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Abstract

Visually disabled individuals face significant difficulties in interacting comfortably with
their environment as their mobility and cognition of the world are dramatically dimin-
ished. The main aim of the study carried out and reported in this thesis is to build a proto-
type for visual substitution in the interest of helping the blind and the visually impaired.
Overall, we introduce See ColOr, whose name stands for seeing colors with an orchestra, as a
Sensory Substitution Device (SSD) pursuing a long-standing goal in visual rehabilitation,
namely ‘seeing through the ears’. In principle, quite like related works, we adhere to neuro-
plasticity theories, which broadly imply that visual consciousness can be elicited bypassing
the eyes through the auditory sensory pathway. Accordingly, this manuscript begins with a
review of the physiology of vision and the literature related to SSD, to shed light on the de-
velopment of this scientific endeavor through the last five decades.

See ColOr is a SSD that proposes a unique code to map optical colors into instruments
sounds, allowing visual stimuli to be conveyed as audio cues. It uses a head-mounted 3D-
camera, a tactile interface (tablet) and bone-phones to transmit sound via bone stimulation
without blocking out the ears. In addition, unlike typical approaches, See ColOr uses also
Artificial Vision to simulate higher-level or cognitive aspects of vision: object recognition, face
detection, text reading, and context awareness to prevent users from bumping into unex-
pected obstacles. Accordingly, this thesis contributes on a variety of research topics, such as:
simultaneous sonification of color and depth using spatialized virtual sound sources; efficient
processing of range images; and also relevant aspects of human computer interaction and
haptic-audio trajectory playback. At the experimental level, we contribute with systematical
evaluations that involve both, mobility and orientation, which is a major lack in the state of
the art. By and large, See ColOr proved to allow its users grasping visual information of the
world out of which they can derive: spatial awareness, ability to find someone, location of
daily objects, and skill to walk safely avoiding obstacles. In this way, we largely answer sev-
eral research questions about how reliably humans can perceive color through sound, and
how much visual information is actually codable into audio. As a matter of fact, we can "input
a scene" in someone’s mind through the ears, in a few minutes with a precision of centime-
ters.

With regard to the inclusion of computer vision into our approach, we also review plausi-
ble ideas on the ontological nature of vision, to argue that visual perception is unlikely at-
tainable by means of today SSDs. The hypothesis central to our approach is that by combin-
ing sensing, computation and interaction, as our final experiments confirmed, we are bound
to achieve a wearable device more functional, learnable and practical, capable of producing
reliable knowledge about the physical world. The outcome of this thesis is then a smart See
ColOr that can be adapted to multiple tasks. Moreover, as a last novelty, we get rid of the
tablet with the concept of tactile augmented reality, which allows users interacting with the
system only through hand gestures. This prototype, affordable as it is compared to retinal
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implants, was tested in a developing country where the access to this kind of technology is
rather little. This is a venue where, in nearly 90% of the cases, blindness prevents people
from working and drops their life expectancy down to 1/3. The enthusiasm and blissfulness of
this South American community when we reached them with See ColOr, will linger in our
memories through a series of videos recorded to conclude this thesis.
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“Knowledge can be communicated,
but not wisdom. One can find

it, live it, do wonders through it,
but one cannot possibly
communicate or teach it.”

Siddhartha, Herman Hesse (1922)
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1 INTRODUCTION

The World Health Organization estimates the world blind population at 39 million per-
sons, which roughly corresponds to 0.56% of the total world population. More precisely this
represents an incidence ranging from 0.5% to 1.4% in the developing countries and of 0.3% in
the whole of the industrialized countries [1]. As for low-income countries, in nearly 90% of the
cases a blind individual can no longer work and his/her life expectancy drops down to 1/3 that
of a matched peer, in age and health. Back to the global picture, blindness is likely to double
in the next 15 years because of ageing. In the world, people aged over 60 account for 58% of
blind. In Switzerland for instance, 10000 people are affected by blindness and 80% of them
are more than 60 years old. Fortunately, on a worldwide scale approximately 50% of blind-
ness could be prevented. Nonetheless, without effective and major intervention, the projected
increase in global blindness to 76 million by 2020 will be regrettably reached. [1]

At large, blind individuals are adept at traveling with help of traditional mobility aids
(i.e. white canes and guide dogs). The limitations of these tools, however, become apparent in
numerous daily life situations, creating a strong urge to seek aid from others. Accordingly,
the exploration of new environments turns out particularly demanding. Also, when looking
for unfamiliar destinations, it is very challenging for them to handle unexpected needs or
notice serendipitous discoveries that might arise on their way. Despite the use of traditional
assistance, blind individuals still miss a great deal of information of the environment that
sighted people may take for granted. Last but not least, their other perceptual capacities may
be further lessened by the focus needed for mobility and orientation tasks poorly assisted.
This eventually lowers their sense of independence and dignity.

Nowadays, state-of-the-art retinal implants are intended to restore some functional vision
lost after damage of the photoreceptors, the most common cause of blindness (e.g. retinitis
pigmentosa and macular degeneration). These implants benefit from the fact that both optical
nerve and visual cortex remain undamaged, so that by electrically stimulating fibers in the
optical nerve, wasted photoreceptors may be bypassed. Roughly, a small camera captures a
video that is coded and sent wirelessly to an implanted electrode array, emitting pulses of
micro-electricity towards the brain. Clinical trials unfortunately reveal that these neuro-
prothesis still suffer from very limited resolution (i.e. 6X10 electrodes). Indeed, implanted
patients reported having perception of mere light patterns devoid of legibility and needing
complex interpretation. Therefore, basic visual tasks remain challenging or impossible for
them, such as objects identification, navigation in unknown environments or detection of
surrounding objects or persons identity [2] [3]. This added to clinical risks of invasive treat-
ments (let alone high prices), has augmented the skepticism of many that await affordable
solutions, less risky, and more efficient.



This scenario has given rise to a proliferation of context-aware research and development
(e.g. Electronic Travel Aids, Global Positioning Systems and Geographical Information Sys-
tems, Sensory Substitution Devices ‘SSDs’). Particularly, SSDs are made up of an optical
sensor coupling a processing device that systematically converts visual features into tactile or
auditory responses [4]. Thus, the goal here is convey visual information to the sense of hear-
ing (or touching). The central idea of SSDs is rooted in the concepts of multisensory percep-
tion and cross-modal transfer! [5], holding that perception entails interactions between two or
more different sensory modalities. This implies that areas of the brain typically associated to
the processing of inputs from a specific sensory pathway, may be activated by other senses
after robust training. In principle, the advantages of this sort of devices are clear: noninva-
sive technology at relatively low cost.

While generally promising, there are still a number of significant gaps in our understand-
ing of the HCI issues associated with SSDs. Overall, a subject that remains relatively uncer-
tain relates to the usability in real scenarios. The underlying problem is that the capacity of
information transfer of the human eye reaches 1000 Kbps [6]. Whereas, senses intended as
substitutes can hardly reach 10 Kbps at most (i.e. hearing) [6]. Thus, even though a cross-
modal transfer may apply, it is hard for mapping systems to overcome the large sensory
mismatch between visual perception and other sensory pathways. Accordingly, many SSDs
very often suffer from either loss of great deal of visual information, or illegible representa-
tion thereof. In practice, this fact dramatically diminishes their usability.

In this view we put forward See ColOr, a mobility assistance device for the blind aimed at
making a step further toward their independent mobility. See ColOr is a non-invasive mobili-
ty aid that uses the auditory pathway to represent a RGB-D (red, green, blue and depth)
stream in real-time. In principle, See ColOr encodes points of captured pictures into spatial-
ized musical instrument sounds, so as to represent color and location of entities. More specifi-
cally, these points are represented as directional sound sources, with each emitted instru-
ment depending on color. Also, the depth is represented by the rhythm of the sound. The
strategy for selecting points may be either automatic selection of the center of the picture, or
customized selection by tapping on a tactile tablet within which the picture is presented.
Ultimately though, See ColOr attempts at providing a hardware-free interaction, thus the
user will only need to point with the fingers spots in the real space in order to sonify them
(see Haptic-based Interfacing and Discussion).

Since the aforementioned functionalities are limited to describe local portions of an image
using low-level features such as color and depth, they foster micro-navigation? [7] of entities
by allowing selective exploration, discovery of points of interest, comparisons, and, in general,
to enjoy a greater sense of independence. Nevertheless, they might fail to reveal cognitive

! is perception that involves interactions between two or more different sensory modalities.
% micro-navigation is concerned with detecting and avoiding obstacles while walking through immediate
environment.
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aspects which often determine regions of interest within a picture. Accordingly, See ColOr
also uses computer vision techniques to process higher visual features of the images in order
to produce acoustic virtual objects [8]. Actually, we recognize and then sonify objects that do
not intrinsically produce any sound, with the purpose of revealing their nature and location to
the user. Overall, this allows the blind noticing serendipitous discoveries; seeking a specific
target; and avoiding obstacles.

1.1 Our thesis

Over the last four decades a proliferation of SDDs has emerged out of the interest among
the research community in aiding the blind. In particular, the main challenge faced by audi-
tory-based systems is the overcoming of the information bandwidth mismatch between the
complex visual spatial input and the auditory output (i.e. sensory overload). Therefore, re-
search on this topic has been focused on the transduction of low-and-middle level visual fea-
tures into the audio cues, such as brightness, contrast, color, spatial awareness, depth etc.
Arguably these approaches have failed to build a model replicating higher levels of the visual
system. Hence, they completely neglect cognitive aspects which often determine regions of
interest in the visual field or information subject to top-down knowledge [9].

Vision is a phenomenon that entails both, sensation and perception [10], [11], [12]. Sensa-
tion is the low-level -biochemical and neurological- feeling of external visual information as it
is registered (sensed) by the eyes. The visual sensation alone does not imply the coherent
conception (or understanding) of external visual objects [10], [11] . Therefore, following a
sensation, perception appears as the mental process that decodes the sensory input (sensa-
tion) to create awareness or understanding of the real-world [10], [11], [12]. In short, we
perceive the world through sensations, though we derive sense out of it (vision comes into
being) only when perception takes place [10], [13]. In this work, we argue that current SSDs
have been intended to provide a substitute to sensation, while the perceptual experience has
been left mostly unattended. The underlying problem is that the human visual system is
known to be capable of 4.3%1076 bits per second (bps) bandwidth [6]. Yet, senses intended as
substitutes can hardly reach 104 bps at most (i.e. hearing) [6]. In this light, even though a
cross-modal transfer may apply, it is hard for mapping systems to overcome the large sensory
mismatch between vision and other sensory pathways: if hearing does not even provide room
enough to convey visual sensations; actual visual perceptions are therefore very unlikely.

Importantly though, we do not think of visual perception being unattainable through long
term use of current SSDs. Simply, it implies a tough/long learning process that in any case,
will yield inaccurate approximations of vision, if at all. Further, we argue that any visual
perception we can achieve through hearing will always need to be reinforced or enhanced, in
order for the substitution to be: practical, fast, accurate, and let users act as though they were
actually seeing [14]. Visual perception is a holistic phenomenon that emerges from complex
information unlikely to be encoded into hearing (shapes, perspectives, color, position, dis-
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tance, texture, luminance, concepts etc.) [10], [11], [15], [16], [17]. In fact, ‘normal’ vision is
itself constrained by top-down knowledge that produces the kind of information that sighted
individuals achieve typically without conscious effort [12], [13], [14]. Our Thesis is that
nowadays, all this amount of data cannot be supplied efficiently in SSDs, unless we integrate
more advanced methods that lie beyond mere visual-to-audio mapping (e.g. computer or
artificial vision techniques). In this spirit, we shall not abandon the encoding of low-level
features into sound for sensory substitution. Rather, we would like to extend such an ap-
proach to the use of computer vision and image processing to deal with high-level information
that usually surpass the bandwidth of audio. Whether this strategy will lead us to an SSD
more learnable, practical, easy to interact with, and chiefly functional? Is a fundamental
research question underlying this work.

In short, we do believe that the coding into sound of basic visual cues (e.g. color and
depth) accompanied by computational methods that model higher perceptual levels of the
visual system will lead us to a SSD: functional, ease to use, and suitable for mobility and
exploration tasks “See ColOr”. This will be done by leveraging innate human capacity for
sound distinction (and localization) as well as the usefulness of computer vision methods to
synthesize human sight ability.

1.2 Research questions, scope of this thesis, and main contributions
In stating our thesis several research question arise, such as:

4+ Can humans reliably perceive color and depth by senses other than sight?

4+ Are cutting-edge technology and state-of-the-art methods capable of accurately rep-
resenting a visual scene in someone’s mind, through sound?

4+ Can we, nowadays, engineer a system that allows the blind to behave nearly as the
sighted individuals do? In which extent?

4+ Does it exist an ideal way to represent complex visual elements through sound?

4+ Is there any method leading to optimal interaction of blind users and aiding sys-
tems based on touch screens?

Throughout this document the development of studies, surveys, experiments, implemen-
tations, statistics and comparisons, will provide insight into answering the aforementioned
questions in order to support our thesis. As a matter of fact, the conclusions of this document
will relate our work to the answers we pursuit. Generally speaking, this work aims at provid-
ing a mobility aid prototype with fundamental research basis. However, due to technical
limitations we will constrain this approach to indoor environments. Also, we want to note
that a fully developed system ready for commercialization ends is not the target of this work.
Rather, we offer scientific guidelines and meaningful testing for further adaptations to end-
user systems. Essentially, we will follow four lines of investigation: sonification, range imag-
ing, haptic interfacing and computer vision. Our contribution on sonification is the developing
of a sonic code that maps colors and depth into musical instruments sounds using spatialized
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audio. Besides, experimental grounds on simplified scene sonification will be provided in
arguing against usual methods such as soundscapes3.

We will also contribute in this thesis with a framework for the coupling optical sensors in
the context of range and color image registration. Computer vision methods for object recogni-
tion will be implemented and tested in this work. Importantly though, we do not attempt at
improving the state of the arte in the field of artificial vision, therefore we will make use of
available methods. Also, a tactile interface will be implemented followed by robust research
and testing to assess how this could lead blind users to achieve better insight into the visual
world. All these topics will be condensed into our prototype robustly tested through series of
experiments conducted with blindfolded and blind individuals. It is worth noticing that alt-
hough SDDs is a broad field of research, the state-of-the-art review given in this document
will be limited to those technologies based on auditory substitution of vision. In short, the
main contributions of this thesis can be regarded as follow:

A functional prototype for aiding the visually impaired in exploration and mobility.
A sensorial coding of color and depth into sound.
An alerting method simple, yet fairly efficient to maintain the blind user’s safety.

£ E

An optimal haptic interface to mediate information between blind users and sound-
represented visual environments.
Meaningful insight into sonification methods of visual cues and worthwhile ideas to

=

correlate sound and vision into the brain.

4+ An implemented framework (Matlab-based) to integrate low-level and high-level
visual features into SSDs.

4+ Implementation of state-of-the-art computer-vision-based techniques oriented to
blind assistance.

4+ A Braille-like (based on tactile exploration) text recognition method based on deep
learning.

4+  The concept and implementation of Tactile Augmented Reality.

4+  An efficient method for registration of depth and color sensors to enhance perfor-
mance in aiding the blind.

4+ A method for orthographic camera simulation (ortho-kinect) oriented to scene sim-
plification in audio representation.

4+  Robust experimental basis involving end-users both, blindfolded and blind people.

4+  Meaningful discussion on the problem of visual substitution aids, covering historic
aspects, current issues, future challenges and novel ideas.

+ A community-based research approach to reach out developing-country population.

These contributions have been reflected in a number of publications issued during the
thesis work and cited in the bibliography , namely: [18], [19], [20], [21], [22], [23], [24], [25],

is a sound or combination of sounds that forms or arises from an immersive environment, e.g., the
natural sound of a jungle (birds, wind, cricks etc.).
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[26], [27], [28], [29], [30]. Also, we added an independent list with these publications in Ap-
pendix A. In addition, out of this thesis four bachelor projects emerged under advice of the
author. This thesis also contributed with meaningful help to one master project:

+  Kinect-based Autonomous mini Robot Car by Mikhail Chantillon. Bachelor in
computer science, University of Geneva (2011).

4+  Kinect-based object detection for visually impaired people by Sinan Mohamed.
Bachelor in computer science, University of Geneva (2011).

+  Kinect-based text detection and recognition in the interest of accessibility by Thomas
Dewaele. Bachelor in computer science, University of Geneva (2012).

+  Computer Vision for Mobility Aids: On the detection of ground surface changes by
Bruno Barbieri. Bachelor in computer science, University of Geneva (2012).

+  Follow me: A computer-vision-based programing of a NAO robot by Sheu Wen-Ru.
Master in computer science, University of Geneva (2013).

1.3 Thesis structure

Chapter 2 (BACKGROUND) of this document offers the neurological basis of vision that
will support both, our SSD See ColOr and our idea of adding computer vision to classical
SSDs. Following, a critical extensive review of the state of the art in SSDs is also provided in
this chapter. Chapter 3 (SEEING COLORS WITH AN ORCHESTRA), in turn, fully describes
the implementation of See ColOr across four lines of research, namely: sonification (3.3 Soni-
fication), image registration (3.4 Efficient registration of range and color images), haptic
interfacing (3.5 Haptic-based Interfacing) and computer vision (Computer-vision-based visual
substitution). Subsequently, in chapter 4 (EXPERIMENTS), we validate See ColOr by means
of a series of experiments conducted with both, blindfolded sighted and blind individuals.

Also, chapter 4 closes with relevant arguments to justify the functionality of See ColOr. The
final chapter of this document (chapter 5, DISCUSSION AND CONCLUSIONS) concludes
this document with a general summary, addressing as well research questions, future work,
user’s feedback and the lessons we learned from our own work. Importantly, while this thesis
provides a full chapter dedicated to experiments (chapter 4), all the research depicted in
chapter 3 accounts for experimental basis too, as shown in Table 1-1.
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Table 1-1. Structure of chapters 3 and 4 of this document.
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2 BACKGROUND

This chapter is intended to track vision down to its lair in the brain, giv-
ing insights into its most intricate ontological aspects. We study both, the
physiology and the psychology of vision in humans with two aims (2.1.1 Vi-
ston_and_Blindness). Firstly, to review the neurological grounds of sensory
substitution that ultimately support our SSD (2.1.2 Multisensory perception,
2.1.2 Multisensory perception and 2.1.3 Cross-Modal Transfer and Brain
Plasticity). Secondly, to make it clear that visual consciousness takes more
than visual sensations encoded into sound by todays SSDs. This latter is a
fundamental observation on which our thesis of adding Computer Vision to
classic SSDs entirely relies. An extensive critical review of the state of the art
in SSDs concludes this chapter, so as to provide the reader with an account
of what science has done so far to achieve the goal: seeing without the eyes
(2.3 Sensory Substitution Devices SDDs (State of the art)).

2.1 About the brain
2.1.1 Vision and Blindness

Visual perception

Visual perception is the ability to interpret the surrounding environment by processing
information that is contained in visible light. By and large, there are four main components
that make it possible for human to have a subjective, conscious visual experience (i.e. qualia,
Bach-y-Rita et al. [31]), namely: light, eyes, optical nerve, and the brain. The whole phenom-
enon of vision can be roughly summarized as follows: the light reflected by objects in the
world reaches the eyes through the cornea (the outermost layer of the frontal eye). This light
then strikes the retina which is the inside surface of the back of the eye ball. When light
strikes the retina, it triggers activity (impulses) in photoreceptors that synapse with the
axons of the optical nerve. Nerve impulses are then sent to the brain (through the optic
pathway or nerve) to be interpreted as visual images. Thus, about 2 billion neurons in the
visual cortex located in the back of the brain (within the occipital lobe) start firing through
500 trillion synapses. From this point onward, the visual experience is no longer traceable by
today’s scientific methods. We just know that a visual image is then produced and projected
back into space to clothe the observed object, so that this object begins to exist in the visual
consciousness of the person [11]. Here follows an endless debate on consciousness embracing
philosophy, religion and science (the mind-body problem [11]): “I” am the observer of this
occurrence (visual experience) or an integral part of it?
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Figure 2-1. Emergence of a visual perception (qualia) through the visual system defined by its
main parts (eyes, optic nerves and brain ‘visual cortex’). The eye has many of the features of a
camera lens to focus exterior light entering through the cornea. Right lights input are regu-
lated by the pupil by either expanding or shrinking. After crossing the eye ball from side to
side, light forms the visual image back in the retina. Importantly though, the image focused
in the retina is inverted top-to-bottom and reversed right-to-left. Following, photoreceptor
cells of the retina get stimulated and send those stimuli to the brain down the optic nerve.
Finally, the visual cortex enters bioelectrical stimulation and composes the image in a coher-
ent way so we can see. Note also that visual cortex activity is not only caused by optic nerve’s
stimuli. Memories, visual imaginary, thinking and dreaming among others are also elicitors
of bioelectrical stimulation in this area. (Modified from wwww.2-sight.eu/)

Blindness

Blindness occurs when any of the elements involved into visual experiences is missing or
defective. Note that even the lack of exterior light causes a temporal “blindness”, because
typically we cannot see in the darkness. More formally, blindness is defined as the lack of
visual perception due to either physiological (the eye blind) or neurological factors (the mind
blind):

The blind eye

According to WHO [1], the most common causes of blindness around the world are: cata-
racts (47.9%), glaucoma (12.3%), age-related macular degeneration (8.7%), corneal opacity
(5.1%), diabetic retinopathy (4.8%), childhood blindness (3.9%), trachoma (3.6%), and oncho-
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cerciasis (0.8%) [1]. These conditions may be acquired through illnesses, genetic disorders,
injuries, poisoning (chemical toxins), aging, infections, etc. All of them, nonetheless, cause
blindness due to damaging the eyes (or any of its functional parts such as cornea, retina,
pupil etc.), and in some cases the optic nerve. Onchocerciasis also known as river blindness,
for example, is a devastating parasitic disease caused by infection by a filarial worm termed
Onchocerca volvulus [32]. This disease provokes long-term corneal inflammation (keratitis)
that in turn, leads to thickening of the corneal stroma until blindness [32]. The parasite is
transmitted to humans through the bite of a black fly of the genus Simulium. Most infections
are reported in sub-Saharan Africa (approximately 270,000 cases), though also in Yemen,
Central and South America, cases have been documented [1], [32].

Figure 2-2. (taken from [32]) Adult black fly (Simulium yahense) with Onchocerca volvulus
emerging from its antenna. Observed using conventional scanning electron microscopy. Mag-
nified 100X.

It is a commonplace observation, however, that the brain (not the eyes) is in charge of the
greatest deal of the visual experience. The eyes (and the optic nerves), while being important
to vision, they have a role similar to that of a sensor (just acquiring information) rather than
a processor (deriving sense out of information). In fact, we will see (later in this section, and
in general in this thesis) that for eliciting a visual-like experience eyes and optical nerves
could all be bypassed, but the brain. In this view, many scholars agree on saying that “we do
not see with our eyes” [33], [16], [15], [34]. For instance, Johannes Kepler [16] was quoted as
saying: “vision occurs through a picture painted on the dark surface of the retina. The eye is
like a camera obscure, where the image is reversed. We don’t see the world upside down
nevertheless. This is because the eyes have little to do with the conscious visual experience;
they are rather a door through which light enters the mind.” Certainly, Kepler made a point
in this statement. The retina, indeed, has rather low intervention in conscious vision: at its
center, where the optical nerve takes its leave, it is not even sensitive to light, yet we do not
see a hole in the middle of each sight [16]. And though the outer parts of the retina are blind
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to color, we don’t see a greyish vision field on its top. Further, the retina is constantly flicker-
ing due to imperceptible eye movements; nonetheless the conscious image remains stable.

In most of the cases (we will see exceptions here later), when individuals go blind, they do
not actually lose the ability of seeing; rather they become incapable of convening external
stimuli to the brain. Since the working of the brain is not affected, a person who lost the
ability to retrieve data from their eyes could still create subjective images using: visual im-
agery, memories, and dreams among others. In this regard, O’Regan [35] says: “The only
difference is that whereas imagining finds its information in memory, seeing finds it in the
environment. One could say that vision is a form of imagining, augmented by the real world.”
As a remarkable example to this idea we can take Gian Paolo Lomazzo [36], an Italian paint-
er, best remembered for his writings on art theory. He became blind at early age, yet he
turned into a prominent art theoretician. His critics on art paintings were all based on oral
descriptions, memories and tactile feedback from simple brushstrokes [36]. He also super-
vised the creation of master pieces that were first born (full of color and details) into his
imagination. This was possible because his, was a kind of retinal blindness, one of the most
common [36]. Metaphorically, his visual brain stayed locked in by his own eyes, so to speak.

Back to the present, at University of California Berkeley, Professor Jack Gallant provides
meaningful insight into the brain to understand its workings regarding vision (Figure 2-3).
Gallant et al. [37] have been able to reconstruct the visual experience of a subject out of his
brain activity. They developed a new Bayesian decoder [37] that uses fMRI images from early
and anterior visual areas to reconstruct complex natural images. In other words, they are
building a dictionary that will enable accurate prediction of what the brain activity would be
given a particular image, and vice versa [37]. Here they are getting to the last step where
vision can be tracked in physical terms. The uncertainty comes when the visual cortex activi-
ty has taken place in the brain, since right in there lies the indistinguishable border between
the physical workings of our nervous system and ultimate immaterial nature of vision. Yet,
we can see clearly now that being the last step before reaching visual consciousness from
external light, the brain plays an decisive role in this conversion. If someone can tell us at the
end, what vision really is and what it is made of, that has to be the brain. As matter of fact,
we will see in the sections to come that out of this path (from light hitting the eye to vision)
many steps may be broken or removed but the last (the brain workings). The brain is more
intimately related to vision than any other element in the visual system, including eyes.
Actually, works such as that of Gallant tells us that while light is acquired through the eyes,
it becomes vision just upon arrival to the brain.
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Bayesian Algorithm for image decoding

fMRI image

Original Image

Primary Visual Cortex Activity

Reconstructed Image

Figure 2-3. Image reconstruction based on brain activity. Images are translated into activity
patterns of the primary visual cortex. So far, it is being exanimated just the part of the pri-
mary visual cortex that responds to little local visual features in the images such as, small

edges, colors, short motions and textures. This part of the brain however does not account for

a number of things such as what the objects are in the image. Consequently, the reconstruct-

ed image still differs much from the original one. Further progresses are expected soon. Note

also that visual cortex activity is not only caused by worldly images. Memories, visual imagi-
nary, thinking and dreaming among others are also elicitors of bioelectrical stimulation in
this area.

Nowadays, there is more and more practical evidence of these brain-centered approaches
to vision. Retinal implants, for instance, are intended to restore some functional vision lost
after damage of the photoreceptors, another common cause of blindness (e.g. retinitis pigmen-
tosa and macular degeneration [1]). These implants benefit precisely from the fact that both
optical nerve and visual cortex, remain undamaged, so that by electrically stimulating fibers
in the optical nerve, wasted photoreceptors may be bypassed. Roughly, a small camera cap-
tures a video that is codified and sent wirelessly to an implanted electrode array, emitting
pulses of micro-electricity towards the brain. Clinical trials unfortunately reveal that these
neuroprothesis still suffer from very limited resolution (i.e. 6X10 or 15X10 electrodes) [2], [3].
Indeed, implanted patients reported having perception of mere light patterns devoid of legi-
bility and needing complex interpretation. Yet, though with low accuracy, this clearly shows
that visual activity is indeed recoverable bypassing the eyes.
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Figure 2-4. An array of microelectrodes is surgically implanted in the retina. Images captured
by a camera are processed and converted into electrical impulses by a pocket computer and
then, sent wirelessly to the array. The optic nerve gets finally be stimulated with this impuls-
es (therefore the visual cortex too) and a qualia that resembles the image can be experienced.
(Modified from wwww.2-sight.eu/)

The blind mind

In congenitally blind things turn out to be quite different. In principle, these individuals
have no visual memory and their dreaming seem to be devoid of visual features. Nonetheless,
if they suffer from the type of blindness associated to factors other than brain, brain’s ability
to generate visual experiences must be there in the visual cortex, though unexploded [33], [5].
Maurice et al. [5] went further by using PET images to show that when visual information is
encoded and convey through another sensory modality, congenitally blind (after training)
start to present activity in their visual cortex. However, whether this activity corresponds to
actual visual experiences remains largely unknown, as it is the subject of even philosophical
debates [38] on consciousness. The underlying problem is that structural nature of the per-
ceptual system does not offer any criteria for distinguishing seeing from not seeing [38].
Therefore, congenitally blind are not capable of judging quality of visual experiences. For
instance, in one of his essays William Molyneux [38] posited this question: “would a person
blind from birth be able to distinguish visually a cube from a globe upon sudden acquisition of
vision?” This is indeed a very complex questioning, since ‘normal’ vision is itself constrained
by top-down knowledge [14]. Therefore, sudden acquisition of visual information not neces-
sary implies vision as we know it.
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Figure 2-5. (taken from [5])PET data (group analysis) showing visual cortex activations in
congenitally blind after trained to receive visual patterns through the tactile sensory pathway
(this topic is central to this thesis and will be treated extensively, see for instance Sensory
Substitution Devices SDDs (State of the art)). The images refer to from-top transversal slices
of the brain. The visual cortex (backside of the brain) is reflected here into the bottom side of

the image sequence.

There are bizarre cases of blindness related indeed to the functioning of the brain. Fran-
cis Crick and Christof Koch make this point very clear commenting a number of strange cases
in “The Quest for Consciousness” [13]. Complete cortical blindness (“Mind-blindness” or “vis-
ual agnosia” [39]) is in fact a consequence of damage to the association cortex of the brain.
Particularly Anton’s syndrome (from the German neurologist who termed it as blindness of
the soul, ‘seelenblindheit’), is a rare condition in which patients are blind but deny their
condition (they don’t know they are blind, nor what seeing means). Although they do not see,
they instead have a large repertory of verbal memories with which they confabulate about
“visual” things they cannot even imagine [15]. Prosopagnosia is another curios case of agnosia
in which people experience face-blindness. They are incapable of recognizing faces neither
famous nor familiar. All faces look alike to them, so recognizing someone in particular is
really hard. They need to adopt strategies like focusing on the voice or any other particular
markup of the person. This condition usually leads to social isolation. “The man who mistook
his wife for a hat” [40] by the neurologist Oliver Sacks, is a remarkable collection of case
studies of this sort. Finally, we would like to refer to Akinetopsia [39], [15], a devastating
condition of motion blindness. The individual with this disorder lives in a world ruled by
strobe lights (like a disco or nightclub). They infer the movement of an object by comparing its
relative position in time, though they do not actually see it moving. Others cases of agnosia
are color agnosia, depth agnosia etc [40], [39].

What does vision finally entail?

Vision (as the rest of our senses) can be regarded as a phenomenon that entails a twofold
task: sensation and perception. Sensation is the function of the low-level biochemical and
neurological events that begin with the impinging of a stimulus upon the receptor cells of the
eye. In other words, it is the feeling of external visual information as it is registered (sensed)
by the eyes. However, visual sensation alone does not imply the coherent conception (or un-
derstanding) of external visual objects. Therefore, following a sensation, perception appears
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as the mental process that decodes the sensory input (sensation) to create awareness or un-
derstanding of the real-world. In short, we perceive the world through sensations, though we
derive sense form it (vision comes into being) only when perception takes place. In this view,
Ried [9] and Humphrey [10] agree that while sensation must be associated with “what is
happening to me”, perception goes more with “what is happening out there”. For instance, “I
see a juicy red apple” is a statement that reflects the conception or belief of an external object
(perception). This being so, a plausible conjecture is that the eye (and its components) and
even the optic nerve are more related to sensation. By contrast, the brain, and more specifi-
cally the visual cortex, is more directly likened to perception as it is in charge of decoding
visual sensation (through the vast neural network) into meaningful visual imagery.

In the case of visual agnosia the patient has normal sensation although, due to brain
damages, perception is never achieved. This is why very often these patients report unaware-
ness of his blind condition: having sensation of “seeing” makes them believe they still can see
though, they are not able to adapt those sensations into perceptual experiences. To exemplify
this condition we can think of someone speaking in an unknown foreign language. Even
though we can perceive the audio cues flawlessly as they arrive to our eardrums (sensation of
what is happening to me), we are not able to transform them into coherent information (per-
ception of what is happening out there, or what am I being told). In this order of ideas, we can
say that a person who went blind due to damages in the eye or the retina (as it is more com-
mon) has lost his sensation skills yet, not the perception ability. In this case, like in visual
agnosia, vision of the external world never comes into being inasmuch as the lack of sensation
inhibits perception.

However, there is a bizarre condition in which a patient devoid of sensations still has per-
ceptions and therefore vision. Blindsight is the ability of some people to respond to visual
stimuli that they do not consciously see. To hold the previous example, let us imagine listen-
ing to someone speaking and discovering that we understood his meaning but were unaware
of any sound arriving at our ears. In short, a blindsight patient may know that there is an
object in front, though he cannot determine where that information came from. Quite oppo-
site to visual agnosia, patients suffering from blindsight deny vision and (by virtue of their
sensationless experience) call themselves blind. Curiously, even though blindsight causes
lack of sensation, it is not related to any damage in the eye. Blindsight is caused by lesions in
their striate cortex and patients suffering from this disorder are known as cortically blind
individuals.

As we already mentioned, sensation is a low-level function that has more to do with bio-
chemical and neurological events. Perception being the chief aspect to achieve coherent un-
derstanding of the visual world provides a broader framework of study. In fact, most of the
functioning of the brain needed for there to be visual meaningful experiences remains un-
known. In general, perception involves a lot of more complex information processing than
does sensation. Furthermore, perception requires more assumptions and more calculations
than does sensation. In recognition of this, O’'Regan [35] said that visual perception requires
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top-down knowledge of the kind of perceptual constancy, for instance. Perceptual constancy is
the tendency to conform to the visual object as it is or is assumed to be, rather than as it is
presented through the actual stimulus. In other words, it refers to our predisposition to see
known objects as having standard size, color, shape, or location regardless of changes in the
angle of perspective, distance, or lighting. For instance, when looking at a coin, even though it
may appear ellipsoid-shaped because of the perspective, we never assume the coin as being
ellipsoid. Rather, we acknowledge its circularity as being affected by relative point of view.

Figure 2-6. I1lusions that our brain creates under influence of perceptual constancy.

In Figure 2-6 we have four remarkable examples of perceptual constancy. On top of this
figure we can see two illustrations of how our previous knowledge about perspective laws may
affect vision. To the left the tabletop illusion is being presented. It appears that the tabletops
have different shapes and sizes but they are amazingly the same. The explanation is that the
first table has been drawn as though it was put in perspective. However, none of the expected
perspective effects in its shape was actually drawn at all. Yet, our brain distorts the table in
haste to derive a coherent view out of the ambiguity presented. In the top-right figure nobody
would hesitate to argue that the third man in the rear of the corridor is bigger than the other
two. This is because we know that since he is standing in the background, he should appear
smaller in proportion to the other two men closer in the foreground. The only way for this not
to occur would be that the third man happens to be a giant. And that is exactly what the
brain makes believe in order to meet perceptual constancy. Needless saying that the three
men in that figure are the same height. On bottom-left of Figure 2-6 we present the Kanizsa
illusion. Again, needless saying that there are only four disks lacking a quarter each. We see,
however, a square in between them simply because the visual concept of a square is deeply
rooted in our brain. This illusion is so strong (as strong is our visual idea of a square) that the
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brain can even complete the missing parts of the square’s boundary. Finally, in the bottom-
right illustration (Figure 2-6) we can observe three possible point-light displays (a, b and c).
A static display is not usually seen as representing a human form (a). When the same points
light move incoherently or randomly, perception tends to be uncertain (b) [12]. However,
when the display is in coherent motion, as depicted in (c), it is effortlessly seen as a walking
man. Here our brain applies top-down knowledge on kinesthesia and human anatomy to
derive sense of the figure.

This top-knowledge provides the kind of information that sighted people get from their
visual systems, typically without conscious effort. Kevin O’'Regan in his book “Why Red
Doesn’t Sound Like a Bell: Understanding the Feel of Consciousness” [9] went further on
explaining how previous knowledge stored in our brains affect visual experiences. At large,
he claims that there are a large number of objective laws characterizing any individual senso-
ry interaction with the world. If we think of red color for example, when we see a red surface
the brain codes a subset of the laws that apply, and it registers that they are particular,
previously encountered laws. Then, the redness of the red enters our consciousness. Im-
portantly tough, we as persons do not have cognitive access to these laws. In this light,
though perhaps in a higher level, we would argue that this is the reason why we do not have
to re-apprehend what a face is like every time we see one. This being so, we'd like to conclude
this section acknowledging that it takes, for humans to have vision, sensation and also per-
ception. And while the former comes naturally, the latter presents a high dependency on
concepts, top-down information, objective laws, perceptual constancy, subjective understand-
ing or to make it shorter, unconscious knowledge. Needleless saying that for there to be vision
we rely on physiological and mental factors which, of course, allow sensation and perception
of the external visual world, respectively (i.e. the visual system and the functioning of the
brain).

2.1.2 Multisensory perception

At any conscious moment we are being “harassed” by sensory information from the exter-
nal world, and our brains do a remarkable job deriving sense out of it all. It seems easy
enough to separate the sounds we hear from the sights we see. Nevertheless, multisensory
perception theories reveal that it isn’t always the case. In other words, what we see, somehow
and somewhat, is always influenced by what we hear, and vice versa. Further, this assump-
tion not only applies to the visual and hearing senses, but to all the reaming sensory modali-
ties. Therefore, how different sensory modalities interact with one another and alter each
other’s processing, is the focus of research in multimodal integration (or multisensory percep-
tion). The central idea here is then, that information from the different sensory modalities is
integrated by the nervous system to enable coherent perception of entities, leading to mean-
ingful perceptual experiences [41]. In principle, this integration of information is undeniable,
at least if restricted to a single sensory modality. For instance, regardless efforts, one cannot
see the world in black and white. This is because, in normal circumstances, conscious states
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of a sensory modality are highly integrated and cannot be subdivided into components that
are experienced independently. Quite in the same way this should extent between different
sensory modalities [42].

Figure 2-7. Allegorical image on the central idea of multisensory perception or multimodal
integration.

To make this point clearer, Koch [15] presents a theoretical example: If a person looks at
a picture of a car, to say something; neurons in his visual cortex that represent the car’s
shape will fire while the auditory cortex will stay practically quiescent. In the hypothetical
case that all the neurons in the auditory brain could be artificially silenced while the shape
neurons will continue to respond to the visual image. One wouldn’t be able to hear anything
at all. Intuitively, if we suppose there was little sound to hear, that shouldn’t make any dif-
ference. Yet multisensory perception predicts that even though the brain activity is almost
the same (equal sensations) in both cases [41], the perceptual experience will differ. This is to
say that the fact that neurons could fire but do not naturally, is relevant and very distinct
from that in which neurons cannot fire because they have been prevented from.

A practical example to this idea is the very well-known McGurk Effect [43]. This brain il-
lusion shows how what we see overwrites what we hear. Specifically, the mouth movements
(visual stimuli) of someone speaking can actually influence what one “believes”, one is hear-
ing. By contrast, when the eyes are shut, one clearly hears the sound as it is. In other words,
if presented with visual evidence of a sound, the brain makes us hear that sound regardless it
is not actually the sound we hear. The brain tries to make sense of both cues (visual and
audio) so as to reduce ambiguity. This also indicates that the visual sense is predominant
compared to hearing when having an integrated conscious perceptual experience [43]. Yet
both contribute in the subjective experience as such. Similar interaction between hearing and
vision in speech perception is given when a movie with deficient sound quality is being
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watched. Dialogues in this movie will be mostly understandable provided that the mouths of
the actors may be seen clearly [43].

DA-DA DA-DA

DA-DA BA-BA

Figure 2-8. The McGurk effect. The visual input is in both cases (left and right) that of a man
mouthing DA-DA. As for the accompanying audio cues, in the right case it was deliberately
changed for a BA-BA sound, which no longer matches the visual information. The brain re-
fuses to hear the actual sound (BA-BA) and creates the illusion of a DA-DA sound. This illu-
sion is perceivable to any one if viewed in a video*.

Another aspect of multimodal integration that is worth mentioning refers to the quantity
and quality of information that we can derive from perceptual entities, if multisensory per-
ception is purposely promoted during knowledge acquisition [44]. This is to say that better
information must be attained when several sensory modalities are activated simultaneously
[42]. For instance, if particular information is heard it will stay in the mind for a certain
period of time. If however this information is seen besides; it will be received it in another
wavelength, or from another source of input, and it will stay in the head still much better.
That’s why when attending a lecture, better to have as many visual aids as possible [44]. Also
writing down notes is recommended because then words are not only listened but seen in the
paper too. Besides, the kinesthesia of the hand reinforces learning (integration of three senso-
ry modalities hearing, seeing and kinesthetic movement) [42], [44]. Although it is not appar-
ent, each sensory modality gives a whole different appreciation of a perceptual object. To give
a concrete example, coins can appear circular or elliptical depending on the perspective from
which they are viewed. Besides, they might appear smaller when further away and bigger

* http://www.youtube.com/watch?v=ijtsfidRq2tw
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when brought closer to sight. A coin however manipulated haptically in the hand does not
appear to distort in either shape or size. Both sensory modalities (seeing and touching) are
providing distinct perceptual experiences (qualias) that when integrated are to make up a
much robust concept of the coin.

Others have gone further in the line of multimodal integration. At University of Wiscon-
sin, Madison, neuroscientist Guilio Tononi [16] says that in fact, consciousness as such is but
the holistic result of sensory information being integrated by our brains. He introduced a
precise measure capturing the extent of consciousness termed ® (phi) and expressed in bits.
® quantifies the information that occurs in a system (e.g. the brain), when it enters a particu-
lar state (e.g. a qualia), above and beyond the information generated independently by its
parts (e.g. visual cortex, auditory cortex, sensorimotor area, temporal lobe etc.). These parts
account for as much independent (nonintegrated) information as possible [16]. Thus when
taken in isolation, little further integration occurs and the synergy of the system leaves (e.g.
unconsciousness). In other words, underlying the unity of a conscious experience there is a
multitude of casual interactions among the relevant parts of the brain. In principle, this
makes sense, for example, in anesthesia areas of the brain are disconnected and balkanized
to the point that consciousness fades [15], [13] (in terms of Tononi ® shrinks).

213 Cross-Modal Transfer and Brain Plasticity

If multimodal integration (multisensory perception) theory is accurate enough; if our
brains integrate information from different sensory modalities to create meaningful percep-
tual experiences; if a sense does not process its stimuli independently, but rather influenced
(in some extent) by the rest of the senses. If all this interconnection happens to be true, then
it is reasonable to think that a particular sensory perception could be elicited through a sen-
sory pathway that is not typically responsible for it. In practical terms, for instance, if the
visual sensory perception is somehow connected (and influenced) to the auditory sensory
perception, visual-like experiences could be elicited by hearing and vice versa. This is the
central idea in neurological behavior that neuroscientists have termed cross-modal transfer.
Furthermore, the neuroplasticity argues that with adaptive learning (i.e. training), perceptu-
al experiences provoked by sensory pathways that are not associated to it, can resemble
better and better the actual experience like it was provoked by its typically associated senso-
ry pathway [33]. Therefore, back to our previous example, the visual-like experience caused
by hearing will resemble an actual visual experience in time. One of the practical effects of
neuroplasticity and cross-modal transfers is that if a cortical map is deprived of its input (e.g.
blindness) it will become activated at a later time in response to other.
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Figure 2-9. Cortical mapping of the brain. Cortical organization in the sensory system is
usually described in terms of maps. This is because, as studied in previous sections, visual
sensory information, for instance, is almost exclusively reflected into one cortical area (the

visual cortex). In sharp contrast, for instance, auditory cues are projected and processed in a
different area of the brain. Such somatotopic organization of sensory inputs in the cortex
creates cortical representation of the body that resembles a map. In brain plasticity it is
believed that remapping of the cortex is possible after, for instance, bodily injuries which
promote new conducts in an individual. This idea also implies that if a cortical map is de-

prived of its input (e.g. blindness) it could become activated at a later time (training) in re-
sponse to other (i.e. cross-modal transfer).

In 1709 George Berkeley “An Essay towards a New Theory of Vision” [17] came to the
conclusion that there are no necessary connections between a tactile world and a visual world
[17]. More recently, in the 90’s, Felleman [45] and many other neuroscientists ( [46], [45],
[47], (48], [49]) showed both, theoretical and experimental support to say that there are no
cortical convergence regions, in which neuron clusters integrate information from different
sensory modalities (polysensory areas) [50]. All of them, from Berkeley to Felleman, maintain
the same view that argues against neuroplasticity, they just vary language, after all, more
than three centuries have passed. Importantly though, this is in fact what neuroplasticity
attempts to change, the formerly-held concept of a brain being a physiologically static organ.
This shift in view arises from the believing that changes in neural pathways and synapses
are due to changes in behavior, environment and neural processes. And cortical remapping
therefore may result from bodily injury (e.g. blindness) which promotes new conducts in an
individual, for instance [50]. Aside of this debate, one would tend to side neuroplasticity and
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cross-modal theories because, for instance, everyone recognizes a key, whether it is felt in a
pocket or seen on a table [51].

Cross-modal transfer evidence is clear in some particular cases. Synesthesia [52], for in-
stance, is a well-documented neurological condition in which stimulation of one sensory or
cognitive pathway leads to automatic, involuntary experiences in a second sensory or cogni-
tive pathway [14], [562]. In other words, in synesthesia stimuli of one sense are accompanied
by a perception in another sense. However generally speaking, synesthesia is not considered
something that can be learned via training [52]. Patients presenting synesthesia-related
pathology manifest a broad gamut of dual perceptual experiences: some can taste sounds,
others can smell colors, and also in some cases the touch of a texture may trigger a color or
even a sound. Importantly, in synesthesia the two perceptions are so vivid that even though
one is imaginary, they both seem as though they came from the external world [52]. This is to
say that even though music may trigger visual perceptions (memory or visual imaginary); the
latter is not as sharp as to be considered a synesthesia effect. Nonetheless, while music is a
powerful elicitor of subjective emotions, seeing a picture often results as well in subjective
emotions. In this regard, Logeswaran et al. [51] posit the question whether music stimulating
the auditory pathway and images doing the same on the visual sensory pathway, both lead to
the same perceptual experience (emotions in general)?

Beyond the theoretical aspects, there is of course practical support to cross-modal ap-
proaches. For instance, matching two spherical ellipsoids using three different conditions:
tactile—tactile (TT), tactile—visual (TV), and visual-visual (VV). Hadjikhani et al. [50] could
identify cortical functional fields involved in the formation of visual and tactile representation
of the objects alone and those involved in cross-modal transfer (from vision to touch) of the
shapes of the objects. Also, Amedi et al. [53] show how visuomotor learning affects perfor-
mance on an audiomotor task, with the aim of proving the cross-sensory transfer of sensory-
motor information. More concretely they demonstrated that when a person is exposed to a
visuomotor rotation, he tends unconsciously to rotate himself when performing audio guided
movements [53]. This indicates that the cross- sensory transfer was done naturally [53].
Using fMRI images, Tal et al. [54] identified a network among the occipital, parietal, and
prefrontal areas of the brain, showing a clear cross-modal transfer in visual-haptic integra-
tion of objects in humans [54]. Impressively, Mitchell Tyler et al. [55] report the case of a
female who lost her sense of balance due to antibiotic that destroyed the filaments in her
inner ears which transforms sounds into nerve pulses that go to the vestibular system. They
designed a “balance device” consisting on a helmet-mounted accelerometer to transmit head
and body position to the tongue through electro impulses with and microelectrode array (grid)
[565], [5], [66]. The brain of the patient supplied the missing information with that being
artificially input on her tongue. She recovered satisfactorily after few months of training with
this device [55]. In general, cross-modal transfer draws attention in this thesis; therefore
more implications of this idea can be seen in (Philosophy and history of Sensory substitution).
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2.2 Human cognitive mobility, orientation and space perception
2.2.1 Orientation and Mobility

Mobility is a fundamental task for humans, acquired since childhood. The acquisition of
mobility and the guiding principles for this acquisition are however lost to our memories.
Mobility is a compound of neurocognitive tasks whose execution varies with the nature of the
environment and the data obtained from it. Specifically, mobility encompasses at least three
processes. The first, is to understand the near space global geometry. The second, is to walk;
i.e. displacement without a specific goal, but with obstacle avoidance. And the third is to
navigate; i.e. displacement with a specific goal and with obstacle avoidance. In daily life blind
individual perform locomotion (the three tasks) using several assistances. The most popular
are the white cane and the guide dog. In this thesis, our purpose is to provide assistance for
the first two forms of mobility processes; i.e. understanding the near space and walking. This
assistance is tailored to two fundamental human walking strategies, namely the path-
integration strategy and the geometry-based strategy [57].

Path integration denoted as PI is a continuous process, by which a navigator updates his
or her position with respect to a given reference point, generally a point of departure, by
processing locomotion signals generated during the physical displacement. PI requires mainly
obstacles avoidance, while walking from one to another spatial point. This is the first strategy
we learn in childhood, and the only strategy implemented via cane based walking.

Geometry-based walking strategy relies essentially on geometric properties of the naviga-
ble space. It is defined by environmental elements relative positions and distances between
them, and is supported by mental images of near space, frequently established using city
maps and exploratory walking. Guide dogs implement a geometry based strategy in the very
near environment. The cane and the guide dog allow very limited exploration of space. Neuro-
cognitive research and the experiences of mobility instructors suggest that the best way of
improving on existing mobility aids is to provide in parallel data on all obstacles [18] (includ-
ing their locations, the distances to them and the distances between them). Furthermore,

24



mobility as a cognitive process, involves several kinds of sensory data, namely touch, vision,
balance and hearing.

Human mobility depends on several basic functions of our brain [58]. Some of them are:
global space perception and understanding (allo-orientation and the anticipation of body
movements), self-orientation, walking with obstacles avoidance (without a specific goal), and
navigation (walking with a specific goal). Obstacle avoidance requires at least the following
functions: obstacle detection and localization, estimation of the distance (and height) to obsta-
cles and estimation of the distance between obstacles.

Mobility therefore involves updating knowledge of one’s posture and position using senso-
ry data acquired from the whole environment. These data are memorized in a brain cognitive
map [59], which drives human actions. Cognitive mapping research focuses on how individu-
als acquire, learn, store, transform and exploit environment, e.g. encoding locations, their
attributes and the relative orientations of landmarks [60]. Different elements from the cogni-
tive maps support different human navigation strategies. The most popular human strategies
found in the literature on human and mammalian spatial behavior, are path integration,
landmark-based strategy and geometry based strategy [57].

The cognitive maps formed by the visually impaired differ from those of sighted subjects
[61]. As a result, their navigation strategies and mechanisms also differ from those of sighted
subjects, but these differences have not been sufficiently investigated in current research
[62]. Mobility instructors teach mainly path integration strategy, as it could be implemented
with a white cane based on continuous updates of the end-user position with respect to a fixed
point, generally a point of departure [63]. The end-users do not have access to global geome-
try because of the very limited nature of the feedback that can be obtained from a cane.

2.2.2 Space perception

The ability to sense the shape, size, movement, and orientation of objects is known as spa-
tial perception. In perception of spatial relationships sight is the primary sense involved,
though other senses such as the hearing also play a role in determining our spatial position
within the environment. Processing of spatial perception happens in two levels, first in the
sensory organs that gather information from the environment coded into stimuli and then in
the brain. Especially, depth perception is a chief element to spatial perception in humans.
The brain can approximate the distances between the observer and the observed objects by
evaluating their relative size (i.e. perspective). Also perception of the movement (whether
objects are moving or still) is important to judge depth. Knowing the relative distance of the
objects and the see them in relation to each is also known as spatial awareness and refers to
the ability to be aware of oneself in space. Difficulties to acquire proper spatial perception
usually lead to conditions such as acrophobia and claustrophobia.
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Figure 2-10. Sound-based spatial perception enables blind individuals to play tennis.

In the case of the visually impaired, particularly congenitally blind, spatial perception dif-
fers greatly from that of sighted individuals. For the former are limited only to touching
distance and very subtle auditory cues, while the latter exploit the visual information which,
as already mentioned, is dominant in this task. However, well controlled studies conducted
with blind individuals with sufficient experience show that they can function usefully in
space. This is to say that vision is important yet not a necessary condition for spatial aware-
ness. A remarkable example to this statement is the blind tennis (Figure 2-10). Blind tennis
was created in 1984 by Miyoshi Takei [64]. Players in this sport use a foam ball filled with
metallic that rattle on impact, allowing the blind to locate the ball when it hits the ground or
racket. Specialists in this area say that sound localization is so important when blind people
navigate the world that it not only can help to practice sport but also with general spatial
awareness. Nevertheless, limitations linger in practice, for we know that the capacity of
information transfer of the human eye reaches 1000 Kbp whereas, senses of hearing can
hardly reach 10 Kbps [6].

2.2.3 Stereo Vision

Stereo vision is a technique aimed at inferring depth from two or more close-positioned
cameras. This idea is actually inspired on the functioning of the human eyes (Figure 2-11).
Each eye (about 5 cms of distance between them) captures its own view of the world, so that
two slightly different images are sent to the brain for processing. When the two images arrive
simultaneously to the visual cortex, they are merged into one. The brain combines these two
images by matching up the similarities and adding in the small differences. The small differ-
ences between the two images add up to a significant difference in the final image. The fused
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image is more than the sum of its parts. It is a three-dimensional stereo image of the world
from which we can infer depth and movement of visual objects.

Figure 2-11. The brain perceives depth using a stereo pair of images (one per eye).

Using a camera rig we can infer depth, by means of triangulation (section Efficient regis-
tration of range and color images), if we are able to find corresponding (homologous) points in
the two images (left and right views of the world). The shift of one point in the left image with

respect to the position of its homologues in the right image is known as the disparity. In
section Efficient registration of range and color images it will be shown that this disparity is
inversely proportional to the depth of the point in the world. Roughly, the closer the points
appear to the cameras, the more is the shift thereof in one camera with respect to the other.
For instance, one can hold a finger in front of the eyes (at different distances) and view it with
each eye in turn to notice how the shift decreases with the distance. Thus, the stereo vision
problem (i.e. creating a 3D-image out of a pair of 2D-images) can be regarded as the search of
the disparity between corresponding points in the image pair (i.e. the correspondence prob-
lem), yet prior constrains need to be considered.
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Figure 2-12. The problem of image rectification in a stereo system.

Finding correspondences between points takes a search in two-dimensions for most cam-
era configurations (see Figure 2-12). If the cameras are aligned to be coplanar, however, this
search is cut down to one dimension (i.e. a horizontal line parallel to the line between the
cameras, see figure Figure 2-12). Furthermore, if the location of a point in the left image is
known, it can be searched for in the right image by searching left of this location along the
line, and vice versa. To align the cameras to be coplanar, image rectification is needed. Image
rectification is a transformation process used to project two-or-more images onto a common
image plane. Also, it corrects image distortion by transforming the image into a standard
coordinate system.

Image rectification is possible due to the epipolar constrain. For example, consider two
points A and B on the same line of sight of the reference image R (Figure 2-13). Note that
both points project into the same image point a=b on image plane Pr of the reference image
(Figure 2-13). The epipolar constraint states that the correspondence for a point belonging to
the line of sight (red) lies on the green line on image plane Pt of target image. This image
constrain can be made using a linear transformation. A rotation (on x and y axes), sets the
images onto a common plane. Also, a scaling transformation makes the image frames be
equal and Z rotation turns the image pixel rows directly line up. The rigid alignment of the
cameras are known from the calibration [65] of the cameras. The calibration coefficients are
then used to apply the aforementioned transformations. Finally, the stereo rig can be virtual-
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ly put in a more convenient configuration known as the standard form where corresponding
points obey the epipolar constrain (blue images in Figure 2-13).
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Figure 2-13. The epipolar constrain in a stereo system.

After rectification, the corresponding problem (1-dimensional) can be solved using an al-
gorithm that scans both the left and right images for matching image features. A broad gam-
ut of techniques has been used for this aim. These techniques span from simple normalized
correlation (the most popular) up to artificial-neural-networks-based methods:

Y L(r,c)R(r,c)
JEXL(r©)? XX R(,c)?

Equation 2-1. Normalized cross-correlation of two images.

In Equation 2-1, L and R represent the left and right images respectively, whereas r and ¢
indicate rows and columns of these images. Note that for finding the matching pair R(rj,cx) in
the right image of a feature L(rj,cm) in the left image, the row j needs not to be vary at all
(only the columns k#m). This reflects the one-dimensionality introduced by the epipolar con-
strain. To exemplify the stereo vision problem, we can see two images (right ‘cyan’ and left
‘red’) of a real scene overlapped in Figure 2-14 (top-left). Next (top-right), the calculation of
the disparity map (using correlation) of the images, has been plotted. Finally in the same
Figure 2-14 (bottom) a 3D image (image with actual depth) based on the disparity is shown.
The relation between depth and disparity (section Efficient registration of range and color

images) is given by depth = 5

———— where B is the distance between the two cameras and f
Disparity
refers to the focal length.
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Figure 2-14. 3D image reconstruction using based on a disparity map calculated from a
stereo pair of images.

Stereo-vision-based depth calculation, however, gives rise to a number of problems. Spe-
cifically, in figure the lack of information in the resulting 3-dimensional image is apparent
(sparse maps). This is mostly the case because points (or regions) in the right image may be
occluded in the left image (by virtue of the angle difference). This is known as the occlusion
problem and yields uncertain disparities (therefore depths) in points whose homologues (in
the counterpart image) do not exist (occluded). In this view, the range imaging camera tech-
nology has emerged as a method for depth estimation using electromagnetic or similar waves.
Particularly, time-of-flight cameras (TOF) are based on a principle which states that the
distance between a light source and an object can be deduced with the time of flight given a
constant velocity (i.e. time that the light travels to hit the object and go back to the source). In
other words, this technology is used in TOF cameras to measure the distance between the
camera and each individual pixel in the scene (points). This can be done by either using a
laser to scan the scene or an array of lasers (as many as pixels) that project single points. The
obtained image is a depth map. More information on range imaging will be given in section
Efficient registration of range and color images.

In principle, the chief drawback of these cameras is the lack of color information. Howev-
er, cost-efficient solutions have emerged recently to alleviate this drawback. The Microsoft
Kinect sensor, for instance, is an example of cheap 3D cameras that provide full color [66].
This sensor incorporates several advanced sensing hardware. Most notably, it embeds a
depth sensor and a color camera. The internal depth sensor calculates object’s distances using
the structured light principle. It is made up of an infrared (IR) projector and an IR camera.

The IR projector is an IR laser that projects a set of IR dots over the object. The relative ge-
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ometry between the IR projector and the IR camera as well as the projected IR dot pattern,
are all known. Therefore if a dot observed in an IR image is matched with a dot in the projec-
tor pattern (using triangulation), it can be reconstructed in 3D. However, the exact technolo-
gy is not disclosed [66]. Much more dense depth maps are achieved by means of range imag-
ing cameras, as shown in Figure 2-15.

kinect based imaging 3D rendering

Figure 2-15. Kinect-based 3D images.

2.2.4 Stereo sound

3D sound perception is the ability to locate unambiguously the location of a sound source.
For instance, when somebody whispers at one’s ear, even with the eyes wide shut, one is able
to determine whether the person is located to right or left side of one. A more general exam-
ple is the sound of the mosquito hovering nearby. One can track the position of the mosquito
just by hearing as it flies from one ear to another. In humans this ability to appreciate the
auditory space in the sense toward acoustic events is natural, rapid and in general, accurate.
It is given mostly by physiological conditions that provide humans with two ears at opposite
sides of the head. Sounds enter the brain through two different channels, but once they reach
the brain as nerve impulses, a very complex mixing takes place. Depending on the position of
the emitting source, some impulses reach one side of the brain; others reach the opposite side
and some irradiate both sides. This is what finally permits us to hear in “three dimensions”
(left, right and depth) in a quite similar way we have depth perception with two eyes (as seen
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before). Just by having a listen to outdoors with eyes closed, we can experience this phenom-
enon. One can identify birds chirping and furthermore, one can judge how far away they are
based on hearing them only. In other words, a 3D audio image of the environment (also
known as soundscape) is traceable. Directional and 3D hearing is not possible with only one
ear.

Humans locate 3D sound due to two different cues (delay and strength of the audio). For
instance, let us suppose a sound source irradiating from the right side. The time that takes
for the sound to get to the right ear is slightly shorter that the time that takes for the sound
to reach the left ear. The time difference between the two hears is enough for the brain to
realize where the sound is coming from. The second kind of cue is that sound as it travels
from the source, when it hits the right ear it has a certain level and by the time it hits the left
ear it has a lower level. These cues encode the source location, and may be captured via an
impulse response which relates the source location and the ear location. This impulse re-
sponse is termed the head-related impulse response (HRIR). HRIRs can be recorded using
two microphones placed inside the ears of a dummy head as shown in Figure 2-16.

Azimuth{degrees)
Elevation (degrees)

Dummy head Time (ms) Time {ms)

Figure 2-16. This figure shows experimentally measurements of head-related impulse re-
sponse (HRIRs) using a dummy head (with microphones in both ears). The graphics show the
response of the right ear to an impulsive source as moved through the horizontal plane (mid-
dle graphic) and elevation (right graphic). The strength of the response (level) is represented
by brightness. For instance, we can see that the sound is strongest and arrives soonest when
it is coming from the right side of the azimuth plane (middle graphic). By contrast, when the

source is moved top-down around the head, the changes are subtler. Arrival time is pretty
much the same, as one would expect (right graphic).

It is worth noticing that we do not hear in three dimensions just by using a pair of speak-
ers (right and left). This is because even though the left speaker contains the 3D cues for the
left ear, these cues get corrupted when the left ear hears the right speaker and vice versa (i.e.
cross talk). Without canceling the cross talk the cues are unclear and the brain won’t get the
information it needs to hear in 3D. Essentially putting a virtual wall between the two speak-
ers is the key to turn regular sound into 3D audio. This can be done using a filter that rough-
ly sends negative and positive pressure waves over each speaker (compensation). Moreover,

this filter achieves the presentation of externalized spatial virtual sources (i.e. providing the
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illusion of sounds originating from specific locations in space), for it models the time and the
level of the sound as it reaches both ears. In the literature this is referred as a Head Related
Transfer Function (HRTF) [67] [68].

Essentially, the HRTF is the Fourier transform of the HRIR and captures all of the physi-
cal cues to source localization. Once the HRTF for the left ear and the right ear are known,
one can synthesize accurate binaural signals from a monaural source. In other words, the
HRFT describes how a sound from a specific point will arrive at the ear. Consequently, the
transfer functions to the contralateral ears (Hir and Hgr in Figure 2-17) need to be zero
(cross talk canceling) while the transfer functions for the direct transfer paths need to be
equal to one (Hrr and Hgrrin Figure 2-17). This principal can be formulated in matrix-vector
notation. For instance in the case of two sources, the source output signals Yrign: and Y can
be calculated from the input signals (in the ears) Xrigh: and X as follows:

Yleft] — H_1 [Xleft ]’

Yright Xright
H H,
H= ( LL RL) ,
HLR HRR

Equation 2-2. Matrix form to estimate the HRTF's of two sources.

with H-! being the inverse of the matrix H that contains all the transfer functions shown
in Figure 2-17.

Figure 2-17. Transfer functions for two sound sources.

Finally, it is seen in Figure 2-16 (right) that the distinction of sound sources in elevation
turns out more difficult as sounds arrive to the ears almost equally (time and level). This is
mostly the case because our sound receptors (the eardrums) are left-right located. In fact, this
is a very subjective perception hard to be represented by mathematical models, so that it
often requires personalized HRTF measurements as shown in Figure 2-18. This is why,

rather than 3D audio, many applications use just 2D audio (i.e. spatialization through the
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azimuth plane). This kind of spatialization creates the illusion of sound coming from virtual
sources placed from left to right (not elevation). To achieve this effect we do not need to calcu-
late the HRTF (which is a complicated function of four variables: three space coordinates and
frequency). Just the convolution of an arbitrary source sound with standard HRIR converts
the sound to that which would have been heard by the listener if it had been played at the
source location, with the listener's ear at the receiver location. In fact this is the method that
we will use in this thesis and it will be further discussed in section Lateralization of sound.

Figure 2-18. Taken from [69]. Equipment for fast personalized HRTF measurements. The
speakers located on the arc produce wide spectrum sounds recorded by microphones placed in
the ear canals. The chair rotates automatically, powered by a step motor, allowing for fast
collection of HRTF data from all directions around the listener.
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2.3 Sensory Substitution Devices SDDs (State of the art)
2.3.1 Grounds and history of Sensory substitution

Sensory substitution refers to the mapping of stimuli of one sensory modality into stimuli
of another sensory modality. This is usually done with the aim of bypassing a defective sense,
so that associated stimuli may flow through a functioning sense. This benefits the handi-
capped people to the extent that some loss of functioning in a sense is restored. It was al-
ready studied in previous sections (Blindness) that when individuals go blind o deaf, they do
not actually lose the ability of seeing or hearing, rather they become incapable of convening
external stimuli to the brain. Since the working of the brain is not affected, in most of the
cases a person who lost the ability to retrieve data from their eyes could still create subjective
images by using data conveyed from other sensory modalities (e.g. auditory pathway) [5].
This idea largely relies upon the concept of brain plasticity [70] explained also earlier in this
thesis. Roughly, brain plasticity denotes the self-adaptation ability of the brain to the deterio-
ration (or absence) of a sense [70]. This is a natural mechanism that allows people devoid of a
sense to adapt and compensate through other sensory pathways. For instance, cortical re-
mapping or reorganization happens when the brain is subject to some type of deterioration
[71].

Sensory substitution may be achieved by using invasive methods that collect external sig-
nals and transduce them into electrical impulses for the brain to interpret them naturally
[38]. Thus, stimulation of the brain without intact sensory organs to relay the information is
possible [34], [70], [71]. However, in this section and in general in this thesis, we aim at
exploring the broad gamut of non-invasive sensory substitution devices also known as SSDs.
These devices use human-computer interfaces to transmit sensory information (of a substi-
tuted sense) captured by an artificial modality (artificial sensor) to another human sense
(substituting sense). In other words, they translate sensory information in order to enable
perception through another than the originally responsible sense [4]. Nonetheless, detailed
information about the formal definition of these devices will be given latter in this section.

Kercel et al. [38] consider reading to be the oldest sensory substitution system because
acoustic information (spoken words) is presented in a visual way (writing) [38]. According to
this view, for this particular case the bridge between the two senses is made through ink and
paper. In similar line, the Braille system, developed in 1840 by Louis Barille with the pur-
pose to aid the blind acquiring visual information through touch, could be considered to be
the most popular sensory substitution method [38]. Later in 1897, Kazimierz Noiszewski
prototyped the first technical sensory substitution device termed Elektroftalm [72]. The idea
was simple, in order to enable the blind to be aware of dark and light spaces, he used a light
sensitive selenium cell. Thus, brightness was encoded into audio cues that aided the subjects
to distinguish the binary situation. Though this idea was evolved in time, for instance as
head worn system (see Figure 2-19). Most of the literature agrees that the first formal SDD
did not appear until several decades later in the 20t century.
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Figure 2-19. (taken from [73]) Later version of Noiszewski’s Elektroftalm (1970).

The first SSD broadly accepted by the scientific community goes back to the late 1960s.
Paul Bach-y-Rita (an American neuroscientist whose most notable work was in the field
of neuroplasticity) introduced a preliminary prototype device, based on the tactile sense [74],
to gain and relay environmental information mainly to the sense of vision [39], [75] (see
Figure 2-20). This SSD would be known as the Tactile Visual Sensory Substitution (TVSS).
In his worldwide-known book “A History of the Mind: Evolution and the Birth of Conscious-
ness”, Nicholas Humphrey [10] describes Bach-y-Rita’s first trials with human subjects at the
Smith Kettlewell Institute: A participant was provided with a black-and-white TV camera
(attached to his head), whose electronic image, was sent to a matrix of vibrators attached to
the back of the subject in contact with the skin. This matrix had 400 vibrators arranged
within a 20 x 20 grid, covering a 10-inch-square area of skin (see Figure 2-20). Thus each
point stimulated on the skin represented one pixel of the image captured by the camera, as
shown in Figure 2-21 (In the original text they use the term point rather than ‘pixel’, as it
was very unfamiliar back in those days). A participant could direct the camera by moving his
head, somewhat as moving his/her own eyes.
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Figure 2-20. (taken from [74]) Tactile television hardware (1969) comprising the vision
substitution system. The digitally sampled television camera with zoom lens is seen high in
the center; the electronic commutator and control electronics with monitor oscilloscope and

videotape recorder are on the left. On the right, the 400 point two-dimensional tactile stimu-
lator matrix array is shown mounted in the back of a dental chair for projecting mechanical
television images on to the skin of the back of blind subjects. In the position shown, the cam-
era permits subjects to examine hand held objects from a visual angle approximating that the
eyes. When placed in front of the subject the camera can be manipulated to examine various
parts of an object. [74]

The results surpassed all sort of expectations, with few hours of training, visually im-
paired individuals learned to identify a variety of objects such as a toy horse, a cup and a
telephone. According to Bach-y-Rita reports [76], subjects rapidly gained skill to point accu-
rately to objects, and to estimate their distances and sizes. Furthermore, with about thirty
hours of training participants were enabled to perform complex pattern discriminations and,
to everyone's amazement, various subjects could recognize the faces (Figure 2-21) of some
persons: “That is Betty, she is wearing her hair down today and does not have her glasses on;
her mouth is open, and she is moving her right hand from left side to the back of her head’
[76]. Consequently, Bach-y-Rita did not hesitate to saying that these blind subjects had re-
gained some visual perception: “If a subject without functioning eyes can perceive detailed
information in space, correctly localize it subjectively, and respond to it in a manner compara-
ble to the response of a normally sighted person, I feel justified in applying the term ‘vision’”
[76]. Later in the literature, this would be known as the behavioral criterion to evaluate SSDs
performance [14].
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Figure 2-21. (taken from [74]) Appearance of a 400 point representation of a woman’s face
as seen on the monitor oscilloscope (1969). Subjects can correctly identify vibrotactile stimu-
lus patterns of this level of complexity. Blurring and consequent half-tone appearance in
the image occurs visually (and tactually) due to noise modulation and temporal integration of
the 60 Hz field rate. (Visual perception of this type of digital display in sometimes enhanced
by squinting or otherwise further blurring the image).

In Figure 2-22 we present a graph model that globally describes Bach-y-Rita’s experi-
ment. The aim of this figure is to comprehend Bach-y-Rita’s idea of proposing sensory substi-
tution as a kind of acquired synesthesia® [14], [77]. This idea enjoys wide acceptance in recent
research of SSDs [71], [14], [5], [70], [34]. Note that a stimulation of one sensory pathway
leads to automatic, involuntary experiences in a second sensory or cognitive pathway [77]. In
other words, while tactile sensation remains in the stimulated subject, this very stimulation
elicits a visual-like sensation not related at all with touch. Since vision in this experiment is
not seen as estimation derived from touch, but a visual experience as such; Bach-y-Rita
coined the term skin-vision. Figure 2-22 could be regarded as well as the earliest framework
for a visual sensory substitution system. Due to such a remarkable experiment, sensory sub-
stitution devices became the basis of multiple studies investigating perceptive and cognitive

neuroscience, computer science, electronics, and more recently, human computer interaction
HCI.

5
A sensation experienced in a part of the body other than the part stimulated
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Figure 2-22. Two contrasting situations: the case of normal vision, and the case of skin-
vision.

There is no reason to limit SSDs to visual substitution, though non-visual SSDs are less
common. In this view, Figure 2-23 shows all possible sensory substitutions that give rise to a
variety of potential devices. In order to generalize the idea of SSDs, however, various authors
[72], [4] have agreed in an overall structure (Figure 2-24) to model sensory substitution
devices (regardless the substitution wanted). At large, a sensory substitution system can be
thought as a composition of elements of the kind illustrated in Figure 2-24: A sensor, a cou-
pling device and the actuators. The sensor is a device that captures information x(¢) from the
environment so as to feed the coupling device. This sensor may present one (modality A) out
of two, namely: only-receiving (e.g. camera, microphone) or receiving/emitting (e.g. laser,
ultrasound). More importantly, this sensor needs to be autonomous handling by the user, so
that the modality under which the user interacts with the sensor is also accounted in Figure
2-24 (Modality B, more often motion). The actuators are made up of a user and the display of
the coupling device. This latter deepens on the type of sensory substitution system (e.g. head-
phones, tactile display) and it is in charge of the stimulation of the substituting sense that, in
turn, forwards information to the brain. Then, the body reacts and makes the sensor to move
in pursuit of new data x(¢). As for the coupling device, this is the one that bridges the sensor
and the display by transforming x(z) into y(¢). The data y(z), therefore, is seen as stimuli x(z) of
the substituted sense mapped into stimuli of the substituting sense.
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Figure 2-23. Possible sensory substitutions (from 1 to 9): Audible Vision, Tactile Vision,
Visible Touch, Audible Touch, Tactile Hearing, Tactile Orientation and Spatial Awareness,
Tactile Balance, Tactile sensory relocation, Audible Orientation and Spatial Awareness.
Since the subject of this thesis is visual substitution, the two modalities aimed at substituting
this sense (i.e. audible vision and tactile vision) are reviewed in this state-of-the-art section.
Moreover, since See ColOr is not intended for tactile vision, it might be classed as an audible
SSD, though not necessarily limited to. It will be studied later in this thesis that See ColOr
may involve tactile sensory relocation (kinesthesia) in one of its modules of interaction.

In the particular case of visual substitution, the structure shown in Figure 2-24 may be
synthetized as consisting of: a visual sensors (i.e. camera) that relay information to a coupling
device (e.g. a laptop, or a Field-programmable gate array —FPGA-) that systematically trans-
lates visual features into tactile or auditory stimuli outputted finally, through headphones or
mechanical/electrical haptic stimulation devices. It is worth noticing here that given the
technical difficulties related to the generation of tactile stimuli, the proliferation of SSDs for
the visually impaired have largely targeted audition ( [78]; [79]; [80]). Nevertheless through-
out this section both modalities will be revised Tactile Visual substitution and Auditory Visu-
al substitution, though the former in not much detail.
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Figure 2-24. (taken from [72]) Structure of a sensory substitution system.

Finally, it is important to stress the fact that there may be certain devices closely similar
to SSDs, though they do not fully meet the definition of sensory substitution [14]. Rather,
they may be regarded as sensory augmentation or extension devices (see General Discussion).

In particular, for visual substitution, the white canes serve as example. Although they are
intended to restore some normal functioning for the blind, they extend the physical range of a
functioning senses (i.e. touch), instead of substituting the visual sensory pathway via a cou-
pling system [14]. In fact, it is very commonplace observation that many visually impaired
individuals report feeling their white cane or their dog as an extension of their bodies.

2.3.2 Tactile Visual substitution

Although the scope of this thesis does not span tactile substitution of vision using
SSDs,we would like to make reference to some of the most relevant examples in this field.
However, other SSDs specifically intended for color substitution through the sense of touch
will be cited in Sensorial color coding section.

Optacon

The Optacon is a tactile sensory substitution device developed by Bliss et al. [81] in the
early 60s. This SSD was designed as a tactile-based reading aid. Nonetheless, it was latter
enabled (with the addition of a lens with a more distant focal plane [81]) to provide visual
environmental information. The tactile display of the Optacon is made up of a 6x24 pin array
designed for the fingertip. TeleSensory [82] was a commercial version of the Optacon that
was available for sale until mid-90s, when the device went out of production [82]. The decline
in popularity of the Optacon was marked by the apparition of optical character recognition
OCR techniques and eventually computer-based screen readers. The reason being, these tools
required much less training to use. However, the Optacon continued to be used in many
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studies on sensory substitution and tactile perception. An illustration of the system and its
functionality are shown in Figure 2-25.

Figure 2-25. (taken from [34]) Using the Optacon the child in this image was able to mim-
ic the hand posture of the teacher using feedback acquired via the device. The first prototype
was completed on 1969. It was portable and combined the stimulator array, electronics, bat-

teries, and camera in a single package measuring 13.5” by 8” by 2.25”. The total weight of this
device was 9 pounds.

Tactile Artificial sight

Back in 1982, Thierry Pun at the “Ecole Polytechnique Federale de Lausanne (EPFL)”,
presented his PhD thesis [83] that bore the name of: Automatic simplification of scenes using
image processing for tactile restitution of sight handicapped. This work aimed at designing
an image processing unit to generate simplified tactile version of images. Hence, an efficient
picture simplification scheme for tactile outputs was proposed [84]. By and large, this visual-
to-tactile SSD idea introduced two significant contributions: firstly, the psychological consid-
erations of tactile recognition mechanisms within the conception of methods for image pro-
cessing. Secondly, a new method for grey-level picture thresholding using the entropy of the
histogram [85]. One of the possible applications of this work was the development tactile
images for educational purposes. Pun thought that this could be used in classes for blind
children, providing relief illustrations from grey-level documents. Quite unlike the Optacon
though, this approach was much more concerned with the optimal processing of the images in
order to yield best tactile outputs in terms of understandability. As a consequence, the blind
children would be allowed to develop their mental images easier, faster and more accurately.
This SSD was thought as an "on-line" portable device that would be based on relief printers,
yielding 0.2 to 0.6 mm high outputs. Finally, this project also included the creation of synthet-
ic textures to ease in the tactile discrimination of regions.
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Figure 2-26. (taken from [84]) Tactile Artificial sight’s output images: Right, edge-based
image. Left, introduction of synthetic textures.

TDU (Tongue Display Unity)

This device displays images on the dorsum of the tongue using a flexible small electrotac-
tile array of electrodes. Over time, The Tongue Display Unit or TDU [56] (which we also
identify as a BrainPort because of the similarity to a computer USB port), trains the user’s
brain to translate tactile to visual information so as to enable him to see the images captured
by a head-mounted camera. A computer converts the image (gray level) to pulse trains that
are then carried to the electrode array (on the tonge) via the ribbon cable. Trial subjects
report to experience the resulting stream of sensation as an image. In particular, the tongue
is very sensitive because the sensory receptors are close to the surface skin. This SSD has
been developed to take advantage of this characteristic. In fact, some authors have shown
[56] that form perception is somewhat better achieved with electrotactile stimulation of the
tongue rather than the fingertip. Besides, the tongue needs only 3% of the voltage (5-15 V),
and much less current (0.4—2.0 mA), than the finger pad [56]. The pulse trains are carried to
the electrode array via the ribbon cable, and the electrodes stimulate touch sensors on the
dorsum of the tongue. The subject experiences the resulting stream of sensation as an image.
An example of the use of TDU can be seen in Figure 2-27. This system enjoys great ac-
ceptance in terms of usability and is still commercialized. Furthermore, the example de-
scribed in the last paragraph of section Multisensory perception provides a clear example of
the multi-usability of this system. In that case it was successfully used for subtitling the
vestibular sense in a real patient.
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Figure 2-27. (taken from [5]) A blindfolded sighted individual using the TDU to recognize
the orientation of a letter. Note that for this experiment in particular, the area of the image
being transmitted to the tongue (in yellow) is moved via mouse.

Color perception

SmartTouch uses optical sensors to gather visual information and electrical stimulation
to translate it into tactile display. Tachi et al. [86] developed this electrotactile display to
enabling the composition of tactile sensations by means of selective electrical stimulation of
tactile mechanoreceptors. The authors described such phenomenon as “tactile color”. This
work is based on the study of the electrical physics of the skin in relation to the geometry and
composition of its afferent neurons [86]. At large, when the display (attached to the fingertip)
contacts an object, tactile sensations are said to be felt as vibration or pressure. Thus, an
individual not only makes physical contact with an object, but also touches the surface infor-
mation (i.e. color captured by the optical sensor). This is known as augmented haptics, de-
rived from the concept of augmented reality: a perception of the real-world in which elements
are added (the reality is augmented) via computerized techniques. A schema of this idea can
be seen in Figure 2-28.

Figure 2-28. (taken from [86]) Smart Touch’s color encoding through tactile stimulation.
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2.3.3 Auditory Visual substitution

Here we present a chronological review among the most relevant events (experiments) in
the literature that have shaped the evolution of vision-to-audio SSDs, as we know them to-
day. In fact, we make reference here in this section to both the most cited works in SSDs’
literature, as well as those that for the best of our knowledge we consider worth comparing.
Importantly, as great part of this thesis is concerned to the representation of color in SSDs,
here we mention some relevant works in this particular topic, though further discussion and
more approaches are given in section Sensorial color coding. We will conclude this section
mentioning at least three significant systems within the category of “augmentation of real
objects with virtual sounds”. Although these approaches show a family resemblance to SSDs,
they do not meet the more restricted definition of sensory substitution. Rather, they are new
technologies intended to discriminate, synthetize and communicate information of the world
to the blind. Indeed, they are not used in rehabilitation but mere assistance, given that no

neuroplasticity or visual skills regaining are intended. Nevertheless, such approaches turn
out attractive to this work, since our final goal is to combine both, typical SSDs and this sort
of systems that augment real objects with virtual sounds, particularly those based on com-
puter vision.

An audio display for the blind (1975)

In 1975, RAYMOND M. FISH wrote an article [87] to introduce an auditory code capable
of transducing two dimensional patterns and pictures for presentation to blind people. He
used a television camera to acquire input images and a series of electronic circuits as to
translate them into code. To encode a picture, a sequence of tone bursts were used represent-
ing the black dots that shape the image (i.e. pixels). The vertical location of a pixel was re-
vealed to the blind individual (wearing binaural headphones) by the frequency of the tone
burst. The horizontal position of the pixel, in turn, was represented by the ratio of sound
amplitudes presented to each ear. Note that this is but an early attempt of spatialized sound
to create the illusion of source emitting from specific location from left to right. In this article
the author claimed: “These methods of coding vertical and horizontal position utilize the
principles of psychoacoustics in that high pitched tones naturally seem to come from a high
location, and amplitude differences in the sound presented to the ears make it seem that
sounds are coming from certain positions from left to right” [87]. Finally, this 1975 paper
[87] reported that both blind and blindfolded subjects could use the display coupled to a TV
camera as a mobility aid to travel within simple indoor environments with just 20 minutes of
training. Further, a ten-year-old blind subjects with 4 hours of training, was able to identify
patterns as complex as those shown in Figure 2-29.
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Figure 2-29. (taken from [87]) Patterns recognized by 4-hours-trained blind subjects in
this 1975 experiment.

Blind babies see with the ears (1977)

newsglentist
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&= A blind baby /
learns to see
> |

Figure 2-30. 1977-cover-page of Newscientist magazine: “Sooner or later technology will
rescue blind people from their prison of sightlessness. Rapid advances in electronics are even
now making possible aids and prostheses thought impossible a decade ago. Yet as these pro-

gress reports on two promising approaches conclude, the factor limiting advancement is no
longer technology but inadequate understanding of the psychology and physiology of percep-
tion”. [88]

Here the concept of sensory substitution using sound to compensate for blindness was ap-
plied to babies, taking advantage of their early development. Development is an accumulative
process in which early acquisitions determine the possible direction of later events processes
[88]. So the assumption underlying is that babies will acquire the ability to see through sound
nearly naturally, if taught from their earliest ages. This device provides the babies (in these

46



experiments) with sound information about their environment using ultrasonic echolocation
similar to that of a bat. The SSD constantly irradiates from objects into audible sound. The
adaptation from ultrasound to audible sound codes the echo in three ways: “The pitch of the
audible signal is arranged to indicate the distance of the object from which the echo came.
High pitch means distant objects, low pitch near ones. The amplitude of the signal codes for
the size of the irradiated object (loud-large, soft-small) and texture of the object is represented
by clarity of the signal. In addition, the audible signal is ‘stereo’ so direction to the object is
perceived by the difference in time of arrival of a signal at the two ears” [88]. Here again as in
[87] , we find preliminary approaches to spatialized sound. Finally, this whole experiment is
summarized in Figure 2-31.
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Figure 2-31. (taken from [88]) How a baby can recognize an object using ultrasonic echo
location.

It is worth noticing that in this work the novelty was the recruitment of congenitally blind
babies, since echo location based on ultrasounds had been previously used in blind assistance.
As an example, “The Sonic Guide” [89] (Figure 2-32) was created in 1966 as a frequency-
modulation-based ultrasonic aid. A single transmitter is mounted centrally on the bridge of
the spectacles. Receivers are mounted on each side of the transmitter, one directed to the left
and one to the right. The echo signals collected by the receivers are transposed into the audi-
ble band and fed to a stereophonic display. The splay angle between the receivers is critical
and is chosen so that the stereophonic sound image produced by the presence of an object in
the beam has an azimuth displacement identical to that of the real world object causing the
echo [90].

In fact, in the 80’s there was a proliferation of these devices with evolved characterizes,
known as ultrasonic pathfinders [90]. Nowadays, we can find modern versions of these SSDs
sold in the market as audible electronic mobility aids designed for individuals who are blind
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or have low vision (Figure 2-32). At large, these electronic obstacle detectors use a head-
mounted pulse-echo sonar system controlled by a microcomputer, giving the visually impaired
advanced warning of objects which lie within his or her travel path.

Figure 2-32. The evolution of so-called sonic pathfinders from the 60’s (left [89]) up to
2012 (right). In the 80’s there was a proliferation of research and production of such devices.

The vOICe (1992)

The vOICe (by Peter Meijer, 1992) is a sensory substitution device, which sonifies 2D
grayscale images, allowing its user to “see with sound” [78]. As noted in Philosophy and his-
tory of Sensory substitution and as it will be discussed later in General Discussion, here the
use of the word “see” (same as for Bach-y-Rita [31]) has more implications than a mere analo-
gy. The sonification algorithm presented in this work uses three pixel parameters: horizontal
position, vertical position and brightness to synthesize a complex audio output describing the
whole image (soundscape). The images are coded in horizontal, one second sweeps, so that the
horizontal position of a column of pixels is represented through the time position in the
sweep. The vertical coordinates are assigned different sound frequencies and the amplitude of
the frequency component corresponds to a given pixel’s brightness. This coding method cre-
ates a one second audio signal, with numerous frequency components and a time-varying
spectrum (Figure 2-33). The sound signal coded by the vOICe can be easily decoded by a
machine (Figure 2-34); however, the question arises whether such a complex solution can be
functional for human beings [78].
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Figure 2-33. (taken from [78])The vOICe visual-to-audio encoding schema.

It has been proven, that after prolonged use and with correct training, a user’s brain will
actually adapt itself to the new perception method [91]. After initial training a user can dis-
tinguish various artificial images or simple objects on contrasting backgrounds; however, to
use the skills in real world scenes requires months of practice and even more. After extensive
training with this SSD, the user may be able to perform feats which seem impossible for a
blind person, such as picking up a cup of coffee from a table without having to tactilely probe
the environment. The trade-off however, is that the signal from the vOICe requires a lot of
concentration from the user, blocks out a lot of environment sounds, and can be very irritat-
ing over time.

Figure 2-34. (taken from [78]) The sound spectrum of a sonified image using the vOICe.

An advantage of the vOICe is that it can be applied to other tasks aside from mobility. In
time, after the brain adapts to the new perceptual data, a blind person will really be able to
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almost “see” the environment or 2D images [91]. Note that no depth information whatsoever
is provided by this system. Due to the simplicity of the coding algorithm, the software for the
vOICe does not require very high processing power and is already available as a JAVA applet
for PCs or mobile phones. The equipment required for handling the vOICe consists in a glass-
mounted camera, headphones, and a computer to perform the image-to-sound conversion, as
shown in Figure 2-35.

Glasses with
hidden camera

Headphanes

Image-to-sound
conversion by
notebook PC

Figure 2-35. A user wearing the vOICe system.

Capelle (1998)

Capelle et al. proposed the implementation of a crude model of the primary visual system
in a hardware device [92]. The implemented device provides two resolution levels correspond-
ing to an artificial central retina and an artificial peripheral retina, as in the real visual
system. This prototype is based on a personal computer which is connected to a miniature
head-fixed video camera and to headphones. Image processing achieves edge detection and
graded resolution of a visual scene captured by the camera. Each picture element (pixel) of
the resulting image is assigned a sinusoidal tone; weighted summation of these sinusoidal
waves builds up a complex auditory signal which is transduced by the headphones. Note that
the use of headphone, here and in the majority of works, obstructs the ears of the user, block-
ing out all environmental sounds.

At large, the auditory representation of an image is similar to that used in “TheVoice”
[78] (described previously in Figure 2-33) just using distinct sinusoidal waves for each pixel
in a column and each column being presented sequentially to the listener. Therefore, this

50



approach also suffers from issues such as complex sonification. The authors claim to have
developed an on-line, real-time functioning prototype of a visual prosthesis. Also, they say
that due to the ability to process real images in real-time the decisive learning phase is great-
ly enhanced, as well as sensory-motor interactions of users with their natural environment
[92]. This conceptual model of sensory substitution has already undergone trials with success
preliminary evaluation in a pattern recognition task during psychophysical experimentations,
which demonstrated the usefulness of the present experimental prototype. We have created
Figure 2-36 (based on a similar figure presented in [92]) to depict the sensory substitution
process proposed by Capelle.
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Figure 2-36. The sensory substitution process proposed by Capella et al. [92] in 1998.

The model depicted in this figure Figure 2-36 was explained by the authors follow: “(a)
Theoretical background. A model (1’ and 2’) of the visual system (1 and 2), processing visual
information in a similar way, will theoretically produce a signal (3’) comparable to the natu-
ral one reaching the association cortex (3). To allow this artificial signal (3’) to reach the
associative structures (3) through a substitutive sensory system (4 and 5), a model of this
substitutive system (4’ and 5’) is reversed. By coupling (3’) the model of vision (1’ and 2’) to
the inverse model of the substitutive sensory system (4’ and 5’), processing of visual infor-
mation within the sensory substitution model (lower box) will produce a signal whose further

processing by the natural substitutive sensory system (4 and 5) could supply the association
51



cortex (3) with the required signal. Coupling can take place at different levels on the path-
way: at a theoretical level (3, link C), at an intermediate level (link B) if the knowledge of
visual and substitutive systems are limited, or at a primary level (link A) if the connection is
straightforward (case, e.g., of a tactile—vision substitution, or TVS, system [76], Philosophy
and history of Sensory substitution). (b) Implementation of the sensory substitution model
consisting of a model of vision connected to an inverse model of audition, using an appropri-
ate transcription code”. [92]

Gonzalez-Mora (1999)

Gonzalez-Mora et al. developed a prototype which incorporates video cameras and head-
phones mounted on a pair of spectacles, also spatialization of sound in the three dimensional
space [93] as described in 3D sound and stereo vision. This device captures the form and the
volume of the space in front of the blind person and sends this information, in the form of a
sounds map, to the blind person through headphones in real time. The sound, therefore, is
perceived as coming from somewhere in front of the user by means of head related transfer
functions (HRTF's). The effect produced is comparable to perceiving the environment as if the
objects were covered with small sound sources which are continuously and simultaneously
emitting signals. The first device they achieved was capable [93]of producing a virtual acous-
tic space of 17x9x8 gray level pixels covering a distance of up to 4.5 meters. An aerial sketch

of the system behavior for a particular example can be seen in Figure 2-37.
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Figure 2-37. (taken from [93]) An aerial sketch of the system behavior.

In the part (a) of Figure 2-37 the example of a simple environment is shown: a room with
a half open door which leads to a corridor. A user is standing at the opposite side of the door
(looking at it) with a window in his backside. In the sketch presented as (b) in Figure 2-37,
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the result of dividing the field of view into 32 “stereopixels” is shown. This number denotes
the lateral resolution (32°) of spatialization of this system through the horizontal axis. In
other words, users can perceive sounds coming from 32 different positions from left to right.
The final description of the environment is attained after calculation of the average depth (or
distance) of each stereopixel. This description is then virtually converted into sound sources,
located at every stereopixel distance. Therefore, a perception as shown in Figure 2-37 (c) is
produced. The authors claimed that out of this perception the user can identify the major
components of the nearby space (the room itself, the half open door, the corridor, etc.).

In Figure 2-37 the example has been constrained to 2-dimension for ease of representa-
tion. However, the prototype applies quite the same method to a third vertical axis. Thus, a 3-
dimestional audio description of the images is given to the user at a rate of 10 images per
second. Notice that this rate is fairly better than that of the vOICe, in which an image takes a
second to be described. Though in this approach spatial information rather than visual infor-
mation is provided, real time navigation is certainly feasible. The authors claimed that this
new form of global and simultaneous perception of three-dimensional space via hearing, as
opposed to vision, will improve the user's immediate knowledge of his/her interaction with the
environment, giving the person more independence of orientation and mobility. Overall, this
work opened the way for an interesting line of research in the field of the sensory rehabilita-
tion, with immediate applications in the psychomotor development of children with congeni-
tal blindness.

Soundview (2003)

Soundview represents a single point of color as sound activated by the haptic exploration
of an image on a tablet device [94]. Importantly though, Soundview does not use any haptic
feedback (vibration, temperature etc.), but only the kinesthetic ability of the user to move
through the image. To achieve color sonification, in Soundview the HSB (Hue, Saturation,
Brightness) color space is represented through applying various filtering techniques to white
noise (a combination of multiple frequencies) in an attempt to retain structural parallels with
perceptual color space (Figure 2-38). White noise is filtered through a low pass filter, with
brightness and velocity dependent on cutoff frequency® (Bright colors retain most frequencies,
dark retain only lower frequencies). The result is filtered through a bank of 12 parallel reson
filters” [94] (depending on hue and saturation) at octaves apart, a “Shepard filter” or “Shep-
ard illusion” [94]. This allows a perceptually smooth transition between the highest (Hue =
0.99) and lowest (Hue = 0.01) frequencies in order to create a cyclic representation. The reso-
nance frequencies, widths, and gains are dependent on the color and slide velocity [94].

®is a boundary in a system's frequency response at which energy flowing through the system begins to be
reduced (attenuated or reflected) rather than passing through.
7 a general-purpose filter that exhibits a single peak. The frequency response of a RESON filter is nowhere
near as flat as a Butterworth filter frequency response. Nevertheless, all typical equalizer implementations
typically implement classic reson filters.
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Figure 2-38. (taken from [94]) Filter graph to generate color dependent sounds. White

noise is filtered through a low pass filter, with brightness and velocity dependent cutoff fre-
quency fe. The result is filtered through a bank of 12 parallel reson filters at octaves apart, a
“Shepard filter”. The resonance frequencies, widths, and gains are dependent on the color and
slide velocity. [94]

An important contribution of this work is the design and implementation of an applet to
tune various parameters that define the color to sound mapping interactively. The Applet can
be run in Java 2 enabled for web browsers (Figure 2-39). At date, this SSD still lacks user
studies to assess the usability of the system and therefore it holds unanswered all the open
questions related to SSDs: Can people detect basic shapes with the system? How much detail
can be perceived in this manner? How does performance on recognition tasks depend on
training? Is there significant difference between blind and sighted people? These are exam-
ples of the questions that remain unanswered in this work. In fact, this system was never
meant to be a mobility aid as commented by the authors who attempted the representation of
only static images. It is of importance here to notice that like Bach-y-Rita and many others (
[71], [14], [5], [70]), the authors claim that their system elicits synesthetic perception of an
image through sound and touch. This belief rests on the assumption of theories related to
brain plasticity and cross-modal transfer as discussed in Philosophy and history of Sensory

substitution and Cross-Modal Transfer and Brain Plasticity sections.
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Figure 2-39. (taken from [94]) Soundview interface for interactive color-sound mapping.
TheVIBE (2008)

TheVIBE [95] is a visuo-auditory substitution system invented by S. Hanneton and cur-
rently developed in collaboration with Gipsa-Lab, France. The experimental device converts
the video stream from a video camera into an auditory stream delivered to the user via head-
phones. Note here again the persisting issue ( common among SSDs) of blocking out environ-
mental sounds to the user by covering his (her) ears. The sound generated by TheVibe is a
weighted summation of sinusoidal sounds produced by virtual "sources", corresponding each
to a "receptive field" in the image [95]. More precisely, sets of pixels (white crosses, Figure
2-40) grouped in receptive fields (circled part, Figure 2-40) are distributed uniformly on the
video-camera picture (right, Figure 2-40). Each receptive field drives the loudness of a par-
ticular sound source, which frequency and binaural panning are determined respectively by
the vertical and horizontal position of the receptive field’s center (white squares, Figure
2-40). One of the major originality of TheVIBE with respect to the other devices is that the
video-to-sound mapping is entirely configurable.

Binaural Panning

Figure 2-40. (taken from [95]) The VIBE sonification model

The authors have tested TheVIBE on the mobility performance of twenty blindfolded sub-
jects following a track in an ecological environment (in a maze on an indoor car park). Signifi-
cant results were obtained with one hour of training only [95]. These results however were
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more interesting from the designer’s point of view than from the end user’s one. Indeed, the
authors recognize the lack of comparisons to assess how better the users perform when using
the VIBE, and otherwise. Thus, assessment of the practical interest of this device for mobility
requires indeed further investigations.

Kromophone (2009)

The Kromophone [96] is a program developed at Gordon College by Zach Capalbo to pro-
vide color information through an auditory stimulus. The SSD takes the input from a webcam
and chooses the center pixel or an averaged area around the center pixel, and maps its color
into several superimposed sounds. Each color is a sum of the focal sounds with the intensity
(i.e. loudness) of each component determined by its contribution to the final color. So an or-
ange color would be a mixture of red and yellow sounds, each of moderate loudness. In gen-
eral, the intensity of the red is represented as a high pitch noise in the right ear, the green as
a middle pitch noise in both ears, and the blue as a low pitch noise in the left ear [96]. The
intensity of the white is then separated into distinct high pitch sound. The authors claim that
the resulting sounds allow the user to distinguish colors.

Capalbo and Glenney conducted experiments with the kromophone [96] with both blind
and blind-folded sighted subjects. They were able to identify fruit in a normally lit environ-
ment with only a few minutes to a few hours of training. Blind folded subjects were able to
navigate the campuses sidewalks by distinguishing between the grey concrete and the green
grass. Also, the authors suggested that the Kromophone outperforms the vOICe in search,
discrimination and navigation tasks for blindfolded sighted participants. Luminance localiza-
tion in a dark room had equal response times between the Kromophone and vOICe, however
raising the ambient lighting conditions resulted in a sharp drop-off in performance for vOICe
users only [96].

Michat Bujacz (2010)

The authors [69] mixed image processing methods with audio representation, to devel-
oped an algorithm for sonification of 3D scenes in an SSD as an aid for visually impaired
individuals (Figure 2-41). The proposed algorithm includes the use of segmented 3D scene
images, personalized spatial audio and musical sound codes. They used head related transfer
functions (HRTF's) that were individually measured for all trial subjects. Thus, virtual sound
sources originating from various scene elements were generated. By and large, the authors
proposed to assign sound parameters to segmented object parameters, so as to distinguish the
latter. The algorithm was implemented and tested in a SSD prototype with both sighted and
visually impaired subjects [69].
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Figure 2-41. (taken from [69]) Scene sonification based on segmentation of an image stereo
pair.

They use a depth-based algorithm to segment objects within a range map of the scene.
This map arises out of a pair of stereoscopic images [69]. Once relevant objects have been
segmented, the sonification algorithm attaches virtual sound sources to them (Figure 2-41),
and presents them in such a way, that each is perceivable either as a separate auditory
stream during training or as part of a familiar schema when scanning speeds were increased.
Accordingly, the authors claim to give the visually impaired users a virtual sound environ-
ment that they have to scan in depth (Figure 2-42), so at to go through it safely. The depth-
scanning proposed by the authors consists in a virtual scanning plane that moves through the
scene (starting from the user and forwards) and releases sound sources as it intersects vari-
ous scene segmented elements. This concept is shown in

= B
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Figure 2-42. (taken from [69]) Scanning-plane progressing forwards in time (from left to
right). [69]

Notice that in Figure 2-42 the scanning-plane increasingly moves forwards as its size
augments hand in hand with the perspective of the camera. Initially, no object is sonified
since the plane intersections are non-existent. However, there is a sound in the middle of the
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auditory field representing just the plane itself as it progresses forward. Later, sound sources
start emitting as the plane intersects the associated objects. Distant objects are encoded with
quieter sounds and larger objects are assigned longer sounds, encoding object’s horizontal size
with proportional duration.

EyeMusic (2012)

The EyeMusic [33] is a tool that provides visual information through a musical auditory
experience. This SSD sonifies a 24x40 pixel colored image over 2 seconds [33]. Colors are first
segregated into one of six categories (red, green, blue, yellow, white, black) and each category
is encoded through timbre (e.g. White = piano, Blue = marimba). The color’s vertical location
is denoted through the pitch / note of the instrument, using notes across 8 octaves of a penta-
tonic scale (higher pitches reflect higher spatial positions) while the luminance of each color
affects the loudness of the note (bright is loud and dark is quiet). Finally, each column is
sequentially presented over time to complete the x axis. An illustration of the hardware and
the mode of use of EyeMusic are shown in Figure 2-43.

Figure 2-43. (taken from [33]) Left: An illustration of the EyeMusic sensory—substitution
device (SSD), showing a user with a camera mounted on his glasses, and using bone-
conductance headphones, hearing musical notes that create a mental image of the visual
scene in front of him. He is reaching for the red apple in a pile of green ones. Top right: close-
up of the glasses—mounted camera and headphones; bottom right: hand-held camera pointed
at the object of interest.

Recent experiments with the EyeMusic by Levy-Tzekdek et al. [97] examined the shared
spatial representation of vision and EyeMusic soundscapes. Participants were required to
indicate the location of an abstract target (either visually shown or heard using the EyeMu-
sic) using a joystick. They found that altering the visual sensor-motor feedback (in this case,
skewing the joystick’s representation on screen by 30 degrees) influenced not only the visual
trial movements but also the EyeMusic trials (where no feedback was given). The former
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experiment indicates that soundscape feedback utilizing timing, timbre, loudness and pitch
can inform a spatial representation for movement, while the latter experiment indicates a
shared spatial representation [97].

Kai Wun (2012)

The authors in [98] presented a wearable stereo vision system for visually impaired. More
precisely, this SDD is a glasses-like device intended to assist the blind to avoid obstacles in
navigation. This device is composed of an eyeglasses and a power efficient embedded pro-
cessing device. On the one hand, the eye glasses has embedded two miniature cameras for the
stereo-imaging. And, on the other hand, a FPGA is used to synchronize and combine the
stereo-images so as to get depth information [98]. The novelty of this work lies on series of
parallel programming techniques, the device not only achieves a real-time stereo matching
but, in addition, the video captured is streamed to a mobile device over the 3G network. This
latter with the aim of enabling healthy sighted individual to remotely provide logistical guid-
ance to the blind in real time. Therefore, the functionality of the device to avoid obstacles may
be reinforced. Unfortunately, the authors fail to provide crucial information such as: how to
detect obstacles out of depth maps and how to alert the blind in order not to bump into them.

Figure 2-44. (taken from [98]) The setup of our wearable stereovision system (left). A real-
time video streaming from a travel aid to a mobile phone (right).

AUGMENTATION OF REAL OBJECTS WITH VIRTUAL SOUNDS:The Shelf-
scanning (2009)

The Shelfscanning [99] project is intended to empower visually impaired individuals to
shop at their own convenience using computer vision methods such as object recognition, sign
reading and text to speech codification. More precisely, the authors [99] advance in grocery
detection using an object detection algorithm (Figure 2-45). Thus, ShelfScanner allows a
visually impaired individual to shop at a grocery store without additional human assistance.
To do so, online detection of items on a shopping list in video streams is performed. The
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inputs out of which ShelfScanner detects an object, with the purpose of notifying the user, can
be summarized as follow:

+ Images of items from the user-supplied shopping list. These images come from the
in vitro subset of the [99] GroZi dataset. The in vitro images are taken from the
Web, and the images usually show ideal specimens of each product, taken under
ideal conditions. The GroZi [99] dataset supplies between 2 and 14 in vitro images
per item, with an average of 5.6 images per item.

+ A video stream taken from the user’s camera as she sweeps its FOV along shelves.
The GroZi-120 video has resolution 720x480. Note in Figure 2-45 that ShelfScan-
ner relies on the assumption that the user holds a camera and sweeps the camera’s
field of view (FOV) across grocery shelves. Thus, a mosaic of assembled images is
created. This is an important constrain for visually impaired individuals that the
authors would like to alleviate in the future with a more general motion model.

Figure 2-45. Grocery’s identification using the Shelfscanner. [99]

The algorithm used in this project is based on offline supervised training [100] [99]. As
for the online recognition of groceries the system: creates the mosaic representing the shelf,
by assembling images from the camera. Then, points of interest (key points) are extracted
and described using SURF descriptors [100]. Afterwards, a set of probability estimations are
carried out, so as to decide whether a key point belongs to any of the sought targets (groceries

in the dataset). The location of identified key points reflects the position of its associated
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grocery. Finally, the visually impaired user is notified about the presence of groceries in his
shopping list by natural speech.

NAVIG?S (Navigation assisted by Artificial Vision and Global Naviga-
tion Satellite System).

The NAVIG [101] is an assistive device that can be roughly grouped into the electronic
travel aids (ETA) family [101]. Its aim is to complement conventional mobility aids (i.e. white
cane and guide dog) [102]. More specifically, NAVIG was designed to help visually impaired
individuals cope with challenges at two levels: sensing their immediate environment (micro-
navigation [103]) and reaching remote destinations (macro-navigation) [102]. On the one
hand and quite like our See ColOr project, NAVIG uses Artificial Vision to detect objects
which become reachable through 3D sound guidance. On the other hand, NAVIG also uses
landmarks detection to refine a GPS-based user-positioning. This latter feature is a useful
idea of data fusion that aims basically at matching GPS positioning, with current commercial
GIS (Geographical Information System) information [102]. The end result is arguably a much
reliable location which is compatible with assisted navigation for the Blind [102].

NAVIG’s final prototype is a head-mounted stereo-camera system that operates on a lap-
top [101]. Although this prototype has been tested with relative success, to the best of our
knowledge, more systematic and reproducible experiments are needed in order to draw better
conclusions of this work. Despite the many similarities between this approach and ours
(including the hardware display), we want to highlight what are perhaps their main distinc-
tions:

. NAVIG cannot be classified as a Sensory Substitution Device, since no visual cue
mapping is intended. NAVIG users are guided by mental imaginary or prior memo-
ries, yet the device does not promote visual-like experiences through the auditory
pathway, as it is the case in synesthesia and SSDs.

. NAVIG is a device more concerned with outside exploration [103], which remains
challenging in See ColOr.

& http://navig.irit.fr
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Figure 2-46. Navig project being tested: In outside navigation (left) and object grasping
(right). Taken from [103]
Ribeiro (2012)

Rebeiro et al. [8] have coined the term auditory augmented reality in reference to the son-
ification of objects that do not intrinsically produce sound, with the purpose of revealing their
location to the blind. They use spatialized (3D) audio to place acoustic virtual objects that
create the illusion of being originating from real-world coordinates. Therefore, they exploit
the innate human capacity for 3D sound source localization and source separation, to orient
the blind with respect to the objects nearby. A key aspect of this SSD concept (evaluated with
a head-mounted device, Figure 2-47) is that unlike previous approaches, they use computer
vision methods to identify high-level features of interest in an RGB-D stream. Thus, complex
soundscapes aimed at encoding pixel-based representation of an entire image are avoided.
The authors claim that since both visual and auditory senses are inherently spatial, their
technique naturally maps between these two modalities, creating intuitive representations.

M Sensors
RGB-D Camera B Computer vision

[ Spatial audio engine
Face Detection
and Recognition

l 3D Gyroscope
— [ ; i Head orientati
TTS Synthesizer | . Spatial Audio Engine ead orlentation

Wave Samples l

3D Accelerometer

Navigable Floor
Mapping

Plane Detection

Headphones

Figure 2-47. (taken from [8]) System block diagram (top) and device prototype (bottom). The
synthesizers and wave samples are used to achieve the 3D spatialization of audio with re-
spect of the user’s head that is tracked with a Gyroscope.

62



This device is focused on the recognition of faces and planes only. On the one hand, plane
detection is used to identify the floor, and to provide an environmental decomposition into flat
surfaces. The authors claim that planes are the dominant primitives in manmade environ-
ments, and can be conveniently used to identify walls and furniture. Thus, the underlying
assumption of the authors is that given the decomposition of an environment into planes of
known sizes and locations (by sound), people can infer which classes of objects they belong to:
“For instance, the location of a table could be inferred from the description of a large horizon-
tal plane. Likewise, a chair could be associated with a small pair of horizontal and vertical
planes” [8]. Consequently, they use an acoustical method for rendering planes based on 2D
polar floorplan [8] (Figure 2-47). A 3D accelerometer is used to estimate the gravity vector,
and infer the location of the floor plane. Also to correctly spatialize the sound with respect to
the user, a head tracking is implemented with the use of a 3D gyroscope (Figure 2-47). On
the other hand, finally, they recognize and represent them by the 3D spatialized name of the
corresponding person. The device uses a musical note fallback, if a face is detected but not
recognized.
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2.3.4 General Discussion

There is an immense amount of information extractable out of sounds. Therefore, we see
throughout the literature, the widespread idea of representing visual information to the
auditory modality by systematically converting properties of vision (usually luminance, verti-
cal and horizontal positions) into auditory properties (e.g. pitch, amplitude, frequency). Before
the decade of the 90s, all the attempts to use such idea in synthetic auditory displays focused
on the representation of simple shapes or visual patterns. Conversely, early in the 90’s, the
The vOICe (1992) [78] attempted to reach further by using this idea to encode natural images
(pixel-by-pixel) into so-called soundscapes. The end result was a complex one-second sound
whose amplitude and frequency synthetize the position and luminance of all the image pixels.
Given the limitations of the auditory bandwidth with respect to the visual pathway, the use
of soundscape in the vOICe gave rise to serious concerns about practical aspects of the vOICe.
In principle, the users need to be extensively trained to derive visual meaning from a single
soundscape, let alone of the many associated with all the frames in a video.

In this view, the authors claim that the usability of vOICe, rather relies on brain plastici-
ty [34]. This is to say that with long-term practice the blind will learn to interpret the audito-
ry scenes naturally. Several authors ( [14], [71], [5], [34].) give support for this approach
showing that after extensive training in soundscape identification, functional magnetic reso-
nance images (fMRI) reveal that blind individuals present little activity in their primary
visual cortex (i.e. cross-modal plasticity [5]). In fact, they observe that blind people demon-
strate a shift in activated brain areas towards more posterior areas (the areas that are in-
volved in visual processing in sighted people). However, whether this activity corresponds to
actual visual experiences remains largely unknown, as it is the subject of even philosophical
debates [38] on consciousness. Arguing against this, for instance, a plausible conjecture is
that after 50 hours of training in recognizing the soundscape representative of an image, one
is more likely to simply develop an associative pattern between the sound and the image,
rather than having the visual experience as such.

Back to the evolutionary shaping of SSDs (in the late 90s’ literature), researchers note
that besides conveying visual information; the ability of the sight to (literally) focus on the
information that is of relevance at any given time, also needed to be somehow modeled. For
instance, understanding the environment layout so as to derive orientation is a skill which
involves the dual abilities of localization and selective attention [90]. Notice that early at-
tempts of auditory displays such as the vOICe, partially lack these features, since it is only
coherent with the azimuth plane. In this spirit, authors such as Gonzalez-Mora (1999) [93]
developed new SSDs by leveraging the idea of spatialization of sound and stereo vision. In
fact, these two ideas made a difference in the history of SSDs evolution. While the former
exploited the innate human capacity for 3D sound source localization and source separation,
the latter provided depth information to virtually place these sound sources. Thus, the users

are removed from the problem of inferring spatial information out of a soundscape (the
vOICe), as it comes naturally to their ears. The use of these spatialized sound and stereo
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vision combined in SDDs spans to the present days as seen in the works of Michat Bujacz
(2010) [104] and Ribeiro (2012) [8], among many other.

By and large, few works in the literature attempt at providing a substitute to color infor-
mation therefore, an important visual perceptual property is likely to be missed. The visual
information and surrounding environments are mainly conformed by colored entities, so that
their intelligibility could be diminished as colors are left out (more detailed information about
color substitution in SSDs is given in Sensorial color coding). Recently in the last few years,
one can find works that cope with this drawback in SSDs, namely those of Kromophone
(2009) [96] and EyeMusic (2012) [33]. Although fairly good, these attempts clearly suffer from
an issue that is often likened to the tunneling vision effect in retinitis pigmentosa [105]. More
precisely, the exploration of the image is focalized on the center, making the field of view so
narrow that achieving the general aspects of the image is rather unlikely. Further, the only
explored part is hardly understandable as it lacks for context. This problem dramatically
affects the overall understanding of an image (as a whole), because peripheral vision or global
perception is unattainable.

A notable exception would be the Soundview (2003) [94] device (2003), which encodes col-
or into sound applying various filtering techniques to white noise (a combination of multiple
frequencies) in an attempt to retain structural parallels with perceptual HSL color space.
This work largely overcomes the tunneling phenomena by enabling haptic exploration of the
image on a tablet device (using the fingertips). Thus, in theory, the entire image resolution is
made accessible (like in the vOICe), though only as many points as fingers can be accessed
simultaneously. Which, in turn, avoids reaching the limits of the audio bandwidth (unlike the
vOICe). In Figure 2-23 this modality can be identified as tactile sensory relocation, which
implies by no means a tactile feedback, but a kinesthetic understanding of spatial relations of
the image within the tablet (i.e. the finger serves to orientate the subject with respect to the
picture). The kinesthesia refers to the innate ability to detect bodily position, weight, or
movement of the muscles, limbs, tendons, and joints [106].

Despite increased use of computer vision nowadays, surprisingly, its use in SSDs is rather
vapid. In others words, as noted by Jouffrais et al. in [107]: “Although artificial vision systems
could potentially provide very useful input to assistive devices for blind people, such devices
are rarely used outside of laboratory experiments”. This is curious since one would think that
devices meant to substitute natural vision should be heavily based on artificial vision. In fact,
after reading works such as Ribeiro (2012) [8], NAVIG [101] and The Shelfscanning (2009)
[99], one is left with the thought that if there is already a significant amount of research on
methods to enable computers to “see”, these very methods might be targeted to the benefit of
blind individuals. There should be, at least, a marked tendency to the use of robust and stable
computer vision technologies to strengthen the weakness of existing electronic aid device. For
instance, NAVIG [101] is indeed a promising approach very akin to our concept of assistance
and mobility. Yet, it still lacks testing and developing, and more importantly, in our view, it
should somehow account for visual substitution beyond its orientation/guidance power. Also,
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the work presented by Winlock et al. The Shelfscanning (2009) [99], though single-task ori-
ented, is a good example of how machine learning and image processing can be oriented to aid
the visually impaired in daily activities, such as grocery shopping. Similarly, the work pre-
sented by Ribeiro et al. Ribeiro (2012) [8] make efficient use of face detection methods to
communicate identities to the blind via spatialized speech. These ideas could be extended to a
broader gamut of objects and hence tasks, to increase in independence of the blind. In fact,
there is another emergent project that will attempt this line of thinking: the “fifth sense
project”, sponsored by the Andrea Botticelli foundation and the M.I.T (Michigan Institute of
technology) [108]. Yet no intellectual production (or literature) has been brought to light out
of this developing idea. And similarly to NAVIG [101], it seems that this project won’t inte-
grate visual substitution either.

Vision embraces more than the sensing of isolated low-level visual features (luminance,
contrast, texture, etc.). In fact, besides information acquisition, vision is rather a holistic
phenomenon emerging out of the integration of all the visual information (shape, color, posi-
tion, distance, texture, luminance etc.) [16]. Even further, ‘normal’ vision is itself constrained
by top-down knowledge, so it would be unpractical to deny to this knowledge a role in visual
sensory substitution [14]. Top-down knowledge produces the kind of information that sighted
individuals achieve from their visual systems, typically without conscious effort [108]. For
instance, the recognition of faces is an unconscious process that our brain performs automati-
cally based on previous concepts. In other words, we do not have to re-apprehend the aspect of
faces every time see one. This top-down knowledge, or unconscious knowledge, or accumula-
tive information, could not be better emulated in sensory substitution by other than computer
or artificial vision. Also, we maintain that speech (or alternatively, earcons?) is a valid meth-
od for object sonification in SDDs, as it is one of the most powerful (and the most used) form
of auditory communication.

Those maintaining that SSDs elicit an acquired synesthesia (showing activity in the visu-
al cortex [14], [71], [5]), may argue that speech-based descriptions trigger just visual imagery
rather than vision via sensory substitution. In fact, Ward et al. [14] say that while a car horn
evokes the image of a car, this is very different in nature from the information in a sound-
scape (produced by an algorithm that maps an image ‘containing a car’ into sound). The horn
sound turns out to be general symbolic mapping mediated by the concept ‘car’, whereas the
soundscape may convey specific information of the scene, car’s type, perspective, location and
so forth. However, others like O’Regan [35] argue otherwise: “The only difference is that
whereas imagining finds its information in memory, seeing finds it in the environment. One
could say that vision is a form of imagining, augmented by the real world.”

On our side, we advocate the use of natural speech to label objects, against soundscapes,
as it prevents users from spending 70 hours of training (or more) [14] in recognizing an ob-
ject. The end result should be a SSD absolutely learnable, intuitive and extremely practical.

% a brief, distinctive sound used to represent a specific event or convey other information.
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Here practical refers not only to the ease of use, but to the efficiency in handling user’s prior
knowledge to avoid tough learning processes. In congenitally blind their concept of the ob-
jects whatever it is (e.g. tactile) is exploited, and in people who became blind their visual
imagery is tapped. Further, SDDs may offer better insight into the scene by spatializing the
speech to represent left/right, modifying the pitch to represent top/bottom, and adjusting the
volume to represent the depth of the objects. Thus, a scene presenting various objects would
convey a great deal of the information expected into a soundscape, though preserving simplic-
ity and intuitiveness. We found these ideas often abandoned in the literature.

Otherwise, there are certain devices that have a family resemblance to SSDs but would
not meet the more restricted definition of sensory substitution [14]. Here, however, we would
like to do a brief description of them since those devices are meant to aid the visually im-
paired in navigation and exploration. More importantly, they are intended to enable a degree
of ‘normal’ functioning for the blind (the main topic of this work). White canes and dogs are
established aids for mobility. They are both used by visually impaired persons for near space
perception tasks, such as orientation and obstacle avoidance. Nevertheless, a dog has a signif-
icant cost and can assist mobility ten years, on average. According to Hersh [109], mobility
aids can be classified by the nature of the assistance provided (mobility or orientation), the
space which will be explored and the complexity of the technology [109]. The main classes
are:

traditional low-tech aids for near space exploration;

electronic travel aids of medium-tech for near space exploration;
high-tech electronic orientation aids for large space exploration;
mobility aids for near/far space navigation.

= E

One of the most representative examples that efficiently combines all the above categories
is the work presented by Pissaloux et al. SEES (Smart Environmental Explorer Stick) [110],
[111]: an enhanced white cane which assists the navigation of the visually impaired. This
active multi-sensor context-awareness concept integrates three main devices: iSEE (global
remote server), SEE-phone [112] (an embedded local server) and SEE-stick (smart stick);
which complements each other. This novel idea is yet to be fully implemented and tested,
though preliminary studies show its promising potential.

Two essential constituents of this classification are exploration and navigation. Exploring
a particular place means discovering the main components or looking for something in it. A
navigation task for a visually impaired person involves making a decision on which course to
follow between a starting point and a destination point. Note that obstacles should be avoided
for both tasks. An example of the first class is the white cane, while in the second we find
among others, several variants of a cane having laser or ultrasound sensors that provide the
user with distance measurements translated into tactile or auditory data. Examples include:
LaserCane [113], GuideCane [114], UltraCane [115], and Télétact [116].
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High-tech electronic orientation aids for large space exploration assist visually impaired
individuals in tasks such as self-localization and space perception by verbal description. The
Global Positioning System (GPS) is a fundamental ingredient of the prototype aids belonging
to this class. However, the GPS provides an inaccurate localization (about 10-15 m) and the
signal is absent indoor and underground. The Mobic travel Aid, [117] [118], the Sextant
System [119], and Loomis’ Personal Guidance Systems [120], are examples of this class of
assistance. A more recent system is the Braille Note GPS [121]. In the future it will be possi-
ble to obtain better localization, as the forth- coming Galileo Global Positioning System will
provide two levels of precision: 1m for commercial applications and 5m for public use.

For the last class of mobility aids, the GUIDO Robotic Smart Walker is a representative
example that serves as support and navigation aid [122]. This prototype builds maps of the
close environment with depth captured by a laser. The assistant robot can calculate the path
from one point to another and can also avoid obstacles. Another example is represented by
Talking Signs [123], which is an information system consisting of infrared transmitters con-
veying speech messages to small receivers carried by blind travelers. A user can get to the
destination by walking in the direction from which the message is received. Drishti is an
integrated indoor/outdoor blind navigation system [124]. Indoors, it uses a precise position
measurement system, a wireless connection, a wearable computer and a vocal communication
interface to guide blind users. Outdoors, it uses a differential GPS to keep the user as close as
possible to the central line of sidewalks. Moreover, Drishti uses a Geographical Information
Systems (GIS), in order to provide the user with a speech description of the close environ-
ment.

Moreover, a large number of tools have been created so far to help bind people in tasks
others than navigation/exploration, such as the perception of texts [125], pictures or chart
data [126] [127] [128]. In fact, audio has been used extensively to present spatial information
to blind and visually impaired users [129]. There are many examples of using audio to repre-
sent the shape of graphs and charts, which are traditionally heavily visual methods of pre-
senting information.

Brown and Brewster [130] describe how pan and pitch can be used to represent x, y val-
ues, respectively, when displaying an audio line graph. They were able to demonstrate that
users can accurately draw shapes of the graphs they hear. Alty and Rigas [131]describe their
AUDIOGRAPH system that can be used to display simple diagrams to users. They vary the
pitch of two tones of different timbre to represent an x, y position in a 2D space. They demon-
strate that it is possible to display simple shapes to a user through varying the pitch of audio
tones.

Zhao et al. [132] use audio to display geographic information through active exploration,
using a tablet (or keyboard)-based map system. They divide a map hierarchically into regions
varying timbre, pitch, and pan to display a value for a region, along with the altitude and
azimuth information. Percussive sounds are played to alert users when they move between
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regions. Kamel et al. [133]combine audio feedback with a tablet for input to display simple
graphical shapes. Users explore the shapes using a tablet, with audio cues alerting them
when they enter different areas of the diagram. Shapes are represented by nonspeech sound
sources moving through space (using 3D audio techniques to move the source horizontally
and vertically). Users can track the movement of the sound to recreate the shape. Changing
the pitch of the sound supports the user for vertical movements, as it has been shown that
users have difficulty placing sources in the vertical dimension when they are presented using
standard 3D audio-rendering techniques.

To conclude this section we would like to compare our approach See ColOr (to be present-
ed next) with the most relevant SSDs cited so far in this work. We generated a table (Table
2-1) that encompasses the main features expected to be preserved as images are converted
into sounds, and that at the best of our knowledge, constitute the makings of an efficient
SSD. These features range from low-level such as, spatial perception within the azimuth
plane (x axis), awareness of elevation (y-axis) and depth (z-axis). Although, we also track in
this table high-level visual features often liken with unconscious workings of the brain,
through which we derive sense from the visual world (i.e. automatic recognition of known
objects and faces, awareness of obstacle nearby, and perspective acquisition). Otherwise, this
table (Table 2-1) further covers a number of technical sides relevant to sonification that ulti-
mately yield agreeable user experiences. In this work we are concerned to know whether a
SSD permits the exploration of more than one visual point simultaneously. Also, the use of
soundscapes significantly matters into the scope of this work, as the reactivity of SSDs (real
time) heavily depends on this fact. Last but not least, two aspects will be considered (Table
2-1): firstly, whether the sound is conveyed to the user at expense of blocking out his ears, or
by means of bone-conduction techniques that prevent environmental sound obstruction. Sec-
ondly, we would like to assess whether or not current SSDs make use of blind user’s interfac-
es to allow better interaction with the system.

We will observe in this table (Table 2-1) that See ColOr meets sufficient conditions to
support its usability. Particularly, the sonification of elevation is just partially achieved in
See ColOr: while sound is not treated to reflect this feature, the tactile reference frame of-
fered by our system (Haptic-based Interfacing) will cope with this drawback in great extent.
Furthermore, alternative solutions to this drawback in See ColOr will be discus in section
Improving time in experiments. Soundscape usage is another missing feature in See ColOr,
yet as discussed earlier, this is not necessarily a disadvantage. We will argue in this thesis
(But is See ColOr functional so far?) that more efficient methods may be adapted for object
sonification, on the grounds that soundscapes are extremely tough to understand and dra-
matically reduce reactivity of the system. In addition, out of this comparative table (Table
2-1) it will be clear that the perspective effect continues to be challenging for SSDs, as all of
them fail to reproduce it. Note that this table (Table 2-1) also reflects the fact of See ColOr
being unique in combining both, low-level and high-level features into a SSD.
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X axis (azimuth)

Y axis (elevation)

Z axis (depth)
Multiple points
craneal conduction

Soundscape
Perspective
Real Time

Obstacles
Interface

Raymond M.
Fish

The VoiCe

Capelle et al.

Gonzalez-Mora
et al.

Soundview

TheVIBE

Kromophone

Shelfscanning

Michal Bujacz
et al.

EyeMusic

Kai Wun et al.

Ribeiro et al.

Fifth sense

See ColOr

Table 2-1. Table features that serve to compare efficiency between SSDs. Red stands for
missing features, whereas green means that the feature is met.
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3 SEEING COLORS WITH AN ORCHESTRA

3.1

They require perception and understanding of the whole nearby environment. As a result,
mobility, for example, encompasses three main tasks. The first, is to understand the near
space global geometry; the second, is simply to walk and to avoid obstacles; and the third is to
walk with a specific goal to reach, for instance looking for a specific door, a shop entrance, etc.
Hence, researchers in vision and visual (cognitive) systems such as Pissaloux, advocate the
design of holistic technological/computational approaches to the concept of mobility [134].

Throughout this chapter the system for auditory visual substitution pro-
posed in this thesis will be presented in details. The 3.1 Querview section ful-
ly depicts the workings of this aid for the visually impaired, whereas the 3.2
Evolution section relates to the technical transitions the system has gone
through. Thereafter, the following sub sections provide a precise explanation
on sonification methods (see 3.3 Sonification), tactile interaction (see 3.5
Haptic-based Interfacing), optimal handling of optical sensors (see 3.4 Effi-
cient registration of imaging sensors), and computer vision strategies (see 3.5
Computer-vision-based visual substitution). All this together makes up a ho-
listic approach underlying the functioning of the system put forward in this
document. Though this thesis affords a whole chapter for selected experi-
ments, testing with users and experimental checkups may be encountered too

across this chapter. Quverall, this chapter 3 describes in details the mathemat-
ical approaches, experimental setups, frameworks, hypothesis, computational
techniques and practical methodologies used in this thesis.

Overview

As Pissaloux et al. say: “visually impaired people need to improve both orientation and
mobility capabilities in order to be able to walk autonomously and safely” [110]. This being
said, we must recall that these tasks take more than simple obstacle detection and avoidance.
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Others, like Jouffrais [107], also argue that bio-inspired computational models must be target
to restore essential visuomotor behaviors that allow the blind to robustly, precisely and rapid-
ly locating visual cues in the environment. In this view, we put forward See ColOr (whose
name stands for: Seeing Colors with an Orchestra) a mobility aid for visually impaired people
that use the auditory channel to represent portions of captured images in real time. A distinc-
tive feature of the See ColOr interface is the simultaneous coding of color and depth. Also, See
ColOr now uses computer vision methods for processing more complex visual features even-
tually sonified as virtual objects/obstacles. Four main modules were developed, in order to
replicate a number of mechanisms present in the human visual systems. These modules are:

the local perception module;
the global perception module;
the alerting system;

the recognition module.

TN SN S S

The local module provides the user with the auditory representation of a row containing
25 points of the central part of captured image. These points are coded into left-right spatial-
ised musical instrument sounds (Sensorial color coding), in order to represent and emphasize
the color and location of visual entities in the environment. The key idea is to represent a
pixel as a sound source located at a particular azimuth angle (How does See ColOr sound
like?). Moreover, each emitted sound is assigned to a musical instrument (From colors to
instruments sounds in See ColOr), and to a sound duration depending on the color and the
depth of the pixel, respectively (The sound of local and global modules). The local module
allows the user to explore a captured video frame indeed. However, since the perception of the
user is focused only on a small portion of the captured scene (single point), the tunneling
vision phenomenon becomes apparent (The sound of local and global modules). Having access
to more than one point would bring many advantages in terms of exploration and under-
standing of the image. For instance, it would be possible to compare several distant points
(regarding color and depth) if pointed with the fingers on a touchpad displaying the environ-
ment picture. Note that such a task is unachievable using this local module. To rectify for this
deficiency, we introduced the global perception module that allows the user exploring points
beyond the image center.

In the global module the image is made accessible on a tactile-tablet interface (Haptic-
based Interfacing) that makes it possible for the user to compare different points and explore
the scene in a broader context (The sound of local and global modules). A user may rapidly
scan an image sliding one or more fingers on this tablet. The finger movements are intended

to mimic those of the eyes. A finger tap on the tablet activates a sound that codes the color
and depth of the corresponding pixel. The spatial position of this pixel (in the azimuth plane)
is mapped to the hearing by directional virtual sound sources (The sound of local and global
modules). In theory, the entire image resolution (460x640 using the Kinect camera) is made
accessible so as to make the most of the camera information. However, only as many points
as fingers can be accessed simultaneously not to reach the limits of the audio bandwidth
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(Optimal interaction). By and large, the global module is intended to promote a more proac-
tive interaction to selectively explore, to discover points of interest, make comparisons, and,
in general, enjoy a greater sense of independence. This is mostly the case because (s)he can
access various points simultaneously (several fingers), slide a finger so as to scan areas and
so forth (Building a scene in someone’s mind).

Since the functionalities just mentioned are limited to describe local portions using low-
level features such as color and depth, they might fail to reveal cognitive aspects which often
determine regions of interest within a picture. The purpose of alerting system (Obstacles
detection) is to warn the user whenever a hazardous situation arises from obstacles lying
ahead. Once the system launches a warning, the user is expected to suspend the navigation
not to bump into an obstacle. This allows the blind persons finding a safe, clear path to ad-
vance through. Roughly, when potential obstacle in the video presenting a distance below one
meter continues to approach over a given number of frames, the user must be alerted
(Obstacles detection). It is worth noticing that the alerting system is an autonomous algo-
rithm (Computer-vision-based visual substitution) that demands no user intervention and

runs in parallel to the rest of the modules. Thus, users will focus on the exploration without
loss of safety.

See ColOr also uses computer vision techniques (Computer-vision-based visual substitu-
tion) to process higher visual features of the images in order to produce acoustic virtual ob-

jects. Actually, we recognize and then sonify objects that do not intrinsically produce sound,
with the purpose of revealing their nature and location to the user. The recognition module
is a detecting-and-tracking hybrid method for learning the appearance of natural objects in
unconstrained video streams (Object recognition). Firstly, there is a training phase aimed at
learning the distinct appearance of an object of interest (scale, rotation, perspective, etc.)
(Learning). This is an off-line process carried out by sighted people. Then, a visually impaired
individual may be informed about the presence of learned objects in real time during explora-
tion, if any (Running). Overall, this module allows the blind noticing serendipitously discover-
ies; seeking a specific target; and avoiding obstacles as well.

In Figure 3-1 we have shown an illustrative drawing of a user endeavoring to navi-
gate/explore an unknown environment with the help of See ColOr. By default See ColOr runs
in local module, thus only upon request when tapping on the tablet, the global module
enters activity. In Figure 3-1 for instance, the user is tapping the right-up corner of the
chair’s back (on the tablet), as he explores the picture. Therefore, he is expected to deduce out
of the emitted sound, the color and distance (depth) of that part of the chair. Note that the
user hears the sound of a touched point on the tablet like it is coming from its peer in the real
world e.g. from left to right or azimuth plane, but not in elevation. Moreover, while the user
walks, the alerting system, running in parallel, will automatically announce (by means of
an alarm) all potential obstacles on his way e.g. the garbage can. Eventually, the recogni-
tion module is meant to reveal known objects happen to be nearby. In Figure 3-1, it is
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assumed that See ColOr previously learned to recognize a chair. Although the recognition
module might learn a broader gamut of objects, including faces and people identities.

Figure 3-1. See ColOr’s overall functioning.
3.2 Evolution

See ColOr is a project originally founded by Swiss Hasler Foundation and developed at
the Computer Vision and Multimedia Laboratory (CVML) of the University of Geneva and
the School of Engineering, Switzerland. Beginnings of this project date back to 2005, though
it was put on hold in 2008 for over two years. When retaken in 2010, See ColOr barely had
implemented its local module. Many years have passed and the shaping of a functional proto-
type in time could be summarized as in Figure 3-2. Early attempts of a tactile interface were
achieved by means of a Talking Tactile Tablet or T3. This is a graphic tablet with a touch
surface that uses swell paper to create 3D overlays and connects audio-files to parts of the
overlays. The device is connected to a computer and has a tactile surface which produces
touchable icons that provide audio feedback when they are pressed. Specifically, this tablet
makes it possible to determine the coordinates of a contact point. This tablet had dimensions
of 15"L x 12"W x 1.5"D, and a weight of 6.5 1bs (2.94 kg). More recently, in 2011, we made
used of a superlight and much smaller Pen Tablet (Bamboo Wacom). When connected to a
computer, this tablet bridges a user and an interface (picture) by means of the fingertip
(which acts as mouse pointer). Nowadays, we use an iPad tablet (Apple) whose advantages
are as follow: wireless connection, higher resolution of touch, unlimited multi-touch, omnidi-
rectional adaptive rendering, and in the near future, it is expected to replace the laptop and
carry out computational processes (see Figure 3-2).
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Figure 3-2. Evolution of See ColOr’s prototype.

The use of earphones was a problem in See ColOr during many years (see Figure 3-2). In
fact, this is an issue widespread in auditory-based substitution of vision. At large, people are
reluctant to block out their ears even in exchange for assistance: “I already miss a sense and
wearing headphones is like taking one more way”, that is a commonplace comment among
users. Indeed, natural audio cues of the environment relevant for self-orientation are likely to
be missed in this way. See ColOr surpassed this difficulty, recently, with the addition of bone-
conducted sound in the current prototype. This strategy turned out of broad acceptance
among users, a key aspect to add to the functional features of See Color. Bone conduction is
the conduction of sound to the inner ear through the bones of the skull using an ergonomic
vibrating headset (bone-phones). This device converts electric signals into mechanical vibra-
tions and then, sends transduced sound to the internal ear through the cranial bones. Since
the outer ears are no longer involved in the process of hearing, they remain released and
uncovered. Note that in Figure 3-2, the user wears the bone-phones right over the temples,
rather than in/on the ears.

Over the years See ColOr has used various range cameras as optical sensors (Figure 3-2).

In chronological order, the most representative ones are: all-digital stereo MEGA-DCS cam-

era (Videre Design), The Bumblebee®2 stereo vision camera (Point Grey), the Microsoft 3D

sensor Kinect (SDK), and lately, the ASUS Xtion PRO LIVE (SDK). The first two sensors are

stereoscopic-based, programmable, quite small, long ranged and outdoor functional. Yet, they

provide only sparse depth maps leading to high levels of depth uncertainty. Further, these
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cameras require IEEE-1394 (FireWire) connection, which severely limits their use let alone of
elevated prices. Recently, cost-efficient sensors using Time-of-flight technology, brought
along compact depth maps and flexible programing frameworks (Kinect). See ColOr, as many
research projects, made use of this sensor for long period. However, this camera suffers from
both, oversize and power feeding need. This latter forced us in See ColOr to build an unsight-
ly connection based on an 8 pounds rechargeable battery that needed to be carried by the
user. Nevertheless, the later generation of this camera (ASUS Xtion Pro live 2012) was fash-
ioned smaller, lighter and based on plug-and-play USB connection. Therefore, See ColOr
currently uses this 3D sensor to capture both color images and depth maps of the environ-
ment. Importantly though, since the resolution of the internal color camera may not be suffi-
cient for computer vision applications. In See ColOr the addition of an external high-
resolution camera (webcam) as shown in Figure 3-3, is possible (see Efficient registration of

range and color images).

Regular Webcam

ASUS
Xtion Pro live

Figure 3-3. Coupling of a 3D sensor (ASUS Xtion Pro Live) with an external camera (regular
webcam) to increase color resolution for better performance in computer vision applications.

3.3 Sonification
3.3.1 Sensorial color coding

In the world, visual information and surrounding environments are mainly conformed by
colored entities; therefore their intelligibility could be diminished as colors are left out of
SSDs. In fact, color plays a very important role in our everyday lives. For instance, we can
judge how healthy we, our crops and our food are, by means of the color. We made choices
(decoration, furnishing, clothing etc.) being highly influenced by colors. One could say, there-
fore, that color is involved in almost every aspect of our lives. More specifically, there are
three key aspects why the blind and visually impaired may benefit from the coding of color in
SSDs. Firstly, colors provide clues to object identification (e.g. apples are red and bananas are
yellow). Secondly, the accessibility to color information permits communication between the
blind and sighted about the visual world, so they share concepts on similar basis. Finally,
color information is very relevant for figure-ground segmentation ( [135] [136] [137]).
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In 2009, Torralba et al. [137] found that the importance of color information for visual
scene/object recognition is greater for medium and low resolutions than it is for higher resolu-
tions [137]. This is of much importance for SSDs, as most of them have a relatively low reso-
lution being constrained by both technology limitations and the users’ perceptual ability. In
tactile devices the limit is set by the numbers of stimulators (hardware), whereas in auditory
systems the limitation is given by the band-width of the ears that is typically low.

In this view, research on sensorial color coding for SSDs continues to gain significance
nowadays. Recently, the research domain of color sonification has started to grow [94] [138]
[96]. A number of authors defined sound/color mappings with respect to the HSL color sys-
tem. HSL (Hue, Saturation, Luminosity) is a symmetric double cone symmetrical to lightness
and darkness. HSL mimics the painter way of thinking with the use of a painter tablet for
adjusting the purity of colors. The H variable represents hue from red to purple (red, orange,
yellow, green, cyan, blue, purple), the second one is saturation, which represents the purity of
the related color and the third variable represents luminosity.

The H, S, and L variables are defined between 0 and 1. Doel defined color/sound associa-
tions based on the HSL color system [94]. In this sonification model, sound depends on the
color of the image at a particular location, as well as the speed of the pointer motion. Sound
generation is achieved by subtractive synthesis. Specifically, the sound for grayscale colors is
produced by filtering a white noise source with a low pass filter with a cutoff frequency that
depends on the brightness. Color is added by a second filter, which is parameterized by hue
and saturation.

Rossi et al. presented the “Col.diesis” project [138]. Here the basic idea is to associate col-
ors to a melody played by an instrument. For a given color, darker colors are produced by
lower pitch frequencies. Based on the statistics of more than 700 people, they produced a
table, which summarizes how individuals associate colors to musical instruments. It turned
out that the mapping is: yellow for vibraphone or flute; green for flute; orange for banjo or
marimba; purple for cello or organ; blue for piano, trumpet or clarinet; red for guitar or elec-
tric guitar.

Capalbo and Glenney introduced the “KromoPhone”, whose general aspects were already
discussed in this work (Kromophone (2009)) [96]. In terms of color treatment, their prototype
can be used either in RGB mode or HSL mode. Using HSL, hue is sonified by sinusoidal
sound pitch, saturation is associated to sound panning and luminosity is related to sound
volume. The authors stated that only those individuals with perfect pitch perform well. In
RGB mode the mapping of colors to sounds are defined by pan, pitch and volume. For in-
stance, the gray scale from black to white is panned to the center, with black being associated
to the lowest pitch sound. Blue and yellow are mapped to the left, with blue being associated
to lower pitch than yellow. Similarly, green and red are related to sounds listened to the
right. Finally, the intensity of each color is mapped to the volume of the sound it produces.
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In one of their experiments, Capalbo and Glenney illustrated that the use of color infor-
mation in a recognition task outperformed the performance of “TheVoice” (The vOICe (1992))
[96]. Specifically, the purpose was to pick certain fruits and vegetables known to correlate
with certain colors. One of the results was that none of the three subjects trained with “The-
Voice” could identify any of the fruit, either by the shape contours or luminance, while with
the “KromoPhone” individuals obtained excellent results.

Meers and Ward proposed the ENVS system which code colors by means of electro-tactile
pulses [139] [140]. Note also that they consider color perception very important, as it can
facilitate the recognition of significant objects which can serve as landmarks when navigating
the environment. As stated by the authors, delivery of all colors by frequencies proved too
complex for accurate interpretation. Consequently, in the ENVS prototype only an eight-
entry lookup table was implemented for mapping eight colors.

It turns out that if we would like to use one of the sensorial color coding described above,
we would come across several limitations. Specifically, we would like to use a system that
reacts in real-time; thus, the sonification used in the Col.diesis project would be unsuitable,
since the sonification of a single color last many seconds [138]. The KromoPhone color sonifi-
cation is very reactive; however, because of the pan color coding, only a single pixel could be
sonified. In other words, the spatial coding of more than a pixel would not be possible. As we
would like to represent simultaneously a reasonable number of sonified pixels with also their
corresponding spatial positions, we also dispose of this color sonification scheme.

A similar argument yields the same conclusion for Doel’s system, which is also much more
oriented toward the exploration of static pictures. The colors/electro-tactile mappings of the
ENVS system present the advantage to represent ten pixels, simultaneously. However, in
terms of quantity of information the tactile sensorial channel represents 0.1 Kbps, while
audition is about 10 Kbps [6]. Thus, we prefer to represent colors by sounds transmitted to
the auditory pathway. Finally, we would like also to represent color and depth, simultaneous-
ly. With a tactile interface it is unclear to us on how to achieve an efficient coding in real-
time.

Sjostrom and Rassmus-Grohn [141] reported a computer-haptic interface using PHAN-
ToM — a joystick that moves in a 3D space or ‘haptic scene’. Different colors are represented
by different levels of resistance as the device is moved thereby creating a sense of texture.
Moreover, Cappelletti, Ferri and Nicoletti [142] represented a single point in RGB color space
on three fingertips (relating to red, green and blue dimensions) and by varying vibrotactile
frequency (low, medium, high amplitude). So the presence of red would be felt as high vibra-
tion intensity on the ‘red finger’, yellow would be felt as high vibration intensity on the red
and green fingers (because yellow is represented by 1, 1, 0 in RGB space), and so on.

Finally, the Chromo-Haptic Sensor-Tactor (CHST) device has four short-range fingertip-
mounted color sensors as part of a glove [143]. The four finger-mounted sensors are tuned to
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detect four dimensions each: R, G, B and luminance (allowing 1 to 4 different colors simulta-
neously). The information is relayed to four belt-mounted vibrotactile stimulators (T1-4)
[143], varying in vibration and temporal modulation to convey color information. Unlike the
initial attempts to transfer color information, this device is the first to use a color sensor for
the external environment rather than a pc camera.

3.3.2 From colors to instruments sounds in See ColOr

The goal is to use the auditory pathway to convey color information as quickly as possible.
The simplest method would consist to use human voice. Nevertheless, having a voice an-
nouncing the colors leads to various difficulties associated with interpreting common speech.
The main problem is that we would like to communicate several pixel colors, simultaneously.
Note that for a person it is almost impossible to follow at the same time a discussion with
more than three individuals. In other words, processing speech unconsciously requires a lot of
mental resources. It may be possible to understand the name of two colors, though saying a
color takes about a second or even more if the palette has a considerable size, which is also
too long for real-time purposes. Thus, the lengthy spelling of names might reduce the infor-
mation transfer rate between the visually impaired individual and the system. Finally, it
would be difficult to remember the name of hundreds of different hues.

Figure 3-4. The HSL system used in See ColOr. In this figure the slice extracted from the
middle of the cylinder is meant to show the Hue variable with neutral lightness (basic colors).
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An intuitive approach entails the sonification of color system variables as seen in Sensori-
al color coding. The RGB (red, green, and blue) cube is an additive color model defined by
mixing red, green and blue channels. For instance, we used the eight colors defined on the
vertex of the RGB cube (red, green, blue, yellow, cyan, purple, black and white). In practice a
pixel in the RGB cube was approximated with the colour corresponding to the nearest vertex.
Our eight colors were played on two octaves: Do, Sol, Si, Re, Mi, Fa, La, Do. Note that each
color is both associated with an instrument and a unique note. An important drawback of this
model was that similar colors at the human perceptual level could result considerably further
on the RGB cube and thus generated perceptually distant instrument sounds. Therefore,
after preliminary experiments associating colors and instrument sounds we decided to dis-
card the RGB model.

In this view, a number of authors defined sound/color mappings with respect to the HSL
color system (see Sensorial color coding). The HSL color system also called HLS or HSI is
very similar to HSV. Advantages of HSL are that it is symmetrical to lightness and darkness,
which is not the case with HSV.

As shown by Figure 3-4, the HSL color system (Hue, Saturation and Luminosity) may be
regarded as a cylinder extended from lightness down to darkness. Although the HSL color
system is related to the laws of physics and not to the human perception system, it is much
more intuitive than RGB. HSL mimics the painter way of thinking with the use of a painter
tablet for adjusting the purity of colors. Other color systems such as Lab or Luv are strongly
related to the human perception system, but the difficulty lies in the determination of an
intuitive matching between color variables and sounds.

In the HSL color system the H variable represents hue from red to purple (see Figure
3-5), the second one is saturation which represents the purity of the related color and the
third variable represents luminosity. Hue varies between 0 and 360 degrees (see Figure 3-5),
while S, and L are defined between 0 and 1. We represent the hue variable by instrument
timbre, because it is well accepted in the musical community that the color of music lives in
the timbre of performing instruments. Moreover, learning to associate instrument timbres to
colors is easier than learning to associate for instance pitch frequencies. The saturation vari-
able S representing the degree of purity of hue is rendered by sound pitch, while luminosity is
represented by double bass when it is rather dark and a singing voice when it is relatively
bright. With respect to the hue variable, our empirical choice of musical instruments is:
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Figure 3-5. Association of instruments sounds with hue from red to purple in 360°.

Oboe for red (0 < H < 30)

Viola for orange (30 < H < 60)

Pizzicato violin for yellow (60 < H < 120)
Flute for green (120 <H < 180)

Trumpet for cyan (180 < H < 240)

Piano for blue (240 < H < 300)
Saxophone for purple (300 < H < 360)

tFEFEEFEEE

Note that for a given pixel of the sonified row, when the hue variable is exactly between
two predefined hues, such as for instance between yellow and green, the resulting sound
instrument mix is an equal proportion of the two corresponding instruments. More generally,
hue values are rendered by two sound timbres whose gain depends on the proximity of the
two closest hues. The audio representation A of a hue pixel value A is

hy, = gh, + (1 — g)hy,

Equation 3-1. Proportional mixture of tow instruments in See ColOr.
with g representing the gain defined by

hb _ha

Equation 3-2. Gain of two mixed instruments in See ColOr.

81



with hq < H < hs, and ha, hs representing two successive hue values among red, orange, yellow,
green, cyan, blue, and purple (the successor of purple is red). In this way, the transition be-
tween two successive hues is smooth.

The pitch of a selected instrument depends on the saturation value. We use four different
saturation values by means of four different notes:

Do (262 Hz) for (0 < S < 0.25);
Sol (392 Hz) for (0.25 < S <0.5);
Sib (466 Hz) for (0.5 <S < 0.75);
Mi (660 Hz) for (0.756 <S<1).

= E

When the luminance L is rather dark (i.e. less than 0.5) we mix the sound resulting from
the H and S variables with a double bass using four possible notes depending on luminance
level:

Do (131 Hz) for (0 < L. < 0.125);
Sol (196 Hz) for (0.125 < L. < 0.25);
Sib (233 Hz) for (0.25 <L < 0.375);
Mi (330 Hz) for (0.375 <L < 0.5).

e

A singing voice with also four different pitches (the same used for the double bass) is used
with bright luminance (i.e. luminance above 0.5):

Do (262 Hz) for (0.5 <L < 0.625);
Sol (392 Hz) for (0.625 < L < 0.75);
Sib (466 Hz) for (0.756< L < 0.875);
Mi (660 Hz) for (0.875< L < 1).

T

Moreover, if luminance is close to zero, the perceived color is black and we discard in the
final audio mix the musical instruments corresponding to the H and S variables. Similarly, if
luminance is close to one, thus the perceived color is white we only retain in the final mix a
singing voice. Note that with luminance close to 0.5 the final mix has just the hue and satura-
tion components.

3.3.3 A relation between colors and sounds based on brain activity

The relation between colors and musical instruments has been typically studied by meth-
ods merely subjective, such as surveys and empirical matching conditions (see Sensorial color
coding). Yet, an objective approach that permits a quantization of the existing relation (if any)
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has largely been missing. In this thesis we posit a framework aimed at reaching this goal by
co-relating EEG signals of a person, as follow: EEGs corresponding to the listening of sounds
and the visualization of colors are collected. Then, a classifier to recognize the EEG pattern of
one particular color is trained. Once trained, this classifier is tested using the EEGs related
to sounds, in order to find an instrument eliciting similar EEG pattern. This idea rests on the
assumption that we could identify functional fields in the primary auditory cortex involved in
cross-modal transfer of the visual representation. The long-term objective here is twofold:
Find out objective preferences for a particular individual, as well as general tendencies for
color-instrument association into a population, if any.

The sounds of colors

With special focus on visually impaired assistance, quite a number of interfaces are these
days attempting to transform visual cues into sound-based codes. Particularly, the associa-
tion of color with music has drawn the attention of researchers in multiple areas. Yet, there
are still many open questions about the optimal equivalence of colors when mapped to
sounds. While this idea is broadly accepted, there are uncertainties on determining if a par-
ticular mapping turns out better than others when it comes to learning. Intuitively, one tends
to link, for instance, bass sounds with dark colors or high pitched with visual brightness.
Still, the relation of intermediate colors and sounds remains uncertain: With the eyes wide
closed, does an electric guitar sound like red rather than blue?

Roughly speaking, two sorts of association methods can be found in the literature. Those
relying upon subjective perception and others using empirical assumptions. On the one hand,
the work presented by Rossi et al. [138] suggests a paradigmatic approach to the color-sound
mapping that feeds on a broad survey. Thus, quite a number of perceptions are averaged
forcing the subjectivity to collapse into a pattern. On the other hand, See ColOr [29] puts
forward an empirical mapping of musical instruments onto the HSL color space (as seen in
From colors to instruments sounds). The saturation variable (S) representing the degree of
purity of hue (H) is rendered by sound pitch, while luminosity is represented by double bass
when it is rather dark and a singing voice when it is relatively bright. Indeed, these assump-
tions are based on well accepted ideas in the musical community (at least in the western).
Yet, instruments are mapped onto a 360° subdivision of H variable following no objective
rules.

Beyond subjectivity

The idea of audio—visual cross-modal perception rests on the assumption that there must
exist so-called polysensory areas [144], understood as brain areas activated by stimuli from
more than one sensory pathway. A practical example to this is the well-known McGurk effect
[43] that demonstrates the interaction between vision and hearing in perception of speech.
This occurs when our brain hears a wrong audio cue for it is presented with visual evidence
that something different is being said.
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More generally, synesthesia [145] is regarded as a broader paradigm of cross-modal per-
ception. Here, stimuli reaching one sensory/cognitive pathway automatically trigger involun-
tary reactions in a different sensitive pathway. This neurological condition can be manifested
in various forms comprising spatial awareness, color and sound perception among others.
Moreover, music is known to be a powerful elicitor of emotions, yet it is uncertain whether
musically induced emotions are similar to those elicited by visual stimuli. This leads to an
open question: “Can music-elicited emotion be transferred to and/or influence subsequent
vision-elicited emotional processing?” [146]. In this spirit, Logeswaran et al. [146] showed
preliminary evidence that such a cross-modal effect is indeed revealed (by event related brain
potential components) at the very beginning of neuronal information processing.

Further, previous studies on EEG [147] have proved that on the one hand, positive musi-
cal stimulation results in a more pronounced lateralization on the left fronto-temporal corti-
ces. And on the other hand, negative musical stimulation produces quite the same effect
towards the right frontal areas. Likewise, such a frontal asymmetry is known to happen
when affective visual stimuli are processed [148]. Consequently, overlaps between visual and
musical perceptions are at least likely.

The proposed method

In a primary experiment, we aimed at mapping 10 colors onto 10 musical instruments
sounds. A participant was tasked to carefully hear each sound during 40 seconds (see Figure
3-6). Subsequently, (s)he watched 10 colors sequentially. A 32-electrodes Biosemi [149] served
to record the participant’s EEG signals, for each sound played and each color watched. Thus,
two data sets were collected Ca={cy,..., ci0} and Sa={si,...,s10} corresponding to colors and
sounds respectively. Both Cq and Sa, can be regarded as a collection of 32-component pat-
terns, whenever c¢; and s; are discrete signals of 32 channels each, Vi €/{1,...,10}.

'

Figure 3-6. A participant hearing sounds while his brain activity response to each sound

(EEG signals) is recorded for further analysis.
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Following, 10 Artificial Neural Networks K={kj,...,k1o! were used to classify the data be-
longing to Ca only. Therefore, ki represents a binary classifier trained to assess whether or
not a pattern belongs to ¢;, Vi €{1,...,10} (i.e. this patter was caused by the i-tA color). The use
of neural networks (NN) allows us to determine a possible non-linear relationship between
colors and sounds. A global sketch of this idea is shown in Figure 3-6 as a framework to
relate brain activity elicited by hearing sounds and watching colors [150].

Once the training is completed, we evaluated each classifier k; using the data Sa. Our as-
sumption here is that any pattern within Sq being classified positively by k;, holds a close
relation with those of ci. Therefore, our aim is to identify the s; with the highest number of
patterns positively classified by ki, ¥i,j € {1,...,10}. This finally leads us to establish a relation
between the EEG elicited by the i-th color and that of the j-th sound. Further, we could assess
the strength of this relation just by counting the number of patterns within s; classified as
positive.

c, K S,

training evaluation
C; @ S1
C; k; s;

Figure 3-7. Proposed framework to relate brain activity elicited by colors with that of sounds.
Though for the training of k; all Cy; data is actually used (c; as positive examples and negative
all ¢ <j#i>). In this figure, we link k; (in the training phase) only with the patterns it was
learnt to recognize as positive (i.e. ¢;). Oppositely, in the evaluation phase Kis related to all Sq
because evaluation entails all the sounds. After calculation of all these relations (i.e. the
number of patterns within every s; classified positively by ki), we aim at finding the strongest
relation in the evaluation phase.
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Discussion

Our study on color and sound matching engages both, the visually impaired (no born
blind) as well as, sighted individuals. Therefore, the acquisition of EEG related to colors may
be achieved under two conditions: By watching steadily a flat colored screen, or simply by a
sharp mental image of the intended color. In the future, we would like to find discriminatory
features between these two populations. It is well known that blind people may eventually
achieve greater hearing acuity; therefore, the visual-audio cross-model performance is likely
to be further developed.

Another side of this work-in-progress that is worthy of attention, refers to the processing
of the EEG signals. So far our analysis relies simply on time; we use a sliding window to
average de 32-channels signal, so as to extract samples as patterns. Yet, typical EEG analysis
is known to be more reliably performed on frequency domain. Our choice is based on the fact
that larger number of patterns can be obtained so. A 40 seconds recorded signal may give a
large number of samples in time, whereas in frequency domain only the very first frequencies
are of importance. Nevertheless, in the future our results must be compared with those ob-
tained in frequency so as to be validated.

Finally, at the end of this thesis analysis and gathering of data was still ongoing. The
framework had also been implemented and tested in Matlab 7.0 using the Neural Networks
Toolbox. Although preliminary results were promising, the evidence collected precludes draw-
ing any assertions or generalizations due to the premature state of the work. Therefore, the
contributions of this thesis in this regard consisted in:

4+  Put forward a novel and seminal idea that will permit an objective quantization of
the existing relations (if any) in perception of colors and sounds.

4+ Modeling and implementation of a framework based on Artificial Neural Networks
that allows evaluating the mentioned idea.

4+  Establishment of a protocol and gathering of preliminary data to be further studied
by new PhD students.

3.34 How does See ColOr sound like?

Lateralization of sound

It is possible to simulate lateralization, also denoted as two-dimensional auditory spatial-
ization, with appropriate delays and difference of intensity between the two ears. Neverthe-
less, inter-aural time delay (ITD) and inter-aural intensity difference (IID) are inadequate for
reproducing the perception of elevation, which represents a crucial auditory feature for 3D
spatialization. In fact, the folds of the pinnae cause echoes with minute time delays within a
range of 0-0.3 ms [151] that cause the spectral content of the eardrum to differ significantly

from that of the sound source. Strong spatial location effects are produced by convolving an
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instrument sound with head related impulse responses (HRIRs) [151], which not only varies
in a complex way with azimuth, elevation, range, and frequency, but also varies significantly
from person to person [152].

Generally, reproducing lateralization with uncustomized HRIRs is satisfactory, while the
perception of elevation is poor. Since one of our long term goals is to produce a widely distrib-
uted prototype, thus involving standard HRIRs, we only reproduce spatial lateralization of 25
points through the azimuth plane with the use of the CIPIC database [68]. The effect caused
to the user is the perception of sounds coming from 25 different fontal locations (virtual
sources), from left to right (see Figure 3-8). In practice, each sonified point corresponds to
the convolution of an instrument sound (300 ms) with the corresponding HRIR filter related
to a particular azimuth position. We only reproduce spatial lateralization with the use of the
HRIR measurements belonging to the CIPIC database [67]. This database is one of the most
used for high-spatial-resolution measurements. Release 1.0 was produced for 45 different
persons; specifically, impulse responses were produced in quite a number of distinct direc-
tions for each ear and for each subject.

A particular HRIR can be evaluated after calculating a Head Related Transfer function
(HRTF) [67]. The HRTF is a response that characterizes how an ear receives a sound from a
point in space. In other words, describing how a sound from a specific point will arrive at the
ear can be modeled using the HRTF. Usually, practical simulation of HRTF is achieved with
the use of a dummy head (Figure 3-8) equipped with small microphones at either ears.
Sounds emitted around 369° degrees are recorded by the microphones. These records serve to
support a mathematical modeling of the HRTF.

Right Front

19

Figure 3-8. Spatialization of sound in See ColOr. Sounds can be perceived as approaching
from 25 different positions (from right to left) across the azimuth-frontal auditory field.
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The sound of local and global modules

In the local module of See ColOr, the sonified part of a captured image is a row of 25 pix-
els relative to the central part of the video image. As replicating a crude model of the human
visual system, pixels near the center of the sonified row have high resolution, while pixels
close to the left and right borders have low resolution (peripheral vision). This is achieved by
considering a sonification mask indicating the number of pixel values to skip. As shown be-
low, starting from the middle point (in bold), the following vector of 25 points represents the
number of skipped pixels:

[156129753322111011122335791215]

Equation 3-3. The mask of resolution for sonification of 25 pixels relative to the central part
of a captured image in the local module of See ColOr. The number (0) in the middle of the
mask (in bold) represents the central pixel of the image. The others numbers in this sonifica-
tion mask must be understood as the number of skipped pixels. This masks mimics a crude
model of the human visual system, pixels near the center of the sonified row have high reso-
lution, while pixels close to the left and right borders have low resolution

These 25 pixels are sonified simultaneously using lateral spatialization from left to right
(Lateralization of sound). Thus, the central part of the image is mapped (and augmented) into
the entire azimuth-frontal auditory field (left side of Figure 3-8). Accordingly, this module
was named local, since it focuses exclusively on a row of 25 pixels localized in the center of
the image. And though we try to mimic peripheral vision using Equation 3-3, this only ap-
plies to that local portion of the image. This fact, unfortunately, gives rise to an important
drawback in See ColOr that is often liken to the tunneling vision effect (Figure 3-9) in retini-
tis pigmentosa [105]. In principal, this problem dramatically affects the understanding of an
image (as a whole) because peripheral vision or global perception is unattainable. To make it

worse, the small perceptible portion of the image is hardly understandable as it is devoid of
context. To cope with this downside the global module was created.

Figure 3-9. Tunneling vision phenomena. In the right image the field of view is so narrow
that achieving the general aspects of the image (in the left) is unlikely. Further, the only
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visible part is hardly understandable as it lacks for context. The tunneling vision is a pro-
gressive effect of retinitis pigmentosa, a degenerative eye disease responsible for great per-
centage of blindness.

The global module!® sonifies the color of a pixel tapped with the fingertip on a tablet
where the image is mapped (see Figure 3-10 right side). Therefore, only one source is heard
in this module (or as many as fingers tapping on the tablet). Here, the image (or field of view)
is divided into 25 equal parts, so sources may be heard from 25 different positions in the
image, according to the finger (see Figure 3-11). The fact that we do not sonify elevation,
however, is reflected in Figure 3-10 by displaying a source that matches the finger horizon-
tally, though not in elevation. In other words, the virtual sources are always listened on the
azimuth plane regardless the vertical coordinate of the selected pixel. By and large, the global
module is intended to promote a more proactive interaction to selectively explore, to discover
points of interest, make comparisons, and, in general, enjoy a greater sense of independence.
This is mostly the case because (s)he can access various points simultaneously (several fin-
gers), slide a finger so as to scan areas and so forth.

Figure 3-10. (left) The sonification in the local module is illustrated. There are 25 points and

25 sources in this module. To effects of visualization however, only 3 points and 8 sources are

respectively displayed. Note that when the row of 25 pixels (points) related to the central part
of the image is mapped into sound, it is also augmented to cover the whole azimuth-frontal

10 Importantly, the audio-output of this local module does not lie into the soundscape category, for two
reasons: Firstly, its complexity is fairly low, as it sonifies only 25 out of 640x480 image pixels. Secondly,
those 25 sonified pixels provide information only about the small central part of the image, opposite to
soundcapes which are intended to provide a panoramic of the picture.
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auditory field. (right)An illustration of the sonification in the global module is presented.
Now, only the pixel tapped with the fingertip is sonified. Note that the use of spatialized
sounds gives the user awareness of the lateral position of the point (from left to right), which
is why in this illustration the source matches the position of the point horizontally though not
in elevation. In other words, the source is put down on the azimuth plane, preserving only the
horizontal position of the finger on the image. It is well known that rendering elevation is
much more complicated than lateralization.

Finally, while spatialization of sound may reflect the lateral location of a virtual source.
The distance of this source with respect to the user is assumed as the depth of the selected
pixel. As an example, if we locate a virtual source in Figure 3-11 on top of the tree, the emit-
ted sound will be perceived as coming from the third spot and as far as the depth of the pixel.
In both modules of See ColOr global and local, depth is represented by sound duration and
the mapping is given by:

90 ms for undetermined depth;
160 ms for (0<D < 1);

207 ms for (1<D<2);

254 ms for (2 <D < 3);

300 ms for D > 3.

FEEEF

Figure 3-11. In the global module, the field of view is partitioned into 25 parts from within
which virtual sources may be placed.

Consequently, the depth of a point will be perceived as the rhythm of the sound: The clos-
er the point, the faster the rhythm. Note that it is possible to have points of undetermined
depth, especially in areas occluded, for which the depth camera is unable to determine pa-
rameters related to the calculation of the disparity between the left and right images. To
conclude, as sounds in See ColOr originally last 300 ms, they need to be cut off in accordance
with depth. However, cutting off an audio signal by removing abruptly the undesirable part
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produces a sudden cutting sound (i.e. a sharp click in the end). This turns out annoying as the
user listens to the flow of sounds. In order to avoid the undesired effect, we use a smoothing
filter of 22.5 ms to cut off the signal at needing. Thus, 22.5 ms before the signal stops, it
begins to lose amplitude gradually (see Figure 3-12).
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Figure 3-12. On top left we have a typical sound signal used in See ColOr. Top right is a
smoothing filter that multiplies 20 ms of the signal at certain time determined by depth. In
the bottom left figure, the signal has been cut off at 90 ms without a filter. Finally, bottom
right figure shows the same signal as it is cut off smoothly. Notice that within its last 20 ms
the final signal gradually loses amplitude in order to avoid a sudden cutting sound (i.e. a
sharp click).

3.3.5 Acoustic virtual objects

Awareness of entities in the environment is essential for assisted navigation. The goal
here is to sonify objects that do not intrinsically produce sound, with the purpose of revealing
their nature and location to the user (i.e. acoustic virtual objects [8]). Although, auditory cues
are regarded as an excellent approach to representing objects, it is important to identify
methods or techniques that can guarantee learnability. For instance, here we face once again
the paradigm of using natural language: spelling out the name of the objects seems a simple
yet efficient solution. Accordingly, Dodson et al. [153] assume that ‘since a blind human is the
intended navigator a speech user-interface is used to implement this’. Nonetheless, many
authors such as Franklin et al. [154] argue otherwise. At large, they claim that having a voice
announcing the object leads to difficulties in interpreting spatial relations from common
speech. Another reason is that processing speech requires a lot of mental resources and also,
the lengthy spelling of names might reduce the information transfer rate. Last but not least,
the use of natural speech introduces language dependency. Essentially in this stage of this
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thesis we want to explore alternatives to the use of common speech and further, we wanted to
verify objectively the advantages of this method in comparison with others.

Methods for object sonification others than speech

A number of alternatives to the use of natural speech have been proposed in the litera-
ture. The main focus of this research is the learnability of sound cues representing environ-
mental features. Though, accessibility to main stream technologies is another field in which
sonfication of entities is used to improve navigation in auditory menus. In principal, the
tendency to use natural speech in this problem seems intuitive, however, it might be not
necessary optimal. As an example think of text for describing an entity in visual contents.
Though intuitive, this very often turns out to be less efficient than icons: Hemenway [155]
said that icons are fairly more easily processed and located than words, because meaning is
derived right from the object or action they represent. Further, Kolers et al. [156] show how
to reach beyond linguistic and cultural boundaries with the use of icons.

In this view, one of the most popular approaches nowadays is the Auditory icon [157], a
brief audio cue that represents the intrinsic sound of an object. Just as several dimensions
such as shape, color, etc. can be encoded within a visual icon and then processed in parallel
by sight, so does the auditory pathway (pitch, amplitude, timbre, etc.) with respect to audio
icons [157]. The idea is simple, the sound of a car represents a car as well as a flushing toilet
stands for restrooms. The idea loses its simplicity; however, if we think that while direct
relations are inferred from the sound made by the target, indirect relations also can arise
with surrogates for the target. For instance, the sound of an engine may represent a car
though also the engine itself, or any other machine that needs an engine for power supply. To
make it worse, what could be the sound to represent a table, a t-shirt or a hat? As long as a
sound evokes unequivocally the associated object, auditory icons come in handy. Otherwise,
their utility in representing entities is severely limited, especially for representing ambiguous
concepts or objects producing no sound intrinsically.

In sight of this, the authors in [158] propose Earcons as an alternative to the use of nat-
ural speech and auditory icons. Earcons are abstract, synthetic and mostly musical tones or
sound patterns that can be associated indistinctively to objects. Since there is no need of an
intrinsic relation between the audio cue and its associated object, earcons do not suffer from
any of the problems affecting auditory icons. In fact, the use of earcons is limitless and ex-
tendible to objects, actions, concepts and so forth. A typical example of an earcon is the sound
of Windows being started in a computer. An earcon is very often regarded as the auditory
counterpart of a company’s icon; this is when a company is recognized by a synthetic sound.
When one sees a company’s icon you will instantly know who they are, the ‘earcon’ works in
the same way but when one hears the audio cue one immediately thinks of the company it is
connected with. A key aspect of earcons the hierarchical property they have to form families
of sounds. Once, you have an earcon for a chair, for instance a red chair, a plastic chair, an
office chair etc. can be associated to the same earcon with modifications of pitch, rhythm,
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timber and so forth. An important drawback of earcons refers to learnability since these
sounds present no natural relation with their associated items. Back to the Windows exam-
ple, it has taken years for users to be familiar with it. In other words, training is an issue
when it comes to earcons.

Lately, Spearcons [159] appeared as a promising alternative to the use of classical meth-
ods for audio representation of objects. They may be regarded as a further speech-based type
of acoustic representation [159]: Spearcons use spoken phrases that are speeded up to the
point they may no longer be recognized as speech (i.e. they are not fast speech). Here the
accelerated version of the spoken object’s names produces sounds alike earcons. Nevertheless,
because the mapping between objects and spearcons is non-arbitrary, less learning is ex-
pected. The spearcon associated to an entity is unique because it is acoustically related to the
underlying speech phrase. However, objects of the same type are expected to produce similar
spearcons as they are rooted in a common word (e.g. desktop red, desktop green, desktop
black; the sound of the word desktop is the root). Thus, one can say that spearcons are dis-
tinct but in the same time, present hierarchical associativity. Therefore, much like earcons,
spearcons have the same capacity to form families of sounds. Broadly, spearcons are analo-
gous to a fingerprint, a unique identifier that is only part of the information contained in the
original. In Figure 3-13 the problem of audio representation of objects using the here studied
methods is posited.

7 SPEECH? 4:
AUDIOICON?) &
EARCON? B

SPEARCON?

Figure 3-13. In this figure the dilemma of audio representation for water is illustrated: A
running water sound, a voice saying the word ‘water’, an earcon, a spearcon. What’s better?

93



Experiments with acoustic objects

As discussed, the sonification methods mentioned earlier have all advantages and disad-
vantages and are relatively common in auditory displays. When it comes to visually impaired
assistance, however, the main concern is how learnable and how accurate the method is, as
this will affect the overall usability in real scenarios. We conducted a comprehensive study
with visually impaired individuals to investigate the usability of these methods (see Figure
3-14). Our findings (see Figure 3-16 and Figure 3-17) suggest that while natural speech is
apparently the most promising approach; spearcons are undeniably advisable if we consider
language-dependency and all concerns associated with speech in earlier sections.

Figure 3-14. Some participants taking this experiment on acoustic virtual objects.

Fifteen graduate students who reported visual acuity of less than 20/400 participated in
this study. There were 9 male and 6 female students, who ranged in age from 18 to 40 (see
Figure 3-14). Seven objects were represented using the three categories of sonification de-
scribed in the previous section as well as natural speech (elements and categories are pre-
sented in Table 3-1). For each category, participants were taught the meaning of each audio
cue. In other words, the training comprised the presentation of the object or entity, followed
by its associated audio cue. In each modality, however, the seven objects (and their auditory
representations) were presented as many times as required by the participant (amount of
training). A series of audio lists was created then, seven lists per category (7x4=28 lists).
Firstly, we formed four lists (category 1 to 3 and speech) in which the position of object 1 was
randomly assigned though preserved across the four lists. We repeated the same process for
the 6 remaining objects, so that we obtained seven sets of four lists (one set of four per object)
with elements sorted equally between categories but not between sets. All these lists were
then put into a repository with no order criteria. This process is illustrated in Figure 3-15:
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Figure 3-15. Preparation of audio lists for the test on object sonification methods.

Participants were tasked to hear all the lists within the repository. They could go through
the audio elements of a list using the right click of the mouse (forward) or the left one (back-
ward). In this way participants could hear a cue as many times as needed. Also, there was no
need to hear the entire audio element or cue, so participants could advance faster or slower in

the search of a specific element just by clicking. The lists were circular, so that from the
bottom, a click took the user to the top. If the target was found, the search terminates by a
middle-button click. Ultimately, we wanted the participants to find each object as presented
in four different modalities, though at the same position. Here, the position is relevant as it
guarantees the same conditions for a sought object: we cannot compare times in finding an
object within the list of spearcons and speechs, if such an object is on top of the former and in

the bottom of the latter.

Auditory Icon Earcon Spearcon Speech
Bell.wav 4 seconds 0.3 seconds 0.6 seconds 1 seconds
Bird.wav 4 seconds 0.3 seconds 0.6 seconds 1 seconds
Car.wav 5 seconds 0.3 seconds 0.6 seconds 1 seconds
Snoring.wav 6 seconds 0.3 seconds 1.2 seconds 1.6 seconds
Train.wav 4 seconds 0.3 seconds 0.8 seconds 1.2 seconds
Water.wav 5 seconds 0.3 seconds 0.9 seconds 1.3 seconds
Woman.wav 4 seconds 0.3 seconds 1.2 seconds 1.6 seconds

Table 3-1. Elements (objects or entities) and methos of sonifcation. This table also registers

the duration of each audio cue (acoustic object) in reliance with the method. To create earcons

we used the some of the instruments sounds from See ColOr.
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Since the lists were labeled as they were created, we knew what object (out of seven) to
ask the user find as he picked a list from the repository (Figure 3-15). The lists were picked
from a randomly-formed repository, instead of presented in order just to preclude transfer
learning. For instance, after being asked to find the first element (object) within the audio-
icon and spearcon lists, the participant might learn the position of that element since it is
preserved between categories. Finally when the participants processed the 28 lists, we re-
peated the experiment 10 times. Therefore, percentage of accuracy and times are averaged in
the results reflected below (Figure 3-16 and Figure 3-17).

Acoustic Virtual Objects
Identification

M Percentage of identification
accuracy

10

Figure 3-16. Training time and testing accuracy in this experiment. Training is given once at
the beginning of the experiment, and accuracy is averaged from the 10 times that the partici-
pants went through the 28 lists.
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Figure 3-17. Time needed to identify an acoustic virtual object using four methods of sonifica-
tion. Note that these numbers are averaged from the 10 times that the participants went
through the 28 labeled lists. It is also worth noticing that the time to find a particular object,
in principle, is based on its position within the lists. Therefore, in this figure only compari-
sons of times between methods are valid and not between objects.

Earcons are unadvisable at all: they need more training, present the lowest accuracy and
they are the most delayed to find. Notice that while generally showing good accuracy, audito-
ry icons take more time to be found than spearcons and speech. This is because an auditory
icon in average lasts 4.5 seconds, whereas speech lasts 1.1 seconds, and some less a spearcon
(300 ms, see Table 3-1). Moreover, in terms of training/accuracy no noticeable difference was
found between auditory icons and spearcons, while one lacks for accuracy, the other requires
more training. Nevertheless, in regard to the time for reaching a target the spearcon is a
much faster technique. Compared to spearcons, speech needs moderatly less training, and its
accuracy is slightly better. However, not necessarily the time needed to reach a target is
shorter with the speech, occasionally the spearcon does better. By and large, our findings
suggest that while natural speech is apparently the most promising approach; spearcons are
quite a good strategy if we consider language-dependency and all concerns associated with
speech in earlier sections. The use of spearcons could be moderately advisable. Specially,
language dependency will reduce the potential population that See ColOr aims at reaching, or
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will introduce the need of re-adaptation and re-implementation of the system for each country
or community.

3.4 Efficient registration of range and color images
3.4.1 Description

With the increasing use of 3D entertainment and multipurpose representation of virtual
environments, range cameras continue to gain in popularity as prices are getting lower.
While generally promising, there are shortcomings to the use of these sensors, which need to
be resolved. Particularly, these cameras lack for color and some do not even provide a grey-
level or intensity image. This fact dramatically diminishes their usability in See ColOr due to
fundamental reasons: Color is essential for the global and local modules, as well as intensity
images are needed for expansion of See ColOr into computer vision (i.e. perception module).
As noted previously in this thesis, earlier prototypes of See ColOr used cameras such as, PMD
[vision] ® CamCube 3.0, or Bumblebee™ - Point Grey Research. Therefore, without efficient
coupling of color and range images the evolution of See ColOr would have been impossible.

The advent of Microsoft Kinect (a cost-efficient solution) partly alleviated this shortcom-
ing by embedding a depth-color camera pair in one sensor. Unfortunately, Kinect’s internal
color camera often lags behind the needs for quality in mainstream applications. Moreover,
even if there is no external camera being added, yet the internal sensors (depth and color) of
Kinect do need to be registered. Remember that first Kinect cameras in the market, before
SDK were launched, did not provide calibration algorithm whatsoever. In such a context, the
use of an external HD color camera (and in general color-depth registration) began to draw
our attention in regard to See ColOr. It is worth noticing that beyond See ColOr, coupling
range and HD-color cameras benefits a broad range of applications in which neither alone
would suffice.

Although a number of interesting ideas emerged from this problem, when it comes to cou-
ple two camera systems, image registration is perhaps the most affordable approach. Yet,
classic registration methods yield no suitable results in this particular case. Much is known
about intensity images registration; however there are still many open questions about regis-
tering an intensity image and a surface that lacks color and geometric features. In this spirit,
the aim in this stage was to produce a general method to register range and RGB-digital
images (see Figure 3-18):

We present here a simple yet highly efficient method to register range and color images.
This method does not rely upon calibration parameters nor does it use visual features analy-
sis. Our initial assumption is that the transformation that registers the images is a linear
function of the depth. Drastically enhanced performances in the computational processing are
attained under this condition. Nonetheless, the linearity assumption is not met for cameras
others than Kinect. We show, however, that ultimately this method is independent of the
mathematical model underlying it (be it linear or not). Therefore, the efficiency of this ap-
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proach is preserved entirely in both cases. Further, this section reports on the results of
experiments conducted with various range camera models that endorse the proposed method.
Eventually, three key features can be derived from this technique: practicality, accuracy and
wide applicability. Although, in principle this method presents limitations relating mainly to
image distortion in some other sensors tested, we also study how to cope with this drawback
with no loss of efficiency. In fact, this method might be regarded as an approach to correct
distortion in range images, an issue that remains challenging.

Figure 3-18. Coupling of color and range cameras: Leftmost column shows two mounted sys-
tems made up by depth sensors (Kinect on top, SwissRanger SR-400 at the bottom) and a HD
web camera. In the middle column the re-sized depth maps and the color images (webcam)
have been merged. In the rightmost column finally, we repeat the merging right after the
depth maps have been registered into the color images using our algorithm. A twofold aim
may be targeted: the addition of depth in a HD cam or the improvement in color resolution of
kinect. Moreover, images at the bottom of this figure may attest that our algorithm is valid
for complex scenes which exhibit flexural'! geometry.

1 the state of being flexed
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3.4.2 Previous approaches

The registration of RGB and range images of a same scene aims at matching color images
and surfaces which lack color [160]. This problem remains largely unexplored in computer
vision. Nonetheless its applicability is fairly well defined. As examples it is worth mentioning:
3D-laser extrinsic parameters estimation [161], color improvement in depth-color camera
pairs [162], and, joint-depth and -color calibration [163]. Particularly, extrinsic calibration of
colorless ToF (Time-of-Flight) cameras or 3D-lasers is a relentless challenge that is usually
approached in more refined ways: Hirzinger et al. [164] describe a multi-spline model that
requires a robotic arm to know the exact pose of intended sensor. Zhu et al. [165] describe a
high-cost algorithm for fusing stereo-based depth and ToF cameras via triangula-
tion. Unfortunately, a method easy-to-use, accurate, and applicable to a wide range of sen-
sor has largely been missing.

An assessment of the general problem of image registration might be useful. In general, a
vast range of techniques exist in the literature. Yet, more needs to be done to progress toward
general solutions, if any. In 2003 Zitova and Flusser [166] published a complete review of
classic and recent image registration methods. Following, Deshmukh et al. widened the spec-
trum of solutions by including updated advances in a more recent review in 2011 [167]. In all
these works the image registration problem is defined as the matching of images of a scene
taken from different sources, viewpoints and/or times. Yet, the former condition (inter-source)
is limited to the variability of RGB sources only. Therefore, registration methods such as the
one proposed by Hsinchu et al. [168] using artificial neural networks, or others that use belief
propagation strategies as is the case of Sun et al. in [169], are likely to fail. This is mostly the
case because they rely on the matching of color-based visual features common (or mappable)
in both images.

In mainstream applications of computer vision, depth and color together as complemen-
tary cues about the scene are highly desirable [163]. Yet, while low resolution of the ToF
camera is enough to segment depth-based areas, higher resolution RGB camera allows for
accurate image processing. In this spirit, Huhle et al. [160] present a novel registration meth-
od that combines geometry and color information in order to couple a PMD (photonic mixer
device) camera with an external color camera. The alignment carried out in this work is
based on the Normal Distributions Transform (NDT, [170]) of the range images and a Scale
Invariant Feature Transform (SIFT, [100]) feature detector applied to the high-resolution
color images. Thus, the authors claim to combine the robustness of the globally applicable
feature-based approach and the precise local fitting via NDT. More recently, in 2011, Van
Gool et al. [162] combined a digital camera and SwissRange ToF sensor using a regular cali-
bration method for stereo systems [171]. The key idea of this approach was treating the out-
put of the range sensor as though it was a RGB image.

In [172] the authors conduct a comparative study of some of the most important Depth-

and-color calibration algorithms. This work includes implementations as well as performance
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comparisons in both, real-world experiments and simulation. Two algorithms stand out in
this study: first, Zhang’s method [173] that presents a maximum likelihood solution. This
method uses checkboards and relies on co-planar assumptions. Also, manual correspondences
need to be specified to improve calibration accuracy. Second is Herrera’s method [174], whose
authors claim to achieve features such as accuracy, practicality, and applicability. The meth-
od requires planar surface to be imaged from various poses and presents a new depth distor-
tion model for the depth sensor. Although, one more method called DCCT (Depth-camera
calibration toolbox) is studied in [172] [175], the article about this method is to date un-
published. Also, the authors in [173] have not shared their code, so that we only use [174] for
comparisons later in this work.

Finally, as discussed by Han et al. in [176], the “parallax” is perhaps the most challenging
problem when it comes to image registration. Algorithms suffer from this problem by virtue of
the assumption that the scene can be regarded approximately planar. This is of course not
satisfied by large depth variation in the images with raised objects [177]. Paulson et al. [176]
presented in 2011 an outstanding idea to cope with the parallax problem by leveraging ap-
proximated depth information. Basically, their idea was to recover the depth in the image
region with high-rise objects to build accurate transform function for image registration. The
drawbacks from which this method suffers are fourfold: motion camera parameters are vital,
significant manual work is needed, inaccurate approximations based on heuristics are very
likely, no real time. It is worth noticing that by feeding from a depth source (ToF sensor) the
parallax phenomenon is no longer an issue in our method.

3.4.3 A new strategy

Background

An image is in theory an infinite assemblage of successive planes that eventually makes
up depth effect. Thus, in stereo-vision systems (stereo images captured by a camera rig) depth
is discretized into many parallel planes (see Figure 3-19). The shift required to attain an
exact overlap of two parallel planes is well known as the disparity [178]. Disparity is usually
computed as a shift to the right of a point when viewed in the left plane (distance between
blue ‘left’ and red ‘right’ points in Figure 3-19). Also in Figure 3-19, we can see that each pair
of parallel planes presents a different amount of disparity (e.g. parallel planes captured at d.
and dg). Furthermore, the following observations may be made on the same figure:

a. Only the x axis is prone to have disparity.
b. The disparity decreases as the distance of the planes (di) augments.
c.  Disparity is constant for all the points into parallel planes.

It is worth noticing that (a) shall be met provided that the stereo images are first recti-
fied. Thus, both images are rotated (until their epipolar lines get aligned [178]) to allow for
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disparities in only the horizontal direction (i.e. there is no disparity in the y coordinates) [65].
Regarding (b), while the relation there pointed might be a common place observation; the rate
at which it is given will be further studied in this section (i.e. disparity vs. depth). Within the
next sub-sections it will be shown that though this relation is non-linear, exceptions can be
made in this regard (Kinect’s case). Finally for (c), we want to stress that this is very much
expected in an ideal system, reason why we hypothesize about it. Nonetheless, practical
experiments conducted later in this section will contribute to make this assumption clearer.

Ultimately, actual registration of two images demands a functional description of the dis-
placements (disparities) between parallel planes across the depth. Thus, objects lying on an
image plane (left) shall be accurately shifted to their counterparts on the parallel image plane
(right). Our idea is to sample as many pairs of points as possible (blue-red pairs in Figure
3-19) in as many parallel planes as possible too. Thus, we can interpolate the function that
describes twofold information: firstly, the variation of the disparity between parallel planes, if
any (it is thought to be constant by far). Secondly, the variation of the disparities with depth
(it is expected to be linear for Kinect). Before we go any further with this idea, however, some
important aspects need to be studied in order to endorse the assumptions made so far. This
will be of help later in formulating our algorithm.
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Figure 3-19. Disparity and depth planes in a camera rig. Parallel planes of the images in-
creasingly overlap each other with distance. Two parallel planes need a constant shift (dis-
parity) to fully overlap (matched). Under ideal conditions, this disparity must be constant and
decreases with depth
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Depth vs. Disparity
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Figure 3-20. Stereo system set up. Orthogonal projection of Figure 3-19, also known as stand-
ard stereo configuration: P is a point in the 3D space whose depth (Z) may be recovered using
p and p’ (its projections into the focal planes placed at f). B is the distance between Or and Or
(the cameras). As long as the system has been rectified, the disparity may be assessed by
subtracting xr and xr (the x coordinate values for p and p’).

In Figure 3-20, an upper-view of the standard stereo configuration with rectified images
is presented. When aiming at recovering the position of P (a point in the space) from its pro-
jections p and p’, we need to consider similar triangles (APOrOr and APpp):

B (B+x) —xp a7 Bf  Bf . _Bf
7 Z—f Txg—xr d ()_d

Equation 3-4. Depth (Z) in function of disparity (d)

where xr-xr is the disparity (d), Z is the depth of P, and B represents the distance between
the two cameras. The fixate location (f) is known as the distance in which the planes of pro-
jections are fixed.

Notice that in order to substitute one of the cameras (either Or or Or) by a depth sensor in
Figure 3-20, few considerations are only needed: The range map is to be regarded as a regu-
lar image within which disparities with its colored peer may be encountered. Also, Z turns
into a known variable accessible from the range map itself. With this in mind, Equation 3-4
still holds when a color camera is replaced. It needs to be said, therefore, that the function
describing the relation ‘disparity (d) vs. depth (Z)’ is non-linear, though our hypothesis argues
otherwise.

In this work, however, it will be shown that the Microsoft Kinect is a sensor for which
disparity can be modeled as a linear function of depth within its depth range. M.R. Andersen
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et al. [179] have showed the linearity of Kinect through experimental results from which they
have concluded: “The raw measurements provided by the sensor are non-linear, but the data
are linearized in the OpenNI software”. Besides, we argue that Equation 3-4 might very well
be approximated by a linear function for values of Z lying within a reduced domain. It is well
known that the effective field of view of Kinect is rather small (see Figure 3-21.) compared to
other range cameras. Tilak Dutta summarizes the operational volume of this camera in [180]
as follows: “the effective field of view finally decreased to 54.0° horizontally and 39.1°. This
effective field of view corresponds to the 3D measurement volume shown in Figure 3-21.
Finally and anyhow, we will present next experimental results that support this linearity for
the Kinect sensor. Cases of range cameras for which this linearity does not hold, will be ad-
dressed later in this paper.
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Figure 3-21. Kinect effective field of view: 3D measurement volume of the Kinect sensor.

Kinect

The schema depicted in Figure 3-19 has been applied on a Kinect-provided image pair
(color image and depth map) as follows: The disparity was randomly sampled within parallel
planes, for a number of depth levels (a pair of parallel planes per level). Figure 3-22 renders
such a procedure for a particular point (P) in a pair of images. Further, Figure 3-23 plots all
sampled disparities as a function of both, the image coordinate (x, y separately) and the
depth. This figure reveals twofold information: On the one hand, while the disparity is not
constant into parallel planes (which argues against our expectations), it does vary linearly.
On the other hand, identical behavior can be observed through depth (i.e. the disparity de-
creases also linearly as depth augments). Following these observations, planes have been
used to fit the data shown in Figure 3-23. Nonetheless, experimental results shown in next
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sections will be of help to prove that in fact, when it comes to Kinect, it is a plane the model
that interpolates the best.

Parallel Parallel

plane plane

Kinect color image

Color-clepth blended image

Figure 3-22. Depth color blending: Pc represents a point given in a color image, as well as Pd

represents its counterpart in the range image. By measuring the distance (in pixels) between
Pc and Pd, a sample of the disparity between the parallel planes (given at “Depth”), can be
assessed. Notice that for this figure color and depth images were already calibrated (depth

map was modified) and merged on the bottom, therefore, the disparity was corrected to zero.

Disparity
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Figure 3-23. First column of these four plots represents the disparity of a pair of kinect-
provided images (depth-color) as a function of its coordinates x (top) and y (bottom). The
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second column shows a disparity-coordinate view of the same functions where the linearity of
the data becomes evident.

It is worth noticing the fact that having a disparity distinct to zero across the y coordi-
nate, indicates that the stereo images lack for rectification. Moreover, sampled disparities do
not rest exactly over the planes due to the manual markup, which introduces an error (+ 3
pixels). When depth maps are intended as regular images, these errors are very likely (e.g.
boundaries are not reliable due to physical issues of range measurement hardware). There-
fore, measuring the disparities between a range and a color image is a task that demands
human intervention. See Figure 3-24 where it is shown that sometimes, along with the
zoom-in, eye-based extrapolation is a need for matching two points and evaluate their dispar-
ity.

Figure 3-24. A point (red) manually marked within a zoomed area in both: a color image
(right) and a depth map (left). While manual markup to the right is regarded as an easy task,
manual markup to the left is not. Automatic algorithms fail to detect this point due to bound-

aries’ discontinuities caused, in turn, by physical issues of range measurement hardware.
The dashed lines represent the human-eye intervention needed to approximate the bounda-
ries and calculate the point precisely.

Finally, in order to verify that the 20 points plotted in Figure 3-23 obey a uniform distri-
bution across a plane surface, the following test was conducted: 100 triplets of points were
randomly selected and for each triplet the orthogonal vector was calculated using vector
products. This test revealed that orthogonal vectors arising from the data diverge by negligi-
ble extent. Furthermore, the mean orthogonal vector converge towards the normal vector of a
fitting plane. The next Table 3-2 encompasses the results:

Orthogonal vector Orthogonal vector Normal vector

(std) (mean) (fitting plane)
X coordinate (0.31, 0.01, 0.07) (0.0906, 0.0005, 0.9405) (0.0734, -0.0032, 0.9973)
Y coordinate (0.21, 0.03, 0.32) (0.0724, 0.0000, 1.0211) (0.0643, 0.0003, 0.9979)
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Table 3-2. Results of the test conducted on the linear distribution of the data (disparity in

pixels, depth in millimeters, coordinate ‘x, y’ in pixels) given by a Kinect sensor. Notice that

the numbers related in this table are rather negligible given the measurement units in which

they are described. A global interpolation error introduced by this fitting plane over the data

Method

can be seen later in section Linearity in practice.

Derived from the previous section, we aim here at aligning images from both sources. To
do so, a spatial relation between coordinate systems will be set up. This relation in turn, is
described by a 2D vector flow whose function basis (expected linear by far) needs to be calcu-
lated only once. After images have been aligned, color and depth can be merged into one 4-
dimensional image [22]. Our method aimed at approximating this spatial relation using

planar regressions is described as follows:

I

IL.

II1.

Iv.

To sample as many planes as possible within the range of depth, several objects are
placed at different distances in front of the cameras.

To capture nearly the same scene with the two cameras (color and range camera).
Two images (I and 1) are taken as synchronized as possible.

Sufficient landmarks are selected in I. along with their peers in Is. For each land-
mark threefold information is assessed:

a) The x and y coordinates of the landmark in I, namely (xc, yc).
b) The x and y coordinates of the landmark in Iz, namely (xa, ya).
¢) The depth of the landmark, namely D.

Note that D is accessible likewise from Iz and pinpoints the distance plane on which
the landmark was observed. Thus, A=(xa, yi)—(xc, yc) is but an example of the shift-
ing of the images at distance D and not elsewhere. In general, each landmark pro-
vides evidence of the offset of the images at a specific distance. In practice, taking
as many distinct landmarks as possible for a given distance D is advisable at all (as
many distances as possible). As noted in the previous section the shifting A behaves
linearly at D (i.e. disparity varies linearly into parallel planes).

Now, the landmarks are used as a set of samples on which a global shifting function
(A) can be interpolated. Eventually, this function can be regarded as a 2D vector
flow describing the offset of the images. Hence, one function per coordinate is finally
estimated and A can be reformulated as follows:
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A= (Ax(x4,D), Ay(ya, D))

Equation 3-5. Shifting function

The resulting function A is now vector-valued: it maps each point (x4, ya) in Ig to its shifted
homolog (x., y.) in I. ShiftY(y4, D). So that, x4 + Ax = x, and yq + Ay =y, for any given D. Yet,
only few samples of this function are still known. Next section deals with the estimation of
the model that best fits these samples. Also, this model will let us interpolate the function in
its entirety.

Figure 3-25. 1. (Left image) and Iq (right image). Red (Ic) and black (1) pairs of dots are land-
marks manually selected. White lines coupling some of them make this figure more under-
standable. This amount of landmarks is quite enough for our method to work fairly well.

The Shifting basis function A

Notice that Equation 3-5 has been conditioned to expresses A (shift) of a point in terms of
D and its coordinates. Since the displacement of the images through the coordinates is known
to be linear and the offset of the images varies linearly with depth too (for Kinect). Planes will
be used to interpolate both, Ax and Ay. That said, the problem can reduce to a linear regres-
sion in a three dimensional space:

Let u be either of the variables x, y; so that Au denotes either of the functions Ax, Ay. Giv-
en a set X of n data points (landmarks) ((u «@, D@, Au@), (e @, D@, Au@),....(wa®™, DO, Au®).
We want to find the equation of the plane that best fits our set. A vector version of the equa-
tion of this plane can be formulated as follows:

wa, D, M) "a—-b=0,

where a is a normal vector of the plane and b is a vector that results from the product of a
and the mean of the set of data points (i.e. b=a”" % n o (ui, DY AL) ). Therefore, a turns out to
be the only variable unknown.
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Principal Components Analysis (PCA) can be used to calculate a linear regression that
minimizes the perpendicular distances from the data to the fitted model [181]. In other
words, given three data vectors uq4, D and Au, one can fit a plane that minimizes the perpen-
dicular distances from each of the points ( uq @, D@, Au®) to the plane, Vi € {1, ..., n}. In
short, the first two principal components of X define the plane; the third is orthogonal to
them, and defines the normal vector of the plane [182], namely a.

Alternative calculation using Thin-plate Splines

In the eventuality that the n data points (landmarks) do not show a linear distribution,
we must use nonlinear fitting models to approximate A. As we will see throughout the next
sections, in the practice this case is not rare at all. For cameras others than Kinect, approxi-
mation of Equation 3-5 with a linear model is not very suitable (raw data is never linearized
and operational depth range is larger). Also and more important, images distortion becomes a
relevant issue in these cases. Cameras suffering from distortion are known to wrap the image
with non-linear aspect [162]. Although in this work we use an adaptable class of splines
[183], there is no constraint in this regard. The thin-plate smoothing spline f used in this
work to approximate A/ given a set of n data points or landmarks (¢ &, DY), Vj€{1,..., n}
can be regarded as a unique minimizer of the weighted sum:

KE(f) + (1 — p)R(F)

Equation 3-6. General form of thin-plate spline

with E(f) = % |Aw — f(u];i, Dj)|2 the error measure, and R(f) = [(|d; 0,f]> + |9, 8,f|*) the rough-
ness measure. Here, the integral is taken over all of R2, | z|2 denotes the sum of squares of all
the entries of z, and 0;f denotes the partial derivative of f with respect to its ith argument.
The smoothing parameter k in Equation 3-6 is derived from preprocessing of the set of data.

Let now [ be the shifting function (also known as A in Equation 3-5), so that f maps (xa,
ya) — (X, yc) for a given D. The general equation for fis given as follows:

f(xa,ya) = a; +agxg +ayyq + 2L, WiU(l(X(iil vh) - (XdIYd)|)7
Equation 3-7. spline-based mapping function

Here n is the number of samples (landmarks) we shall use to interpolate f, and a:, az as,
w; are the unknown coefficients we need to calculate. As for U, this is a special function un-
derlying the thin-spline [183] defined as U(x,y)=U(r)=r2log(r?), with r being the distance
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Jx?+y? from the Cartesian origin. Now, for the calculation of the unknown coefficients in

Equation 3-7we need to consider rj; = |(x(ii, v — (XL, yfi)|, Vjand Vi € {1, ..., n}. Therefore:
0 U(ryy) - Ulryn)
K= U(I'21) 0 U(FZH) ,n X n;

lu(rs) UCnz) ~ 0 |

[1 X4 Yé] L
n
1>=|1 X 3’5l|,n><3;v=[XC1 S al2xn,
R ye v . e
1 X3 Vyd

and,

K P

Lz[PT ol

where 7 is the matrix transpose operator and 0 is a 3X3 matrix of zeros. Following, let Y=(V |
000)7 be a vector of length n+3. Finally, define W=(w, ws,..., w») and the coefficients ai, ax, ay
by the equation:

L_lY = (W | a; Ay ay)T5
Equation 3-8. General solution of a thin-plate spline.
the solution of L™1Y, gives all the necessary information to construct f .

Algorithmic performance, experiments and comparisons

In this section our algorithm for color-range calibration is outlined. Further, its computa-
tional performance is assessed too. Known issues relating to image distortion along with
efficient solutions, are introduced and treated here in subsections (Linearity in practice) and
(Splines with no loss of efficiency). Finally, comparisons with related methods are conducted

in this section. It is worth noticing that though our method is proposed as a general frame-
work to couple any depth-color camera pair, we have limited the comparisons in this section
(Evaluation of the method) to a specific case where our algorithm may be specifically applied
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as well i.e. internal Kinect calibration. The approaches whose efficiency is compared to that
of our method in subsection (Evaluation of the method) are threefold:

4 A-1: Calibration of kinect (Mapping of depth data onto the RGB images) using typi-
cal checkerboard-based stereo calibration [184] [163] i.e. assuming the range cam-
era as digital.

4+ A-2: Calibration of kinect using the drivers provided by manufacturer (Prime-
Sense).

4+  A-3: Herrera’s method [174] that uses a new depth distortion model to calibrate
depth and color sensors.

3.4.3.1.1 Algorithm

1. Calculate PCA over the landmarks_x (firstly using x and D data only).

il. Make ax = third Principal Component, and, b: = a: * mean (landmarks_x).
1il. Calculate PCA over the landmarks_y (Secondly using y and D data only).
iv. Make ay = third Principal Component, and, b, = @, » mean(landmarks_y).
V. Get I and Iu from corresponding sensors.

vi. Find delta_x using a. and b. in Equation 3-7 with u=x.

vil. Find delta_y using ay and b, in Equation 3-7 with u=y.
Vviii. Move each Ia(x, y) toward La(x+ delta_x, y+ delta_y).

Note that steps (@) to (iv) are performed offline and only once. Furthermore, if the system
is ever decoupled, no recalculation of these steps is needed when recoupling. One can do the
readjustment of the cameras by hand until acceptable matching of the images is attained.
Further, we can see that the calculation of these offline steps is besides negligible. Typically,
the computation of PCA requires eigenvalue decomposition (EVD) [171] using a Jacobi’s
method. Roughly, the overall PCA requires around O(d? + d?n) computations [171] (where n is
the number vectors or landmarks and d is their dimension). Theoretically, in our method only
3 three-dimensional landmarks are needed (three points are enough to calculate a plane). In
practice, however, the typical number of landmarks is approximately 20.

On the other hand, steps (v) to (viii) make up the whole workflow to be performed online.
Particularly, we are concerned with steps (vi) to (viii) which are actually in the core of our
computational approach. With a., b, a,, by as constant data resulting from the offline phase,
the solving of the linear model (steps (vi) and (vii)) requires little number of elemental opera-
tions [185]. Step (viii), in turn, is but a constant array assignation. Overall, the complexity of
our online algorithm is linear with the size of the images N (i.e. O(N)). For images as I. and Iy
that usually don’t exceed the order of Megabytes [186] the complexity is noticeably low.
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Linearity in practice

Figure 3-26. Three mounted systems, from left to right: (RGB-Kinect) HDWebcam-
KinectMicrosoft, (RGB-CamCube) HDWebcam-PMDCamCube, (RGB-SR4000) HDWebcam-
SwissrangeSR4000.

Here below results of experiments conducted to endorse our model will be presented.
Three camera systems were mounted as shown in Figure 3-26 (RGB-Kinect, RGB-CamCube,
RGB-SR4000). Six different scenes (as described in section Method: 1, II) were captured as
follow: first four using RGB-Kinect and, the two remaining using RGB-CamCube and RGB-
SR4000 respectively. Following, corresponding shifting functions (Ax and Ay) were estimated

for each scene. To do so, two fitting models were used and cross-validated (PCA-based linear
regression and thin-plate splines). Figure 3-27 and Figure 3-28 show that in most of the
cases both, Ax and Ay obey a linear distribution in the three-dimensional space (Au, pa, D),
with d={x | y}.

Ax

x;\\y/D/ \’9}\\/

Figure 3-27. Six distinct scenes were imaged by three mounted systems. Scenes are repre-
sented by a depth map and a color image (Figure 3-25). Thus, each scene’s landmarks provide
two data sets to interpolate Ax and Ay respectively. A total of twelve data sets and twelve

112



interpolations were used. Firstly, twelve planes were used as interpolation models. Then,
twelve splines were used in order to compare results. This figure shows the Ay and Ay data sets
(red dots) as well as their interpolation models (surfaces), for two randomly selected scenes.
All this interpolation models were cross-validated.

In some cases, the data of this experiment is fairly linear and well fitted by planes as ex-
pected (Figure 3-27). However, Figure 3-28 that assesses the accuracy of the interpolations
more objectively, reveals that this is not true for all the cases. First eight interpolations are
accurate enough regardless the fitting model. Nonetheless, the last four interpolations were
much better performed by splines. This means that non-planar surfaces do what planes can-
not for keeping accurate fitting in these cases. Such a phenomenon occurs due to the distor-
tion of the cameras which the last scenes were captured with (RGB-CamCube, RGB-SR4000).
Further explanation on this regard is given in the next section. Also, to endorse the linearity
in the first eight cases (RGB-Kinect), it is worth noticing that while both models fitted well.
The splines presented a negligible roughness parameter (x = 0, Equation 3-6). This means
that they were almost flat (planes). This, of course, was not the case in the last four interpola-
tions were K was rather large.

—&— Lineal
— © — Spline
—H— Lineal Cross
— © — Spline Cross

Mean Error (pixels)

made in this

Figure 3-28. Validation: X axis represents the twelve interpolations made in this experiment.
First eight interpolations belong to the scenes imaged by RGB-Kinect. The four remaining
belong to RGB-CamCube, and, RGB-SR4000, respectively. Y axis represents the mean error
of the interpolations using: linear models (planes), non-linear models (splines), 4-cross-
validated linear models, and finally, 4-cross-validated non-linear models. Finally, the error
marked by the crossed models is the mean error of the four validations.

Splines with no loss of efficiency

As shown in Figure 3-28, planar regressions failed to keep accuracy on fitting the last
four data. However, these data are known to come from the scenes imaged by the SR4000 and
CamCube cameras. Due to the distortion that these sensors present our linear approximation
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is no longer suitable. At large, ToF cameras suffer from distortions both on the measured
depth and on the ray direction [162] and Kinect is not an exception. This latter, however, is
calibrated during manufacturing. The calibration parameters come internally stored and are
used by the official drivers. This explains the fact that our method performs that well on
processing Kinect data and not otherwise. While, this forces us to change the regression
model in order to extend our method. We will show next, that this does not affect the compu-
tational performance at all.

To achieve the results shown in Figure 3-28, thin-plate smoothing splines [183] (de-
scribed in section Alternative calculation using Thin-plate Splines) have been used to fit the

surface underlying the data. The determination of the smoothing spline however involves
heavily mathematical steps, such as the solution of linear systems. The solving thus usually
takes a long time into our online routine (steps (vi) and (vit) of section Algorithm). In princi-
pal, this fact is drastically detrimental to our algorithm. To cope with this drawback, the
regression model is no longer solved into the online-workflow. Instead, we sample (offline) the
entire surface (be it a plane or spline) and store these values in memory. Therefore, the online
process becomes independent of the mathematical model. Since, in any case, we no longer
solve an equation but simply access the memory to read intended values. Eventually, steps
(vi) and (vii) are lowered to elemental operations which enhance even more the performance
of our method.

Evaluation of the method

Using Kinect, three patterns whose edges are known to be lines are imaged from multiple
views. A set of 20 pairs (depth and color) of raw images is gathered in the end. A manual
segmented version of all the color images serves as ground truth. Three areas are segmented
from each image i.e. the three patterns. Moreover, we register the 20 pairs of images by shift-
ing the depth maps using: A-1, A-2, A-3, and, the method being described in this paper. These
shifted maps are automatically segmented in three areas as well. Finally, we compare com-
mon areas between these segmented maps (sm) and those of the ground truth (g¢). Common
areas must overlap exactly each other under the assumption of perfect registration. Thus, for
each pair of overlapped areas (aigt, aj™) we assess its intersection (aigtﬂaism), vie{l, 2, 3}
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Figure 3-29. Some randomly selected images of this test. First row: Color images. Second row:
manual segmented images (ground truth). Third row: Raw depth images.

An indicator of the accuracy (Ace) of certain method to register a depth-color pair of im-
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registered and below in other cases. We also measure the time elapsed during the registration
of two images using the four methods. Figure 3-30 and Table 3-3 summarize the results of
this section.
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Figure 3-30. Calibration of internal depth-color camera pair of kinect (a specific case of regis-
tration) using three different methods. The accuracy Acc of our method for general registra-
tion of any depth-color camera pair is almost as accurate as that of the Kinect manufacturer.

An average Acc equals to 1 was not expected for any of the methods. This is mostly the
case because segmented areas in range images are known to present highly noisy edges
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(Figure 3-29, bottom row). Thus, flawless intersection with the areas in the ground truth
(Figure 3-29, middle row) is unlikely. As a consequence, the accuracy of the manufacturer
(A2) can be regarded as a baseline. By showing no substantial difference with this baseline,
our method roughly reaches the maximum expectation of accuracy in this experiment. More-
over, having a standard deviation (STD) slightly smaller, results obtained with A2 may be
regarded as a more consistent. Nonetheless, this very fact allows our method to achieve better
accuracy than A2 in some cases (not outliers). As for A3, much better accuracy than Al was
noticeably reached, although the method certainly failed to surpass the threshold of 90%
accuracy. This leads our method to a slightly better performance with nearly 92%. It is worth
noticing that Al, A2 and A3 are methods that require extrinsic and intrinsic parameters of
both cameras. Hence, use of extensive calibration techniques with checkboards and heavily
manual work is unavoidable. The efficiency of our method suppresses these procedures, as
well as maintains an average accuracy for otherwise unreachable.

Our Method Al A2 A3
Time (sec) 0.021 0.036 0.027 0.033
Potential (fps) 46 27 37 30

Table 3-3. Computational performance. Our method is fairly efficient in computational terms.
The potential fps number indicates the maximum rate at which the camera could process the
images.

Finally, A2 is inextensible to the general problem of color and range images registration.
This calibration is conducted during manufacturing and internally stored into the official
drivers. Therefore, coupling the Kinect range sensor with an external color camera using A2,
turns out to be of no use. On the other hand, A1 method does apply to the general problem.
There is no apparent reason, however, to expect better accuracy by varying either of the
cameras. The problem here relies on the treatment of noisy range-images (with not even
visual features) as highly defined color-images. With regard to Table 3-3, it is worth stress-
ing that both, our method and Alwere implemented in Matlab, whereas, method A2 is an
internal routine of the Kinect driver written is C++. Therefore, drastically better performance
is expected in computational terms (CPU cost) for a binary compiled version of our algorithm.
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3.5 Haptic-based Interfacing

Figure 3-31. Tactile-sound interfaces would allow unsighted individuals accessing infor-
mation of an image via touch. The idea underlying here is that a user can hear elements of
the real world by pointing (or touching) them with the fingers, as shown in this figure. Ideal-
ly, the user needs only to sweep (explore) the real world with his hands and fingers in order to
get visual information. In an attempt to reproduce this idea, in See ColOr we capture the
appearance of the real world into an image that is presented to the user through a tactile
tablet. Thus, instead of naturally pointing into the real world, See ColOr’s users need to carry
a tablet and point (tap) into it in order to explore the sonified visual information. The imple-
mentation of this tablet-based interface will be discus in this section, whereas seminal ideas
and early implementations of the ideal model (tablet-free) will be exhibited later in the con-
clusion section of this work.

In the local module See ColOr’s resolution is 25 points (The sound of local and global
modules). This small resolution gave rise to a drawback in See ColOr that is often likened to
the tunneling vision phenomenon. Therefore, the global module allows the users reading the
whole picture with their fingers by means of a tactile interface. In theory, the entire image
resolution (460x640) is made accessible so as to make the most of the camera information.
However, only as many points as fingers can be accessed simultaneously not to reach the
limits of the audio bandwidth. Figure 3-31 shows an ideal human machine interfacing which
served as motivation to See ColOr’s globule module: Provided that contacted points (Figure
3-31) supply sufficient information (color, lightness, position, depth) coded into audio, one feels
Justified in saying that the unsighted user is getting into the visual world by means of his
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fingers. More specifically, he does so by means of the touch and audio trajectory playback
[129].

3.5.1 Touch and audio trajectory playback

See ColOr sonification

\\ multitouch

gestures
Tactile device

Figure 3-32. Touch and audio trajectory playback: navigating a touch-interface using the
hand (finger) to move as a cursor, while triggering contextual information in the form of audio
cues.

It is quite important to highlight that See ColOr exploits only audio feedback, given that
its associated touch-interface provides no haptic feedback such as temperature, vibration,
sense of texture and so forth (see Figure 3-32). Further than gaining haptic-feedback, there-
fore, here we use the kinesthesis [106] to promote proactive interaction of the user with the
environment being explored (see Figure 3-33). After reviewing the state of the art of SSDs,
one can learn that current prototypes all present unidirectional layouts (i.e. data flow exclu-
sively from the system towards the user). By contrast, the inclusion of an interface grants a
more proactive interaction to selectively explore, to discover points of interest, make compari-
sons, and, in general, enjoy a greater sense of independence. Overall, computational interfac-
es continue to be of great importance in HCI as they enlarge the legibility of the systems,
increase the rate of information transfer and, allow the achievement of effective operation
and control of the machine [187].

In that order of ideas we facilitate the interaction of a user with the nearby environment,
with the focus on enhancing legibility, by providing an interface that meets two high level
goals:

4+ Enhance environmental legibility by providing sound-encoded information along
with interactive control to allow users to exploring the space dynamically. Eventu-
ally, mental representations of the environment layout may be built.

4+ Increase the transfer rate of information between the human and the machine, al-
lowing more relevant content to be accessed at the same time (e.g. tapping with the
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fingers on various points). This has to do with removing the tunneling vision phe-

nomena in See ColOr.

Throughout this whole section, we describe and evaluate a muti-touch interface that al-
lows the user to perceive color and depth of selected points, to discover points of interest and
to develop strategies for exploration. Also, we address the optimal use of haptic and auditory
trajectory playback concerning user interaction, and in particular the matter of the number of
fingers needed for efficient exploration. Eventually, this interface may also increase the ease
with which people can draw a mental image of the environment layout. Our general hypothe-
sis is that the touch and auditory playback not only promotes proactive interaction but, it can
be used as well in order to foster greater spatial awareness [188].

Spatialised
Sound

Figure 3-33. The interaction model that a touch interface aggregates to See ColOr.

Challenges in creating touch-interfaces for the blind

Touch-based interfaces are now present across a wide range of everyday technologies, in-
cluding mobile devices, personal computers, and public kiosks [189]. In general terms, none-
theless, touch-based interfaces pose an especially daunting challenge as for the inclusion of
the blind. While significant progresses have been reached in the accessibility domain to allow
these individuals using mainstream computer applications. Touch-screens remain still inac-
cessible in many ways. Unfortunately, as discussed by McGookin et al. [190] the creation of
accessible modifications and enhancements for touch-based devices is lagging behind the
breakneck pace of mainstream development. Here, the principal drawback concerning inter-
action arises from the fact that in place of common devices such as the keyboard or mice,
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screen computing generally offers a uniform, featureless surface [129]. This is perhaps the
reason behind the exclusion of haptic interfaces in state-of-the-art SSDs. We argue, however,
that instead of bypassing computational interfaces, the trend of research should address the
rising of accessibility for the blind to gain better control of assistive technologies and in gen-
eral, mainstream applications. Having no haptic feedback, an effective method to convey non-
textual contents to the blind in a touch interface, is the use of sound.

haptic and auditory trajectory playback for spatial awareness

While haptic and auditory trajectory playback eases the interaction of blind users with
touch-based interfaces devoid of haptic feedback; we believe that same multimodal strategy
may be intended as a method to partially compensate visual cueing, when the interface rep-
resents a real world scene. Here, it is worth clarifying that haptic and auditory trajectory
playback refers to the task of navigating a touch-interface using the hand (finger) to move as
a cursor, while triggering contextual information in the form of audio cues [129] (Figure
3-32). Therefore, though no tactile cueing is received, the fingertip gives the subject a kines-
thetic [106] understanding of spatial relations within the interface. These relations must be
met likewise in the real world scene being mapped into the interface. In other words, emitted
sounds represent and emphasize the color of visual entities in the environment, whereas
finger's location reveals spatial relations thereof. As for the latter, this is especially appropri-
ate to assess elevation given that See ColOr already uses spatialized sound to represent
lateral positions.

3.5.2 A protocol for tangible interfaces (TUIO)

See ColOr sonification

@ multi-tfouch q p
gestures

]

AN
TUIO
protocol B
TUIO client PR TUIO tracker
application application

Figure 3-34. Handling model of a tactile hardware in See ColOr using the TUIO protocol
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To create the haptic interface associated to See ColOr in this thesis we used TUIO [191].
Tuio is a simple yet multipurpose protocol intended to meet the necessities of tangible user
interfaces. This protocol defines common properties to control finger and hand gestures per-
formed by the user on the table surface. Tuio has been implemented within a fast and robust
marker-based computer vision engine (i.e. reacTable [192]). Basically, this engine performs
tracking and similar tasks including touch events and tangible object states. More important-
ly, this engine has been implemented on various standard platforms (supporting Java, C++,
PureData, Max/MSP, SuperCollider and Flash [191]) and can be extended with multiple
sensors. Reason why in See ColOr, the protocol has been used on iPad and earlier tactile
tablet models. Tuio encodes data from this tracker engine (using a specific protocol) and sends
it to a client application that is capable of decoding the protocol (Figure 3-34).

In short, the tracker reads into data (gestures) from the sensor of the screen, this data is
then wrapped within a protocol and sent to a client that decodes the messages to generic
interface events and draws the results into a graphical window in real time [193]. In See
ColOr, however, displaying graphical data is not of much interest. By contrast, our Tuio-
based client application discloses and outputs the data sent from the tracker, in form of spa-
tialized sound (see Figure 3-34). Thus, in the end, visual impaired individuals that interact
with a touch interface in See ColOr, receive no visual but audio feedback that they trigger
with their fingertips (i.e. haptic and audio trajectory playback, Figure 3-32).

We developed two client applications in See ColOr: firstly, for the iPad, a java-based pro-
gram was developed to receive the data (from the iPad tracker) wirelessly into the computer
to be taken by a Matlab-based application for further processing (i.e. sonification). A jar file
was made so that the java-program can be run directly through Matlab without the need of
having a java-client running on the computer (e.g. Eclipse). As for the tablet Bamboo Fun
Pen&Touch, modifications had to be made to the assembly-level driver to save the position of
the fingers. Then, higher layer coded in C++ sends the data to Matlab for sonification. The
whole TUIO-framework for developers is an open source project that can be downloaded from
the web free of charge at [194].

3.5.3 Optimal interaction

Here we describe the results from a study looking at a two-hand interaction paradigm for
tactile navigation for blind and visually impaired users [195]. To determine the actual signifi-
cance of mono and multi-touch interaction onto the auditory feedback, a color matching
memory game was implemented [28]. Sounds of this game were generated by touching a
tablet with one or two fingers. A group of 20 blindfolded users was tasked to find color match-
es into an image grid represented on the tablet by listening to their associated color-sound
representation. Our results show that for an easy task aiming at matching few objects, the
use of two fingers is moderately more efficient than the use of one finger. Whereas, against

121



our intuition, this cannot be statistically confirmed in the case of similar tasks of increasing
difficulty [28].

Inasmuch as the bandwidth of audio reaches their limits, it becomes imperative not to
overwhelm the user with various emitted sounds simultaneously. In See ColOr this refers to
the fact that the auditory pathway, even though useful for presenting some visual features
through sounds, is severely limited when tasked with the analysis of multiple sound sources
(i.e. representation of more robust visual information). This fact can dramatically impair the
interaction of the user with a sound-based aid system. By contrast, people believe intuitively
that multi-touch interfaces are better than mono-touch when interacting with tangible tech-
nologies, since more information of the screen can be accessed simultaneously. This intuition
could succeed if we assume that the number of fingers is directly proportional to the rate of
information being transferred [28]. Therefore, we attempt at assessing the objective differ-
ence on sound localization's ability of blindfolded individuals on a small tablet. We evaluate
two cases: multi-touch mode (bi-manual) and mono-touch mode (one finger).

The game

In this game, pictures representing grids of colored squares must be explored. The task
chosen for the study was for the user to find all the color matches. The pictures were made
accessible through a multi-touch pad, as shown in Figure 3-35. The clues to lead the user to
the goal were given by the audio cues being emitted from colored squares (touched with the
fingertips). The actual location of fingertips on the tablet was also mapped into the spatial-
ized sound. In other words, finger taps on the left of the tablet, produced sounds originating
from the left, and likewise for the right side. Consequently, finger tapping around the center
of the tablet produced sounds originating from the middle of the audio field.

Figure 3-35. A blindfolded individual playing the memory matching game of colors.
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The difficulty of a this experimental game can be altered by using a set of grid images
presenting 2x2, 3x3 and 4x4 squares. Thus, each grid contains a number of correct matches
of 2, 4 and 8 respectively, with the 3x3 grid having one matchless square. A game meets its
end when the participant successfully completes the three levels of difficulty. For each grid
(level), the colors of the pairs were assigned after equal-spaced sampling of the Hue variable
domain (360°) within the HSL cylindrical-coordinate representation [29]. Sampling the color
space uniformly prevents from having repeated colored pairs into a same grid. Once a color
was selected, its corresponding pair was assigned a random position into the grid.

Experiments

We conducted experiments on 20 blindfolded persons tasked to play the game as long as
the three levels were completed. Recruited participant were given 10 minutes of training
since they were not familiar with the color-sound code. In addition, four landmarks were
attached to the touchpad indicating the middle of the edges of the sensitive area (see Figure
3-36). During the first part of the test, participants played the game through the three levels,
using one finger. As for the second phase, the game was restarted to the first level with a new
set of images in order to preclude transfer learning. This time the participant used two fin-
gers to play, permitting the evaluation of multi-touch performance.

Figure 3-36. Touch pad on which grid images are represented during the game. The circles
highlight the four markers indicating the middle of the edges of the sensitive area.

For each participant we measured the time required to succeed game levels (2x2, 3x3 and
4x4 grids) using both, one and two fingers. Some participants, though rarely, chose mis-
matched couples as well as pairs previously selected. Nevertheless, no relevance was given to
this matter since memory capability was not a target of evaluation in this experiment. This is
to say that a level was completed when the expected number of matches was reached, regard-
less mismatches or repetitions. Game participants were blindfolded for this experiment and
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worn a high quality headset to properly perceive the spatialization of sounds [196]. They were
not allowed to see the images before or during the test; a two minutes break was given be-
tween fulfilled levels, as well as between the mono and multi-touch sessions.

Results

Here, we report the results of the evaluation on matching ability based on haptic and au-
dio trajectory playback using one and two fingers. A key aspect to assess the impact of mono
and multi-touch strategies on the proposed game is the global time needed in both cases.
Indeed, these data gives an insight into the advantages of one method with respect to the
other, if any. The times spent by recruited participants while going through the three levels
of the proposed game are shown in Figure 3-37.

Haptic-audio trajectory playback
using one and two fingers in an
auditory game

Time (seconds)

== Monotouch 2x2 23| 7
== Monotouch 3x3|31/94/13|16/18/10[21|2023(14(15(1018/15/19/16/17/17|119|11
==fe=Monotouch 4x4 90/18/36|3034(38/40(29/42(35/42|29/32/29/35/30/2836/40/53
== Multitouch 2x2 |10|4 (13|10/17|21|6 (10| 7 |12/ 9 (1128|12/19/10(12(15/10/16
=i=Multitouch 3x3 |28(72(19/47|11/95(20[21|20/113/115/10(17|16/17/112(85(92(12|19
=@ Multitouch 4x4 |49|29/4922(3938|42(36/41(42/45(2833/3040,36/58/59/6078

Figure 3-37. Haptic-audio trajectory playback using one and two fingers in an auditory
matching game.
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For better understanding of the results reported in this experiment, we performed a
paired t-test out of the data related to the times of interaction with one finger and two fin-
gers. The paired t-test assesses whether the means of two series of experiments are statisti-
cally different from each other. By setting a hypothesis Ho on the equality of the averages of
the two data series, for the 2x2 game Ho was rejected at a confidence level equal to 99%.
Thus, for this level of difficulty the use of two fingers was significantly more efficient. As for
the rest of the levels, the t-tests failed to reject Ho, therefore there is no significant advantage
(statistically speaking) to use two fingers. Table 3-4 shows the mean times (and standard
deviations) needed for the participants to finish the games, whereas the results of our t-test
are shown in Table 3-5

level Mono-touch Multi-touch
2x2 19.785 (10.024) 12.142 (6.261)
3x3 170.428 (58.949) 154.428 (65.493)
4x4 378.5 (163.295) 377.714 (80.315)

Table 3-4. Mean times (in seconds) to achieve the game’s goal for each level, between paren-
theses the standard deviations.

level t-test conclusion p-value
2x2 Reject Ho 0.0087
3x3 Fail to reject Ho 0.1764
4x4 Fail to reject Ho 0.9821

Table 3-5. T-test results. Notice that only p-values < 0.01 can reject the herein-related equali-
ty hypothesis Hy.

After the experiment, participants were asked to give opinions about the differences expe-
rienced between performing the test using mono-touch and multi-touch strategies. Quite
opposite to our intuition, 15 out of 20 participants described as irrelevant the use of either of
the strategies: they invested pretty much the same effort to reach the goal in both experi-
ment. Furthermore, the remaining 5 participants claimed to have felt uncomfortable with the
use of two fingers when performing the last level of difficulty (4x4 grid). Relying upon this
feedback, one could roughly say that inasmuch as the number of elements increases, the
advantages of multi-touch strategy become unclear. This assumption does not match our

intuition, since it was intuitively hypothesized that more fingers can access more information.
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While there is a moderate gain when using two fingers at the first level of difficulty (2x2
grids). This is not reflected in higher levels of the game as confirmed by the t-test: no clear
advantages in using two fingers have been found when the user is tasked to handle various
elements of a touch pad.

In comparison with the human visual system, vision is a fugitive and dynamic phenome-
non. The central area of the human retina has the best resolution for approximately two
degrees. Since our eyes are very frequently moving to analyze our environment or a given
picture, and by analogy if we consider that our eyes play the role of a single pointing device, it
is worth wondering whether a pointing device such as a finger would be sufficient and neces-
sary to mimic in a crude manner the human visual system. The results obtained during our
experiments suggest that the improvement factor when using two fingers could be small or
negligible for medium/difficult tasks. Is training the key parameter that will allow individu-
als to improve the time required to achieve a difficult task by means of two fingers? [28].

3.5.4 Building a scene in someone’s mind

Here, the functionality of a Kinect sensor, accompanied by an iPad’s tangible interface, is
targeted to the benefit of the visually impaired by the construction of a detection/recognition
system of pre-defined objects [26]. A features-classification framework for real time objects
localization and for their audio description is introduced. Firstly, objects are extracted from
the scene and recognized using feature descriptors and machine-learning. Secondly, the rec-
ognized objects are labeled by instruments sounds, whereas their position in 3D space is
described by virtual space sources of sound. This enables blindfolded users to build a mental
occupancy grid of the environment. As a result, they can hear explore and understand the
scene using the haptic and audio trajectory playback from an iPad, on which a top-view of the
scene has been mapped. Preliminary experiments using geometrical objects randomly placed
on a table, reveal that haptic and audio trajectory playback can be used to build very accu-
rately a scene in someone’s mind in a satisfactory time, despite the absence of vision [27].

Scenery understanding relies on human vision mechanisms such as stereopsis, perspec-
tive unfolding, object identification and color perception amongst others. A fundamental
research problem is the possibility of eliciting visual interpretation in the absence of vision,
therefore by means of other sensory pathways. Along this line a number of researchers have
been developing mobility aids to help visually handicapped users perceive their environment.
Our hypothesis is that given a simple scene (in a controlled environment) composed of a
limited variety of unknown objects with uncertain spatial configuration, a computer-assisted
audio description can be used to build the scene in someone's mind so accurately that a physi-
cal reconstruction can be made [26]. The achievement of this audio description of the scene
involves the encoding into sound data of information pertaining to both object identification
and location. The implementation presented here linking a Kinect sensor, a laptop and a
wireless iPad, will be generalized later in this thesis to experiments with unknown environ-
ments and unidentified obstacles.
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Framework (using ortho-kinect)

A 3D Kinect sensor fixed at one extreme of a table (on which several elements lie) enables
the machine-based object recognition. Afterwards, a top-view of the table is generated and
mapped onto the iPad (the user experience is like perceiving the scene from above). Thus, the
iPad emulates a miniature table and objects can be located within it, proportionally as in the
real one (see Figure 3-38). Each object is associated to a specific sound so as to be distin-
guished from others. Sounds are triggered as the user touches the corresponding area on the
iPad. In the end, the haptic and audio trajectory playback will help the user to build the
mental map of the scene. In Figure 3-39 a general framework to grasp the composition and
layout of a scene using the haptic and audio trajectory playback is shown. The first stage that
refers to initialization (Figure 3-39), starts up all technical requirements such as, Kinect
initialization [197], sounds database actualization, wireless communication between the iPad
and the computer. Afterwards, the input streams (Figure 3-39) starts flowing and for every
color-depth pair of images we perform the calibration process proposed in this thesis (see:

Efficient registration of range and color images).

ﬁ-

Figure 3-38. An illustrative example of the mapping of a real scene form a table into an iPad.

SONIFICATION
Hapticand audic
trajectory playback

INPUT STREAM

TACTILE
INSPECTION

RGB-DEPTH
CALIBRATION

PERSPECTIVE
INVARIANT

Figure 3-39. General framework for scene understanding using haptic and audio trajectory
playback
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Following, range segmentation (Figure 3-39) of the objects in the scene is carried out:
Range images often enable fast and accurate object segmentation since objects are perceived
as isolated surfaces with particular range. Thus, shape extraction is fairly good regardless
color and illumination conditions. Here, the range of the Kinect sensor is partitioned into
multiple layers. Afterwards, these layers are scanned one by one and surfaces (clusters) lying
within them are labeled as objects. Farthest layers are ignored so as to filter out the back-
ground. The shape of a labeled object into the depth map can be then extracted. Color infor-
mation thereof could be accessed by inspection of the same shape/area into the RGB map
whenever a calibration has been previously done. This method attains precise segmentation
in real-time for simple sceneries (i.e. without occlusions from the camera reference point of
view). This process is illustrated in Figure 3-40, where a scene (bottom) is finally devoid of
objects after segmentation.

The next step is the object classification (Figure 3-39). After having segmented an ob-
ject, this can be described by encoding its most representative features into scalar vectors.
These feature vectors must be classified in order to identify objects with features alike, so
that they very likely belong in the same class [198]. A wide gamut of vector descriptors can be
found into the literature. Yet our descriptors are based on simple geometrical features of the
objects, such as the perimeter, area, eccentricity, major/minor axis and the bounding box size.
Given that this experiment uses sole geometric objects, more robust descriptors are unneces-
sary. Also, many machine-learning-based algorithms for data grouping meet the conditions to
fit within this framework. However, feature vectors in this experiment were classified using a
Multi-layer Artificial Neural Network [198]. Nevertheless, other recognition tasks (e.g. more
complex objects) are expected to require more suitable methods for both, description and
classification (this will be studied later in this thesis).

Figure 3-40. A depth-based segmentation process (objects are found lying within discretized
layers of distance). We can segment and remove the objects (right) within the input image
(left), while knowing the depth layer at which each of them was detected (1..8).

Finally, a key aspect in this experiment is the perspective-invariant top view (Figure
3-39) acquisition [25]. With the Kinect fixed at one extreme of the table, across progressive
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ranges (distance, depth) the table’s width seems increasingly diminished from the camera
perspective (and the farther an object or the closer to the opposite extreme, the smaller it
looks. See right image Figure 3-40). This is caused by the perspective effect (vanishing point
[25]) and is normal in pinhole cameras. The result of the correction that needs to be done is to
keep the table width fitting the image width at every plane (each plane of distance). Objects
also must be stretched progressively and repositioned with the distance so that they preserve
original size and location (see Figure 3-41). That’s the equivalent of cancelling the effect
introduced by the perspective. A top-view of the scene can be easily derived from an ortho-
graphic image (without perspective effect), given that we also known the depths (provided by
the camera range i.e. Kinect). Next, we will review in more detail how the effect of the per-
spective was canceled in this work allowing the acquisition of such a top-view image.

SEGMENTED ORTHOGRAPHIC

Figure 3-41. Perspective correction. Top-left image was taken using Kinect, because of the
perspective the blue square (enclosed in red) seems to appear to the right with respect to the
cylinder. Nonetheless, an image taken from above (top-right) reveals the actual location of the
same square (i.e. to the left of the cylinder). At the bottom of this figure we can see from left
to right: the original image again, a segmented version and finally, the orthographic version
no longer affected by perspective effects. In this latter, we can observe the actual location
(and size) of the objects without need of having an aerial view. In fact a synthetic aerial view
may be built out of this orthographic image (see Figure 3-43).

Before building the final top-view image in this experiment, we need to achieve a perspec-
tive-free picture of the scene. This is doable if the rate by which the table decreases in size
through the planes (with distance) is known, so that the correction of the perspective can be
done by inversing this rate to keep the sizes fixed at needing. To do so, experimental data is
necessary, in which pixel to centimeter ratio is to be found for each plane of depth. An object
was used to measure the necessary experimental data [25]. That object was a box, it was put
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in more than one layer of depth, and its size in pixels was measured. As the real size of the
object is a known constant (15cm size of side), a table of pairs of values (the real size of the
object versus its size in pixels) was made with 30 different values, 2 values per layer of depth,
15 different layers of depth was used. An example showing the process on 4 templates is
shown in Figure 3-42. Then, the experimental data was interpolated to give the pixel-cm
correspondence function (see Equation 3-9). This function is shown in Figure 3-44, whereas
an illustration of perspective correction (aka orthographic camera [25]) can be seen in Figure
3-43.

y = f(x) = —1.4e — 009x3 + 8.8e — 006x*> — 0.019x + 17

Equation 3-9. Factor of conversion from pixels to cms (y) at given depth (x).This equation

applies for the Kinect sensor and within its functional range.

Figure 3-42. Measuring the perspective effect in a scene.

Figure 3-43. A perspective or pinhole camera (bottom-right): Objects further away appear
smaller in size, besides the positions vary with the distance. An orthographic camera (top-
left): Objects preserve natural proportions on size and position. Notice also that using this
orthographic camera, a virtual ceiling mounted camera can be emulated. Thus, a top-view
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image showing the location and distinction of the objects with colors (after automatic recogni-

tion) can be obtained.

Factor of conversion from pixels to cms at x

| |

| |

| |

1 1 1 1
600 800 1000 1200 1400 1600 1800 2000
Depth values, from 600 mm to 2000 mm

Figure 3-44. Perspective correction function for Kinect (Equation 3-9).

Last but not least, for the sonification (Figure 3-39) each class of objects is assigned a
particular color/sound so as to be distinguished from others. Users must be previously trained
to learn this object-sound association (audio icon). Then, objects recognized by the neural
network are sonified when the user touches them on the iPad. While real objects’ position on
the table can be deduced by inspection on the iPad. Spatial virtual sources of sound used in
this work create the illusion of sounds originating from the specific objects’ locations in the
real space [104]. It gives the user a more detailed idea of the scenery composition and the
spatial relations between elements (see Figure 3-46). The end result of the whole process
depicted as a general framework in Figure 3-39, can be seen in Figure 3-45.

Figure 3-45. (leftmost) Color image (left) Depth image (right) Automated Recognition (right-
most) Top-View “multi-touch interface” with objects represented as colored squares. These
colors will finally be associated with sounds.
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Figure 3-46. Object location by haptic and audio trajectory playback. Besides, the user is
given the illusion of objects emitting sound from the real position in space (right image). More
precise location of an object can be achieved by haptic inspection (finger kinesthesia) on the
iPad (left image). In other words, the user infers the location of the objects on the table out of
his awareness of the fingers position within the tablet.

Experiments

Ten blindfolded participants were recruited to conduct experiments in two parts, for the
first part participants had to recognize objects and locations using the iPad, see top-left image
in Figure 3-47. As for the second part, the objects were removed from the table and the
participants (without blindfold) attempted to put them back, see top-right image in Figure
3-47. Each participant was tasked to explore two scenes with three elements and two more
with four elements. Training before the experiment was completely necessary as participants
had no previous experience. At large, this training aims at making the participant familiar
with the system and the color sonification. No more than 20 minutes were necessary in any
case. The protocol used for the experiments is described as follow [27]:
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Figure 3-47. Experiments on scene reconstruction using haptic and audio trajectory playback.
Note that we also implemented this framework using the Bambo Touch Pad (bottom-left
image).

+ Learning color-sound associations
The participant is given up to five minutes to get acquainted with the color-sound encoding.
In this experiment we only used four coloured objects so as to reduce complexity of this asso-
ciation process. Within 5 minutes of self-training, participants were able to distinguish ob-
jects based on their colors/sounds. To conclude this stage, participants were blindfolded and a
quick test to ensure the success of the training was performed.

+ Tangible Localization Training

To get acquainted with the tactile interface, participants were given another five minutes of
training with the iPad. The goal of this training is to show her/him the sensibility of the touch
screen and the precision needed to reach the elements within the interface. In addition,
during this phase the user can develop strategies for haptic exploration. Typical strategies to
scan the iPad are top-bottom zigzag, one finger fixed, spiral, top-bottom strips. The use of one
or two fingers is unrestricted, whenever this should not produce any difference as explained
in: Optimal interaction.

4+ Auditive Localization Training
For the last training stage, participants were given a practical understanding about sound
spatialization. Several objects are placed on the table from the left to the right. Afterwards,
she/he is allowed to hear the sounds originating from specific locations, accompanied by visu-
al verification. The rhythm of the repetitions of the sound determining the element’s nearness
(i.e. the closer to the camera the faster), is also introduced through the same methodology.
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This perhaps the easiest training, since representation of left/right object location using spa-
tialization of sound is natural, and representation of depth by rhythm is quite intuitive.

+ Scene Exploration

Recruited participants were blindfolded and the objects were randomly placed on the table.
Then, the main part of the experiment took place; as an example see left image in Figure
3-47. Firstly, the participant had to find the location of the objects on the iPad by simple
tactile inspection. Subsequently, she/he had to identify the objects nature out of the emitted
sounds. The participant was expected to do a mental mapping from the iPad to the real world
while exploring. Unless the participant claims to have achieved an accurate mental represen-
tation sooner, this exploration/identification process lasted ten minutes. In any case, right
after the exploration was over, the elapsed time was registered.

+ Scene Reconstruction
Objects were taken off of the table and then, participants removed the blindfolds. Following,
participants were tasked to put the objects back on the table as trying to replicate the scene
perceived during the exploration, see right image in Figure 3-47. This task was performed
straightforward due to the mental idea of the scene gained during the exploration. Therefore,
the time spent at this stage was negligible to be accounted. Also, no clue whatsoever was
given to the participant who had freedom to reconstruct the scene.

Results

To allow an evaluation of these experiments, the top-view image of the scene is saved
twice, before scene exploration (original) and after scene reconstruction (reconstructed) (see
Figure 3-48). To assess the precision at which the imaginary scene was elicited in partici-
pants’ minds, we compared those top-views. In the ideal case, they should match flawlessly
as signifying perfect perception of the scene by the participant. In general, an objective esti-
mation of the differences between these images can be achieved in this way. The Euclidean
distance between objects within the first image (original) and their final location within the
second (reconstructed) was used as a precision estimator of the reconstruction (Figure 3-48).
Thus, the accuracy of the mental image elicited in mind can be objectively expressed.
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Figure 3-48. Evaluation method: Left image corresponds to the top-view of the original sce-
ne’s layout. Middle image corresponds to the user guess. Finally, right image shows the mis-
match between the two former.

Due to the calibration of the camera, the Euclidean distance between original and final
object location in the pictures can be expressed in centimeters. Additionally in this experi-
ment, this distance was normalized in order to express the performance in percentages ac-
cording to the physical parameters of the experiment. To normalize distances, we divide
them by the largest possible distance between two objects on the table which is the diagonal
(260 cm). Hence, the separation of a relocated object with respect to its original position is
expressed as a ratio to the largest mistaken possible separation. The results of the experi-
ments are presented in Figure 3-49:

Scenes
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Figure 3-49. X axis represents 40 different scenes with three objects (1-20) and four objects
(21-40). Y axis represents the average of the distances between the original and the final
location of the objects. This average distance is already normalized. The colors of the bars

(scenes) vary according to their exploration time that goes from 0 to 10 minutes (colormap).

Each bar shows on top the standard deviation of its elements’ relocation.

The results presented in Figure 3-49 reveal that the participants were capable of grasp-
ing general spatial structure of the sonified environments and accurately estimate scene
layouts. The mean error distance on objects relocation for all the experiments was 3.3% with
respect to the diagonal of the table. This is around 8.5 cm of separation between an original
object position and its relocation. In both cases (i.e. scenes with three and four objects) this
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distance remained more or less invariant and was understood in this experiment as an esti-
mator of accuracy. The exploration time instead, varied according the number of elements on
the table. In average for a scene made up of three elements, 3.4 minutes were enough to build
its layout in mind, whereas for scenes with four elements this time increase to 5.4 minutes.
Such difference was given due to the increasing number of sound-colors associations to be
learnt; the results showed no misclassifications of objects though. In general, all trial partici-
pants expressed enthusiasm as to the future of the project in this stage of See ColOr [27].

By and large, the results of this experiment make it feasible to extend scenery perception
towards more general autonomous navigation aids. Thus, these experiments urged us to
adjust the object recognition engine for general identification tasks (as it will be discussed
later in this thesis). As to summarize, here we presented preliminary results in multiple
object location and recognition through the use of haptic and audio trajectory playback. This
experiment was meant to provide the visually impaired with a mental occupancy grid of the
environment making use of a Microsoft’s Kinect sensor, a laptop and a wireless iPad. For
evaluation, the layout of a scene made up of a table and four geometrical objects was repre-
sented on an iPad and encoded into instruments sounds. This encoded information was ac-
cessed in real time using the fingers as stylus to trigger sounds (haptic and audio trajectory
playback) [27]. The global information of the scene intended to be revealed to the user in this
experiment is roughly summarized in Figure 3-50.

Figure 3-50. Information intended to be revealed in this experiment to the participants
through the haptic and audio trajectory playback. This includes the class of the objects (red
squares), spatial relation between them (blue arrows) and, spatial relation (black arrows)
with respect to the table (green lines) and the camera.
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3.5.5 Tactile Augmented Reality: An alternative to the use of a tablet

In Figure 3-51 we present a user who is interacting with See ColOr global module, which
is based on a tactile interface hosted on an iPhone (or iPad). With the 3D camera on top of his
head (helmet-mounted), the user is capturing a green plant that happens to be just in front.
The image of the plant is then transferred to the iPhone screen, where it becomes accessible
(or touchable) to the user with the fingers. The user in Figure 1 is triggering the sound of
green, as long as his finger keeps on touching the leaves of the plant in the image. If the
finger substantially moves for instance to the left, the triggered sound then will be that of
white (the table color). Importantly, both sounds the green and the white, will be heard as
coming roughly from the center and the left, respectively. For sounds in See ColOr are spati-
alized through the azimuth plane (i.e. left-to-right). Furthermore, the former sound will be
emitted with higher rhythm because the plant is closer than the surface of the table behind
(i.e. depth sonification). In contrast, if the user were to touch the frontal edge of the table, a
higher rhythm will be assigned to the white sound. In short, the fingertip determines the
point of the image that needs to be sonified. Therefore, the coordinates of the fingertip within
the captured image is all we need to satisfy a user request.

Figure 3-51. A user interacting with our global module based on a tactile interface. A zoom
into his hands is shown top-right of this image to clearer see how the interaction takes place
on the iPhone screen.

137



An issue related to the aforementioned tactile interaction is that the hands of the user
remain occupied by the iPad, which dramatically reduces the freedom of experiencing the
space physically. Likewise, the blind user has to rely on the screen limitations as an orienta-
tion guide to the environment. As a matter of fact, he needs to perform a rather complex
mental mapping between the world and the screen coordinates to guess the real location of
points in space. These problems have motivated us to find a more intuitive, simple and realis-
tic way to interact with our global module. One idea arises from the fact already mentioned:
all what is needed to sonify a point in the image are the coordinates of the fingertip within
the image itself. Therefore, rather than using a tactile screen to sense the fingertip, we will
have the fingertip itself show up in the picture. In other words, the user will be allowed enter-
ing his hands within the camera field of vision for us to track his fingertip. If the hand is
outside or the finger fails to be detected, we switch automatically to the local module that
sonifies constantly the central area of the image. To achieve a reliable tracking we will stick a
marker on the user nail; this idea is well depicted in Figure 3-52.

Figure 3-52. A user interacting with our handsfree version of the global module. On top-right
of this figure, we display also the image captured by the head-mounted camera. Such image
contains the user fingertip that has been enhanced with a marker.
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Notice that in both Figure 3-51 and Figure 3-52, the fingertip points the same spot within
the Kinect-provided image (i.e. the leaves of the plant). The only difference is that in Figure
3-51 the fingertip reaches this point of interest through the iPhone, whereas in Figure 3-52 it
does so by pointing in the real world. Additionally, in none of the cases the fingertip is actual-
ly touching the leaves, which adds one more similarity to these approaches. In principle for
this example, the two methodologies exhibit only one negligible difference that is by no means
detrimental to the interaction: using a tactile screen we sonify the point right beneath the
fingertip, while in the tracking method we have to sonify the point just above the fingertip or
marker. Though both points are expected to be quite similar, in any case, blind individuals
cannot possibly notice such a small shift. Otherwise, there are indeed cases where the track-
ing method draws unquestionable advantages over the tactile one. Specifically, when the user
points to a distant point not reachable with the finger (like the leaves), he simply gets as
much information as though he was using the tablet: the instrument sound indicates the
color, while the rhythm indicates the depth. However, in the case that the user actually
touches the point in the real world (i.e. the point belongs to a reachable object). The user will
get the natural sensations of touching (e.g. texture, temperature, resistance or elasticity)
plus, the already mentioned color and depth. Thus, his tactile sensation will be augmented by
color, a feature that has never been known to come from touch, but sight. We would like to
introduce this concept in this thesis as Tactile Augmented Reality (see Figure 3-53).

Figure 3-53. Tactile augmented reality. The touch of an object now produces a sound, the
sound of its color.
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Tracking the fingertip

In computer vision there exist a broad variety of strategies to track objects such as a fin-
ger. These may span from more complex like Kalman filters, to others simpler, yet efficient
like convolutional patterns or color- and skin-based methods. To make it computationally
inexpensive, here we will use a colored marker (or landmark) that wraps the finger so as to
highlight it. Thus, we just need to perform some image processing to filter the bands of color
we aim to detect and push away everything else. Likewise, some binary preprocessing and
constrains on the sizes of detected colored areas will help. For instance, if we chose a strong
pinkish marker (see Figure 3-52), the color levels we need to filter at each frame of a video
are shown in Figure 3-54. These levels can be established in a test video from which we will
manually sample the target color every time it shows up in the scene. More precisely, in
Figure 3-54 we actually show two color space: the RGB (red, green, blue) which is the most
used and the Lab (L is the lightness and a and b are the color-opponent dimensions) which
might be more discriminative. As a matter of fact, we will see that color tracking based on
Lab colors turns out to be far more reliable.

color
color
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Figure 3-54. During a test video of 100 frames the pinkish color of the marker shown in Fig-
ure 2, had its color bands sampled each frame (manually). The curves represent the variation
of each color band (or component) of the pinkish, frame by frame. To detect or segment pink-
ish areas in a new picture, each color component of the image must be filtered between the
minimal and maximal variation reached by its corresponding curve in this figure. The
dashed lines represent the mean value of each component during the 100 frames. Pinkish
color is expected to be oscillating around these three mean values. To the left, we have RGB
color representation, whereas to the right it is shown the Lab color representation.

In short, we will be segmenting the area of the image that presents similar tonality (pink-
ish) to that presented in Figure 3-54. This is made possibly just by thresholding each of the
color bands within their respective levels of interest (Figure 3-54). Thus, each band will give
us a thresholded area. In a binary image we represent the overlap of the three areas that
made it through the filter or threshold. This overlapped area is but the pinkish marker, pro-
vided that no similar colored areas show up in the image. However, the area of the finger is
expected to be of a certain size that could vary from: finger very close to the camera (seldom
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seen) to very far from it (as far as the arm permits it). This adds a helpful condition to reduce
false-positive detections due to colored background or artifacts. Once this area of interest has
been segmented, some dilation and erosion pre-processing is applied to make it more com-
pact. Finally, some elemental mathematical strategies must be applied to find the center and
the top element of the area. This latter is always located on the area’s boundary, right to the
end of the major axis. We locate the point of sonification just few pixels above the top element
of the area. Additionally, we can also use a two or three-colored marker, so that the process
just described needs to be repeated three times. If the centers of the three areas are close
enough, we would have found the marker. The likelihood of finding an area in the image that
meets the same constrains in color, size and spatial distribution are just negligible.

Figure 3-55. The segmentation of a pinkish marker stuck on a fingertip. The central column
shows the original color images provided by the camera. The left column present the binary
segmentations achieved over the RGB color space. In turn, the right column show the seg-
mentations achieved over the Lab color space. Out of this example and experimental observa-
tions made in this work, it becomes clear that the segmentation on Lab color space turns out
to be more robust.

Finally, it is worth saying that to sonify a point in See ColOr we need both its color and
depth. We have seen how to track the fingertip that points the target of sonification within
the color image from which, of course, the color will be extracted. Otherwise, to get the depth
of the target point we just need to evaluate in depth map the same coordinates yielded by the
color-based tracking. We expect a pixel-to-pixel correspondence between color and depth
images, for we have previously used the calibration method described earlier in this thesis.
Hence, images from both sensors are totally aligned, and no processing other than the color
tracking itself is needed to get the depth of a pixel pointed by the fingertip. This concept is
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summarized in Figure 3-56, which concludes our idea of handsfree interaction with See ColOr
global module:

Figure 3-56. How the sound of a pixel emerges in See ColOr out of the natural pointing of a
finger. At the bottom of this figure we show an image pair the kind of which we can obtain
from Kinect (color and depth). Notice that this image pair is already aligned or calibrated, so
a pixel-to-pixel correspondence is met. This being said, we can extract color and depth sepa-
rately from both images. Color will be converted to an instrument sound by See ColOr, while
depth will denote a rhythm of repetitions for that sound. Sound and rhythm emerge together
as the sonification is produced by the pointed or touched spot. In the latter case, we will be
achieving a tactile augmented experience for the user, who will know the color of the touched
element.

3.6 Computer-vision-based visual substitution
3.6.1 Object recognition

To follow a target in a video stream either an object detector [199] or tracker [200] can be
used. However, in principle, we have implemented a detecting-and-tracking hybrid [201]
method for learning the appearance of natural objects in unconstrained video streams. Hav-
ing a tracker and a detector running in parallel (during a learning phase) enables re-
initialization of both techniques after failures. In other words, it is expected that the tracker
corrects the detector (if needed) and vice versa. For instance, when the detections are weak or
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the tracker drifts away (target temporally disappears). Thus, mutual information is used to
build a more robust model of the target. Another key aspect of the use of a hybrid of this kind
is that the learning is no longer based on a large hand-labeled training set. The target needs
to be manually defined only once in a single frame. As a result, a first detector is built as well
as the tracker gets initiated. Appearance changes of the target are learned online (frame by
frame), allowing the detector to become more robust in time (with the accompaniment of the
tracker).

That being so, both methods (tracker and detector) might continue to run in parallel while
reporting the presence of the target. When it comes to blind subjects, however, this online
approach introduces some difficulties. Firstly, the success of the method strongly relies on the
first manual-made detection of the target. This fact dramatically diminishes the functionali-
ty, since the users would always need the help of a sighted individual to find an object. For
that reason, a sort of long-term memory of learned objects is highly desired. Secondly, while
this method works in real time, both tracker and detector are mono-target oriented. Hence,
detection of more than one target simultaneously will overload the system, as new detectors
and trackers would need to be included.

To cope with these drawbacks in See ColOr, we stop using the hybrid method once the de-
tector has been constructed robust enough. Following, we save it in a database from which we
can retrieve detectors upon request. When saved detectors are used, they are not accompa-
nied of a tracker. Instead, we restrict the detection to the central part of the image so that the
target is detected only when passing through this area. Besides allowing real time detection
of multiple objects (several detectors running simultaneously in a small patch), this was done
in order to give the user a spatial reference with respect to the target (if detected, the target
must be right in front). This decision, however, gives raise to other issues reflected in pro-
longed searches (Experiments with blind individuals). We will address these problems in

Improving time in experiments.

The tracker

We use a short-term tracker (that will become ‘long-term’ with the support of a detector)
based on Kalman filter (KF) method [202]. First, a set of features points (y:;) is sampled from
a rectangular grid within the bounding box of the object (manually selected). Next, the KF
tracks these points from one frame (¢-1) to another (¢). Based on a median over the new points
(y:) resulting from the tracking, we estimated x; the displacement and scale change of the
bounding box. For each frame a new set of feature points is tracked, making the method very
adaptive. The KF addresses the problem of estimating recursively the state of the variable x;
€ Rnof a given continuous Markov process [202], from its observations yi.: = {yz, . . . , ¥}
obtained along the time. The process to be estimated is assumed to be governed by a linear
stochastic difference equation [200]:
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Xy = AXt—l + VVt
Equation 3-10. Observation model in Kalman-filter-based tracking methods.

with a y: € Rm measurement y that is,
ye = Hx¢ + Ww,
Equation 3-11. System model in Kalman-filter-based tracking methods.

Since mathematical models will fail to represent perfectly the evolution of a process. Be-
sides, the process can be driven by disturbances that cannot be controlled in deterministic
way. In Equation 3-10 a stochastic term governed by a random variable v; is also considered.
This term denotes an independent Gaussian white noise sequence N(0,Q). The matrix Q is
regarded as the process noise covariance representing the inaccuracy of the deterministic
dynamic model used. Q can be calculated as VV7, with V in Equation 3-10 being the matrix
that transforms the noise sequence to mimic the distribution of N(0,Q). A, in Equation 3-10,
is the matrix that established a linear auto-regressive relation between successive states of x;
(system transition matrix). H, in Equation 3-11, is the measurement matrix, and describes
the deterministic linear relation between the state and its observations [200], [202]. Finally,
the stochastic side of Equation 3-11 signifies the disturbances that corrupt measurements
and is determined by a random variable w; (an independent Gaussian white noise sequence
N(O,R)). The matrix R = WWT is known as the measurement noise covariance. At large, what
the KF attempts to do can be regarded as the estimation of the conditional Bayesian probabil-
ity density of x; (i.e. p(x: | y1:), which is necessarily Gaussian [202]). Thus, the conditionality
here is given by the data yi:. In short, the KF provides analytic expressions to compute the
parameters of p(x; | y1i:) [200], [202].

SCALE

DISPLACEMENT

Overlép of (t-1) and (t)

Figure 3-57. Tracking of an object (a picture of Lena) using the Kalman Filter. The KF maps
the sampled points (y:.1) of an object (in one frame t-1) into y: (the same points of the object in
the frame t). It results in a sparse motion field (the dispersion of the points in the 2-
dimension space). Based on this motion field, the scale and the displacement (x:) of the object
bounding box in the frame (t) can be calculated with respect to xi.1.
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The features

To describe points in an image (quite unlike standard approaches) we do not use SIFT
[100] or SIFT-like descriptors, but 2bitBP [199] codes. These codes are short and fairly easy
to calculate which allows online learning (with no training sets) and real-time applications.
However, any other descriptor that meets these characteristics could be used as well (e.g.
LBP ‘local binary patterns’ [203], haar-like features [204]). In fact 2bitBP are but a short
version of these latter. A 2bitBP describes the area surrounding a point in the image by
encoding its local gradient orientation (both vertical and horizontally). This description out-
puts just a 4 (2 bit) codes in contrast to 256 for standard LBP. Detectors based on 2bitBP
achieve scale and rotation invariance inasmuch as they learn new aspects of the object online
(frame by frame). Figure 3-58 summarizes the calculation of a 2bitBP for a point in an image
patch.

Vertically oriented gradient
|

The four possible 2bitBP codes
that describe an image area
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Figure 3-58. Here we present the four possible 2bitBP codes (a, b, ¢, d) that describe the sur-
rounding area of a point in the image (around the eye). In 2bitBP approaches the scale an
aspect ratio of this area are usually generated randomly (though rather small). Within this
area four subareas can be extracted (A1, A2, A3, A4) when viewed horizontal and vertically.
The final 2bitBP code is made out of the comparisons between vertical and horizontal subare-
as. The comparison is based on which subarea has a major integral value I (the sum of its
pixels). Given that, in this particular example, I(A1)>I(A2) and I(A3)<(A4), the 2bitBP that
describes the area is (c) (i.e. [01 11 00 01], with 00=gray, 11=white, and 00=black).
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The Detector

We have used a Randomized forest algorithm [205] with the aim to decide about presence
of an object in an image input. This algorithm belongs to the type of so-called real time detec-
tors based on scanning window strategy [206]: the image is scanned across position and
scales, at each scanned patch the presence or absence of the target is decided by a binary
classifier (i.e. Randomized forest). Roughly, each image patch is described by a set of 2bitBP
codes. The number of 2bitBP codes, as well as their size and aspect ratio are taken randomly.
Also, these codes (or encoded features) are randomly partitioned into various same-sized
groups. For each group, all its features are linked together in a feature vector x; (binary) that
points to a branch of a three ( [199] , [205]) with posterior probability Pr(y=1]x;) [205]. Thus,
a branch is represented by a posterior which, in turn, indicates the probability of a random
event (e.g. the formation of the x; pointing to it). The posterior is calculated by maximum
likelihood estimator [205].

The patch is evaluated in the same way by several other threes simultaneously. Then,
the posteriors or branches of all the threes are averaged, for the classifier to respond positive-
ly when the average of the probabilities is higher than 50% [199], [205]. Here, the posteriors
represent the internal parameters of the classifier which are incrementally adjusted during
the learning. Thus, each branch or posterior registers the number of positive and negative
examples that have fallen into it, during the training. The randomized forest algorithm has
been proved to have speed, accuracy and possibility of incremental update [205]. Figure
summarizes the aforementioned process.

Input Image Randomized Forest

=4

not detected

Figure 3-59. Here we show an example of a randomized forest classifier made up of four
threes only. Each three has four branches, defined as posterior probabilities [205]. Inside the
evaluated patch several points have been described using 2bitBP codes. The number of de-
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scribed points, as well as the scale and aspect ratio of the 2bitBP are randomly selected at the
beginning, though kept unchangeable. The coded points (or features) are partitioned into
random groups of the same size. These groups are described in a vector x; that points to the
branch with posterior probability Pr(y=1|x;). If the average of the posteriors of the threes is
higher than 50%, the object has been detected. No detection is reported otherwise.

The test

Figure 3-60. Two sequences exemplifying the performance of See ColOr’s object recognition
module.

Here, we present a study on natural object detection using See ColOr’s recognition engine,
which seeks to allow visually impaired users gaining awareness of certain objects they other-
wise could fail to perceive, or simply need others help to do so. Notice that sometimes looking
for an object (e.g. a fallen object) may end up in an embarrassing situation that might lower
their feeling of dignity. In general, we attempt at letting an unsighted individual be aware of
serendipitously encounters such as a person on his way to the toilet. Furthermore, we consid-
er the case of conscious searches for daily objects such as a telephone, an exit, a trash can etc.
Our recognition engine permits: (1) Learn the appearance of object during a learning phase
that starts with the manually location of the object by a sighted individual. (2) When this
learning reaches an end, the sighted person provides the object’s name so as to label it. Next,
the learned detector is then stored in a repository (database). (3) When the naviga-
tion/exploration is taking place, the unsighted user is notified about the presence of the object
by the system which spells out the object’s name every time following detection. To do so, the
learned detector associated to the object is retrieved from the database and used upon user
request.
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In order to put this See ColOr’s recognition module to the test, we surveyed five blind in-
dividuals asking about daily elements they regularly need and struggle to find. These persons
were legally blind males (3) and females (2), meaning they have visual acuity of less than
20/400. Their ages range between 25 and 40 and all of them have educational level above high
school. Participants engaged in this survey were recruited from the INCI (Colombian Nation-
al Institute for the blind!2). After this informative survey, we found three elements in com-
mon: A trash can, a telephone, and an exit way. For each of those elements, we (1) trained our
engine to recognize it using an in-situ video as a training sequence of one minute length. (2)
We shot in the same conditions a testing sequence. This was a four minutes video in which the
object comes into view with significant alteration on appearance: rotation, perspective, partial
occlusions, and scale. Also, we accounted for frame-cuts, fast camera movements and tem-
poral disappearances of the object from the scene. Finally, we used our previously trained
engine to detect/no-detect the object on this testing sequence. It is worth noticing that both,
training and detection were performed in real time (simultaneously to the capturing of the
training and testing sequences respectively). Some sample frames of the testing sequences can
be appreciated in Figure 3-61. Figure 3-62, in turn, shows the precision-recall curves of our
engine for each testing sequence of 3600 frames (15 fps x 4 minutes). We obtained these
curves by comparing the resultant automatic detections (made online) with a manual labeling
of the sequences (made offline).

Figure 3-61. Sample frames taken from real time detections videos (of three different objects)
using See ColOr’s recognition engine. The yellow square represents the area were the object

12
http://www.inci.gov.co/
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was detected. Rows 1 and 2: a trash can. Rows 3 and 4: an exit way. Rows 5 and 6: a tele-
phone. These objects were selected as common targets by legally blind users.

The precision-recall curves (Figure 3-62) of our See ColOr engine for object recognition,
show that the precision was kept between 72% (trash can) and 83% (exit way) at the total
recall for the three cases. In addition, before the 50% of the total recall the precision in all
cases ranged down from 100% till 90% only. While it is true that this system can recognize
many objects that unsighted individuals might need in daily living, cognition extends beyond
the field of object recognition. So stated, promising advances in computer vision as presented
in [207] by J. Malik at el. should serve as reinforcement to our research on navigation aids.
They use a poselet-based approach to attribute classification for describing people. In general,
they are able to recognize gender, hair style and types of clothes in natural scenes (e.g., this
person is male wearing glasses, jeans and t-shirt; he has long hair and no hat). In this way,
quite a number of information that remains uncertain to the blind in everyday live could be
cleared. Therefore, this would become more comfortable their daily live.

0.9
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====Trash can

Telephone
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Figure 3-62. Precision-recall curves of See ColOr’s recognition engine for three sequences of
3600 frames each.

3.6.2 Obstacles detection

The purpose of the alerting system in See ColOr purpose is to warn the visually impaired
user when a threatening situation arises as consequence of an unexpected obstacle in his/her
trajectory. Roughly, when a cluster of points in the video presenting a distance below 1 meter
continues to approach over a given number of frames, the user must be alerted. Note also
that the alerting system will run simultaneously with respect to haptic-based interface. Thus,
users will keep on gaining context awareness rather than minding his step. As soon as the
system launches a warning (alarm sound), the user is expected to suspend the navigation not
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to bump into the obstacle. This allows the blind finding a safe, clear path to advance through

(see Figure 3-63).
RNING |

L

Figure 3-63. The alerting system. To the left, we can see a user passing through an unblocked
door (clean of any obstacle). In the right image, instead, there is an obstacle (in this particu-
lar case the door itself) preventing the user from passing through. A collision is expected to

occur if the user is not warned in time to avoid it.

The detection of objects lying on the user way (into which he or she is likely to bump)
heavily relies on range image processing. At certain depth, within the range of the camera,
we define a risky layer that limits the area that must be kept clear as the user advances.
More precisely, this area (the risky area, Figure 3-65) extends from the user parallel plane
up to the risky layer (plane) and in theory, none object should be detected within it. However,
if an object were to appear within this area, it has to have passed through the risky layer
before having entered the area (see Figure 3-64). This layer is fixed at 0.9 meters and it is
constantly scanned to make sure it remains clean (nothing is entering the risky area). In
other words, none entity must be detected (in the range image) within a depth of 90 cms as
shown in Figure 3-64. Otherwise, presumably, there has to be something approaching the
user (entering the risky area) and an alert should be launched. Consequently, this could be
regarded as a primary alerting system (Figure 3-64).
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Figure 3-64. A risky layer. The first column shows three sequential images in which an ob-
ject is approaching the user (the camera). The middle column presents the counterpart range
images in which the depth of the scene is observed (depth is represented by colored layers).
The rightmost column shows de binary representation of the range images using a threshold
between 0.9 and 1 meter (i.e. 0.9<Range_Image<1.0). Therefore, these binary images reveal
what is going on in the scene at the risky layer, allowing the detection of objects passing
through it only. Importantly, objects in this layer (white clusters) are reported (yellow bound-
ing box) only when they are large enough (e.g. more than 200 pixels). Finally, objects detected
in this layer (and closer) have already reached a point so near the user that a collision is
rather likely. Therefore, they might be considered as potential obstacles.

Importantly though, this entity that seemingly approaches might not be an obstacle, de-
pending on the actual its actual trajectory. For instance, the frame of an opened door should
not be taken as an obstacle (even though detected at 0.9 meters or closer), whenever the user
is just passing through the door (Figure 3-63, left). In this case, a plausible conclusion is that
the user will never bump into the frame, so that an alert turns out to be needless (Figure
3-63). In fact, we can apply the same reasoning to any object entering the risky area: even
though the object is near enough, it might not be an obstacle if it is likely to pass just by the
user’s side. This idea is intended to prevent false-positive alerts and is graphically explored in
Figure 3-65.
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Figure 3-65. (a) The resultant path that two objects have traced after reaching the risky layer
from deeper layers. Red vectors represent an object approaching directly over the user (situa-
tion (b)). By contrast, blue vectors belong to an object with diagonal trajectory (situation (d)).
Also, (b) and (d) represent these two situations showing some sample images of the sequences
that served to calculate the objects paths. In (b) a collision may be expected whereas, in (d),
even though the object surpassed the risky layer, a collision is rather unlikely. Hence, only (b)
should end up into a warning.

In our first approach once the object has been detected into the risky layer, we retrieve
the last 15 color images back in time before the detection (note that in both, Figure 3-64 and
Figure 3-65 only two of them are shown). Then, we use a short-term tracker (e.g. Kalman
Filter [202]) to backtrack the object over this set of frames (see Figure 3-65 (a)). Note that
the initial target needed for the tracker initialization, is taken from the detection in the risky
layer (bounding box shown at the bottom of the first column in Figure 3-64). Thus, we can
trace the path of the object within the previous 15 frames (1 second before detected). Fur-
thermore, using a vector average, we can estimate what its position will be when it reaches

the user plane (1 second after detected).

A simple yet efficient second approach to the problem of obstacle detection is also explored
in this thesis. We constrain the color video stream to the area that defines the spatial path he
is walking through (area of interest). Therefore, we keep the sideway areas of the scene out of
shoot and only objects standing on the user path (and not to the sides) are captured. For
instance, the frame of an opened door would be excluded of the video when the user passes
through (Figure 3-63), because the field of view of the camera accounts only for the area of
interest. We do so by correcting the perspective of the camera as explained in detail in section

Framework (using ortho-kinect) and in [25]. We simulate an orthographic camera that is no
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longer affected by the perspective laws. This allows us to restrict the video into the area of
interest (the one in front of the user) and keep the sideway parts of the scene out of shoot.

Orthographic
Camera
Area of Perspective o ;f
interest Camera T

Figure 3-66. The central region of the video stream is defined as the area of interest when a
user goes forward. Note, however, that in a perspective camera this area is ‘contaminated’ by
objects that even though they are not actually inside, they seem to be just because of the
perspective effect. In an orthographic camera this is no longer an issue.

While in the second approach we are able to limit the color video to the area of interest,
we still need the range image processing to detect the obstacles that are seemingly approach-
ing as explained earlier in this section (i.e. risky layer Figure 3-64). Therefore, we finally
combine these two strategies (area of interest and risky layer) to build a robust alerting sys-
tem. Importantly though, one can easily notice that when the analysis is limited to the risky
layer and the area of interest, the orthographic view turns out redundant. None perspective
effect can arise in one plane of depth (risky layer) because by definition the perspective ap-
pears across the multiple depths (progressively away). Therefore, an efficient method to alert
the user about the presence of threatening obstacles could be as simple as the scanning of the
central part of the risky layer. Note that doing so, the problem of the opened frame door
(Figure 3-63) is solved since side areas of the risky layer are not scanned.

Finally, it is true that by using this strategy we lose track of the trajectory of detected ob-
jects. We confirm, however, that this fact does not affect the efficiency of the system: in prac-
tice, if an entity is less than 0.9 ms (risky layer) in front of the user (central area), it is con-
venient to alert the user (a collision is likely) even though the object is crossing diagonally
(Figure 3-65). Therefore, report of false positives is not an issue in our system. Figure 3-67
shows some sample images of a real-time video using See ColOr’s alerting system to detect
obstacles on the user (camera holder) way. Figure 3-68, in turn, shows some sample images
of a video in which both, the alerting system and the object recognition were used. This com-
bination will be tested in section Experiments. There are still some limitations in this alert-
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ing system such as the manually calibration that has to be done to set the threshold on the
number of pixels that form an obstacle. Also, the distance at which the object becomes dan-
gerous (risky layer) has to be set manually. Sometimes, misdetections or false positives can
occur too.

A |
+ "‘». f’ -

Figure 3-67. Two sequences in which the alerting system has detected an entity potentially
leading to a stumble (or collision). First row, the users moves toward an unexpected obstacle
(serendipitous encounter). Second row, the obstacle (a person) rushes over the user (threaten-

ing approaching). Once detected, the system segments the object and launches a warning
message in either case.

Figure 3-68. A three-frame sequence of a video showing a visual example of how the alerting
system and the recognition module work together. By default, the recognition module detects

known elements nearby (frame one and two) and notifies the user. When an element within
the scene (known or unknown) becomes potentially dangerous (i.e. user is approaching and
likely to bump into it) the alerting system activates an alarm. Notice that the information
displayed in this figure must be presented to the user via audio.
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3.6.3 Reading text in See ColOr

During the last decades, screen readers have proved to be of great help to let the blind ac-
cess textual information. Therefore, it makes all the sense thinking of ‘world readers’ to
convey textual information (in natural environments) to the visually impaired. Usefulness of
such technology that would make all this information accessible to blind is apparent. In eve-
ryday life, textual information represents one of the main medium for people to operate in
their environment. Examples are numerous: finding the right shelf in a store when shopping,
finding the right room in a hall, walking with precaution on a floor when a notice informs
“Caution, wet floor”, etc. Even if some of this textual information is translated into braille for
the convenience of visually impaired people (floor levels in elevators, important information
on medicine boxes), most of it remains inaccessible to them. This application could be also
seen as kind of augmented reality: allowing a user to film a scene and getting audio infor-
mation (in real-time) from the visual cues (text) contained on it (i.e. the written text is aug-
mented with audio).

Our idea to implement a computer-vision-based module in See ColOr is extensible to-
wards automatic detection, recognition and reading (by voice) of text. Fortunately, the re-
search on text recognition from natural scene images has been growing recently. Many meth-
ods have been proposed based on a variety of image processing and image analysis tech-
niques. Therefore, the interest of this thesis does not lie on the field of text-recognition re-
search as such. Even though further progress still needs to be done (out of the scope of this
work), nowadays there are sufficient available resources to enable See ColOr text reading. So,
in this thesis we are rather interested in making use of state-of-the-art methods in this area
to the benefit of the visually impaired. For that reason, here we aim at showing how available
technology is compatible with our system to enrich the user experience and facilitate every-
day life. Importantly though, we do offer a theoretical review to the subject below.
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Figure 3-69. Here we present the general framework for text reading from natural scenes.
Also, we added the “text to speech” process to focus the schema to the benefit of the blind. An
input image is processed first by a text detector. Next, the text recognizer (usually based in
machine learning methods) extracts the textual content (in plain-text) from the areas pointed
by the detector. The recognizer could be an OCR (Optical Character Recognizer), though it is
not very suitable for natural scenes. Finally, any text-to-speech software may be used to
convert the textual information into voice.

Optical Character Recognition (OCR)

Optical Character Recognition is now a mature field of computer vision. It has been ex-
plored since the early days of digital computers: "the modern version of OCR appeared in the
middle of the 1940’s with the development of the digital computers. OCR machines have been
commercially available since the middle of the 1950’s [208]. Nowadays, anyone can have
access to this technology. For example, the famous file hosting service Google Docs lets the
user extract text parts of an image or PDF file [209]. We can also name a few open source
OCRs, such as Tesseract, GOCR, and Ocrad. Also note that the software that comes with
most of the recent scanners usually offer OCR technology. However, this prevalent technology
only succeeds with highly constrained images, such as scanned documents, where the text is
perfectly illuminated, contrasted, zoomed and aligned. In other contexts, its efficiency is
drastically worsened. As a result, it cannot be used unchanged for the purpose of extracting
textual information from natural scenes.

The need of methods more robust than standard OCRs is apparent. In other words an ef-
ficient text recognizer must succeed in recognizing text even with unconstrained images.
There are two reasons why the encountered text could possibly not be well formatted. Firstly,
more and more systems are deployed on mobile device, which means that the quality of the
images might not be perfect. Indeed, images might not be perfectly illuminated and focused,
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and the resolution might be poor. Secondly, the nature itself of a natural scene implies diffi-
cult illumination conditions (low contrast, reflections), as well as distortion caused by per-
spective, or rotated text. Also, the images can contain different text areas, with extreme size
and font variation. In literature, this particular context is often mentioned as "scene text".

non

Other terms employed are "unconstrained images", "urban scenes", or "natural images".
Text detection

Text detection, also called text localization, aims at determining the areas containing text
in an image. Usually, the result of text detection consists in a set of rectangular windows
surrounding the different words that have been found. They are called “text-boxes”, “text
regions” or “text hypotheses”. The main issue when detecting text is avoiding false positive
and false negatives as much as possible. False positives occur when the algorithm detects text
in a region of the image where there is actually no text. Urban scenes can contain a lot of
geometric shapes other than characters, which can lead algorithms to wrongly consider them
as characters. Some papers, such as [210] with their F-HOG descriptor and [211]with their
straight segment analysis, introduce methods that validate or invalidate text hypotheses.
They help reducing the number of false positive. False positives can still be detected after the
text detection, because the text recognition is likely to fail when applied over them. However,
they are still going to be processed by the next steps, which can be resource demanding. As a
consequence, false positives can increase the overall computing time. False negatives (or
misses) represent a more problematic issue: they occur when the algorithm did not detect a
text region of the image. They can be due to the properties of natural images explained earli-
er: low contrast, difficult light conditions, poor resolution, large size and font variation, etc.

Text recognition

Text recognition aims at extracting the text content of an image. The result of text recog-
nition usually is plain-text. For example, text recognition applied on Figure 3-69 could out-
put something like: “CHEVRON STAN TEXACO”. This text can then be used by text to
speech application, language translation applications (as in [211]), or it can be used to tag the
image file with keywords in order to allow keyword search in a database of images (as in
[210]). For instance, if we consider once again the application of assisting the visually im-
paired, text to speech would be the most interesting application. We could also imagine inter-
facing a system with a braille terminal.

Text detection and recognition: families of methods

Methods for detecting and recognizing text can be categorized in different ways. In this sec-
tion, we review some of the families of text detection and recognition methods.

4+  Bottom-up / top-down: With regards to text detection, we can first distinguish
bottum-up and top-down strategies [210]: “Bottom-up methods first attempt at de-

157



tecting individual characters and then merge neighboring positive detections. [...]
Contrarily, top-down approaches directly look for text in images (sub) regions, most-
ly using a scanning window mechanism.” The main difference between the two ap-
proaches is the computational complexity.

Connected-component based / texture-analysis: Some methods first build connected-
components from the images, i.e. sets of pixels that are all connected to each others.
To build them, they proceed by searching for properties that are specific to text pix-
els. As mentioned in [212], these methods can be based on edges (because charac-
ters tend to have sharp edges) as in [213], greyscale or color homogeneity (because
characters tend to have a uniform color) as in [214], or mathematical morphology
(processing of the image based on the set theory) as in [215]. These methods are
computationally efficient, but they run into difficulties when the text is noisy, de-
graded, multicolored, textured, or touching itself or other graphical objects, which
often occurs in digital images [216]. Moreover, there are also some methods based
on texture analysis. They consist in segmenting the image, in order to differentiate
characters from background. To perform this segmentation, these methods compute
information about the texture of the image (texture features), that help discriminat-
ing text from non-text. These features can be extracted “directly from the pixel’s
spatial relationships or from frequency data” [217].

Standard OCR / End-to-end: Some papers only introduce text detection algorithms,
and rely on standard OCR software for achieving text recognition. Contrarily, other
papers introduce end-to-end methods. Most of the methods that are mentioned in
this review belong into the first category. They proceed as follows: first, they local-
ize text in the image. As noted previously, text localization usually results in a set
of rectangular windows (text hypotheses). Then, they use standard OCR software
for extracting the content of each text hypotheses. These methods have the ad-
vantage of being easy to understand and to implement. However, they are generally
more computationally demanding, and less accurate. Instead, other methods intro-
duce end-to-end algorithms: [218], [219], [220]. These methods are generally much
more efficient, because the character recognition is designed to be robust.

General model of text recognition for See ColOr

On the one hand, it is worth recalling that text recognition requires good quality images,
since letters may appear at reduced scales with the distance. Unfortunately, the quality of
Kinect-provided color images is known to be rather deficient. These images suffer from low
resolution, noise and unstable edges full of artifacts. Therefore, a key aspect to achieve relia-
ble text recognition in See ColOr is the possibility to couple an external rgb-camera with the
range sensor (Kinect). This process was described in detail throughout the section Efficient

registration of range and color images. On the other hand, to recognize text in a scene, we
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have used the open source implementation of the work “Text recognition in the wild” (TRitW),
whose matlab-based code is available online at the website of the author Kai Wang!3 [221].

TRitW uses multi-scale character detection via sliding window classification based on a
randomized forest algorithm [205] (similar to that used in this thesis for object recognition).
As it was mentioned in section Object recognition this detector is quite efficient and allows
real-time performance [201]. To train this detector synthetic data was generated by placing a
small random character (with 1 of 40 different fonts) in the center of a 48x48 pixel patch and
two neighboring characters, adding Gaussian noise and a random affine deformation (1000
images for each character, 62 characters). The efficiency of this approach to character recog-
nition was evaluated using the ICDAR!4 Robust Reading Competition data set for real char-
acters [221]. Note that here the text detector and the text recognizer as shown in Figure
3-69 become one in TRitW (because the randomize forest method detects and classifies as
well).

Additionally, this implementation (TRitW) also has a more sophisticated method for
words detection based on Pictorial Structures [222]. Roughly, this method takes the locations
and scores of detected characters as input and finds an optimal configuration of a particular
word. This is possible by using a dynamic programming procedure over a tree data structure (
[221] , [222]) built for a lexicon ( [221] , [222]) (a repository of known expected words). The
full implementation of this method (TRitW) for text recognition was tested in [221], using The
Street View Text!5 (SVT) dataset (images and lexicon) that was harvested from Google Street
View. Image text in this data exhibits high variability and often has low resolution. Some
selected results on the Street View Text dataset can be seen in figure. Finally, it is very im-
portant to note that this TRitW is re-trainable or customizable depending on specific needs.
In other words, one can create training characters and lexicons to train the method.

3 http://vision.ucsd.edu/~kai/
' http://robustreading.opendfki.de/
 http://vision.ucsd.edu/~kai/svt/
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Figure 3-70. Taken from [221]. Selected results on the Street View Text dataset. TRitW
results are shown in green and words from the corresponding lexicons are shown in dashed
pink.

To finally adapt the TRitW to See ColOr we used the TTS (text to speech) function in
matlab that synthesizes speech from a string, and speaks it in mono audio format, 16 bit, 16k
Hz by default. This function requires the Microsoft Win32 Speech API (SAPI). An issue that
needs to be fixed in future adaptations for practical uses is the memory capability. Basically,
running the text recognition method in parallel with the other See ColOr modules is not
possible due to demanding computational processing. We tried to make it work simultaneous-
ly at least with the alerting system, yet we did not succeed either. This fact gives rise to the
need of a switching functionality in See ColOr from exploration/navigation modes to text
recognition only. While this is limiting because it prevents the user from unexpected text
discoveries (while exploring), it is still useful for conscious searches (e.g. looking for an ad-
dress).

At large, text recognition in See ColOr is feasible and promising; it requires the following
line approach: an adapted external color camera bridges the user and the natural environ-
ment. However, there must be first an interface between the user and the camera (See ColOr
as such). This interface provides three different modes of interaction for the user to select
(local module, global module and now text reading). Note that when the user selects either
the global or local module, both the recognition module and the alerting system will run in
the background. By contrast, when the text reading mode is chosen, it will run independently
(due to computational limitations). The text reading module closes the cycle of human-
environment interaction by means of a text-to-speech app that gives audio feedback of the
textual information in the environment. The detection and conversion of this textual infor-
mation into speech is carried out by the ‘text reading’ module that internally has a structure
as shown in Figure 3-69. This module can be eventually customized to particular needs. This
will be done by semi-supervised learning using a data set gathered from the environment.
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This data set is but a sample of the particular text we want to recognize given a particular
situation. As it was mentioned before, in See ColOr we have adapted a state-of-the-art text
recognition method already trained with natural street texts. Figure 3-71 gives a theoretical
representation to this approach whereas, Figure 3-72 shows some pictures on this in prac-
tice.

coupled optical sensors

LOCAL GLOBAL

MODULE MODULE

RECOGNITION MODULE

See ColOr

ALERTING SYSTEM

user interaction mode selection

— text tospeech

training data set

Figure 3-71. The addition of a ‘text reading’ module in See ColOr and the interaction between
the user and the environment through this module.

Figure 3-72. For this experiment the TRitW was retrained using simple Calibri-font charac-
ters with white background. Also, we used a lexicon consisting in five words: {COLOR,
READING, TEST, TEXT, SEE}. Finally, we use the function T'TS (text-to-speech) in matlab
to translate the results of TRitW into voice. In the left image there is a See ColOr user scan-
ning the wall. Note that an external color camera has been coupled to the Kinect sensor.
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Therefore, the user is enabled to switch from “text reading” mode (using high resolution
camera) to exploration mode (with the range sensor) at any moment, and vice versa. In the
right image we have extracted one frame from the video being captured by the user. We plot-
ted on it the results of the text recognition at the time of the frame extraction (note the laptop
in the user’s backpack). These results are finally delivered to the user by synthetic voice. It is
worth saying that even though the recognition is fairly good, sometimes it was even better
(all the words were recognized)

3.6.4 Our approach to text recognition in the wild

In this section our attempt is to provide a framework to the problem of “text recognition in
the wild”16 [222]. Such a general framework will be adjusted within the context of our sensory
substitution device See ColOr. More precisely, we would like to elaborate a general methodol-
ogy to recognize text in unconstrained/natural scenes, supported by an implementation.
Afterwards, we will adapt this approach to the needs of See ColOr (Figure 3-71) and finally,
we will assess its efficiency through a particular example (i.e. a specific problem of text
recognition). It is worth noticing, however, that both our general approach and its adaptation
to See ColOr, will be unrestricted and fully adaptable to any other example. This means that
they can be used to any text recognition problem just through re-training [223] (Figure
3-71). Formally, the goals to be achieved at this stage of the thesis are threefold:

4+ Implement a general framework for text recognition in the wild.
4+  Adapt such a framework to See ColOr.
4+  Apply the adapted framework to a particular problem.

Firstly, our implementation of a general text detector/recognizer will be based on well-
known techniques such as deep learning and deep neural networks [223] [224] [225] [226]
[227] [228]. Although, the manner we will make use of these machine learning methods is a
completely original contribution of this thesis. As for the last goal above, the particular ex-
ample we will chose to test the effectiveness of our approach refers to the problem (for blind
individuals) of text reading at a bus station. Again, any other problem could be solved in the
future with our framework due to its flexibility (i.e. re-trainability). In regard the aforemen-
tioned second goal, our general approach to “text recognition in the wild” will be adapted to
the See ColOr’s needs as follows.

Text recognition in See ColOr: Text recognition in the wild implies text detection and
recognition (reading) in a natural/unconstrained image independently of both, location of the

16 . . s : L . .

It is of vital importance not to mistake text recognition in the wild for standard OCR (optical character
recognition) approaches. While the former applies to unconstrained natural images (mainly cluttered
street views). The latter applies only to well-contrasted image documents with predefine characters type.
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text and type of the text (font, size, view etc.). While this thesis is intended to fully fulfill the
latter, in See ColOr the former has no clear advantages. For instance, if a blind person (seek-
ing an exit) is told by See ColOr the word “Exit”, for the system happened to find that word
into the current scene, this person will gain no spatial awareness of the location of the actual
exit. In sharp contrast, it will be far more useful if the seeker is provided also with a rough
location of the exit such as right, left, front, bottom-left etc. In this view, we decided to use
our multi touch interface (See ColOr global module) to let the user find the text himself with
his fingers (Figure 3-73). It is true that the location of the text could also be conveyed through
left-right spatialization of the speech of the word (The sound of See ColOr). Nevertheless, our
choice of a finger-based scanning strategy has also deeper implications to be discussed later:

Figure 3-73. Text recognition in See ColOr. Our text recognition method constantly analyses
the finger-tapped area of the image. If this area contains no text, no sound is emitted (top-
right). In contrast, if the area does contain any text, the name of the letter being touched is

spelled out with a text-to-speech converter (bottom-right and left). The text contained within

the on-a-tablet-displayed image is captured by a head-mounted camera that records the natu-
ral environment (top-left).

To date, state of the art approaches in “text recognition in the wild” are far from being re-
al time so that, given the scope of this thesis, changing this fact is none of our goals. Ap-
proaches to this problem fail to perform adequately in terms of time, mainly because current
methods (including ours) are unable to scan a whole image rapidly enough due to computa-
tional limitations. Drastically improved results, however, can be achieved if the scanning is

163



limited to a small portion of the image (e.g. the portion cover by a fingertip). This being said,
the aforementioned finger strategy turns up to be a good fit for See ColOr. Importantly also,
this choice ends up in a real time application that can even be implemented in portable
phones such as an iPhone.

In short, we will have a user scan the tactile tablet (e.g. iPad, iPhone etc.) on which the
camera-provided image is being displayed, quite like the See ColOr global module. If it hap-
pens that the user touches a letter, See ColOr will immediately spell out the name of that
letter making use of our text recognition method. This will allow the user to build words as he
scans the content of the image, in quite similar way to the workings of Braille systems. Note

that inside See Color’s adaptation (i.e. without the finger scanning) our approach will succeed
in any text recognition problem (though conditioned to prior training, Figure 3-71). Likewise,
outside of See ColOr, in the general case of text recognition, our approach will succeed too. In
this case, nevertheless, real time will be unachievable as it is for state of the art methods
[217]. Our approach to text recognition in the wild, adapted to See ColOr, has been well por-
trayed in Figure 3-73.

3.6.5 Deep Neural Networks and Deep Learning

Our strategy is rather simple; we will have two classifiers scan an image progressively
through small areas or windows. This is broadly known as sliding window-based approach
[145]. The first classifier (binary) decides whether the small area being analyzed contain text
or not; i.e. text detector. Our second classifier then, decides which letter of the alphabet is
contained in the area positively classified as text by the first classifier; i.e. text recognizer.
The latter decision could be made by either one classifier of multiple classes (as many as
letters), or multiple binary classifiers each associated to a particular letter; e.g. “a” or not “a”.
For the time being, let us adopt the strategy of having one classifier with multiple classes. In
any case, however, the recognizer will be far more complex, so that having a binary text de-
tector will prevent us from seeking letters in areas where not even text is likely.
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Input layer Hidden layer  Output layer

Figure 3-74. An Artificial Neural Network schema. We have highlighted in red a random
neuron j within the network. This neuron is connected to all the neurons in the previous layer
by weights w (e.g. neuron i is connected to neuron j through the weight wj;). Each neuron in
the network has and activation function ¢(e.g. ¢jand ¢). This activation function yields an
output of the neuron known as a (or y in the figure); e.g. yi; and y;. Notice that for simplicity, in
this figure only one hidden layer was drawn. Nevertheless, there is no restriction in the num-
ber of hidden layers that can be used. As a matter of fact, in this work we will use networks
with many hidden layers, also known as deep neural networks.

In this work both classifiers are Artificial Neural Networks (ANN) (Figure 3-74) [226].
Artificial neural networks are models inspired by the central nervous systems (in particular
the brain) that are said to be capable of machine learning and pattern recognition. By and
large, they are represented as mathematical models of fully interconnected layers of neurons
that can compute desired outputs from inputs by feeding information through the whole
network (Figure 3-74). Each neuron j is fully connected to each neuron i in the previous layer.
These connections wj mimic dendrites and axons in natural systems. A neuron can be acti-
vated or not, when its connections (weights wj;) multiplied by its inputs (or outputs y; of the
previous layer), are linearly pondered by an activation function ¢. If the activation function
surpasses a certain threshold, the neuron is then activated and its output (y; or a;) will affect
the neurons in the next layer:

a =Yy = ¢j(z W;iyi)

Roughly, ANN can be seen as a multivariable (weights) function that can approximate a
set of desired outputs from a set of inputs so as to replicate the mathematical relation be-
tween them. This approximation is made possible by tuning its weights to specific values; i.e.
training. Such training relies on a heuristic/iterative method, also known as the learning
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method [225] [226]. A broadly accepted strategy for learning is the standard gradient descent
[227]. This is typically the case, for the training of an ANN can be regarded as an optimiza-
tion problem in which we want to minimize the error between the actual output of the net
(fed with an input) and the expected output. This error (E) can be minimized only through
modification (tuning) of the variables (weights) of the function (ANN). A well-accepted error
function is the minimum mean squared error, defined within the context of ANNs as follows:

u

B =2 Y- oy

=1 i=1

From this error function we must arrive (Appendix B, for details) to the general rule that
updates the weights in an ANN:

w; (n+1) = w; (n) +ay, (n)d;(n)

where ¢j (\/j (n)) is the derivate of the activation function of the j-tA neuron in the hidden

layer evaluated in a local field. 5k(n) is the local gradient of neurons in the output layer. And

ij is the weight that links the j-th neuron in the hidden layer with the k-th neuron in the

output layer. Note that the error is always being propagated backwards (previous layers).
Therefore ANN trained with this rule are called back-propagation networks, since the tune
the weights from output to input layer based on a gradient descend rule over an error func-
tion.

An ANN is called deep when it has many hidden layers (multi-layered), and it is called
shallow otherwise. Training deep multi-layered neural networks is known to be hard. The
standard learning strategy -consisting of randomly initializing the weights of the network
and applying gradient descent using backpropagation- is known empirically to find poor
solutions for networks with 3 or more hidden layers [228]. Nevertheless, complexity theory of
circuits strongly suggests that deep architectures can be much more efficient (sometimes
exponentially) than shallow architectures. Hence finding better learning algorithms for such
deep networks could be beneficial. A clever strategy to train deep neural networks (known as
deep learning) consists in simply initializing the weights (before applying gradient descent)
not randomly but following a strategy. This strategy is rather simple: each layer but the last
one, is trained individually as an unsupervised autoencoder. Once all the hidden layers have
been trained, we apply standard supervised gradient based learning to the whole network.
This will affect both the pre-trained hidden layers (fine-tuning) and also the untrained output
layer. This pre-training strategy is known to improve on the traditional random initialization
by providing “clues” to each intermediate layer about the kinds of representations that should
be learnt, and thus initializing the supervised fine-tuning optimization in a region of parame-
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ter space from which a better local minimum of the error function can be reached [223] [224]
[225] [226] [227].

The unsupervised autoencoder [228]: An autoencoder neural network is an unsuper-
vised learning algorithm that applies backpropagation, setting the target values to be equal
to the inputs [228]. It is called unsupervised because the outputs need no labels as they are
simply the same inputs, which is not a condition in the general case of ANN (Figure 3-75).
Importantly, the autoencoder is made up of an input layer, a hidden layer and an output
layer. The former and the latter being of the same size as again, outputs are expected to be
the inputs. The key aspect of the autoencoder has to do with the middle or hidden layer. In
the general case, this layer is much smaller than the others two. This means that the net-
work is forced to learn a compressed representation of the input; i.e. given only the vector of
hidden unit activations (smaller than the input), it must try to reconstruct the original input
in the output. Nevertheless, even when the number of hidden units is large (perhaps even
greater than the number of input neurons), we can still discover interesting structure, by
imposing other constraints on the network. This constraint is known as sparsity [228] (a
variant to the gradient descent method), though given that in our implementation the hidden
layer is always smaller, we will avoid this.

Input layer Hidden layer ~ Output layer
X1 Out:= X4
X5 Out.= Xo
X3 Out:= X3
Xa Out:= x,
X5 Outs> X
Xn Out.= X,

of the input

Figure 3-75. Autoencoder. Notice that the hidden layer must have a smaller number of neu-

rons.

The main aspect here is that having compressed the input in the hidden layer, the auto-
encoder had to have learnt key features of the input that will allow its reconstruction. Thus,
quite like PCA (Principal Component Analysis) [228], the autoencoder reduces a vector to its
more relevant and characteristic dimensions; out of which the original vector may be inferred
with minimum loss of information. This being said, we can go back to the idea of using auto-
encoders in deep learning to initiate the weights of a deep neural network. Each layer (/) of
the deep network is to be treated as an individual autoencoder, by taking the previous layer
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(I-1) as input layer and adding to it a temporary layer of the same size as output layer. After
training, tuned (or trained) weights of this temporary layer are forgotten. In contrast, tuned
weights between layers /-1 and [ are transferred, as the initial weights (between those lay-
ers), to the original network that is yet to be trained as a whole (fine-tuning). If we repeat
this process layer by layer, we will be learning features of the input in the first layer, features
of features in the second and so on. In other words, each layer is to encode a more abstract
version of the input. The final layer of the original network that is meant to respond with the
expected outputs of the global problem we are training for; will get tuned once the backprop-
agation algorithm is applied globally to the network. This routine is summarized in the fol-
lowing pseudo-code:

PSEUDOCODE FOR DEEP LEARNING IN DEEP ANNs

1. Initialize W randomly;
2. %pre-training

3.forie€{l...L-1} do

4. if i==

5. Ttemp=I;

6. else

7. Ttemp=logsig(W({i)* Liemp);
8. end

9. Otemp=Itemp;

10. create a ANN; of tree layers (size(Itemp), size(W(i)), size(Otemp));

11.  train ANN; with Itemp and Otemp using standard backpropagation;
12. W(i)=Wanni in hidden layer;

13. end

14. %fine tuning phase

15. train the original ANN with I and O using standard backpropagation;

W represents the weights of the original network to be trained as a classifier in this the-
sis. L is the total number of layers of the network. I and O represent the inputs and outputs
respectively or patterns to be learned in the classification problem. W(i) are the weights of the
layer i in the global network. Iiemp and Orwemp are the temporary patterns to be learned by auto-
encoders-like hidden layer. Finally, note that a log-sigmoid function logsig has been chosen as
the activation function for all the neurons in this network.
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Reading at the bus station with Deep Neural Networks and Deep Learning

Here we would like to put to the test our approach based on neural classifiers in a practi-
cal situation of everyday life. In particular, one that turns out very useful for blind people
who often struggle to use public transport in the city. We will go out there to Geneva’s streets
and collect real data to train our networks, and try to have them read text in real bus stops.
Needless to say, that this is just a particular example we want to describe step-by-step for
readers to be able to apply our framework to any other situation. Examples of the sort of
images we can find in Geneva’s bus stops are shown in Figure 3-76. It is worth recalling here
that text reading demands high quality images. Hence, we need to add an external color
camera to Kinect, for our See ColOr prototype to acquire such images (Efficient Registration
of depth and color images).

Figure 3-76. Sample images collected from some Geneva’s bust stops. Our goal is to read with
See ColOr any textual contents that may come across; e.g. Grange-Collomb, Tours-de-
Carouge, Drize etc.

As it was mentioned before, we will have two networks analyze a given picture by small
parts or equivalently, using a sliding window. The first network, will let us know which areas
of the image do contain any text (text detector). The second one, in turn, will analyze those
textual areas (using a sliding window as well) to tell the letters apart (text recognizer). No-
tice that since the classifier that tells letters apart is more complex than the simple binary
network; having an initial detector saves a great deal of computational power. This idea has
been portrayed in Figure 3-77.
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Figure 3-77. Sliding window strategy used in this work to detect and recognize text in the
wild for a given image. The classifiers are deep neural networks trained with deep learning.
Note that classifier 2 can be either a single classifier with multiple classes or various classifi-
ers, one per class (letter). In any case it is far more complex than the first one which is simply
binary. To save computational power, this recognizer operates only when we are certain that
some text has been detected (first classifier’s task). Finally, the two classifiers do not share at
all the same window. If the first one detects text inside its windows, the second do explore the

same area, though using its own windows yet to be described later on this work.

To train and feed our first network a 20x20 pixel window has been used. The content of
this window is put in a 400 component column vector that serves as the actual input. Need-
less to say, these inputs need first to be normalized between 0 and 1. The output, in contrast,
results from a 2-binary-neuron output layer that yields the decision: text (1,0) or not text
(0,1). The overall structure of this network has been designed with 10 layers of 350, 300, 250,
200, 120, 60, 20, 10, 5 and 2 neurons respectively. Although, the choice for networks struc-
tures is known to be empirical and based on a trial-error process, we have a couple of reason
for ours: pyramidal or size decreasing layers grantee that each layer pre-trained as an auto-
encoder is indeed compressing the input; for the previous layer will always be bigger. This
being said, the number of neurons per layer comes naturally, as we want to achieve realistic
(therefore gentle) compressions not to force the network. Thus, we slightly decrease the size
of a layer according to the previous one. Also this mild decrease in neurons each layer ends up
in an actual deep network (i.e. many layers). As for the training, we use 3000 examples of
windows containing no text and extracted from videos of three different bus stops in Geneva.
Likewise, we use 2000 examples of windows that do contain the kind of text we aim to detect.
These 5000 examples were selected and labeled (positive/negative) by hand. Actually, 10% of
these data was used for validation and the rest 90% for training. Finally, for comparison we
used the same data to train a shallow (not deep) neural network with standard backpropaga-
tion (not deep learning). In Figure 3-78, 300 examples of each class of the training data are
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presented, whereas training performance and precision-recall validation of both networks are
shown in Figure 3-79.
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Figure 3-78. Classes: “text” or positive (left) and “not text” or negative (right). In this fig-

ure300 examples (20x20 pixels each) of each class are shown, the whole amount of positive
and negative examples serves as a training data set for our binary network (detector).
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Figure 3-79. Top graphic represents the training performance of a shallow network of 350,
100 and 5 neurons (blue) and a deep network (red). Both networks were trained with the data
presented in Figure 6 during 7000 epochs. Bottom graphic represents the precision-recall
curves for the same networks in the validation test. The superior performance of the deep
network is also reflected in the validation test. Both plots confirm that the deep network
trained with deep learning is far more efficient (for this task) than a standard shallow net-
work.

In the case of our second neural network the size of the window is not fixed, for we cannot
possibly know the size in which a sought letter will show up. This size varies according to the
distance, perspective and/or rotation that a letter may exhibit. Nevertheless, since an input of
fixed size is required for this sort of networks, we normalize the size of the letters (whatever
it is) to 16x13 pixels. This leaves us with a column input vector of 208 components or pixels.
For training, this strategy works fine since example of letters are selected manually and
regardless the size, they are simply taken down or up to the scale of 16x13 pixels. In sharp
contrast, if the network is not being trained but tested, the selection needs to be done auto-
matically. Since, again, we draw a total blank of the size of a letter, we need to try several
different sizes of windows at each point the network is passing through. We will deal with
this decision later on, though for the moment it is worth saying that this is one more reason
why we need to have a text detector before the text recognizer (Figure 3-77).

In this example we want our second network to learn just the most common letters, i.e.
the vowels a, e, 1, o, u (see Figure 3-80). Thus, based on similar reasons than before, the
structure of this network was chosen to be: 10 layers of 200, 170, 140, 100, 70, 60, 20, 15, 5,

172



and 2 or 5 respectively. Notice that the output layer may have either two neurons if we chose
to have five networks that classify each vowel; or five neurons if we chose to have only one
network that classifies the five classes of vowels. In this work will test both approaches: one
multiclass classifier and several binary classifiers.
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Figure 3-80. Examples of the five classes of vowels. Examples are normalized to a size of
16x13 pixels.

For each vowel we collected (out of the three video) 800 examples, which makes a total of
800x5 = 4000 patterns belonging to 5 different classes. In Figure 3-80 we show several exam-
ples of each class and 10% of these data was also used for validation. Notice that examples
displayed in Figure 3-80 are already normalized in size (i.e. 16x13 pixels). If only one network
is used to tell the letters apart, we simply label the 4000 patters with their respective classes
and train the multiclass network. For otherwise, if 5 networks are used, we then train each
using a leaving-one-class-out strategy [219]. This means that for instance, the network meant
to classify the vowel a is trained with two classes one positive and one negative. This latter
contains the rest of the classes in one: e, i, 0 and u (Figure 3-80). Exactly as we did with the
text/not-text network, we trained shallow structures for comparison. In Figure 3-81, we pre-
sent the training performance for five binary deep networks (one per vowel) and one mul-
ticlass (all vowels) deep network; as well as their shallow peers. Following, Figure 3-82 shows
the precision-recall validation curves for networks with best performances in Figure 3-81.
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Figure 3-81. Training performance of five binary deep networks and one multiclass deep
network. In this figure shallow (200,100, 2 neurons) peers of these six networks are also
shown.

In Figure 3-81 we can make multiple observations. Firstly, in all cases (binary and mul-
ticlass) deep networks trained with deep learning show better performance than shallow
networks trained with standard backpropagation. Secondly, in average five binary networks
perform better than a single multiclass network in both cases deep and shallow. Further, five
binary networks either shallow or deep, perform better in average than the two multiclass
networks (deep and shallow). Therefore, the best classification of vowels in training is
achieved by five binary deep networks. Similarly, the second better classification is achieved
the five binary shallow networks. In Figure 3-82 we show the precision-recall validation
curve for these 10 best networks.
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Figure 3-82. Precision-recall curves for validation of five binary deep networks and five bina-
ry shallow networks. As expected and reflecting the results in training performance, deep
networks are fairly better than shallow ones.

In Figure 3-83, we can view a random example of our trained networks processing one
image. For the first network we do not slide the 20x20 window through each pixel of the
picture, as it slows down unacceptably the detection. Rather, we slide the window each 20
pixels; this improves the searching to reasonable time, yet not real. The pixels detected as
positive by the detector (i.e. there is text), are then dilated to form the actual textual areas
(Figure 3-83). Across these textual areas, we then run our second network as a text recogniz-
er. Oppositely to the previous one, we have to slide several windows, for, as before mentioned,
we don’t know in advance the possible size of vowel to be detected, if any. In Figure 3-84, we
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have plotted the height and the width of many of the vowels collected manually during the
training phase, before they were normalized to 16x13 pixels. Notice that letters not taken into
training are expected to exhibit nearly these sizes. In theory, therefore, we would need a
sliding window for each size in order to detect them all. In practice, however, we can find the
most popular or representative sizes. We find the most representative sizes by applying a k-
means clustering algorithm (of 4 classes) in the space of windows sizes (Figure 3-84). The
centroids of these classes are chosen as the sizes for our sliding windows: 15x20, 28x21,
36x47, and 44x24 pixels. Finally, 4 is a number assumed just to keep the algorithm runnable
in standard computers; it can be higher though.

Figure 3-83. A frame processed with our detector (top-left). The detected points dilated in a
binary image that shows the textual areas (top-right). The two previous images merged in
one (bottom-left). The result of our “a” classifier applied across the white textual areas (bot-
tom-right). Note that in its majority, false positives of our detector are finally filtered by our
second network.
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Figure 3-84. On top of this figure the sizes (height and width) of the letters selected manually
during the training phase are shown (only 400 examples are plotted). In the bottom figure, a
4 class k-means segmentation algorithm has been applied to these points. Classes are labeled
with colors and centroids with a triangle. These centroids are assumed to be the most popular
sizes for expected letters. Thus, we fix 4 sliding windows for our second network to be these

sizes.

Does it work for See ColOr?: Our approach is not real time as doesn’t it the state of the
art. Importantly though, real time for See ColOr was not intended in text recognition. As
presented at the opening of this section, for blind individuals there is a way to maintain a
real time text-reading application, without going to the trouble to scan a whole image. See
ColOr already has a tactile interface that serves our global module, so it will serve too as a
platform for text reading. Rather than analyzing the entire image looking for text, we display
the image into the tablet and have the user scan it himself with his fingers. The overall strat-
egy is: letter touched, letter told. Users then will receive textual feedback using their fingers,
quite like braille system. Except that in See ColOr the feedback is acquired through the audi-
tory pathway rather than the tact. In practical terms, it is like the user has a sliding window
stuck in his fingertip as it moves through the tablet, so we can focus our networks on that
window only. More precisely, five windows are to be evaluated: one for the detector and four
for the recognizer (Figure 3-84). Moreover, as it has been studied before in this thesis, the use
of the protocol TUIO (Tactile interfacing) allows us to communicate the coordinates of the
finger wirelessly to a computer (running the networks) from any Mac device; e.g. iPad, iPh-
one. We have implemented this application in an iPhone to show the functionality, portability
and practicality of our approach (Figure 3-85). A video of our neural networks working on our
iPhone-based application for text recognition in See ColOr, can be watched in:
http://youtu.be/zGq7KrcQ0OKs
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Figure 3-85. Our implementation of braille-like text recognition, using deep neural networks,
deep learning and iPhone. First a neural text detector decides whether or not the finger tap is
text. If so, a neural text recognizer decides what is the letter touched by the finger.

Testing accuracy with real scenario data: As it was already mentioned, we trained
our system with three videos recorded in three different bus stops of Geneva, namely: Tours-
de-Carouge, Grange-Collomb (both in the area of Carouge) and Jonction in the city area. For
testing, we recorded two new videos in yet another two stops, namely: Gare-Cornavi in down-
town and Petit-Lancy in the periphery. The geographic locations of these places within the
city of Geneva are shown in Figure 3-86. Out of these two testing videos we manually ex-
tracted 100 examples per vowel with their respective coordinates within the image. After-
wards, 500 examples of background were extracted randomly (but always outside of textual
areas) and saving their coordinates within the image.
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Since all collected coordinates belong to any of six classes, i.e. they belong either to one of
the five vowels (textual), or to the background. To test the accuracy of our approach, we just
need to evaluate the corresponding networks in these coordinates. In the one hand, to test our
first network we extract a 20x20 patch of a given background-class coordinates. In the other
hand, our second neural network is fed and tested with four patches (156x20, 28x21, 36x47,
and 44x24 pixels) at each of the textual coordinates. The answer of the network is positive if
at least one of these four inputs is positive, i.e. a letter was found at some scale or size. The

Figure 3-86. The bus stops used for this test in Geneva.

results yielded by this experiment are reported in Tables Table 3-6 to Table 3-9.

False
True Pos. | False Pos. | Neg. Precision Recall
A_net 94 3 6 0.969 0.940
E_net 97 2 3 0.980 0.970
I_net 98 9 2 0.916 0.980
O_net 100 7 0 0.935 1.000
U_net 96 6 4 0.941 0.960
Text_net 483 73 17 0.869 0.966

Table 3-6. Test performance for multiple binary networks trained with deep learning.
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True Pos. False Pos. | False Neg. | Precision Recall
Class A 92 4 8 0.958 0.920
Class E 90 5 10 0.947 0.900
Class I 93 7 7 0.930 0.930
Class O 96 9 4 0.914 0.960
Class U 94 9 6 0.913 0.940
Multiclass Net= 0.932 0.930

Table 3-7. Test performance for a multiclass network trained with deep learning.

True Pos. False Pos. | False Neg. | Precision Recall
A _net 90 13 10 0.874 0.900
E_net 92 7 8 0.929 0.920
I_net 86 16 14 0.843 0.860
O_net 83 11 17 0.883 0.830
U_net 94 10 6 0.904 0.940
Text_net 412 73 88 0.849 0.824

Table 3-8. Test performance for multiple binary networks trained with standard backpropa-
gation.

True Pos. False Pos. | False Neg. | Precision Recall
Class A 87 12 13 0.879 0.870
Class E 87 14 13 0.861 0.870
Class I 82 18 18 0.820 0.820
Class O 79 16 21 0.832 0.790
Class U 81 20 19 0.802 0.810
Multiclass Net= 0.839 0.832

Table 3-9. Test performance for a multiclass network trained with standard backpropagation.

Reflecting their best performance in training, five binary deep neural networks were the
best architectures in this test. Therefore, we could conclude that having a deep network per
letter of the alphabet, is the best strategy for a full text-reading implementation. That would
be true were it not for each letter we add increases the time response of the system, which is
proportional to the number of networks analyzing the finger position. Oppositely, if we chose
to have a multiclass network that classifies all the letters at once, this time would remain
constant since all the analysis relies on one net. This latter choice will, however, diminish the
precision or accuracy of our system, as reflected in both training and test. Thus, we are left
with a balance decision between precision and time. Therefore, the multiclass network option
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must be by no means rejected. Though if we choose so, deep networks should be used rather
than shallow ones.

Testing usability with real scenario data: For this test we trained our system to rec-
ognize digits from 0 to 9, exactly in the same way we did with the vowels case. The aim here
is to have blindfolded people discover the number of the buses in a random station’s picture.
To do so, test takers need to trigger the sounds of the numbers with their fingers, while scan-
ning the screen of the iPhone (where the image is represented but not actually shown). More
precisely, every time they touch or tap a digit, our system speaks out the digit itself, allowing
people to understand which and where the numbers are. To complete this task, every partici-
pant is trained with one only picture. Oppositely to the actual test, during this one-image
training they are allowed looking at the picture that is shown in a computer (Figure 3-87).
For we want them to get familiar with the precision, sensibility and speed they need to apply
in their fingers to make the system respond properly.

Figure 3-87. Training phase for this experiment. Computer and iPhone communicate each
other. At the moment this picture was taken, our system spoke out the number 1.

Afterwards, they turn their backs to the computer and get blindfolded to initiate the test
with a different image (Figure 3-88). Importantly, the blindfold guarantees they cannot see
their fingers either. Seeing the fingers move within the iPhone screen makes quite a differ-
ence, even if the screen hides the image. Finally for this test, even though images come from
different bus stations, they all have only 3 bus numbers (6 digits). Thus, this is the maximum
of buses that participants are to find to make the test come to an end.
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Figure 3-88. Some participants taking the test. Searching the bus numbers.

We conducted experiments with a total of 17 people. Only two of them couldn’t conclude
the test successfully: the first one just gave up the search after 4 minutes. As for the second
one, though he found all the digits separately, he couldn’t assert the actual number of the
buses. The performances in this test for the rest of the participants are described in Figure
3-89. All of the participants showed enthusiasm for this test and likened it with a challeng-
ing game. As a matter of fact, we only tried one image per participant but, most of them
manifested feeling challenged to take the test once more. Thus, they did have another chance,
though this time they weren’t blindfolded and they could see their fingers moving through the
iPhone. This latter trial served us to compare performances and make conclusions.

Results

m Blindfolded

M Not blinfolded
123456 7 8 9101112131415
Participants

Time to first target

Time (minutes)
o

Figure 3-89. Results of this experiment.

Valuable observations can be made out of these results (Figure 3-89). First of all, partici-
pants found the three buses in 3.35 minutes in average. This is an acceptable time for usabil-
ity given that: they only had one image to train themselves for this test and get familiar with
the system. This image was visible to them all the time (Figure 3-87), which means they
actually couldn’t train themselves blindly, before undergoing the test. As it is for all new
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systems and especially for those pursuing visual assistance, extensive training ends up in
fairly better performances. Particularly, we argue this way saying that the worst five results
(i.e. above 3.5 minutes) and also the two persons that failed the test were not iPhone users. In
fact, those who owned an iPhone (or tactile phone) manifested being more familiar and hence
prepared, to use the system than those who did not. This was very well reflected in the re-
sults. Also, when they were not blindfolded the average time lowers to 2.86; for they were
more aware of the movement of their fingers by looking at them. This awareness is expected
to increase as they practice to use the screen without seeing, quite like the blind do. Finally,
the best results (below 3 minutes) were achieved by those who took an ordered searching
strategy such as vertically and horizontally zigzag (Figure 3-90). Those who performed the
search just randomly were not as good as the former ones (Figure 3-90). This also reflects
that the correct use of tactile screens increases the success of our system. This correct use is
only achievable through practice and training. Last but not least, all participants took in
average 1.51 minutes to find the first number; this is almost half of the total time. In other
words, once the found a point of reference the search was rather easy. This opens alternatives
to improve our system such as finding at least one digit automatically to orient the user while
keeping the system reactive enough.

Figure 3-90. Searching strategies assumed by the participants. Left, horizontal zigzag. Mid-
dle, vertical zigzag. Right, random search. It was our observation that both zigzag-based
searches were more efficient.
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4 EXPERIMENTS

In this chapter we report on the most relevant experiments carried on in
the course of this thesis (4.1 Past experiments). There are key experiments
belonging to the earliest stages of See ColOr, which are still worth being de-
scribed first in this chapter. Following, we present a set of more recent ex-
periments conducted with both, blindfolded sighted and blind individuals
(4.2 Experiments with blindfolded sighted individuals and 4.3 Experiments
with blind individuals). This latter group belongs to a rural community in
a developing country (Colombia, South America). Overall, experiments re-
ported in this chapter lead us to think of See ColOr as a functional SSD,
and the discussion that closes this chapter (4.3.6 But is See ColOr function-
al so far?) will probably prove us right.

4.1 Past experiments

In preliminary stages See ColOr underwent many tests with users; some of them are
worth mentioning here. The following experiments we will comment in this section are de-
scribed in detail within the article introduced by Bologna et al. [229]. The first one had as
purpose to investigate whether individuals can learn associations between colors and musical
instrument sounds (From colors to instruments sounds in See ColOr). Another topic of inves-
tigation was whether it is possible to interpret pictures. Several experiments were carried out
by six blindfolded sighted subjects, listening to the sounds via headphones. In these experi-
ments we used the T3 tactile tablet section (see Evolution). Participants were trained to
associate colors with musical instruments and then asked to determine on five pictures (see
Figure 4-1), objects with specific shapes and colors. Experiments involved a training phase
with the use of elementary pictures. For all our experiment participants, training lasted
about 45 min. [229]

Figure 4-1. (taken from [229]) Images used in the experiment for color-instruments associa-
tion in preliminary stages of See ColOr.

Several observations were made in this experiment, namely: Regarding the children
drawing illustrated in Figure 4-1 (leftmost), all participants interpreted the major colors as
the sky the sea and the sun; clouds were more difficult to infer (two individuals); instead of
ducks, all the subjects found an island with yellow sand or a ship. As for the dolphin drawing,
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all participants interpreted the major colors as the sky and the sea; an individual said that
the dolphin was a “jumping animal”, another said that it was a fish and the others deter-
mined a boat or a “round shape”; only a person found birds and the small fish was interpreted
as a rock by two persons. On the interpretation of real images, such as the picture shown in
Figure 4-1 (middle), four participants correctly identified the tree with the grass and the sky;
a participant qualified the tree as a strange dark object and finally, the last individual in-
ferred a nuclear explosion. Concerning the rocky mountain (Figure 4-1), all subjects found
major colors (blue and yellow); however, no one made the distinction between the sky and the
sea. Note, however, that two participants suggested that the gray/white area between these
two components represented clouds. The last assignment was to find a red door in Figure 4-1
(rightmost). The two red doors represent less than 1% of the picture surface. Table 4-1,
summarizes the time durations for the exploration of pictures. [229]

Participant Figure 4-1 Figure 4-1 Figure 4-1 Figure Figure 4-1
(leftmost) (left) (middle) 4-1 (rightmost)
(right)
P1 8.3 6.7 9.1 8.7
P2 7.0 8.5 7.5 7.3 4.9
P3 9.7 13.5 9.0 11.0 6.0
P4 9.2 11.3 8.7 9.0 4.8
P5 14.3 10.5 5.4 5.6 6.0
Pé6 9.4 11.2 10.0 10.0 9.0
Average 9.7£2.5 10.3+£2.4 8.3£1.6 8.6+2.1 6.6+£1.8

Table 4-1. (taken from [229]) Time results (minutes) of the experiments on color-sound asso-
ciation.

Another relevant experiment was “pairing colored socks”. The purpose was to verify the
hypothesis that with the use of a camera, it is possible to manipulate and to match colored
objects with an auditory feed-back represented by sounds of musical instruments. Partici-
pants were not asked to identify colors, but just to pair similarly colored socks. The experi-
ments were performed by seven blindfolded adults who were not present in the previous
experiments. The training phase includes two main steps: associations between colors and
sounds and learning how to point the camera toward the socks. Five pairs of socks having the
following colors were used: black, green, low saturated yellow, blue and orange. Table 4-2
illustrates the results of our experiment participants and Figure 4-2 shows an individual
examining a sock. It is worth noting that the average number of paired socks is high. Partici-
pant P4 made a mistake between yellow and orange socks. This experiment showed that
blindfolded individuals can manipulate objects by pointing a camera on them and also that
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five colors can be matched with high accuracy even after a short training session. Note that
the experiment was difficult for our participants, since the camera was above the eyes [229].
The problem underlying was that as sighted persons they unconsciously tended to target the
objects with the gaze, so their eyes served them as reference point. Shifting this reference
point towards the forehead turned out to be confusing, since the target kept on going out of
focus. In the final chapter (Discussion) of this thesis we will make further reference to this
topic.

Figure 4-2. (taken from [229]) A participant taking the “paring colored socks” experiment in
the preliminary stages of See ColOr.

Participant Time (mn) Success rate (pairs)
P1 16 5
P2 4 5
P3 18 5
P4 6 3
P5 15 5
P6 11 5
P7 7 5
Average 11+5.5 4.7+0.8

Table 4-2. (taken from [229]) Results of the experiment “paring colored socks”.

The last experiment we want to mention is “following a colored serpentine”. This experi-
ment was quite relevant as it is one of the first attempts to autonomous mobility using See
ColOr. The purpose was to verify the hypothesis that it is possible to use the See ColOr inter-
face to follow a colored line or serpentine painted on the ground of an outdoor environment.
Figure 4-3 illustrates an individual performing this task. For this experiment we included

187



the same seven individuals who carried out the experiment on colored socks and additionally
a blind person. The camera here was the Logitech Quickcam Notebook Pro. The training
phase lasted approximately 10 min. Specifically; a supervisor managed an experiment partic-
ipant in front of the colored serpentine. The experimenter was asked to listen to the typical
sonification pattern, which is red in the middle area (oboe) and gray in the left and right sides
(double bass) (see From colors to instruments sounds in See ColOr). Afterwards, we asked the
participant performing the experiment to move the head from left to right and to become
aware that the oboe sound shifts (the red line). Note that the supervisor wears a headphone
and can listen to the sounds of the interface. Finally, the experimenter was asked to start to
walk and to keep the oboe sound in the middle sonified region. Note that the training session
was quite short. An individual had to learn to coordinate three components. The first was the
oboe sound position (if any), the second was related to the awareness of the head orientation
and the third was the alignment between the body and the head. Ideally, the head and the
body should be aligned with the oboe sound in the middle. Table 4-3 summarizes the results
of this experiment. [229]

Figure 4-3. (taken from [229]) A participant taking the “following a colored serpentine” exper-
iments in the preliminary stages of See ColOr.

Participant Path length (m) Speed average (m/h)
P1 88 723
P2 84 710
P3 110 485
P4 93 656
P5 84 484
Pé 97 600
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P7 97 451
Average 93.3+9.2 587.0+114.1

Table 4-3. (taken from [229]) Results of the experiments “following a colored serpentine”.

4.1.1 Discussion

These experiments were important as they gave us an idea of the order of magnitude of
the slowdown factor related to the substitution of the visual sense by the auditory pathway.
In the static pictures exercise, for instance, one could say that this factor might correspond to
the order of magnitude related to the ratio of visual channel capacity to auditory channel
capacity, which corresponds to two orders of magnitude [6]. Whereas for the “socks” and the
“serpentine” exercise this factor could be equal to one. From a cognitive perspective this
would be consistent with the fact that these two tasks are simpler than the interpretation of
image scenes.

Also, the results derived from the “serpentine” experiment were very encouraging, since
this was our first attempt to use See ColOr as a mobility aid. In vision substitution, the be-
havioral criterion establishes that if a person can carry out normally the functions ascribed to
vision, the sensory substitution indeed resembles vision [14]. At large, during this experiment
unsighted individuals performed in moderate time a visual task hardly achievable otherwise
(walking across a twisting path).

However, the experiment also revealed that for general navigation to be performed auton-
omously, it is needed more than mere transduction of low level visual features into sound. In
particular, after this experiment, we began to imagine the presence of obstacles with an
experimenter trying to estimate the distance separating him/her to an obstacle without
touching it, and the nature of the objects nearby. Moreover, we also started to plan experi-
ments, for which depth represents an important parameter.

The analysis of static pictures also served to point out the inability of participants to
make sense of an image out of the sonified representation of colors (low level visual features).
While very general aspects are barely attainable, cognitive aspects which often determine
regions of interest were completely neglected. This stresses again the need to implement
automatic processes to deal with the analysis and interpretation of complex and large
amounts of visual data, which are hardly transmittable through the auditory pathway (i.e.
computer vision methods, Computer-vision-based visual substitution).

Importantly though, the experiment involving the static images and to some extent the
matching of socks, showed that See ColOr’s sonic code is fairly learnable (From colors to
instruments sounds in See ColOr). With moderate time users were capable of mastering the

relations between colors and instruments sounds so as to perform these experiments.
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4.2 Experiments with blindfolded sighted individuals

We conducted studies featuring 12 blindfolded participants to prove that our system does
increase the spatial awareness and the intelligibility of the environment through non-visual
cueing. Specifically, we address the feasibility of haptic and auditory trajectory playback as a
method to substitute visual and spatial cues of a real environment in the interest of naviga-
tion. The goal behind this question is to enhance the intelligibility of the environment by
representing relevant cues through non-visual methods. To better understand how our inter-
face enhances the intelligibility of the environment, we conducted studies on specific cases in
which for unsighted individuals the environment is made illegible. Particularly, we evaluated
three situations in which unsighted individuals daily experiment a strong urge to be aided:
(1) the perception of colored boundaries that is made unattainable for the blind, and the
perception of physical boundaries. (2) Encountering of colored targets into an environment
and finally, (3) gaining awareness of the presence of walls. All of them are cases notoriously
challenging in which the blind may face embarrassing situations or experiment a strong urge
to be aided. Figure 4-4 illustrates these situations and this section is dedicated to prove how

our interface helps to tackle each of them.

@ ((( (@ : ((( @@

Figure 4-4. Three case studies in which our system allows the users to be aware of the close

environment: (left) A user perceives a border, as with color discontinuity (timbre of sound) or
depth change (rhythm of sound). (middle) A user becomes aware of the presence of a wall as
he gets closer and the rhythm of the sound increases. (right) A user finds a target as the
target emits a particular sound (depending on color) from a specific location in the azimuth
plane.
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4.2.1 Study 1: Audio Revealing of Boundaries

Figure 4-5. An individual detecting a real world boundary (in this case caused by depth dis-
continuity) by means of See ColOr.

This study concerns the capacity of the users to perceive, through the audio feedback,
points in an image at which its aspect changes sharply or, more formally, has discontinuities.
This allows the capture of important events and changes in properties of the world. Those
sudden visual changes in brightness, color, depth or textures are known as edges. Edges are
extremely important in visual contents as they create boundaries that define visual shapes.
Visual edges encode great amount of information in natural images. In fact, most of the natu-
ral images may be still understandable despite the absence of color and many other visual
cues but edges. Therefore, attainability of edges perception could easily lead the blind persons
to the acquisition of objects’ shape and regions boundaries.

The interface presented in this paper allows the perception of two classes of edges, those
defined by depth variations (e.g. an open door frame) as well as the ones caused by color
interruption (e.g. the boundary of a colored painting hanging on a white wall). Based on the
theoretical ability of identifying variation on instruments sounds (color) and frequency of
sound (depth), we hypothesize:

H1. A fingertip scanning will be enough for a user to perceive an edge and its location on
the tactile tablet (iPad).
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Procedure

We recruited 12 participants (7 female, 5 male, average age 28) for this study. Before this
experience, participants had not used our system. After training, participants were tasked to
identify five borders in each case: variation of sound timbre (color-caused edges) and rhythm
of the sound (depth-caused edges). They were blindfolded and asked to answer whether or not
at least one edge was present on the iPad. In the affirmative cases, they had to prove his
answer by sliding their finger along the edge. In order to exanimate positive and false cases,
they were placed (sometimes) in front of flat blank walls (edgeless). The answer, therefore,
must be negative for these exceptional cases. For the rest and the majority of the cases, they
were placed in front of a prominent border (corners, opened doors, discontinuity of color in a
wall). In the interest of easing the evaluation, we granted that only one edge was captured by
the camera and rendered on the iPad.

4.2.2 Study 2: Spatial Awareness

Figure 4-6. An individual becoming aware of a wall-like obstacle on his way (in this case a
rack of lockers). He was able to stop himself to a distance from which the wall is reachable by
hand.

This study concerns the ability to be aware of oneself in space. Specifically, in this study
we investigate awareness of spatial relationships as the skill to perceive an object in relation
to oneself. Spatial awareness is usually defined to include a person into space, so that a user
will understand his location and the location of objects in relation to his body [188]. In under-
standing these relationships, persons come to mechanize concepts such as distance and loca-
tion. For example, a person with spatial awareness will understand that as (s)he walks to-
wards a door, the door is becoming closer to his/her own body. This understanding is all
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achieved during our earliest age. Unsighted people however, entirely lack this ability and
their positioning in relation with the world is a thorough trial-and-error process.

Finding an unexpected wall or encountering an unexpected closed door often becomes an
embarrassing event that blind people must face daily. Based on the theoretical ability of
identifying the increasing/decreasing variation of a sound’s rhythm (depth), we hypothesize:

H2. Using our interface, a blindfolded person walking toward an obstacle will be able to
stop just before hitting it. In fact, this can be done so accurately that (s)he might know whether
the object is already reachable by hand.

Procedure

This study featured the same participants as the previous one. They were blindfolded
again and given training. As a consequence, they were able to accurately identify the rhythm
of the sound that a wall produces in our system according to its nearness. Afterwards, they
were five times asked to walk down the corridor (from different distances) toward a wall and
stop right before a hit, but close enough to reach it by hand. Once stopped, the participants
were asked to reach out and touch the wall.

4.2.3 Study 3: Finding targets and detecting obstacles

Figure 4-7. An individual with a tactile tablet seeking a person that wears a red t-shirt by
means of See ColOr.
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The final study aims at evaluating capabilities of individuals to seek and find a specific
target disposed into the environment being explored. Locating something in our surrounding
is somehow a constantly happening labor that we perform with multiple purposes such as,
reaching a desired venue, finding an object, avoiding collisions, making ourselves aware of
the surroundings layout and in general terms, it greatly supports exploration as well as navi-
gation tasks.

When sighted individuals are asked to indicate “where is something?”, they first perform
a gaze scanning of the surrounding and once localized, they point out the target. The pointing
operation in this case refers to the designation of that object by mediation of the arm, finger
and sight; aligned sight and finger form a “natural pointer” [129]. Our interface preserves
this mechanism as much as possible: We substitute the gaze scanning by a global exploration
with their fingers. The natural pointer, in turn, continues to be one of the fingers that stops
on the area the object is thought to be. Our hypothesis in this study states the following:

H3. Through the use of our interface the blindfold user will recover the ability of seeking and
finding an entity located into the environment.

Procedure

This study featured the same participants as the previous ones. A person acting as a tar-
get and wearing a red t-shirt stands in front of the blindfolded user at an unknown location.
The blindfolded person is then tasked to explore with his fingers the whole panorama being
captured by the camera and rendered onto the iPad. We fixed a controlled environment so
that no red elements others than the t-shirt are present. This simplifies the task into detect-
ing which portion of the tactile tablet screen emits the sound of red when touched. This trial
keeps on being run five times as the target person moves arbitrarily.

4.2.4 Results

This section reports numerical results achieved in this work concerning the case studies
previously described. It is worth noticing that the study on edges was twofold: Perceiving
colored edges (changing sounds) and perceiving edges of depth (variation on rhythm of
sound). We thus report results individually for the two of them. The apparatus used in these
experiments were: one touch-pad (iPad or tablet), one helmet-mounted camera range (Mi-
crosoft Kinect), one 14” laptop carried on a haversack and one set of high quality headphones.
Figure 4-8 plots four matrixes that graphically summarize the trend of each of the studies
carried out, respectively. Rows of these matrixes represent the number of trials or repetitions
(5) in which each study was consecutively performed. Columns, in turn, represent the partici-
pants who performed the study (12). To better understand the meaning of these matrixes we
describe them separately:
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For the matrix perceiving colored edges (Top-Left Figure 4-8), the green color means that
the participant perceived the edge when he first touched it. Yellow, in turn, means that the
participant required touching the edge more than once in order to perceive it as such. Finally,
the red color means that the participant either failed to perceive the border or perceived it
wrongly situated (deceptive). The same colors meaning can be extended to the matrix perceiv-
ing edges of depth (Top-Right Figure 4-8).

For the matrix walking toward a wall (Bottom-Left Figure 4-8), the green color means
that the participant timely stopped few steps ahead the wall, and managed to touch it upon
request. Yellow, in turn, means that the participant did stop and did not hit against the wall
but, he failed to touch the wall as he stopped to walk prematurely. Finally, the red color
means that it was required our intervention for the participant not to hit against the wall
otherwise, he would have collided.

Finally, for the matrix seeking a target (Bottom-Right Figure 4-8), the green color means
that the participant detected the target when he first touched it. Yellow, in turn, means that
the participant required touching the target more than once in order detect it. Finally, the
red color means that the participant either failed to detect the target or detected it wrongly
situated (deceptive).
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Figure 4-8. Four matrices representing graphical results of our case studies: green means
goal fully achieved, yellow means goal partially achieved and red means goal unachieved.
Vertical axes represent the number of trials which every case was performed in and horizon-
tal axes represent the number of participants who took part of the study.

Moreover, Figure 4-9 reports statistical results of this study in a global context. Each ex-
periment represented across the horizontal axis, was performed five times by 12 participants.
We thus have a total of 5x12=60 trials (100%) represented across the vertical axis. Figure
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4-9 does not discriminate against participants’ individual performance, yet it relates the
percentage ratio of failures and successes, between the four distinct case studies. The colors of
the bars have the same meaning as in Figure 4-8.

Performance with respect to the total
(100%) of experiments conducted

100

}o— -

Color Depth Wall Target

Success Partial ™ Failure

Figure 4-9. Percentage ratio of failures and successes, between the four distinct case studies.
4.2.5 Discussion

Overall, the results of our user studies (with an average of success of around 82%, Fig-
ure 4-9) reveal that our system aimed at fostering spatial awareness and increasing the
legibility of the environment can help unsighted persons to achieve a mental map of relevant
aspects of unfamiliar locations, a first step toward a robust navigational experience. All
participants found the system useful to roughly grasp a layout sketch of the scene and dis-
cover entities hovering nearby. In particular, the spatial awareness evaluated in Study 2,
added to the alerting system, enables unsighted individuals to travel safely across the envi-
ronments as they can plan the path to a target without stumbling. Study 3, in turn, grants
them access to information about resources in the environment that they may not otherwise
have received.

Through observation of the participants performances it became clear the impact and im-
portance of prior training to succeed the experiments. As proof, we can rapidly realize that
the four matrixes in Figure 4-8 pile up all non-green data (failures and partial successes) at
their bottoms (first trials). Tops of the matrixes however, remain largely green as users had
already gained experience by the time they performed ultimate experiments. Although this
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study did not explicitly encourage entire learning of our sonic code; this is the principal com-
ponent of our approach and only by full achievement thereof our system becomes truly
handy. The results reported in Figure 4-8 however, confirm that the rate of training de-
manded is rather low and in some cases negligible. The five minutes training prior the exper-
iments plus the first trials of the test, seem to be enough for a user to get acquainted with
system and succeed. In particular, the outcomes achieved in Study 2 (Bottom-Left Figure
4-8) reveal the major percentage of failures and partial successes. Curiously, most of these
flaws that relate dangerous situations (hit against the wall) were caused by persons who
confessed to lack nerve rather than training.

Our findings in Study 1 (specifically colored edges) and Study 3 strongly verify the hy-
pothesis HI and H3, since no failure was observed and provided that partial successes are
still good and seldom occurred in either case. Our system also reveals features that in turn,
increase the intelligibility of the environment for the blind by disclosing significant infor-
mation they could not otherwise perceive i.e. colored edges and target situation. Barrow et al.
[230] emphasizes the importance of edges in making an image intelligible far more than
other features. In fact, we argue that edges are irremovable when images are required to
preserve sense. A simple exercise of blurring an image using a filter can show us that the
more blurred the image the less sense it makes as its intelligibility little by little fades away.
It is well known that blind people entirely lack abilities to identify color-caused edges that
define objects, entities and natural boundaries. Therefore, we consider as crucial to move
toward letting unsighted individuals gain this ability through non-visual cueing.

Moreover, grasping a target when there is no telling of its location happens to be a thor-
ough situation in which unsighted people feel a strong urge to be aided. Hence, the localiza-
tion of objects using our system offers a greater sense of independence and could be of great
help to understand the layout of the environment. The results reported in Figure 4-8 (Bot-
tom-Right) clearly indicate the benefits which our system contributes to this matter with. In
line with Study 3, our alerting system also adds a strong component in this aspect, since
detecting obstacles/objects in natural scenes is a critical functionality in many mobility aid
applications. However, a higher level module aimed at recognizing the objects after detection,
would be of great help when navigating, exploring and understanding the environment. For
instance, alerting someone could be done far more effectively if in lieu of launching a warning
about a potential obstacle, the system notifies the nature of the object e.g. this is a man or, a
garbage can. This would bring us very close to a robust visual substitution system and that is
actually the venue our project targets to.

In general terms, with the addition of our haptic-based interface, as well as the alerting
system we expect trained individuals to move independently in unknown environments [30].
Moreover, we are aware that the See ColOr interface will not allow trained individuals to
understand or to discern human expressions. However, specialized modules could be devel-
oped for these challenging tasks. Finally as discussed by Bologna et a.l [30], cutting edge
technologies like neural implants or retinal electrodes are increasingly improving and in a
few years they might be used as local perception vision aids. It will take too long however,
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before these sorts of sophisticated technologies become affordable for average people especial-
ly in developing countries. Besides, the clinical risks and physical adjustments to which
users may be compromised to adapt these aids. Moreover, one arising question regarding
retinal electrodes is whether an individual with implanted electrodes could be able to deter-
mine depth and color, the first parameter being absolutely crucial for mobility. We hence,
believe that more financial efforts should be engaged in non-invasive mobility interfaces for
vision substitution. The blind community will directly benefit from this research topic in the
short/mid-term.

4.3 Experiments with blind individuals

Another key aspect of See ColOr is that the current prototype is made up of relatively af-
fordable technologies. This will benefit low-income countries, where blindness indexes con-
tinue to grow due to poor medical accessibility in rural areas. This also makes See ColOr
more practical and better situated in terms of social impact. Thus, we traveled to Colombia
South America, as we believe that it is always incumbent on a researcher to make the effort
to reach out to the community to engage with the population they're serving. With the sup-
port of “Pacto para la productividad”, a Colombian government initiative!” towards work
inclusion for individuals with disabilities; we conducted over 180 experiments with 15 blind
individuals, during more than 60 hours (see Figure 4-10). These subjects (many congenitally
blind) were legally blind individuals, meaning they have visual acuity of less than 20/400.
Their ages ranged between 25 and 50, and all of them had educational level above high
school.

It still remains to be seen whether the sonifications of visual cues could be interpreted
with sufficient accuracy, enabling the perception of environmental features in moderate time.
Thus, we address here the usability of See ColOr to substitute visual and spatial cues of a
real environment in the interest of navigation. Overall, we want to evaluate the proficiency of
our system in guiding blind individuals with effectiveness. To obtain quantifiable and repeat-
able results, we conducted studies on four specific experiments representing pragmatic situa-
tions. By and large, for experiments reported in this section the results reveal that See ColOr
is learnable, functional and provides easy interaction. In moderate time, participants were
enabled to grasp visual information of the world out of which they could derive: spatial
awareness, ability to find someone, location of daily objects, and skill to walk safely avoiding
obstacles. Our encouraging results open a door towards autonomous mobility of the blind.

7 www.pactodeproductividad.com
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Figure 4-10. A collage that summarizes the See ColOr experiments conducted with blind
subjects in developing countries (Colombia, South America).

4.3.1 Study 1: reaching a colored target via spatialized sound

This study concerns the capacity of blind users to perceive, through the audio feedback,
salient points (colored target) in a video stream. This allows the capture of relevant events
and changes in properties of the world. Further, this study evaluates the ability of the user to
interpret the mapping between spatial relations into sound. Locating something nearby is
somehow a constantly happening task that we carry out in pursuit of several goals such as:
reaching somewhere, avoiding crashes, making ourselves aware of the environment layout,
and so forth. In short, “where is something” is a key query that supports in great extent,
nature exploration and navigation of scenarios.
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Procedure

A red target is placed at unknown location (not revealed to the participant) within a room.
At the center of this room (about 2 meters away from the target), a participant sitting on a
spinning chair is then asked to rotate until perceiving the target (by hearing the particular
sound emitted by the red color). As the user revolves, the sound emitted by the red target
may appear as coming from either right or left. At that moment, the user is asked to go on
rotating slower until the emitted sound is centered in the auditory field (it is no longer heard
to the right nor the left, but in the middle). Hence, the participant will know that he has
rotated the chair enough to positioning himself right in front of the target. Following, the
participant must stand up and walk towards the target until reach it. In this experiment the
alerting system is activated, meaning that while spatialized sound leads the user to the tar-
get, the alerting system prevents him (her) from bumping into it (see Figure 4-11).

Figure 4-11. Participants taking the spinning-chair test.

Results

Figure 4-12 plots a panoramic bars graphic depicting the distribution of elapsed times
when 10 participants completed for 4 times this experiment. Statistical analysis of these data
reports that in average a participant takes 2.45 minutes to entirely fulfill the task. First
quarter of these data, on the other hand, fell below 2 minutes. Also, 756% of the data never
surpassed 3.2 minutes. Overall, the experiments also reported an upper adjacent data of 4.5
minutes as well as a lower adjacent data of 0.8 minutes. Finally, these data revealed an outli-
er value of 5.1 minutes.
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Figure 4-12. Results of the spinning-chair experiment.
4.3.2 Study 2: Gaining awareness of the presence of walls

This study concerns the ability to be aware of oneself in space. In this experiment we
evaluate how efficiently See ColOr provides awareness of spatial relations to the blind (i.e.
perceive an entity in relation to oneself). Spatial awareness let a person be included into
space, causing understanding of his location and the location of objects in relation to his body.
In grasping these relationships, persons come to mechanize concepts such as distance and
location. For example, a person with spatial awareness understands that as (s)he walks to-
wards a door, the door is becoming closer to his/her own body. This understanding is all
achieved during our earliest age. Unsighted people, nonetheless, lack this ability and their
positioning in relation to the world is a thorough trial-and-error process.
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Procedure

A participant is tasked to walk (from unknown distance) towards a wall located ahead.
The goal here is to perceive the distance between he and the wall as accurately as to stop at a
safe distance not to collide, yet close enough to reach out and touch it. There are two strate-
gies in See ColOr that may lead to achieve this goal:

4+  Assessing the sound emitted by the wall itself: The closer the wall, the faster the
rhythm of the sound.

+ Relying upon the alerting system: The participant progresses without heeding the
rhythm but, waiting for a warning being launched.

We conducted this experiment employing both tactics, just to illustrate clear advantages of
using See ColOr in assisted navigation while having a functional alerting system (see Figure
4-13).

Figure 4-13. Participants taking the walking-towards-a-wall test.

Results

The chart showed in Figure 4-14 reports the results attained in this experiment. In this
chart the performance of participants were scored as follow: 1 means goal fully achieved (i.e.
participant could stop few steps ahead, and managed to touch the wall); 0.5 means goal par-
tially achieved (i.e. participant could stop but, failed to touch); and 0 in turn, means goal
unachieved (i.e. participant required our aid not to bump into the wall). Notice that tests
marked as (!) indicate they were carried out with the alerting system turned on. Likewise,
tests not marked were performed as having the alerting system deactivated.
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Figure 4-14. Results of the walking-towards-a-wall experiment.
4.3.3 Study 3: finding, approaching and shaking the hand

Based on surveys with visually impaired and blind users, the authors in [8] claim that
face detection and recognition were suggested as highly desirable features for an assistive
device. For this reason among others, in this study we use face recognition as a mean to veri-
fying location and identity of people within the environment. We want to assess the effective-
ness of See Color in guiding the route that leads a blind individual to meet someone nearby.
Particularly, for blind individuals, ignoring information about approaching people generally
represents a missed opportunity to socializing. Visual cues revealing distinguishable features
are imperative for achieving the recognition of a face (or person). Nonetheless, all this large
amount visual information can be condensed into audio cues. See ColOr’s final aim is to
achieve automatic labeling of persons (stored in database) so as to reveal their identities to
the blind upon encountering them; pretty much like the visual system does.
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Procedure

We first learn our recognition module to identify a particular person (target). This person
is requested to stand steadily at unknown location within a 15 squared meters room. Follow-
ing, the blind participant is also given an initial location and encouraged to start up the
search. Both positions are randomly selected in order to simulate a real situation (serendipi-
tous encounters). The participant keeps on seeking the target as (s)he is oriented by the
activation/deactivation (i.e. detection/no-detection) of the audio cue. Thus, the blind partici-
pant should be able to progressively approach the target. Once the target is thought near
enough, the participant will try to shake hands. Collisions against the target or the walls, are
to be eluded provided that the alerting system is turned on (see Figure 4-15).

Figure 4-15. Participants taking the finding-a-person test.

Results

Figure 4-16 is a mixed representation of curves describing the variation in time of 10
participants as they perform four repetitions of this experiment. Statistical analysis of these
data reports that in average a participant takes 4.1 minutes to entirely fulfill the task. First
quarter of these data, on the other hand, fell below 2.05 minutes. Also, 75% of the data never
surpassed 5.8 minutes. Overall, the experiments also reported an upper adjacent data of 10.2
minutes as well as a lower adjacent data of 0.7 minutes. Finally, these data revealed no outli-
er values.
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Figure 4-16. Results of the finding-a-person experiment.
4.3.4 Study 4: grasping particular objects from a collection of items

This study concerns the retrieving of daily objects. Here we look forward to evaluating the
capacity of interaction of See ColOr in orienting a user as he attempts to seize small items.
For instance, when sighted individuals drop something, the regaining thereof is quite an easy
task; by contrast for blind people is difficult to get into do it. In fact, fallen small objects very
often yield embarrassing situations that might lower their feeling of dignity. Further, it is
extremely useful to allow the visually impaired gaining awareness of daily objects they oth-
erwise could fail to notice, or simply need others aid.
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Procedure

There are six different items lying on a table, namely: sunglasses, keys, glass, cap, remote
control, and a landline telephone. Also, the See ColOrs’ recognition module has been trained
to identify those very elements, upon request. We put blind participants to the test by asking
them to find the items one by one, with the aid of See ColOr. Thus, a participant has to scan
the table back and forth, while heeding the audio cues emitted by the items. When a desired
item is detected, we task the user to pick it up (see Figure 4-17).

Figure 4-17. Participants taking the grasping-objects test.

Results

Figure 4-18 plots six curves that describe the fluctuation of time in function of 10 partic-
ipants, as they grasp the six items used for this experiment in this order: telephone, keys,
cap, sunglasses, remote control and glass. Statistical analysis of these data reports that in
average a participant takes 1.35, 9.2, 2.2, 5.45, 3.35, 9.2 minutes to find and grasp each of the
respective items. Overall, the experiments also reported upper adjacent data of 2.8, 11.5, 3.4,
8, 5.2, 15.1 minutes respectively, as well as lower adjacent data of 0.5, 6.2, 0.8, 3.6, 2.2, 7.5
minutes. Finally, the data revealed one outlier value of 15 minutes belonging to the keys
search.
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Figure 4-18. Results of the grasping-objects experiment.

4.3.5 Discussion

Designing electronic SSDs continues to be a difficult task for a number of reasons. First of
all, there is the biological sensory mismatch between visual information and the rest of the
senses. For instance the auditory pathway, even though useful for presenting low-level visual
features through sounds, is severely limited when tasked with the analysis of multiple sound
sources (i.e. representation of more complex visual information). Nevertheless, we have
shown that by leveraging the strengths of computer vision methods, we can build a SSD that
is capable of condensing visual information and orient the blind efficiently towards purposes,
otherwise barely achievable. Notice that for the visually impaired; remaining perceptual
capacities are further lessened by the focus needed for the mobility and orientation tasks.
Therefore, while some of these tasks may be performed in traditional ways (e.g. using a cane),

further sense of independence will be attained to the extent that they are automated.
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The ultimate purpose of this work was to bear out the usability of our SSD in real scenar-
i0s. We have shown that visual impaired individuals are fairly capable of interacting with our
system. In other words, we introduced a functional prototype for the mobility of blind indi-
viduals. Although, there are many issues that need resolving before navigational systems can
seamlessly orient the blind, our results do reveal that See ColOr could make one step further
towards independent mobility thereof. It is worth also noticing that to complete these particu-
lar experiments, a user never required more than one hour of training. While mastering See
ColOr will take further hours of training, this will be negligible if we consider that blind
persons may spend years on learning a braille system.

Overall, experiments conducted reveal that blind users were enabled to grasp information
out of which the visual world is fashioned, in moderate time. In particular, study 4 presented
significant differences between finding the telephone (1.35 minutes in average) and finding
the keys (9.2 minutes in average). This has to do with the recognition rate of the computer
vision method that was implemented. The problem underlying here is that small items such
as the keys are devoid of distinguishable features. This makes it hard for detection algo-
rithms classifying with accuracy. Further work on feature detection and description needs to
be done before reaching more consistent results. By contrast, study 2 yielded unsurpassable
results after activation of an alerting system in See ColOr. In fact, the alerting system brings
a greater sense of independence since users need no longer focus on sensing unexpected ob-
stacles. Eventually, this could serve as an alternative to the use of a cane, as least for obsta-
cle detection. Study 1, in turn, showed that it is possible to successfully and efficiently aid a
blind person in spatial orientation and obstacle avoidance through the use of spatial audio
and sound guidance. Finally, 4.1 minutes in average to recognize a person (study 3) is quite
an acceptable time for a blind user not to miss an opportunity to socialize and be aware of the
people nearby.

Importantly, in the experiments related to the recognition module (i.e. objects and persons
identification) natural speech was used to label detected targets. Though, the detection was
severely constrained to the central part of the image only (i.e. 20% of the picture). This was
done to give the user a spatial reference with respect to the target (if detected, the target
must be right in front). That was finally an issue reflected in the results with long searches of
up to 9 minutes. The peripheral view of the camera was utterly lost, so that hundreds of
detections in the lateral parts of the picture were neglected. To make it worse, in proportion
to this small central area, head movements are often too fast, so that the objects appear
blurred within the area. Therefore, this turns out to be a tough trial-and-error process to
precisely centering an object whose position was unknown. Accordingly, in regard to the
speech, for future experiments we must: spatialize the sound to represent left/right, modify
the pitch to represent top/bottom, and adjust the volume to represent the depth of the objects

(see Improving time in experiments).

While positive acceptance of bone-phones lessened the skepticism in participants reluc-
tant to cover their ears, concerns still linger in regard of the size of our prototype. Partici-
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pants stressed the fact that besides being functional enough, an aid system must be wearable
and comfortable. Particularly, we highlight the request of a non-negligible number of partici-
pants about relocating the camera. Over the years, blind individuals lose the instinctive
notion of targeting his head forward. Thus, in many occasions they tend to walk with a head
down posture. Suggestions were made about wearing the camera at breast height alternative-
ly. By and large, participants advise against the use of methods other than voice, for labeling
objects. Likewise, they encouraged us to make further effort to spatialize sound also in
height. Participants broadly showed enthusiasm and were acquiescent for the use of See
ColOr. Those who had a guide-dog, however, expressed little interest in swapping it now,
unless technology makes strides rapidly enough. This clearly leaves the door open for further
research and stronger efforts in pursuit of more suitable prototypes.

4.3.6 But is See ColOr functional so far?

Systems are functional to the extent that they are capable of functioning. This is to say
that their design has been focused on practical ends rather than decorative or theoretical
ones. Thus, key features of utilitarian systems are comfort of use and due accomplishment of
the functions they were designed for. In this view, we hold that functionality in SSDs is
achieved to the extent they successfully substitute a sense (substituted) for another (substi-
tuting). In the literature various criteria to assessing whether a sense is being properly sub-
stituted may be found. By and large, authors use behavioral criteria [14], ideal scenarios
[231] and empirical assessments to evaluate functionality in sensory substitution. In this
section we will study these aspects so as to ascribe functionality to See ColOr.

a. A behavioral criterion.

In vision substitution, this criterion establishes that if a person can carry out normally
the functions ascribed to vision, the sensory substitution indeed resembles vision [14].
For example, Paul Bach-y-Rita [31] designed a device that substituted the sense of sight
for the sense of touch on a subject’s back. He used an old dentist chair and a camera that
became the eyes, so the light pulses were enrooted to blunted needles that delivered the
pattern of an object onto the back. After trials using this SSD, Bach-y-Rita claimed to
have satisfied the behavioral criterion [31]: “If a subject without functioning eyes can
perceive detailed information in space, correctly localize it subjectively, and respond to it
in a manner comparable to the response of a normally sighted person, I feel justified in
applying the term ‘vision’.” Bach-y-Rita is said to be the father of neuroplasticity and
creator of the first known SSD.

Do subjects using See ColOr meet a behavioral criterion?

In experiments reported in Experiments with blind individuals, blind subjects (some
congenitally blind) attained, to a large degree, spatial awareness to reach a target, abil-
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ity to find and approach someone, skills to locate and seize daily objects, and independ-
ence to walk safely avoiding obstacles and walls. Note that in Bach-y-Rita’s experiment
mobility was not yet attempt since subjects needed to be seated on a chair keeping con-
tact with their backs. Overall, we claim that to a great extent, See ColOr also met the
behavioral criterion for these experiments. Consequently, we ascribe functionality to See
ColOr in regard to this particular indicator.

b. Idealistic scenario: A system simple and effective.

Moreover, Graham et al. [231] urge researchers on visual-to-auditory sensory substitu-
tion to create functional SSDs: “An ‘ideal’ device would be intuitive to learn, pleasant to
listen to, and capture relevant visual information in sufficient detail”. In this regard, See
ColOr’s main idea is to encode colors into instruments to produce sounds that are by no
means unpleasant. In fact, many blind subjects undergoing training with See ColOr
were quoted as saying: “This is like a symphony which one feels challenged to conduct
to”. Note that most devices substituting vision for hearing suffer from unpleasant sound
coding. In the case of the vOICe [232], for instance, this problem is so critical that the
authors are currently in the search for more optimal image-to-sound mapping through
the use of interactive genetic algorithms [233].

As for capturing relevant visual information in sufficient detail, See ColOr not only cap-
tures color and depth (unlike the majority) but, also reveals cognitive aspects which of-
ten determine regions of interest within a picture. At the best of our knowledge, See
ColOr is unique in processing not only low-level, but high-level visual features of images
in automatic mode (i.e. object recognition, face identification, obstacle detection). Fur-
thermore, current SSDs prototypes all lack interfaces to promote proactive interaction of
the user with the environment. See ColOr is the only system that offers a tactile inter-
face (embed on a tablet) to let users make the most of the information captured by the
camera. This interface is intended to grant the blind user selective exploration, discovery

of points of interest, comparisons, and, in general, enjoy a greater sense of independence
[234].

See ColOr is simpler and not necessarily less effective.

In our recognition module the sonification of virtual objects is usually achieved through
natural speech (rather than 3D sonification for the other modules). Some may argue that
this triggers just visual imagery rather than vision via sensory substitution. In fact,
Ward et al. [14] say that while a car horn evokes the image of a car, this is very different
in nature from the information in a soundscape (produced by an algorithm that maps an
image ‘containing a car’ into sound). The horn sound turns out to be general symbolic
mapping mediated by the concept ‘car’, whereas the soundscape may convey specific in-
formation of the scene, car’s type, perspective, location and so forth. State-of-the-art
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SDDs use soundscapes to represent visual images with objects, the vOICe serves as ex-
ample [78].

We argue that, besides being quite unpleasant and extremely difficult to understand,
soundscapes could not convey as much information as people think. Experiments with
the vOICe [232] show that after training, a particular user could recognize a computer
within an image, as a box-like entity devoid of details. In sharp contrast, using another
image, the same participant could recognize a Christmas tree with extraordinary level of
detail. The reason for this is the participant did not get to know a computer while hav-
ing functional vision. We adhere to Ward [14] who enquires whether the vOICe’s users
are likely to tap their prior experience of vision to augment their “visual-like experience”
supposedly elicited by the soundscape.

Furthermore, a plausible conjecture is that after 50 hours of training in recognizing the
soundscape representative of a Christmas tree image, one is more likely to simply devel-
op an associative pattern between the sound and the image, rather than having the vis-
ual experience as such. Nonetheless, Amedi et al. [71] show that after 70 hours of train-
ing in soundscape identification, blind individuals started to show little activity in their
primary visual cortex (i.e. cross-modal plasticity [5]). However, whether this activity cor-
responds to actual visual experiences remains largely unknown, as it is the subject of
even philosophical debates [5] on consciousness.

See ColOr is practical.

We advocate the use of natural speech to label objects, against soundscapes, as it pre-
vents See ColOr’s users from spending 70 hours of training (an above) in recognizing an
object. The end result is a system absolutely learnable, intuitive and extremely practical.
Here practical refers not only to the ease of use, but to the efficiency in handling user’s
prior knowledge to avoid tough learning processes. In congenitally blind we exploit the
concept of the object whatever they have (e.g. tactile), and in people who became blind
we exploit their visual imagery. Nonetheless, we do not rule out gaining better insight
into the scene by spatializing the speech to represent left/right, varying the pitch
(top/down), and adjusting the volume (foreground/background). Thus, a scene presenting
various objects would convey a great deal of the information expected into a soundscape,
though preserving simplicity and intuitiveness (as presented in Improving time in exper-

iments).

c. Empirical criterion: Comfort of use.

Finally, an empirical criterion to evaluate the functionality of a SSD is that in aiding the
substituted sense, the substituting sense should not be missed or diminished at all. This
is an issue widespread in auditory-based substitution of vision due to the use of head-
sets. At large, people are reluctant to block out their ears even in exchange for assis-
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tance: “I already miss a sense and wearing headphones is like taking one more way”,
that is a commonplace comment among participants. Indeed, natural audio cues of the
environment relevant for self-orientation are likely to be missed in this way. See ColOr
copes with this drawback using bone-conducted sound. This strategy turned out of broad
acceptance among users, a key aspect to add to the functional features of See ColOr. Last
but not least, the use of sound in See ColOr rather than touch is intrinsically advanta-
geous. Essentially, increasing the resolution in auditory devices is doable at level of
software rather than hardware.

Despite the proliferation of SSDs, many of these devices still lag behind practical aspects.
While we do not abandon the idea of sonic codifications to represent low visual features, our
interest is no longer focused on refinement of these codes to model more complex visual in-
formation [78] [232] [231]. To this end, we rather advocate the use of more practical (from the
user’s point of view) approaches such as computer-vision-based guidance. We do so, because
remaining perceptual capacities of the blind are severely lessened due to the complex interac-
tion imposed by current SSDs (e.g. interpretation of complex sounds whose lengthy calcula-
tion, besides, slows down the interaction). As proof of this, we observe in the literature the
lack of experiments and testing on mobility (the most practical aspect of vision [14]). In this
sense, experiments reported in Experiments with blindfolded sighted individuals and Exper-
iments with blind individuals show that See ColOr is going in straight line to functionality
(i.e. designed to practical ends rather than theoretical). Indeed, many aspects still need to be
enhanced such as reactivity in object retrieval (see Improving time in experiments). And, of
course, total visual substitution is still far from being achievable, regardless the method.
Nonetheless, unlike many, See ColOr is a utilitarian prototype (capable of functioning) that
substitutes several features of vision at expense of relatively little user effort. Therefore, we
feel justified in saying that See ColOr is to a large extent functional.

4.4 Search optimization in our experiments

For the experiments related to the recognition module (i.e. objects and persons identifica-
tion) natural speech was used to label detected targets. The detection, however, was severely
constrained to the central part of the image; i.e. 20% of the picture. As a consequence, the
searching times increased considerably since most of the image was left unexplored. As a
matter of fact, this ended up in an issue reflected in the results with long searches of up to 9
minutes. In other words, the peripheral view of the camera was lost (i.e. tunneling phenome-
non), so that hundreds of detections in the lateral parts of the picture were neglected. Reason
why actual detections were difficult and hence lengthy. To make it worse, in proportion to
this small central area, head movements are often very fast, so that the objects appear
blurred within the area. Thus, this detection turned out to be a tough trial-and-error process
to precisely centering an object whose position was unknown.




This reduction of the searching area of the image to the center was used to give the user a
spatial reference with respect to the target: if detected, the target must be just in front. Oth-
erwise, it would have been impossible for a user to know the part of the image in which an
object was detected. For example: an object is being detected! but where? left, right, top,
center, bottom? Not knowing the position of the object with respect to the camera, hence to
the head, makes it hard for the user to walk toward it and reach it. In short, detections being
reported only in the central area granted the direction (straight) toward the objective. This
being said, as an alternative not to constrain the image we propose in this thesis to improve
the speech label of detections by adding: spatialization of the speech to represent left/right,
modification of pitch to represent top/bottom (height), and adjustment of the volume (or
rhythm) to represent the depth of the objects. In this way the user will always be aware of the
area of the image where the detection was done. More precisely, this gives clues to the blind
individual about where to go for the target and, at the same time, prevents the system from
rejecting detections. Since detections will be more likely using the whole image, the searching
time is bound to be reduced. Figure 4-19 depicts this idea of translation of visual features
into audio cues.

Height Pitch

Left/right e -‘ J Spatialization

@

Depth Rhythm

Figure 4-19. Mapping from visual hallmarks into the audio. The sound could be speech (the
name of the object ‘apple’), earcon, auditory icon or any other, as studied in Acoustic virtual
objects.

The advantage of this strategy is that spatialization is natural for the human ears,
whereas the rhythm is a very well-known technique to represent nearness, which was tested
in section Study 2: Gaining awareness of the presence of walls. Otherwise, the pitch (high for
top and low for bottom) is quite an intuitive method taking no effort from the user to be as-
similated. In fact, we have already developed a pilot implementation of this strategy (in
Matlab) yielding encouraging results. Objects were detected using our recognition module
(Object recognition) and labeled with the speech ‘here’. The distances of detected objects were
codified into the rhythm of the speech (repetitions) as described in How does See ColOr sound
like?. Then, spatialization of speech (Lateralization of sound) was used to distinguish right
from left. Finally, we used an audio software app to modify the pitch of the speech in ten
levels. In our laboratory, we have conducted beta tests that have yielded flawless results
when participants are tasked to point out (with the finger) the position of a detected object.
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Although, this approach still lacks systematic testing, some pictures displayed in Figure
4-20 give insight into the accuracy and expediency of the method.

In Figure 4-20, an object is recorded by a person and then sonified. A blindfolded partici-
pant assumes his (her) own head as the center of this image, as though (s)he had got cameras
for eyes. Hence, the user pinpoints the place where the object lies into the image with refer-
ence to his (her) head. The image in Figure 4-20 shows, for example, that when the object is
shot in the up-left corner (row 1, column 2), in recognition of this the user points that very
corner (row 1, column 1). Likewise, images in Figure 4-20 (row 2, column 2) describe this
mechanism for an object captured at the center. Notice that in Figure 4-20 (row 3, column 4
and row 2, column 4) even though the object stays at the center, the camera is moved away.
This fact is understood by the participant who reaches out the arm, in recognition of the
distance. Upon full implementation of this method in SeeColOr we expect:

4+  More spatial awareness for the users who will be capable of identifying and locating
objects in the environment, with respect to their bodies.
4+ Lower time for Study 4: grasping particular objects from a collection of items,

whenever the image won't suffer restrictions while being examined by our object
recognition engine.

Figure 4-20. spatial-localization's beta test.
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5 DISCUSSION AND CONCLUSIONS

General

We cannot stress enough the need to helping the blind and the visually impaired to gain a
more independent life in a daily basis. Certainly, a great deal of potential help lies nowadays
in the overlap of empirical research on sensory substitution and technology strides. This
latter comprises computer science and many of its branches such as robotic, computer vision
or artificial intelligence. As researchers, this calls on us to keep trying our best in breaking
new ground and pushing the boundaries of the knowledge in these areas. This thesis began
by offering insight into what vision/blindness implies in humans. It follows that actual vision
embraces both, sensation and perception. The former more related to the sensing or acquisi-
tion of visual cues found in the outer world. Whereas the latter has more to do with the
coherent interpretation of such information, allowing us to derive sense out of the world. In
terms of English psychologist Nicholas Humphrey, sensation is evidently related to “what is
happening to me”; while, perception is evidently related to “what is happening out there”;
something way more complex. For instance, the redness as we see it arises from one’s sensa-
tion, yet contemplating and understanding a rose being red is quite another thing. It is per-
ception indeed. In the one hand, therefore, eyes and optic nerve are typically regarded as
receptors that enable mere sensations. In the other hand, the brain gathers the makings of a
meaningful visual experience as such (i.e. qualia), hence its association with actual percep-
tion.

The implications that follow the previous statements are such that they have given rise to
the theory of sensory substitution and multisensory perception. The chief idea is that since
the working of the brain is not affected in most of the cases of blindness (only the eyes), peo-
ple who lose the ability to retrieve data from their eyes could still create subjective images by
using data conveyed from other sensory modalities. In other words, elicitation of visual expe-
riences in eye blindness might still be possible, provided that visual sensations somehow can
reach the visual cortex of the brain. To do so, firstly, sensations from the visual space are to
be mapped into another sensory modality space (e.g. sounds or tactile sensations). Thus,
defective eyes might be bypassed using a substituting sensory pathway. That this mapped or
encoded information will reach the visual cortex and not elsewhere in the brain, is a fact
rooted in the idea of natural brain plasticity. As a consequence, cortical re-mapping or reor-
ganization happens when the brain is subject to either neural lesions or training. This latter
training of course, turns out to be central to sensory substitution. In this thesis, we studied
quite a number of cases that endorse such an idea. Furthermore, we considered clinical ac-
counts that show activity in the visual cortexes of congenital blind individuals who under-
went rehabilitation, using sensory substitution devices. In light of this, the present document
explores among the most relevant sensory substitution devices, from Paul Bach-y-Rita's first
attempts up to cutting-edge developments in this field. Then, the conclusion was drawn that
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the most used modality to substitute vision is the auditory pathway. This is mostly the case
owing the fact that the capability of the auditory sense to transmit information is the second
greater in humans, only overtaken by that of the vision itself. Nonetheless, even though the
ear is known to be capable of transmitting 10 Kbps, such capacity still lies far away from that
of the vision, which may reach up to 1000 Kbps.

Looking back throughout the evolution of SSDs, it became clear that they all have tried to
improve their sound outputs or sonic codes, as though ignoring the fact that no sound can
lead to a full vision-like experience. In other words, they have focused on designing sensa-
tions, yet they do little for aiding the perceptual experience as such. It might be true that if
an optimal audio-based sensation were to reach the visual area of the brain, the perception
will occur naturally. Yet, building an optimal sensation out of sounds is not possible at all due
to the large sensory information rate mismatch between vision and hearing. Notwithstand-
ing, state-of-the-art SSDs keep on making more complex sounds such as soundscapes, in the
hope to improve the perceptual experience. In theory it should improve (though never
enough), yet in practice those sounds are bound to be confusing and even uncomfortable. In
these instances, we argue that more needs to be done in order to enhance the perceptual
experience of a SSD’s user. By no means, however, the visual-to-sound encoding must be
abandoned in SSDs. Quite the opposite; we promote additional, complementary and never
exclusionary techniques to cope with the actual issue of the ears being unable to convey suffi-
cient information as to create visual-like experiences. Our thesis is, hence, that the coding
into sound of basic visual cues accompanied by computational methods that model higher
perceptual levels of the visual system will lead us to a SSD: functional, ease to use, and suit-
able for mobility and exploration tasks. Such higher perceptual levels of vision cannot be
better modeled by others than computer vision techniques.

Some would argue that the use of computer vision to recognize and then, communicate ob-
jects to the user triggers just visual imagery rather than actual vision via sensory substitu-
tion. For instance, letting a user know about the presence of a tree turns out to be general
symbolic mapping mediated by the concept ‘tree’, whereas a soundscape may convey specific
information of the scene: tree’s type, perspective, location and so forth. However, we may add
others [14], [108] who claim that “The only difference is that whereas imagining finds its
information in memory, seeing finds it in the environment. Thus, one could say that vision is
a form of imagining, augmented by the real world.” As a consequence, ‘normal’ vision is itself
constrained by top-down knowledge. This being known, it would be unpractical to deny to this
knowledge a role in visual sensory substitution [14]. Top-down knowledge provides the kind
of information that sighted individuals achieve from their visual systems, typically without
conscious effort [108]. Furthermore, this computer-vision-based strategy will prevent the
blind from spending 70 hours of training (and more) in recognizing an object that in any case,
will never look as real as expected. In this order of ideas, we put forward thereafter in this
document the concept of See ColOr.



What we have done

See ColOr whose name stands for Seeing Colors with an Orchestra, was introduced as a
sensory substitution device that promotes context-awareness to the visually impaired and
blind individual. In terms of hardware, the See ColOr prototype makes use of a 3D sensor
(Microsoft Kinect), a light laptop, and a tactile tablet (iPad or iPhone). Our aim was to en-
large legibility of the nearby environment as well as to facilitate navigating towards desired
locations, general exploration, and serendipitous discoveries. This document described in
details the use of the audio and haptic trajectory playback to convey visual information that
relates spatial awareness, revealing of objects, and obstacles perception. More specifically,
the keystones studied in this document can be named as follow: research on sonification,
enhancement of optical sensors, and research on haptic interfacing and computer vision.
Overall, the SSD depicted in this work merges three levels of assistance: a global/local mod-
ule for general exploration, an alerting method, and a recognition module:

I. An exploration module that makes it possible for the users to tap with their fingers the
content of an image captured by a range camera in real time, while being rendered onto a
tactile tablet. The color and position of explored points were mapped into sound by means of
instruments and sound effects, respectively. This module exploits the audio and haptic trajec-
tory feedback as a method to convey significant visual cues to the visually impaired. Particu-
larly, the use of spatialized sound, which gives the illusion of virtual sources emitting from
desired locations, served to emphasize spatial relations and shapes. It helped also to this
purpose, the innate user’s kinesthesia that maintains awareness of the fingers while sliding
across the tablet.

II. An alerting method, based on range-imaging processing, that prevents the user from
bumping into obstacles. It does so by informing about unexpected entities lying on the way
and therefore, potentially leading to a fall. It was seen within this document as well that this
algorithm could eventually predict the trajectory of encountered obstacles so as to main-
tain/suspend a warning, according to the likelihood of the collision. This method was intro-
duced with the aim of helping the blind find a clear path in the interest of safe navigation.

ITI. A cognitive engine that uses state-of-the art object recognition methods to learn natu-
ral objects. It was presented as having two chief makings: an off-line training phase backed
by detection/tracking methods, followed by a real-time searching process. This latter informs
the user about the presence of previously learned objects during exploration, if any. Unlike I
and II, this module perceives and depicts (through sounds) higher visual information out of
which we derive sense of the world.

217



Range camera

Figure 5-1. See ColOr prototype

The outcome of this research work was a prosthetic device that in contrast with related
works, performs simultaneous coding of both, color and depth (in an RGB-D stream) into
sound. Furthermore, this prototype makes use of computer vision methods for processing
more complex visual features occasionally sonified as virtual objects/obstacles. Notice that the
underlying software of this device was implemented in MATLAB Version 7.12.0.635 (R2011a)
and even though real time was attained, drastically better performance is expected for a
binary compiled version of core algorithms. By and large, for experiments reported in this
thesis the results revealed that See ColOr is learnable, functional and provides easy interac-
tion. Our encouraging results open a door towards autonomous mobility of the blind. More
importantly though, these results served to confirm the central thesis of this work stating
that: the coding into sound of basic visual cues (e.g. color and depth), accompanied by compu-
tational methods that model higher perceptual levels of the visual system (i.e. computer
vision) may lead to more efficient SSD. Quite unlike many other devices in the state of the
art, See ColOr proved to be a functional and utilitarian prototype (capable of functioning)
that substitutes several features of vision at expense of relatively little user effort. In sup-
porting this, several criteria were studied in this thesis, the most relevant one being the
behavioral criterion. As a consequence, in moderate time, participants were enabled to grasp
visual information of the world out of which they could derive: spatial awareness, ability to

find someone, location of daily objects, and skill to walk safely avoiding obstacles.

Figure 5-2. Some frames of the video recording of a blind person finding someone.
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Importantly, we need to put it clear enough that ours is still a research prototype of See
ColOr that has been evaluated during lab experiments in highly controlled environments
only. As a matter of fact, despite their promising potential and many years of development,
SSDs have not been widely adopted yet. Only a few have ever been used outside of controlled
research settings, and to the best of our knowledge no SSD whatsoever has been adopted as
the main tool by a wide blind community [33]. In our opinion, this is because SSDs have
reached already the limit defined by the physical mismatch (in terms of transmission of in-
formation) between vision and substituting senses. In light of this, we consider that our pro-
totype by expanding the limits of typical SSDs towards the integration of computer vision,
has made significant contributions to this field of research and showed interesting improve-
ments compared to other SSD. Yet, a long way is still ahead before coming to a fully function-
al prosthetic device that can be used in a daily basis.

Reaching out end-users

Another key aspect of See ColOr is that the current prototype is made up of relatively af-
fordable technologies. This is indeed beneficial for low-income countries, where blindness
indexes continue to grow due to poor medical accessibility in rural areas. This also makes See
ColOr more practical and better situated in terms of social impact. As proof of this, we had
See ColOr tested in Colombia South America where the community involved in our experi-
ments greatly enjoyed the experience of trying this sort of technology. Besides, out of this
experience we collected important feedback that is bound to improve our system in the near
future. For example, while positive acceptance of bone-phones lessened the skepticism in
participants reluctant to cover their ears. Concerns still linger in regard of the size of our
prototype. Participants stressed the fact that besides being functional enough, an aid system
must be wearable and comfortable. Particularly, we highlight the request of a non-negligible
number of participants about relocating the camera. Over the years, blind individuals lose
the instinctive notion of targeting his head forward. Thus, in many occasions they tend to
walk with a head down posture. Suggestions were made about wearing the camera at breast
height alternatively. By and large, participants advise against the use of methods other than
voice, for labeling objects. Likewise, they encouraged us to make further effort to spatialize
sound also in height. Participants broadly showed enthusiasm and were acquiescent for the
use of See ColOr. Those who had a guide-dog, however, expressed little interest in swapping
it now, unless technology makes strides rapidly enough. This clearly leaves the door open for
further research and stronger efforts in pursuit of more suitable prototypes.

As it was already mentioned, generally speaking, See ColOr enjoyed the acceptance and
the appreciation of the blind and the visually impaired individuals who put it to the test. In
this sense, a number of testimonial videos were recorded, some of which the readers can
watch through the following links: video 1!8, video 219, video 32° and video 42!. Further, we

'8 https://www.youtube.com/watch?v=2rNTWTpul-8
' https://www.youtube.com/watch?v=43090jboYhk&noredirect=1
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think it is worth highlighting some of the sentence that users were quoted saying: “suddenly
all this amount of sonified colors becomes a symphony one has to master”; “one feels being a
kind of musician and therefore one needs to further develop the auditory capabilities”; “This
is simply something I have been always dreaming of”; “transmitting sound without covering
my ears really rocks and helps”; “this system will definitely improve the quality of my life”; “I
was born blind, so if you ask me, knowing the colors through sounds is an experience beyond
my imagination”; “near an otherworldly experience”; “I did not know technology had reached
this far”; “learning is not hard at all to me”. As for this latter comment, this work exposed
the fact that using computer vision techniques in conjunction with speech prevents our users
from spending 70 and more hours of training (e.g. the vOice). This is because the end result is
a system absolutely intuitive that efficiently exploit user’s prior knowledge to avoid tough

learning processes.

| N

Figure 5-3. Some of our blind test-takers who agreed to be have pictures taken for this thesis.

Nevertheless, for lower level modules of See ColOr (i.e. global/local) learning of our color-
to-sound coding is indeed requested. While mastering See ColOr sonic code will take several
hours of training, this will be still negligible if we consider higher times for soundscape learn-
ing, let alone blind persons who may spend years on learning a braille system. Experiments
reported in section Past Experiments involved a training phase to learn our color coding. For
all our experiment participants, training lasted about 45 min. Afterwards, a small test for
scoring the performance of the participants on sound/colors associations was achieved. On 15
heard sounds, the average number of correct colors among the six participants was 9.1
(standard deviation: 3.4). This clearly indicates that flawless association learning might take
only several training sessions of the same duration. More specifically, one of our team mem-
bers who masters See ColOr coding the best, claims to have invested a total of 30 hours before
coming to a spontaneous association of colors and sounds.

More evidence in this regard is provided by Neil Harbisson, a color blind individual who is
well known for wearing a camera that traduces colors into sounds, in nearly the same way as
See ColOr does. He has been quoted as saying: “At the start, though, I had to memorize the
names given for each color, so I had to memorize the sound notes, after some short time, all
this information became a perception. I did not have to think about the notes. And after some
other time, this perception became a feeling. I started to have favorite colors and I started to

2 https://www.youtube.com/watch?v=FlyXftwwzks
! https://www.youtube.com/watch?v=QZ_t BNWS7M
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dream in colors”. This is quite an important claim, as it means that his brain continues to
create the sounds of the colors long after the camera has been shut down. Finally, even
though learning of our coding seems to be reasonably low, we expect to further narrow it
through the integration of our strategy for a relation between colors and sounds based on
brain activity.

Otherwise, a number of concerns arise about having the users in See ColOr hold a tablet
all the time. In this regard some say: “An issue is that the user’s hands are always occupied
by the iPad which reduces freedom of experiencing the space physically.” And more im-
portantly, others have said: “Is the idea that the blind user uses the screen limitations as an
orientation guide as to their environments?” Actually, we cannot agree more with these crit-
ics, reason why we developed a solution to cope with this apparent issue. In this thesis, we
introduced this strategy as “Tactile Augmented Reality”, an idea whose primary implementa-
tion leaves little doubt about its convenience. Instead of gathering the coordinates of the
fingers from the iPad screen to learn the point in the picture selected for sonification. We let
the user enter his hands in the picture itself to point in the real world with his finger, so we
track the fingertip and learn the point target for sonification. The novelty of this approach is
that when a user points and object in the picture and touches it in the real world, the touch-
ing yields the sound of the object’s color. In other words, he feels the natural sensations of
touching the object’s surface such as texture, temperature, resistance or elasticity; and in
addition, he hears as well the color (instrument sound) and depth (rhythm) of the object.
Therefore, his tactile sensation is augmented by color, a feature that has never been known to
come from touch but sight. One other important aspect here is that Tactile Augmented Reali-
ty closes the perception-action loop, since users can now coordinate sensations with the 3D
physical space. The video of our beta implementation (video??) further clears up this idea.
Idea that certainly leads See ColOr to a quite a new experience on human machine interac-
tion.

Importantly, Tactile Augmented Reality was not the only approach to radically different
interaction methods that this thesis yielded. We also modeled, designed and fine-tuned a
braille-like method for blind individuals to interact and understand natural text in the wild.
Using deep neural networks and deep learning we turned our global module embedded in an
iPhone, into a tactile system that reveals letters within the screen upon touch. Roughly, it
works quite similar to the global module: images of the environment are captured, displayed
in the iPhone screen and made touchable to the user. Differently though, touched points are
no longer sonified as instruments sounds. Touched points in the image are sonified only if
they belong to a letter or number and never otherwise. Exploring the screen carefully with
their fingers, users are bound to discover all the alpha numeric components of the picture,
having full access therefore to textual contents. Initial experiments finding buses numbers in
the city of Geneva reveal the great potential of our approach and how it could be effectively
used by blind users in a daily basis.

2 https://www.youtube.com/watch?v=EWMpm_28Dlk
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What we have learned

Throughout this research, many lessons were learned which are reflected in this thesis.
Overall, in the one hand, we grew more sensitized on the importance of vision as a topic of
research. Besides scientific challenges, we learned how humans are very visual animals that
resulted seriously incapacitated when lacking this functionality. Hence, when it comes to
sight handicapped individuals, no one doubts that every effort we put on improving their
quality of life will be little. On the other hand, as computer scientists trained to tackle prob-
lems ruled by mathematics, the like of which we can model through variables. It became clear
to us that humans are fairly more complex ‘entities’ ruled by feelings and emotions, which
makes it harder to work with. Furthermore, the lesson learned is that this sort of research
needs to extend beyond the laboratory, as it is always incumbent on a researcher to make the
effort to reach out to the community to engage with the population he is serving. This is
broadly known as community-based participatory research (CBPR): a research that has to be
conducted as a close partnership between traditionally trained "experts" and members of
a community, as otherwise, neither of them alone would suffice. Likewise, this work also left
other more specific teachings out of which various research questions may be solved, namely:

+ We learned that humans can indeed attain color and depth information accurate-
ly despite the lack of natural vision. It was shown through experiments in this the-
sis that the auditory pathway may be used as a substitute to this end. Importantly
though, training is essential. Many blind and visually impaired individuals can
benefit from this fact, since color provides clues for object identification and permits
the communication with sighted individuals about the visual world, so they can
share concepts on similar basis. In addition, depth is crucial to spatial awareness.

+ It seems that nowadays, cutting-edge technology along with state-of-the-art com-
putational methods, are capable to assist a blind person moderately well, when it
comes to create a visual images through sounds. Nevertheless, if we look back to the
70s, and compare the visual images that Raymond M. Fish elicited in his patients
using his earliest methods, to those images created using 3D-sound and computer
vision. We will notice that small evolving steps in this line demand not years but,
decades of technological advances. To make it worse, whether a day will come that
an image can be elicited in detail in someone’s mind by means of audio, is indeed a
question that remains uncertain.

* Out of the available technology nowadays, we can engine systems that allow
blind users behave somewhat like sighted individuals. We learned, however, that
this is the case just for specific tasks and heavy constrained environments. We had,
for instance, blind individuals in this work grasping objects and recognizing people
accurately enough, as though they could see them. Yet, a very limited number of ob-
jects were used and reproducing these results outdoor is still challenging. Computa-
tional capacities still lag behind the needs for real time applications, whereas opti-
cal sensors need to grow lighter, cheaper and less restricted.
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+ Despite the increasingly popular use of speracons, auditory icons, earcons and
even soundscapes. We learned that when it comes to communicate complex visual
information such as, objects, faces and so forth. The use of natural speech is advisa-
ble at all, regardless its associated problems with language dependency or brain
processing. This conclusion may be drawn from the experiments presented herein
this work, but also owing the fact that it was a common belief among blind users.

+ Quite opposite to our intuition, we learned in this work that the use of several
fingers makes no difference for the blind people, when it comes to interact with
touch screen. The use of one finger turns out to be more comfortable, more intuitive
and never less useful. This could be a keystone for current designers of tactile inter-
faces aimed at promoting accessibility of the blind.

Future work

Our future research must flow towards the validation of See ColOr at the cognitive and
neurological level. We stated in this thesis that our combination of sensory substitution and
computer vision would lead us to a more efficient and functional SSD and, at the practical
level, this proved to be right. Experiments reported in this thesis clearly show that our idea
has stepped forward towards achieving autonomous mobility of the blind. Nevertheless, in
the future, we would like to present evidence verifying that the addition of computer vision to
sensory substitution might elicit enhanced visual consciousness. This is to say that the impli-
cations of our thesis reach beyond a functional prototype and lie straight inside the workings
of the brain.

The central idea for future investigations is that computer vision triggers just visual im-
agery or memories that mediate the general concept an object, e.g. chair. This vague concept
can be enhanced through the sonification of visual cues so as to achieve details of the specific
chair, e.g. color, position, size, structure. The problem here is that such a primary or general
concept is needed to make sense of the visual sounds. Without this initial concept the sounds
are hardly coherent and, since there is no concept to attach them, they just drift away. This
makes all sense since we saw through this thesis that conceptual information involved in
vision cannot be conveyed through sound due to the bandwidth limit of the ear, among other
reasons. Again, sensory substitution contributes with the sensations of the chair and comput-
er vision does so with the perception as such.

A practical test to this hypothesis relies on the work of Gallant et al [37], who are able to
reconstruct a mental image using fMRI-based brain scanning. The test could be done as
follow: (a) Have a person imagine an object told by a computer vision system (CVS), e.g. chair.
Then, reconstruct his mental image to see that even though the image is akin a chair, it has
nothing to do with the actual chair the CVS is detecting. (b) Have a person use See ColOr to
explore a chair placed in front, without letting him know it is a chair. Then, reconstruct his
mental image to see that it is hardly akin to any chair. (c) Have the CVS inform the user
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about the chair (general concept or perception) and let the user try See ColOr to explore the
same chair at the same time (visual details or sensation). Then, reconstruct the mental image
to see that unlike (a) and (b), this image is akin to the real chair being object of test.

Moreover, though the research presented in this thesis has answered many questions,
some others have been raised too. For instance, there are practical issues arising from this
work which should be pursued. Firstly, we could investigate thoroughly parallel or high-
performance computing, with a view to increasing capability of our system for hardware-
embedded or commercial prototypes. There are still modules we cannot afford to run in paral-
lel (i.e. text recognition module with the rest) and more importantly, the object recognition
task is nearing the real time limit. Thus, speeding up CPU times using multi-core computers
will allow us to integrate more sophisticated methods for feature extraction and classification
in object recognition. Particularly, we are interested in adding to See ColOr action/pose esti-
mation and attribute classification commonly used in high-level computer vision23. For in-
stance, poselets [207] can be used to recognize gender, hair style and types of clothes in natu-
ral scenes, e.g., this person is male wearing glasses, jeans and t-shirt; he has long hair and no
hat. In this way, quite a number of relevant information could be made automatically acces-
sible to unsighted individuals. Nevertheless, poselets are still fairly expensive [207] in com-
putational terms, especially if intended in a multi-task (multi-module) embedded software
[207]. To start with however, a full migration of our Matlab code into C++ is bound to speed
up the system performance outstandingly.

A second line of practical research, which follows form chapter 5, would be to conduct
more systematical experiments with end-users. Since the experimental evidence reported in
this thesis precludes drawing any conclusions about differences (if at all) between blind and
congenitally blind using See ColOr. As noted by [129] these populations must be studied
separately since their cognition and interaction with the world are as different as theirs
compared to ours (sighted people). Far more important yet is the conduction of outdoor ex-
periments, which was not attempted at all in this thesis due to the limitations of current ToF
cameras. To this end, our research must focus on stereo-vision technologies that meet both,
accuracy and lightweight simultaneously. As a matter of fact, our lab is already advancing
towards this topic in partnership with Vision Embedded Systems, CSEM SA2¢. A portable
outdoors camera rig (the Icycam?5) is being developed within the EyeWalker project [235]. We
think that in the near future See ColOr could also benefit from the outcome of this research.
Otherwise but still in the same line of testing with end-users, there is the need of experimen-
tally proving two key ideas proposed in this thesis: the neural-based relation between color
and sound (3.3.3 A relation between colors and sounds based on brain activity) and the con-

cept of Tactile Augmented Reality (3.3.5 Tactile Augmented Reality: An alternative to the use
of a tablet). These topics might certainly open two extensive lines of research. While the

2 http://www.cs.berkeley.edu/~lbourdev/poselets/

* http://www.csem.ch/site/

% http://content.media.cebit.de/media/000079/0079824eng.pdf
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former is thought to be densely enough for a PhD project, provided its premises are validated.
The latter, in turn, will probably lead to new subareas of research in human computer inter-
action.

The end

Finally, as reflecting on the philosophical side of our work, we also grew very much inter-
ested in knowing how vision (a nonphysical phenomenon) comes into being, out of physical
activity in a physical brain: why we draw a total blank on the nature of this transformation?
More vividly, “how is that the water of the brain becomes the wine of vision?” to quote again
English psychologist Nicholas Humphrey as he compares such a transition with a miracle.
Likewise, let us raise a question that arguably fits better this work: are researchers on visual
substitution bound to succeed in eliciting visual consciousness artificially, or not? Given the
intricacy inherent to this question there would be little point pursuing an answer, were it not
for all breakneck strides that we saw through this thesis: congenital blind people gaining
brain activity in the visual cortex after electric tongue stimulation, or auditory inputs. Also,
others have come to adopt sighted-like behaviors by means of mere skin stimulation, or au-
dio-trajectory-playback. In the end, what all this means to us is that in the middle of so many
uncertainties, our research is but a little fire lighting up the vast obscurity around us. An
obscurity that makes us feel, from time to time, like trapped within the darkness of blind-
ness.
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Appendix B: Back-propagation rule deduction

This appendix corresponds to sub-section 3.6.5 Deep Neural Networks and Deep Learning

We start from the general equation of error in an artificial neural network:

B =2 Yt - oy

=1 i=1

where w represents the weights of the net; i sweeps all the u neurons in the output layer of
the net; [ sweeps all the s training patterns (i.e. as many inputs/outputs we want the net to
learn); t} is the expected or target output for the I-th pattern (input) at the i-th neuron; and a!
is the actual output for the [-th pattern (input) at the i-tA neuron. A more general version of
this error function can be written as follows:

B = X EM)

with E(n) as the gradient of the function (net) over a single pattern in the n-th iteration of the
training, i.e. instant gradient. Therefore, Eav stands for the gradient over the whole set of
patterns (N), i.e. the real gradient. The update of the weights using the real gradient is
known as update by epochs. If the update is carried out by means of the instant gradient we
call it sequential and its advantage is less computational load. The deduction of the rule for
the gradient descent-based training based on the instant gradient is made so that:

OE(n)

w; (n+1) = w; (n) _aawji o)

Here the calculation of the gradient depends on the place of the weight (wj) in the net
(whether in the output layer or not). The calculation for a weight in the output layer can be
deduced like this:

EM =Y 0, gM=dm-y,0 y0=qM0), V6)=Ywyw

So e is the error of the neuron j in the output layer; d; is the target output of this neuron,
and yjis but its actual output. This actual output is given by V; which is the activation func-
tion of the neuron. Applying the chain rule, we have:

9E(n) _ dE(n) 9g;(n) dy;(n) aV,(n)
ow; (n) N de, (n) dy,;(n) aV,(n) ow; (n)
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So that,

O0E(n) _ oe(n) _ _ oy;(n) _ v, (n) _
de; () ~S (n)'ayj (n) - lan(n) av (n))'aWji(n) %

0E(n) _ , ’

de, (n) =-& (Mg (V;(n)y;(n)

therefore, W;; (n +1) =W (n) -a a?l:lz(:rz) =w; (n) + af[ej (n)¢] (Vj (n)) Y, (n)],

for all the weights that arrive to the j neuron in the output layer we have:

w;, (n+1) = wy(n) +ae; (n)g, (V;(n) y,(n)
Wi, (n+1) = wj,(n) +ae; (n)g, (V; (n) y,(n)

w; (n+1) = w; (n) +ae; (Mg, (V; (n)y; (n)

Notice that the term e (n)q (\/j (n)) is common to all the weights arriving to this neuron, so

that we can define it as the gradient for the neuron j,
o, =e (Mg V;(n)-
Therefore, we are permitted to rewrite:

wi; (n+1) =w;(n)+ad,y(n)
w;,(n+1) =w;,(n)+ad;y,(n)

Wi (n+1) = Wi (n) + a5jyi (n)
As a consequence, we can finally update any weight of the output layer as follows:

0E(n)
ow. ()

Ji

w;(n+)=w;(n)-a =w; () +ady () =w;, () + a8 (NG, M)y, ()
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for j:1...s, all the neurons in the output layer and i:I...v, all the neurons in the layer just
before the output. Here a [0...1] is defined as the learning rate and it is the portion of the
gradient that we want to follow. In other words, the gradient leads the algorithm towards to a
minimal of the error function, but a regulates in which proportion or velocity we follow the
direction given by the gradient. Big steps may take us beyond the minimal during the itera-
tions, so a is typically chosen little. Now, to calculate the gradient of a weight in a hidden
layer (before the output) we must proceed as follows:

X(r) . output of the net

w0 00 S O [g () =d, () - i ()] M)

0E(n) _ 0E(n) 0V;(N) | note that this relation is met for all the weights in the net.
aw, () av,(n) aw, (n)

Since

v _ OE(n) _ 9E(n)
aw, (1) =vy.(n), therefore, o, () = oV (n) y;(n)

a@E((n)) =6, (N)y,(n)’ where 5] (n) is the local gradient in the neuron j of a hidden layer.
W, (N
ji

This being said, the calculation of such a gradient must proceed like this:

d(n):—m

: v, (n)

OE(n) _ 9E() Oy;(M) | ay,(n) _ .

avj (n) Byj (n) -an (n) W =9 (\/j (n)

Q(n) =dk(n) - Yk(n) =dk(n) _¢(Vk(n)) =dk(n) _¢(V\4<1Y1 WY, +)
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Observing (1), we see that yj(n) is the output of the j-th neuron of a hidden layer and appears
in all the errors of the neurons in the output layer, so that:

1 )
o %220 = Y e 250
v oy 2V m
OE() _ s, (o 96,(1) 3y,(n) V,()
ay,m - 2% v 3y, ()

where...

de(n) _ _, oy, (n) _ . oV (n) _
o) "o, (n) - ANy iy T
Therefore,

E() _ _ .

7ayj(n) zk:q((n)@(\/k(n))wm

Beingek(n)@ (V, (n)) =3, , the local gradient in the k-th neuron of the hidden layer, we have

that 9E(N) _ _ .
ay 2O

Now we can retake the deduction of the rule as follows:

Wj; (n+) = W (n) - a{ 0E(n) j

ow; (n)

9E(N) 9V, (n)
v, () ow, (n)

l l

0E(n) an (n) [y_ (n)]
ay,(mav,(m |



_de (n)ij (pJ (VJ (m)-

Therefore,

0E . ,
&Nji((”rf) = () (0, 1V, 00) =~ 01 O, () T, (D

where...

9,(n) =¢;(Vj (n))zdk(n)wkj =¢’;(Vj (M)W, + Oy, +...+ W + ...+ O W, )

0E(n) _
() = S0

Finally the rule of that update weights in the ANN is given by:
w;; (n+1) = w; (n) +ay, (n)J; (n)

where ¢J (\/j (n)) is the derivate of the activation function of the j-th neuron in the hidden

layer evaluated in a local field. J, (n)is the local gradient of neurons in the output layer. And

ij is the weight that links the j-th neuron in the hidden layer with the k-th neuron in the

output layer. Note that the error is always being propagated backwards (previous layers).
Therefore ANN trained with this rule are called back-propagation networks, since the tune
the weights from output to input layer based on a gradient descend rule over an error func-

tion.
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