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The structural connectome and motor
recovery after stroke: predicting natural
recovery

Philipp J. Koch,1,2,3 Chang-Hyun Park,1,2 Gabriel Girard,4,5,6 Elena Beanato,1,2

Philip Egger,1,2 Giorgia Giulia Evangelista,1,2 Jungsoo Lee,7 Maximilian J. Wessel,1,2

Takuya Morishita,1,2 Giacomo Koch,8 Jean-Philippe Thiran,4,5,6 Adrian G. Guggisberg,9

Charlotte Rosso,10 Yun-Hee Kim7,11 and Friedhelm C. Hummel1,2,12

Stroke patients vary considerably in terms of outcomes: some patients present ‘natural’ recovery proportional to
their initial impairment (fitters), while others do not (non-fitters). Thus, a key challenge in stroke rehabilitation is
to identify individual recovery potential to make personalized decisions for neuro-rehabilitation, obviating the
‘one-size-fits-all’ approach.
This goal requires (i) the prediction of individual courses of recovery in the acute stage; and (ii) an understanding
of underlying neuronal network mechanisms. ‘Natural’ recovery is especially variable in severely impaired
patients, underscoring the special clinical importance of prediction for this subgroup.
Fractional anisotropy connectomes based on individual tractography of 92 patients were analysed 2 weeks after
stroke (TA) and their changes to 3 months after stroke (TC – TA). Motor impairment was assessed using the Fugl-
Meyer Upper Extremity (FMUE) scale. Support vector machine classifiers were trained to separate patients with
natural recovery from patients without natural recovery based on their whole-brain structural connectomes and
to define their respective underlying network patterns, focusing on severely impaired patients (FMUE520).
Prediction accuracies were cross-validated internally, in one independent dataset and generalized in two inde-
pendent datasets.
The initial connectome 2 weeks after stroke was capable of segregating fitters from non-fitters, most importantly
among severely impaired patients (TA: accuracy = 0.92, precision = 0.93). Secondary analyses studying recovery-
relevant network characteristics based on the selected features revealed (i) relevant differences between networks
contributing to recovery at 2 weeks and network changes over time (TC – TA); and (ii) network properties specific
to severely impaired patients. Important features included the parietofrontal motor network including the intra-
parietal sulcus, premotor and primary motor cortices and beyond them also attentional, somatosensory or multi-
modal areas (e.g. the insula), strongly underscoring the importance of whole-brain connectome analyses for better
predicting and understanding recovery from stroke.
Computational approaches based on structural connectomes allowed the individual prediction of natural recovery
2 weeks after stroke onset, especially in the difficult to predict group of severely impaired patients, and identified
the relevant underlying neuronal networks. This information will permit patients to be stratified into different re-
covery groups in clinical settings and will pave the way towards personalized precision neurorehabilitative
treatment.
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Introduction
Stroke is a leading cause of long-term disability, with 41.5 million
new cases each year in Europe; under 15% of the patients achieve
full recovery, leaving 3.7 million patients with persistent impair-
ment.1 A significant remaining challenge is the heterogeneity in out-
come and individual recovery potential and in the optimal
neurorehabilitative strategy to maximize individual treatment out-
come. To address these challenges in daily clinical practice, it is ne-
cessary to enhance the understanding and prediction of the
individual courses of recovery. The identification of biomarkers of
neuronal mechanisms, supporting the prediction of individual
courses of recovery in an early phase, will have a massive impact on
clinical management, translational research, and treatment choice
in the pursuit of personalized precision medicine and will ultimately
help to enhance patients’ quality of life through its influences on
healthcare systems and socioeconomics.2,3

Regarding motor recovery after stroke, two phenomena have
been suggested to represent key factors. First, a considerable pro-
portion of patients (2/3) show natural improvement of ~70% of

their initial impairment4,5; this recovery is supported by key mech-
anisms of intrinsic neuronal plasticity (spontaneous biological
recovery), one possible key target for future therapies. The remain-
ing patients (1/3) show considerably less natural (proportional)
recovery and are defined herein as non-fitters. The mechanisms of
intrinsic plasticity in these patients are altered or insufficient to
lead to relevant natural recovery, strongly favouring the view that
such patients need clearly alternative treatment strategies to
maximize the outcome.

Second, for severely impaired patients, there is a large propor-
tion of patients who do not show natural recovery.3 Individually
identifying severely impaired patients, who will or will not show
natural relevant recovery will have tremendous importance for
treatment selection in the pursuit of precision therapy, but current
literature and clinical work lack efforts to make these predictions.

Different systems neuroscience techniques,6 such as electrophysi-
ology,7,8 diffusion weighted imaging,9–12 structural,13 and functional
imaging,14,15 as well as first computational analytical approaches (e.g.
machine learning), have been used in efforts to predict residual motor
function16 or recovery.17 For instance, markers of corticospinal tract
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(CST) integrity have been introduced in an attempt to distinguish
patients with and without motor recovery.9,10 Nevertheless, most of
the studies considered measures derived from focal brain regions,
such as sensorimotor areas, although there is increasing evidence
that stroke is a large-scale network disorder beyond the lesioned re-
gion itself, clearly showing the involvement of widely distributed
areas and large-scale networks, of which nodes and edges might
serve as a conjunct prediction matrix and provide specific targets for
therapy (e.g. brain stimulation) for individual patients.18,19

Furthermore, prediction models so far have mainly neglected severely
impaired patients, for which there is a strong need to stratify treat-
ment options.

Connectome-based predictive modelling is a novel, exciting
data-driven approach taking advantage of technical advances in
reconstructing the whole-brain connectome from neuroimaging
data; this type of predictive modelling has been successfully
adapted to clinical problems.20 Using whole-brain connectomes
has the potential to identify neuronal networks underlying the re-
covery process and therefore provides valuable information to-
wards individualized targets for new therapeutic strategies.

As the network properties supporting recovery are not static
but dynamic over time, it becomes obvious that predictive network
(re)organization supporting recovery might be different in the first
weeks compared to months after stroke, adding a further dimen-
sion to the analyses (for a review, see Koch and Hummel19).

Overall, in a large sample of stroke patients, multimodal analy-
ses of the structural connectome 2 weeks after stroke were used as
a potential prognostic factor to determine individual outcome after
stroke (recovery and no recovery) using computational approaches
based on support vector machines (SVM). After developing and
training of the prediction model, we validated the generated model
first internally, then in an independent dataset externally; to then
generalize it to general motor functions internally as well as with-
in two independent datasets.

In secondary analyses, longitudinal connectome changes
2 weeks to 3 months were leveraged in a similar fashion to define
white matter changes supporting recovery and compared them
with the 2 weeks connectomes. Additionally, we investigated how
functional (motor, sensory and attention) systems of the connec-
tome contribute differently to the prediction. The predictive accur-
acy was compared to the CST and other measurements of neural
networks, and we analysed the long-term changes in local diffu-
sivity relevant for functional recovery. The study was especially
focused on severely impaired patients.

Material and methods
Datasets

Three independent datasets were collected. The first dataset,
referred to as the SEOUL dataset was used for training and internal
validation, whereas the second (GENEVA) was used for the exter-
nal validation of the trained models and the third dataset (PARIS)
was used for the generalization of the proportional recovery-based
prediction to other motor recovery measures.

All patients were evaluated by imaging and motor function
evaluation. For SEOUL, 63 patients after stroke (58 ± 12.6 years old,
33 male) were assessed 2 weeks (14.6 ± 6.6 days) and 3 months (98.3
± 12.6 days) after stroke onset. Motor function was evaluated by
means of the Fugl-Meyer score of the upper extremity (FMUE), grip
strength, pinch grip strength and box and block test.

For the first validation (GENEVA), 15 patients were recruited (58
± 12.2 years old, nine males), and evaluated 2 weeks after stroke
(TA, 18.3 ± 9.1 days). For 10 of those patients a second evaluation at

3 months was performed (TC, 113.6 ± 34.4 days). Motor function
was evaluated by means of the FMUE and grip strength.

For the second validation (PARIS) 14 patients (55 ± 16.7 years
old, nine males) were evaluated 4 weeks (TA, 28.6 ± 7.2 days) and
3 months (TC, 90.4 ± 12.7 days) after stroke. Motor function was
evaluated by means of grip strength.

Inclusion criteria were first-ever ischaemic stroke, 518 years
old, and absence of other neuropsychiatric or life-threatening
comorbidities.

The study was approved by local ethic committees at each site.
Written informed consent was obtained from each participant
according to the Declaration of Helsinki.

Data acquisition

SEOUL dataset
All images for the training and testing dataset were acquired using
a 3 T Philips ACHIEVA MRI scanner (Philips Medical Systems).
High-resolution T1-weighted anatomic images were acquired
using a 3D magnetization-prepared, rapid acquisition gradient-
echo sequence (MPRAGE) with the following parameters: 124 axial
slices, slice thickness = 1.6 mm, no gap, matrix size 512 � 512, field
of view 240 � 240. For the diffusion-weighted images diffusion
gradients with a b-value of 1000 s/mm2 single shell were obtained
in 45 non-collinear directions covering the whole brain in 75 axial
slices. The following acquisition parameters were used: repetition
time = 8770 ms, echo time = 60 ms, field of view = 220 � 220 mm,
slice thickness = 2.25 mm, in-plane resolution = 1.96 � 1.96 mm.

GENEVA dataset
All images for the training and testing dataset were acquired using
a 3 T Siemens TRIO MRI scanner. High-resolution T1-weighted ana-
tomic images were acquired using a 3D MPRAGE with the following
parameters: 176 axial slices, slice thickness = 1.0 mm, matrix size
240 � 256. For the diffusion-weighted images diffusion gradients
with a b-value of 1000 s/mm2 single shell were obtained in 30 gra-
dient encoded directions covering the whole brain in 60 axial
slices. The following acquisition parameters were used: repetition
time = 7400 ms, echo time = 84 ms, field of view = 256 � 256 mm,
slice thickness = 2 mm, in-plane resolution = 2 � 2 mm.

PARIS dataset
All images for the training and testing dataset were acquired using
a 3 T Siemens TRIO MRI scanner. High-resolution T1-weighted ana-
tomic images were acquired using a 3D MPRAGE with the following
parameters: 176 axial slices, slice thickness = 1.0 mm, matrix size
240 � 256. For the diffusion-weighted images diffusion gradients
with a b-value of 1000 s/mm2 single shell were obtained in 35 gra-
dient encoded directions covering the whole brain in 60 axial
slices. The following acquisition parameters were used: repetition
time = 10 s, echo time = 87 ms, field of view = 256 � 256 mm, slice
thickness = 2 mm, in-plane resolution = 2 � 2 mm.

Data processing

Stroke lesions were manually drawn on the high resolution T1

MPRAGE by a physician (P.K.) using mrview by mrtrix (https://
www.mrtrix.org/) and independently validated by another experi-
enced physician, interrater reliability was 95%. Structural images
were preprocessed by means of the Freesurfer toolbox (https://surf
er.nmr.mgh.harvard.edu/). This includes artefact corrections,
transformation of the native space into the Talairach, normaliza-
tion, skull strip, segmentation and registration. The Destrieux atlas
was used for further cortical parcellations.21
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The areas covering the central sulcus, being the pre- (M1) and
postcentral (S1) gyrus as well as the precentral sulcus for the pre-
motor cortex (PMC) were split in an anterior and posterior part
along the whole extent of the respective mask using an in-house
calculation using MATLAB (Mathworks, Natick, MA, USA). By com-
bining resulting segmentations specific masks for M1, S1 and PMC
were generated. Furthermore, to increase the dimensionality of
the parcellation, each mask of the Destrieux atlas was split into a
fixed number of parcellations along the longest axis, using
FreeSurfer. Finally, we included subcortical areas as well as the
cerebellum resulting in a whole brain parcellation of 333 areas of
interest. In case of stroke lesions affecting the performance of par-
cellation, the correspondence part of the lesion on the unaffected
hemisphere was used and interpolated over the lesioned brain as
a brain transplant and fed into the above-described structural
imaging processing. Structural parcellation was registered to the
non-weighted (b0) diffusion acquisition using flirt and fnirt by fsl
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).

The diffusion images were preprocessed using eddy,22 includ-
ing motion artefact reduction, correction for field inhomogeneity
and eddy currents. Diffusion tensors were estimated alongside the
corresponding fractional anisotropy (FA) map.23 Constrained
spherical deconvolution was used to estimate the fibre orientation
distributions within each voxel. Whole brain probabilistic tractog-
raphy calculated streamline estimates using second order integra-
tion over fibre orientation distribution (iFOD2) using 10 million
streamlines.24 For the origin of streamlines, individual white mat-
ter masks were chosen. Following further selection of one million
streamlines based on white matter regions of interest, every
streamline was weighted fitting the underlying diffusion signal
based on the Stick and Ball model using COMMIT.25 The mean FA
over each streamline was calculated integrating the COMMIT
weights. Whole brain connectomes were calculated based on the
mean FA and 333 regions of interest. The diagonal of connectomes
was then set to 0 as well as connections between areas of the
same initial Destrieux parcellation.

Proportional recovery

Proportional recovery for patients was calculated as follows: the
change in FMUE over time was related to the maximal amount of
potential recovery [(FMUE at 3 months – FMUE at 2 weeks) / (66 –
FMUE at 2 weeks)]. This observed proportional recovery was
related to the predicted proportional recovery [0.7 (66 – FMUETA) +
0.4], as previously described.26 By means of k-means clustering,
patients were identified as fitters, i.e. revealing a proportional re-
covery, and non-fitters, i.e. patients lacking proportional recovery.
Patients were further separated into severely impaired patients as
previously described in Fugl-Meyer et al.27 (420 FMUE at 2 weeks).

To address potential spurious correlations of the proportional
recovery, further correlation analyses between initial severity and
outcome, as well as recovery rate, were performed using a linear
regression model, exploring potential biases as suggested by
Hope et al.28

Application of machine learning classifiers

FA values of white matter tracts between 333 regions were used as
features for classifying patients into fitters and non-fitters. We
considered different classification tasks according to the inclusion
of time points and the severity of patients’ initial motor impair-
ment. That is, different machine learning classifiers were con-
structed according to (i) whether FA values at 2 weeks (i.e. TA) or
changes in FA values between 2 weeks and 3 months (i.e. TC – TA)
were used as features; and (ii) whether all patients or subgroup

patients with severe initial motor impairment were included as
instances. For the classification tasks, an SVM was used as a ma-
chine learning method.

The SEOUL dataset was used to train SVM classifiers for the
classification tasks. Features were adjusted for effects of patients’
age, lesion affecting dominant or non-dominant hemisphere, NIH
Stroke Scale (NIHSS) scores at TA, and initial lesion volume by
obtaining residuals after regressing out the confounding covari-
ates. We selected a feature subset to reduce the risk of overfitting
by filtering features via a two-sample t-test between fitters and
non-fitters with the significance level of a P-value 4 0.05 or less

uncorrected for multiple comparisons. SVM classifiers were
trained for the selected features by tuning hyperparameters
including box constraint and kernel scale via 5-fold cross-valid-
ation. Kernel function was fixed to using the linear kernel since we
were interested in assessing the importance of individual features
in terms of their SVM classifier weights. The performance of SVM
classifiers was evaluated in terms of classification accuracy and
precision firstly using the SEOUL dataset in 5-fold cross-validation
as internal validation and secondly using the GENEVA dataset as
external validation.

In addition, to distinguish features specific to a subgroup,
patients with severe initial motor impairment, we performed
10 000 times of permutation by which patients’ labels based on the
severity of their initial motor impairment were ordered randomly.
For the subgroup of patients with severe initial motor impairment,
we compared the feature subset determined for actual labels in re-
lation to the distribution of feature subsets determined for per-
muted labels. We supposed that a lower selection frequency of a
feature in the distribution (55%) could indicate its greater specifi-
city to the subgroup of patients with severe initial motor impair-
ment compared to all patients.

Feature extraction

For every parcellation of the brain (nodes), weights of all connec-
tions to this area included as a feature in the SVM (surviving the
two-sample t-test) were summed up. A high value of a node there-
by indicates this brain area has multiple connections for which a
higher FA or change in FA indicates a higher likelihood of the pa-
tient being a fitter. A lower value of a node indicates that this brain
area has multiple connections for which a higher FA or change in
FA indicates a higher likelihood of being a non-fitter. This proced-
ure was repeated for all trained and tested SVM classifiers using

the connectome at TA and the changes over time for both the
whole SEOUL dataset as well as the subgroup of patients with ini-
tial severe impairment. Values for the nodes were z-transformed
and visualized on the inflated FreeSurfer surfaces as well as MNI
standard brain showing only positive and negative values ± one
standard deviation (SD) (Fig. 2 and Supplementary Figs 1–4).

Generalization

We assessed whether SVM classifiers are relevant to motor recov-
ery measures other than fitter versus non-fitter classification. A
function that transformed SVM classification scores to posterior
probabilities was estimated, such that a higher posterior probabil-
ity indicated a higher likelihood of being classified as a fitter. We
considered correlations with two additional motor recovery meas-
ures, namely, normalized changes in hand grip strength and prin-
cipal component motor scores extracted from changes in hand
grip strength, pinch grip strength, and box and block test scores.
Statistical significance was determined at a P-value of 0.05.

2110 | BRAIN 2021: 144; 2107–2119 P. J. Koch et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/144/7/2107/6316639 by U

niversite de G
eneve user on 13 M

ay 2024

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab082#supplementary-data


Longitudinal change of the white matter
microstructural integrity

For each connection of the connectome, FA values were compared
between TA and TC using a paired dependent t-test. Those con-
nections were considered for further analyses, which indicate a
change of FA applying a significance level of 0.05 uncorrected for
multiple comparison and additionally were included as a feature
in the SVM classifier addressing the change of FA over time TC –
TA. By this, surviving connections show (i) a change of FA over
time; and (ii) a functional meaningful change of FA, by remaining
vulnerable to type 1 errors. T-statistics for each connection were
summed up for every area of the parcellation indicating brain
areas, for which connections dominantly show an increase (nega-
tive values) or decrease (positive values) of FA over time.
Additionally, positive and negative t-scores were summed for posi-
tive and negative features separately.

Contribution of functional networks

To compare the different contributions of functional networks and
their interactions, areas belonging to either the motor, the somato-
sensory or the attention network were selected out of the 333 par-
cellations, as shown in Supplementary Table 2. Note, that one area
can be referred to more than one network. This selection was
based on a literature review. In a stepwise approach, white matter
connections of only the motor network (3081 connections) were
used as features for classifying patients into fitters and non-fitters
followed by white matter connections of the motor plus somato-
sensory system (9591 connections) followed by the motor plus
somatosensory plus attentional system (13 203 connections) and
finally the whole brain connectome (55 945 connections). For each
step different machine learning classifiers were constructed for
the FA at TA and changes in FA between TA and TC. All further
steps were identical to the previous construction of SVM classifiers
without external validation or permutation.

Comparison with CST integrity and network
readouts

In order to relate connectome-based prediction accuracy to predic-
tion models using different measures of network connectivity
commonly used in literature, SVM classifiers were built based on
the CST connectivity as well as network measurements by means
of graph theory.

CST integrity was evaluated in two ways. A group average tem-
plate of the trajectory of the CST from 842 healthy subjects from the
Human Connectome Project was taken.29 Individual FA maps were
co-registered non-linearly to the Montreal Neurological Institute
(MNI) standard space. FA values were read out in the trajectory of
the CST template at the level from the mesencephalon to the cere-
bral peduncle (MNI coordinates z = –25 to z = –20) as suggested pre-
viously30 reducing influence of crossing fibres. Second, the CST
lesion load was calculated. Individually drawn lesion masks were
non-linearly co-registered to MNI space. The volume overlay of the
individual lesion mask and the CST group template was calculated.

These two values, in addition to the initial score of FMUE, were
used as features to the SVM, classifying patients into fitters and
non-fitters.

In addition, alternative SVM classifiers were constructed using
seven network summary measures as features. Weighted structural
networks were constructed by setting the 333 regions as nodes and
using FA values of white matter tracts between them as edge
weights. For constructed weighted structural networks, density as a
size measure, characteristic path length as an integration measure,
clustering coefficient as a segregation measure,31 participation

coefficient as a centrality measure, and assortativity,32 modularity,33

and small-worldness34 as structure measures were computed. Using
the seven network measures as features, SVM classifiers were
trained and tested for classifying fitters and non-fitters.

Data availability

Data will be made available upon reasonable request.

Results
Proportional recovery

The results of the clustering and identification of fitters and non-fit-
ters for the SEOUL dataset is illustrated in Fig. 1 and Supplementary
Table 1. Of all patients within the SEOUL dataset, 39.7% (25/63) were
determined to be non-fitters, and in the subgroup with severe motor
impairment, 63.9% (23/36) were identified as non-fitters. Segregating
two clusters within the given dataset revealed more stable results
compared to up to five clusters, as indicated by means of silhouette
values (Supplementary Figs 5 and 6).

Potential biases of the proportional recovery model, like over-
estimation or ceiling, were further investigated between initial se-
verity and outcome/recovery, as well as ratio of variance, as
suggested by Hope et al.28 See Table 1 for the respective results.

Classification performance internal validation:
SEOUL dataset

Table 2 displays the performance of SVM classifiers using initial
FA values as features. First, SVM classifiers were cross-validated
internally and yielded adequately high classification accuracy.

Using changes of FA values as features of internal validation
yielded adequately high classification performance for all SEOUL
patients (accuracy: 0.92; precision: 0.92), as well as for the severe
patients in the SEOUL dataset (accuracy: 0.92; precision: 0.93).

Classification performance external validation:
GENEVA dataset

Feature matrices extracted from the SVM classifier were addition-
ally validated externally in the independent GENEVA dataset.
Results for the initial FA values as features are shown in Table 2.
Note that the extreme classification accuracy of 1.0 in the external
validation may be due to an imbalance within the GENEVA data-
set, as all severe patients in the GENEVA dataset were identified as
non-fitters and precision is depending on the recognition of fitters
(Supplementary Table 1).

Using changes in FA values as features, external validation was
carried out within the GENEVA dataset (accuracy: 0.6; precision:
0.6) and severe patients in the GENEVA dataset (accuracy: 1.0; pre-
cision: not applicable).

Generalization

To reveal whether extracted features were relevant not only for
separating fitters and non-fitters but to further indicate changes in
general motor recovery measures, posterior probability scores
were correlated with scores of motor function within all datasets
(SEOUL, GENEVA, PARIS). The results are presented in Table 3.

Brain areas supporting the recovery process 2 weeks
after stroke

Using feature extraction, we identified brain areas and their con-
nections relevant to the recovery process at 2 weeks after stroke
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for all patients, including severely impaired patients. The results
are shown in Fig. 2 and Supplementary Figs 1 and 2. Descriptive
analyses revealed that, on a cortical level, besides the involvement
of bilateral motor cortices, bilateral involvement of connections
with the ventral premotor cortex (PMv) (especially on the affected
hemisphere) with involvement of further premotor areas like the
inferior frontal gyrus is notable. Permutation analyses showed a
specific supportive role of the PMv on the affected hemisphere in
severely impaired patients (Fig. 3). In severely impaired patients
specifically, is the relevant contribution of connections with the
supplementary motor area (SMA) of the unaffected hemisphere.35

Furthermore, there is a dominant role of connections within the
parietal cortex including the intraparietal sulcus as well as the
superior parietal gyrus on both hemispheres, with a specificity for
severe patients (unaffected hemisphere).

Structural analyses further revealed that besides the areas of
the core motor system, somatosensory or attentional regions,
multimodal areas demonstrate relevant importance in separating
fitters from non-fitters. In this regard, the relevance of the insular
cortex, operculum, postcentral gyrus and cingulum (unaffected
hemisphere) support the idea that higher residual structural con-
nectivity of widespread networks involving multimodal areas is of
obvious importance.

Finally, structural connectivity within subcortical structures
also contributed to the prediction of proportional recovery, espe-
cially basal ganglia, thalamus and hippocampus, as well as projec-
tion fibres and cerebellar connections in severely impaired
patients.

White matter changes supporting recovery between
2 weeks and 3 months after stroke

Longitudinal changes of structural connectivity after stroke and
their relevance to proportional recovery were evaluated (Fig. 2 and

Supplementary Figs 3 and 4). Higher values indicate the functional
importance of an increase of FA over time or less decrease for posi-
tive features. Similar to the residual status at 2 weeks, white mat-
ter changes in connections with subcortical structures including
bilateral basal ganglia and thalamus as well as brainstem and the
cerebellum (unaffected hemisphere) are related to proportional re-
covery, with additional specificity for severely impaired patients
(Fig. 3).

On a cortical level, the spatial distribution of areas supporting
recovery are significantly different compared to 2 weeks after
stroke. The influence of connections is prominently within areas
of the frontal and temporal lobe, mainly on the affected hemi-
sphere. Hereby, PMC as well as SMA and even more frontal areas
like the middle and inferior frontal gyrus of the affected hemi-
sphere contribute with a noticeable specificity in severe patients
(Fig. 3). The temporal lobe, the superior temporal gyrus including
secondary somatosensory areas and the insula are also
highlighted.

Longitudinal changes of white matter
microstructural integrity

Summed t-scores for the changes of FA over time for relevant
connections are illustrated in Fig. 4. For a detailed list of areas and
t-scores, see Supplementary Table 5.

The comparison between positive and negative features and t-
scores revealed the following: 62 connections were negative
features with a positive t-score and a summed value of 146.85,
which indicates a decrease of FA over time correlating with a
higher likelihood of being non-fitter. Four connections were nega-
tive features with a negative t-score and a summed value of 9.95,
indicating an increase of FA over time with a higher likelihood of
being non-fitter. Sixty-five connections were positive features
with a positive t-score and a summed value of 162.32, indicating a
decrease of FA, which correlates with higher likelihood of being a
fitter, 25 connections were positive features with a negative t-score
and a summed value of 57.66, indicating an increase of FA over
time with a higher likelihood of being a fitter.

Contribution of functional networks

The accuracy and precision values determined by cross-validation
of SVM classifiers using (i) only nodes considered to belong to the
motor system; (ii) the previous nodes as well as nodes of the som-
atosensory system; (iii) the previous nodes as well as nodes of the
attentional system; or (iv) the whole connectome, are shown in
Table 4. Using all subjects in the SEOUL dataset, the highest per-
formance, as defined by accuracy and precision, was achieved
using the motor and sensory functional nodes at 2 weeks (accur-
acy: 0.87; precision: 0.91) and over time (accuracy: 0.89; precision:
0.98).

For severely impaired patients, at 2 weeks, the highest per-
formance was achieved using the whole connectome (accuracy:
0.92, precision: 0.93). For the change in the connectome over
time, the highest performance was reached by considering only
motor and somatosensory nodes (accuracy: 0.94; precision: 0.97).
For information on which areas of the brain parcellation were
considered to belong to each functional network, see
Supplementary Table 2.

Comparison with CST integrity, network readouts
and motor evoked potential status

Accuracy measurements following cross-validation of a trained
and tested SVM classifier using structural measurements of CST

Figure 1 Fitters and non-fitters of proportional recovery. All patients in
the SEOUL dataset are shown by their observed and predicted proportion-
al recovery of FMUE. Non-fitters (red) are identified by the clustering
showing less natural recovery than predicted [0.7 (66 – FMUETA) + 0.4]
compared to the fitters (blue). For details, see the ‘Materials and methods’
section and Supplementary Table 1.
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integrity, like CST lesion load and FA together with the FMUE score
at 2 weeks are shown in Supplementary Table 9. Furthermore,
results are presented when using predictors of network measure
models including density, clustering coefficient, modularity, assor-
tativity, characteristic path length, participation coefficient and
small worldness. All models showed lower accuracy in predicting
fitters versus non-fitters compared with the classifiers trained on
the whole connectome.

Using motor evoked potential (MEP) data in 49 patients from
the SEOUL dataset showed a 0.63 accuracy of predicting fitters and
non-fitters in a confusion matrix (Supplementary Table 7). This

indicates a significantly lower predictive power than the current
network connectomics approach.

Correlation between features at 2 weeks and
changes between 2 weeks and 3 months after stroke

Regression analysis revealed a significant negative correlation be-
tween features at 2 weeks and features using connectome changes
between 2 weeks and 3 months (coefficient: –0.14, R2 0.65, P-val-
ue50.0001). This correlation showed the same significant

Figure 2 SVM features of all patients for connectomes 2 weeks after stroke as well as changes observed up to 3 months. Brain areas of the connec-
tome in which connectivity positively (red) or negatively (blue) correlates with the likelihood of the patient being a fitter. The feature weights of all
connections were summed for each area of the parcellation, and a z-transform was applied. Here, only those areas exceeding 1 SD are shown. For all
results, see Supplementary Table 4. The figure shows the results for the SVM including all subjects in the SEOUL dataset with the connectomes at 2
weeks after stroke (TA, top), as well as connectome changes to 3 months (TC – TA, bottom). The results are presented on the inflated FreeSurfer brain
as well as the MNI standard brain, with z-coordinates given. Darker grey areas on the inflated FreeSurfer brain represent sulci, whereas lighter grey
areas represent gyri. AH = affected hemisphere; SC = central sulcus; SFS = superior frontal sulcus; SIP = intraparietal sulcus.
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relationship when considering summed values for each node (co-
efficient –0.28; R2 0.08; P-value 5 0.0001).

Discussion
Structural connectome in the acute stage as a
potential prognostic parameter for motor recovery
following stroke

Identifying phenotypes of recovery trajectories and their unique
neuronal fundaments was the main focus of this work. We believe
that this is an essential prerequisite for the development of per-
sonalized precision medicine in stroke recovery and for maximiza-
tion of individual outcomes by patient-tailored treatment
strategies, including novel neurotechnologies such as non-inva-
sive brain stimulation (NIBS).19,37,38

The distinction between patients with or without natural
(motor) recovery, i.e. fitters or non-fitters, has been reproduced
multiple times4,5 and is also demonstrated in the present data (Fig.
1). For patient groups with severe initial impairment, in particular,
there was a large diversity between patients showing recovery and
patients that did not.

Predicting patients’ potential outcomes has not been addressed
in detail, especially for this particular subgroup. Recently multiple
phenotypes of behavioural recovery have been separated high-
lighting the importance of predictive modelling and the strong
need for understanding neuronal fundaments of recovery.40

Previous prediction models have attempted to distinguish patients
with favourable outcomes from those without, using electro-
physiological or imaging readouts focused purely on the motor
system (e.g. MEP or CST structural integrity) and reached an accur-
acy between 70 and 86%.13,15,16,37 However, these models have rele-
vant limitations in correct phenotyping, especially for severely

Table 1 Correlation coefficients for the proportional recovery rule

X Y R2 Coefficient P r(X)/r(Y)

FMUE TA FMUE TC 0.608 0.86 50.001 0.907
FMUE TA FMUE rec 0.024 –0.14 0.116 1.420
FMUE TA (fitters) FMUE TC (fitters) 0.479 0.37 50.001 1.865
FMUE TA (fitters) FMUE rec (fitters) 0.725 –0.63 50.001 1.354
FMUE TA (severe) FMUE TC (severe) 0.319 1.71 50.001 0.331
FMUE TA (severe) FMUE rec (severe) 0.074 0.71 0.108 0.386
FMUE TA (severe, fitters) FMUE TC (severe, fitters) 0.001 0.06 0.907 0.621
FMUE TA (severe, fitters) FMUE rec (severe, fitters) 0.256 –0.94 0.078 0.537

As suggested by Hope et al.,28 we present correlation coefficients for r(X, Y), r(X, D) as well as ratio of variance in X and Y for the FMUE scores at TA, TC and recovery scores.

Table 2 Internal and external validation performance of SVM classifiers

Patient subgroup Feature set Number of features Accuracy Precision

Internal validation (SEOUL dataset)
All patients Initial FA values (TA) 1765 0.83 0.87
Patients with severe initial motor impairment Initial FA values (TA) 1921 0.92 0.93
External validation (GENEVA dataset)
All patients Initial FA values (TA) 1765 0.60 0.53
Patients with severe initial motor impairment Initial FA values (TA) 1921 1.00 NA

Accuracy and precision estimated by cross-validation of SVM classifiers using the connectome at 2 weeks (TA) for both the whole SEOUL dataset and patients with severe ini-

tial motor impairment (internal validation). External validation was performed on an independent dataset (GENEVA). NA = not applicable.

Table 3 Generalization of features to further motor recovery scores

Patient group Time point Motor score r P

SEOUL (63 patients) TA Proportional recovery score 0.3 50.001
TC – TA 0.33 50.001

SEOUL severe (36 patients) TA 0.27 0.029
TC – TA 0.31 0.01

SEOUL (63 patients) TA PCA composite score 0.23 50.01
TC – TA 0.2 0.024

SEOUL severe (36 patients) TA 0.44 50.001
TC – TA 0.44 50.001

SEOUL, GENEVA, PARIS (92 patients) TA Grip strength 0.21 50.01
SEOUL, GENEVA, PARIS (87 patients) TC – TA 0.23 50.01

PCA composite scores were built based on measurements of hand grip strength, pinch grip strength, and box and block test scores. Grip strength was normalized to sex, age

and hand dominance. Those variables were correlated with posterior probabilities of SVM classifiers.
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impaired patients. Furthermore, the present approach takes into
consideration the whole-brain connectome, which allows in-depth
insight into neuronal networks involved in motor recovery beyond
the CST and core motor areas.

Considering stroke as a network disorder and by applying SVM-
based computational approaches to the whole-brain structural
connectome, we were able to predict with high accuracy the fitter/
non-fitter phenotype in the acute stage after stroke. It is notable
that, for the first time, it was possible to accurately predict these
phenotypes in severely impaired patients (e.g. severely impaired
patients’ TA connectome-based accuracy 0.92, precision: 0.93). It is
important to note that, in addition to internal validation within
the present dataset, the results were further validated in an inde-
pendent, smaller dataset with a similar study design and imaging
acquisition. The accuracy across all subjects reached 60%; how-
ever, the accuracy was 100% in severely impaired patients.
Because the data sample was small, these validation results must
be taken with caution, and more data are needed to validate the
performance of the classification.

Finally, we were also interested in whether the used approach
applied only to determine impairment as represented by the FMUE
or also for residual motor function. To this end, we determined
correlations between posterior probability and a composite motor
score as well as normalized grip force. These analyses showed sig-
nificance within the training dataset, as well as within the two val-
idation datasets. This implies a generalizable meaning of the
extracted features for recovery, not only in regard to impairment
(FMUE), but also for pure residual motor functions (including distal
skilled functions). Interestingly, this correlation showed higher
coefficients for the group of severely impaired patients, indicating
a higher generalizability of involved areas and networks for motor
recovery for this patient group.

There is increasing focus on developing biomarkers for pheno-
typing and personalization of translational neuroscience, though
the expression ‘biomarker’ is used frequently with different or un-
specific definitions leading to a heterogeneous understanding of
what is exactly meant. Prognostic biomarkers are used to indicate
the likelihood of e.g. a disease’s recurrence, measured at baseline
in patients diagnosed with a certain disease, as defined by the
FDA-NIH Biomarker Working Group.41 Because of the complexity
of the most relevant neurological disorders, such as Alzheimer’s or
Parkinson’s disease, multiple sclerosis or stroke, it has been a large
challenge to identify prognostic biomarkers and bring them to the
clinical domain.42

Using an SVM model, 1765 features were extracted from the
structural connectomes, assessed 2 weeks after the onset of an is-
chaemic stroke, predicting a favourable outcome 3 months after
stroke with an accuracy of 83% (92% in severely impaired patients).
For a high predictive performance on an individual basis, high val-
ues of area under the ROC curve (AUC) are one of the prerequisites;
demonstrated here by an AUC of 0.957 (severe patients: 0.973)
(Supplementary Fig. 8). The idea of using brain connectomics-
based or other system neuroscience parameters combined with
computational approaches might help in the development of novel
biomarkers for complex neurological disorders, as previously sug-
gested.43 Further prospective clinical trials are needed to validate
the medical utility of the structural connectome as a potential
prognostic biomarker for natural motor recovery.

The proportional recovery model

Recently, the proportional recovery model has been challenged
due to various confounds, namely mathematical coupling or ceil-
ing,28,44 leading to a potential overestimation of the predictive
value and explained variance. In particular, they point out the pos-
sibility of a spurious correlation between initial severity (X) and
outcome (Y). Nevertheless, these analyses support the idea that
there is a key fundamental difference between patients with nat-
ural recovery versus patients without natural recovery (D), i.e. fit-
ters versus non-fitters, which was the main outcome variable in
this analysis. However, overestimating the predicted proportional
recovery within our subgroup may still influence the separation of
patients into fitters or non-fitters on an individual level. To ad-
dress this, further analyses, as suggested by Hope et al.,28 have
been performed and revealed (i) stronger correlations of initial im-
pairment with recovery r(X,D) than with sole outcome r(X,Y); (ii) an
imbalance of variance towards outcome [r(X)/r(Y)] within all
patients, including the severely impaired; and (iii) strong predic-
tion accuracy when removing mildly and moderately impaired
patients. All in all, these points reduce the likelihood of false esti-
mation and ceiling effects (see Table 1 for the additional analyses).

Furthermore, clustering analyses with a lower (r: 0.6) or higher
(r: 0.8) proportional recovery coefficient, as suggested, did not sig-
nificantly affect the subgroups of fitters and non-fitters within the
present cohort (Supplementary Fig. 7).

In summary, the analyses indicated stability within the segre-
gation of fitters and non-fitters in the present data. Nevertheless,
because of rising concerns with the proportional recovery model,
there is a need for novel classifications of patients’ recovery rates
without these limitations.

The importance of networks in stroke

Using whole-brain structural connectomes for prediction further
allows the determination of brain networks supporting or even
hampering motor recovery. Using permutation and iteration
methods, we were able to identify network nodes, which are

Figure 3 Permutation results, severe patients. The areas shown are
those for which connectivity was specifically important for the distinc-
tion between fitters and non-fitters in the severely impaired patient
group, as revealed by the permutation analyses for 2 weeks (top) as well
as white matter change up to 3 months (bottom). The colour indicates
how many connections for each area showed specificity. Areas with at
least two specific connections are shown; all areas are plotted on the
inflated FreeSurfer brain as well as the MNI standard brain with z-coor-
dinates given. See Supplementary Table 7 for the full results. AH =
affected hemisphere.
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especially important for recovery in severely impaired patients.
We assumed that these brain areas are likely to underlie the proc-
esses of intrinsic neuronal plasticity (spontaneous biological re-
covery) and thereby could strongly influence the design of new
therapeutic treatments, e.g. as multiple targets for NIBS.

Descriptive analyses of the importance of brain areas and their
connections at 2 weeks following stroke revealed (Fig. 2) that con-
nectivity within core parietofrontal motor areas, including primary
motor, premotor cortices such as PMv, SMA and parietal areas
(intraparietal sulcus and superior parietal gyrus), was crucial for
favourable outcomes, supporting the literature emphasizing the
importance of the parietofrontal network.30,37,44,45,47 Secondary
motor areas were especially important in patients with severe
initial impairment (Fig. 3). In addition to core motor areas, connec-
tions within the somatosensory, the attentional or multimodality
network, such as the insular cortex, the operculum, postcentral
gyrus and cingulum, showed significant relevance for natural re-
covery, implying that a much larger network, as previously
thought, and beyond the core motor network may be involved in
the process of spontaneous biological recovery of motor functions.
This assumption is further supported by the fact that using this
large-scale connectome as a predictive value showed much better
results in separating fitters from non-fitters than using only the

CST or motor network readouts from graph theory within these
data (Supplementary Table 4). Adding nodes beyond the core
motor system increases the prediction performance
(Supplementary Table 2). This is in contrast to current literature
mainly focusing on the CST and core motor areas (for reviews, see
Ward3 and Guggisberg et al.18).

Finally, structural connectivity not only between cortical areas,
but also within subcortical structures was related to proportional
recovery with high specificity in severely impaired patients, high-
lighting the relevant role of connections with subcortical struc-
tures and projection fibres for recovery.46,47

The spatial patterns of areas relevant for prediction of outcome at
2 weeks overlapped to a certain degree with areas determined at the
longitudinal changes, but they were clearly not identical, showing a
shift towards a frontal and temporal representation (Figs 1 and 2 and
Supplementary Figs 1–4). This strongly advocates that the pre-existing
status of white matter connections (at 2 weeks) contributes differently
to recovery than the network alterations (2 weeks to 3 months). More
specifically, it is notable that for certain areas, e.g. the parietal cortex
or the cingulum, the structural connectivity at 2 weeks clearly sup-
ported recovery; however, in contrast, a strengthening of this connect-
ivity over time was rather disruptive for the recovery process. This
implies that the functional importance of brain areas that show fast

Figure 4 White matter changes. Comparison of the FA status of each connection relevant for recovery prediction (features) at 2 weeks compared to
3 months by Student’s t-test reveals predominantly t-scores that show a decrease in FA (red). Blue colours indicate an increase in FA over time.
Lacking correction for multiple comparisons, these results must be considered with caution. Numbers and colour codes represent the t-score. (A)
Summed t-scores of features for each area are plotted on the inflated FreeSurfer cortex as well as the standard MNI brain with z-coordinates given.
(B) Summed t-scores for weights that show a decrease or an increase in FA, separated between positive and negative features. AH = affected hemi-
sphere; FA = fractional anisotropy; NEG = connections being negative features; POS = connections being positive features.

Table 4 Contributions of functional networks

Accuracy Precision

Motor Motor +
Sensory

Motor + Sensory +
Attention

Whole Motor Motor +
Sensory

Motor + Sensory +
Attention

Whole

All 2 weeks 0.87 0.87 0.87 0.83 0.90 0.91 0.83 0.87
All 2 weeks to 3 months 0.81 0.89 0.86 0.92 0.82 0.98 0.87 0.92
Severe 2 weeks 0.83 0.89 0.83 0.92 0.83 0.85 0.97 0.93
Severe 2 weeks to 3 months 0.81 0.94 0.89 0.92 0.88 0.97 0.93 0.93

Accuracy and precision results measured by cross-validation of SVM classifiers consequently adding nodes of the structural connectome starting with the motor, sensory and

attentional network. This was carried out for the entire SEOUL dataset as well as considering only patients with severe initial impairment.
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and dynamic changes with time after stroke ranges from supporting
to hampering recovery, pointing to a novel principle for neuronal cor-
relates of motor recovery. Based on this, one could speculate that
areas with connections of high integrity supporting recovery in an
early phase are in need of reduction of input, whereas areas with a
lower structural integrity are in need of strengthening their input
with time for recovery, creating a more balanced and fine-tuned sys-
tem that favours recovery. Future research is needed to confirm and
deepen these conceptual aspects.

Finally, white matter connectivity features important for recov-
ery were clearly different from those determining symptom sever-

ity at onset (2 weeks), as shown by comparison with a generated
classifier separating severe versus moderate/mild initial impair-
ment (Supplementary Table 8).

Changes in microstructure over time

Considering the massive, differential changes in the functional
role of structural connections for recovery, it is crucial to deter-
mine by which microstructural means, by which ‘polarity’, they
impact proportional recovery. Therefore, in both scenarios (i) a
stronger increase in FA; and (ii) a smaller decrease in FA for a cer-
tain connection can determine the higher likelihood of being a fit-

ter (for positive features) in the SVM classifier. As it is a matter of
debate whether changes in white matter after stroke are more like-
ly considered as degeneration or reorganization, both scenarios
might be possible. To address this question, for every connection
that showed differential relevance for the classification (feature
extraction in the SVM), the FA status was compared between
2 weeks and 3 months (Fig. 4 and Supplementary Table 5). This
analysis revealed that in a large number of these connections, a
decrease in the mean FA was found, as well as a consistent pattern
of area-specific decrease in FA—especially for the affected hemi-
sphere. With due consideration for the lack of specificity of the
microstructural readout used, these analyses point towards dom-
inantly degenerative processes in white matter microstructural
changes following stroke. Further investigation of white matter tis-
sue using more complex modelling is required to assess the reduc-
tion of FA as degeneration or reorganization.48

The importance of the planning and reliability of
trials

As noted above, the possibility of classifying patients in this early
stage will open up the opportunity for new personalized treat-
ments. Knowledge of whether a patient belongs to the group of fit-
ters or non-fitters has a relevant impact on the design of clinical
studies in the field of neurorehabilitation. For instance, for fitters,
an intervention must add to the natural improvement; however,
for non-fitters, who show none or very limited natural recovery, all
potential improvements are relevant. An example of the clinical
relevance of identified phenotypes is that for fitters only, there
was a significant relationship between the initial FMUE and the de-

gree of improvement over time (Supplementary Table 3).
With the ability to identify fitters and non-fitters reliably and

making use of the acute connectome as a potential prognostic bio-
marker, power calculations can become much more accurate,
impacting the necessary sample sizes and anticipated effect sizes
while enabling more homogenous data and better interpretation
of study results; this ability will reduce the need for large sample
sizes within clinical studies.

Limitations

The diffusion acquisition and analysis used implied limitations.
First, tractography is a method vulnerable to false estimations,
and further microstructural readouts are sensitive by multiple
alterations of local diffusivity, which—taken together—might
over- or underestimate structural connectivity between certain
brain areas. This risk was addressed by fitting each streamline to
the underlying diffusion signal using the COMMIT filtering
method. Mechanistic conclusions about the underlying biological
changes (e.g. differentiating myelin or axonal contribution) cannot
be drawn confidently without more advanced acquisition (multi-
shell), optimized filtering and complex microstructure. Second,
stroke lesions affecting the cortex may influence cortical and
whole brain structural reconstructions. Using the healthy hemi-
sphere (for image transplant) may influence a bias not considering
interhemispheric variability in structure. Third, the external valid-
ation dataset has a small sample size with an inhomogeneous dis-
tribution between the two classes of fitters and non-fitters, which
led to unusual discrepancies in performance between internal and
external validations. To facilitate the potential use of the predict-
ive models at a single subject level, larger sample sizes are needed
to further validate the performance of the prediction and thus its
clinical usability. Lastly, the concept of proportional recovery has
limitations, as pointed out and discussed above.

Summary
The presented analyses underscore the significant impact and
high translational potential of computational analyses of whole-
brain connectomes in predicting patients’ degree and course of re-
covery in an early stage following stroke. It provides the basis for
clinically applicable biomarkers to classify patients, especially the
group of severely impaired patients, for whom an accurate predic-
tion has not been possible to reliably obtain thus far. Developing
such prognostic biomarkers will help to stratify patient groups for
precision therapy approaches and might guide clinical trials. The
present data showed that areas beyond the core parietofrontal
motor cortical network, such as the attentional, somatosensory or
multimodal areas and subcortical structures, clearly contribute to
the recovery process of motor functions and improve the classifi-
cation. The pre-existing status of white matter connections in the
acute stages contributes differently to recovery than the structural
network alterations over time of the recovery phase.
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