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Topological defects in active polar fluids can organise spontaneous flows and influence macroscopic
density patterns. Both of them play, for example, an important role during animal development.
Yet the influence of density on active flows is poorly understood. Motivated by experiments on
cell monolayers confined to discs, we study the coupling between density and polar order for a
compressible active polar fluid in presence of a +1 topological defect. As in the experiments, we
find a density-controlled spiral-to-aster transition. In addition, biphasic orientational phases emerge
as a generic outcome of such coupling. Our results highlight the importance of density gradients as
a potential mechanism for controlling flow and orientational patterns in biological systems.

Active matter is composed of individual constituents
able to extract energy from their local environment to
produce mechanical work [1, 2]. This feature gives rise
to collective phenomena that play an important role in
many biological systems, such as the emergence of po-
lar flocking, motility-induced phase separation or spon-
taneous flows [1, 2]. For instance, spontaneous flows
generated by gradients of active stress have been ob-
served in various systems, including cytoskeleton assays
[3–5], or multicellular ensembles [6–10]. All these sys-
tems can organize into out-of-equilibrium phases with
domains featuring orientational order. This order can
locally be disrupted by disclinations, often called topo-
logical defects, which are associated with rotational flow
patterns [2, 11, 12].

Both, theoretical and experimental studies have
demonstrated that the interplay between topological de-
fects and active processes concentrates mechanical stress,
leading to the formation of density gradients [7, 8, 13–
18]. Reciprocally, cell density variations influence orien-
tational order [19, 20]. Given the growing recognition of
topological defects as organizing centers during morpho-
genesis [7, 8, 17, 21], understanding how density gradients
and orientational order interact is essential.

A density-controlled transition between different +1
topological defects was observed in monolayers of polar-
ized cells confined to a disc [17]. At low cell density,
spontaneous rotational flows emerged in a spiral multi-
cellular arrangement. Whereas for increasing cell density,
a transition occurred to an aster arrangement without
rotational flows, Fig. 1a. Steeper cell density gradients
were found for asters compared to spirals, Fig. 1b. In
the hydrodynamic description of an incompressible ac-
tive polar fluid, an aster-to-spiral transition arises from
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FIG. 1. Density-driven transition of a confined polar tissue.
(a) Phase-contrast image of a confined monolayer of C2C12
myoblasts, showing a spiral (left) or an aster (right) polar
state. Scale bar is 50 µm. Modified from [20]. (b) Radial
cell density profile for spirals and asters. Data extracted from
[17]. (c) Schematic representing a polar tissue confined to a
disc of radius R, described as a 2D compressible polar fluid
with velocity v, polarity p with radial angle ψ, and density n.
(d) Schematic representing the effect of the Density-Polarity
Coupling (DPC), see Eq. (2).

the competition between the active stress and orienta-
tional elasticity [22]. The transition corresponds to a
spontaneous flow instability [23–26], where density does
not appear explicitly as a control parameter.

In this Letter, we study a coupling between density
gradients and orientational order, in the case of +1 topo-
logical defects in confined active polar fluids, Fig. 1d.
In spreading cell monolayers, this Density-Polarity Cou-
pling (DPC) expresses a tendency of cells to polarize
away from high density regions [27–29]. First, we identify
conditions for a density-controlled spiral-to-aster transi-
tion. Second, we show that biphasic orientational phases
are a generic feature of compressible polar fluids. Fi-
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nally, we discuss the relevance of DPC for monolayers of
polarized cells.

To describe a two-dimensional compressible active po-
lar fluid, we use active gel theory [22, 30]. The system
is characterised by velocity v(r, t), polarity p(r, t) and
particle density n = n0n̄(r, t) fields, where n0 is the pre-
ferred particle density, Fig. 1c.

The equilibrium physics is captured by an effective free
energy F =

∫
A
dAf with free-energy density

f =
B

2
(1− n̄)

2
+
G

2
|∇n̄|2+K

2
|∇p|2+ χ

2
p2+fDPC. (1)

The first two terms penalize density variations with elas-
tic coefficients B,G > 0. The second two terms tend
to suppress polarity variations with elastic coefficients
K,χ > 0. Thus, we favour a disordered phase in the
bulk. We use the one-constant approximation [31] for
simplicity and leave the general case for future studies.

The last term, fDPC, accounts for the coupling between
density and polarity. The lowest order term in powers of
(p,∇n̄) with polar symmetry reads

fDPC = Jpn0(p ·∇)n̄, (2)

which is related to a density-dependent spontaneous
splay term of the Frank free energy [29, 31, 32]. Pre-
vious works identified a linear instability of an ordered
state associated with this coupling [33–37]. Negative
(positive) values of the coupling coefficient Jp favor (anti-
)alignment of polarity to density gradients, Fig. 1d. From
now on, we use Jpn0 ≡ jp as control parameter.
The evolution of the fields n̄, v and p is determined by

the continuity equation, the polarity dynamics and the
local force balance:

∂tn̄ = −∂β(n̄vβ) (3a)

Dtpα =
hα
γ

− ν

(
vαβ − 1

2
vγγδαβ

)
pβ (3b)

0 = ∂β(σ
e
αβ + σd

αβ), (3c)

where h = −δF/δp is the molecular field, vαβ = (∂αvβ+
∂βvα)/2, and ωαβ = (∂αvβ − ∂βvα)/2 are the symmetric
and anti-symmetric parts of the velocity gradient tensor,
and Dtpα = ∂tpα + vβ∂βpα + ωαβpβ is the co-rotational
derivative. The stress is decomposed into the Ericksen
and the deviatoric components that read

σe
αβ = −Pδαβ − (G∂βn̄+ jppβ)∂αn̄−K∂αpγ∂βpγ (4a)

σd
αβ = 2η

(
vαβ − 1

2
vγγδαβ

)
(4b)

+
ν

2
(pαhβ + pβhα − pγhγδαβ) +

1

2
(pαhβ − pβhα)

− 1

2
ζ0∆µpγpγδαβ − ζ∆µ

(
pαpβ − 1

2
pγpγδαβ

)
with the pressure P = µn̄ − f , the chemical potential
µ = δF/δn̄ and ∆µ is the chemical potential difference

extracted from fuel consumption. The phenomenological
parameters are the rotational viscosity γ, the flow align-
ment coefficient ν, the shear viscosity η, and the active
isotropic (anisotropic) coefficient ζ0 (ζ).

As in the experimental system of Ref. [17], we con-
sider an active fluid confined to a disc of radius R,
Fig. 1c. Using polar coordinates (r, θ), the polarity
field is decomposed into the polar order S and the tilt
angle ψ with respect to the radial direction, so that
p = S cosψ er + S sinψ eθ, where er and eθ are the unit
polar vectors. In addition we assume rotational invari-
ance, ∂θ = 0. Because our theoretical description is achi-
ral, without loss of generality, we restrict the range of an-
gles to ψ = [0, π]. Using the convention that outward po-
larity corresponds to ψ < π/2, one can classify the differ-
ent +1 topological defects into out-aster ψ = 0, out-spiral
0 < ψ < π/2, vortex ψ = π/2, in-spiral π/2 < ψ < π and
in-aster ψ = π.

The evolution equations for the fields n̄, S, ψ, vr and vθ
are detailed in Supplementary Material (SM) [38]. Moti-
vated by the experiments in [17], spatial boundary condi-
tions at r = R are set to S = 1 (boundary-induced order),
∂rψ = 0 (free orientation), vr = 0 (absence of particle
flux), and σθr = 0 (absence of shear stress). At equilib-
rium, the last boundary condition at r = R is obtained
from the minimization of the free energy (1), which yields
∂rn̄ = −jp cosψ/G. We assume that this condition also
holds out-of-equilibrium. At r = 0, regularity of the so-
lution imposes that S = ∂rψ = ∂rn̄ = vr = vθ = 0.

Parameters are non-dimensionalized by using disc ra-
dius R as length scale, Frank constant K as energy
scale and rotational viscosity γ to obtain a time scale
γR2/K. In the following, B = 12, G = 2, η = 2,
ν = −1.5 are fixed, and χ, jp, ζ∆µ, ζ0∆µ are var-
ied. In numerics, the initial polarity is oriented outwards
(i.e. ψ(r, t = 0) < π/2), and the total particle density∫
A
dAn/A is set to n0 to avoid any pre-stress in the uni-

form configuration. For more details on the numerical
scheme and initial conditions, see SM [38].

First, we consider the case of vanishing activity ζ∆µ =
ζ0∆µ = 0. In this case, the equilibrium states are in- and
out- asters, Fig. 2a, which have the same total energy
and are selected through spontaneous symmetry break-
ing. The corresponding density gradients have opposite
signs, see SM [38].

Next, in the case of vanishing DPC jp = 0, sponta-
neous flows occur when ζ∆µ > 0, Fig. 2. Specifically,
in- and out-asters transition to rotating spirals when
anisotropic activity switches from contractile ζ∆µ < 0
to extensile ζ∆µ > 0, Fig. 2a-c. Unlike in past works
[22, 23], here the instability threshold vanishes because
of the absence of boundary anchoring. Spirals feature
counter-rotating flows with a vanishing net torque be-
cause forces are internal, see Fig. 2b. Their steady-
state orientation angle ψ(r) = ψL satisfies the relation
ν cos(2ψL) = 1 [39], where ψL is the Leslie angle, see
Fig. 2c. Gradients of density are sustained by active
processes in both spirals and asters, with their direction
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FIG. 2. Spiral-to-aster transition induced by DPC. (a) Den-
sity plot of the peripheral angle ψR = ψ(R) at steady-state,
as a function of anisotropic activity (ζ∆µ) and DPC (jp) coef-
ficients. Blue curve: threshold |jp| = |j∗p | from Eq. (6). (b-e)
Radial profiles of azimuthal velocity vθ(r) (b), angle ψ(r) (c),
density variation δn̄ = n̄(r)− 1 (d) and polar order S(r) (e),
for ζ∆µ = 2 and jp varies as indicated in legend (e) and black
arrow (a,c). Gray line in (c): Leslie angle ψL. Parameters are
χ = 4 and ζ0∆µ = 0.

set by n̄′ ∼ −(ζ cos(2ψ) + ζ0)∆µ for uniform ψ [40], see
Fig. 2d for an extensile spiral.

Based on the above results, when jp ̸= 0 and ζ∆µ > 0,
we expect competition between DPC, promoting radial
configurations, and the active anisotropic stress driving
the polarity towards the Leslie angle. Solving numeri-
cally our hydrodynamic equations (3), a spiral-to-aster
transition is found at a threshold value of jp, Fig. 2a and
c. As |jp| increases near the threshold value, density gra-
dients become steeper and the angle ψ approaches zero as
for the out-aster state thanks to DPC, Fig. 2c,d. In con-
trast, the polar order parameter remains approximately
independent of jp, Fig. 2e. Importantly, this transition

now occurs at a finite threshold of activity, Fig. 2a.
To further understand this competition, we analysed

the linear stability of an out-aster to perturbations in the
angle ψ, see SM [38]. Neglecting gradients of orientation
Fig. 2c, the linear dynamics for the angle perturbation
δψ reduces to

∂tδψ ∝
{
jpn̄

′
a +

2ζ∆µγ(1− ν)S3
a

4η + γS2
a(ν − 1)2

}
δψ (5)

where Sa(r) and n̄a(r) are, respectively, the steady-state
polar order and reduced density for an out-aster. Assum-
ing that the instability originates from the boundary, we
replace these profiles by their boundary values Sa = 1
and n̄′a = −jp/G in Eq. (5) and obtain the analytical
threshold

|j∗p| =

√
2ζ∆µGγ(1− ν)

4η + γ(1− ν)2
. (6)

This threshold suggests that an out-aster is linearly un-
stable for ζ∆µ(1 − ν) > 0 and an intermediate range of
the DPC coefficient |jp| < |j∗p|. Expression (6) is in qual-
itative agreement with numerics, Fig. 2a. In conclusion,
DPC can suppress the spontaneous flow transition and
stabilise asters in active polar fluids.
Let us reconsider the equilibrium case. There, lin-

ear stability analysis shows that DPC alone can desta-
bilize a uniform ordered state [33–36]. Indeed equi-
libration of density fluctuations leads to an effective
Frank free-energy with a renormalized splay constant
Ks = K − j2p/B, whereas the bend constant remains un-
changed Kb = K, see SM [38]. For Ks < 0, that is above

the threshold value |j†p| =
√
KB, splay distortions are

favoured. In our system, the threshold for this instability
j†p is modified by activity and boundary conditions. The
instability is associated with a finite wavelength, which
can generate biphasic orientational phases in the context
of +1 topological defects that we analyze in the following.
Beyond the spontaneous splay instability, biphasic

asters emerge where in- and out-aster states coexist,
Fig. 3a. This state is characterised by a non-monotonic
density profile, favouring non-uniform orientations due
to DPC, Fig. 3a, and a sharp interface with strong ori-
entation gradients (R|∇ψ| ≫ 1). Because the positive
bend constant Kb = K prevents large gradients of ψ, the
polar order S needs to be sufficiently small to stabilize
the interface, Fig. 3a, inset. This can be achieved in the
disordered limit

√
K/χ ≪ R, such that polar order is

localized at the disc periphery, see Fig. 3a.
Below the spontaneous splay instability, double spi-

rals can be found. They are characterised by a gradual
gradient of orientation (R|∇ψ| ∼ 1), Fig. 3b. This gradi-
ent results from a competition between active alignment
and DPC, modulated by the local amplitude of polar
order S. Indeed, if anisotropic activity dominates over
DPC at the periphery (S ∼ 1), spirals are stabilised for
ζ∆µ > 0, Fig. 3b. Away from the periphery, where order
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is weak (S ≪ 1), DPC always dominates, favouring out-
asters for inward density gradients, Fig. 3b. Contrary to
Fig. 2c,e where polar order remains large near the center,
locally attenuating the competition between active align-
ment and DPC, here the disordered limit

√
K/χ ≪ R

results in larger orientational gradients.

These states can be characterized by the peripheral
angle ψR = ψ(R) and the angle difference between the
periphery and the center ∆ψ = ψ(R) − ψ(0). Whereas
Fig. 3d is apparently similar to Fig. 2a, the state dia-
gram for the angle difference in Fig. 3e reveals biphasic
asters and double spirals with ∆ψ ̸= 0, SM [38]. The de-
pendence on activity of the spontaneous splay threshold
can be understood from the non-monotonicity of den-
sity profiles, as in Fig. 3a. Whereas density gradients
n̄′(R) are set by DPC at the periphery, in the bulk,
they scale as n̄′ ∼ −(ζ+ ζ0)∆µ when activity dominates.
Therefore, biphasic asters are favoured when jp > 0 and
(ζ + ζ0)∆µ < 0 or vice-versa, in agreement with state 2
in Fig. 3e when ζ0∆µ = 0, or in Fig. 3g when ζ0∆µ ̸= 0.

At low values of |jp|, double spirals can emerge, states
4, 6 and 8 in Fig. 3e,g. Whereas peripheral orientation
remains outward when ζ0∆µ = 0, Fig. 3e, large isotropic
activity can induce inward oriented states 7 and 8 in
Fig. 3f,g. These states can no longer be understood from
peripheral angle dynamics alone. They appear when
anisotropic active stresses overcome DPC at the periph-
ery, in combination with outward (inward) bulk den-
sity gradients to promote inward orientation for jp > 0
(jp < 0). Increasing ζ0∆µ to positive values changes the
direction of bulk density gradients, and reverses the cen-
tral angle from inwards to outwards through the sequence
of states 8 → 6 → 4 for jp > 0, see Fig. 3c,g.

In summary, a local coupling between polarity and
density gradients can account for the observed transi-
tion between rotating spirals and non-flowing asters as
cell density increases, Fig. 1. In addition, these results
provide an alternative interpretation of this transition,
in terms of a transition from a double spiral to an aster,
black arrow in Fig. 3g. In this case, for low densities,
a double spiral with aster-like orientation ψ ≃ 0 in the
center is found, Fig. 3b,g. With increasing density, this
inner phase expands until it fills the entire disc and the
angle becomes ψ = 0. This double-spiral state delays the
relaxation of the peripheral angle towards zero, which is
consistent with experiments, see appendix.

The spiral-to-aster transition discussed above crucially
relies on the choice of the free energy term fDPC (Eq. 2).
Alternatively, it can be written as fDPC = −jpn̄∇ · p,
which leads to the equilibrium BC ∂rn̄(R) = 0. In SM
[38], we show that the main results remain unchanged
for different parameter values. One could also consider
a free energy of the form f̃DPC = Jp(p · ∇)n/n0 [24,
33, 41]. In this case, a density-controlled spiral-to-aster
transition occurs if ζ∆µ decreases with density. Then,
other parameters like isotropic active stress also need to
depend on density to match the observed density profiles
in Fig. 1b. Therefore, Eq. 2 corresponds to a minimal

FIG. 3. Orientational patterns induced by DPC. (a-b) Radial
profiles of angle (left), density variation (middle) and polar
order (right), for biphasic asters (a) and double spirals (b).
Inset: polar order near disc center. (c) Schematics of ori-
entation states. (d-g) Steady-state density plots: peripheral
angle ψR = ψ(R) (d,f) and angle difference between periphery
and center ∆ψ = ψ(R) − ψ(0) (e,g). Dashed lines in (d-g):

jp = ±
√
KB. Black arrow in (g): double spiral to aster tran-

sition. Parameters χ = 81, ζ0∆µ = 0 for (d,e), and ζ∆µ = 20
for (f,g).

extension of Ref. [20].
DPC not only provides an explanation for the dynam-

ics of polar tissues on discs, Fig. 1, but also proposes a
mechanism for collective states found in giant epithelial
cell monolayers [28]. There, a radially spreading tissue
develops azimuthal flows in the central region, and den-
sity gradients become non-monotonic. In our framework,
this state resembles biphasic asters except for an out-
ward spiral orientation near the center in Ref. [28]. We
expect this difference to originate from a global polar or-
der, which is able to sustain bulk active stresses contrary
to our disordered system. Validation of these hypotheses
requires a precise measurement of the cell polarity field
and complementary theoretical analysis.
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To our knowledge, the above experimental works rep-
resent the first evidences of DPC in cellular systems.
To further investigate this coupling experimentally, one
could control density gradients using optogenetic tools
[42] and generate specific flow or polarity patterns. Al-
though we have focused on systems with polar symmetry,
it is also interesting to consider couplings between den-
sity gradients and other types of orientational order, like
nematic systems [43].
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Appendix

Here we compare the evolution of the peripheral an-
gle ψR between experiment and theory. Experiments in
Ref. [17] first show a spiral maintained over one day, fol-
lowed by a rapid transition to an aster, see Fig.A1b. In
theory, assuming uniform angle ψ = ψR and transition
controlled by boundary effects, we obtain an expression
for the angle

cos(2ψR) =
1

ν

1

1− j2

[
1− j2

2

(
4η

γ
+ ν2 + 1

)]
, (A.1)

see SM [38]. The critical value j∗p at which spiral-to-
aster transition occurs is given by Eq. (6). Comparison
between experiments and Eq. (A.1) shows agreement for
η/γ ≪ 1, see Fig.A1a. Previous quantitative analysis
[20, 40] suggests that η/γ ∼ 1.
In the main text, we showed the existence of double spi-

rals, Fig. 3b. For high values of activity coefficients ζ∆µ,
ζ0∆µ and increasing jp > 0 (black arrow in Fig. 3g),
spiral orientation is maintained at the periphery while
aster-like orientation develops in center. Compared to
uniform angle states, this delays the spiral-aster transi-
tion time, see Fig. A1b. Thus, double spiral itself can
also quantitatively reproduce experimental data.
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