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The simulation of quantum correlations with finite nonlocal resources, such as classical communica-

tion, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to

be useful resources, very little is known on how to simulate multipartite quantum correlations. We present

a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communi-

cation: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the

tripartite Greenberger-Horne-Zeilinger state.

DOI: 10.1103/PhysRevLett.107.020401 PACS numbers: 03.65.Ud, 03.67.Mn

When measurements are performed on several quantum
systems in an entangled state, the statistics of the results
may contain correlations that cannot be simulated by
shared local variables. Such correlations are called non-
local. They can be identified by their capacity to violate the
so-called Bell inequalities [1].

The observation that quantum theory predicts nonlocal
correlations goes all the way back to the famous EPR argu-
ment [2]. Many experimental confirmations have been dem-
onstrated all over theworld during the last two decades of the
last century [3]. During the first ten years of this century, the
interest for nonlocal correlations has shifted from mere
skepticism and incredulity to more constructive questions.
First, physicists raised the question of the power of nonlocal
correlations for information processing, such as ‘‘device-
independent’’ quantum key distribution [4–6] and random
number generation [7,8]. Second, theorists realized that quan-
tum correlations, although possibly nonlocal, are nevermaxi-
mally nonlocal, hence the question ‘‘why is quantum theory
not more nonlocal?’’ [9]; note the great advances since the
original question ‘‘Why is quantum theory not local?’’.

Thirdly, and this is the topic of this Letter, physicists and
computer scientists tried to quantify nonlocality; that is, to
treat nonlocality as a physical quantity. Indeed, theviolation
of a Bell inequality only proves that the correlations are not
local, but does not tell us anything about how far from local
they are. Intuitively, a larger violation should signal more
nonlocality. But this naı̈ve approach is insufficient as some
correlations may violate different Bell inequalities by dif-
ferent amounts. A quite natural measure of nonlocality is
the number of classical bits that need to be communicated
from one party to another, in addition to using shared
randomness (a local resource), in order to simulate the
full statistics of the observed data. For local correlations,
no communication is needed, as shared local variables
suffice; they thus have a ‘‘communication measure’’ of
nonlocality equal to zero, as it should be. Let us stress that
the idea is not to imagine that nature uses communication to

produce nonlocal correlations, it is only to quantify the
amount of nonlocality by the quantity of communication
required to simulate the correlation.
That such a measure of nonlocality is natural is testified

by the fact that it has been introduced by 3 independent
papers [10–12]. More precisely, in this Letter we adopt as a
measure the number of bits communicated between all
partners in the worst case [10,11]. An alternative could
be to count the number of bits sent on average [12,13].
For the case of 2 qubits in a maximally entangled state,

Toner and Bacon [14] proved that one single bit of com-
munication suffices (if one restricts the analysis to projec-
tive Von Neumann measurements, as we do here). Hence
the nonlocality of the singlet state is 1 bit. For the general
case of 2 qubits in a partially entangled state it is known
that 2 bits of communication are enough [14], though it is
still unproven that 1 bit is not sufficient. At first, one may
think that the nonlocality of a partially entangled state
should not be larger than that of maximally entangled
states, but this is not so clear once one realizes the diffi-
culty of simulating at the same time the nonlocal correla-
tion and the nontrivial marginal probabilities [15,16].
GHZ correlations.—In this Letter we consider 3-qubit

Greenberger-Horne-Zeilinger (GHZ) quantum correlations
and present the first known protocol to simulate such non-
local correlations with bounded communication. This
problem is the straightforward next step after the 2-qubit
case; it attracted the attention of most of the specialists.
After years of unsuccessful efforts, the feeling started to
spread that it might be impossible with finite communica-
tion [17]. Some hope, however, appeared when Bancal
et al. [18] presented a protocol with unbounded, but finite
average communication. Moreover, a team recently pre-
sented a nonconstructive existence proof of a protocol with
6 bits of communication [19]; the proof turned out to be
flawed, but the impulse was given!
More precisely, our goal is to simulate the quantum

correlations obtained by performing equatorial
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Von Neumann measurements on a tripartite GHZ state.
Namely: 3 parties, Alice, Bob and Charlie, each receive
an input angle�A,�B and�C 2 ½0; 2�� (corresponding to
a measurement setting on the equator of the Bloch sphere
S2), and they must output binary outcomes �, �, � 2
fþ1;�1g, such that the expectation values satisfy

h���i ¼ cosð�A þ�B þ�CÞ; (1)

while all single- and bipartite marginals vanish. Note that
although the choice of equatorial measurements is restric-
tive, these are enough to come up with the ‘‘GHZ paradox’’
[20]. We will show that our problem can be solved with
finite communication. For that, we first introduce a proto-
col that provides ‘‘stronger’’ correlations, before showing
how to adequately transform these and obtain the desired
cosine correlations.

Simulation with classical communication.—Consider
the following protocol, that uses 3 bits of communication:
2 from Bob to Alice, and 1 from Charlie to Alice. The sign
function is defined as sgnðxÞ ¼ þ1 if x � 0, sgnðxÞ ¼ �1
if x < 0.

Protocol 1.—Let Alice and Bob share two random vec-

tors ~�1 and ~�2, uniformly distributed on the sphere S2,
together with a random bit � 2 f0; 1g; let Alice and
Charlie share a random variable ’c, uniformly distributed
on [0, 2�]. After reception of their measurement settings
�A, �B and �C, the three parties proceed as follows:

(a) Bob defines b̂ to be the equatorial vector with azimuthal

angle �
2 � 2�B; he calculates �0 ¼ sgnðb̂ � ~�1Þsgnðb̂ � ~�2Þ,

and sends the bit 	0 ¼ 1��0

2 to Alice. Alice andBob can then

both determine the azimuthal angle ’0 2 ½0; 2�� of ~�0 ¼
~�1 þ ð�1Þ	0 ~�2; they calculate ’b ¼ ’0

2 þ �� 2 ½0; 2��.
(b) Alice, Bob, and Charlie define ~�A ¼ �A � ’b � ’c,
~�B ¼ �B þ ’b and ~�C ¼ �C þ ’c, respectively. (c) Bob

calculates �b ¼ sgnðsin2 ~�BÞ, and sends 	b ¼ 1��b

2 to

Alice; he outputs � ¼ sgnðsin ~�BÞ. Similarly, Charlie cal-

culates �c ¼ sgnðsin2 ~�CÞ, and sends 	c ¼ 1��c

2 to Alice;

he outputs � ¼ sgnðsin ~�CÞ. (d) Alice outputs � ¼
sgn½sinð� ~�A � 	b

�
2 � 	c

�
2Þ�.

Before analyzing the correlation given by Protocol 1, let
us give an intuitive understanding of it. Forget for now the
rather technical step (a) [21], and note that after step (b),

one has ~�A þ ~�B þ ~�C ¼ �A þ�B þ�C; the first two
steps will ensure that the final tripartite correlation depends
on the sum � ¼ �A þ�B þ�C only, and that all margin-

als vanish. Assume now that ~�B, ~�C 2 ½0; �� (and hence
� ¼ � ¼ þ1); if this is not the case, Bob and Charlie can

locally subtract � to ~�B or ~�C and flip their output, so that
the correlation Eð�Þ ¼ h���i is unchanged—this is pre-

cisely why we ask them to output � ¼ sgnðsin ~�BÞ and

� ¼ sgnðsin ~�CÞ. In step (c), Bob and Charlie tell Alice

in which quadrant ([0, �
2 ] or [

�
2 , �]) their angles

~�B and
~�C are. From this information, Alice knows in which

half-circle ~�B þ ~�C is (more precisely, she knows

sgn½sinð ~�B þ ~�CÞ� or sgn½cosð ~�B þ ~�CÞ�, depending on

whether 	b ¼ 	c or 	b � 	c); if � ~�A is in the same
half-circle, she wants to obtain a good correlation with

�� ¼ þ1 (if by chance � ~�A ¼ ~�B þ ~�C, she wants a
perfect correlation), and will thus output � ¼ þ1; other-
wise, she will output � ¼ �1; this corresponds precisely
to step (d).
As shown in [22], Protocol 1 gives vanishing marginals,

and the following tripartite correlation E1ð�Þ :¼ h���i:

E1ð�Þ ¼ 32

�2

X

n�0

1

ð2nþ 1Þ2
1

4� ð2nþ 1Þ2 cos½ð2nþ 1Þ��

¼ 1� 2�� sin2�

�
for � 2 ½0; ��: (2)

E1ð�Þ is shown in Fig. 1. One can notice that it is stronger
than the desired cos� correlation, in the sense that
jE1ð�Þj � j cos�j for all �. Intuitively, one should be
able to add some noise and weaken the correlation; this
is however not trivial, since this weakening must depend on
� and should, in particular, not weaken the extreme corre-
lations for � ¼ 0 and �. Starting from a 2�-periodic
correlation function such that Eð0Þ ¼ �Eð�Þ ¼ 1, one
can nonetheless try to mix correlations of the form
Eðð2mþ 1Þ�Þ, with m 2 Z, as this will preserve the per-
fect (anti-)correlations for � ¼ 0 and �. The following
lemma gives a sufficient condition under which such a
mixture can indeed give the desired cosine correlation.
Lemma 1.—Let Eð�Þ be a real function with a Fourier

decomposition of the form

Eð�Þ ¼ X

n�0

e2nþ1 cos½ð2nþ 1Þ��; (3)

such that

e1 > 0; e2nþ1 � 0 for all n � 1;

Eð0Þ ¼ X

n�0

e2nþ1 ¼ 1;

E00ð0Þ ¼ �X

n�0

ð2nþ 1Þ2e2nþ1 � 0:

(4)

-1.0

-0.5

0.5

1.0

FIG. 1 (color online). Correlation E1ð�Þ ¼ E1ð�A þ�B þ
�CÞ obtained from Protocol 1, compared to the desired correla-
tion cosð�Þ.
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Then cos� can be decomposed as

cos� ¼ X

m�0

p2mþ1Eðð2mþ 1Þ�Þ; (5)

with p2mþ1 � 0 for all m � 0.
In particular, for � ¼ 0, one gets

P
m�0p2mþ1 ¼ 1. The

coefficients p2mþ1 � 0 can be interpreted as probabilities,
and the ‘‘inverse Fourier decomposition’’ (5) is indeed a
probabilistic mixture of correlations Eðð2mþ 1Þ�Þ.

A proof of Lemma 1 is given in [22] together with the
explicit form of the p2mþ1. It is easy to check that E1

satisfies the conditions (4). Hence, cos� can be obtained
from E1ð�Þ as in (5). The following protocol therefore
gives the desired cosine correlation and solves our prob-
lem, with the same 3 classical bits as in Protocol 1:

Protocol 2.—Let Alice, Bob, and Charlie share, in addi-
tion to the randomness already introduced in Protocol 1, a
random variable M that takes the value M ¼ 2mþ 1 with
probability p2mþ1, where fp2mþ1gm�0 are the coefficients
of the decomposition (5) for E ¼ E1.

After reception of their measurement settings �A, �B,
and �C, the three parties run Protocol 1 with input angles
ð2mþ 1Þ�A, ð2mþ 1Þ�B, and ð2mþ 1Þ�C, respectively.

Variants of our communication protocol.—For conve-
nience, let us from now on consider the equivalent 0 or
1 bit values corresponding to the 3 parties’ outputs in

Protocol 1 (or 2): a ¼ 1��
2 , b ¼ 1��

2 , and c ¼ 1��
2 ;

the additions below will be modulo 2. Writing explicitly
a ¼ a	0	b	c as a function of the classical communication

that Alice receives, one has

a	011 ¼ a	000 þ 1 and a	001 ¼ a	010: (6)

One can see that our communication protocol can ac-
tually be declined in different forms. In particular, Alice
might not need to know the individual values of the bits 	b
and 	c, but only their sum 	bc ¼ 	b þ 	c. Charlie’s bit 	c
could, for example, be sent to Bob instead; Bob would then
send 	bc to Alice, who would output a

0
	0	bc ¼ a	0	bc0; in the

case when 	b ¼ 	c ¼ 1, the ‘‘þ1’’ term in (6) can be
introduced by Bob, who should output b0	c ¼ bþ 	b	c.

With similar considerations, one can come up with many
different variants with varied communication patterns [23].
These variants and the original protocol look different,
though they all require 3 bits of communication and lead
to the same correlation. All of them have severe timing
constraints (which is common for communication proto-
cols): there are always some players that cannot produce
their output before some other partners receive their input
and send them some information.

Simulation with PR boxes.—An interesting alternative to
measure nonlocality is to estimate the number of nonlocal
Popescu-Rohrlich (PR) boxes [24] (some kind of ‘‘unit of
nonlocality’’ [25]) required to simulate the correlations.
Since the correlations we consider in this Letter have no
single- nor bipartite marginals, all the variant communica-
tion protocols introduced above can be translated into

PR-box-based protocols [25]. Indeed, using (6) one can
always decompose the sum aþ bþ c as follows:

a	0	b	c þ bþ c¼ a000 þ bþ cþ 	0ða000 þ a100Þ
þ 	bða000 þ a010Þ þ 	0	bða000 þ a010

þ a100 þ a110Þ þ 	b	c þ 	cða000 þ a010Þ
þ 	0	cða000 þ a010 þ a100 þ a110Þ:

The product terms above can be generated by using non-
local boxes: 5 PR boxes can be used for the first 5 products
(3 between Alice and Bob, 1 between Bob and Charlie and
1 between Alice and Charlie); the last product can be
generated by a tripartite GHZ box, which can in turn be
constructed from 3 PR boxes [26]. Hence, 8 PR boxes
suffice to simulate the tripartite GHZ correlations.
Interestingly, the variant communication protocols we

came up with all lead to a PR-box-based protocol with the
same configuration of 8 PR boxes, all used precisely in the
same way. In addition to this invariance, and similarly to
quantum correlations, the PR-box-based protocol does not
suffer from any timing constraint. Hence, it might be a
more faithful tool to measure quantum nonlocality (at
least, for correlations without marginals)—this general
question would require further scrutinies beyond the scope
of this Letter. Note that reciprocally, simulating the PR
boxes by communication gives a systematic way to gen-
erate different variants of our protocol, depending on
which way the communication goes.
Detection loophole.—Another interesting connection is

between our communication protocol and simulation mod-
els based on the detection loophole [13,27]. A more sym-
metric variant of our protocol, where each party sends one
bit, naturally leads to a detection-loophole-based protocol
that simulates the GHZ correlations with ‘‘detection effi-
ciencies’’ of 50% for Alice, Bob, and Charlie [23]. Other
variants can lead to detection-loophole-based protocols
with asymmetric detection efficiencies.
Conclusion.—We have proven that 3 bits of communi-

cation (or 8 PR boxes) suffice to simulate 3-qubit GHZ
equatorial correlations; hence, their nonlocality is at most
of 3 bits (8 PR boxes). In the course of our derivation, we
introduced a strategy to obtain a cosine correlation as a
mixture of other (‘‘harmonic’’) correlations (Lemma 1)
that could be used in other contexts as well.
In this Letter we considered correlations with random

single- and bipartite marginals. If one considers measure-
ments on the GHZ state out of the equatorial plane [28], or
other states such as biased GHZ-like states for instance,
then the marginals will no longer vanish, and simulating
the entire probability distribution is likely to be signifi-
cantly harder [16].
Two other important open problems are the questions of

the optimality of our protocol and of its generalization to
more parties. For 3 parties, since the GHZ correlations are
truly tripartite [29], a minimum of 2 bits is necessary to
connect the 3 parties. We could find a 2-bit protocol
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(Protocol 1, without step (a), see [21]) that gives stronger
correlations than cos� and that can approximate it to a
very good accuracy, but not perfectly. For the N-partite
case, it is easy to generalize protocol 1, again without
step (a), using ðN � 1Þlog2ðN � 1Þ bits of communication,
by dividing the equator of the Bloch sphere into 2ðN � 1Þ
equal sectors. This leads again to a protocol giving stronger
correlations than cos�, with a number of bits that is
asymptotically equivalent to the lower bound derived in
[17] for the simulation of GHZ correlations. Unfortunately,
we did not find a generalization that would give a correla-
tion satisfying the assumptions of Lemma 1, so that the
exact cosine correlation could then be obtained as in
Protocol 2.

These observations lead us to formulate the following
question: Should we understand a ‘‘stronger’’ correlation
as being ‘‘more nonlocal’’? If our goal is to quantify the
power of nonlocality as a resource for achieving some
information processing task, then the next question fol-
lows: Is there any (useful) task, for which a stronger
correlation might actually be less powerful than a weaker
one? If this is not the case, then one could be happy with
simulation protocols that give stronger correlations than
the desired ones, and for this operational interpretation of
the nonlocality measure, we could conclude that the non-
locality of the tripartite GHZ correlations is at most 2 bits
(or 3 PR boxes), and that of the N-partite GHZ correlations
is at most ðN � 1Þlog2ðN � 1Þ bits.

Nonlocal quantum correlations are fascinating. First,
because they cannot be simulated by mere shared local
variables; next, because even if finite communication is
allowed, their simulation remains tedious and quite artifi-
cial. This underlines the power of nonlocal correlations.
Yet, such simulations seem to give a good measure of
nonlocality (whether we are interested in the exact simu-
lation or in the ‘‘operational nonlocality’’ measure), pos-
sibly the best together with PR-box-based simulations, and
provide the only story that takes place in space and time
about how they could occur.

We acknowledge discussions with G. Brassard, M.
Kaplan, S. Pironio, and I. Villanueva. This work profited
from financial support from the ARC Centre of Excellence
for Quantum Computer Technology, the Swiss NCCR-QP
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