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Abstract: Open quantum systems are defined as ordinary unitary quantum theories coupled
to a set of external degrees of freedom, which are introduced to take on the rôle of an
unobserved environment. Here we study examples of open quantum field theories, with the
aid of the so-called Feynman-Vernon Influence Functional (“IF”), including field theories that
arise in holographic duality. We interpret the system in the presence of an IF as an open
effective field theory, able to capture the effect of the unobserved environment. Our main
focus is on computing Rényi and entanglement entropies in such systems, whose description
from the IF, or “open EFT”, point of view we develop in this paper. The issue of computing
the entanglement-Rényi entropies in open quantum systems is surprisingly rich, and we point
out how different prescriptions for the IF may be appropriate depending on the application of
choice. A striking application of our methods concerns the fine-grained entropy of subsystems
when including gravity in the setup, for example when considering the Hawking radiation
emitted by black holes. In this case we show that one prescription for the IF leads to answers
consistent with unitary evolution, while the other merely reproduces standard EFT results,
well known to be inconsistent with unitary global evolution. We establish these results
for asymptotically AdS gravity in arbitrary dimensions, and illustrate them with explicit
analytical expressions for the IF in the case of matter-coupled JT gravity in two dimensions.
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1 Introduction

Holographic duality typically involves a pairing of a unitarily evolving or “closed” quantum
system, for example a quantum field theory in d dimensions, with a quantum gravitational
theory in d + 1 dimensions [1]. An interesting, but much less explored, scenario concerns
holographic duality for open quantum systems, where we consider one or the other (or
indeed both) of the members of the holographic pairing to be coupled to an external
environment. While understanding holographic open systems is by itself an interesting
undertaking which we wish to advance, there are a number of concrete areas of application
we wish to particularly highlight.

A first major motivation comes from considerations of black-hole physics in holographic
duality, and in particular recent developments on the entropy of Hawking radiation [2, 3]. In
these studies, AdS black holes are coupled to a bath (‘environment’) capable of capturing
their Hawking radiation and allowing otherwise thermodynamically stable AdS black holes to
evaporate. Indeed one of the main applications of the framework developed in this paper
will be to determine the limitations of EFT calculations of the entropy of Hawking radiation
that arise from carefully considering the dynamics of open AdS/CFT pairs.

A second motivation comes from considering recent proposals to experimentally realise
holographically dual pairs in laboratory quantum systems [4–7]. For example in the proposal
of [7] a high-finesse optical cavity hosts a fermionic condensate which can be engineered to
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implement the non-local SYK-interactions. As explained in [7], such a cavity-QED platform
necessarily involves loss channels via the scattering of photons outside the cavity, which
may be described by considering the addition of Lindblad operators to the Hamiltonian
description of the system (see appendix of [7]). It is natural to expect that other experimental
realizations must deal with their own specific loss channels and should be understood as
open quantum systems in each case. This is clearly a wide and interesting field of study
which we expect to receive increased attention as the required quantum technologies become
available to simulate holographic systems.

The approach we adopt in our study, adapted to each application mentioned beforehand,
is to employ the Feynman-Vernon influence formalism in holographic duality. In their seminal
paper [8], Feynman and Vernon were the first to propose that the path integral formalism of
quantum mechanics is a convenient tool in the context of open quantum systems, since the
effect of the environment on the system can be accounted for by introducing a (non-local)
functional which depends on the system’s coordinates only. They called this functional the
Influence Functional, since it encodes the influence the environment has on the system. In [8],
Feynman and Vernon considered non-relativistic quantum mechanics and analyzed different
examples. In particular, they were able to exactly compute the Influence Functional for an
environment composed of harmonic oscillators linearly coupled to the system coordinates. On
the other hand, they also showed how it is possible to perturbatively evaluate the Influence
Functional for theories which are not exactly solvable.

Subsequently, this approach proved to be very useful as perhaps first evidenced in [9]
(see also [10]), nowadays referred as the Caldeira-Leggett model, where the authors gave
a microscopic quantum-mechanical derivation of Brownian motion. To do so, they used
Feynman’s and Vernon’s exact results for the Influence Functional of a system linearly coupled
to a bath of harmonic oscillators. Interestingly, the authors were able to show how, choosing
a specific distribution of the frequencies, the model is equivalent to an external random
force acting on the system, namely a Brownian motion, which in the classical limit ℏ → 0,
recovers the Fokker-Planck equation.

A main advantage of this method in the present context, is that it is clearly well adapted
for relativistic Lagrangian Quantum Field Theories, which are naturally described in terms
of path integrals. In section 2 we apply this formalism to simple Quantum Field Theories, to
show how it is possible to systematically obtain the Influence Functional. This is instrumental
for introducing the fundamental concepts that will be used for holographic theories, which
also lend themselves well to a Lagrangian-type analysis via the path integral.

Our main goal is thus to develop a framework for open AdS/CFT in general terms, that
is a theory of system-environment interaction valid for arbitrary holographic pairs. We use
the Feynman-Vernon Influence Functional as the starting point for this development, since it
appears particularly well suited to the holographic dictionary as it formulates the dynamics
of open systems in a Lagrangian, rather than Hamiltonian, framework. The basic idea [8] is
to formulate the system-environment interplay in terms of the total path integral

ˆ
[Dϕ][Dχ] e−Isys[ϕ]−Ienv[χ]−Ic[ϕ,χ] =

ˆ
[Dϕ]F [ϕ] e−Isys[ϕ] , (1.1)
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where F [ϕ] is the — typically non-local — Influence Functional of Feynman and Vernon.1
The system and environment setup envisaged here is illustrated schematically in figure 1, and
we generically denote system fields as ϕ and environment fields as χ. Of course at this formal
level the procedure amounts to little more than path-integrating out the environment, but
the practical advantages become apparent when one considers realistic situations where one
only has access to the system degrees of freedom, which are however coupled to a potentially
unknown environment. In such cases, the Influence Functional is simply interpreted as a
property of the system itself and the resulting description acquires the status of an Effective
Field Theory description. As we will show in this work, thinking in this way gives new
insight into computations of entanglement entropy of open systems, and is particulary striking
in the gravitational context.

The Feynman-Vernon Influence Functional approach has been developed holographically
in previous works. For example [11, 12] studied the problem of open-system dynamics with
respect to a strongly coupled bath. In these works an Open EFT is derived on the Schwinger-
Keldysh contour, relevant for non-equilibrium (e.g. OTO) correlation functions, without
including non-trivial ‘replica-saddles’. In this work we instead focus on entanglement and Rényi
entropies, which means that we study the Euclidean theory, but we do include the contribution
of non-trivial ‘replica-saddles’. Extending the analysis of this paper to Schwinger-Keldysh
type contours, as was done in [11, 12] for local correlation functions, would be of essential
interest in addressing the issue of entanglement and related quantities in non-equilibrium
situations. This constitutes an interesting problem to be addressed in the future.

The language of the Influence Functional gives a new perspective on the system under
consideration. While correlation functions of operators in the system give identical results
both in the original theory and using the Influence Functional, this is not necessarily true
for more fine grained observables like the entanglement entropy, as it is famously known for
Quantum Mechanical theories. In particular, in section 2 below we show how it is possible to
compute the entanglement entropy of the reduced system density matrix using the Influence
Functional and the Open EFT. The same machinery can also be applied to the EFT of
gravity coupled to matter, to compute the matter entanglement entropy. In doing so we
encounter one of the various incarnations of the information paradox. Thus, as an example of
perhaps surprisingly diverse applications of the topic of open quantum system, this gives us
a different perspective on the applicability of semiclassical EFT of gravity coupled to matter
to compute the entanglement entropy of Hawking’s radiation, and in general of gravitational
theories. Our proposed solution, namely a prescription to compute the gravitational Influence
Functional for the replicated theory, from the point of view of open quantum systems raises
even more questions on the interplay between quantum matter and holographic systems. We
summarize possible interpretations and future intriguing directions in the discussion section 5.

The plan of the paper is as follows. In section 2 we introduce the Influence Functional
in more detail, exhibiting some generic properties, and computing it for simple example

1Strictly speaking, Feynman and Vernon defined their Influence Functional with two insertions of the state
of the system FFV[ϕ, ϕ′]. This is instrumental if one wants to consider out-of-equilibrium dynamics, because
it generates the Schwinger-Keldysh contour. In this work, we will consider equilibrium states which also
have a well defined Euclidean description. Therefore, we will content ourselves with computing the Influence
Functional of (1.1).
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χ
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ϕ
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ϕ , F [ϕ]

Figure 1. A pictorial description of a generic open quantum system, where the system under
consideration is coupled to an environment. In the Lagrangian path integral formalism, the effect
the environment has on the system can be taken into account introducing a functional, the Influence
Functional, to the system path integral. Remarkably, this functional depends (non-locally) only on
the system degrees of freedom. We refer to the resulting effective theory as Open EFT.

theories where we show how to systematically compute it perturbatively. We then compute
entanglement entropies for simple theories, namely free massive scalars in two dimensions. In
particular, we show how to compute the reduced entanglement entropy of a system linearly
coupled to an environment composed of a free massive scalar. In section 3, we use the
same machinery to compute the Influence Functional of a scalar field minimally coupled to
gravity in AdSd, that is we move into the arena of holography. Treating gravity as an EFT,
we use this Influence Functional to show that computing the reduced matter entanglement
entropy results, at leading order, to the entanglement entropy of matter field on the fixed
gravitational background. We then propose a different prescription than the ‘naive’ EFT
approach, when using the replica trick, which is able to reproduce a matter entanglement
entropy consistent with global unitarity. We apply this machinery in section 4 to JT-gravity
coupled to a CFT2, in the so-called island model. Last, in section 5 we comment on the
results found, arguing why the prescription proposed to compute the Influence Functional,
even though it has a semi-classical flavor, is rather unnatural from an EFT perspective. We
then suggest how these results can potentially reveal interesting microscopic properties of
holographic theories. In particular, our findings fit well with the idea that an underlying
coarse graining is needed to obtain a geometric theory of gravity. There is mounting of
evidence for this being true in some low-dimensional examples, like SYK-JT gravity [13, 14],
or more recently AdS3/CFT2 [15–17], but unknown for higher dimension. In appendix B we
show the connection between our findings and a coarse graining in entanglement entropies.

2 Influence Functionals and entanglement entropies

The basic idea of analysing an open quantum system with the Influence Functional approach
is quite simple. As was briefly mentioned in the introduction, we start out by considering a
system that is coupled to an environment, but such that the microscopic theories describing
the two are assumed to be known, as well as the coupling between them, calling the system
degrees of freedom ϕ and the environment degrees of freedom χ, as in (1.1). Because of the
coupling, the dynamics of the system is modified by the environment, in such a way that in
the system’s path integral there appears a functional, F , the so-called Influence Functional.
Let us now show this more explicitly. The global system has action

I[ϕ, χ] = Isys(ϕ) + Ienv(χ) + Ic(ϕ, χ) , (2.1)
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where Ic(ϕ, χ) is the term in the action that contains all interactions between system and
environment. The partition function of the global system is thus

Z =
ˆ

[Dϕ][Dχ] e−Isys(ϕ)−Ienv(χ)−Ic(ϕ,χ) . (2.2)

If we want to find the effective theory for the system we need to isolate the environment
degrees of freedom

Z =
ˆ

[Dϕ]
(ˆ

[Dχ] e−Ienv(χ)−Ic(ϕ,χ)
)
e−Isys(ϕ) =

ˆ
[Dϕ]F [ϕ] e−Isys(ϕ) . (2.3)

The functional F [ϕ] is the Influence Functional, and it is defined as

F [ϕ] =
ˆ

[Dχ] e−Ienv(χ)−Ic(ϕ,χ) . (2.4)

In general it is a functional in the system’s degrees of freedom ϕ, which encodes all the
information on the environment and how it modifies the dynamics of the system. In some
special cases it can be computed exactly, while generally one can only compute a perturbative
approximation, which can be obtained systematically using standard Feynman diagram
techniques.2

Notice also that in general the Influence Functional (2.4) is non-local in time, which
induces a non-Markovian evolution for the system’s degrees of freedom. In order to gain some
intuition, in the next section we will compute the Influence Functional in some very simple
examples, such as the case of a linear coupling between system and environment.

2.1 A simple example

Consider the action

I[ϕ, χ] = Isys[ϕ] + Ienv[χ] + η

ˆ
ddxϕ(x)χ(x) , (2.5)

where the environment is possibly not a free theory. We compute the Influence Functional
with (2.4). Expanding perturbatively in η we get

F =
∞∑

l=0

(−1)l ηl

l!

ˆ
dx1 . . . dxl ϕ(x1) . . . ϕ(xl)

ˆ
[Dχ] e−Ienv[χ] χ(x1) . . . χ(xl) . (2.6)

This can of course simply be rewritten as

F = Zχ

∞∑
l=0

(−1)l ηl

l!

ˆ
dx1 . . . dxl ϕ(x1) . . . ϕ(xl)Gχ(x1, . . . , xl) , (2.7)

where
Zχ =

ˆ
[Dχ] e−Ienv[χ] (2.8)

2In many applications, moreover, such a perturbative evaluation is done on a Schwinger-Keldysh contour,
allowing one to address non-equilibrium problems.
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is the partition function of the environment, while Gχ(x1, . . . , xn) are its n-point correlation
functions, namely

Gχ(x1, . . . , xn) = 1
Zχ

ˆ
[Dχ]χ(x1) . . . χ(xn) e−Ienv[χ] , (2.9)

containing both connected and non-connected diagrams. The series (2.7) can be re-
summed [18] into

F = Zχ exp
( ∞∑

l=1

(−1)l ηl

l!

ˆ
dx1 . . . dxl ϕ(x1) . . . ϕ(xl)Gc

χ(x1, . . . , xl)
)
, (2.10)

where Gc
χ(x1, . . . , xn) comprises only connected diagrams, hence the superscript. All in all,

the effective theory for the system degrees of freedom of (2.5) becomes

Z = Zχ

ˆ
[Dϕ] exp

(
−Isys(ϕ) +

∞∑
l=1

(−1)l ηl

l!

ˆ
dx1 . . . dxl ϕ(x1) . . . ϕ(xl)Gc

χ(x1, . . . , xl)
)
,

(2.11)
which, as expected, is non-local. We will usually call the partition function written in this
fashion the open effective field theory3, since it is a description purely in term of the system’s
degrees of freedom. Note, however, that EFTs typically involve a mass scale that suppresses
non-local interactions and higher-dimension operators. In our Open EFT we do not necessarily
have such a mass scale, for example in the interesting case of gravity which we treat below.
In the simpler examples of massive scalar theories of section 2.4, the mass of the scalar that is
being integrated out could be taken to furnish such a scale, for example by organising (2.11)
in a derivative expansion with higher-order suppressed by inverse powers of the mass. Note,
however, that we do not assume any parametric separation of the mass of the system and
that of the environment (in fact we take the two to be the same), so that strictly speaking
even in this example the Open EFT is never fully local, as remarked before.

This effective theory can be used to study all observables of the system. For example, we
can use it to compute correlation functions, and the result using the original theory exactly
matches the one using the Influence Functional. This is trivial to show,

⟨ϕ(x1) . . . ϕ(xn)⟩ = 1
Z

ˆ
[Dϕ][Dχ]ϕ(x1) . . . ϕ(xn) e−Isys[ϕ]−Ienv[χ]−Ic[ϕ,χ]

= 1
Z

ˆ
[Dϕ]ϕ(x1) . . . ϕ(xn)F [ϕ] e−Isys[ϕ] . (2.12)

The Influence Functional is, of course, nevertheless a highly useful device as it allows to
abstractly describe new features that appear in the dynamics of quantum systems coupled
to environments. In the following we will be mostly interested in a different observable,
namely the entanglement entropy. In particular, computing it from effective theories of the
form (2.11), one expects as a result to obtain the entanglement entropy of the system’s
degrees of freedom after tracing out the environment. However, unlike correlation functions,
entanglement (and Rènyi) entropies require more care, and different answers can result from
different prescriptions of integrating out the environment, as we will show in this paper.

3In analogy with the term ‘open effective action’ used previously in [11].
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Naturally, we do not claim that the results obtained from the Influence Functional are
ambiguous, merely that we have a number of choices that can be made, according to the
situation under consideration, that affect the precise form of the Influence Functional that
appears when computing entanglement and Rènyi entropies.

2.2 Entanglement entropy for EFTs and the replica trick

We will be interested in computing entanglement entropies for open systems, both in the
context of Open EFT and in gravitational theories. To this end, we will review some
basic constructions in this subsection before moving on to implement these in the Influence
Functional approach.

Given a density matrix ρ describing a quantum system, the entanglement entropy is
defined as

S(ρ) = −Tr[ρ log(ρ)] . (2.13)

Our focus will be to study the entanglement entropies both in open non-gravitational quantum
field theories as well as in gravitational examples. We study the former in this section and
the latter in the next one. In both cases, we are interested in the entanglement entropy of the
system’s degrees of freedom after tracing out the environment. This can be naturally described
using the Influence Functional. As a technical remark, we always work in Euclidean signature.

Entanglement entropies in Effective Field Theories are traditionally computed by em-
ploying the replica trick. This procedure entails computing first the Rényi entropies

Sn(ρ) = 1
1 − n

log
(

Tr[ρn]
)
, (2.14)

and then relating them to the entanglement entropy via the limit

S(ρ) = lim
n→1

Sn(ρ) . (2.15)

This procedure works as long as the replica symmetry Zn is not broken, and it will always
be the case in the following. It turns out that for Quantum Field Theories employing
the replica trick is simpler than diagonalizing the (reduced) density matrix of the state
considered. The reason is that it is possible to write a density matrix in terms of the partition
function of the system on a background that prepares the state. More precisely, if we have
a manifold containing boundaries which are complete Cauchy slices, we can specify states
over those boundaries. Then, the Euclidean evolution over such manifold can be seen as
a (un-normalized) state preparation,

ρ = e−(τ2−τ1)H/Z , (2.16)

and thus by definition

Z
[
ϕ(τ1) → ϕ(τ2)

]
= ⟨ϕ2| e−(τ2−τ1)H |ϕ1⟩ . (2.17)

A well known example is flat Euclidean space, which prepares the vacuum, since the evolution
operator becomes a projector to that state. However, in general any manifold through a
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n = 4Zn =

Figure 2. The n-branched replica manifold used to compute the entanglement entropy of a (semi-
infinite) interval via the replica thick. We show n = 4 as an example. Every level is connected to the
previous and the next one through the branch cuts, as drawn. The arrow connecting the two dark
green lines is not shown for illustration purposes.

Euclidean evolution prepares a (unnormalized) density matrix. This becomes very handy when
using the replica trick, since we can connect computing moments of ρ to computing partitions
function over the state-preparation manifold. For instance, a state ρ is specified with a cut in
the manifold, so that the moments Tr[ρn] are computed through the partition Zn function on
a geometry that links all the replicas connecting one side of the cut to the one of the cuts of
the previous or the next replica sheet. As an example, figure 2 shows the replicated manifold
when computing the entanglement entropy of a (semi-infinite) interval in a two-dimensional
EFT in the vacuum. The upshot is that the entanglement entropy can be obtained by

S = lim
n→1

1
1 − n

log
(
Zn

Zn

)
. (2.18)

The denominator Zn, which is the n-th power of the partition function of the non-replicated
geometry, takes care of the normalisation in the state preparation.

In the next section we will explain how the Influence Functional fits into this picture.

2.3 Influence Functional and the replicated geometry

We now want to apply this technology to open quantum systems, described in the language
of Influence Functionals. In particular, we have seen at the beginning of section 2 how we can
take into account the effect of the environment on the system with a (generically non-local)
functional in the system’s path integral. Let us repeat it here for convenience. The system’s
effective dynamics can be described by

Z =
ˆ

[Dϕ] e−Isys(ϕ) F [ϕ] , (2.3)

where
F [ϕ] =

ˆ
[Dχ] e−Ienv(χ)−Ic(ϕ,χ) . (2.4)

We wish to compute the entanglement entropy of the system’s degrees of freedom using the
system’s effective theory (2.3). To do this, we have to compute Zn in the replicated manifold,
and clearly we have to extend the Influence Functional to this geometry. We propose two
ways in which this extension can be done, which lead to quantitatively different results.

– 8 –



J
H
E
P
0
6
(
2
0
2
4
)
1
8
5

The key idea is that the replicated manifold is determined by the boundary conditions
we impose on the fields at the cuts. Let us call Mn the replicated manifold, and Mi the
various sheets composing it, which all have the same topology as the original M and

Mn =
n⋃

i=1
Mi . (2.19)

The various Mi are connected though branch cuts Bi that extend between codimension-
2 surfaces. Performing a full clockwise revolution on the two-dimensional sub-manifold
orthogonal to these surfaces, we pass from the sheet Mi to the one Mi+1. By construction,
at the position of this surfaces the background metric of Mn, which we can call ĝn

µν , presents
conical defects of opening angle 2π(n − 1). One example of such a manifold is the one of
figure 2, which is used to compute the entanglement entropy of an interval in the vacuum.

In order to extend the Influence Functional to this replicated geometry we need to specify
the boundary conditions at the various branch cuts of the different sheets. We resolve the
branch cuts considering B±

i , where the subscript indicates adding (or subtracting) a small
positive quantity ε orthogonal to the branch cut. For the system degrees of freedom, the
only natural boundary condition is

ϕi(B−
i ) = ϕi+1(B+

i+1) . (2.20)

The indices i indicate the fields in the various sheets. If the replica symmetry is not broken,
the boundary condition (2.20) can be used to extend the n system fields ϕi to a unique field
ϕ living on the whole spacetime Mn. In the rest of the work we will always assume this to
be the case, and thus we will leave implicit the indices i for the system fields. On the other
hand, for the environment degrees of freedom there are two distinct possibilities.

A. The environment fields on different sheets do not communicate. Each sheet has its own
environment field χi, and the boundary condition can be expressed as

χi(B−
i ) = χi(B+

i ) . (2.21)

B. The environment fields of different sheets do communicate. In this case we have
effectively only one environment spanning the whole Mn, and such that

χi(B−
i ) = χi+1(B+

i+1) . (2.22)

In both cases, it is possible that new saddles appear in the replicated geometry. To
find Zn we then sum over all possible saddle-point contributions.

These two boundary conditions are pictorially represented in figure 3. From an open
system perspective, the boundary condition (2.21) may seem, at first sight, more natural
than (2.22), since one usually assumes not to have any control over degrees of freedom which
have been integrated out. We will show however that this is not always the case, and there
are situations in which Scenario B is better suited. In this paper we therefore consider both
kinds of boundary conditions. It may already be evident to the Reader that one of the
conclusions we arrive at is that the procedures of integrating out into the Influence Functional
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ϕA χA ϕB χB

A B

Figure 3. Different boundary condition we can assign to the fields in order to extend the Influence
Functional to the replicated geometry. In both cases the system fields living in different replicas are
coupled. On the other hand, in scenario A we don’t couple the environment’s replicas, while we do in
scenario B. This gives different Influence Functionals.

and replicating the theory do not commute, leading to interesting physical effects for the
behavior of Open EFTs. We will return to these more conceptual points later on. In the next
section we will analyze a simple example to show how these two prescription quantitatively
differ. This should be seen as a warm-up exercise to proceed to more non-trivial examples,
including holographic gravity.

2.4 Entanglement entropy from the Influence Functional

As a first example, we apply the machinery proposed above to the case of free gapped theories
in two dimensions. At first, let us consider the action of a free real massive scalar of mass m,

I[ϕ] =
ˆ

d2x

(1
2 ∂µϕ∂

µϕ+ 1
2 m

2 ϕ2
)
. (2.23)

The simplest entanglement entropy we can compute for this theory is the entanglement
entropy of a semi-infinite interval starting from the origin and going to infinity in the vacuum.
The replicated geometry is then similar to the ones presented in figure 2, and the results
is known [19] to be

S = 1
6 log

( 1
mε

)
, (2.24)

where ε is a UV regulator needed in order to obtain a finite answer. One way to interpret the
result (2.24) is the following. In a gapped theory we have a correlation length of the order
∼ 1/m, and we expect the entanglement to “spread” only up to scales of the order of the
correlation length. For this reason, if the interval is much bigger than the correlation length
we expect a result similar to (2.24), up to corrections due to the finite size of the interval.
Likewise, the dominant contribution for the multi-interval case can be approximated as

S ≈ A
6 log

( 1
mε

)
, (2.25)

where A is the number of boundary points of the union of the intervals. This is a realization
of the area scaling of entanglement entropies in QFTs, and (2.24) fits into this picture, since
it has only one boundary point.
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This result can be used to extract interesting conclusions about entanglement entropies
for interacting theories. As a simple example, we can consider a pair of massive scalars
that are linearly coupled, with action

I[ϕ, χ] =
ˆ

d2x

(1
2 ∂µϕ∂

µϕ+ 1
2 m

2 ϕ2 + 1
2 ∂µχ∂

µχ+ 1
2 m

2 χ2 + η ϕχ

)
. (2.26)

This theory is quite interesting for us because it is solvable and because the Influence
Functional can be computed exactly. Indeed, this theory can be diagonalized into a pair
of free decoupled scalars, with masses

m2
± = m2 ± η . (2.27)

Then, using the result (2.24), it’s simple to show that the entanglement entropy for this
theory is

Sϕ,χ = 1
6 log

( 1
m+ ε

)
+ 1

6 log
( 1
m− ε

)
, (2.28)

which is the exact result for the action (2.26) of the global system. We can also expand
it perturbatively in η/m2 obtaining

Sϕ,χ = 1
3 log

( 1
mε

)
+ η2

12m4 + O(η4) . (2.29)

An interesting way to write this result is

Sϕ,χ = Sϕ + Sχ + η2

12m4 + O(η4) , (2.30)

which shows perturbatively that the role of the interactions is to shift the entanglement
entropy for the decoupled theory, which is the sum of the two contributions coming from
the fields ϕ and χ, both of the form (2.24).

We now want to compare this result with the ones obtained using the Influence Functional.
In the case of the action (2.26), integrating out the environment is simple. One can either
perform the Gaussian path integral, or use (2.7). Both procedures of course produce the
same result, which is

F = Zχ exp
(
η2

2

ˆ
d2x1d2x2 ϕ(x1)ϕ(x2)Gχ(x1, x2)

)
, (2.31)

where Gχ(x1, x2) is the environment two-point function. Then, the system effective theory is

Z =Zχ

ˆ
[Dϕ] exp

[
−
ˆ

d2x

(1
2 ∂µϕ∂

µϕ+ 1
2m

2ϕ2
)

+ η2

2

ˆ
d2x1d2x2ϕ(x1)ϕ(x2)Gχ(x1,x2)

]
.

(2.32)
We now want to extend the Influence Functional to the replicated geometry using the

two proposals above, and compute the entanglement entropy that would follow from each.
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Entanglement entropy from scenario A. Following proposal A, the Influence Func-
tional reads

FA,n = Zn
χ exp

(
η2

2

n∑
i=1

ˆ
Mi

d2x1 d2x2 ϕ(x1)ϕ(x2)Gχ(x1, x2)
)
. (2.33)

The factor Zn
χ comes from the fact that the environment replicas do not talk to each other,

as specified by (2.21). For this reason we have n times the environment action, which
contributes in the partition function to Zn

χ . For the same reason, the non-local term in (2.31)
gets upgraded to the one in (2.33) as a sum over the different sheets Mi. The environment
two point-function Gχ(x1, x2) is identical to the one present in (2.31), since it’s independently
defined for each sheet. On the other hand, the system’s fields are continuous in the whole
Mn, consistent with (2.20).

The effective theory for scenario A is then

ZA,n = Zn
χ

ˆ
[Dϕ] exp

(
−
ˆ
Mn

d2x

(1
2 ∂µϕ∂

µϕ+ 1
2 m

2 ϕ2
)

+ η2

2

n∑
i=1

ˆ
Mi

d2x1 d2x2 ϕ(x1)ϕ(x2)Gχ(x1, x2)
)
. (2.34)

Let us compute the entanglement entropy in a perturbative expansion in η, to the first
non-trivial order. To do it we expand (2.34) perturbatively. The first non-trivial order is

ZA,n = Zn
χ Zϕ,n

(
1 + η2

2

n∑
i=1

ˆ
Mi

d2x1 d2x2G
(n)
ϕ (x1, x2)Gχ(x1, x2) + . . .

)
. (2.35)

In appendix A we find that
ˆ
Mi

d2x1 d2x2G
(n)
ϕ (x1, x2)Gχ(x1, x2) = 1

12m4n
, (2.36)

which implies that

ZA,n = Zn
χ Zϕ,n

(
1 + η2

24m4 + . . .

)
. (2.37)

Notice that the term proportional to η2 in the r.h.s. of (2.37) is independent of n because
the factor of n in the denominator in the r.h.s. of (2.36) gets canceled by the fact that we
are summing n identical contributions in (2.35). Finally, we can use (2.37) to compute the
entanglement entropy of the system’s degrees of freedom in scenario A. Using the standard
replica trick technique, it reads

SA = Sϕ + η2

24m4 + . . . . (2.38)

Let us analyze this result. First, the term Sϕ comes from Zϕ,n, and it’s the entanglement
entropy of the system’s degrees of freedom in the uncoupled limit (2.24). Then, the entangle-
ment entropy of the environment is missing since Zn

χ doesn’t contribute to the entanglement
entropy. Last, the term proportional to η2 is a shift due to the coupling, which differs from
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one of the global theory (2.30). This is not surprising, since there is no reason that the
two quantities should coincide.

Entanglement entropy from scenario B. Following proposal B, the Influence Func-
tional reads

FB,n = Zχ,n exp
(
η2

2

ˆ
Mn

d2x1 d2x2 ϕ(x1)ϕ(x2)G(n)
χ (x1, x2)

)
. (2.39)

The factor Zχ,n in this case arises because, due to (2.22), different environment replicas are
coupled. This differs from scenario A since Zχ,n ̸= Zn

χ . For the same reason, the non-local
term in (2.31) gets upgraded to the one in (2.39) as a theory defined over the whole Mn.
The environment two point-function then becomes G(n)

χ (x1, x2), different from Gχ(x1, x2)
since the former is defined in Mn while the latter in M.

The effective theory for scenario B is then

ZB,n = Zχ,n

ˆ
[Dϕ] exp

(
−
ˆ
Mn

d2x

(1
2 ∂µϕ∂

µϕ+ 1
2 m

2 ϕ2
)

+ η2

2

ˆ
Mn

d2x1 d2x2 ϕ(x1)ϕ(x2)G(n)
χ (x1, x2)

)
. (2.40)

Let us compute the entanglement entropy in a perturbative expansion in η, to the first
non-trivial order. Expanding the exponential we have

ZB,n = Zχ,n Zϕ,n

(
1 + η2

2

ˆ
Mn

d2x1d2x2 G
(n)
χ (x1, x2)G(n)

ϕ (x1, x2) + . . .

)
. (2.41)

In appendix A we find that
ˆ
Mn

d2x1 d2x2G
(n)(x1, x2)G(n)(x1, x2) = 1

12m4n
, (2.42)

when appropriately regulated, which implies

ZB,n = Zn,χ Zn,ϕ

(
1 + η2

24m4n
+ . . .

)
. (2.43)

Finally, using the replica trick, we find

SB = Sϕ + Sχ + η2

12m4 + . . . . (2.44)

Interestingly, this result coincides, up to second order, to the entanglement entropy of the
global system (2.30). This is not surprising, since in both theories the environment replicas
are coupled. For this reason it is expected that the two entropies (2.30) and (2.44) agree
to all orders.

We have thus shown that the two proposals A and B lead to quantitatively different
results for the entanglement entropy.

Which prescription to use, or: to couple or not to couple replicas? At a first sight,
we could conclude that generically only Scenario A computes the entanglement entropy of
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the reduced density matrix, but this is not always the case. In the next section we will argue
that the most appropriate prescription to compute the reduced entanglement entropy for
matter fields coupled to gravity is Scenario B. This conclusion holds also for every system
that intrinsically, either by definition or to obtain the EFT description, has to deal with a
coarse graining or an averaging, as we show in details in appendix B. In particular, we claim
that prescription A computes a quenched version of the system entanglement entropy, while
prescription B computes and annealed version of the system entanglement entropy.

Proving this claim formally for matter fields coupled to gravity is particularly complicated,
since a systematic averaging procedure to obtain a geometric bulk is still not known (see [13, 17]
for progress in this direction). However, we will show that only prescription B is consistent
with a unitary answer, and only an annealed average can be consistent with a unitary answer
as well. This gives a strong indication in favour of our previous claim. Moreover, the Influence
Functional approach is particularly convenient since it does not require an exact microscopic
knowledge of the underlying theory, but works only at the level of the EFT.

It is also worth pointing out that the A boundary conditions can explicitly break a
global or gauge symmetry present in the global system. Therefore, it is possible that the
vacuum of the global theory is in a phase (e.g. where a global theory is spontaneously broken)
that is realised in the non-replicated system and in the replicated system with B boundary
conditions, but not in the one with A. This rich phenomenology of possibilities indicates
that a more careful investigation is required.

3 The Influence Functional for gravity

We now turn our attention to Effective Field Theories of gravity coupled to matter. The aim
of this section is to compute the Influence Functional for matter minimally coupled to gravity
in AdSd, and then to use it to find the entanglement entropies associated to scenarios A and B.

We always work in the approximation of weakly coupled gravity, which results also in
a weak coupling between the gravitational and the matter sector. This is implemented by
a small Newton constant GN , which is necessary for the consistency of our effective field
theory approach. From an EFT point of view, these assumptions are enough to guarantee
that the factorized Hilbert space

H = Hgrav ⊗Hmat (3.1)

is a complete set of states. To find these states, one starts by choosing a gravitational saddle
on top of which quantum fluctuations propagate. Then, quantizing the matter fields and the
gravitons over this (generically curved) background gives Hmat and Hgrav, respectively.

The fact that the Hilbert spaces factorizes justifies the same open system interpretation
we have used in previous sections. In particular, we can consider the gravitational sector to be
an environment for the matter sector, which we view as the system under consideration. The
Influence Functional then implements the (non-local) effective dynamics for the matter degrees
of freedom. This language is particularly useful when studying the black hole information
paradox. Considering the global state ρ of an evaporating black hole, prepared through
an appropriate Euclidean path integral, one can compute the entanglement entropy of the
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matter degrees of freedom considering the reduced density matrix

ρmat = Trgrav [ρ] , (3.2)

and then computing

Smat = −Tr [ρmat log (ρmat)] . (3.3)

As we have seen in previous sections, this can be done systematically using the Influence
Functional. Indeed, we can do it explicitly.

As anticipated, our low-energy action consists of gravity in d-dimensional (asymptotically)
Anti-de Sitter minimally coupled to matter. This can be written as

I[g, ϕ] = 2
κ2

ˆ
M

ddx
√
g
(
R[g]−Λ

)
+ 1
κ2

ˆ
∂M

dd−1y
√
γ K[γ]+Ic.t. +

ˆ
M∪R

ddx
√
gLmat[g, ϕ] ,

(3.4)
where κ2 = 32πGN . In the action (3.4), M is the (asymptotically) AdSd spacetime where
gravity is dynamical, which can be any saddlepoint of the Einstein equations. At the boundary
of M we can also couple a flat region R. In this region gravity is non-dynamical, and only
the matter fields are defined there. Because of this, it acts as a reservoir where the Hawking
radiation is collected. We have included it for sake of generality. All the other terms in (3.4)
are the standard Einstein-Hilbert term with a cosmological constant, the Gibbons-Hawking-
York term, the ensemble of counter-terms needed to regulate the theory, and the action for
the matter fields. As anticipated, the latter are minimally coupled to gravity, even though
this will not play a major role in the discussion. We believe that all the ideas presented here
can be generalized for the case of non-minimal coupling.

The effective theory can be obtained expanding in perturbations hµν of the saddle ĝµν ,
the background metric of M. Precisely, we expand in

gµν = ĝµν + κhµν , (3.5)

so that

I[h, ϕ] = 2
κ2

ˆ
M

ddx
√
ĝ
(
R[ĝ] − Λ

)
+ 1
κ2

ˆ
∂M

dd−1y
√
γ̂ K[γ̂] + Ic.t.[ĝ]

+
ˆ
M

ddx
√
ĝLg[h] +

ˆ
M∪R

ddx
√
ĝLmat[ĝ, ϕ] + κ

ˆ
M

ddx
√
ĝ hµν T

µν [ĝ, ϕ] + . . . . (3.6)

The first three terms in the r.h.s. of (3.6) come from the gravitational action being evaluated
on the saddle. The fourth term comes from the perturbative expansion of the gravitational
action, and contains the kinetic term for the graviton, as well as all the interactions between
them. The fifth term describes the matter effective theory on the fixed (generically curved)
background of the saddle. Finally, we have an infinite series, weighted by powers of κ,
describing the interactions between gravitons and matter fields. The sixth term in the r.h.s.
of (3.6) is the first non-trivial order of this series, where Tµν [ĝ, ϕ] is the stress energy tensor
of the matter theory on the classical saddle.
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The Influence Functional is then, by definition,

F [ϕ] = exp
(
− 2
κ2

ˆ
M

ddx
√
ĝ
(
R[ĝ] − Λ

)
− 1
κ2

ˆ
∂M

dd−1y
√
γ̂ K[γ̂] − Ic.t.[ĝ]

)
×
ˆ

[Dh] exp
(
−
ˆ
M

ddx
√
ĝLg[h] − κ

ˆ
M

ddx
√
ĝ hµν T

µν [ĝ, ϕ] + . . .

)
. (3.7)

The first term in the r.h.s. of (3.7) is (the exponential of) the on-shell gravitational action.
For brevity we define

2
κ2

ˆ
M

ddx
√
ĝ
(
R[ĝ] − Λ

)
+ 1
κ2

ˆ
∂M

dd−1y
√
γ̂ K[γ̂] + Ic.t.[ĝ] ≡ Ig[ĝ] . (3.8)

On the other hand, for the metric fluctuation we have to resort to a perturbative expansion
in κ. The first non-trivial term isˆ

[Dh] exp
(
−
ˆ
M

ddx
√
ĝLg[h] − κ

ˆ
M

ddx
√
ĝ hµν T

µν [ĝ, ϕ] + . . .

)
= Zh[ĝ] exp

(
κ2

2

ˆ
M

ddx
√
ĝ(x)

ˆ
M

ddy
√
ĝ(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
, (3.9)

where
Zh[ĝ] =

ˆ
[Dh] exp

(
−
ˆ
M

ddx
√
ĝLg[h]

)
(3.10)

and
Gµν,ρσ(x, y) = 1

Zh[ĝ]

ˆ
[Dh]hµν(x)hρσ(y) exp

(
−
ˆ
M

ddx
√
ĝLg[h]

)
(3.11)

is the graviton two-point correlation function. Notice that in the r.h.s. of (3.9) we have
already re-summed the series, so that in the graviton two-point correlation function we should
only consider connected contributions. The Influence Functional is then

F [ϕ] = e−Ig [ĝ] Zh[ĝ] exp
(
κ2

2

ˆ
M

ddx ddy
√
ĝ(x)ĝ(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
,

(3.12)
and the effective theory for the matter sector is

Z =
ˆ

[Dϕ]F [ϕ] exp
(
−
ˆ
M

ddx
√
ĝLmat[ĝ, ϕ]

)
= e−Ig [ĝ] Zh[ĝ]

ˆ
[Dϕ] exp

(
−
ˆ
M

ddx
√
ĝLmat[ĝ, ϕ]

+ κ2

2

ˆ
M

ddx ddy
√
ĝ(x)ĝ(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
. (3.13)

This is the effective theory for the matter degrees of freedom in the presence of dynamical
gravity, at first non-trivial order in κ. The Influence Functional contributes with a term
which, superficially, resembles a TT deformation in higher dimensions, but would appear
to lack the irrelevant RG flow interpretation of the latter.

This result can be used as-it-is to compute correlation functions of matter operators.
As pointed out before, the result will be identical to the one obtained from the total
action (3.6). However, we will dedicate the next section to use it to compute the matter
entanglement entropy.
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3.1 Scenario A - Hawking’s result

Following the idea of section 2, we approach the calculation of the matter entanglement
entropy using the replica trick. The replica manifold is fixed by the boundary conditions.
It depends on which specific entanglement entropy one wishes to compute, which in turns
determines how the manifold is replicated. As before, we call the replicated manifold Mn,
and we think of it as a union of n sheets Mi, identically to (2.19).

Now we can extend the gravitational Influence Functional following Scenario A. As
before, the only interesting boundary condition for the matter fields is

ϕ(B−
i ) = ϕ(B+

i+1) , (3.14)

similarly to (2.20). On the other hand, gravitons of different sheets do not communicate.
Each sheet has its own graviton field hi

µν , and the boundary condition can be expressed as

hi
µν(B−

i ) = hi
µν(B+

i ) . (3.15)

This can also be translated in the language of two point correlation functions Gµν,ρσ(x, y).
In this case we do not have to change anything. Such correlation functions are naturally
defined on each sheet Mi, and the complete Influence Functional reads

FA
n [ϕ] = e−nIg [ĝ] Zn

h [ĝ]

× exp
(
κ2

2

n∑
i=1

ˆ
Mi

ddx ddy
√
ĝ(x)ĝ(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
. (3.16)

The first term in the r.h.s. comes from the fact that Ig[ĝn] = nIg[ĝ]. Notice how this implies
that we have not included in Ig[ĝn] any contribution from the conical singularities of Mn.
A similar explanation can be given for the second term in the r.h.s., since Zh[ĝn] = Zn

h [ĝ]
due to the boundary conditions (3.15). Last, the T 2 term is just the sum over the single
terms for each sheet.

We then use this proposal to compute the matter entanglement entropy, obtaining

SA = Sϕ[ĝ] + O(κ2) . (3.17)

This result includes only the entanglement entropy of matter fields in the static background
ĝ. This term comes from the corresponding term in (3.13), dressed with the boundary
conditions (2.20). The term e−nIg [ĝ] does not give any contribution to the matter entanglement
entropy SA, since it is canceled by an identical term in Zn. Finally, an infinite series of
corrections is present due to the graviton-matter exchanges, all proportional to the powers
of the coupling κ, starting at order κ2 from the T 2 term.

At leading order, the entropy SA is Hawking’s result, namely the entropy of matter
fields on a fixed curved background. Thus, it is natural to associate the A boundary
conditions to Hawking’s calculation. Then, the procedure described can systematically
compute gravitational corrections to Hawking result to all orders, in principle. Famously, for
an evaporating black hole, this entanglement entropy is not consistent with a global unitary
evolution. The corrections proportional to powers of κ are believed to be small throughout
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most of the evolution, since the gravitational EFT is a good approximation until the BH
approaches the Planck length. Much earlier in the evolution, around the so-called Page time,
it is possible to find macroscopic deviations from a global unitary evolution.

The proposed solution [20, 21] finds indeed new dominant replica saddle-points, which
in our language appear considering Scenario B. We dedicate the next section to exploring
this issue.

3.2 Scenario B - Quantum extremal surfaces

In recent years it has been shown how, for gravitational theories in Anti de-Sitter coupled
to a reservoir region R, the entanglement entropy

S(R) = minI

{8πA(∂I)
κ2 + Sbulk fields(I ∪R)

}
(3.18)

is consistent with a unitary evolution [2, 3]. This is the so-called island formula, a generaliza-
tion of the Ryu-Takayanagi proposal [22] to compute entanglement entropies in holographic
theories which includes quantum corrections. The prescriptions entails minimizing the func-
tional in the r.h.s. of (3.18), considering all regions I in the bulk. The boundary ∂I is called
Quantum extremal surface, while the interior region I is the island. This formula is quite differ-
ent from the previous ones found (3.17). In particular, the two key ingredients that make the
evolution consistent with unitarity are the area term and the minimization present in (3.18).

In a series of works employing the replica trick it was shown how this formula can be
justified considering smooth saddles of the replicated geometry, either as a way to compute
entanglement entropies in holographic theories [23–25] to just semiclassical gravity coupled
to a bath [20, 21]. In particular, these smooth replica saddles are responsible for both the
area term and the minimization of the island formula (3.18). The resulting entanglement
entropy (3.18) can differ by a non-perturbative quantity with respect to the result (3.17)
obtained in the previous section.

We now want to argue that the matter entanglement entropy computed from Scenario B
leads to the island formula (3.18). In this context we will find new saddlepoint solutions in
the replicated geometry, which are needed to restore unitarity. Therefore, the entanglement
entropy for matter fields on a gravitational background using Scenario B can be obtained
following these steps.

• Replicate the global system (matter and gravity) as specified by the boundary conditions
of interest.

• Find all smooth saddlepoint geometries Mn with the same boundary conditions. We
call their metric ĝn. Notice the difference with Mn and ĝn of the previous section,
which had conical singularities. Here we are considering only smooth saddlepoints.

• Consider the effective theory on these backgrounds, composed by metric and matter
fluctuations. Then integrate out the metric fluctuations to obtain the matter effective
theory on this geometry.

The key difference with the approach of the previous sections is that here one first has
to replicate, and then compute the Influence Functional integrating out metric fluctuations
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SB

Figure 4. Non-commutative diagram representing the differences between Scenario A to compute the
replicated Open EFT (and then the reduced matter entanglement entropy), and Scenario B, which
seems to be better suited for quantum gravity.

of the smooth replicated saddle. In particular, considering smooth gravitational replica
saddles instead of ones with conical defects is a key ingredient. We summarize this points in
figure 4. Notice moreover that this difference arises only for the replicated theory, and for
this reason the Open EFT (3.13) computed previously can still be used for any observable
not involving the replica trick.

We now compute quantitatively the Open EFT for this prescription and show that
the resulting matter entanglement entropy is the island formula. The Influence Functional
in this case is

FB
n [ϕ] = e−Ig [ĝn] Zh[ĝn]

× exp
(
κ2

2

ˆ
Mn

ddx ddy
√
ĝn(x)ĝn(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
, (3.19)

where now the graviton correlation function is defined in the smooth replicated saddle, thus

Gµν,ρσ(x, y) = 1
Zh[ĝn]

ˆ
[Dh]hµν(x)hρσ(y) exp

(
−
ˆ
Mn

ddx
√
ĝn Lg[h]

)
. (3.20)

Then, the replicated matter Open EFT is in this prescription

Zn =
ˆ

[Dϕ]FB
n [ϕ] exp

(
−
ˆ
Mn

ddx
√
ĝn Lmat[ĝn, ϕ]

)
. (3.21)

The expression for the replicated Influence Functional (3.19) can also be simplified. To
do it we use the idea of replica cosmic branes [26]. Let us consider the orbifolded space

M̃n = Mn/Zn . (3.22)

Based on what kind of boundary condition we choose for the replica geometry, M̃n may
or may not have fixed points of the orbifold. If it does, these are generally codimension-2
manifolds which are called replica cosmic branes. Using the fact that Mn is smooth, at the
location of these branes M̃n has conical singularities of opening angles

∆θ = 2π
(

1 − 1
n

)
. (3.23)
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Effectively, we can take them into account introducing the corresponding term in the ac-
tion, namely

I[M̃n] = n I[Mn] + Tn

ˆ
M̃n

dd−2y
√
γ̂n , (3.24)

where the value of their tension,

Tn = 1
4GN

(
1 − 1

n

)
(3.25)

is obtained from the Einstein equations of motion for a conical defect of magnitude (3.23). It
is important to stress that the action (3.24) should only be used on shell to determine the
position of such cosmic branes, but their contribution should not be taken into account in
any other way, since the original action I[Mn] doesn’t contain any singularity.

The orbifolded action can then be used to simplify the expression for the Influence
Functional. To do it we follow [23, 24] and consider its variation with respect to the number
of replicas n. The key point is that on-shell, the variation of the gravitational action is
a boundary term. Close to the conformal boundary it vanishes, while close to the cosmic
branes, where we regulate introducing a cylinder of radius r = ε around them, it doesn’t.
To be precise one has

∂n log Z̃n = −
ˆ
Eg∂ng̃n −

ˆ
Eϕ∂ng̃n

− 2
κ2

ˆ
r=ε

dd−1y
√
γ̃n
(
∇µ∂ngµr − gµν∇r∂ngµν

)
+ ∂n

(
logZh[g̃n] + logZϕ[g̃n] + . . .

)
. (3.26)

The first two terms in the r.h.s. are the Einstein equations and they jointly vanish, since we
have already imposed them to find g̃n. The third term is the boundary term that we evaluate
close to the cosmic branes. One can approximate the metric there as

ds2 = dr2 + r2

n2 dθ2 + γij(y)dyidyj . (3.27)

This implements the correct conical singularity provided θ is 2π periodic. We can evaluate
the third term in the r.h.s. of (3.26) with this metric to find

2
κ2

ˆ
r=ε

dd−1y
√
γ̃n
(
∇µ∂ngµr − gµν∇r∂ngµν

)
= 8πA[CBn]

κ2n2 , (3.28)

where in the r.h.s. we have defined the area of the n-cosmic brane. We can then integrate in
n to find log Z̃n. We can neglect any constant of integration, since it will not contribute to
the dynamics and neither to the final entanglement entropy. Last, multiplying by n we get

logZn = 8πA[CBn]
κ2 + logZh[ĝn] + logZϕ[ĝn] + . . . , (3.29)

or, in a more extended form

Zn = exp
(8πA[CBn]

κ2

)
Zh[ĝn]

ˆ
[Dϕ] exp

(
−
ˆ
Mn

ddx
√
ĝn Lmat[ĝn, ϕ]

+ κ2

2

ˆ
Mn

ddx ddy
√
ĝn(x)ĝn(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
. (3.30)

– 20 –



J
H
E
P
0
6
(
2
0
2
4
)
1
8
5

Thus the Influence Functional reads

FB
n [ϕ] = exp

(8πA[CBn]
κ2

)
Zh[ĝn]

× exp
(
κ2

2

ˆ
Mn

ddx ddy
√
ĝn(x)ĝn(y)Gµν,ρσ(x, y)Tµν(x)T ρσ(y) + . . .

)
. (3.31)

Our last goal of this section is to compute the entanglement entropy associated to (3.30)
through the Influence Functional (3.31) and compare it to the island formula (3.18). The
area term clearly gives a similar contribution in the entanglement entropy. Moreover, the
entropy from the quantum fields also give corresponding contributions. However, we are
still missing the extremization characteristic of the island formula. Indeed, while it is true
that the position of the cosmic branes is determined by an extremization, the procedure is
different. For the cosmic branes we have only used the on-shell equations of motions while
for the island formula one takes into account also quantum corrections. Luckily, we can use
the result of [24], which found that the entanglement entropy associated to the quantum
fluctuations also takes into account the corresponding change in area given by the change
of the gravitational saddle due to quantum corrections. Then, following the result of [24],
the entanglement entropy of the matter sector from (3.31) reads

SB = 8πA[CBn→1]
κ2 + 8πδA

κ2 + Sh[ĝ] + Sϕ[ĝ] + O(κ2) . (3.32)

It can be shown [27] that this procedure agrees with (3.18) to all orders in κ2. Interestingly,
graviton fluctuations contribute to the matter entanglement entropy. This may seem a
contradiction, since in the original formulation of the problem we wanted to integrate them
out. On the other hand, (3.32) is consistent with unitarity due to the presence of the
area of the cosmic branes. We believe that a prescription that does include the area of
the cosmic branes but does not include the graviton fluctuations will not be as natural as
Scenario B, and therefore we follow the latter. However, it would be interesting to have an
independent reasoning to include graviton fluctuations in the matter entanglement entropy
coupled to gravity.

All in all, we have then found a replicated Influence Functional (3.31) for the matter
sector whose reduced entanglement entropy is consistent with unitarity, which then seems
to be better suited to describe the gravitational Open EFT.

We would also like to stress that, even if the prescription presented in this section to
compute the replicated Influence Functional is motivated by the island formula, we believe
that the resulting Open EFT can potentially have deeper implications, being a more general
framework. We will try to address some of them in section 5.

4 An application: JT gravity and the island model

In this section we want to show a concrete example to apply the ideas just presented. We are
going to focus on a two-dimensional model where JT gravity4 is coupled to two-dimensional

4For a nice review on JT gravity and solvable models of quantum black holes see [28].
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AdS2 + CFT2

M

CFT2

R

−→ CFT2

γ(u)

Figure 5. JT gravity coupled to a two-dimensional CFT. The gravitational theory is defined on a
saddle M, while the CFT2 on M∪ R, where R is a non-gravitational reservoir. The gravitational
dynamics gets localized on the AdS2 boundary through curves γ(u) of length is β/ε, so that the
renormalized length of the boundary is β.

CFT which extends also in a non-gravitating reservoir, first proposed in [2] (see also [20]).
On a technical level, the analysis performed in section 3 assumed at least four-dimensional
gravity, since we allowed metric fluctuations. On the other hand, low-dimensional models
are convenient setups since they allow analytical solutions, and we will see that the physics
behind them doesn’t differ much from their higher dimensional counterparts.

Concretely, we will compute the Influence Functional for a semi-infinite interval starting
from a point in the radiation region, at y = b in the coordinates of (4.13), to infinity, as
shown in figure 6. We find the Influence Functional using Scenario A at leading order to be

FA
n = exp

[
nS0 + 8π2Φbn

κ2β

]
, (4.1)

while the gravitational replicated Influence Functional at leading order to be

FB
n = exp

[
S0 + 8π2Φb

κ2nβ
coth

(2πb
β

)]
. (4.2)

Clearly, the former Influence Functional does not contribute to the entanglement entropy,
while the gravitational one does, in a way consistent with the island formula. We will be
able to show it quantitatively.

In the rest of the section we will go through the technical details needed to arrive at (4.1)
and (4.2). As anticipated in general in section 3, this will involve finding the replica wormhole
smooth solutions connected to the replicated geometry of figure 6. this will be achieved
considering the conformal transformation that maps the asymptotic AdS2 boundary into
itself while mapping y = b to infinity. We will argue that in these new coordinates the replica
wormhole solution has a very simple form.

The action of interest for us is

I = −S0
4π

ˆ
M
R− S0

2π

ˆ
∂M

K − 2
κ2

ˆ
M

Φ(R+ 2) − 4
κ2

ˆ
∂M

Φ(K − 1) + ICFT(g, ϕ) , (4.3)

where we have chosen the AdS2 radius to be unity. The matter action is the last term in the
r.h.s., it is defined on M∪R, and depends on the matter fields ϕ as well as the spacetime
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Figure 6. The replicated geometry considered in this section.

metric gµν . As anticipated, we assume this matter theory to be a two-dimensional CFT with
large central charge c. The other terms in the r.h.s. are purely gravitational. The first two
terms are topological, and combined they give the Euler characteristic of spacetime,

1
4π

ˆ
M
R− 1

2π

ˆ
∂M

K = χM = 2 − 2g − n , (4.4)

where g and n are the genus and the boundaries of M. This term can them be thought of
a parameter that weights the various gravitational saddles, ordering their contribution to
the gravitational path integral, provided we take S0 to be positive and large. In this case,
saddles which have a lower Euler characteristic are dominant. In the following we will only
consider disk geometries, which are the dominant ones in the case of a single boundary, and
they have χ = 1. The other two terms in the gravitational Lagrangian involve a dilaton
field Φ. Its equation of motion imposes the constraint

R = −2 , (4.5)

which also holds quantum mechanically, where we would path-integrate Φ. Locally, any
saddle satisfying (4.5) can be described by the metric [28]

ds2 = dT 2 + dZ2

Z2 = 4(
Y + Ȳ

)2 dY dȲ , Y = Z + iT . (4.6)

On the other hand, varying the metric we obtain the equations describing the dynamics
of the dilaton, which are

∇µ∇νΦ − gµν∇2Φ + gµνΦ = 0 , (4.7)

generically solved by [28]

Φ = α+ η T + δ(T 2 + Z2)
Z

. (4.8)

Imposing R = −2, the whole dynamics is contained in the extrinsic curvature, thus in the
boundary. To describe this dynamics, we cut out a curve γ(u) =

(
T (u), Z(u)

)
close to

the boundary, and impose
√
h
∣∣∣
γ(u)

= 1
ε
, Φ

∣∣∣
γ(u)

= Φb(u)
ε

. (4.9)

This is solved at leading order by Z(u) = εT ′(u), so that the normal vector is

nµ(u) = 1
Z(u)

√
Z ′(u)2 + T ′(u)2

(
− Z ′(u), T ′(u)

)
, (4.10)
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and

K = gµν∇µnν = 1 + ε2
[
T ′′′(u)
T ′(u) − 3

2

(
T ′′(u)
T ′(u)

)2]
+ · · · = 1 + ε2 {T (u), u} + . . . . (4.11)

We can then rewrite the gravitational action as a Schwarzian action, namely

I = − 4
κ2

ˆ
du Φb(u) {T (u), u} + ICFT(g, ϕ) . (4.12)

This is a theory that can be thought of as living only on the boundary. To discuss black-hole
physics, we transform the state from vacuum to the thermal state. This can be achieved
considering the conformal transformation that maps the conformal vacuum to the thermal
strip, which is

Y = tanh
(
πy

β

)
, y = σ + iτ , (4.13)

where now τ is β periodic, namely τ ≃ τ + β. In these coordinates, the metric for the
gravitational region M is

ds2
M = 4π2

β2
dy dȳ

sinh2
(

π
β (y + ȳ)

) . (4.14)

The asymptotic boundary is at σ = 0, and we decide to place the gravitational region for σ
negative. In order to glue to it a flat radiation region, we cut off the asymptotically AdS2
space at σ = −ε (where ε is positive), and we consider a flat space for σ > −ε such that
the metric is continuous. All in all the metric is

ds2 =


4π2

β2
dy dȳ

sinh2
(

π
β (y + ȳ)

) for σ < −ε (M)

dy dȳ
ε2 for σ > −ε (R)

(4.15)

This is the same convention used in [20]. We only consider static solutions, and thus we
take the dilaton to be, up to SL(2,R) transformations,

Φ = −2πΦb

β
coth

(
π

β
(y + ȳ)

)
. (4.16)

From (4.13), we also have the identification

T (u) = tan
(
πτ(u)
β

)
, (4.17)

where u now is a compact coordinate such that τ(u+ β) = τ + β. This means that τ(u) is a
diffeomorphism mapping the thermal circle back to the itself. The action is then

I = −4Φb

κ2

ˆ β

0
du

{
tan

(
πτ(u)
β

)
, u

}
+ ICFT(g, ϕ) , (4.18)
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and the partition function is

Z = eS0

ˆ
Diff(S1)/SL(2,R)

[Dτ ] exp
(

4Φb

κ2

ˆ β

0
du

{
tan

(
πτ(u)
β

)
, u

}) ˆ
[Dϕ] e−ICFT(g,ϕ) (4.19)

To be precise, also the matter theory depends on τ(u). In particular one would need to
specify the boundary condition

ϕ
∣∣∣
γ(u)

= ϕb(u) , (4.20)

and thus ˆ
[Dϕ] e−ICFT(g,ϕ) = Zmat[ϕb, τ(u)] . (4.21)

In the semiclassical limit (Φb/κ
2 ≫ 1), we can evaluate the path integral by saddle-point.

The equations of motion are

d
du

{
tan

(
πτ(u)
β

)
, u

}
= 0 , (4.22)

which can be solved by

τ(u) = u , u ∈ [0, β) , (4.23)

and also leads to the relation σ = −ε. We can then specify the matter boundary condi-
tions (4.20) on the cut-off surface (4.23). Using the standard holographic dictionary in the
semiclassical approximation, we can say that

Zmat[ϕb, τ(u)] =
ˆ

ϕ|γ(u)=ϕb(u)
[Dϕ] e−ICFT(g,ϕ) , (4.24)

where the r.h.s. is evaluated on the fixed background metric. This relation is valid up to
corrections coming from back-reaction on the geometry due to the matter fields. Thus, to this
level of approximation the Influence Functional does not explicitly depends on the boundary
condition of matter fields, and it is

FJT = eS0

ˆ
Diff(S1)/SL(2,R)

[Dτ ] exp
(

4Φb

κ2

ˆ β

0
du

{
tan

(
πτ(u)
β

)
, u

})
. (4.25)

On the saddle (4.23), the Schwarzian derivative is then{
tan

(
πu

β

)
, u

}
= 2π2

β2 , (4.26)

which implies

FJT = exp
(
S0 + 8π2Φb

κ2β

)
, (4.27)

and that to leading order the Open EFT is

Z = FJT

ˆ
[Dϕ] e−ICFT(g,ϕ) . (4.28)
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⟨a2| |a1⟩

⟨a2| |a1⟩

(4.30)

Figure 7. Left: the replicated path integral to compute the entanglement entropy of the matter
theory. The geometry is a cylinder because we consider thermal states. The left side is the curved
spacetime, where we have already integrated out the gravitational dynamics. The red dot on the left
corresponds to y = b, while the one on the right corresponds to the infrared cutoff y = L. Right:
The thermal cylinder under the transformation (4.30). The two red dots are mapped to infinity. We
regulate the path integral cutting two surfaces and imposing the states |a1⟩ and |a2⟩. The gravity
region on the left drawing is mapped to the blue region on the right drawing.

We now turn to the computation of the matter entanglement entropy. We will consider
both prescription, the one from Scenario A and the one we are proposing for gravitational
theories, Scenario B. As anticipated, we want to compute the entanglement entropy of the
semi-infinite interval R = [b,+∞), where b is positive. The replicated partition function
for Scenario A is simply

ZA, n = Fn
JT

ˆ
[Dϕ] e−ICFT(g(n),ϕ) . (4.29)

As expected from the analysis performed in section 3, at this level of approximation the
Influence Functional does not contribute to the entanglement entropy since it cancels in the
combination log(Zn/Z

n). We can then consider only the matter partition function. This
is both ultraviolet and infrared divergent, which forces us to introduce cutoffs. To cure
the IR divergence we regulate the radiation region to be R = [b, L]. It is then useful to
consider the transformation

p = β

2π log

 e 2πy
β − e

2πb
β

e
2πL

β − e
2πy

β

 , p = σ̃ + iτ̃ , (4.30)

that maps the cylinder into itself, albeit sending the points y1 = b and y2 = L to the two
opposite ends of the cylinder. On the other hand, to cure the UV divergence of the partition
function, we regulate by cutting off the cylinder in the p coordinates at σ̃1 and σ̃2 such
that ∆σ̃/β ≫ 1. Performing these cuts, we have to specify boundary conditions on them,
which we can call generically |a1⟩ and |a2⟩.

To evaluate the matter partition function, we use the fact that the evolution operator
in the limit of ∆σ̃/β large gets projected to the ground state,

e
−∆σ̃

nβ
H = e

−∆σ̃
nβ

E0 |0⟩⟨0| + . . . , (4.31)

where corrections are exponentially small in the scaling dimension gap between the vacuum
and the first primary operator. Then

ˆ
[Dϕ] e−ICFT(gn,ϕ) = ⟨a2| e−

∆σ̃
nβ

H |a1⟩ = e
−∆σ̃

nβ
E0 ⟨a2|0⟩ ⟨0|a1⟩ , (4.32)
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where E0 is the ground state for a CFT on the cylinder of unit length, which is

E0 = −πc6 . (4.33)

Using the inverse transformation y(p) of (4.30), one can show that for σ̃1 large and negative
and for σ̃2 large and positive, one has

y(σ̃1 + iτ̃) = b+ ε1e
2πiτ̃

β + . . . with ε1 = β

π
e

π(L−b)
β sinh

(
π(L− b)

β

)
e

2πσ̃1
β , (4.34)

y(σ̃2 + iτ̃) = L+ ε2e
− 2πiτ̃

β + . . . with ε2 = β

π
e

π(b−L)
β sinh

(
π(L− b)

β

)
e
− 2πσ̃2

β . (4.35)

This is represented in figure 8, where two circles at large |σ̃| are mapped to circles around
the twist operators. Setting for simplicity ε1 = ε2 ≡ ε, we have

ˆ
[Dϕ] e−ICFT(gn,ϕ) =

[
β

πε
sinh

(
π(L− b)

β

)] c
6n

⟨a2|0⟩ ⟨0|a1⟩ , (4.36)

which gives for the matter entanglement entropy

SA = c

3 log
[
β

πε
sinh

(
π(L− b)

β

)]
+ . . . . (4.37)

The dependence on |a1⟩ and |a2⟩ is a UV effect that can be absorbed into the definition
of ε, see e.g. [29].

The entanglement entropy (4.37) obtained from the replicated partition function (4.29)
of Scenario A at first sight may seem a reasonable result to obtain, since it’s the universal
entanglement entropy for an interval of length L − b in the thermal state. On the other
hand, this result becomes suspicious looking at it from a holographic point of view. For
instance, let us assume the existence of holographic Boundary Conformal Field Theories
(BCFTs), or possibly Interface CFTs, dual to our JT gravity coupled to a radiation region,
in the spirit of [30–36]. The expected thermal entanglement entropy of [b,+∞) for a BCFT
takes the universal form

S = c

6 log
[
β

πε
sinh

(2πb
β

)]
+ log(g) , (4.38)

where log(g) is the so-called boundary entropy. We will now show that the replicated partition
function computed following the prescription proposed in section 3 is able to recover an
entanglement entropy consistent with (4.38) and with the island formula.

To follow the proposed gravitational prescription, we consider the replicated geometry
of figure 6. This has a conical defect at y = b. We want to glue to the replicated radiation
region a smooth gravitational region. To perform this gluing, we have to proceed in a similar
way as we did before to arrive at the metric (4.15). In that case it was possible to chose the
saddle τ(u) = u since it was solving the equations of motion (4.22), that also corresponded to
having a black hole with constant energy in the gravitational region. We would like to follow
the same procedure for the replicated geometry, finding a suitable gluing τ(u) such that it
solves (4.22) in the replicated geometry. To do it, we have to take into account the fact that
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the replicated geometry presents a non-trivial stress energy tensor due to the replica boundary
conditions. Finding a suitable gluing such that the corresponding EOM (4.22) are solved is a
complicated problem. A solution in the limit n→ 1 has been found in [20]. Here however we
want to find a solution for generic n. To do it, we take inspiration from section 3, and propose
a method that in the semiclassical limit is able to perturbatively find the required solution.

The intuition behind this is that a very simple solution exists for b→ ∞. In this case
the smooth gravitational geometry would be identical to (4.14) provided we rescale β → nβ.
In that case the gluing would also be straightforward, since our original τ(u) = u would solve
the equations of motion (4.22), albeit for the replicated manifold. The key idea is that we
can use two conformal transformations similar to (4.30), one for the gravitational region and
one for the radiation region, to map the point y = b to infinity, while mapping the asymptotic
AdS2 boundary into itself. In the new coordinates, finding the replica saddlepoint is much
simpler, and going back to the original problem we will find the contribution to the Influence
Functional of the smooth gravitational saddle (also called replica wormhole).

Let us now find these transformations. Let us start from the flat radiation region, and
assume we replicate it n times as in figure 6. Then, the transformation

pR = β

2π log

sinh
(

π
β (b+ y)

)
sinh

(
π
β (b− y)

)
 , pR = σ̃R + iτ̃R , (4.39)

maps the point y = b to pR → ∞. The subscript R indicates that this is the transformation
in the radiation region R, and thus we should consider only σ̃R > 0. Recall that at y = b (and
consequently at pR → ∞) there is a conical singularity, and that now τ (and consequently
τR) is nβ periodic.

We then consider the following replica wormhole geometry

ds2
M = 4π2

n2β2
dpM dp̄M

sinh2
(

π
nβ (pM + p̄M)

) , (4.40)

where pM = σ̃M + iτ̃M are coordinates in the gravitational region, and thus we should
consider only σ̃M < 0. Moreover, τ̃M is also nβ periodic. At σ̃ = 0, we can then impose
the simple gluing

τ̃M = τ̃R . (4.41)

This ensures a smooth replica wormhole solution, and provides a set of global coordinates. In
some cases we will then omit the M and the R subscripts. We can also find the corresponding
transformation between y and pM in the gravitational region. The only possibility that
ensures a smooth geometry also in the replicated y coordinates is

pM = nβ

2π log

sinh
(

π
nβ (b+ y)

)
sinh

(
π

nβ (b− y)
)
 . (4.42)

Using this transformation we see that in the y coordinates, the replica geometry of the
gravitational region remains

ds2
M = 4π2

n2β2
dy dȳ

sinh2
(

π
nβ (y + ȳ)

) . (4.43)
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⟨a2| |a1⟩

(4.39) and (4.42)

Figure 8. We consider the transformations (4.39) and (4.42), which send the point b to one end of
the cylinder, while mapping the boundary of AdS2 into itself. In these coordinates, it is simple to find
the replica wormhole solution, since the setup is invariant under shifts in the τ̃ coordinates. Therefore,
the replica wormhole solution can be found simply rescaling β → nβ. This effectively generates a
second twist operator at y = −b, but in the evaluation of the partition function the corresponding
piece doesn’t depend on the position, as we expect for any diffeomorphic invariant theory.

Finally, the only ingredient missing in order to obtain the (semiclassical) Influence
Functional is to understand how the dilaton in the original non-replicated coordinates
transforms in the replicated ones. To do it, we find convenient first to look at the non-
replicated dilaton solution, and then to obtain the replicated one. First, notice that the
transformations (4.39) and (4.42) coincide in the n → 1 limit. This is the non-replicated
geometry. In these coordinates, the original dilaton (4.16) becomes

Φ = −2πΦb

β

coth
(2πb
β

)
coth

(2πσ̃
β

)
−

cos
(

2πτ̃
β

)
sinh

(
2πb
β

)
sinh

(
2πσ̃

β

)
 . (4.44)

Close to the boundary, the dilaton does not behave as in (4.16) any longer, but rather
takes the form

Φ
∣∣∣
γ(u)

= Φb

ε

[
coth

(2πb
β

)
− cos

(2πu
β

)
csch

(2πb
β

)]
≡ Φb(u)

ε
. (4.45)

These are the boundary conditions for the dilaton in the p-coordinates. It is then simple to
find the corresponding dilaton solution in the replicated geometry. The choice that maintains
the same boundary conditions (4.45) but is also nβ periodic in τ is

Φn = −2πΦb

nβ

coth
(2πb
β

)
coth

(2πσ̃
nβ

)
−

cos
(

2πτ̃
nβ

)
sinh

(
2πb
β

)
sinh

(
2πσ̃
nβ

)
 . (4.46)

Now, the gravitational action is simplest evaluated in the p coordinate, with the saddle

σ̃ = −ε , τ̃(u) = u with u ∈ [0, nβ) , (4.47)

giving
4
κ2

ˆ nβ

0
duΦn(u)

{
tan

(
πτ̃(u)
nβ

)
, u

}
= 4Φb

κ2
2π2

nβ
coth

(2πb
β

)
. (4.48)

This means that the replicated Influence Functional is,5 at leading order,

FB
n = exp

[
S0 + 8π2Φb

κ2nβ
coth

(2πb
β

)]
, (4.49)

5Notice that for the replica wormhole we still have only S0 since the geometry is still that one of the disk.
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which crucially depends non-trivially on n. Likewise, the open effective theory is

Zg,n = FB
n

ˆ
[Dϕ] e−ICFT(gn,ϕ) . (4.50)

Let us then compute the matter entanglement entropy and show that it is now consistent
with the island formula. Proceeding as before, we have

ˆ
[Dϕ] e−ICFT(gn,ϕ) = e

−∆σ̃
nβ

E0 ⟨a2|0⟩ ⟨0|a1⟩ + . . . . (4.51)

Through the inverse transformation (4.39), we have in the R region

y(σ̃2 + iτ̃) = b− ε2e
− 2πiτ̃

β + . . . with ε2 = β

π
sinh

(2πb
β

)
e
− 2πσ̃2

β , (4.52)

while through the inverse transformation (4.42), we have in the M region

y(σ̃1 + iτ̃) = −b+ ε1e
2πiτ̃
nβ + . . . with ε1 = nβ

π
sinh

(2πb
nβ

)
e

2πσ̃1
nβ . (4.53)

To compare the cutoffs between the gravity region M and the flat region R, we impose that
the proper lengths are the same. Thus we have

4π2

n2β2
ε2

1

sinh2
(

2πb
nβ

) = 4e
2πσ̃1

nβ = ε2
2 ≡ ε2 . (4.54)

Interestingly, this cancels the dependence on the partition function from the contribution
coming from the point y = −b in the gravity region, consistent with the fact that the result
has to be diffeomorphism invariant on M. On the other hand, we should be careful in treating
the various cutoffs. Let us consider (4.54), which relates them. In the flat region R we choose
a cutoff ε2, from here on called ε for simplicity, which is fixed for any number of replicas. On
the other hand, in the gravity region Mn, we notice that if we fix σ̃1, then the cutoff on Mn

explicitly depends on the number of replicas n. The correct prescription should be that we
fix ε once for all the number of replicas, such that it coincides with the one in the flat region
R. In turns out that this means that we have to rescale σ̃1 → nσ̃1, so that all in all we have

ˆ
[Dϕ] e−ICFT(gn,ϕ) =

(2
ε

) c
12n
(
β

πε
sinh

(2πb
β

)) c
12n

. (4.55)

The total matter entanglement entropy is then

SB = S0 + 16π2Φb

κ2β
coth

(2πb
β

)
+ c

6 log
(2
ε

)
+ c

6 log
[
β

πε
sinh

(2πb
β

)]
+ . . . . (4.56)

The cutoff in the third term of the r.h.s. can either be absorbed in the definition of S0, or it
can be removed rescaling the metric from (4.14) to the more physical choice

ds2
M = 4π2ε2

β2
dy dȳ

sinh2
(

π
β (y + ȳ)

) , ds2
R = dy dȳ . (4.57)
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Both ways, the final expression for the matter entanglement entropy is

SB = S0 + 16π2Φb

κ2nβ
coth

(2πb
β

)
+ c

6 log(2) + c

6 log
[
β

πε
sinh

(2πb
β

)]
+ . . . , (4.58)

and in this fashion it is clear that effectively we can say that the matter fields on the
gravitational region contribute to the entanglement entropy with

Sg,mat = c

6 log(2) , (4.59)

thus of one Hawking pair per mode.

Consistency with the island formula and comments on the information paradox.
We now want to show that (4.58) is consistent with the result obtained from the island
formula (3.18), which we rewrite here for convenience

S(R) = minI

{8πA(∂I)
κ2 + Sbulk fields(I ∪R)

}
.

The functional over which we minimize is usually called generalized entropy formula [20]. In
this case the boundary of the island is a point, we call it y = −a, in the gravitational region
(thus a is positive). Moreover, for lower dimensional dilaton models, the area of the island is
represented by the value of the dilaton at the boundary of the island. In formula

8πA(a)
κ2 = S0 + 16π2Φb

κ2β
coth

(2πa
β

)
. (4.60)

Furthermore, we need the entanglement entropy of the matter fields on the fixed curved
background (4.57). Considering the result (4.37) and the Weyl factors of (4.57), we have

Sbulk fields(I ∪R) = c

6 log

2β sinh2
(

π
β (a+ b)

)
πε sinh

(
2πa
β

)
 . (4.61)

The island is found minimizing over a the overall expression

Sgen(a, b) = S0 + 16π2Φb

κ2β
coth

(2πa
β

)
+ c

6 log

2β sinh2
(

π
β (a+ b)

)
πε sinh

(
2πa
β

)
 . (4.62)

This procedure results in the condition

sinh
(2πa
β

)
= 96π2Φb

κ2βc

sinh
(

π
β (a+ b)

)
sinh

(
π
β (a− b)

) , (4.63)

and the solution for b ≳ β/2π and Φb/βc ≳ 1 is

a = b+ β

2π log
(

192π2Φb

κ2βc

)
+ . . . , (4.64)
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ttP

S

≈ 2S0

Figure 9. The Page curve for the eternal black hole computed using the proposed prescription for
the Influence Functional.

which implies

Sgen = S0 + 16π2Φb

κ2β
coth

(2πb
β

)
+ c

6 log
[2β
πε

sinh
(2πb
β

)]
+ . . . , (4.65)

matching (4.58) exactly, and (up to corrections) the BCFT thermal entropy (4.38) setting
the boundary entropy

log(g) = S0 + 16π2Φb

κ2β
+ c

6 log(2) (4.66)

The discussion just presented can also be used to comment on the black hole information
paradox. In particular, we can consider the situation in which we replicate the flat region
around two points, namely

y1 = b+ iτ ,

y2 = b+ iβ/2 − iτ . (4.67)

This is instrumental for the analytic continuation τ = −it, which allows to consider the out
of equilibrium solution. In principle, our definition for the Influence Functional does not
allow us to consider out-of-equilibrium states. However, we will argue that replicating the
system around (4.67), we will be able to use the results of the previous section at different
time scales so that at each instant of time the Influence Functional is well approximated
by an equilibrium saddle.

The physical picture in the Lorentzian signature is the one of a two-sided eternal black
hole that exchanges quanta with the radiation region R, in such a way that the overall energy
of the black hole is invariant but entanglement is created between the black hole and R.

Taking inspiration from [20], at the beginning of the Lorentzian evolution the dominant
saddle to the Influence Functional is given by the disconnected geometry. On the other hand,
after the Page time, the dominant contribution is a multi-boundary wormhole solution. In
this case, it is not possible to find a suitable conformal transformation that allows to find
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exactly this wormhole geometry. However, we notice that in the Lorentzian evolution the
distance between the two points y1 and y2 increases over time. Therefore, their mutual
interaction decreases over time, and the dominant saddle is well approximated at late time
by (twice) the one just found for the single replica point [20].

In the case of different saddles, we can compute the moments of the density matrix as

Tr[ρn] =
∑
Si

Zn[Si]
Zn[Si]

, (4.68)

where Si are the different replica saddles and the summation is over all of them. Therefore,
at early and late times, the Rényi entropies are well approximated by

Sn = 1
1 − n

log
{[

β

πε
cosh

(2πt
β

)] c
6 ( 1

n
−n)

+ e
2S0(1−n)+ 16π2Φb

κ2β
( 1

n
−n) coth

(
2πb

β

) (2β
πε

sinh
(2πb
β

)) c
6 ( 1

n
−n)}

, (4.69)

which implies an entanglement entropy of the form

S =



c

3 log
[
β

πε
cosh

(2πt
β

)]
+ . . . early time ,

2S0 + 32π2Φb

κ2β
coth

(2πb
β

)
+ c

3 log
[2β
πε

sinh
(2πb
β

)]
+ . . . late time .

(4.70)

This produces the well-known Page curve of figure 9 [37], with a crossover of behaviors
around the Page time

tP ≈ 3S0β

πc
+ . . . . (4.71)

5 Discussion

In this work we have analyzed holographic theories using the language of open quantum
systems, focusing in particular on their Open Effective Field Theory, and on the subtleties
arising when considering a replicated partition function to compute Rényi entropies. Moti-
vated by the Lagrangian description of the bulk theory, we have used the Feynman-Vernon
Influence Functional approach [8] to compute the Open Effective Field Theory of matter
fields considering the gravitational field to be an environment. This is tantamount to finding
a non-local functional, the Influence Functional, that comes out of path-integrating the
environment, and includes all of the effects that the environment — in our main example,
the gravitational theory, but not restricted to this case — has on the system.

At leading order in the system-environment coupling, as usual related to the Newton
constant, the Influence Functional is a non-local T 2 deformation of the matter theory. This
Influence Functional can be used to compute correlation functions between matter fields,
and the result is guaranteed to match exactly the prediction using the global theory. On
the other hand, we have shown how replicating the partition function to compute Rényi
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entropies leads to non-trivial possibilities. In summary, the idea revolves around the fact that
for gravitational theories, integrating out some degrees of freedom and then replicating the
theory does not lead to equivalent results as first replicating the theory and then integrating
out some degrees of freedom, as sketched in figure 4. The reason behind this discrepancy
comes from the fact that replicating the theory changes the boundary conditions, and thus
also the smooth gravitational background. Therefore, in the former procedure the original
non-replicated saddle is being used, while on the latter the replicated saddle is the geometric
background of choice.

One of the main points of this work is to point out that, even though from an EFT
point of view the former procedure seems to be natural when computing Rényi entanglement
entropies of matter fields, only the latter is able to give answers consistent with unitarity.
In particular, based on these suggestions, we have proposed a prescription to compute the
gravitational replicated Influence Functional Fn, and we have shown how this prescription
leads to the island formula when computing the matter entanglement entropy. We applied
the same formalism to the well known case of a black hole in JT gravity coupled to a CFT2,
computing its gravitational Influence Functional and showing how it reproduces the results
of the island formula.

At this point, we would like to give some possible interpretations of this result. To
begin with, we remark that it is perhaps not a surprise that such a discrepancy appears
when computing Rényi entropies, which are more sensitive probes than correlation functions.
This in turns gives us many future directions which would be interesting to explore, both
for formal and phenomenological developments.

On one hand, the prescription to compute the replicated Influence Functional is forcing
us to couple the gravitational (= environment, in this context) degrees of freedom among
different replicas. From the point of view of EFTs, where the low energy Hilbert space is
assumed to factorize into a graviton sector and a matter sector, namely H = Hgrav ⊗Hmat,
this is not natural. One possibility is that this assumption is wrong, and that in the UV
complete theory it doesn’t factorize. There are some examples in which this idea seems
to be born out, like in models of black hole evaporation in AdS coupled to a reservoir R
which are dual to a Boundary/Interface CFT [32, 38–41].6 In a Boundary/Interface CFT, the
boundary excitations, which would be dual to gravity and low-lying matter fields, are already
a complete basis of the BCFT. Indeed, through the Boundary OPE, it is possible to rewrite
CFT-bulk operators through CFT-boundary operators, and thus we do not expect to have a
factorized Hilbert space. This idea of non-factorization also seems to be realized in generic
holographic theories. We can take as a prototypical example the AdS3/CFT2 duality. In this
case, the semi-classical geometry is expected to arise from the Virasoro identity block [43, 44],
which includes the stress energy tensor and all of its descendants. Then, in this case the
factorised Hilbert space in the bulk is a large-N effect.

On the other hand, this explanation doesn’t seem to be exhaustive for other examples,
at least in this naive way. One case could be SYK coupled to bosonic fields, where the
Hilbert space is clearly factorized. In this case, we could study the dynamics of the bosonic
fields treating SYK as an environment. The theory is clearly unitary, and at low energy

6For a recent review on the relation between these models and BH evaporation in massless gravity see [42].
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it can be described by the same Schwarzian theory of JT gravity coupled to matter fields.
As mentioned in section 2, a possible explanation in this case is linked with the underlying
averaging needed to obtain the Schwarzian theory. In particular, the entanglement entropy
is a non-linear probe of the density matrix, and performing an average at different stages
of the calculation leads to different observables. More precisely,

Tr[ρs log(ρs)] ̸= Tr[ρs log(ρs)] . (5.1)

In appendix B we show quantitatively that the r.h.s. in (5.1) is consistent with the computation
performed through Scenario B, while the l.h.s. with Scenario A. This could have been
unexpected a priori. If the Schwarzian theory is the coarse grained effective theory of SYK,
one could expect that only quenched averages can be computed through such effective theory,
and that to compute annealed quantities one has to consider a possibly different effective
theory for the probes they are interested in. On the other hand, what we have found in this
work shows that the same effective theory can be used, albeit with a different set of rules.
This is quite a remarkable fact, which suggests that some of the knowledge of the UV theory
is preserved through a coarse graining, although only statistically. Work in this direction
could be instrumental not only to deepen our understanding of the entanglement structure of
strongly chaotic theory, but also for possible experimental realizations [4–7].

On the other hand, other typical effects of open quantum systems could play an interesting
role, on top of all quantum decoherence. Earlier works studied decoherence properties of
CFTs [45], connections to holography [46] and to wormholes [47–49]. Quantum decoherence
takes place when a system enters in contact with a quantum environment made of many
degrees of freedom, or a classical system with similar properties. As such the Influence
Functional approach of this paper would seem to be perfectly adapted to further investigate
decoherence in gravity. This would likely necessitate an understanding of the issues uncovered
in this paper on the Schwinger-Keldysh and related contours.

Finally, these ideas could also be tested on tensor networks models of holography [17, 50–
52]. An interesting recent development is presented in [17], where the notion of approximate
CFTs is used to develop a random tensor network that could be seen as a discretization of pure
AdS3 gravity. The ideas presented there could be implemented by replicating approximate
CFTs with light matter operators. We leave this issue for future work.

Let us conclude by remarking that the different entropies considered in this work are not
observables in the strict sense of the word. Nevertheless, some versions of Rényi entropies do
lend themselves to possible measurement protocols, especially in highly controlled systems
where state tomography is available (see. e.g. [53], where this point is also made). It would
nevertheless be interesting to identify more conventional observables that are sensitive to
the different IF prescriptions developed in this work.
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A Green’s functions for the n-sheeted geometry

A.1 Two point Green’s functions for gapped theories

In this section we want to compute the Green’s function of the simplest gapped theory, a
free massive scalar in two dimensions, in the n-branched cover geometry used in the text.
We follow the approach of [19]. We then consider a system with action

I[ϕ] =
ˆ

d2x

(1
2 ∂µϕ∂

µϕ+ 1
2 m

2 ϕ2
)
. (A.1)

As we saw in section 2.4, the two-point Green’s function of the n-sheeted geometry is linked
to the entanglement entropy of the system since

∂m2 logZn = − 1
2Zn

ˆ
[Dϕ]ϕ2(x)e−In[ϕ] = −1

2

ˆ
d2xGn(x, x) . (A.2)

Moreover, as discussed previously, this computation greatly simplifies if we exploit the
symmetries of the system: we consider polar coordinates and we compute the entanglement
entropy of a semi-infinite line extending from the origin to infinity. The n-sheeted geometry is
then an n-cover of the two dimensional plane. To simplify further, we fist consider a disk with
radius r ∈ [0, L] and with angular variable θ ∈ [0, 2πn), and then we will take the limit L→ ∞.
This also means that the region for which we will compute the entanglement entropy is [0, L],
in the limit L→ ∞. This is what has been done in [19], so we will review their computation
and we will extend it to different integrals involving more than one Green’s function.

Finding Gn(x1, x2) entails finding the orthonormal eigenfunctions that quantise the field
ϕ in the replicated geometry, namely the eigenfunctions of

(−□ +m2)ϕ(x) = 0 , (A.3)

which are given, in polar coordinates, by

ϕc
k,i(r, θ) = cos(kθ/n)Jk/n(λi,k/nr) , ϕs

k,i(r, θ) = sin(kθ/n)Jk/n(λi,k/nr) . (A.4)

Here k ∈ N so that the trigonometric functions are 2πn periodic, and λi is chosen so that
the eigenfunctions vanish at r = L, so

Jk/n(λi,k/nL) = 0 . (A.5)

Written in the form of (A.4), these eigenfunctions are not normalised. The normalisation
can be found imposing

Nk,i

ˆ
d2x ϕa

k,i(r, θ)ϕb
l,j(r, θ) = δk,lδi,jδ

a,b , (A.6)

– 36 –



J
H
E
P
0
6
(
2
0
2
4
)
1
8
5

which implies

Nk,i = dk

2πnL2
2

J2
k
n

+1(λi,k/nL) . (A.7)

The redial integral can be performed exactly using
ˆ 1

0
x dxJα(λi,αx)Jα(λj,αx) = 1

2 J
2
α+1(λi,α) δi,j . (A.8)

In equation (A.7) we have also used the same convention of [19] that d0 = 1 and dk>0 = 2.
Using (A.4) and (A.7), the two point correlator is then

Gn(x1, x2) =
∑
i,k

Nk,i
ϕk,i(x1)ϕk,i(x2)
λ2

i,k/nL
2 +m2

= 1
2πn

∞∑
k=0

dk

∞∑
i=1

2
L2J2

k
n

+1(λi,k/nL)
Jk/n(λi,k/nr1)Jk/n(λi,k/nr2)

λ2
i,k/nL

2 +m2 C(θ1, θ2) , (A.9)

where
Ck/n(θ1, θ2) = cos

(
kθ1
n

)
cos

(
kθ2
n

)
+ sin

(
kθ1
n

)
sin
(
kθ2
n

)
. (A.10)

At this point we can send L → ∞. The variable λi,k then becomes continuous, and the
two point function becomes [19]

Gn(x1, x2) = 1
2πn

∞∑
k=0

dk

ˆ ∞

0
λ dλ

Jk/n(λr1)Jk/n(λr2)
λ2 +m2 Ck/n(θ1, θ2) , (A.11)

A.2 Regulating a two point function at coincident points

Integrating in θ and λ, we have
ˆ ∞

0
λ dλ

Jk/n(λr1)Jk/n(λr2)
λ2 +m2 = Kk/n(mr1) Ik/n(mr2) , for r1 ≥ r2 . (A.12)

We remind the reader that to obtain this result one has to take θ1,2 to be 2πn periodic.
This means that

−1
2

ˆ
d2xGn(x, x) = −1

2

∞∑
k=0

dk

ˆ ∞

0
r drKk/n(mr) Ik/n(mr) . (A.13)

Unfortunately, for all k’s, each radial integral is divergent. Exchanging the sum in k and
the radial integral we get

−1
2

ˆ
d2xGn(x, x) = −

ˆ ∞

0
r dr 1

2

∞∑
k=0

dk Kk/n(mr) Ik/n(mr) . (A.14)

However, for all r, also the k sum is divergent. To regulate it, we first introduce a regulator
F (x) considering the sum

1
2

∞∑
k=0

dk Kk/n(mr) Ik/n(mr)F (k/nΛ) .
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We choose F (x) such that F (0) = 1, F (j) = 0 for all j ≥ 1, and that vanishes at infinity
sufficiently fast. In this way the sum above is convergent. To compute it, we can now use
the Euler-MacLaurin (EML) sum formula [54], which states that

1
2

∞∑
k=0

dk f(k) =
ˆ ∞

0
f(k) dk − 1

12 f
(1)(0) −

∞∑
j=2

B2j

(2j)! f
(2j−1)(0) , (A.15)

where B2j are Bernoulli numbers. In our case, the last term in the r.h.s. of (A.15) vanishes
since every term of the sum is zero. Then, using the fact that

∂kKk/n(mr)
∣∣∣
k=0

= 0 , ∂kIk/n(mr)
∣∣∣
k=0

= − 1
n
K0(mr) , (A.16)

the EML sum formula can be written as

1
2

∞∑
k=0

dk Kk/n(mr) Ik/n(mr)F (k/nΛ) =
ˆ ∞

0
Kk/n(mr) Ik/n(mr)F (k/nΛ) dk+ 1

12n K
2
0 (mr) .

(A.17)
Now we can send Λ → ∞ to remove the regulator, and we can change variables to k̃ =
k/n, so that

1
2

∞∑
k=0

dk Kk/n(mr) Ik/n(mr) = n

ˆ ∞

0
Kk̃(mr) Ik̃(mr) dk̃ + 1

12n K
2
0 (mr) . (A.18)

Now we realise that the first term in the r.h.s. of (A.18) is divergent, but it gets canceled in
the combination log(Zn) − n log(Z), so we can neglect it. Last, using the fact that

ˆ ∞

0
r drK2

0 (mr) = 1
2m2 , (A.19)

we obtain
ˆ

d2xGn(x, x) = 1
12m2n

. (A.20)

In the main text we have then used this result to obtain

∂m2 log
(
Zn

Zn

)
= − 1

24m2

( 1
n
− n

)
,

which gives

S = 1
6 log

( 1
mε

)
.

A.3 Products of two Green’s functions

In this section we would like to compute integrals of the form
ˆ

d2x1 d2x2Gn(x1, x2)Gn(x1, x2) .
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In the previous section we have already massaged the two point function to the form

Gn(x1, x2) = 1
2πn

∞∑
k=0

dk

[
θ(r1 − r2)Kk/n(mr1) Ik/n(mr2)

+ θ(r2 − r1)Kk/n(mr2) Ik/n(mr1)
]
Ck/n(θ1, θ2) , (A.21)

where θ(x) is the Heaviside step-function. Then we can compute
ˆ

d2x1 d2x2Gn(x1, x2)Gn(x1, x2)

= 1
4π2n2

∞∑
kα,kβ=0

dkαdkβ

[
2
ˆ ∞

0
r1 dr1

ˆ r1

0
r2 dr2Kkα/n(r1)Kkβ/n(r1)Ikα/n(r2)Ikβ/n(r2)

]

×
ˆ 2πn

0
dθ1

ˆ 2πn

0
dθ2 Ckα/n(θ1, θ2) Ckβ/n(θ1, θ2) . (A.22)

The factor of two in the brackets comes from the symmetry of the integral in the exchange
r1 ↔ r2. The angular integral evaluates to

ˆ 2πn

0
dθ1

ˆ 2πn

0
dθ2 Ckα/n(θ1, θ2) Ckβ/n(θ1, θ2) =

4π2n2 δkα,kβ
for kα = 0 ,

2π2n2 δkα,kβ
for kα > 0 ,

(A.23)

which means that the double sum in kα and kβ becomes a single sum over k ≡ kα = kβ.
Finally renaming s1,2 = mr1,2, we have

1
2

ˆ
d2x1 d2x2Gn(x1, x2)Gn(x1, x2) = 2

m4

ˆ ∞

0
s1 ds1

ˆ s1

0
s2 ds2

1
2

∞∑
k=0

dk K
2
k/n(s1)I2

k/n(s2) .

(A.24)
Using again the EML sum formula with the regulator in place we have

1
2

∞∑
k=0

dk K
2
k/n(s1)I2

k/n(s2)F (k/nΛ)

=
ˆ ∞

0
dkK2

k/n(s1)I2
k/n(s2)F (k/nΛ) + 1

6n K
2
0 (s1)K0(s2)I0(s2)F (k/nΛ) (A.25)

Notice that we have omitted the last term in the r.h.s. of (A.15), since it vanishes. Moreover,
the first term in the r.h.s. of (A.25) scales like n, so we can omit it in the computation of
the entanglement entropy. All in all, removing the regulator, we have

1
2

ˆ
d2x1 d2x2Gn(x1, x2)Gn(x1, x2) = 1

3m4n

ˆ ∞

0
s1 ds1

ˆ s1

0
s2 ds2K

2
0 (s1)K0(s2)I0(s2) .

(A.26)
It’s not difficult to show thatˆ ∞

0
s1 ds1

ˆ s1

0
s2 ds2K

2
0 (s1)K0(s2)I0(s2) = 1

8 , (A.27)

so that in the end we haveˆ
d2x1 d2x2Gn(x1, x2)Gn(x1, x2) = 1

12m4n
. (A.28)
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The same approach can be used to find
ˆ
M̃

d2x1 d2x2G(x1, x2)Gn(x1, x2) = 1
12m4n

. (A.29)

In particular, in this case the integration domain is only over one of the n sheets, and thus
the angular integrals are only defined in the domain [0, 2π).

B Coarse graining and entanglement entropy

In this section we want to consider the effect of a coarse graining in the computation of the
entanglement entropy, or more simply in the moments of the density matrix. In particular,
we couple a system with a chaotic environment, and compute coarse grained moments of the
reduced density matrix. We show that, at the level of the coarse grained EFT, prescription B

is able to quantitatively capture the details of the microscopic computation, and in particular
it is possible to match the “replica wormhole” contributions.

To be quantitative, we focus on computing the purity. Considering a global pure state
ρ = |ψ⟩⟨ψ| and the associated system’s density matrix ρs = Tre[ρ], the main conceptual
point is that

Tr
[
ρ2
]
̸= Tr

[
(ρs)2

]
̸= Tr[(ρs)2] . (B.1)

We claim that proposal A computes the middle one (quenched average), while proposal B
computes the r.h.s. (annealed average).

It is also possible to show a precise matching with prescription B. Considering a
generic state

|ψ⟩ =
∑
ij

ψij |si⟩ |ej⟩ ,
∑
ij

|ψij |2 = 1 . (B.2)

Then, the reduced density matrix and the coarse grained version are

ρs =
∑
ijk

ψijψ
∗
kj |si⟩⟨sk| =

∑
ik

Cik |si⟩⟨sk| and ρs =
∑

i

Cii |si⟩⟨si| , (B.3)

where we have defined Cik to ease the notation. Notice that Tr[ρs] = 1 imposes Cii ∼ 1/ds,
where ds is the dimension of the Hilbert space of the system. Then the purity of the coarse
grained system density matrix is

Tr
[
(ρs)2

]
=
∑

i

Cii
2 ∼ 1

ds
. (B.4)

Finally, we have

Tr
[
ρ2

s

]
=
∑
ij

|Cij |2 −→ Tr[ρ2
s] =

∑
i

|Cii|2 +
∑
i ̸=j

|Cij |2 , (B.5)

where we have divided the sum into two pieces, one where i = j and one where i ̸= j. We
notice that, due to the system-environment interaction, we can estimate the off-diagonal
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elements of the density matrix as |Cij |2 ∼ 1/(d2
s de), where de = eSe is the dimension of the

environment Hilbert space. Then the purity and the Rényi-two entropy become

Tr[ρ2
s] ∼ 1

ds
+ e−Se , S2 ∼ min

{
log(ds), Se

}
. (B.6)

In a gravitational setup we would then interpret the second contribution of the r.h.s. of (B.5)
as a replica wormhole contribution. This discussion is similar to section 2.3 of [21], and is not
restricted to holographic theories, but to any environment which has both a finite-dimensional
Hilbert space and is chaotic enough for which a coarse grained description is suitable.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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