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Attenuation of the dynamic pupil
light response during screen
viewing for arousal assessment

Marios Fanourakis* and Guillaume Chanel

SIMS Group, CVML Laboratory, Computer Science, University of Geneva, Geneva, Switzerland

Studies on the psychosensory pupil response often carefully control the lighting

conditions in the experiment or require a calibration procedure for each subject

under different light conditions for a baseline which is later used to attenuate

the pupil light response (PLR) effects from the pupil using steady state models,

disregarding the dynamic nature of the pupil. Such approaches are not feasible

“in the wild” since they require carefully controlled experimental conditions. We

address these shortcomings in the context of screen viewing in a dataset

containing 140 subjects playing a first person shooter video game and use

an existing dynamic PLR model to attenuate the effects of luminance. We

compute the perceived luminance using the pixel values of the screen and show

that using the dynamic PLRmodel is more effective in attenuating the effects of

luminance compared to steady state models. Subsequently, we show that

attenuating the PLR from the pupil size data improves the performance of

machine learning models trained to predict arousing game events compared to

using the pupil size without attenuating the PLR. The implications are that our

approach for estimating the perceived luminance and attenuating its effects

from the pupil data can be applied to screen viewing (including VR) to

unobtrusively and continuously monitor users’ emotional arousal via the

pupil size.

KEYWORDS

pupil diameter, luminance correction, pupil light response, dynamic model, arousal,
affective computing

1 Introduction

The gaming industry has been rapidly evolving along with computers for decades. It

quickly makes use of the advances in processing power for improving the graphics and

complexity of the games. It also makes continuous advances in the peripherals that players

can use to interact with the game, from the humble gamepad to driving wheels and flight

sims. As new technologies improve and become available to consumers the gaming

industry is not far behind to find ways to integrate them in the gaming experience. One

such technology is eye-tracking. Eye-tracking has been used in games as an input method

(ex. to navigate menus) (Smith and Graham, 2006), to optimize the game rendering by

prioritizing the regions where the player is looking at (Matthews et al., 2020), as well as to

study emotional responses (Juvrud et al., 2021; Mitre-Hernandez et al., 2021).
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Games have been shown to be quite effective in eliciting

emotions on players (Karpouzis and Yannakakis, 2016), so it is

no surprise that emotion recognition in games has been used for

a wide range of tasks: for dynamic difficulty adjustment (Chanel

and Lopes, 2020), improving player satisfaction (Yannakakis,

2008), or generally studying the affective aspects of games (Mark

Gilleade et al., 2005; Ravaja et al., 2006; Kivikangas et al., 2011;

Kotsia et al., 2012; Christy and Kuncheva, 2014). We are

particularly interested in emotions in the context of e-sport

and streaming where the detected emotions can be used as

feedback to the players or followers to better engage with the

content.

Controlled studies have shown that the pupil responds to

changes in cognitive effort, emotional arousal and sympathetic

nervous system activity (Võ et al., 2007; Bradley et al., 2008;

Henderson et al., 2018; Wang et al., 2018; Rahal and Fiedler,

2019; Krejtz et al., 2020). However, the pupil’s main function (via

the iris) is to regulate the amount of light entering the retina and

optimize the image contrast (Mathôt, 2018). This pupil light

reflex/response (PLR) takes precedence over and is orders of

magnitude greater than other mechanisms which influence the

pupil diameter, rendering it challenging to distinguish other

types of pupil responses. Despite this, there is great interest to

use the pupil diameter as an insight to the nervous system since

eye-tracking hardware can be used unobtrusively in many

scenarios. Traditional sensors used to measure physiological

activity such as electroencephalogram (EEG) and

electrocardiogram (ECG) require hardware to be attached on

specific sensing points which can be cumbersome. Furthermore,

these types of sensors restrict movement and can become

uncomfortable over a long period of use. In contrast, eye-

tracking hardware can be seamlessly attached or integrated in

many devices or surfaces such as screens and VR headsets (Clay

et al., 2019). This is unobtrusive and does not introduce any

unnecessary discomfort for the subject.

Although several studies have shown that eye-tracking can be

used to study cognitive processes mentioned earlier, it is not an

equivalent replacement for sensors such as EEG which have a

much broader capacity to study cognitive processes. For example,

EEG has been used to study sleep states, full spectrum of

emotions, motor activity, cognitive impairments, etc.

(Soufineyestani et al., 2020).

To mitigate the effects of PLR, studies often carefully control

the lighting conditions in the experiment or require a calibration

procedure for each subject under different light conditions to

attenuate the PLR effects from the pupil naively using steady state

models. Several studies may also focus on changes of the mean

pupil diameter during a task or event from some baseline with

similar luminance to the task or event. In this way the pupil light

response is rendered somewhat irrelevant but such an approach

strictly limits the analysis to the mean response to a stimulus. We

address these shortcomings in the context of screen viewing (ex.

monitor screen or VR headset) and use a dynamic PLR model

developed by Pamplona et al. (Pamplona et al., 2009) to process

the pupil data and attenuate the effects of luminance. We use the

pixel values of the screen to compute the perceived luminance

and compare the effectiveness of attenuating the PLR of the

dynamic model to a steady state model. Subsequently, we show

that processing the pupil data using the dynamic PLR model

improves the performance of machine learning models trained to

predict arousing events in a video game experiment.

2 Related work

Pupillometry has been a subject of study since at least

1926 with Holladay’s work (Holladay, 1926) on the effects of

glare on visibility. Since then, there have been numerous studies

surrounding the pupil and its response to light, pupil light

response (PLR) (Crawford, 1936; Ellis, 1981; Stanley, 1995;

Peysakhovich et al., 2017), and more recently cognitive

processes, psychosensory pupil response or task evoked pupil

response (PPR or TEPR respectively) (Võ et al., 2007;Wang et al.,

2018; Rahal and Fiedler, 2019; Krejtz et al., 2020). A summary of

pupillometric research can be found in (Mathôt, 2018).

2.1 PLR models

2.1.1 Steady state models
Through the study of PLR and collection of data in controlled

experiments, several models have been developed to predict the

steady-state diameter of the pupil under different luminance.

Watson et al. have neatly summarized the various light adapted

pupil size models and related studies of pupil light adaptation of

the time (Watson and Yellott, 2012). Each of those studies built

upon their predecessors and used a different sample of data,

different formulas accounting for several parameters. Initial

formulas only depended on the luminance of the target and

mainly differed due to the different sample sizes, populations,

and groups when developing the formulas. Later on, the field area

of the target was introduced as a parameter by Stanley and Davies

as shown in Eq. 1.

DSD L, a( ) � 7.75 − 5.75
La/846( )0.41

La/846( )0.41 + 2
( ) (1)

Where L is the luminance measured in candelas per meter square

( cd
m2), and a is the field area in degrees squared (deg2). The field

area describes the size of the source of luminance in degrees of the

field of view of the subject. Studies also compared monocular
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versus binocular light adaptation and found significant

differences between the two. More specifically that adaptation

of one eye produces a larger pupil, equivalent to if the luminance

was reduced by a factor of 10 approximately, compared to the

adaptation of both eyes (Watson and Yellott, 2012). Finally, a

larger study was performed on subjects with a wider age range

and also found significant differences of the light adapted pupil

size depending on the age of the subjects. Watson et al. used the

results of this previous research as well as their own insights to

develop the “Unified Formula for Light-Adapted Pupil Size”

which accounts for all known significant parameters affecting

the pupil size. These factors include age, monocular vs. binocular,

and the field area. They define the effective corneal flux density as

F � LaM(e), where L and a are the luminace and field area

respectively, andM(e), a function where e indicates the number

of eyes and introduces a factor of 0.1 (10-fold attenuation) when

the viewing is monocular (e = 1) and a factor of 1 (no

attenuation) when the viewing is binocular (e = 2). Watson

et al. then define an adaptation of pupil size based on the age of

the subject:

A L, a, y, y0, e( ) � y − y0( )
× 0.021323 − 0.0095623DSD LM e( ), a( )( )

(2)
Where y0 is the reference age, the mean of the population age in

the Stanley and Davies dataset (Stanley, 1995) and the age is 20 <
y < 83. Watson et al. propose an adjustment for ages below

20 years old in Appendix 1 of their publication. Combining Eqs 1,

2, Watson et al. get the unified formula for light-adapted pupil

size:

DU L, a, y, y0, e( ) � DSD LM e( ), a( ) + A L, a, y, y0, e( ) (3)

2.1.2 Dynamic models
It is important to emphasize that the studies and formulas

summarized above were concerned with the light adapted pupil

size, i.e., the steady state response of the pupil to a constant

luminance source. Under real-world conditions the luminance

is dynamic and the pupil size has a much more complex

behaviour under these dynamic conditions. Indeed several

researchers have studied the transient and dynamic

behaviour of the pupil and some have developed dynamic

models (Semmlow and Chen, 1977; Longtin and Milton,

1988, 1989a,b) often based on neurological control systems

research (Stark, 1984; Korenberg and Hunter, 1990). One such

dynamic model is that of Pamplona et al. (2009) who

realistically model the dynamics of the pupil to changes in

light using a delay differential equation (DDE) model which

combines the dynamic model of the iris of Longtin and Milton

(1989b), and the steady state model of Moon and Spencer

(1944) (Eqs 4, 5, respectively).

dg

dA

dA

dt
+ ag A( ) � γ ln

ϕ t − τ( )
�ϕ

[ ] (4)

Where A describes the pupil area (π(D2)2 where D is the pupil

diameter), ϕ(t) describes the retinal light flux (LlA where Ll is the

luminance in lumens), and �ϕ which is the retinal flux at the

luminance below which there is no longer any change in the pupil

size.

D � 4.9 − 3tanh 0.4 log10 Lb( ) − 0.5( )[ ] (5)

Where Lb is the luminance expressed in blondels. They first

combine the above two models for steady state conditions (Eq. 7)

and use Moon et al.‘s data (steady state data) to evaluate the

unknown parameter γ (0.45) and add an additional constant for

vertical adjustment (5.2). They are able to combine the two

models by approximating ag(A) as −2.3026atanh(D−4.9
3 ) after

some manipulations on Eq. 5. Then they add back the dynamic

terms for the final dynamic model (Eq. 8).

M D( ) � atanh
D − 4.9

3
( ) (6)

2.3026M D( ) � 5.2 − 0.45ln
ϕ
�ϕ

[ ] (7)

dM

dD

dD

dt
+ 2.3026M D( ) � 5.2 − 0.45ln

ϕ t − τ( )
�ϕ

[ ] (8)

They compare their model to real pupil measurements and show

that it realistically predicts the dynamic pupil size given the

luminance. However, only a few of the model’s parameters can be

adapted to subjects and there is nomechanism to optimally fit the

parameters to pupil data recorded under dynamic luminance

conditions.

Fan et al. have also developed a dynamic model using a

second order differential equation and have applied a pattern

search method for finding optimal parameters using

experimental data (Fan and Yao, 2011). However, this model

is optimized for short flashes at a specific wavelength (100 ms

pulse of 530 nm wavelength light) under otherwise light-adapted

conditions in order to isolate the transient responses of the pupil

and may not be suitable for longer pulses or more dynamic

luminance conditions.

2.2 PLR mitigation

Most studies regarding psychosensory pupil responses are

carefully designed to control the luminance of the stimuli in

order to isolate the psychological effects of stimuli. It is common

for studies to focus on the mean difference of the pupil size

between a stimulus and a baseline with identical or similar

luminance (Juvrud et al., 2021; Mitre-Hernandez et al., 2021).

To achieve this, the pupil size during a time window containing

the stimulus is averaged and compared to a similarly averaged
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pupil size during a baseline. With this approach the PLR is no

longer relevant since the relative change of the pupil size is less

dependent on the PLR when the stimulus and baseline have

similar luminance. The aforementioned methodologies have

some significant limitations since the environment and visual

stimuli must be kept at a known constant luminance throughout

the experiment. These limitations make it difficult for researchers

to study the pupil in more complex, realistic and in-the-wild

scenarios.

More recently, there has been an effort to attenuate or

remove the effects of PLR from continuous pupil

measurements under dynamic luminance conditions thus

enabling the study of psychosensory pupil responses in a

wider range of scenarios. We will group the different

approaches into two categories: pupil residual approach and

adaptive filtering.

2.2.1 Pupil residual approach
This type of approach uses an estimate of the PLR from some

measure of luminance and then subtracts this estimate from the

measured pupil size. The residual from this operation will no

longer contain the effects of luminance but at the same time will

retain the responses evoked by other cognitive processes. These

methods thus assume that the measured pupil size, Pm, can be

decomposed in three components as shown in Eq. 9:

Pm � PLR + PPR + ϵ (9)

Where PLR is the pupil light response, PPR is the psychosensory

pupil response (i.e. the effect of interest), and ϵ corresponds to
other effects that are not accounted for.

The current research using this type of approach most often

uses steady-state models like the unified formula of Watson et al.

(Watson and Yellott, 2012), completely disregarding the

dynamics of the PLR (Raiturkar et al., 2016; John et al., 2018;

Wong et al., 2020). Steady-state models will not accurately

represent the pupil diameter under changing light conditions,

only at steady-state conditions (constant luminance for at least

4 s). Furthermore, they often require some baseline

measurements under controlled luminance conditions before

the experiment to be later used as a baseline for attenuating

the PLR.

To our knowledge only one publication uses a dynamic

model to mitigate the PLR. Napieralski and Rynkiewicz (2019)

use a PupilLabs eye-tracker and an ambient light sensor to collect

the data of three participants. They used the dynamic model of

Pamplona et al. to estimate the pupil size from the light sensor

measurements and compare it to the eye-tracker measurements.

They subtracted the estimated pupil size from themeasured pupil

size and found a mean difference of −0.22mm, 0.04mm, and

−0.28mm for each of the three participants respectively. No

further quantitative analysis was performed and they conclude

that it is “ [not possible] to distinguish, analyze and classify the

root cause of each change in size of the pupil”. However, in our

opinion, the sample size of their experiment and methodologies

do not adequately support this conclusion.

Data-driven approaches can be used to estimate the PLR. For

example, one can estimate the parameters of known steady state

model using optimization techniques such as least squares (John

et al., 2018). Neural networks, which are entirely data-driven,

have also been successfully used to model different biological

processes including pupil responses. One such example is the

work of Koorathota et al. (2021) who trained an LSTM model to

predict the pupil size based on gaze data (fixations, saccades, etc.)

and past pupil size. In their experiment, they recorded gaze and

pupil data of participants watching 5 min long academic video

lectures and then answering some questions assessing their

comprehension. Zandi and Khanh (2021) have trained a

neural network model to estimate the parameters of a PLR

model. They use Watson and Yellott (2012) steady state

model for initial conditions and then use Fan and Yao (2011)

dynamic model for the phasic pupil response and a polynomial

model for the tonic response. They show that their neural

network is effective in estimating the parameters of this

combined model. Some recent techniques for data-driven

dynamic model parameter estimation may also prove to be

effective in this context such as Sparse Identification of

Nonlinear Dynamical systems (SINDy) (Brunton et al., 2016).

2.2.2 Adaptive filtering
Another promising approach is to use an adaptive

interference canceler (AIC) utilizing adaptive filters as

proposed by Gao (2009); Gao et al. (2009). The authors

designed an experiment using the Tobii T60 eye-tracker and a

photo-diode to sense the luminance. They used the collected data

to qualitatively show that they are able to more easily distinguish

the different pupil responses between the congruent and

incongruent cases of a Stroop test when using their approach.

The same research group more recently applied the same

technique to eliminate the PLR (Tangnimitchok et al., 2019).

They used an RGB camera pointed to the subject’s face to

measure the incident luminance on the eye area of the

subject. They showed that their method of measuring

luminance produced measurements that were highly

correlated with a LUX meter (Extech 401036 Datalogging

Light Meter). They used the TM3 Eye-Gaze Tracker (EyeTech

Digital Systems Inc.) to measure the pupil size of the subjects.

Unfortunately there is no further analysis on whether the

resulting corrected pupil size data retains any of the

psychosensory responses in that publication. In the

subsequent doctoral dissertation of Tangnimitchok (2019), the

author was not able to detect arousal using this method. The

main limitation with this approach is that the adaptive filter

requires some parameter tuning, although there are typically only

a few parameters.
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None of the publications regarding PLR mitigation cited above

provide any quantitive analysis as to how well their technique

attenuates the PLR nor do they provide quantitative results

showing that the obtained PPR is more predictive of psychological

processes than using the pupil size as is. In our work, we will only

focus on the pupil residual approach while noting that adaptive

filtering approaches are an interesting alternative. Specifically, we will

use the Pamplona et al. dynamic model and show that it can be

effective in attenuating a significant part of the PLR from the pupil

measurements even without fitting the parameters to each subject’s

data. In doing so, we will address some aspects of pupil residual

approaches (luminance measurement, PLR latency, steady state vs.

dynamic model) and motivate future work on data-driven dynamic

models of PLR that could significantly improve upon our own results.

3 Dataset

The dataset we used in this paper consists of recordings of

140 subjects playing video games in realistic conditions (7.63%

female, 1.53% non-binary, 0.76% no answer). The subjects mean

agewas 21.88 years old (standard deviation of 3.54, ranging from18 to

36 years old). The data was collected in 41 experimental sessions

where groups of 2 or 4 participants played the Counter-Strike: Global

Offensive (CS:GO) first person shooter (FPS) video game on a

computer. Several modalities were recorded during the game using

custom data acquisition software modules (Fanourakis et al., 2020):

• mouse/keyboard button presses - recorded at an irregular

rate (as button presses occurred).

• game data (health, armor, position, damage taken, damage

received, etc.)–recorded at 64Hz using a custom game plugin.

• gameplay video–recorded at 30Hz using Open

Broadcasting Studio (OBS).

• color and depth video of the face–recorded at 30Hz using

an Intel RealSense D435 camera.

• Seat pressure–recorded at 10Hz with a Sensing Tex seat

pressure mat.

• Physiological data (electrocardiogram, electrodermal

activity, respiration)–recorded at 100Hz using a Bitalino

device

• Eye-tracker data (gaze, pupil diameter– - recorded at 60Hz

using a Tobii pro nano.

All data was synchronized using the Lab Streaming Layer

(LSL) software library1.

The data was collected at several video game LAN events in

Switzerland over the course of 2 years: SwitzerLAN2 2020,

SwitzerLAN 2021, and PolyLAN3 36. The experimental area

was setup in an approximately 5 square meter area within the

event and included 4 gaming PCs each equipped with the sensors

mentioned earlier and 1 server PC where the game server and

LSL Lab Recorder were running.

The study and data collection was approved by the ethical

committee of the University of Geneva and conforms to all

ethical guidelines set forth by the institution.

3.1 The counter-strike: Global offensive
game

In our experiments we utilized Valve’s Counter-Strike:

Global Offensive (CS:GO). It is a free and modable

multiplayer first person shooter (FPS) developed in the Half-

Life 2 game engine. It is also popular in the e-sport community.

The game includes several games modes: demolition, hostage,

deathmatch, and team deathmatch.

For this dataset, we used the team deathmatch game mode

where two teams try to eliminate each other. Each player

started with 100 health points and 100 armor points and were

randomly placed on the game map. They were equipped with a

random set of weapons from an assortment of assault rifles,

long range rifles, pistols, light and heavy machine guns, and a

knife. The goal of the game was to kill the players in the enemy

team as many times as they can while avoiding to get killed. A

player was killed once their health points reached 0, and they

were subsequently revived (respawned) at a random location

in the map after 2 s. If a player managed to get 2 kills in a row

without dying they were rewarded with an item (healthshot)

which restored 50 health points when used.

3.2 Experimental protocol

Groups of 2 or 4 subjects were spontaneously recruited at the

LAN events to play a single round of one versus one (2 subjects per

experimental session) or two versus two (4 subjects per experimental

session) team deathmatch. The subjects first read and signed a

consent form which describes the experiment and the data that will

be recorded. Immediately after, they answered a questionnaire with

demographic questions (age, sex) as well as questions about their

experience playing various types of video games (Bavelier lab Video

Game questionnaire4), their fatigue level (Greenberg et al., 2016),

and their closeness of relationship with the other subjects in the

experiment group (Gächter et al., 2015). Then, the sensors were

attached and calibrated as necessary.

1 https://labstreaminglayer.org

2 https://switzerlan.ch/

3 https://polylan.ch/

4 https://www.unige.ch/fapse/brainlearning/vgq/
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Players adjusted their game settings before joining the

experiment’s game server where they started with a 2 min

warmup round. After the warmup round, there was a 1 min

period of time reserved for baselining where the game characters

were frozen in place. After baselining, the main round started and

had a duration of 10 min.

After the game was finished, the sensors were removed and

the players used the PAGAN tool (Melhart et al., 2019) to self-

annotate their own recorded gameplay video according to the

arousal or valence emotional dimensions using RankTrace

(Lopes et al., 2017), a relative and unbounded method for

continuous annotations.

4 Methods

4.1 Data pre-processing

Recall that our data was collected on-sight at large gaming

LAN events and was therefore far from laboratory conditions.

The environment was often noisy, and the lighting was not

controlled. Consequently, there were often instances where we

could not ensure the quality of the data. For the modalities

used in this paper (eye-tracking, game events, game video) we

could use the data of 106 subjects in 34 experimental sessions

(out of 140 subjects in 41 experimental sessions). The data of a

subject was used if all previously mentioned modalities had at

least 70% of the signal in good quality, that is to say that less

than 30% of the signal was either missing or was of bad quality

(missing, high SNR, corrupted data, etc.) according to visual

inspection.

Since we used the LSL library we are confident that the clock

is synchronized among the different modalities, however the

frequency (sampling rate) and phase of eachmodality is different.

To resolve this issue, we simply aligned the data by their nearest

timestamps.

The eye-tracker measured the pupil size and gaze for each

eye individually, hence we averaged the values between the

two eyes to get a unique value. We acknowledge that there

exist conditions such as anisocoria where the pupil size is not

the same between the two eyes under the same luminance.

Although this condition can be fairly common (13.7% of

population), the difference between pupils is typically less

than 0.7 mm (only 2.7% have differences greater than 0.7 mm)

(George et al., 2019). Furthermore, the relative changes of the

pupil size are more relevant in our case than the absolute

measures and these changes are not significantly affected by

averaging the two pupil sizes together. There are also

conditions like strabismus where the gaze of each eye

might be different, however, it is not very common among

adults (Hashemi et al., 2019).

During blink events the eye-tracker is not able to detect the

pupils and therefore can neither measure the pupil size nor the

gaze on the screen. Furthermore, the eye-tracker’s pupil

measurement is not accurate when the eyelid is obstructing

part of the pupil during blinking, consequently, the pupil is

measured to be smaller than it actually is. To mitigate these

effects, at each blink event we removed 40 ms of data before and

100 ms of data after each blink. In total, for each blink we

removed 140 ms of pupil data in addition to the missing data

due to the pupil being covered by the eyelids. Then we linearly

interpolated the pupil size and gaze (averaged between the two

eyes) to fill in these gaps. We also used the same strategy when

dealing with missing eye-tracking data in general (ex. packet loss,

intermittent errors, etc.).

4.2 Luminance

To compute the perceived lightness (luminance) of each pixel

on the screen we compute the Lstar from CIELAB (Robertson,

1977) using the RGB values. We first convert the RGB values

from gamma encoding to linear encoding, then we apply the

standard coefficients for sRGB (0.2126, 0.7152, 0.0722 for R, G,

and B respectively) to compute the RGB luminance. Finally, we

convert the RGB luminance to the perceived lightness, Lstar,

which closely matches human light perception. It is important to

note that Lstar does not take the Helmholtz–Kohlrausch effect

(Donofrio, 2011) into account wherein the intense saturation of

spectral hue is perceived as part of the color’s luminance.

Having the Lstar value for each pixel, we then averaged the

Lstar pixel values within an 8° horizontal foveal area of the

screen centered at the gaze target of the subject. We used a

rectangular area instead of circular since it simplified our

computations. Under our experimental conditions this foveal

area was approximately a 16 cm by 9 cm rectangular region on

the screen (same aspect ratio as the screen). We did this for

each frame of the video recording, always centering on the

gaze target at each frame using the eye-tracking data.

The Pamplona model expects the luminance to be expressed

in lumens. We used the computed luminance as described above

and considered two different methods for converting to lumens.

The first naive method was to do a simple conversion to lumens

using the maximum brightness that the screen was capable of

producing. We realize that this is not an accurate conversion

since the maximum brightness of the screen can be adjusted

through its settings, however, it still gives useful information that

is within a realistic range of expected luminosity in lumens.

Another issue with this method is that a zero value of the Lstar

luminance will be converted to zero lumens entering the pupil,

completely disregarding the environmental light sources. The

second method made use of the pupil measurements to estimate

the range of the source luminance using the steady state

Pamplona equation (Eq. 7. We then computed a linear

transformation of the Lstar luminance such that it matched

the range of the estimated source luminance. Ultimately, we

Frontiers in Virtual Reality frontiersin.org06

Fanourakis and Chanel 10.3389/frvir.2022.971613

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.971613


used the second method to transform the Lstar luminance into

lumens for use in Pamplona et al.‘s dynamic model due to the

aforementioned issues of the naive first method.

4.3 PLR latency

One important parameter that we could compute from the

collected data was the time delay (latency) between the

luminance and the PLR. For each subject, we computed the

cross-correlation between the derivatives of the luminance

and the pupil measurements, we then found the time delay

which gave the largest magnitude (absolute value) of the cross-

correlation. This indicates the average time delay required for

the pupil to respond to a change in luminance. We found that

the mean pupil latency between the participants in our

experiments was 474 ms with a standard deviation of

81 ms. This value is higher than what we have seen

reported in other literature (Link and Stark, 1988;

Bergamin and Kardon, 2003; Kasthurirangan and Glasser,

2006) (200 ms–350 ms average) and we suspect that the

cross-correlation method overestimates the latency due to

the smoothness of the pupil response compared to the

sharper transitions of the luminance. Although we

computed a single latency value for each participant, it is

possible that the latency varies dynamically depending on

factors such as the current pupil size and magnitude of the

luminance change at each time step.

4.4 PLR models

For the dynamic model, we used Pamplona et al. model in Eq.

8 with the latency and luminance computed as described

previously. We implemented a numerical solver in Python

using gradient descent to compute the estimated pupil at each

time step.

For comparison, we also applied a steady state model. We

selected the exponential model since the steady state PLR is

non-linear and the exponential model does not require

additional parameters such as the age, or field area like

Watson’s et al. unified formula. The exponential model

was also found to be more accurate than linear and cubic

models by John et al. (2018). We used the Lstar luminance

values directly and used the Levenberg-Marquardt non-linear

least squares algorithm (curve_fit function in the SciPy

python library5) to find the optimal parameters for the

model for each participant.

4.5 Arousal self-annotations and the
arousal indicator

The subjects self-annotated their gameplay according to the

level of arousal they felt using RankTrace (Lopes et al., 2017), a

relative and unbounded annotation method. Subjects were

instructed to annotate their level of arousal relative to

previous moments in the game. This lead to very different

annotation styles in the experiment and two such examples

can be seen in Figures 1, 2 (blue curves).

In an effort to make the self-annotations more consistent

across subjects we performed some post-processing to detrend

them. When analyzing arousal traces, the relative changes in

FIGURE 1
Example of an annotation–subject A.

FIGURE 2
Example of an annotation–subject B.

5 https://docs.scipy.org
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arousal in a small neighborhood are often more relevant than the

differences on more distant parts of the signal. With this is mind,

we developed our trend removal method as follows: We first

computed the derivative of the arousal trace, dArsl(t), then we

imputed negative values with 0 to get dArsl+(t) and also imputed

the positive values to get dArsl−(t). Then we computed

arsl+(t) � ∫t

t−3 dArsl
+(t)dt and arsl−(t) � ∫t

t−3 dArsl
−(t)dt.

In this way we had all the increases in the arousal trace in 3 s

neighborhoods (arsl+(t)) and all decreases (arsl−(t)). We could

use them independently or add them up. In our case we added the

two to get a simple detrended trace of arousal

arsl_detrended(t) � arsl+(t) + arsl−(t). The result of this

process is shown in the green curves in Figures 1, 2.

Both the raw self-annotations and detrended self-

annotations were used as machine learning targets. Different

normalization methods were applied and tested such as no

normalization, normalization to a range of 0–1, or

standardization to have a mean of 0 and standard deviation of 1.

Continuous real-time annotations of any video or audio

stream tend to suffer from small delays (typically less than

3 s) between changes in that stream and the annotator

response to these changes. To effectively mitigate this delay, it

is necessary to understand what events each annotator is

responding to in the stream and measure the delay from that.

Furthermore, the delay may not be the same across the entire

duration of the annotation since different events may require

different cognitive effort to analyze and respond to. Therefore,

mitigating annotation delays for all subjects in our experiment

would require significant effort and we have not addressed it in

this work.

4.5.1 Arousal indicator
Considering that the self-annotations are not consistent

across participants, and it is generally not a good practice to

over-process or manipulate the self-annotations, we also

developed an indicator of arousal based on game events. This

indicator depended on the amount of danger that a player was in

at any given moment. The assumption is that specific game

events should induce higher arousal than other events. The

indicator was computed using Eq. 10:

arslInd t( ) � ∑
e∈E

De t( ) (10)

Where the function De(t) is a function that has a nonzero value

at time t if the game event e is present and 0 if the event is not

present and E are the arousing game events described in Table 1.

The game events in Table 1 were selected among other

recorded game events based on their relevance towards the

game’s two main goals: staying alive and killing the enemy.

The first game event in that table, “combat”, is directly

relevant to the two goals since the most common outcome of

combat will either be a goal success (enemy killed) or a goal

failure (player death). The game events “reloading weapon” and

“jumping” prevent the player from making a fight or flight

decision since in the former, the player is not able to fire their

weapon for some time (cannot fight) and in the latter the player

cannot move to take cover and save themselves from harm. The

“player health” events give an indication as to the probability of

achieving or failing the goals. All else being equal, a player with

lower health will be killed more quickly during combat. The

“enemies in field of view” event puts the player in the position to

seek goal resolution by taking action to stay alive and/or kill the

enemy. We acknowledge that these events may elicit different

levels of arousal for different subjects and in different contexts.

Despite this, we expect that all subjects will experience an

increase in arousal during those events even if it is not at the

same level.

The red curves in Figures 1, 2 illustrate the results of this

computation. It is evident in the figures that the arousal indicator

is more consistent across subjects (same amplitude, similar

dynamics, etc.) and correlates with self-annotated arousing

moments as can be seen by the peaks in the indicator which

often precede peaks in the processed self-annotations.

TABLE 1 Arousing game events and their arousal value D.

Event De

Player is in combat 10

Player is reloading weapon 1

Player health < 70 1

Player health < 50 1

Player health < 30 1

Enemy is in the field of view number of enemies in FoV

Player is jumping number of enemies in FoV

Enemy is in medium range number of enemies in medium range

Enemy is in close range number of enemies in close range

TABLE 2 Machine learning model architecture. For the convolution
layers, the kernel size is indicated in column k, stride =1, padding �
floor(k/2) to preserve the length of the signal.

Type Activ k Input Output

1 Conv1D ReLu 13 [32, 1, 120] [32, 1, 120]

2 AdaptiveMaxPool - - [32, 1, 120] [32, 1, 60]

3 Conv1D ReLu 3 [32, 1, 60] [32, 2, 60]

4 AdaptiveMaxPool - - [32, 2, 60] [32, 2, 30]

5 Conv1D ReLu 3 [32, 2, 30] [32, 4, 30]

6 AdaptiveMaxPool - - [32, 4, 30] [32, 4, 15]

7 Conv1D ReLu 3 [32, 4, 15] [32, 8, 15]

8 AdaptiveMaxPool - - [32, 8, 15] [32, 8, 7]

9 Conv1D ReLu 3 [32, 8, 7] [32, 4, 7]

10 AdaptiveMaxPool - - [32, 4, 7] [32, 4, 3]

11 Linear - - [32, 4, 3] [32, 1, 1]
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4.6 Machine learning model

We implemented a simple convolutional neural network

model in Python using PyTorch to recognize the arousal level

of the players from the pupil size. Table 2 gives a summary of the

architecture.

For the model training, we used a batch size of 32, the mean

squared error (MSE) loss function and the Adam optimizer with

a learning rate of 0.001. We used a leave-one-subject-out cross-

validation strategy and split the training data into 80% training

and 20% validation (for early stopping). In total we trained

106 models and used the data that was left out of each model

as its test data. We used the concordance correlation coefficient

(CCC) between the ground truth arousal indicator and the

predicted arousal indicator to evaluate the performance of our

models.

For each participant, we estimated the time delay between

luminance and pupil size and then used the luminance

measurements and time delay to compute an estimate of the

pupil size using the Pamplona et al. model. We then normalized

(z-score) both the measured pupil size and estimated pupil size.

We used the normalized values to compute the pupil residual as

follows:

Pres � zscore Pm( ) − zscore PLR( ) (11)

Where Pm is the measured pupil size and PLR is the pupil size

estimated from the luminance data.

The data was segmented for each participant using a 2 s

rolling window with a step size of 2 s. Given that the sampling

rate of the eye-tracking data was 60Hz, each segment had a length

of 2*60 = 120 samples. The input tensors of the model consisted

of the segmented pupil size data (pupil residual or normalized

pupil measurement) and had a size of [32, 1, 120] (batch size is

32). The target tensors consisted of the maximum value of each

segment of the arousal indicator and had a size of [32, 1, 1].

5 Results

5.1 Attenuation of PLR

Firstly, we seek to show the effectiveness of the two PLR

models (a steady state and a dynamic) at attenuating the

luminace response from the pupil. To achieve this we must

determine an appropriate metric for this attenuation. We will

use Figure 3 as an illustrative aid. In this figure, we have simulated

the pupil response to changes in luminance (yellow) using a

dynamic model (black) and a steady state model (blue). We also

show the residual between the simulated pupil with the steady

state pupil estimate (orange). The sampling rate for this

simulation is 60Hz. For illustrative purposes we have not

applied any pupil response latency so that any change in

luminance will have an immediate effect on the pupil as can

be seen in the figure. We computed the Pearson correlation

between the luminance and both the simulated pupil and the

steady state pupil as − 0.9 and −0.99 respectively. This indicates,

as expected, a strong correlation between luminance and pupil

diameter. Also expected, is the near perfect correlation between

the steady state model and luminance since any change in

luminance is immediately and proportionally reflected in the

steady state estimate, whereas the simulated dynamic response is

smoother and hence has a slighly lower correlation with

luminance. Next, we computed the Pearson correlation

between the residual (steady state pupil subtracted from the

simulated pupil) and the luminance as − 0.012. This seems to

indicate that the steady state pupil has significantly attenuated

the PLR, however, it is clear from this example that there are

obvious artifacts of luminance in the residual. Since these

artifacts in the residual are most prominent during changes in

luminance (where the derivative of luminance is non-zero), we

computed the derivative of the luminance before computing the

Pearson correlation. The result was a Pearson correlation of 0.28.

This seems like a better indicator, but recall that the signals in this

example are perfectly aligned (artificially). Any small

misalignment can dramatically reduce the magnitude of the

correlation. For example, by shifting one of the signals by a

single sample - a very likely scenario with real world data - the

correlation becomes 0.03. To mitigate this issue, we may instead

compute the cross correlation of these two signals, however this

assumes that the latency is constant, an assumption that is not

necessarily valid for real pupil data as was briefly mentioned

previously when discussing the PLR latency. Therefore this is also

not a good nor robust indicator of luminance attenuation.

Although we can say with confidence that two signals are

correlated when the Pearson correlation has a large magnitude,

FIGURE 3
Simulated example of PLR given luminance. Horizontal axis
units are in seconds. Correlation is not a good indicator of
attenuation of luminance effects.
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the opposite is not necessarily true. There may be other features

between the two signals which relates them that are not

represented by this simple statistic. An additional measure is

necessary to confirm that the residual has less information about

the luminance. To that effect, for the experimental data, we will

evaluate the attenuation of PLR by analyzing the performance of

machine learning models to predict the luminance from the

residual. We argue that if the residual is unable to predict

luminance then it is unlikely to contain information related to

luminance and thus it will have successfully attenuated the effects

of luminance.

In Figure 4 we report the Pearson correlations between

luminance and several other signals. We see that the

measured pupil is negatively correlated with luminance as we

expect (higher luminance leads to a smaller pupil size). We also

see that the steady state PLR model (exponential model)

produces pupil estimates which are almost perfectly correlated

with luminance. The dynamic model produces estimates which

are also highly correlated with luminance but not quite as

strongly as the steady state model. Both these observation are

inline with our previous example from Figure 3. Finally, we see

that the Pearson correlation for the arousal indicator is near 0.

There is not a linear relationship between luminance and the

arousal indicator. However a non-linear relationship might be

present since various game events such as firing a weapon

produces bright flashes on the screen. We will investigate if

luminance contains this type of information in the next

subsection.

In Figure 5 we report the Pearson correlations between the

pupil size and several other signals. We once again see that the

pupil is negatively correlated with luminance. We also see that

the pupil is correlated with both PLR estimates and this

correlation is approximately equal in magnitude as the

correlation with the luminance. This is consistent with the

fact that both PLR estimates have a median correlation with

luminance that is higher than 0.8 in magnitude. The arousal

indicator also seems to be somewhat correlated with the pupil

size which tells us that the pupil holds some direct information

about the arousal indicator.

FIGURE 4
Pearson correlation coefficient of luminance with the:
measured pupil, arousal indicator, PLR using exponential model
(sPLR), PLR using dynamic model (dPLR). All the correlation
distributions are statistically significantly different from each
other (paired Wilcoxon test with p-value less than 0.001).

FIGURE 5
Pearson correlation coefficient of measured pupil with the:
luminance, arousal indicator, PLR using exponential model (sPLR),
PLR using dynamic model (dPLR). All the correlation distributions
are statistically significantly different from each other (paired
Wilcoxon test with p-value less than 0.001) except sPLR and dPLR.

FIGURE 6
Example of pupil measurements (black), steady state model
estimate (blue), dynamic model estimate (green).
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In Figure 6 we give a representative example of the PLR

estimates. The steady state model is indicated in blue and the

dynamic model in green. The measured pupil is indicated in

black. Our main observations are that both the steady state model

and the dynamic model seem to follow the real pupil

measurements quite closely, however, very notably, the steady

state model seems to be more noisy and this is directly due to the

noisiness of the luminance. Any change in luminance is directly

reflected in the steady state estimate. Although the same

luminance (after rescaling, but no filtering) was used for the

dynamic model, we see that the dynamic model estimate is much

smoother and more similar to the characteristics of the measured

pupil size in terms of visual properties. Another important

observation is that in both PLR estimate models, whenever

there is a change in luminance (and subsequent PLR

response) there are larger errors between the measured pupil

and the estimates. This can result in significant artifacts in the

residuals. Although both PLR model residuals will have these

artifacts, the dynamic model seems have less prominent artifacts

which are still not negligible.

In Figure 7 we report the Pearson correlation of luminance

with the residuals. We see that both residuals correlation with

luminance are significantly smaller in magnitude than the

measured pupil and the PLR models (see Figure 4. Although

this may seem to indicate that both PLR residuals are effective in

attenuating PLR, recall that this correlation statistic is not

conclusive as to the attenuation of luminance information

from the pupil and further tests are required. The test that we

have chosen to perform is an empirical test of training machine

learning models to predict luminance from the residuals. The

results of this test are shown in Figure 8.

In Figure 8 we show the performance summary of machine

learning models (convolutional neural network previously

described in Section 4) trained to predict luminance from the

measured pupil, the residual using the steady state model PLR

(sPLR_residual), and the residual using the dynamic model PLR

(dPLR_residual). The performance metric is the concordance

correlation coefficient (CCC). For each case we used leave-one-

out cross validation. We notice that the pupil measurements are

highly predictive of luminance (median CCC of 0.56), and this is

expected since the measured pupil has not been treated in any

way to attenuate the PLR and therefore contains significant

information about the luminance. The model trained to

predict luminance from the dynamic model PLR residual

(dPLR_residual) has a significantly reduced performance

(median CCC of 0.11). This indicates that the machine

learning model is less able to exploit any features of this

residual to predict luminance. We conclude that this

particular residual therefore contains less information about

luminance i.e. the PLR has been significantly attenuated. This

is not the case with the model trained using the steady state

model PLR residual (sPLR_residual). This residual performs

slightly worse than using the pupil measurements (median

CCC of 0.46). Clearly, this residual still contains features

about the luminance and has done poorly attenuated the PLR.

As we already discussed with the example in Figure 3, when

the residual and luminance are perfectly aligned then the residual

has a higher correlation with the derivative of the luminance

compared to not taking the derivative. The main issue with this

FIGURE 7
Pearson correlation coefficient of luminance with the: PLR
residual using exponential model (sPLR_residual), PLR residual
using dynamic model (dPLR_residual). The two correlation
distributions are statistically significantly different (paired
Wilcoxon test with p-value less than 0.001). Correlation is not a
good indicator of attenuation of luminance effects.

FIGURE 8
Performance summary of models predicting luminance. All
the CCC distributions are statistically significantly different from
each other (paired Wilcoxon test with p-value less than 0.001 for
all except between pupil and sPLR_residual whose p-value is
less than 0.05).
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approach is that the signals must be perfectly aligned, and this is

not the case with our data. CNNs are not likely to be significantly

affected by this misalignment when evaluating the attenuation

performance. In Figure 9 we show the performance of the CNN

trained to predict the derivative of luminance from the measured

pupil, the residual using the steady state model PLR

(sPLR_residual), and the residual using the dynamic model

PLR (dPLR_residual). It is evident that the steady state model

PLR residual (sPLR_residual) contains artifacts that are highly

predictive of changes in luminance (median CCC of 0.83). We

also see that the dynamic model PLR residual (dPLR_residual)

also contains artifacts that are predictive of changes in luminance

but much less so (median CCC of 0.37). It is not surprising based

on our previous discussion about the example of the PLR

estimates in Figure 6.

To summarize, in this subsection we have shown that the

pupil is highly correlated with luminance as it is expected since

luminance can directly affect the size of the pupil (see PLR). We

also see that both PLR models (steady state and dynamic) have

similar characteristics to the measured pupil with the dynamic

model appearing to be much more realistic. Lastly we showed

that both PLR residuals have attenuated PLR from the pupil size

data but, clearly, the PLR residual using the dynamic PLR model

has done so much more effectively. There remain non-negligible

artifacts in the residuals due to small errors in the latency

computation and the discrepancy of pupil constriction and

dilation velocity between the measured pupil and the PLR

models (the steady state model having instantaneous dilation

and constriction). These artifacts are most prominent when there

are abrupt changes in the luminance.

5.2 Prediction of arousal

We trained neural network models using the normalized (per

subject) pupil measurements, the steady state PLR model pupil

residual (sPLR_residual), the dynamic PLR model pupil residual

(dPLR_residual), and luminance to predict the self-annotated

arousal and the arousal indicator with leave-one-out cross

validation as described in Section 4.

5.2.1 Target: Self-annotated arousal
The models trained to predict both the self-annotations and

the detrended self-annotations as described in Section 4 had

negligible performance (median CCC below 0.05), hence we will

not include detailed results for these targets. Further post-

processing of the self-annotations including mitigation of the

annotator delays (see Section 4) may yield improvements in

model performance, however excessive post-processing of self-

annotations, especially with non-standard methods, is generally

not a good practice.

Given the lack of inter-subject consistency in the self-

annotations (target inconsistency), leave-one-out cross

validation will tend to yield poor results when used directly

for regression tasks hence subject-specific models may be better

suited in this context. Changing to a classification task or

preference learning may also result in significant

improvements since the former simplifies the learning task

and the latter has been shown to work well when using this

type of relative self-annotations. Further improvements could

also be achieved through the use of hand-crafted features.

FIGURE 9
Performance summary of models predicting the derivative of
luminance. All theCCCdistributions are statistically significantly different
from each other (paired Wilcoxon test with p-value less than 0.001).

FIGURE 10
Performance summary of models predicting the arousal
indicator. All the CCC distributions are statistically significantly
different from each other (paired Wilcoxon test with p-value less
than 0.001 for all except between pupil and luminancewhose
p-value is less than 0.01).
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5.2.2 Target: Arousal indicator
The models trained to predict the arousal indicator

performed well enough to allow us to compare the effects of

attenuating the PLR. In Figure 10 we show boxplots of the

concordance correlation coefficient (CCC) of the predictions

on the test sets (subjects that were left out).

Themodel trainedwith themeasured pupil resulted in amedian

performance of 0.19 CCC, meaning that the pupil data contains at

least some information about the arousal indicator. The models

trained with the dynamic model PLR residual (dPLR_residual) have

a better median performance of 0.23 CCC. As we showed in Section

5.1 this residual has significantly attenuated the PLR. This could

indicate that while the residual has reduced the effects of PLR it has

also preserved the arousal effects on the pupil.

Unexpectedly, the models trained with the steady state model

PLR residual (sPLR_residual) has an even better median

performance of 0.26 CCC. It is possible that luminance artifacts

are providing additional information about the arousal indicator.

To verify this, we also trained models to predict the arousal

indicator from luminance. The results show that even on its

own, luminance has some non-negligible predictive power

(median CCC of 0.14). This can be explained by the fact that

some of the arousing events also produce bright flashes of light on

the screen (ex. guns firing). It seems that the luminance artifacts

that are still present in the sPLR_residual, especially during abrupt

luminance changes (see Section 5.1), are helping with the

prediction of the arousal indicator. To a lesser degree, this

could also be true about the dPLR_residual.

We do not believe that the luminance artifacts are the main

factor which improves the prediction performance since the

models trained with the raw pupil size (which contains a lot

of information about the luminance) and the models trained with

luminance have a lower performance than both models that were

trained with the PLR residuals. Instead, we believe that the

residuals have accentuated arousal effects on the pupil in

portions where the luminance is more stable and at the same

time have accentuated portions where the luminance has abrupt

changes (luminance artifacts that could be related to arousing

game events). The combination of these two effects could explain

why the residual-trained models perform better than both the

pupil-trained and the luminance-trained models.

6 Discussion

Despite using a video game dataset with no specific

considerations regarding eye-tracking and pupil recordings,

we showed that we are able to attenuate the effects of PLR

and improve the performance of arousal prediction. We used the

screen’s pixel RGB values of the screen as a proxy for the

luminance perceived by the pupil and showed a high

correlation between this proxy luminance and the pupil size.

We then used a dynamic and a steady state PLR model to

estimate the PLR from the estimated luminance and

subsequently subtracted it from the pupil size measurements

to attenuate the PLR (pupil residual approach). We showed that

the dynamic PLR model residual is significantly more effective in

attenuating the PLR from the pupil measurements while at the

same time achieving a significant improvement in the

performance of machine learning models trained to recognize

an indicator of arousal based on game events (CCC of 0.23)

compared to using the pupil size directly (CCC of 0.19). The

steady state PLR model residual while not as effective in

attenuating the PLR also improved the performance of the

arousal detection (CCC of 0.26), possibly due to remaining

luminance artifacts that were related to arousing events such

as the weapon firing. The work we have presented can be of direct

interest to researchers seeking to study psychosensory pupil

responses in environments that utilise a screen such as video

games and virtual reality experiences.

In this work we have also identified some possible “traps”

when evaluating the effectiveness of PLR attenuation. We

propose to use machine learning to evaluate PLR attenuation

since there may remain artifacts in the residuals which are non-

linearly related to luminance. Machine learning models canmake

use of this non-linear relationship while commonly used metrics

such as the Pearson correlation cannot. Furthermore, we have

seen that the performance of models predicting arousal targets

from pupil (or related) inputs can be augmented if the target has

some dependency on luminance. It is important to report on this

dependency for properly interpreting the results.

When using the pupil residual approach for PLR attenuation,

we encourage researchers to use a dynamic PLR model since it is

better at attenuating the PLR from pupil measurements and can

better isolate arousal effects on the pupil when the arousing

events do not affect luminance.

Future directions for this work include improving the latency

detection between the luminance and PLR, optimizing the

parameters of the PLR models or developing a more flexible

PLR model from the ground up, training subject-specific models

to detect the self-annotated arousal, and further validating our

methods using other datasets.

Improving the latency detection between the luminance and

pupil diameter could vastly improve the alignment of the estimated

PLR with the pupil measurements. The current method of using the

peak of the cross-correlation tends to overestimate the latency and

the resulting pupil estimate is misaligned which introduces some

artifacts in the residual (see Supplementary Figure S1). Furthermore,

the latency was computed as a constant for each participant,

however, this latency can change dynamically depending on the
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current state of the pupil, the luminance, and other factors such as

fatigue. Computing this dynamic latency could improve the PLR

model accuracy and subsequently reduce unwanted artifacts in the

residual.

We used the default parameters of the dynamics of the

dynamic PLR model (those for an average person) which

likely resulted in some smaller luminance artifacts in the

residual. Estimating the PLR dynamics for each individual

subject could further reduce these unwanted artifacts. This

task however, is challenging to accomplish with data recorded

outside of highly controlled experiments.

We were not able to successfully train models to detect the

self-annotated arousal and so we only reported results for the

event-based arousal indicator. There are several potential causes

for this failure and we will summarize some of them and their

probable solutions. The self-annotations have a small (less than

3 s) delay between the stimulus events and the annotator

response. This is the result of the non-negligible cognitive

processing effort required by the annotator to annotate their

gameplay video. Computing this delay requires careful analysis of

the video and the annotations and is not a realistic solution given

the number of videos in our dataset, however, increasing the

window size for the input signals in the ML model may result in

some improvement in the performance. The self-annotations are

relative and unbounded and we have not treated them as such.

Additional processing steps to “bind” them, improving the

current model architecture, or using them in different types of

machine learning tasks (ex. preference learning) may result in

significant performance improvements. For the great majority of

the annotators (experimental subjects) it was their first time

performing such an annotation task. Due to time limitations

during the experiment there was no opportunity to train them or

verify their capacity to consistently annotate their gameplay

video. This likely resulted in many unreliable annotations and

we do not know that any solution to this issue exists.

To further advance the state of the art in PLR attenuation, a

truly subject-specific dynamic model must be developed either by

adapting and fitting subject-specific data to existing models such

as Pamplona et al. or to newly developed dynamic models.

Towards this end, we could use parameter optimization

techniques, other recent techniques such as Sparse

Identification of Nonlinear Dynamical systems (SINDy)

(Brunton et al., 2016), or other machine learning methods. A

data-driven and accurate dynamic PLR model will further

facilitate the use of eye-tracking for gaining insights into

cognitive processes in a much wider range of scenarios both

in research and commercially.
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