,
and we choose the family that provides the smallest Sp. As already mentioned such statistics
do not tend to a chi-square distribution.

The third method relies on the two proper goodness-of-fit statistics S and 7. As in the
two first methods, these statistics are used as comparative measures to discriminate between

the parametric families of copulas.

11



TABLE 2: Percentage of choices for the three different families under the first

rule. (The true copula is a Student copula with parameters given in the first column.)

(p,v) Student (in %) | Gaussian (in %) | Clayton (in %)
(0.2,3) 51 43 6
(0.2,8) 0 96 4
(0.2,13) 0 93 7
(0.5,3) 7 93 0
(0.5,8) 0 100 0
(0.5,13) 0 100 0
(0.8,3) 3 97 0
(0.8,8) 0 100 0
(0.8,13) 0 100 0

For this simulation study, we consider 100 samples of 1000 realizations of some bivariate
random variables. The true copula is a Student copula whose parameters are v € {3,8,13}
(degrees of freedom) and p € {0.2,0.5,0.8} (correlation). The subsets Aj are of the type
[i/10, (i + 1)/10[x[7/10,(j + 1)/10[ for i,5 = 0,...,9. For S, we have chosen the points
(1/10,4/10), 4,5 =1,...,09.

We introduce two other alternative families of copulas: the Gaussian family and the
Clayton family. It has been noted that these three families provide similar prices for credit
derivatives (Laurent and Gregory [44]). However, their behavior in the tails are not the same,
and a similarity in terms of expectations does not guarantee a suitable identification over the
whole space [0,1]2. Tables 2, 3 and 4 provide the frequency each family has been chosen by
the three rules when the true copula is the Student copula.

Clearly, the first “crude” rule is misleading. The Gaussian copula is almost always chosen,
even when the tail dependence is strong (small v). The results under the second rule based on
a“naive” chi-square test statistics are less dramatic. In particular, it provides good predictions
for the smallest v and/or strong correlations. However, the lowest the difference between the
true underlying Student copula and Gaussian copulas, the less relevant the diagnostics. On
the contrary, a classification based on & or 7 looks right for 3 cases over 4 in general. We
have checked that these results are robust for a wide range of parameter values, and this

strongly supports the use of these two statistics to discriminate between parametric families

12



TABLE 3: Percentage of choices for the three different families under the

second rule. (The true copula is a Student copula with parameters given in the first

column.)
(p,v) Student (in %) | Gaussian (in %) | Clayton (in %)
(0.2,3) 100 0 0
(0.2,8) 12 76 12
(0.2,13) 7 82 11
(0.5,3) 100 0 0
(0.5,3) 35 65 0
(0.5,13) 10 90 0
(0.8,3) 100 0 0
(0.8,8) 68 32 0
(0.8,13) 27 73 0

TABLE 4: Percentage of choices for the three different families under the third
rule with S (resp. 7). (The true copula is a Student copula with parameters given in the

first column.)

(p,v) Student (in %) | Gaussian (in %) | Clayton (in %)
(0.2,3) 92 (97) 0 (2) 8 (1)
(0.2,8) 75 (64) 0 (23) 25 (13)
(0.2,13) | 73 (50) 0 (29) 27 (21)
(0.5,3) 96 (100) 0 (0) 4 (0)
(0.5,8) 83 (73) 0 (27) 12 (0)
(0.5,13) 78 (63) 0 (35) 22 (2)
(0.8,3) 97 (100) 0 (0) 3 (0)
(0.8,8) 89 (70) 0 (30) 11 (0)
(0.8,13) 89 (63) 0 (37) 11 (0)

13



of copulas.

4 How to design time-dependent copulas?

To fix the ideas, consider a security whose payoff at some maturity date T' depends on the
value St = (S1,7, ..., 847) of d underlying assets. Then, it is well-known that its price today

can be written as

Py =e"TEQ [¢(S7)|S0] (4.1)

where @) denotes the risk-neutral probability, i) the payoff function and r the (assumed
constant) interest rate. To calculate this price, it is necessary to specify the distribution
of St knowing Sy under (). Since Sp is d-dimensional, it seems to be natural to introduce
Co,r(:]50), the copula associated with the latter multivariate distribution. Note that this
copula is time-dependent and is a function of the current value Sy. Moreover, for market
and credit risk measures, it is often necessary to simulate the future values of a lot of market
factors, say S, at various dates ¢ > 0. Knowing the spot value Sy today, some future
realizations of S; knowing Sy have to be drawn (sometimes a large number of times). In that
respect, the dependence function Cp(:|Sp) needs to be specified. If we assume a stationary
process (St), the two previous issues can be subsumed by: how to define Cp+(:|Sp) for every
t and Sp?

First, let us fix the horizon ¢. A first attempt to formalize so-called conditional copulas

is due to Patton [46]. His definition is a direct extension of the usual Sklar’s Theorem:

Definition 5. For every sub-algebra A, the conditional copula with respect to A associated
with X is a random function C(-|.A) : [0,1] — [0,1] such that

F(x|A) = C(Fi(z1]A), ..., Fi(zqA)|A), a.e.

for every x € R Such a function is unique on the product of the values taken by the

conditional marginal cumulative distribution functions Fj(-|A).

Even if this definition is useful it should be noticed that other concepts could be more
relevant from a practical point of view. Indeed, in practice, the marginal distributions are
usually defined with respect to past marginal values, for instance in the case of Markovian
processes (S;;) j = 1,...,d. In other words, we work (often easily) with the conditional

distributions of S;j; knowing S; o, but not the conditional distributions of S;; knowing the
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full vector Sy. Actually, it is far simpler to model the future returns of the stock index S&P
500 knowing the past values of this index (by some ARCH, GARCH, stochastic volatility,
switching regimes models...) than knowing the past values of the S&P 500 and Nikkei indices
both. Since users often like to take their marginal models as inputs for multivariate models,
it appears to be preferable to define a notion of conditional pseudo-copula (Fermanian and
Wegkamp (2004)). To this goal, consider some sub-algebras Aj, ..., A4, B and denote A =
(A1,...,Ag). These sub-algebras cannot be chosen arbitrarily:

Assumption S. Let x and X be some d-vectors. For almost every w € Q,IP(X; <

zj|Aj)(w) =P(X; < 7| A;j)(w) for every j =1,...,d implies
P(X < x|B)(w) = P(X < x|B)(w).

We will assume condition (S) is satisfied. This is the case in particular when all conditional
cumulative distribution functions of X1, ..., Xy are strictly increasing. It is also satisfied when
Ay =...= Ay = B, as in Patton [46].

Definition 6. The conditional pseudo-copula with respect to these sub-algebras and associated
with X is a random function C(-|A,B) : [0,1]% — [0,1] such that

F(x|B) = C(Fi(21|A1), ..., Fa(zdlAd)|A, B), a.e.

for every x € R Such a function is unique on the product of the values taken by the

conditional marginal cumulative distribution functions Fj(-|A;).

The (random) function C(:|A,B) is called a pseudo-copula because it satisfies all the
axioms yielding a copula, except for one: its margins are not uniform in general. This means
that the theoretical results and the statistical inference developed for standard copulas will
not apply per se to pseudo copulas in a straightforward manner. Some ad-hoc theories need
to be formalized.

To avoid such annoying conditioning procedures, there is another solution that seems to
be simpler. It suffices to increase the dimension of the underlying process and to use the
stationary marginal distributions F1,. .., Fy instead of Fj(-|A;). For instance, in a one-order
Markov process (S;), we could consider the 2d-dimensional random vector (S, Si—1). By

denoting its (true) copula by C, we have
P(Sy <x,511 <y) = C(Fi(x1), .., Fa(za), Fi(y1), - -, Falya)),

15



for every x and y. Thus, the knowledge of C' and the univariate cumulative distribution

functions Fj, j = 1,..,d, is sufficient to describe the whole dynamics of the process (S;).

However, such an approach is less rich than the previous one. Since the stationary marginal

distributions provide only a small piece of information, most of the specification is induced

by the 2d-dimensional copula. In this sense, this copula is akin to the joint distribution of
(St, St—l) itself.
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