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Abstract

Modelling excited states properties of molecular systems usually requires a compromise between
the accuracy and computational efficiency. This is especially true when modelling the non linear
optics, such as two-photon absorption (TPA) cross sections, which requires an accurate description
of all excited states. To address these complexities, multiscale methods are employed, designed
for complex systems in which a specific “core” part significantly influences the system’s behaviour.
This approach allows for extensive calculations on large molecular systems where a full quantum
mechanical treatment would be not feasible.

Frozen Density Embedding Theory (FDET) is one category of multiscale methods, developed
by the Weso lowski group. One important aspect about FDET is that the FDET energy functional
is in an exact relation with the Hohenberg-Kohn energy. Nonetheless, in practice, approximations
have to be made due to the lack of the necessary exact density functionals. In FDET, the system
of interest A is handled using a higher-level theory with the wavefunction variable ΨA, while the
environment B is treated with a lower-level theory, relying on electron density ρB as a descriptor.

This thesis comprises three topics. The first one concerns the confidence level in modelling the
two-photon absorption cross section in the condensed phase. The reliability of the used approx-
imations for FDET is assessed comparing the TPA results with advanced excited state methods.
The computational challenge in modelling this property has been highlighted. Furthermore, the
significance of different environment induced effects has been addressed. This provides insight on
the importance of geometry, the polarisation and the role of the Pauli repulsion effect in modelling
TPA properties.

The second topic focus on the FDET embedding potential on its ρB-dependency when the dif-
ferential polarisation is focused. Additionally, the asymptotic behaviour of the non-additive kinetic
potential in order to improve the accuracy of FDET embedding potential has also been investi-
gated. The third topic delves into the modelling of two-photon absorption cross section with the
time-frequency-entangled pairs, rather than classical pairs. This leads to a further exploration on
an intriguing phenomenon associated with the entangled pairs, known as entangled TPA (ETPA)
transparency, in which the chromophore displays no entangled two-photon absorption cross section
signals despite strong classical TPA signals.
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Résumé

La modélisation des propriétés des états excités de systèmes moléculaires implique généralement
de trouver un compromis entre la précision et l’efficacité computationnelle. C’est particulièrement
vrai pour la modélisation de l’optique non linéaire, telle que les two-photon absorption (TPA), qui
nécessite le calcul de plusieurs états excités. Pour relever ces défis, une méthode multiscalaire est
employée, conçue pour les systèmes complexes où une “ partie centrale” spécifique influe de manière
significative sur le comportement du système. Cette approche permet d’effectuer des calculs détaillés
sur des systèmes moléculaires de grande taille pour lesquels un traitement quantique complet serait
irréalisable.

Frozen Density Embedding Theory (FDET) fait partie des méthodes multiscalaires et a été
développée par le groupe de Weso lowski. Un aspect essentiel de FDET est que sa fonction énergétique
est en relation exacte avec l’énergie de Hohenberg-Kohn. Néanmoins, dans la pratique, l’utilisation
d’approximations est requise car les fonctionnelles de densité exactes ne sont pas connues. Dans
FDET, le système d’intérêt A est traité avec une théorie de niveau supérieur utilisant la variable de
la fonction d’onde ΨA, tandis que l’environnement B est traité avec une théorie de niveau inférieur,
en se basant sur la densité électronique ρB comme descripteur.

Cette thèse aborde trois sujets principaux. Le premier concerne le niveau de confiance dans la
modélisation de la TPA dans la phase condensée. La fiabilité des approximations utilisées dans FDET
est évaluée en comparant des résultats de TPA à des méthodes de modélisation d’états excités plus
avancées. Les défis computationnels de la modélisation de cette propriété sont mis en évidence. De
plus, l’importance des effets induits par l’environnement est examinée, fournissant des indications
sur l’importance de la géométrie, de la polarisation et du rôle de l’effet de répulsion de Pauli dans
la modélisation des propriétés de TPA.

Le deuxième sujet se concentre sur le FDET embedding potential v̂FDET
emb et sa dépendance par

rapport à ρB lorsqu’une polarisation différentielle est appliquée. De plus, le comportement asymp-
totique du potentiel cinétique non additif est étudié pour améliorer la précision du v̂FDET

emb .
Le troisième sujet porte sur la modélisation de TPA cross-section, non pas avec des paires clas-

siques de photons, mais avec des paires de photons intriqués dans le domaine temps-fréquence. Cela
conduit à une exploration d’un phénomène intrigant associé aux paires de photons intriqués, ap-
pelé entangled two-photon absorption (ETPA) transparency, dans lequel le chromophore ne présente
aucun signal ETPA, malgré de forts signaux classiques de TPA.
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Structure of the thesis

This thesis is structured in the following way.
Chapter 1 introduces the fundamental quantum mechanical methods for modelling molecular

systems. In Chapter 2 we introduce multiscale methods with a focus on the Frozen Density
Embedding Theory. Specific issues related to the state-dependency and state-specific polarization are
discussed within FDET and within other multiscale methods. Chapter 3 outlines the frameworks
of two excited state methods - one based on the polarization propagator and the other on the coupled
cluster method. It also includes the derivation of the TPA cross section from the microscopic to
macroscopic expression. A detailed derivation of obtaining different orders of time-dependent phase
isolated wavefunctions is provided in Appendix A.

In Chapter 4 the approximation used in FDET is examined for evaluating TPA cross section.
The analysis is conducted on a small complex for which reference results are available. The TPA
cross section, along with absolute and shift values, is presented with different embedding methods
alongside the supermolecular reference. Chapter 5 focuses on the generation of ρB, on weather it
is state-independent or state-specific in FDET, and its impact on the vertical excitation energy. The
benchmarking includes 47 excitations, showing the average error and standard deviation from the use
of different ρB. The error on the FDET energy can also be attributed to the use of approximation for
the non-additive kinetic potential. The asymptotic behaviour of the non-additive kinetic potential
approximated by the non-decomposable approach is verified in Appendix B.

Chapter 6 explores the utilization of the entangled photon pairs, as opposed to classical pairs,
in the TPA cross section. The entangled induced TPA transparency phenomenon is introduced and
how the electronic structure of the chromophore influences the entangled induced TPA transparency
is investigated with a truncated sum-over-state expression.

Chapter 7 comprises unpublished results addressing the important physical effects in the mod-
elling TPA cross section. In Chapter 8, we draw a general conclusion of this thesis. Finally,
Appendix C-F provides the supporting information for publications from Chapter 4-5.
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Notes on units

The most convenient units used in a quantum mechanical calculations are the atomic unites. The
atomic unites are defined by the energy, the radius of the electron orbital (in the classical picture),
etc., of the electron of the hydrogen atom in the ground state. The reduced Planck constant,
elementary charge, and the mass of electron are set to 1 in atomic unites. There are other unit
systems, such as the common international system of units (SI), or the centimetre–gram–second
(cgs) system of unites which is widely applied in the spectroscopic measurement.

One interesting fact on the atomic unit is that 1 a.u. of the magnetic field equals 2.5 · 105 Tesla.
The magnetic field of the Earth is in the order of 1 · 10−2 Tesla. This means the same scale of 1 a.u.
of the magnetic field can be found on a neutron star.

A table includes the conversion factor between the atomic unit and SI or cgs is given below.

Physical quantity Atomic units cgs unit SI

electron charge 1 4.8·10−10 esu 1.6 ·10−19 C
electron mass 1 9.1·10−28 g 9 .1·10−31 kg
ℏ 1 1.05·10−27 erg·s 1.05·10−34 J·s
fine structure constant 1

137
1

137
1

137
speed of light 137 3·1010 cm/s 3·108 m/s
Bohr radius 1 Bohr 5.3·10−9 cm 5.3·10−11 m
Hartree energy Eh 1 Hartree 4.4·10−11 erg 4.4·10−18 J
atomic unit of time 1 2.4·10−17 s 2.4·10−17 s
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Chapter 1

Quantum mechanical methods for
molecular systems

1.1 Introduction

In this chapter, we briefly introduce some of the fundamental quantum mechanical methods
applied in simulations of molecular systems. The non-relativistic time-independent wavefunction is
considered here and the time-dependent case will be covered in Chapter 3.

The non-relativistic time-independent Schrödinger equation [1] is:

ĤΨ = EΨ (1.1)

where the hermitian operator Ĥ is the Hamiltonian of the system and the corresponding energy
E. The Schrödinger equation is a non-linear partial derivative equation , and its eigenvectors Ψ
are vectors in a certain Hibert space named the Sobolev space H1. The wavefunction Ψ is in the
Hibert space because it satisfies three properties of the Hibert space, namely:i) the inner products
are computable eg. the normalization condition ⟨Ψ|Ψ⟩ = 1; ii) Ψ forms infinite dimensional vector
space; and iii) any linear combination of the solutions also lies in the same space.

The Hamiltonian of a molecular system, which contains the nuclei (RA) and electron coordinates
(ri), can be written in the following form with atomic units:

Ĥ = −
N∑

i

1

2
∇2

i −
M∑

A

1

2mA
∇2

A −
N∑

i

M∑

A

ZA

riA
+

N∑

i

N∑

j>i

1

rij
+

M∑

A

M∑

B>A

ZAZB

RAB
(1.2)

The first two terms are the kinetic operator for the electron and nuclei; the third describes the
electronic interaction between the nuclei and electrons; the fourth and fifth, respectively, are the
electronic repulsion between electrons and between nuclei.

One immediately realizes that the wavefunction Ψ depends on both electrons and nuclei with
the Hamiltonian given in Eq. 1.2. This brings extra complexity or dimensions when solving Eq. 1.2.
However, because electrons move much faster than nuclei, we can assume the electrons are moving
with the fixed nuclei coordinates. Therefore we can factorize the wavefunction Ψ({ri}; {RA}) =

1
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Ψ(ri)Ψ(RA). This is a fundamental approximation in computational chemistry, known as the Born-
Oppenheimer approximation [2]. The approximation might not be sufficient in calculating non-linear
optical properties , or for molecules where the vibration of nuclei has to be taken into account. One
possible solution is to apply perturbation theory, which will be introduced in Section 1.3.

Within the Born-Oppenheimer approximation, we can safely remove the kinetic operator of
nuclei which is the second term in Eq. 1.2. It is worth noting that the final term in Eq. 1.2 can
also be disregarded, as it is a constant that only contributes to the eigenvalue without affecting the
wavefunction. Moving forward, our focus will be only on the electronic Hamiltonian.

The wavefunction obtained by solving the electronic Hamiltonian must obey certain rules. Elec-
trons, being fermions, have to obey the Pauli exclusion principle. The wavefunction of fermions is
antisymetric, meaning that exchanging the electron 1 and electron 2 is not equivalent to the other
way round. See following a simple two electrons example:

Ψ(1, 2) = Ψ1(1)Ψ2(2) (1.3)

Ψ(2, 1) = Ψ1(2)Ψ2(1) = Ψ1(1)Ψ2(2) = Ψ(1, 2) ̸= −Ψ(1, 2)

This property can be mathematically represented by a determinant where each row has a different
Ψi and each column has a different electron, known as a Slater determinant [3]. Exchanging rows in
the determinant introduces a negative sign to the new matrix. Further discussion on this topic will
be presented in Section 1.2.

Now let us return to the electronic Hamiltonian and address another significant challenge. The
kinetic −1

2∇2
i and nuclear attraction operator ZA

riA
are both one-electron operators. However, the

electron-electron repulsion operator 1
rij

obviously depends on other electronic coordinates. How to

deal with this two-electron operator is a central topic in the computational chemistry. In the first
section, we begin by a fundamental approximation that forms the basis for various more advanced
wavefunction methods.

1.2 The Hartree-Fock approximation

The electron can be fully described by its position vector r and the spin. Two electron can
occupy the same spatial orbital ψ(r) but with the opposite spin. The spin can be either spin up
(α(ω)) and spin down (β(ω)). A spin orbital χ(x) describes both the spatial and spin part of an
electron, χ(x) = ψ(r)α(ω) or χ(x) = ψ(r)β(ω), for example.

The solution of an energy functional can be obtained, according to the variational principle, also
known as the minimum energy principle, in the following,

E[Ψ] =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ ⩾ E0 (1.4)

where E0 is the exact ground state energy.
The idea of Hartree-Fock(HF) approximation is rather practical. Firstly, since it is challenging

to treat 1
rij

as two-electron operator, we assume that other electrons are ”frozen” and consider

the ith calculating electron in a “mean field” generated by these fixed electronic coordinates. By
doing so, the coordinate rj can be separated from rij, simplifying the two-electron operator into a
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one-electron operator. This simplification greatly enhances the computational efficiency. Secondly,
the Hartree-Fock approximation takes into account the antisymmetry nature of the many-electron
wavefunction.

1.2.1 Hartree-Fock equations

With all the approximations made above, the one-electron Schrödinger equation within the
Hartree-Fock method [4,5], known as Hartree-Fock equations, can be written as:

[
−1

2
∇2

i −
M∑

A

ZA

riA
+ Ĵ − K̂

]
χi(xi) = εiχi(xi) (1.5)

Let us now compare Eq. 1.5 with the original many-electron case Eq. 1.2. The first three terms
have obvious anslogues in the two equations, where the last term do not. χi(xi) is the spin orbital
with the space and spin coordinate xi. The third term is the averaged coulomb potential and it is a
summation of electron 2 occupying χj with the probability dxj|χj |2. The last term is the exchange
potential operator arising from the antisymmetric character of fermion wavefunction. The exchange
operator is defined as:

Ĵχi(xi) =

N∑

j ̸=i

∫
dxj

|χj(xj)|2
rij

χi(xi) (1.6)

K̂χi(xi) =
N∑

j ̸=i

∫
dxjχ

∗
j (xj)

1

rij
χi(xj)χj(xi) (1.7)

It can be seen in Eq. 1.7 that this is a nonlocal operator. On the left of the equation, the operator
acts on the electron with the coordinate xi occupying the spin orbital χi, while on the right the χi(xi)
has been replaced by χi(xj). There has been an exchange of the electron with the coordinate xi and
xj hence the name “exchange operator”. This operator is nonlocal because it acts on χi(xi) which
also relies on the term χi(xj) lying on the right hand side of Eq. 1.7. To sum up, the Hamiltonian
of the Hartree-Fock equation in Eq. 1.5 can be written as the summation of the one-electron Fock
operator f(1),

f̂(1) = ĥ(1) + v̂HF (1) (1.8)

where ĥ(1) is the core-Hamiltonian operator and is always the same for all quantum mechanical
methods. v̂HF (1) is the one-electron effective Hartree-Fock potential.

The solution from Eq. 1.5 corresponds to a single electron case. For a many-electron system, one
may be tempted to describe the eigenstate of the molecular Hamiltonian as a product of the eigen-
functions of non-interacting electrons. This is a Hartree product, which, however, does not satisfy
the antisymmetry property of the many-fermion wavefunction. Instead, the idea of determinant in
linear algebra perfectly satisfies this property by changing sign upon exchange rows. John Slater [3]
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first showed that the generation of N-electron wavefunction Φ can be written as:

Φ(x1,x2, · · · ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN (xN)

∣∣∣∣∣∣∣∣∣
(1.9)

χ1(x1) in Eq. 1.9 denotes that electron one occupies the spin orbital χ1(x). Spin orbitals in the
Slater determinants satisfy the orthonormal condition,

⟨χi|χj⟩ = δij , (1.10)

where δij is the Kronecker delta function. It is clear that the Slater determinant is zero if there
exists two rows or columns being identical. Multiplying Eq. 1.5 by ⟨χi| on the left, we obtain the
orbital energy,

ϵi = ⟨i|ĥi|i⟩ +

N∑

j

⟨ij|ij⟩ −
N∑

j

⟨ij|ji⟩ (1.11)

where we have adopted here the Dirac notation,

⟨i|ĥi|i⟩ =

∫
ψ∗i (ri)ĥiψi(ri)dri (1.12)

⟨ij|ij⟩ =

∫ ∫
ψ∗i (r1)ψ

∗
j (r2)r

−1
12 ψi(r1)ψ

∗
j (r2)dr1dr2 (1.13)

The total electronic energy. The total electronic energy of a molecular system in the
Hartree-Fock approximation is

EHF =
N∑

i

⟨i|ĥi|i⟩ +
N∑

i

N∑

j>i

⟨ij|ij⟩ −
N∑

i

N∑

j>i

⟨ij|ji⟩

=

N∑

i

⟨i|ĥi|i⟩ +
1

2

N∑

ij

[⟨ij|ij⟩ − ⟨ij|ji⟩]

=
∑

i

ϵi −
1

2

N∑

ij

[⟨ij|ij⟩ − ⟨ij|ji⟩] (1.14)

It is worth noting that the total energy is not the sum of the orbital energy. The sum of the
orbital energy is larger than the total energy by a factor of one half of the electron-electron
interaction energy due to double counting.

The electron density. The probability of finding an electron within a volume element dr1
at a point r in a closed-shell system, where the spin part of spin orbitals can be neglected
(ρ(r) = 2ρ(r)α = 2ρ(r)β), is given as,

ρ(r) = ⟨Ψ|ρ̂(r)|Ψ⟩

= N

∫
· · ·

∫
|Ψ(r1, r2, · · · , rN )|2dr2dr3 · · · drN (1.15)
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where the density operator is defined as ρ̂(r) =
∑N

i δ(ri − r). If the wavefunction is in the
form of the Slater determinant, the electron density in Eq. 1.15 can be written with spatial
orbitals,

ρ(r) = 2

N/2∑

i

|ψi(r)|2 (1.16)

1.2.2 Hartree-Fock equations in atomic orbital basis

The construction of spatial part of spin orbitals are required, in practice, in order to solve
HF equations numerically as given in Eq. 1.5. The most widely used approach starts from the
one-electron basis functions known as atomic orbitals. These atomic orbitals are often constructed
as linear combinations of Gaussian functions for computational efficiency. Additionally, one- and
two-electron integrals can be solved analytically when using these Gaussian-based atomic orbitals.

Molecular orbitals (MOs) are obtained as a linear combination of atomic orbitals (AOs) [6],

ψi(r) =
∑

µ

Cµiϕµ(r) (1.17)

Cµi is the expansion coefficient of the atomic orbital basis ϕµ(r). The advantage of this approach is
that the nonlinear differential HF equations can be easily programmed with efficient linear algebra
operations. The HF equation in the AOs basis expressed in the matrix form, known as the Roothaan-
Hall equation [6], is given as,

FC = SCε (1.18)

where F is the Fock matrix with its element Fµν = ⟨ϕµ|f̂ |ϕν⟩. S is the overlap matrix Sµν = ⟨ϕµ|ϕν⟩
between the non-orthogonal atomic basis functions. The non-orthogonal atomic basis can be trans-
formed into the orthogonal basis by a non-unitary transformation thus satisfying the orthonormal
condition given in Eq. 1.10.

The Roothaan-Hall equation in the transformed orthonormal basis C̃ is now converted to solving
the eigenvalue problem,

FC̃ = C̃ε (1.19)

The diagonalization of the Fock matrix yields the eigenvalue ε.

Electron density in the AO basis. The electronic charge density given in Eq. 1.16 in AO
basis reads,

ρ(r) = 2

N/2∑

i

|ψi(r)|2 = 2

N/2∑

i

∑

µν

CµiC
∗
νiϕµ(r)ϕν(r)

= 2
∑

µν

Pµνϕµ(r)ϕν(r) (1.20)

where we have defined the density matrix Pµν =
∑N/2

i CµiC
∗
νi. Since ϕµ(r)ϕν(r) is already

given known function, obtaining the density matrix in practical calculations thus becomes the
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main target. Many properties can be calculated directly from the density matrix. The dipole
moment is given as a example in the following.

Dipole moment in the AO basis. The classical definition of the dipole moment, which is
origin independent for a neutral system, is as follows:

µ⃗ =
∑

i

qiri (1.21)

where q is a point charge at the position ri. Similarly, the dipole moment evaluated quantum
mechanically is,

µ⃗ = ⟨Φ0| −
N∑

i

ri|Φ0⟩ +
∑

A

ZARA (1.22)

where ZA is a classical nuclei charge at the position RA. The dipole moment can be directly
evaluated from the density matrix:

µ⃗ = −
∑

µν

Pµν⟨ϕµ(r)|r|ϕν(r)⟩ +
∑

A

ZARA (1.23)

The total energy obtained from HF approximation is expected to have an overestimated energy
due to a underestimated description on the fact that electrons are interacting with each other. The
correlation energy, characterizing such an effect, is defined as the difference between the exact energy
and the HF energy with the complete basis set,

Ec = E0 − EHF (1.24)

In fact, the single determinant form of the wavefunction is often not enough for describing most
of molecular systems. The error can be reduced by employing a correlated method such as the
use of the multi-determinant wavefunction, or by applying the perturbation theory which will be
introduced in the next section.

1.3 Møller-Plesset perturbation theory

If the exact Hamiltonian Ĥ can be expressed as the sum of a reference Hamiltonian Ĥ0, whose
modelling is known, plus a small perturbation V , perturbation theory can be applied. With a
carefully chosen zeroth-order Hamiltonian Ĥ0, the perturbation expansions are expected to converge
quickly. Rayleigh-Schrödinger perturbation theory (RSPT) [7] is applied to derive a perturbation
series for the wavefunction and the energy. This technique will resurface later in the context of
response theory in the time-dependent domain. RSPT can be conveniently demonstrated to be
size-consistent by employing a diagrammatic representation [7,8] of the algebraic expression for each
order of the energy correction.

The eigenvalue problem can be solved in a perturbative manner by utilizing the eigenfunctions
and eigenvalues of the unperturbed Hamiltonian:

(Ĥ0 + λV )|Ψi⟩ = Ei|Ψi⟩, (1.25)

Ĥ0|ψ(0)
i ⟩ = E

(0)
i |ψ(0)

i ⟩, (1.26)
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where Ei and |Ψi⟩ are exact eigenvalues and eigenfunctions. The zeroth-order wavefunction obtained
from the unperturbed Hamiltonian Ĥ0 satisfies the normalization condition,

⟨ψ(0)
i |ψ(0)

i ⟩ = 1. (1.27)

The advantage of the perturbation theory is that the exact eigenvalues and eigenfunctions can be
written with the already known sets of {E0

i } and {ψ0
i }. An ordering parameter λ is introduced in Eq.

1.25 to systematically obtain improved unperturbed eigenfunctions and eigenvalues. This parameter
is later used to equate coefficients. The exact eigenfunctions and eigenvalues can be expanded in
Taylor series with the λ parameter:

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · (1.28)

|Ψi⟩ = ψ
(0)
i + λψ

(1)
i + λ2ψ

(2)
i + · · · (1.29)

The intermediate normalization ⟨ψ(0)
i |Ψi⟩ = 1 is applied to ensure the preservation of the orthogo-

nality between unperturbed ψ
(0)
i and n-th order wavefunction. This can be shown by multiplying

⟨ψ(0)
i | on the left of Eq. 1.29.
By substituting Eq. 1.29 and Eq. 1.28 back into Eq. 1.25, sorting the equation based on the

order of λ, and utilizing the orthogonality relation, we arrive at the expression for the nth-order
energies:

E
(0)
i = ⟨ψ(0)

i |Ĥ0|ψ(0)
i ⟩ (1.30)

E
(1)
i = ⟨ψ(0)

i |V |ψ(0)
i ⟩ (1.31)

E
(2)
i = ⟨ψ(0)

i |V |ψ(1)
i ⟩ (1.32)

The first-order wavefunction ψ
(1)
i appears first in the second-order energy E

(2)
i as can be seen in Eq.

1.32. The expression for ψ
(1)
i can be derived by expanding ψ

(1)
i in a linear combination of {ψ0

n}. As
a result, the second-order energy reads [7],

E
(2)
i =

∑

n̸=i

⟨ψ(0)
i |V |ψ(0)

n ⟩2

E
(0)
i − E

(0)
n

(1.33)

We pause at the second-order energy for now and return to our objective, which is to evaluate
the correlation energy using the perturbation technique introduced thus far.

The second-order correlation energy from the perturbation theory.

Møller and Plesset [9] first propose to use the Hartree-Fock Hamiltonian as Ĥ0 to calculate the
correlation energy of N-electron systems. The perturbation V in this case is the difference of
the two-particle electron repulsion and the effective Hartree-Fock potential,

V =
∑

j>i

r−1ij −
∑

i

v̂HF (i) (1.34)

Substitution of the perturbation potential to Eq. 1.33 gives the second order correction for
the correlation energy. From Eq. 1.30 to Eq. 1.32, it can be seen that the zero-order energy
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in Hartree-Fock Hamiltonian is simply the sum of the orbital energies. The sum of the zeroth-
order and the first-order perturbation gives the Hartree-Fock energy.

The final second-order perturbation energy for the ground state reads,

E
(2)
0 =

∑

n ̸=0

⟨ψ(0)
0 |V |ψ(0)

n ⟩2

E
(0)
0 − E

(0)
n

(1.35)

=
∑

b>a
s>r

|⟨ab|rs⟩ − ⟨ab|sr⟩|2
εa + εb − εr − εs

(1.36)

In Eq. 1.36, the symbol “ab” denotes the occupied molecular orbitals and “rs” for the un-
occupied orbitals. The contribution to the second order correlation energy comes from the
pair of electrons in the occupied orbitals. Importantly, the single excitation character does not
contribute to the summation in Eq. 1.36. In order to see this, one can rewrite V = Ĥ−Ĥ0 and
use the Brillouin’s theorem [7] [a] , as well as the fact that the spin orbitals are the eigenfunctions
of Ĥ0.

1.4 Density Functional Theory

1.4.1 Hohenberg-Kohn theorems

In Hartree-Fock theory, the total energy E[Φ] is minimized by means of the determinant wave-
function. Hohenberg-Kohn theorems, on the other hand, use the electron density as the basic vari-
able. For an N-electron system, the number of electrons and the external potential vext(r) determine
all properties of the system. The external potential takes the following form,

vext(r) = −
M∑

A

ZA

riA
(1.37)

The question is whether there is a one-to-one relation between the external potential and the electron
density. If such a relation exists, how do we determine the density corresponding to the ground state?

Hohenberg-Kohn theorem 1 “The external potential vext(r) is determined, within a trivial ad-
ditive constant, by the electron density ρ(r).”

The first Hohenberg-Kohn theorem [10] can be proved by using the minimum energy principle for the
ground state. The first Hohenberg-Kohn theorem answers our first question by stating that there
cannot exist two different v(r) which give the same density for the ground state [10].

As a result, the total energy is a functional of the electron density and has an explicit dependence
on vext(r) in the following,

Ev[ρ] =T [ρ] + Vne[ρ] + Vee[ρ]

=

∫
ρ(r)vext(r)dr + FHK [ρ]. (1.38)

[a]. Brillouin’s Theorem Singly excited determinants |Φr
a⟩ will not interact directly with a reference Hartree-Fock

determinant |Φ0⟩, that is ⟨Φ0|Ĥ|Φr
a⟩ = 0.
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FHK [ρ] is the universal Hohenberg-Kohn functional includes the kinetic energy functional T [ρ] and
the electron repulsion energy Vee[ρ]. Their exact forms are unknown. Many attempts have been
made on a better approximation of the kinetic energy functional [11].

Hohenberg-Kohn theorem 2 “For a trial density ρ̃(r), such that ρ̃(r) ⩾ 0 and
∫
ρ̃(r)dr = N”,

E0 ⩽ Ev[ρ̃] (1.39)

The second Hohenberg-Kohn theorem [10] addresses our second question by introducing the energy
variational principle based on the density. The ground-state density must satisfy the stationary
principle, and subject to the constrain on the total number of electrons N . This constrain can be
imposed using the Euler-Lagrange equation [12],

δ[Ev[ρ] − µ(

∫
ρ(r)dr−N)] = 0, (1.40)

where µ is the chemical potential. The working equation Eq. 1.40 is applied to obtain the ground
state density.

The density is v-representable if it is the density associated with the ground state wavefunction
obtained by some external potential. This is especially important for the definition of FHK [ρ]
functional because ρ entering in FHF [ρ] has to be v-representable. However, the exact conditions
for v-representable densities are unknown. Instead the electron density is the N-representable [13]

density if it satisfies,

ρ(r) ⩾ 0,

∫
ρ(r)dr = N, and

∫
|∇ρ(r)1/2|2dr <∞ (1.41)

Eq. 1.41indicates that, in addition to the constraint on the number of electrons, the N-representable
density requires a continuous wavefunction. This condition is less restrictive than that of v-representability.
In practice, the N-representable density minimizing the total energy is obtained by the Levy constrained-
search approach [14].

Levy constrained-search [14]. There exists a one-to-one mapping between the ground state
electron density ρ0 and the ground state wavefunction. However, the reverse mapping does
not exist. An infinite number of antisymmetric wavefunctions can yield the same density. Of
course, according to the minimum energy principle, among all the wavefunctions yielding ρ0,
the one that minimizes the expectation value of ⟨T̂ + V̂ee⟩ gives the ground state wavefunctions
Ψ0. However, how to obtain ρ0, the v-representable ground state density, is still not clear.

Since the v-representable ground state density is from the antisymmetric wavefunctions, we
can extend the domain of v-representable to N-representable densities and define,

F [ρ] = min
Ψ→ρ

⟨Ψ|T̂ + V̂ee|Ψ⟩ (1.42)

where F [ρ] takes all N-representable densities. Hence, the constrained-search formula above
eliminates the v-representable requirement for the functional FHK [ρ] with a replacement of
F [ρ]. In practice, the constrain-search is split into two steps; i) the inner minimization mini-
mizing within the space of all the wavefunctions yields ρ; ii) the outer minimization searching
among all admissible ρ that integrate to the total number of electrons.
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1.4.2 Kohn-Sham formalism

The Hohenberg-Kohn theorems provide the theoretic foundation for density functional theory.
However, the explicit form of the universal functional FHK [ρ] is unknown, especially the kinetic
functional T [ρ] which is in the same order of magnitude as the total energy.

Kohn and Sham (KS) in 1965 [15] introduced a formalism to calculate practically the total energy,
without relying on the approximation for T [ρ]. In the KS approach, an artificial reference system
of non-interacting electrons is introduced, and it is assumed that the density associated with the
non-interacting reference system is identical to the one obtained from the interacting system. In
such a case, T [ρ] can be evaluated explicitly, whereas the interacting/non-classical part in the total
energy is collected by the exchange-correlation functional Exc[ρ].

The Hamiltonian of the KS non-interacting electrons moving in an effective potential is,

ĤKS = −
N∑

i

1

2
∇2

i +
N∑

i

veff (ri) (1.43)

The kinetic energy functional Ts[ρ] is defined by the constrained search formalism,

Ts[ρ] = min
Φ→ρ

⟨Φ|T̂ |Φ⟩ (1.44)

The density must be derived from antisymmetric wavefunctions.The exchange-correlation functional
Exc[ρ] is defined as the difference between the exact kinetic energy and the Kohn-Sham kinetic
potential plus the non-classical part of the electron-electron interaction Vee[ρ],

Exc[ρ] = T [ρ] − Ts[ρ] + Vee[ρ] − J [ρ] (1.45)

where the classical coulomb repulsion energy is,

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)
|r− r′| dr

′dr (1.46)

The effective potential now can be defined,

veff (r) = vext(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
(1.47)

Total KS energy. The total KS energy can be written with the optimal orbitals Φi determined
from the Euler-Lagrange equations,

EKS [ρ] =
N∑

i

⟨Φi[ρ]| − 1

2
∇2

i |Φi[ρ]⟩ + J [ρ] + Vne[ρ] + Exc[ρ] (1.48)

Vne[ρ] =

∫
vext(r)ρ(r)dr (1.49)

Density functional approximation. In the practical KS-DFT calculations, various levels
of approximation have been made to the exchange-correlation functional Exc[ρ]. Following the
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so called “Jacob’s ladder”, the simplest approximation to Exc[ρ] starts from the local density
approximation [15] where Exc[ρ] depends on the local value of ρ(r) especially aimed for slow
varying electron densities. In molecular systems, however, where the electron density varies
rapidly, a generalized gradient approximation has been introduced for which ρ(r) depends on
the density gradient ∇ρ(r). Advancing up the ”Jacob’s ladder,” the exact exchange energy
from HF theory is partially included using Kohn-Sham orbitals Φi, leading to what is known as
hybrid functionals [16]. The computational time increases as one ascends the ”Jacob’s ladder.”

The comparison to the HF approximation. Let us compare now the Hartree-Fock and
Kohn-Sham Density Functional Theory (KS-DFT). Both approximations use the single deter-
minant wavefunctions. In HF theory the wavefunction of the interacting system is approx-
imated by a single determinant, whereas KS-DFT employs a single determinant that corre-
sponds to the exact wavefunction of a fictitious non-interacting system. The HF total energy
does not include the correlation effect, by definition. KS-DFT, however, does account for the
correlation effect through the exchange-correlation functional Exc[ρ]. The accuracy of KS-DFT
thus relies on the approximation for the exchange-correlation functional Exc[ρ].

The computational scaling is different for two approximations. In HF theory, the evaluation of
the two-electron integral ⟨ij|kl⟩, which are four-index integrals with each index ranging from
1 to N (where N is the number of atomic orbitals), approximately scales as N4. In KS-DFT,
the formal scaling can be reduced to N3 due to the introduction of an auxiliary basis. This
auxiliary basis replaces the product of two atomic orbitals ϕµ(r)ϕν(r) with a single orbital
ϕ′(r). This auxiliary basis can be introduced because there are no exchange integrals in KS-
DFT. Moreover, if the density is represented numerically on a grid, the scaling can be reduced
furthermore.
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Chapter 2

Multiscale Methods

We have seen in the previous chapter that the computational time scales as N3 [17] in Kohn-Sham
Density Functional Theory, where N is the number of basis function which in turn is proportional
to the number of electrons/atoms. The formal scaling factor is N4 [17] in Hartree-Fock method
and for more advanced methods such as MP2 is N5 [7]. This unfavourable scaling is, however, not
practical for most of complex molecular systems. One breakthrough in addressing this problem is
the utilization of the multiscale method which was recognized with the Nobel Prize in 2013. In the
multiscale method, a complex system is divided into subsystems, with the system of interest, the
part of the system which is considered to be mainly responsible for the physical behaviour treated
using high-level computational methods. Other subsystems, everything but the system of interest
are treated with low-level methods. This approach allows for efficient simulations of complex systems
that would be otherwise computationally infeasible using conventional methods.

Multiscale methods involve solving the problem of the quantum mechanic (QM) region with
the isolated Hamiltonian of the chromophore ĤNA

and an embedding operator v̂emb including the
interaction between the chromophore and the environment, in the following form:

[
ĤNA

+ v̂emb

]
ΨA = λAΨA (2.1)

Multiscale methods reduce quantum NA+B body to NA electrons problem and is efficient if NA ≪
NA+B. The embedding operator can be generated from either a classical representation of the envi-
ronment; such as i) the polarisable dielectric continuum (PCM) and ii) the parameterized force field
which is commonly referred by QM/molecular mechanics (MM) [18], or in the quantum mechanical
way in which the environment is represented by the electron density such as subsystem DFT meth-
ods [19]. These diverse methods addressing various physical effects, can be efficiently applied to a
wide range of molecular systems where a full quantum mechanical treatment is not feasible.

In this chapter, we first describe the PCM embedding in more details since it is highly relevant
for later applications concerning two-photon absorption calculations. We then introduce the Frozen
Density Embedding Theory (FDET) with a focus on the FDET embedding potential.

13
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2.1 Polarisable dielectric continuum model

Embedding approaches that model each atom in the environment individually are referred to as
”discrete.” The advantage of a discrete representation lies in its ability to efficiently model various
physical interactions between the solute and the solvent. However, when modeling solvation effects,
the statistical nature of the solvent must also be considered. This becomes particularly crucial in a
fluctuating environment. The typical approach to address this in a discrete model is by capturing
multiple snapshots of the solvent and then calculating a statistical average of the property based
on the geometry of each snapshot. A recent study has shown that the electronic embedding, as
opposed to the simple electrostatic embedding, is required to correctly describe the solvent structure
for charge-transfer-to-solvent states [20].

The continuum solvation models use the macroscopic dielectric constant ε to approximate the
statistical averaging of the configurations of the solvent. The simplest solvation model that combines
the quantum description of the solute was proposed by Kirkwood and Onsager [21,22]. The solute
in this approach is placed in a spherical cavity. The charge density of the solute is described by a
multipolar expansion. The radius of the cavity needs to be carefully chosen in this model because
the solvation energy is very sensitive to the radius.

A more sophisticated model treats the charge density exactly. The cavity is constructed using
a set of atom-centered spheres, typically determined by their van der Waals radii. The solute is
then placed within this cavity. The polarizable continuum responds to the electrostatic potential
of the solute, and the induced polarization from the solvent is quantified by the apparent surface
charges distributed on the surface of the cavity. A collection of models commonly referred to as the
polarizable dielectric continuum model (PCM) includes variations such as the conductor-like PCM
(CPCM), the conductor-like screening model (COSMO), and the integral equation formalism PCM
(IEFPCM) [23], among others. These different formulations of PCM models vary in how the apparent
surface charge is determined. COSMO can be regarded as a special case of IEFPCM. In IEFPCM,
the influence of the solute charges located outside the cavity (referred to as “outlying” charges) is
implicitly considered. This effect stems from the surface charge not satisfying Gauss’s law at the
boundary surface. A comprehensive review can be found in Ref. 24. It is important to note that
PCM can describe the long-range electrostatic interaction but not the short-range interaction, the
interaction on the surface, for instance. In this case, the embedding operator is the reaction field,
which depends on the charge density of the solute. Therefore, the reaction field must be updated in
every iteration.

Here, we will first review the equilibrium solvation case, in which the solute and the solvent are
in an equilibrium state. This involves the ground state or the long-lived excited state that has a
lifetime much longer than the timescale of the molecular vibration.We will then proceed to discuss
the formulation for the nonequilibrium case, in which the response from the solvent is separated,
typically applies for short-lived excited states or the vertical excitation.

2.1.1 Equilibrium formulation of PCM

The embedding operator in PCM is the reaction field potential operator R̂ [25],

R̂i =

∫

S

σi(s)

|r − s|ds =

∫

S
V̂ (r, s)σi(s)ds (2.2)
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where S is the cavity surface and s is the surface element. The apparent surface charge σi(s) is
given,

σi(s) =

∫

S
V (s′)A−1ε (s, s′)ds′ (2.3)

The electrostatic potential V (s) arising from the polarisation of the continuum, for the given wave-
fuctions Ψi at the point s can be obtained by integrating V (r, s) over r. A−1ε is the PCM kernel which
varies for various PCM models. This kernel depends on the geometry of the cavity and the dielectric
constant of the continuum. The fact that the kernel takes two arguments (s, s′) indicates that it
takes into account the mutual polarisation between the surface charges. To better understand the
generation of the surface charges, a schematic illustration is shown in Fig. 2.1 outlining the general
procedure of PCM calculations.

The reaction field can also be written in the form of a surface charge operator Q̂ and the solute
potential V̂ ,

(Ĥvac + ⟨Ψi|Q̂|Ψi⟩ · V̂ )|Ψi⟩ = λi|Ψi⟩ (2.4)

where Q̂ =
∫
S V̂ (r, s′)A−1ε (s, s′)ds′ and V̂ σi(s) =

∫
S V (s)σi(s)ds. The free energy of the solute is,

Gi = ⟨Ψi|Ĥvac +
1

2
⟨Ψi|Q̂|Ψi⟩ · V̂ |Ψi⟩ (2.5)

The factor 1
2 appearing in Eq. 2.5 is due to the work required to create surface charges on the cavity

surface.

2.1.2 Nonequilibrium formulation - vertical excitations in PCM

The response time for microscopic particles reacting to the external electric field to reach again
the equilibrium varies for different microscopic particles. The response from the solvent, in real-
ity, consists of the orientational, atomic, electronic polarisation, respectively due to the motion of
molecule, atoms, and electrons.

When the vertical excitation from the electronic transition is considered, only the electrons are
relaxed during the excitation while the nuclei degree of freedom is frozen according to the Frank-
Condon’s rule. The response of the solvent is split into two parts.

There are two schemes to treat this nonequilibrium response from the solvent. The first scheme
partitions the total polarisation from the solvent into fast and slow contributions from the electron
and nuclei response. The second scheme divides the polarisation into inertial and dynamic response.
Depending on which scheme is applied, the final expression for the free energy is different, for more
discussion, see Ref. [25]. In the following we will review the first scheme.

The apparent surface charge operator Q̂ and the reaction field R̂i can be split into the slow Q̂s

and fast Q̂f contribution,
Q̂ = Q̂s + Q̂f . (2.6)

The Hamiltonian for the nonequilibrium excited state Ψj is expressed as,

Ĥj = Ĥvac + [⟨Ψequ
i |Q̂s|Ψequ

i ⟩ + ⟨Ψj |Q̂f |Ψj⟩] · V̂
= Ĥvac + R̂s

i + R̂f
j (2.7)
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Figure 2.1 – A flow chat modified based on Ref. [25] for the PCM calculation procedure. Note that
the procedure experiences two times self-consistence calculations. One concerns the surface charge
iteration and the other concerns the solute charge density.
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where Ψequ
i is obtained from the equilibrium Hamiltonian case described in the previous section.

It is evident that the Hamiltonian Ĥj in Eq. 2.7 depends on Ψj . This introduces a break in
orthogonality between excited states, posing challenges when evaluating the properties of excited
states.

A commonly employed method to tackle this state-dependent problem is the use of perturbation
theory. If the electronic response from Ψj is only a small perturbation to the total electrostatic
potential, one can write the perturbative Hamiltonian as,

Ĥj = Ĥvac + R̂s+f
i + λ(R̂f

j − R̂f
i ) (2.8)

Thus we obtain the zeroth-order expectation value of the Hamiltonian,

E
(0)
j = ⟨Ψ(0)

j |Ĥvac + R̂s+f
i |Ψ(0)

j ⟩ (2.9)

and the first-order correction,

E
(1)
j = ⟨Ψ(0)

j |R̂f
j − R̂f

i |Ψ
(0)
j ⟩ (2.10)

where Ψ
(0)
j is obtained from the unperturbed Hamiltonian Ĥvac + R̂s+f

i which does not depend on
Ψj .

2.2 Frozen Density Embedding Theory

Frozen Density Embedding Theory, features on the short-range nonelectrostaic Pauli repulsion
effect in density embedding theory. The total electron density of the whole system is constructed by
the electron density of the embedded species ρA and the environment ρB,

ρAB(r) = ρA(r) + ρB(r) (2.11)

FDET was originally introduced using the embedded single determinant for the non-interacting
reference system [26] optimised in the constrained minimisation of the Hohenberg-Kohn energy func-
tional EHK

v [ρ]. It was later extended to the variational embedded wavefunction ΨA in an interacting
Hamiltonian [27], and one-particle reduced density matrix [28], based on the same principle.

Most recent addition to the formal framework of FDET is the exact relation between the
Hohenberg-Kohn energy functional EHK

v [ρ], and the correlation energy obtained from non-variational
methods [29]. With this last addition, the formal framework of FDET covers practically all methods
of molecular quantum mechanics which might be used to solve Eq. 2.1.

In the following, we introduce the FDET framework in which the variational embedded wave-
function ΨA in a interacting Hamiltonian [27] is considered.

2.2.1 Embedded interacting wavefunctions

Starting from the Hohenberg-Kohn energy of two subsystems, the total external potential vAB

is partitioned into two components:vA corresponding to the embedded system A, and vB which is
associated to the environment B. If density of ρB(r) is frozen, the optimisation of the total density
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is equivalent to the optimisation of the density of the embedded system A. The Hohenberg-Kohn
energy in such case can be written [27],

EHK [ρA + ρB] = min
ΨA→ρA

⟨ΨA|T̂ + V̂ee|ΨA⟩ + VA[ρA]

+ Ts[ρB] + J [ρB] + VB[ρB] + Exc[ρB]︸ ︷︷ ︸
EHK [ρB ]

+ +VB[ρA] + VA[ρB] + JAB[ρA, ρB] + Enad
xcT [ρA, ρB]

+ FHK [ρA] − min
ΨA→ρA

⟨ΨA|T̂ + V̂ee|ΨA⟩ (2.12)

where Enad
xcT [ρA, ρB] is the non-additive exchange-correlation and kinetic functional,

ρA(r) = ⟨ΨA|ρ̂|ΨA⟩

VB[ρA] =

∫
vB(r)ρA(r)dr

VA[ρB] =

∫
vA(r)ρB(r)dr

JAB[ρA, ρB] =

∫ ∫
ρA(r)ρB(r′)drdr′

The nuclear-nuclear repulsion energy has been neglected.
Let us dwell on Eq. 2.12, EHK [ρA + ρB] is rewritten in such a way that,

• min
ΨA→ρA

⟨ΨA|T̂ + V̂ee|ΨA⟩ is added and subtracted. This allows us to define a new functional, in

analogy to F [ρ] in Levy’s constrained search, in which the trial wavefunctions are instead the
interacting wavefunctions.

• The resulting new FDET energy functional EFDET
vAB

[ΨA, ρB] can be derived which relates to the
exact Hohenberg-Kohn energy.

The FDET total energy functional EFDET
vAB

[ΨA, ρB] depends on two independent variables: i) the
embedded NA-body wavefunction ΨA, and ii) the electron density ρB of the environment B. Because
these two variables are independent, it gives FDET a large flexibility from choosing a suitable
quantum mechanical method to solve i) and generate ii). Especially for the charge density ρB can
be generated from any theoretical models that provides the electron density, even with a macroscopic
experimental one [30].

Apart from the constraint on the total number of electrons, the optimisation of the electron
density in FDET depends on an additional constrain ∀rρ(r) ⩾ ρB(r) imposed on the total electron
density,

min
ΨA→NA

EFDET
vAB

[ΨA, ρB] = EFDET
vAB

[Ψo
A, ρB] = EHK

vAB
[ρoA + ρB]

= min
∀rρ(r)≥ρB(r)

ρ(r)→NAB

EHK
vAB

[ρ] (2.13)

However, the exact ground state density is unknown before the additional constrain is imposed. As
a result, the optimal energy obtained from FDET can lie above the exact ground state energy of the
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total system,

EFDET
vAB

[Ψo
A, ρB] ⩾ EHK

vAB
[ρovAB

] (2.14)

The total FDET energy functional reads [27],

EFDET
vAB

[ΨA, ρB] = ⟨ΨA|ĤA + v̂FDET
emb [ρA, ρB; vB]|ΨA⟩ + Enad

xcT [ρA, ρB] + ∆F [ρA]

−
∫ (

vnadxcT [ρA, ρB](r)
)
ρA(r)dr + EHK

vB
[ρB] + VA[ρB] (2.15)

where,

• ĤA is the Hamiltonian for the isolated subsystem A with an external potential vA(r). ΨA is
the embedded interacting wavefunction that has a multi-determinant form.

• Enad
xcT [ρA, ρB] is the non-additive exchange-correlation and kinetic functional depends on pairs

of electron densities ρA(r) and ρB(r),

Enad
xc [ρA, ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] (2.16)

Enad
T [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB] (2.17)

Enad
xcT [ρA, ρB] = Enad

xc [ρA, ρB] + Enad
T [ρA, ρB] (2.18)

• ∆F [ρA] in Eq. 2.15 is a term arising from the third line of Eq. 2.12, which results from the
extension of the admissible wavefunctions in the constrain search, and is defined as:

∆F [ρA] = min
ΨA→ρA

⟨ΨA|T̂ + V̂ee|ΨA⟩

− min
ΨWF

A →ρA

⟨ΨWF
A |T̂ + V̂ee|ΨWF

A ⟩ (2.19)

In Eq. 2.19, ΨA represents the trial wavefunction which admits all v-representable densities.
On the other hand, ΨWF

A , depending on the specific wavefunction-based method being used
and can range from a single determinant to the full configuration interaction form. ∆F [ρA] has
shown contributing negligibly in the total energy [31] and is usually neglected or approximated
by the correlation energy [29,32] in the practical applications of FDET formalism.

• The subtraction of
∫
vnadxcT [ρA, ρB](r)ρA(r)dr from the expectation value is due to the inhomo-

geneity property of the FDET embedding operator v̂FDET
emb [ρA, ρB; vB] [33], where the func-

tional derivative of Enad
xcT [ρA, ρB] with respect to ρA is not linear in ρA, in other words,

∫
ρA(r)

δEnad
xcT [ρA,ρB ]

δρA(r) dr ̸= Enad
xcT [ρA, ρB].

• EHK
vB

is the Hohenberg-Kohn energy of subsystem B. In practice, it can be approximated by
any desired quantum methods. It is worthwhile noting that if the energy difference between
two states in EFDET

vAB
[ΨA, ρB] is concerned, and the same ρB used in both states, then EHK

vB
cancels out.

The lowest energy stationary embedded wavefunction is determined by solving the Euler-Lagrange
equation:

δEFDET
vAB

[ΨA, ρB]

δΨA
− λΨA = 0 (2.20)

Here, λ is the Lagrange multiplier, imposing the constraint of normalized embedded wavefunctions.
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2.2.2 FDET embedding potential

The multiplicative embedding operator can be seen as the embedding potential [27],

v̂FDET
emb = vFDET

emb [ρA, ρB; vB](r)

= vB(r) +

∫
ρB(r′)
|r′ − r|dr

′ +
δEnad

xcT [ρ, ρB]

δρ(r)

∣∣∣∣
ρ(r)=ρA(r)

(2.21)

The first two terms represent the electrostatic part from the environment, and the last term, which
is a nonelectrostatic part depending on two densities. Below, we look at the embedding potential
from different perspectives.

2.2.3 Nonadditive kinetic functional

As we have pointed out previously, the kinetic energy is at the same order of the total energy.
The approximation in the kinetic energy functional is thus important and can lead to large errors
in the total energy due to its magnitude.

We begin by introducing two exact kinetic functionals for two limit cases. The first one is the
Thomas-Fermi (TF) kinetic functional [34,35] for the homogeneous electron gas which is given as:

TTF
s = CF

∫
ρ5/3(r)d3r (2.22)

CF = 3
10(3π2)2/3 is the Thomas-Fermi constant. It is referred as the local density approximation

(LDA) when TF functional is applied in the inhomogeneous case.
The second exact kinetic functional, applied in the spin-compensated two-electron systems, was

introduced by von Weizsäcker [36] as:

TVW
s =

1

8

∫ |∇ρ(r)|2
ρ(r)

d3r (2.23)

These two exact kinetic functionals are significant for later developments, as they serve as a basis
for the nonadditive kinetic potential.

The approximation for nonadditive kinetic potential entering in the FDET embedding potential
represents a challenge in both FDET and subsystem DFT theory. Moreover, it is important to note
that the accuracy of the kinetic functional is not correlated with the nonadditive kinetic functional.
Some example cases have been demonstrated in Appendix B.

There are in general two strategies to evaluate vnadt [ρA, ρB].

The top-down approach. The top-down approach can be evaluated directly from the kinetic
energy functional in, e.g. the orbital-free DFT, and taking the functional derivative of the
nonadditive part with respect to ρA as expressed in Eq. 2.21. The top-down approach of
evaluating vnadt [ρA, ρB] is decomposable because its approximation denoted as ṽnadt [ρA, ρB]
can be simply expressed as:

ṽnadt [ρA, ρB] =
δTs[ρA + ρB]

δρA
− δTs[ρA]

δρA
(2.24)
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The bottom-up approach. The alternative approach does not aim at approximating
Tnad
s [ρA, ρB] but directly constructing vnadt [ρA, ρB] based on its exact properties, such as the

nondecomposable approximation using first and second derivative of the density (NDSD) in
which the embedding potential is improved near the nuclei of the environment [37]. It is non-
decomposable because δTs[ρA+ρB ]

δρA
and δTs[ρA]

δρA
cannot be reconstructed from vnadt [ρA, ρB]. In

NDSD, vnadt [ρA, ρB] is approximated in the following form :

ṽnadt [ρA, ρB] = ṽdecomposable
t + f [ρA, ρB]vlimit

t [ρB] (2.25)

where ṽdecomposable
t can be approximated from any known kinetic functional. f [ρA, ρB] is the

switching function which is switched on when in the vicinity of the nuclei of the environment.
vlimit
t [ρB] is the limit potential. This potential built from a limit case where ρA → 0 and∫
ρBdr = 2, is derived from the von Weizsäcker functional introduced in Eq. 2.23.

In Appendix B, verification of the ṽnadt [ρA, ρB] based on the bottom-up approach introduced in Ref
38 was made. The use of different decomposable kinetic energy functionals have been investigated,
based on the new nondecomposable complete space (NDCS) functional [38] developed in our group.
This investigation aims to assess the performance of the NDCS functional in the long-range.

2.2.4 ρA dependency of the FDET embedding potential

Equation Eq. 2.21 reveals a fundamental characteristic of FDET: its embedding potential is
inherently reliant on the electron density ρA of the embedded system A. This sensitivity to the
specific characters of system A can limit the transferability of FDET, distinguishing it notably from,
e.g. pseudopotential theories [39], which can influence the range of systems for which accurate results
can be achieved.

The undesired feature of ρA dependence of the FDET embedding potential can be removed
by the linearisation of the bi-functional Enad

xcT [ρA, ρB] [40]. When the target density does not differ
significantly from a reference density, the Enad

xcT [ρA, ρB] can be expanded around a chosen reference

density ρrefA , approximately as,

Ẽ
nad(lin)
xct [ρA, ρB] ≈ Ẽnad

xct [ρrefA , ρB] +

∫ (
ρA(r) − ρrefA (r)

)
ṽnadxct [ρrefA , ρB](r)dr. (2.26)

The functional derivative of such a linearised functional,

ṽ
nad(lin)
xct [ρA, ρB] =

δẼ
nad(lin)
xct [ρA, ρB]

δρA

∣∣∣
ρA=ρrefA

= ṽnadxct [ρrefA , ρB] (2.27)

As is clear from Eq. 2.27 that taking the functional derivative to Ẽnad
xct [ρA, ρB] with respect to ρA

has become ṽnadxct [ρrefA , ρB] which no longer depends on ρA.
The advantage of the linearisation of Enad

xcT [ρA, ρB] is its computational efficiency. The calculation
for the desired number of excited states can be made in one shot, without optimizing each excited
state, and this brings another benefit that the orthogonality between excited states is thus preserved.
This approximation has shown contributing negligibly to the excitation energy errors (less than 10−3

eV) [41] from sets of various chromophores in non-covalently bound environments.
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2.2.5 ρB dependency - the polarisation effect

The mutual polarisation effect between the embedded system and the environment can be in-
cluded by using polarised densities in density embedding methods.

For the ground state calculations, the polarisation effect can be explicitly considered by opti-
mising densities self-consistently through the Freeze and Thaw technique [42,43]. In this technique,
the embedded system A is first optimized with the frozen density of environment ρB, and then ρB
is optimized with the embedded subsystem A, vice versa, until the change of the total energy of
embedded subsystem A reaches a certain threshold.

In FDET, however, the polarisation of the separated subsystems is not well defined due to two
reasons: i) different choice of ρB can yield the same total density (Eq. 2.13) and ii) non-linear
dependence of the FDET embedding potential on ρB. Specifically, it is practically not possible to
determine whether the error arises from violating the non-negativity condition (∀r ρ(r) ⩾ ρB(r)) or
from the approximation used for the nonadditive functional.

Basis set expansions: In practice, an implicit polarisation [44] is taken into account if a
nonlocalised set of basis set functions (supermolecular expansion) is used. For instance, if the
set of basis functions {χµ} used for ρA(r) is centred on both atoms defining vA(r) and vB(r)
and is referred here as supermolecular expansion (SE).

ρSEA (r) =
∑

µv

PA
µvχ

AB
µ (r)χAB

v (r) (2.28)

ρSEB (r) =
∑

µv

PB
µvχ

AB
µ (r)χAB

v (r) (2.29)

Pµv is the density matrix. As a comparison, the monomer expansion (ME) is given as:

ρME
A (r) =

∑

µv

PA
µvχ

A
µ (r)χA

v (r) (2.30)

ρME
B (r) =

∑

µv

PB
µvχ

B
µ (r)χB

v (r) (2.31)

The monomer expansion is obviously an approximation and can lead to significant computa-
tional savings in FDET.

2.2.6 ρB dependency - excitation energies

According to Perdew-Levy theorem [45] on extrema of EHK
vAB

[ρ] as pointed out by Khait and

Hoffman [46], the other than the lowest energy solutions of EHK
vAB

[ρ] can be interpreted as excited
states. The excitation energy is the difference between two total energies,

ϵj ≡ Ej − Eo = EHK
vAB

[ρjA + ρB] − EHK
vAB

[ρoA + ρB] = EFDET
vAB

[Ψj
A, ρB] − EFDET

vAB
[Ψo

A, ρB] (2.32)

where Ψj
A and Ψo

A are the stationary solutions of FDET eigenvalue problem. The first equality in
the above equation originates in the Perdew-Levy theorem [45] on extrema of EHK

vAB
[ρ]. It is exact if

the density ρB does not violate the non-negativity conditions (∀r⃗ρB ⩽ ρjvAB and ∀r⃗ρB ⩽ ρovAB
) [27,47].
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The stationary embedded wavefunctions are obtained by solving the FDET eigenvalue problem:
(
ĤA + v̂FDET

emb [ρjA, ρB; vB]
)

Ψj
A = λΨj

A (2.33)

↓
ρjA(r) = ⟨Ψj

A|ρ̂|Ψ
j
A⟩

↓

vFDET
emb [ρjA, ρB; vB](r) = vB(r) +

∫
ρB(r′)
|r− r′|dr

′ + vnadxct [ρjA, ρB](r). (2.34)

We address here several issues concerning solving FDET eigenvalue problem in practice.

• The FDET energy functional in Eq. 2.15, ΨA has a multi-determinant form. If the embedded
wavefunction is approximated by the single determinant, other than the full CI form, the cor-
responding FDET energy functional comprises the correlation functional Ec[ρA], consequently,
its derivative - correlation potential in the FDET embedding potential given in Eq. 2.34.
However, this is impractical due to lack of good approximation of Ec[ρA].

The use of the correlation potential can be eliminated owing to the recently developed exact
equality, which relates the energy obtained variationally with the embedded wavefunction of the
single-determinant form, and the correlation energy obtained by means of some non-variational
method, to the Hohenberg-Kohn functional.

This relation reads (Eq. 38 in Ref. 29):

EHK
vAB

[ρA + ρB] = EFDET
vAB

[Φ
′
A, ρB] + Ec

v′ (2.35)

−
∫
ρ
′
A(r)

(∫
∆ρcv′(r

′)fnadxct [ρ
′
A, ρB](r, r′)dr′

)
dr +O(∆2ρ),

The superscript ′ emphasizes neglecting of the correlation functional in the total potential.

v′ = vA(r) + vB(r) +

∫
ρB(r′)
|r′ − r|dr

′ +
δEnad

xcT [ρ, ρB]

δρ(r)

∣∣∣∣
ρ(r)=ρ′A(r)

(2.36)

Φ
′
A is the stationary single determinant obtained with the potential v′, Ec

v′ is the correlation

energy in the NA-electron system defined by the potential v′, fnadxct [ρ
′
A, ρB](r, r′) =

δ2Enad
xct [ρA,ρB ]

δρA(r)δρA(r′)
and is zero when the linearised FDET is applied. ∆ρcv′ is the correlation-induced change of the
electron density, and O(∆2ρ) collects all contributions to energy due to the effect of correlation
on density that are of higher order.

• How to deal with the self-consistency of the embedding potential and the embedded wave-
functions ΨA. For each excited state Ψj

A, the self consistent calculation must be performed
independently. If the linearised FDET is used, the state dependency on ρA is eliminated.
Moreover, if the same ρB is used for the ground and excited state, one plugs in ρB in the
FDET energy functional and finds that the excitation energy is simply the difference between
two eigenvalues,

ϵj ≡ Ej − Eo ≡ EFDET (lin)
vAB

[Ψj
A, ρB] − EFDET (lin)

vAB
[Ψo

A, ρB]

= λj [ρ
ref
A , ρB] − λo[ρ

ref
A , ρB], (2.37)
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• If different ρB is used for two considered states. ρB is polarised by the corresponding excited
state of the embedded system A, for instance, and the excitation energy in this case is,

ϵj ≡ Ej − Eo = EHK
vAB

[ρjA + ρjB] − EHK
vAB

[ρoA + ρoB]

= EFDET
vAB

[Ψj
A, ρ

j
B] − EFDET

vAB
[Ψo

A, ρ
o
B]. (2.38)

The excitation energy is not the difference of two corresponding eigenvalues. It cannot be
extracted straightforwardly from an output of the excited state calculation. The result obtained
from an FDET excited state calculation with an imported polarised ρjB density corresponds to

EFDET
vAB

[Ψj
A, ρ

j
B]−EFDET

vAB
[Ψo

A, ρ
j
B], and is not equal to Eq. 2.38. In Chapter 5, we will address

this issue in full details and give the derivation of the final expression for the excitation energy
with a state-specific ρB for the considered excited state.

2.3 The excitation-induced polarisation effect described by other
than FDET methods.

When the chromophore is excited, the surrounding environment induces electronic polarisation.
In the Section 2.2.5 and 2.2.6 we have introduce how FDET deals with the excitation-induced
polarisation effect. In this section we will look at other multiscale methods in dealing with this
effect with some specific examples.

The polarisation response of the environment to the excitation of the chromophore can be cru-
cial in certain applications [48–52]. An illustrative example is the case of the green fluorescent pro-
tein(GFP). GFP is characterized by a significant environment-induced red-shift. Filippi et al. [53]

initially reported a blue-shifted solvatochromic shift in the anionic form and an insufficient red shift
in the neutral form of GFP using various quantum mechanical methods in combination with non-
polarisable force fields. The authors suspected that this discrepancy was likely due to the use of a
nonpolarisable force field. It was later established, by Beerepoot et al., that applying a polarisable
force field produced the correct red shift for both forms of the protein. [48]

In relation to the impact of a polarisable force field on excitation energies, Slipchenko et al. [54]

conducted studies by combining Equation-of-Motion Coupled Cluster with Single and Double (EOM-
CCSD) methods and the ab inito based polarisable force filed effective fragment potential ap-
proach [54]. They showed that a small discrepancy in solvatochromic shifts using this combined
method, approximately in the range of 0.01-0.05 eV, compared to full supermolecular EOM-CCSD
calculations. In a formaldehyde-water complex, they have shown that the electrostatic component
primarily contributes the shift, with the induction effect contributing to approximately 20% of the
total shift. Importantly, the polarisation between the chromophore and the environment was not
treated self-consistently, meaning that induced dipoles were computed based on the ground-state
wavefunction. The excitation energy is stabilized with a correction term based on a self-consistent
treatment. However, the magnitude of the correction term is three times smaller than the induction
energy itself [55].

In another study by Cappelli et al. [56], a three-layer model was introduced, combining all to-
gether quantum mechanical methods, the fluctuating charge method, and the polarisable continuum
embedding. This model aimed to account for both the solvent polarisation and bulk solvation effects.
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They have demonstrated using this model the importance of the mutual polarisation between the
solute and solvent in a formaldehyde-water cluster. The difference in excitation energy was equal to
or smaller than 0.1 eV, regardless of whether the third layer of PCM calculations were included or
not. However, the error can exceed 0.1 eV when the mutual polarisation of the solute and solvent
was not considered.

Concerning density embedding methods, two common approaches were applied to include the
polarisation response of the environment: 1) an energy correction term in addition to the excitation
energy obtained by only the isolated environment. [51,57]; 2) the use of the state-specific embedding
potential [58], similar to FDET where the state-specific ρB is used for this purpose.

Additionally, there exist other strategies, such as the inclusion of environment orbitals into the
high-level computational method of the chromophore, [57,59] or the approach which involves correc-
tions based on the many-body expansion (MBE), where the excitation of the embedded chromophore
alone is considered as the first-order expansion in MBE. [52]

The nonadditive kinetic potential is crucial in research related to subsystem DFT [60], because
the nonadditive kinetic energy covers the short-range quantum effect and neglecting it can lead to
the charge leak problem [61]. One alternative approach without relying on the nonadditive kinetic
potentials is the projection-based embedding approach, [51,57,62] in which the projection operator is
applied forcing the orthogonality of molecular orbitals between subsystems. With the projection-
based embedding, Wen et al. [51] have shown in the case of an acrolein in two water molecules, that
the ground state polarisation already accounts for about 90% of the total polarisation effect. In order
to include some averaged behaviour from the polarisation response of the environment, they further
introduced a state-averaged approach, in which the environment is polarised by the averaged density
of the ground state and the first excited state of the chromophore, and found this state-averaged
approach does not always improve the excitation energy. This “state-averaged” approach is also
explored in FDET on excitation energies in Chapter 5.



26 CHAPTER 2. MULTISCALE METHODS



Chapter 3

Modelling the excited states and
properties

Performing an accurate calculation of excited states is more challenging than a ground state
calculation. There are a number of reasons for it:

• The calculation of excited states involves the electronic transition from the ground state to
the excited state. The transition coefficients for multiple possible excited states are calculated
and this increases the overall complexity.

• Time-dependent considerations: the time-dependent Schrödinger equation is employed to treat
the dynamic behaviour of electrons.

• Correlation effects: the uncorrelated methods, such as the single excitation configuration inter-
action (CIS) and random phase approximation, often gives qualitative results depending the
excited state character, while the highly correlated methods are computational demanding,
especially when multiple excited states are required for calculations.

• The excitation character: determining the excitation character of the selected excited state
often concerns the visualization of pair of transition of orbitals from all output excited states.

Particular when multiscale methods are used, there are two more complexities:

• The excitation-induced polarisation effect often is needed to be taken into account. The
polarisation and diffuse basis sets are required in this case. As the number of basis set functions
grows larger, the computational time increases significantly.

• How to deal with the orthogonality between excited states.

The correlated methods investigating excited states include, but not limited to, the most popular
density-based time-dependent DFT (TDDFT) which describes the linear response of the ground
state density to the time-dependent electric filed, TDDFT depends on the exchange-correlation
functional and the excitation energy and transition moment can be calculated without the access to
the excited state wavefunction; the wavefunction-based methods, such as EOM-CC; the polarisation
propagator based methods, such as the algebraic diagrammatic construction method.

In this chapter, we aim not to review all the excited state methods but only limited to some
representative ones, which are the equation-of-motion coupled cluster method and the algebraic
diagrammatic construction (ADC) approach. Those two methods are closely related to this work.

27
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3.1 Algebraic diagrammatic construction

The algebraic diagrammatic construction [63] was first derived within the framework of the many-
body Green’s function due to its well-established perturbation expansions using Feynman diagrams.
The Feynman diagram is a graphical representation of the multi-dimensional integrals of the high
order correction terms. In ADC, the diagrammatic perturbation expansion is reformulated using an
algebraic scheme. The ADC scheme offers a natural approach to construct n-th order ADC infinite
partial summations for the modified interaction matrix exact up to n-th order of perturbation theory.

3.1.1 The polarisation propagator derived from Green’s functions

The concept of propagators was first introduced in the statistic physics to describe the response
of a system to an external perturbation. Hence, it is also closely related to the response theory.
One can also derive the equivalent expression for the polarisation propagator from the response
theory. The advantage of working with propagators is its physical meaning associated with poles
and residues of the propagator. The poles of one-particle electron propagator are the electron
affinities and ionization potential, for instance.

In many cases of a quantum system, the question of how the expectation value of an arbitrary
operator Ô evolves with time in response to an external perturbation is more appealing and insightful
than focusing on wavefunctions. Following this question, it is convenient to introduce Green’s
functions [b] since the expectation value of the one-particle operator can be directly expressed in
terms of the Green’s function [65]. The physical interpretation of one-particle Green’s function is the
probability amplitude of finding a particle at the point r′1 at time t′1 when a particle at (r′1, t1) is
added to a interacting many-body system.

We follow the same symbols as the ones in the derivation presented in Ref. 63 The one and
two-particle Green’s function are defined as [66]

G11′ = −i⟨Ψ0|T̂ a1(t1)a†1′(t1′)|Ψ0⟩ (3.1)

G12,1′2′ = (−i)2⟨Ψ0|T̂ a1(t1)a2(t2)a†1′(t2′)a
†
2′(t2′)|Ψ0⟩ (3.2)

where a†i , ai are the creation and annihilation operator, receptively. T̂ is the time-ordering operator,
which is a step function of time difference τ defined as,

Θ(τ) =

{
0, if τ < 0.

e−ητ , if τ ⩾ 0.
(3.3)

Here, a positive infinitesimal η guarantees the convergence of the Fourier transform when t→ ∞.

The particle-hole (p−h) response function as a particle-hole pair R12,1′2′ can be expressed in the
form of one and two-particle Green’s function [67]:

R12,1′2′ = G12,1′2′ −G11′G22′ (3.4)

[b]. The Green’s function can be determined from an auxiliary noninteracting system with an effective potential,
similar to the exchange-correlation potential in Kohn-Sham DFT, namely the self-energy which is nonlocal and energy
dependent. The interacting and noninteracting Green’s function is connected by the Dyson equation [64].
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The particle-hole propagator or the polarisation propagator is defined as [63,65]

Πpq,p′q′(t, t
′) = lim

tp,tq→t
tp′ ,tq′→t′

iRpq′,qp′(tp, tq′ , tq, tp′) (3.5)

The polarisation propagator depends only on the time difference (t− t′) if the Hamiltonian is time-
independent. Its Fourier transform in the energy domain yields the spectral representation of the
polarisation propagator as follows,

Πpq,p′q′(ω) =
∑

k ̸=0

⟨Ψ0|a†paq|Ψk⟩⟨Ψk|a†p′aq′ |Ψ0⟩
ω + E0 − Ek + iη

+
∑

k ̸=0

⟨Ψ0|a†p′aq′ |Ψk⟩⟨Ψk|a†paq|Ψ0⟩
−ω + E0 − Ek + iη

= Π+(ω) + Π−(ω) (3.6)

Note that the summation over stats in Eq. 3.6 excludes the ground state due to the subtraction of
the multiplication of one-particle Green’s function G11′G22′ in Eq. 3.4.

3.1.2 Intermediate state representation

The ADC scheme can be viewed as a non-diagonal representation of the polarization propagator
compared to the spectral representation provided above. A compact matrix form of the polarisation
propagator in the ADC formalism is [63]:

Π+(ω) = f †(w1−M)−1f (3.7)

f is the effective transition amplitude, and M is the effective Hamiltonian which is non-diagonal. f
and M is expanded into Møller-Plesset perturbation series. The n-th order expression for f and M
is identified from the n-th order diagrammatic perturbation expansion of Π+(ω).

The excitation energy can be obtained by solving the eigenvalue problem from the n-th order
matrix of M,

MY = YΩ (3.8)

Ω is the matrix contains the excitation energy. Y contains the eigenvectors of M. The transition
dipole moment of exact excited states,

Tn(µ̂) = ⟨Ψ0|µ̂|Ψn⟩ = f †Yn (3.9)

So far, the expressions for the excitation energy and transition dipoles of the excited states are
known. In order to access the excited state wavefunctions, the intermediate states representation is
used to derive the exact expression for the excited state wavefunctions. The intermediate states are
denoted as ΨI and ΨJ . The intermediate states [68] are generated by the pair of the creation and
annihilation operator a†rab, a

†
ra
†
sabac acting on the Hartree-Fock orbitals, corresponding to p − h,

2p − 2h excitation, respectively. The orthogonality between the intermediate states is assured by
the Gram-Schmidt orthogonalization procedure.

The exact excited state is written in the basis of the intermediate states [68],

|Ψn⟩ =
∑

I

YnI |ΨI⟩ (3.10)



30 CHAPTER 3. MODELLING THE EXCITED STATES AND PROPERTIES

Therefore not only the transition dipole of the excite states can be expressed, but also the transition
dipole moment between |Ψm⟩ and |Ψn⟩ can be given below:

Tmn(µ̂) = ⟨Ψm|µ̂|Ψn⟩ = Y†mBYn (3.11)

and the transition dipole moment in the intermediate representation,

BIJ(µ̂) = ⟨ΨI |µ̂|ΨJ⟩ (3.12)

There are several advantages to work with ADC(n) scheme compared with other excite state meth-
ods: 1) the Block-Lanczos diagonalization (Davidson) procedure [69,70] accelerates the convergence
of the matrix M with a small number of iterations [71]; 2) a more compact and explicit configuration
space is used and this is important for states with significant doubly excited configurations; 3) it is
size-consistent.

3.2 Coupled cluster methods

3.2.1 The exponential ansatz

The coupled cluster theory is often compared with another correlated method which is the
configuration interaction (CI) approach [7] in terms of the size-consistency [c] problem. Not satisfying
the Size-consistency condition can lead to an overestimation of the correlation energy. The coupled
cluster theory is size-consistent while the truncated CI, is not. The important difference between
these two methods lie in the way how the exact many-electron wavefunction |Ψ0⟩ is expanded.

The coupled cluster approach employs the “exponential ansatz” [72] through the use of the expo-
nential cluster operator T̂ which is expressed as:

|ΨCC
0 ⟩ ≡ eT̂ |ΦHF

0 ⟩ = eT̂1+T̂2 |ΦHF
0 ⟩ (3.13)

T̂1 and T̂2 are the one and two-orbital cluster operators defined as:

T̂1 =
∑

bs

tsba
†
sab (3.14)

T̂2 =
1

4

∑

bcrs

trsbca
†
ra
†
sabac (3.15)

where tsb, t
rs
bc are the cluster amplitudes. a†i , ai are the creation and annihilation operator, receptively.

Truncation of the cluster operator T̂ → T̂1 + T̂2 leads to the Couple Cluster Singles and Doubles
(CCSD) excitation approximation. The cluster operators T̂ are also called the excitation operators
since they involve excitation of orbitals in the Slater determinant.

[c]. Size-consistency: For two infinitely separated systems A and B, the sum of the energy computed for each
system is the same as the the energy computed from the supermolecular way, that is EAB = EA +EB for the infinite
distance.
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It is possible to factorize the CC wavefunction in the form of eT̂AeT̂BΦHF
0 , therefore the energy

can be separated in the infinite distance. This is not possible, however, in the CI wavefunction:

|ΨCI
0 ⟩ = (1 + ĈA + ĈB)|ΦHF

0 ⟩, (3.16)

This is due to the action of a linear excitation operator on the Slater determinant, where Ĉ is the
excitation operator defined in analogy to T̂ .

Eq. 3.13 can be expanded:

eT̂ |ΦHF
0 ⟩ = (1 + T̂ +

1

2!
T̂ 2 +

1

3!
T̂ 3 + · · · )|ΦHF

0 ⟩. (3.17)

The cluster operators is non-linear. As a result, if only single and double excitations are considered,
one substitutes T̂1 + T̂2 into Eq. 3.17 and finds the term T̂2T̂2 containing a quadruple excitation.
These terms also contribute to a rapid convergence compared to the CI approach, as CC implicitly
includes higher excitations for the same level of truncation of the excitation operator.

The ground state CC energy can be obtained by substituting the ΨCC
0 into the Schrödinger

equation leading to:

Ĥ|ΨCC
0 ⟩ = ECC |ΨCC

0 ⟩. (3.18)

It is convenient to introduce the similarity transformed Hamiltonian H̄ = e−T̂ ĤeT̂ such that [d]

H̄|ΦHF
0 ⟩ = ECC |ΦHF

0 ⟩. (3.19)

The advantage of transforming Hamiltonian is that the one and two-electron integrals related to the
Salter determinant can be easily derived. Hence, projection on the left of Eq. 3.19 of the reference
determinant ⟨ΨHF

0 | leads to the CC energy,

ECC = ⟨ΦHF
0 |H̄|ΦHF

0 ⟩. (3.20)

However, it’s important to note that the transformed Hamiltonian H̄ is no longer Hermitian. If
the cluster operator T̂ is not truncated, H̄ has the same eigenvalue as the original Hamiltonian.
The matrix elements of H̄ are non-symmetric. The off-diagonal matrix elements ⟨Φr

a|H̄|Φ0⟩ and
⟨Φrs

ab|H̄|Φ0⟩ are zero, while their corresponding complex conjugates are not zero. As a result, the
differentiation between the ket and bra eigenvalue problems is necessary.

3.2.2 Equation-of-motion coupled cluster theory

The application of CC theory on the calculations of excited states is commonly achieved by the
linear response theory [73] or the equation of motion formulation [74,75]. In linear response approach,
the poles are recognized as the excitation energies and the residues are the transition amplitudes.
More details on this approach will be discussed in the response function part. Here, we outline the
basic idea of the equation-of-motion approach [75]. A comprehensive review can be found in Ref. 76.

[d]. Multiplying on the left of the Eq. 3.18 the inverse of the exponential operator eT̂ and substituting the CC
wavefunction leads to Eq. 3.19.
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The formulation of the equation-of-motion method is derived from two general Schrödinger equa-
tions,

Ĥ|Ψk⟩ = Ek|Ψk⟩ (3.21)

Ĥ|Ψ0⟩ = E0|Ψ0⟩ (3.22)

Ψk denotes the excited state and can be generated from an excitation operator Ω̂. Subtracting the
two Schrödinger equations and left multiplying Ω̂ arrives to the equation of motion:

[Ĥ, Ω̂k]|Ψ0⟩ = ωkΩ̂k|Ψ0⟩ (3.23)

where ωk = Ek − E0.
In the case of CC, the left and right eigenvector can be written by the operator L̂ and R̂ in the

same form as the cluster operator T̂ acting on Φ0, respectively. Same eigenvalues can be obtained
from either the left-hand or right-hand side eigenvalue problem, that is,

⟨Φ0|L̂kH̄ = ⟨Φ0|L̂kEk (3.24)

H̄R̂k|Φ0⟩ = EkR̂k|Φ0⟩ (3.25)

The orthogonality between the left and right eigenvectors is imposed.

⟨Φ0|L̂mR̂n|Φ0⟩ = δmn (3.26)

A more general CC energy expression than Eq. 3.20 is given by:

Ek = ⟨Φ0|L̂mH̄R̂n|Φ0⟩ (3.27)

Substituting |ΨCC
0 ⟩ and the excitation operator R̂ into Eq. 3.23 gives EOM-CC,

[H̄, R̂k] = ωkR̂k|Φ0⟩ (3.28)

Truncation of R̂ to the singles and doubles leads to EOM-CCSD. The density matrix, the oscillator
strength can also be readily obtained using the left and right eigenvectors.

3.3 Linear response properties

In the presence of a static electric field, molecular properties such as electric dipole moments µ,
and polarizabilities ααβ, can be viewed as the first-order and second-order changes in energy with
respect to the electric field. However, the energy is not well-defined with a time-oscillating electric
field due to the rapid exchange of energy between the field and molecules. One way to address this
issue is to define the time-dependent quasi energy as the expectation value of the difference between
the Hamiltonian and the energy operator (iℏ ∂

∂t).
In this section, we will review another alternative, which involves no differentiation on the field,

based on time-dependent perturbation theory, to obtain the molecular properties. The response
theory is essentially a reformulation of the time-dependent Schrödinger equation but treated in
a perturbative way. A question the reader might ask is, “why not calculate directly the time
propagation of the time-dependent Schrödinger equation itself?” The reasons are in the following:
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1. The time evolution of the wavefunction (Ψ(t)) is not our direct interest. It is the time evolution
of the expectation value of the operator namely the observable we look more on it.

2. Nonlinear effects, such as nonlinear optics, are challenging to separate from the direct approach,
where it is comparatively easier within the response theory involving high-order expansions.

3. Error can propagates and difficult to control in the direct approach.

4. Calculations regard on vibrational contributions are not practically feasible in the non-perturbational
approach.

3.3.1 Time evolution of the observable

The time-dependent Schrödinger equation is,

iℏ
∂

∂t
Ψ(t) = ĤΨ(t) (3.29)

In the Schrödinger picture, the wavefunction carries the time dependence, and the time-dependent
wavefunction Ψ(t) reads,

Ψ(t) = Ψne
−iEnt/ℏ (3.30)

where Ψn, En are the true (exact) eigenfunctions and eigenvalues of the time-independent Hamilto-
nian Ĥ0. Time-dependent wavefunctions Ψ(t) can be written as the product of two time-dependent
functions,

Ψ(t) = e−iϕ(t)Ψ̄(t) (3.31)

where ϕ(t) represents a phase [e] which is a real function and Ψ̄(t) is the phase isolated wavefunction,
corresponding to Ent/ℏ and Ψn in the absence of the external field, respectively.

Parametrization of Ψ(t). The parametrization of Ψ(t) in practice is required to solve the
time-dependent Schrödinger equation in Eq. 3.29. A common parametrization scheme is to
expand Ψ(t) as a linear combination of time-independent eigenfunctions as following,

Ψ(t) =
∑

n

cn(t)Ψn (3.32)

where the time-dependent coefficient cn(t) carries the time evolution. The disadvantage of this
parametrization is that the condition on the normalization of the time-dependent wavefunctions
has always to be fulfilled. It is, therefore worthwhile to consider another parametrization
scheme which is achieved not by projections but rotations.

The alternative parametrization for Ψ̄(t) is written as,

|Ψ̄(t)⟩ = e−iP̂ (t)|Ψ0⟩ (3.33)

[e]. The phase does not play a role in determining molecular properties. To see this, one plugging in Eq. 3.31 into
Eq. 3.29 will find the quasi energy is the expectation value on the phase isolated wavefunctions,

Q(t) = ⟨Ψ̄(t)|(Ĥ − iℏ ∂

∂t
)|Ψ̄(t)⟩
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where the operator P̂ (t) is defined,

P̂ (t) =
∑

n>0

[Pn(t)|Ψn⟩⟨Ψ0| + P ∗n(t)|Ψ0⟩⟨Ψn|] (3.34)

Here, the unitary operator e−iP̂ (t) assures that the condition on the normalization of the time-
dependent wavefunctions is automatically satisfied. Note that when dealing with approximate
states, such as single determinant wavefunctions, P̂ takes different forms, resulting in a different
expression for the response functions.

Choice of the equation of motion. Rather than examining the time evolution of the
wavefunctions by the equation of motion derived from the Schrödinger equation, we focus on
the time evolution of the expectation value using the Ehrenfest theorem.

The Ehrenfest theorem [77] states that the time evolution of an observable, specifically the
expectation value of a time-independent operator Ω̂, is given by:

∂

∂t
⟨Ω̂⟩ =

〈
∂Ψ(t)

∂t
|Ω̂|Ψ(t)

〉
+

〈
Ψ(t)|Ω̂|∂Ψ(t)

∂t

〉
(3.35)

=
1

iℏ
⟨
[
Ω̂, Ĥ

]
⟩ (3.36)

By replacing ∂
∂tΨ(t) by 1

iℏĤΨ(t) according to Eq. 3.29, we arrive from Eq. 3.35 to Eq.
3.36. Therefore we observe that the Ehrenfest theorem is equivalent to the time-dependent
Schrödinger equation.

Time evolution of the expectation value. The next step is to use the parametrized phase
isolated wavefunctions introduced above to obtain the time-dependent coefficient Pn(t) from
the operator P̂ (t). To make the best use of Eq. 3.36, we first need to determine the forms of
the two operators Ω̂ and Ĥ.

Ĥ is relatively straightforward and can be expressed as the sum of the unperturbed Hamiltonian
Ĥ0 and the interaction V̂ (t) between the radiation field and the molecule. V̂ (t) can be written
in the following form:

V̂ (t) =
∑

ω

V̂ ω
α F

ω
α e
−iωteξt (3.37)

where V̂ ω
α represents the coupling term between the field and molecules. α denotes the Carte-

sian axis, following an oscillating electric field that is turned on at t→ −∞, and ξ is a positive
infinitesimal.

The equation of motion can be rewritten after substituting Ψ(t) with the phase isolated wave-
function from Eq. 3.33,

∂

∂t
⟨Ψ0|e−iP̂ (t)Ω̂e−iP̂ (t)|Ψ0⟩ =

1

iℏ
Ψ0|e−iP̂ (t)

[
Ω̂, Ĥ0 + V̂ (t)

]
e−iP̂ (t)|Ψ0⟩ (3.38)

The key equation of Eq. 3.38 can be solved by a particular choice of the operator Ω̂ and a
perturbation expansion on the coefficient Pn(t). A more detailed derivation can be found in
the Appendix A or in the Ref. 78.
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In the end, the zeroth-order expansion of the phase isolated wavefunction Ψ̄(t) is simply,

Ψ̄(t)(0) = |Ψ0⟩. (3.39)

The first-order correction reads,

Ψ̄(t)(1) = −1

ℏ
∑

n>0

∑

ω

⟨Ψn|V̂ ω
α |Ψ0⟩Fω

α e
−iωteξt

ωn0 − ω − iξ
|Ψn⟩ (3.40)

Now, if we denote Ω̂ as the operator corresponding to the observable of the interest, the
expectation value of Ω̂ can be expressed in expansions of phase isolated wavefunctions as
follows,

⟨Ω̂⟩ = ⟨Ψ̄(t)(0)|Ω̂|Ψ̄(t)(0)⟩
+ ⟨Ψ̄(t)(1)|Ω̂|Ψ̄(t)(0)⟩ + ⟨Ψ̄(t)(0)|Ω̂|Ψ̄(t)(1)⟩
+ ⟨Ψ̄(t)(2)|Ω̂|Ψ̄(t)(0)⟩ + ⟨Ψ̄(t)(1)|Ω̂|Ψ̄(t)(1)⟩ + ⟨Ψ̄(t)(0)|Ω̂|Ψ̄(t)(2)⟩
+ · · · (3.41)

Eq. 3.41 can be reformulated based on the Kubo relation [79] derived in 1957, providing a more
general expression for molecular properties following the response to an external field:

⟨Ω̂⟩ = ⟨Ψ̄(t)(0)|Ω̂|Ψ̄(t)(0)⟩
+

∑

ω1

≪ Ω̂; V̂ ω1
α ≫ Fω1

α e−iω1teξt

+
1

2

∑

ω1,ω2

≪ Ω̂; V̂ ω1
α , V̂ ω2

β ≫ Fω1
α Fω2

β e−i(ω1+ω2)te2ξt

+
1

6

∑

ω1,ω2,ω3

≪ Ω̂; V̂ ω1
α , V̂ ω2

β , V̂ ω3
γ ≫ Fω1

α Fω2
β Fω3

γ e−i(ω1+ω2+ω3)te3ξt

+ · · · (3.42)

where ≪ Ω̂; V̂ ω1
α ≫ represents the linear response function. ≪ Ω̂; V̂ ω1

α , V̂ ω2
β ≫ corresponds

to the quadratic response function, and ≪ Ω̂; V̂ ω1
α , V̂ ω2

β , V̂ ω3
γ ≫ denotes the cubic response

function. In the following, we aim to identify the explicit forms of these functions.

3.3.2 Linear response function for exact states

The first order correction to the expectation value of the operator Ω̂ can be recognised by
substituting the first-order correction of phase isolated wavefunction Ψ̄(t)(1) into Eq. 3.41 and use
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the fact [Fω]∗ = F−ω,

⟨Ω̂⟩(1) = ⟨Ψ̄(t)(1)|Ω̂|Ψ̄(t)(0)⟩ + ⟨Ψ̄(t)(0)|Ω̂|Ψ̄(t)(1)⟩

= −1

ℏ
∑

n>0

∑

ω

⟨Ψn|V̂ ω
α |Ψ0⟩⟨Ψ0|Ω̂|Ψn⟩[Fω

α e
−iωt]∗eξt

ωn0 − ω + iξ

− 1

ℏ
∑

n>0

∑

ω

⟨Ψ0|Ω̂|Ψn⟩⟨Ψn|V̂ ω
α |Ψ0⟩Fω

α e
−iωteξt

ωn0 − ω − iξ

= −1

ℏ
∑

n>0

∑

ω

[
⟨Ψn|V̂ ω

α |Ψ0⟩⟨Ψ0|Ω̂|Ψn⟩
ωn0 + ω + iξ

+
⟨Ψ0|Ω̂|Ψn⟩⟨Ψn|V̂ ω

α |Ψ0⟩
ωn0 − ω − iξ

]
Fω
α e
−iωteξt (3.43)

The linear response function can be readily obtained by a direct comparison of Eq. 3.43 and Eq.
3.42, and reads,

≪ Ω̂; V̂ ω
α ≫= −1

ℏ
∑

n>0

[
⟨Ψn|V̂ ω

α |Ψ0⟩⟨Ψ0|Ω̂|Ψn⟩
ωn0 + ω + iξ

+
⟨Ψ0|Ω̂|Ψn⟩⟨Ψn|V̂ ω

α |Ψ0⟩
ωn0 − ω − iξ

]
(3.44)

It is worth noting that the linear response function is equivalent to the one derived in the quasi-energy
approach, recognized as the second-order derivative with respect to the field.

The polarisability tensor. The physical interpretation of the linear response function de-
pends on the choice of the operator Ω̂ corresponding to the observable, and the coupling
operator V̂ ω

α between the field and molecules. In the electric dipole approximation, V̂ ω
α = −µ̂.

If we choose Ω̂ = µ̂, and neglect ξ (provided the divergence issue is avoided), the polarisability
tensor can be calculated according to Eq. 3.44 as:

ααβ(−ω;ω) = ≪ µ̂α;−µ̂β ≫

=
1

ℏ
∑

n>0

[⟨Ψ0|µ̂α|Ψn⟩⟨Ψn|µ̂β|Ψ0⟩
ωn0 − ω

+
⟨Ψn|µ̂β|Ψ0⟩⟨Ψ0|µ̂α|Ψn⟩

ωn0 + ω

]
(3.45)

Poles and residues. From Eq. 3.45, for the pole ωn0 with order one, the residue is,

lim
ω→ωn0

(ωn0 − ω)ααβ(−ω;ω) = ⟨Ψ0|µ̂α|Ψn⟩⟨Ψn|µ̂β|Ψ0⟩ (3.46)

One immediately realizes the pole of the polarisability tensor corresponds to the excitation
energies, and its residue is the transition dipoles.

3.3.3 One-photon absorption

The first-order transition amplitude from the ground state to the final state |Ψf ⟩ can be obtained
from the first-order coefficient Pn(t)(1) derived in Eq. A.15. It is expressed with a monochromatic
field as:

pf (t)(1) =
1

iℏ

[
⟨Ψf |V̂ ω

α |Ψ0⟩Fω
α e
−iωteξt

ωf0 − ω − iξ
+

⟨Ψ0|V̂ ω
α |Ψf ⟩Fω

α e
iωteξt

ωf0 + ω − iξ

]
(3.47)
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The two singularities at ω = ωf0 correspond to absorption, and ω = −ωf0 for the emission. When
the absorption is considered, in the electric dipole approximation, the probability to find the system
in the final state |Ψf ⟩ is,

Pf←0(t) = |pf (t)(1)|2 =
1

ℏ2
|⟨Ψf |µ̂α|Ψ0⟩|2(Fω

α )2e2ξt

(ωf0 − ω)2 + ξ2
(3.48)

The transition rate is thus,

wf←0 =
dPf←0(t)

dt
=

1

ℏ2
|⟨Ψf |µ̂α|Ψ0⟩|2

2ξ

(ωf0 − ω)2 + ξ2︸ ︷︷ ︸
Cauchy distribution f(ω;ωf0,ξ)

(Fω
α )2e2ξt

=
2π

ℏ2
|⟨Ψf |µ̂α|Ψ0⟩|2f(ω;ωf0, ξ)(F

ω
α )2e2ξt (3.49)

The Cauchy distribution f(ω;ωf0, ξ), in Eq. 3.49 gives a Lorentzian shape. We can simplify the
transition rate by considering the limit ξ → 0, and the Cauchy distribution becomes the Dirac delta
function,

wf←0 =
2π

ℏ2
|⟨Ψf |µ̂α|Ψ0⟩|2δ(ωf0 − ω)(Fω

α )2

=
2π

ℏ
|⟨Ψf |µ̂α|Ψ0⟩|2δ(Ef − E0 − ℏω)(Fω

α )2 (3.50)

Integrating Eq. 3.50 to a continuum of states with the density of states ρ(Ef ) leads to the Fermi
golden rule.

One-photon absorption cross section. In Eq. 3.49, the isotropic transition rate written
in terms of the field intensity I = 1

2ε0cF
2 is,

wf←0 =
dPf←0(t)

dt
=

π

3ε0cℏ2
∑

α=x,y,z

|⟨Ψf |µ̂α|Ψ0⟩|2f(ω;ωf0, ξ)I(ω) (3.51)

where ε0 is the static dielectric constant and c is the speed of light. The factor 1
3 arises from

the rotational average of orientations of molecules. The energy transfer rate from the field to
the molecule is,

ℏωwf←0 = I(ω)σ(ω) (3.52)

Hence, the one-photon absorption cross section σ(ω) can be expressed as,

σ(ω) =
πω

3ε0cℏ
∑

α=x,y,z

|⟨Ψf |µ̂α|Ψ0⟩|2f(ω;ωf0, ξ) (3.53)
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3.4 Nonlinear response properties

3.4.1 Quadratic response function for exact states

In order to identify the quadratic response function, similar to the way obtaining the linear
response function from the second line in Eq. 3.41, we need to write the explicit form of the second-
order property as following,

⟨Ω̂⟩(2) = ⟨Ψ̄(t)(2)|Ω̂|Ψ̄(t)(0)⟩ + ⟨Ψ̄(t)(1)|Ω̂|Ψ̄(t)(1)⟩ + ⟨Ψ̄(t)(0)|Ω̂|Ψ̄(t)(2)⟩ (3.54)

where the Ψ̄(t)(1) is known and Ψ̄(t)(2) is not. Following the same logic of the procedure of obtaining
Pn(t)(1), a more complexed equation of motion than Eq. A.12 containing a nested commutator of
(P̂ (1), P̂ (2), Ĥ0, Ω̂) has to be solved to obtain Pn(t)(2) thus Ψ̄(t)(2).

Here, we parachute the expression for Pn(t)(2),

Pn(t)(2) = − 1

iℏ2
∑

ω1,ω2

∑

k>0

⟨Ψn| ¯̂V ω1
α |Ψk⟩⟨Ψk|V̂ ω2

β |Ψ0⟩Fω1
α Fω2

β

(ωn0 − ω1 − ω2 − 2iξ)(ωk0 − ω2 − iξ)
e−i(ω1+ω2)te2ξt (3.55)

where the fluctuation operator
¯̂
Ω is defined as

¯̂
Ω = Ω̂ − ⟨Ψ0|Ω̂|Ψ0⟩. The second-order correction

Ψ̄(t)(2) identified from Eq. A.7 can be obtained using the expression of Pn(t)(1) and Pn(t)(2),

Ψ̄(t)(2) = −i
∑

n>0

Pn(t)(2)|Ψn⟩ −
1

2

∑

n>0

|Pn(t)(1)|2|Ψ0⟩ (3.56)

The expression after inserting Ψ̄(t)(2) and Ψ̄(t)(1) into Eq. 3.54, is not symmetric with the exchange
of α and β. However, the resulting response function is intrinsic symmetric. This can be resolved by
using the permutator 1

2

∑
P1,2 which sums over the permutation on the pair of (α, ω1) and (β, ω2).

The quadratic response function identified after comparing Eq. 3.42 and the symmetrized form of
Eq. 3.54 is given by:

≪ Ω̂; V̂ ω1
α , V̂ ω2

β ≫ =
1

ℏ2
∑

P1,2

∑

n,k>0

[ ⟨Ψ0|Ω̂|Ψn⟩⟨Ψn| ¯̂V ω1
α |Ψk⟩⟨Ψk|V̂ ω2

β |Ψ0⟩
(ωn0 − ω1 − ω2 − 2iξ)(ωk0 − ω2 − iξ)

+
⟨Ψ0|V̂ ω2

β |Ψn⟩⟨Ψn| ¯̂V ω1
α |Ψk⟩⟨Ψk|Ω̂|Ψ0⟩

(ωn0 + ω2 + iξ)(ωk0 + ω1 + ω2 + 2iξ)

+
⟨Ψ0|V̂ ω1

α |Ψn⟩⟨Ψn| ¯̂Ω|Ψk⟩⟨Ψk|V̂ ω2
β |Ψ0⟩

(ωn0 + ω1 + iξ)(ωk0 − ω2 − iξ)

]
(3.57)

The first-order hyperpolarisability tensor. The substitution of Ω̂ = µ̂γ , V̂ ω1
α = −µ̂α

and V̂ ω2
β = −µ̂β into the quadratic response function yields the first-order hyperpolarisability

tensor, and let ξ = 0,

βγαβ(ω−σ;ω1, ω2) =
1

ℏ2
∑

P−σ,1,2
∑

n,k>0

⟨Ψ0|µ̂γ |Ψn⟩⟨Ψn| ¯̂µα|Ψk⟩⟨Ψk|µ̂β|Ψ0⟩
(ωn0 − ωσ)(ωk0 − ω2)

(3.58)

The excited state properties that can be extracted from the above expression include: the
excitation energies, the ground to excited state and excited state to excited state transition
dipole moments, and the permanent dipole of the excited states.
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3.4.2 Two-photon absorption cross sections

Two-photon absorption is not a quadratic response property, but rather depends on the cubic re-
sponse. However, if the two-photon absorption (TPA) transition strength is of interest—namely, the
TPA cross-section—it can already be derived from the residues of the quadratic response function [80].

To see its nonlinear dependence on the external radiation field, we derive the TPA cross section
following the similar logic as in the one-photon absorption case. One-photon absorption cross section
was derived with the first-order coefficient amplitude Pn(t)(1) before. TPA cross section can be
derived with the second-order coefficient Pn(t)(2) given in Eq. 3.55 which we will rewrite slightly
different. The factor − 1

iℏ2 is replaced by 1
ℏ2 , because we will later take the square modules of the

amplitude anyway. The transition amplitude from the initial ground state to a final state |Ψf ⟩ is
thus,

pf (t)(2) =
1

ℏ2
∑

ω1,ω2

∑

k

⟨Ψf | ¯̂V ω1
α |Ψk⟩⟨Ψk|V̂ ω2

β |Ψ0⟩Fω1
α Fω2

β

(ωf0 − ω1 − ω2 − 2iξ)(ωk0 − ω2 − iξ)
e2ξt (3.59)

The transition probability for molecules from the initial to the final state at time t in the electric
dipole approximation reads,

Pf←0(t) = |pf (t)(2)|2

=
1

ℏ4
∑

ω1,ω2

∑

k

∣∣∣∣∣
⟨Ψf |µ̂α|Ψk⟩⟨Ψk|µ̂β|Ψ0⟩Fω1

α Fω2
β

(ωk0 − ω2 − iξ)

∣∣∣∣∣

2
e4ξt

(ωf0 − (ω1 + ω2))2 + (2ξ)2
(3.60)

The transition rate,

wf←0(t) =
dPf←0(t)

dt

=
2π

ℏ4
∑

ω1,ω2

∑

k

∣∣∣∣∣
⟨Ψf |µ̂α|Ψk⟩⟨Ψk|µ̂β|Ψ0⟩Fω1

α Fω2
β

(ωk0 − ω2 − iξ)

∣∣∣∣∣

2

f(ω1, ω2;ωf0, 2ξ) (3.61)

From Eq. 3.61, it can be seen that the most probable transition happens when ωf0 = ω1 +ω2 where
the function f(ω1, ω2;ωf0, 2ξ) is peaked. The matrix element Mf0 corresponding to the transition
strength can be identified with a symmetrized form invariant with exchange of the indices ω1 and
ω2,

Mαβ
f0 =

∑

k

⟨Ψf |µ̂α|Ψk⟩⟨Ψk|µ̂β|Ψ0⟩
(ωk0 − ω1)

+
⟨Ψf |µ̂β|Ψk⟩⟨Ψk|µ̂α|Ψ0⟩

(ωk0 − ω2)
(3.62)

The sum-over-state expression given in Eq. 3.62 for the exact state is usually not applied in the
practical calculations. Instead, the response function based on the approximate state, depending on
the excited state method, is solved. The working equations for obtaining Mf0 for ADC(n) method
can be found in Ref. 71 and for the EOM-CCSD method see in Ref. 81.

Above, we have discussed the transition probability between the discrete level of states. In
order to derive the TPA cross section corresponds to a macroscopic case, we need to consider the
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ground state transition to a continuum with the density of state. In such a case, the transition
probability for the TPA absorption from the initial to the final state, with the incident laser photon
flux F (photons cm−2s−1), the energy flux of photon 2 I(ω2) per unit frequency, and the normalized
lineshape function g(ω), can be written in the following form [82],

wf←0 =
8π3e4

ℏ4c2
F1ℏω1I(ω2)|Mαβ

f0 |2g(ωf0) (3.63)

The captured cross section for the second photon light is,

σ2I(ω2) = wf←0(ω1, ω2)ℏω2 (3.64)

The derived cross section,

σ2 =
8π3e4

ℏ2c2
F1ω1ω2|Mαβ

f0 |2g(ωf0), (3.65)

is apparently dependent on the incident laser intensity F . A convenient measurable parameter used
to characterize the TPA absorption strength is obtained by taking σ2/F , so the final TPA cross
section is,

δ =
8π3e4

ℏ2c2
ω1ω2|Mαβ

f0 |2g(ωf0) (3.66)

Orientation averages. When one attempts to connect the microscopic calculated quantity to
the macroscopic measurable one, Eq. 3.66 cannot be applied in a straightforward way because
the matrix element Mαβ

f0 in Eq. 3.62 is evaluated under the molecular frame. However, the TPA
cross section obviously depends on the orientation of the radiation field. In the spectroscopy,
the measured TPA cross section is proportional to the rotational average of all the orientations
of Mαβ

f0 . In the following, we aim to find the factor that accounts for this effect.

The matrix element can be rewritten by considering the coupling of the polarisation vector λ
of the field in the lab reference of frame, and the transition moment V0k in the molecule frame
as follows:

Mf0(λ1, λ2) =
∑

k

λ1 ·VfkVk0 · λ2
(ωk0 − ω1)

+
λ2 ·VfkVk0 · λ1

(ωk0 − ω2)
(3.67)

The polarisation of photon one λ1 and photon two λ2 can be manipulated in the experiment.
The basic idea is to transform the transition moment in the molecular frame into the lab frame
by a directional cosine transformation. [f] In the end, our target is to obtain the rotational

[f]. Assuming the origin of the lab and molecular frame is the same and located somewhere inside the molecule, the
vector component Ri with R = Rxex +Ryey +Rzez where ei is the unit vector, can be transform into another frame
with Ri′ by the cosine function, that is

Ri′ =
∑
j

cosθi′jRj .

The transformed vector component in lab frame is span with the molecular frame component with the coefficient of
cosine of the angle between i′ and j.
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average of a fourth-rank tensor ⟨Mijkl⟩. There are several ways to achieve this goal, see
Ref. [83] for example. One systematic way to solve it is the use of the isotropic tensor, which is
rotationally invariant and serves as a basis expansion for any general high-rank tensors. For
more details about this approach see Ref. 78.

As a result, the rotational averaged TPA transition strength is given as [83],

⟨|M0f |2⟩ =
1

30

∑

α,β

[
F ·MααM

∗
ββ +G ·MαβM

∗
αβ +H ·MαβM

∗
βα

]
. (3.68)

Depending on the polarisation of two incident photon light, the constants (F,G,H) take differ-
ent values. Specifically, F = G = H = 2 for parallel polarisation and F = H = −1, G = 4 for
the perpendicular polarisation between two incident photons. The polarisation dependence of
the incident light, on the other hand, can be used in the experiment to recognize the symmetry
of excite states [84].

Atomic to macroscopic units. The formula for TPA cross section in Eq. 3.66 is expressed
in atomic unites. Often, a comparison with the experiment is needed, and thus the conversion
to macroscopic unites is necessary.

The conventional unites for TPA cross section is GM named after Göppert-Mayer [85], where
1 GM is 10−50 cm4s photon−1. By writing the corresponding unit of each term in the cross
section and collecting the factor in front of Eq. 3.66, we have, in centimetre–gram–second
(cgs) system of units where 4πε0 = 1,

δ[cgs] = 8π3α2

[
a40
E2

h

]
[Ehℏ]

=
8π3αa50

c
δ[a.u.]

(3.69)

where α is the fine structure constant, a0 is the Bohr radius, Eh is the Hartree energy, and c
is the speed of light.
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Chapter 4

The challenge of accurate computation
of Two-photon absorption properties
of organic chromophores in the
condensed phase

4.1 Motivation and outcome

Nonlinear phenomena, such as two-photon absorption (TPA), present a significant computational
challenge due to the need for high accuracy which requires extensive computational time. The sum-
over-state expression for calculating nonlinear properties, requires an accurate description of not only
one excited state but of many other excited states, in terms of energies and wavefunctions. The widely
applied time-dependent Density Functional Theory depends on the choice of the exchange-correlation
functional and can lead to unpredictable errors concerning simulations of the TPA cross-section.

The question of ”what accuracy level of modelling the TPA cross-section can we expect?” still
remains in the literature. We first examined the absolute TPA cross-section using advanced corre-
lated methods and compared it with the ’golden standard’ method of equation-of-motion coupled
cluster methods. Then we shift the focus on the complexation induced shift of TPA cross-section
due to the presence of the environment. We found achieving the accuracy of the absolute TPA
cross-section below 100 atomic units and their shifts below 10 atomic units remains a challenge. On
the other hand, FDET with the linearized version has demonstrated greater reliability compared
with other embedding methods which only include the electrostatic interaction between fragments.
The equivalent shift value can be obtained compared with the reference supermolecular results with
the largest basis set.

Reprint of the paper is provided in the following pages. [Fu M, Wesolowski TA, J. Chem. Theory
Comput. 17, 3652-3665 (2021)]

Supporting information for this paper can be found in Appendix C. Additional analysis made
after the publication is provided in Appendix D.
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ABSTRACT: Two strategies are applied to evaluate the effect of the
environment on the two-photon absorption (TPA) cross sections for two
characteristic excited states of C2H4 upon complexation with H2O. The
supermolecular strategy provides the reference complexation-induced shifts
and uses either the EOM-CCSD or ADC(2) method. The embedding
strategy is based on frozen-density-embedding theory (FDET) and uses
only fundamental constants. The TPA cross sections from high-level
supermolecular calculations are extremely basis-set-sensitive. Literature data
and the present study indicate that accuracy of the absolute TPA cross
sections below 100 atomic units and their shifts below 10 atomic units
remains a challenge. The obtained FDET results show a similar basis-set
behavior. For the largest basis set (d-aug-cc-pVQZ), TPA cross sections
obtained from these two strategies are in excellent agreement. The
complexation-induced shifts have the correct sign of the effect and a small
(12−33%) relative error in magnitude. The deviations of the FDET-derived shifts from the reference are of similar magnitude as the
reliability threshold of the reference shifts.

1. INTRODUCTION
Two-photon absorption (TPA) spectroscopy offers a broad
area for applications. It makes it possible to observe dark states,
for which the dipole transitions are not permitted. Unlike in
the case of one-photon absorption (OPA), the TPA absorption
intensity depends nonlinearly on the incident radiation
intensity, thus providing a variety of promising applications
such as microfabrication, three-dimensional data storage,
optical power limiting, and so forth.1 The longer wavelength
of photons also makes it possible to study chromophores
embedded in biological tissues. Increasing interest has been
focused on the design and synthesis of more efficient TPA
dyes, such as well-adopted D−π−A systems, where D and A
are donor and acceptor groups, respectively, and π represents
the π-conjugated bridge. The absorption intensity can reach a
magnitude of 103 GM subject to the choice of D/A groups and
the length of the π-conjugated bridge.1−4 The applications of
TPA spectroscopy concern mainly the condensed phase.
Several factors contribute to the TPA cross sections

measured in the condensed phase. Based on the available
experimental and simulation data, establishing their relative
importance is, unfortunately, not always straightforward. For
example, the surrounding solvent can affect the intensity and
direction of intramolecular charge-transfer states in the
chromophore, and the solvent effect is especially important
for a bioprobe due to the requirement of a large Stokes shift.5

In ref 6, Woo et al. have shown that the TPA cross section of
the distyrylbenzene-based chromophores has a nonmonotonic

relation with the solvent polarity. The maximum TPA cross
section was measured with the intermediate polarity, and the
lowest was observed in the water. Using the TDDFT/polarized
continuum model, Wang et al. predicted the nonmonotonic
relation with the solvent polarity and demonstrated the
importance of the electron correlation.7 Using the same
method, Frediani et al. showed that the refractive index of the
solventinstead of the polarityplays a key role in the
enhancement of TPA cross sections.8

In principle, quantum chemistry simulation methods can
provide insights and an understanding of the TPA activity of a
chromophore in a given environment. Although the
precondition for a reliable prediction of the TPA properties
measured in the condensed phase is the use of adequate
electronic structure methods to determine them at a given
conformation of the chromophore, other factors must also be
properly simulated such as the vibronic coupling9 or the
environment effect on the geometry of the chromophore, for
instance. The present work focusses on the first factorthe
electronic structure method to evaluate the TPA cross section
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of an embedded chromophore. The methods based on
responses in time-dependent density functional theory
(DFT) (LR-TDDFT10 or QR-TDDFT11,12) are attractive
strategies applicable for modeling OPA and TPA properties of
chromophores in the condensed phase. Favorable scaling
makes them applicable for clusters representing the chromo-
phore and the nearest molecules in its environment. The
range-separated functionals seem to be most appropriate for
TPA because they describe both the valence and charge-
transfer excitations in a balanced way. The latter are known to
be incorrectly described by semilocal and even hybrid
functionals.13 The range-separated functionals are not free,
however, from qualitative failures in calculating TPA proper-
ties. For instance, CAM-B3LYP14 predicts spurious features in
the calculated TPA spectra of oligophenylvinylene molecules15

never observed experimentally. According to Beerepoot et al.,16

the unstable numerical results obtained using this functional
are due to the systematic underestimation of the excited-state
dipole moment. In a more recent publication, the same authors
showed also that both the semilocal and hybrid functionals
exhibit an unpredictable error. The smaller error calculated
using some approximations for the exchange−correlation
energy was explained by the cancellation of errors in excitation
energies and in transition dipole moments leading them to the
conclusion that development of new approximations capable of
describing both quantities properly is needed.17

The so-called few-state model18,19 also provides an
inexpensive tool for obtaining the TPA cross sections. In
some cases, it explains very well the experimentally observed
trends failing, however, to describe TPA corresponding to
some high-lying states. The semiempirical methodinter-
mediate neglect of differential overlap INDO/S-CIS(CISD)
with specially optimized parameters for electronic excitations
was also applied for the TPA cross section.20 The method
reproduces well the excitation energy for ππ* and nπ*
excitations but fails for charge-transfer states, Rydberg states,
and states with prominent double excitation character.
Concerning the ab initio correlated methods, they can be

expected to lead to more reliable TPA properties. They are
capable of describing excited states of various characters
(valence excitations, charge-transfer excitations, double ex-
citations, in particular) in a balanced way. Methods to evaluate
TPA cross sections combining the response theory and the
configuration interaction series,21−23 random phase approx-
imation,23−26 algebraic-diagrammatic construction (ADC),27

and equation-of-motion coupled cluster (EOM-CC),28 for
instance, were developed. For example, the CIS model
successfully explained that an enhancement of TPA cross
sections of diacetylene molecules in the shorter wavelength is
due to a double resonance from one-photon to two-photon
states.23 Due to the unfavorable scaling with the number of
basis functions (N5, N6, and N7 for CC2, CCSD, and CC3,
respectively), the high-quality ab initio correlated methods
have a limited range of applicability as far as chromophores in
the condensed phase are concerned. The study by Nielsen et
al.25 on small organic chromophores showed that reaching the
confidence threshold in the calculated absolute values of the
TPA cross section beyond 100 atomic units is not possible in
practice. The TPA cross sections obtained from EOM-CCSD
calculations reported recently by Nanda and Krylov concerned
complexes comprising an organic chromophore of biological
interest and a few solvent molecules consisting of no more
than 34 atoms mark the current practical size limit for the ab

initio-correlated methods.28 For the chromophores of this size,
the authors used the 6-31+G* basis set,30 which most likely is
not large enough to obtain converged absolute TPA cross
sections. The success of the advanced ab initio methods in
modeling TPA properties of relatively small chromophores in
the gas phase and frequently erratic results obtained by means
of response theory-based TD-DFT methods prompt a
legitimate question: Is accurate modeling of TPA activity for
chromophores in the condensed phase possible? What
accuracy can be expected? The comprehensive study by
Nielsen et al.25 concludes with the suggestion that accurate
predictions of the absolute two-photon cross sections is rather
out of reach for high-level ab initio methods and that such
methods should rather aim at predicting the relative cross
sections in different species. For the above reasons, we analyze
the applicability of different methods to evaluate the
differences of OPA and TPA propertiescomplexation-
induced shifts in the excitation energy and TPA cross section
in particular.
For the evaluation of the environment-induced shifts, the

multilevel simulations make it possible to escape the dilemma
between the unfavorable scaling of accurate ab initio methods
and lowering the accuracy expectations if the DFT-based
methods are used. Such methods have been successfully
applied to model the potential energy surface and are
frequently referred by a collective acronym (QM/MM). The
key feature of such methods is that the embedded wave
function associated with the embedded species is obtained
from the Schrödinger equation in which the isolated species
Hamiltonian is modified by addition of the “embedding
operator”. In the simplest case, the operator is just electrostatic
potential generated by the molecules of the environment of the
embedded species. Methods designed for modeling electronic
excitations have been developed. Their field of applicability
includes also the simulating TPA activity.31−36 These studies
show invariably that the embedding potential must go beyond
the electrostatic potential generated by a fixed distribution of
charges in the environment.
The interest in accurate modeling of TPA activities in host−

guest complexes is systematically growing (see the recent work
by Alam and Ruud37 for instance) and multilevel methods
seem to offer the only viable alternative as far as accurate
predictions and/or interpretation of experimental data are
concerned. In the present work, the method based on frozen-
density-embedding theory (FDET) is used. In FDET, the
embedded wave function is obtained from constrained
minimization of the energy of the total system, in which the
constraints are imposed on the density. The FDET embedding
operator is multiplicative (embedding potential) and is
constructed in such a way that the minimal energy equals to
that given by the energy functional defined in the second
Hohenberg−Kohn theorem.38 The non-Coulombic effects on
the embedded wave function (intermolecular Pauli repulsion
or quantum confinement) are represented in FDET by the
potential (vxct

nad[ρA, ρB](r) see below) determined uniquely by
the electron density of the environment and that of the
embedded species. Because this operator is multiplicative, it
can be interpreted as a confining potential. On the other hand,
its kinetic part represents the effects due to Fermi statistics on
the embedded electron density, it can also be attributed to the
intermolecular Pauli repulsion. These descriptive terms can be
misleading. The confining potential does not have to be
repulsive as shown for exactly solvable systems in FDET39 and
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the Pauli repulsion relates rather to the effect on the wave
function, whereas vxct

nad[ρA, ρB](r) originates from the condition
satisfied by the exact density.40 The differential electronic
polarization of the environment is treated in FDET implicitly.
In practice, vxct

nad[ρA, ρB](r) is approximated.
The approximations in this work were already tested on

OPA energies in a comprehensive benchmarking study on the
lowest few excitations in ref 52 in representative complexed
chromophores showing that the used approximations in FDET
provide a practical alternative to the conventional calculations,
that is, where the chromophore and the environment molecule
constitute one quantum mechanical system. In the bench-
marking set, the average magnitude of the deviations of the
“embedded ADC(2)” excitation energies from their super-
molecular ADC(2) reference equals 0.036 eVa small value
compared to the complexation-induced shifts.41 The bench-
marking set included neither the chromophores covalently
bound to the environment nor excitations involving the charge
transfer between the chromophore and the environment. Such
cases lie outside the range of applicability of the benchmarked
approximations in FDET. Turning back to the TPA cross
sections derived from response theory-based approaches, their
quality depends critically on the accuracy of the energy of not
just one state but that of several nearby lying excited states.
The fact that the quality of the FDET-derived excitation
energies did not show any sign of deterioration for higher lying
states suggests that the approximations used in FDET, which
were tested in ref 41, can be applied also for the TPA
properties.
The notorious basis set sensitivity of the TPA cross sections

obtained from correlated wave function-based methods
represents a critical limitation as far as adequacy of
approximations used in FDET is concerned. Numerically
stable complexation-induced shifts of the TPA properties,
which could be used as a reference for interpretation of the
errors in the FDET-derived shifts, require the use of large basis
sets.25 The basis set sensitivity of FDET-derived TPA cross
sections has not been investigated so far. For this reason, the
present study concerns a small model system comprising a
chromophore (C2H4) weakly bound to only one molecule
(H2O). The small size makes it possible to explore the
accuracy limits of the applied approximations in FDET and
apply the gained experience in subsequent simulations of TPA
properties for the chromophores weakly bound to the
molecules in the environment (solvent, biomolecules, surface,
porous solid, etc.). For the references shifts, ADC(2) is treated
to treat electron−electron correlation effects in the complex
and in the isolated chromophore. The EOM-CCSD results are
also reported to confirm the reliability of the ADC(2)
reference shifts and to determine the accuracy threshold in
the evaluated observables for meaningful interpretation of
errors in the FDET-derived shifts. In FDET, the ADC(2)
treatment is applied for the embedded wave functions.
The deviations of the shifts obtained from “embedded

ADC(2)” calculations from the supermolecular ADC(2)
reference are used to determine the range of applicability of
the applied approximations in FDET and to estimate the
expected accuracy of the FDET-derived shifts. The reported
study is proposed as a model for the introductory stage of any
multilevel simulation of TPA properties for chromophores in
the condensed phase that is based on FDET.

2. THEORETICAL BACKGROUND
2.1. Excited States from FDET. For a system comprising

NAB electrons in the external potential vAB(r), the lowest-
energy stationary embedded NA-electron wave function is
obtained from the following eigenvalue equation:

ρ ρ λ̂ + ̂ [ ] Ψ = ΨH v v( , ; )A emb
FDET

A B B A A (1)

in which ρ δ= Ψ ∑ − Ψ=r r r( ) ( )i
N

iA A 1 A
A and vemb

FDET[ρA, ρB; vB]
is given by
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ρ

ρ ρ
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r r
r

r r
r
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, ( )

emb
FDET

A B B B
B

xct
nad

A B (2)

where ĤA is the Hamiltonian corresponding to NA electrons of
an external potential vA(r) with NA < NAB; vA(r) is an
arbitrarily chosen component of the total potential vAB(r),
which is partitioned as vAB(r) = vA(r) + vB(r); and
vxct
nad[ρA, ρB](r) is given as a functional determined uniquely
by the pair of electron densities ρA(r) and ρB(r).
For the definition of the functional vxct

nad[ρA, ρB](r), the
expression for the total energy, and the relation between the
eigenvalue λ and the total energy, see the original publications
concerning various possible choices for the method to solve eq
1: ref 42 for an embedded reference systems of noninteracting
electrons, ref 40 for the exact (interacting) Hamiltonian, and
ref 43 for the embedded one-particle spinless reduced density
matrix. For the exact relation, involving the total FDET energy
and quantities available if nonvariational methods are used to
solve eq 1, see ref 44.
The stationary embedded wave function ΨA° is obtained

from eq 1 with the self-consistent embedding potential, that is,
vemb
FDET[ρA°, ρB; vB](r), where ρA°(r) = δΨ° ∑ − Ψ°= r r( )i

N
iA 1 A

A .
According to the Levy−Perdew theorem,45 solutions of eq 1

obtained with the self-consistent potential (i.e., vxct
nad[ρA

I , ρB](r),
where ρA

I (r) = δΨ ∑ − Ψ= r r( )i
N

iA
I

1 A
IA ), ΨI, other than the

lowest-energy one can be interpreted as excited states.46,47

In the present work, the indices A and B refer to the
chromophore and the environment, respectively. We point out
that such attribution is arbitrary in FDET. Partitioning the
external potential into vAB(r) = vA(r) + vB(r) does not affect
the FDET results at all. Partitioning of the total number of
electrons into NAB = NA + NB on the other hand is not related
to the localization of the embedded wave function. The
attribution of the indices is only relevant to the choice of ρB(r)
at which the FDET equations are solved. The attribution of
these indices acquires, however, a concrete meaning if localized
and incomplete set of basis set functions are used. For instance,
if the set of basis functions {χμ} used for ρA(r) is centered only
on atoms defining vA(r), whereas the basis functions used for
ρB(r) are centered only on atoms defining vB(r) such
attribution of indices is meaningful and is referred to here as
monomer expansion (ME).

∑ρ χ χ=
μ

μ μPr r r( ) ( ) ( )
v

v vA
ME A A A

(3)

∑ρ χ χ=
μ

μ μPr r r( ) ( ) ( )
v

v vB
ME B B B

(4)

The ME is obviously an approximation. If applicable, it can
lead to huge computational savings potentially. Most of the
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numerical results discussed in the present work use the ME.
The supermolecular expansion refers to calculations where this
approximation is lifted, that is, where the densities have the
form given below

∑ρ χ χ=
μ

μ μPr r r( ) ( ) ( )
v

v vA
SE A AB AB

(5)

∑ρ χ χ=
μ

μ μPr r r( ) ( ) ( )
v

v vB
SE B AB AB

(6)

2.2. TPA Cross Sections from Linearized FDET
Embedded Wave Functions. The general framework of
the linear and quadratic responses will be used to obtain the
TPA properties.48,49 In the particular case of two resonant
photons ω1 and ω2 such that ω1 = ω2 =

1/2Ωn, where Ωn is the
resonance frequency for OPA, the TPA transition magnitude is
given by27

∑ μ μ
ω ω
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ω ω
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2 (7)

where μ̂i and μ ̂ i are the Cartesian components (i = x, y, z) of

the dipole moment operator and the fluctuation operator (μ ̂ i =
μ μ̂ − ⟨ | ̂ | ⟩0 0i i ), respectively, whereas |k⟩ denotes the inter-
mediate states.
The above sum-over-state expression for the transition

magnitude indicates that the quality of not just one state but all
nearby lying states determines the overall quality of the
calculated transition magnitude. This rather tough accuracy
requirement is the principal reason why the simulation of TPA
activities remains a challenge for molecular quantum
mechanics methods and results in erratic results obtained
using TDDFT-based strategies.
Figure 1 illustrates eq 7 for a system of the D2h symmetry,

such as the isolated C2H4 molecule, for which the ground state

has the Ag symmetry, whereas the two excited states
considered in the present work have the B2u and Ag
symmetries, respectively. The final Ag state in the TPA process
is symmetry-allowed but the corresponding TPA magnitude
depends on all intermediate states. The B2u states are
symmetry-forbidden in TPA processes but they contribute to
the TPA magnitude. Obviously, they are symmetry-allowed in
OPA processes. The error of |k⟩ and ωk obtained from a given
quantum mechanical methods of all states of the B2u symmetry
near the final Ag affects, thus, the overall quality of the TPA
magnitude for the final Ag state.
Equation 7 applies for isolated systems. The states are

obtained at some external potentials usually corresponding to
the potential due to nuclear charges. For such external
potentials as well as for the more general class of external
potentials that are state-independent, the states are orthogonal.

The FDET embedding potential is, however, state-dependent.
The last term in eq 2 (vxct

nad[ρA
I , ρB](r)) is different for different

states. In linearized FDET,47 which is an approximation within
FDET,

∫
ρ ρ ρ ρ

ρ ρ ρ ρ
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ref
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nad

A
ref
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the orthogonality of the embedded wave function is preserved.
The errors in energy due to linearization depend on the
expansion point ρA

ref(r). Using the ground-state density of the
embedded species as ρA

ref(r) was shown to be a very good
approximation. It introduces negligible errors (1 meV or less)
in the OPA energies.50 Using the linearized FDET embedding
potential leads to additional benefits if the self-consistent
embedded density is used as ρA

ref(r). With such a choice for
ρA
ref(r), recently derived exact relation between the Hohen-

berg−Kohn total energy functional and quantities, which can
be obtained from nonvariational correlated wave-function-
based methods (eq 38 in ref 44), can be applied. As a result,
not only energy differences but also absolute energies obtained
from linearized FDET become consistent from Hohenberg−
Kohn theorems.
The negligible errors due to the linearization of Exct

nad[ρA, ρB]
on the OPA energies suggest that TPA properties derived from
eq 7 and the linearized FDET embedding potential with the
same expansion point is also applicable for simulating TPA
activities.
For other types of embedding operators, which are state-

independent [the case of exact Coulomb embedding or point
charge (PC) embedding considered in this work], eq 7 can be
applied in a straightforward manner.

3. COMPUTATIONAL DETAILS
Decomposable local-density approximation was used for each
component of vxct

nad[ρA, ρB](r) defined in ref 40: Slater−Dirac
functional51 for exchange, Vosko−Wilk−Nusair parameter-
ization52 for correlation, and Thomas−Fermi53,54 functional
for the kinetic component, whereas its vc[ρA](r) part was
entirely neglected. The vertical excitation energies (ϵ) and
cross sections (δTPA) were evaluated using FDET-based (or
simpler embedding methods) implemented in the Q-Chem55

program, using the ADC(2) level of description for the
electronic excitations in the embedded subsystem. The
reference values of ϵ and cross sections δTPA were obtained
using also the program Q-Chem [for ADC(2) and EOM-
CCSD].
The calculations were made using several Gaussian atomic

basis sets including two series of correlation-consistent basis
sets: aug-cc-pVXZ(X = D,T,Q) and d-aug-cc-pVXZ(X =
D,T,Q).29 The results obtained with the 6-31+G* basis set
are also reported30 for comparison purposes. It is frequently
applied in simulations of electronic excitations. In particular, it
has been used in the EOM-CCSD calculations of two-photon
activities of several larger chromophores by Krylov and
collaborators (see refs 28 and 31 for instance).
All considerations in the present work concerning the

excited state properties use ground-state optimized geometry
obtained by means of the second-order Møller−Plesset
perturbation theory and the cc-pVTZ basis set. The structure
of the complex is shown in Figure 2. For the coordinates, see
Supporting Information. For the shifts defined as Δϵ =

Figure 1. Sketch for the symmetry-allowed TPA process (Ag → Ag)
for a molecule with the D2h symmetry.
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ϵC2H4−H2O − ϵC2H4 and ΔδTPA = δTPA
C2H4−H2O − δTPA

C2H4, the numerical
values corresponding to the isolated chromophore were
evaluated at the same geometry as that in the complex.
The FDET embedding potential used in the linearized

FDET expression for the excitation energies vemb
FDET[ρA

ref, ρB; vB]-
(r) was evaluated at the density ρA

ref(r) being the first-order
Møller−Plesset density of the isolated chromophore. Various
choices for constructing ρB(r) are considered including the
monomer and supermolecular expansions. In each case, ρB(r)
is generated from Hartree−Fock wave function corresponding
to either the isolated water molecule or optimized through the
freeze-and-thaw minimization of the total energy of the
complex56 as described in ref 57 for the embedded Hartree−
Fock variant of FDET.
The complexation-induced shifts of the TPA cross sections

are analyzed for two excited states well characterized in the
isolated C2H4: the lower (B2u) and the higher (Ag). TPA is
symmetry-allowed and OPA is symmetry-forbidden for Ag. For
B2u, TPA is symmetry-forbidden and OPA is symmetry-
allowed. Both states have the ππ* character and will be labeled
as the first and second ππ* state for both isolated and
complexed C2H4. The symmetry labels do not apply for the
complex. Breaking the symmetry upon complexation is
expected to result in the TPA activity of the first ππ* state.
The corresponding states are identified based on the oscillator
strength and on the visual inspection of the canonical−natural
transition orbitals for 10 lowest excitations available in both
supermolecular and embedding calculations. Due to the known
extreme basis set sensitivity of the TPA cross sections,25 only
basis sets including diffuse functions are considered (data for
smaller basis sets are provided in the Supporting Information).

Moreover, without augmented functions, the two considered
states could not be found among the 10 available states for
some of the considered methods.
Atomic units are used for the reported orientation- and

polarization-averaged TPA cross sections using the averaging
factor for the linearly polarized light (see ref 58). The
conversion to macroscopic units depends on the conditions of
the experiment (see the detailed discussion in ref 16). For the
double-beam experiment, the macroscopic units for the TPA
cross section (σTPA in 1 GM = 10−50cm4s/photon) are related
to TPA cross sections expressed in atomic units (δTPA) as

16

σ
π α ω

δ= Γ
a

c
8

TPA

2
0

5 2

TPA (9)

where α is the fine structure constant, c is the speed of light, a0
is the Bohr radius, and Γ is a damping parameter, which can be
extracted from the experiment assuming Lorentzian broad-
ening of the absorption band.

4. RESULTS AND DISCUSSION
The results are discussed in the following way. In the first part,
the vertical excitation energies, two-photon cross sections, and
the corresponding complexation-induced shifts of these
quantities are evaluated using conventional methods
[ADC(2) and EOM-CCSD] and a series of atomic basis sets
of increasing quality. The obtained results are used to discuss
their numerical stability and they are used as references for
discussing the quality of the approximations used in the
considered embedding method. The following section
concerns the simplest embedding strategy in which the
embedding potential includes only the Coulomb component
of the FDET embedding potential (either exact or approxi-
mated by PCs). The comprehensive analysis of the perform-
ance of the FDET methods is given in the last two subsections.

4.1. Supermolecular Strategy. The principal quantity of
interest in the present work is the evaluation of the effect of the
environment on a given observable (vertical excitation energy
or TPA cross section). Table 1 collects the results obtained by

Figure 2. C2H4−H2O complex used throughout calculations.

Table 1. Vertical Excitation Energies ϵisol (in eV) and the Two-Photon Cross Sections δTPA
isol (in Atomic Units) for the Two

Lowest ππ* Transitions from the Conventional ADC(2) Calculations Applied to the Isolated C2H4 and the Corresponding
Shifts in the C2H4−H2O Complexa

basis set ϵisol Δϵ δTPA
isol ΔδTPA

First ππ* State
6-31 + G* 8.146(8.283) −0.062 (−0.057) 0(0) 25.2 (4.6)
aug-cc-pVDZ 7.900(8.043) −0.094 (−0.081) 0(0) 43.2 (20.1)
aug-cc-pVTZ 7.928(8.029) −0.060 (−0.061) 0(0) 40.4 (22.2)
aug-cc-pVQZ 7.947b −0.076 0 20.8
d-aug-cc-pVDZ 7.866b −0.088 0 22.3
d-aug-cc-pVTZ 7.914(8.018) −0.069 (−0.066) 0(0) 23.7 (17.2)
d-aug-cc-pVQZ 7.940 −0.083 0 35.9

Second ππ* State
6-31 + G* 9.075 (9.109) −0.125 (−0.125) 791.0(745.0) 10.1 (15.6)
aug-cc-pVDZ 8.866 (8.982) −0.353 (−0.309) 829.5(730.7) −140.9 (−73.7)
aug-cc-pVTZ 8.788 (8.854) −0.287 (−0.262) 823.5(763.7) −87.9 (−45.7)
aug-cc-pVQZ 8.721 (8.760) −0.247 (−0.231) 817.0(775.5) −51.6 (−46.1)
d-aug-cc-pVDZ 8.121 (8.336) −0.181 (−0.182) 774.9(732.2) −32.9 (−35.2)
d-aug-cc-pVTZ 8.335 (8.461) −0.182 (−0.182) 724.1(693.7) −21.0 (−19.5)
d-aug-cc-pVQZ 8.422 −0.184 698.9 −20.7

aThe EOM-CCSD results (if available) are given in parentheses. bThe first ππ* state was not found among the available 10 states in EOM-CCSD
calculations.
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means of high-quality methods [ADC(2) and EOM-CCSD]
using various basis sets. Beyond the d-aug-cc-pVTZ basis sets,
the EOM-CCSD calculations are not possible due to the
limitations of the available computational resources.
For the first ππ* state, the ADC(2) excitation energies show

a remarkable numerical stability if the augmented basis sets are
used (7.90 eV < ϵisol < 7.95 eV). The complexation-induced
shifts of the excitation energy are small in this case and vary
even less (−0.060 eV < Δϵ < −0.094 eV). The EOM-CCSD
excitation energies evaluated using the same basis sets (if
available) are systematically slightly larger but the shifts are
practically equivalent to the ADC(2) ones. TPA cross sections
show, however, different trends. For the complex, they depend
critically on the used basis sets. Even for the largest two basis
sets, the TPA cross sections differ significantly (23.7 vs 35.9
atomic units). These difficulties in converging the TPA cross
sections are in line with the results reported by Nielsen et al.,25

where it was found that even for such a small molecule as H2O,
it is difficult to obtain numerically stable TPA cross sections for
all considered excited states. One of the possible explanations
for a large jump in the TPA shift for this excitation might
originate from the fact that there is absence of any error
compensation. For the first ππ* state of the isolated
chromophore, the TPA activity is symmetry forbidden. Any
method yields the correct exact result (δTPA

isol = 0), which is not
the case of the complex. Note that for the second ππ*, for
which the TPA activity is symmetry-allowed for both the
isolated chromophore and the complex, δTPA

isol changes from
724.1 to 698.9 atomic units if the basis set changes from d-aug-
cc-pVTZ to d-aug-cc-pVQZ but the shift changes by only 0.3
atomic units.
For the second ππ* state, the TPA cross section shifts

evaluated using the two largest basis sets (d-aug-cc-pVTZ and
d-aug-cc-pVQZ) and EOM-CCSD and ADC(2) methods vary
within a narrow range (from −19.5 to −21.0 atomic units).
Such accuracy involves, however, significant computational
costs. The numerical values: Δϵsecond ππ* = −0.184 eV and
ΔδTPAsecond ππ* = −20.7 atomic units represent ideal targets for
embedding methods. The effect of the environment is
noticeable and significantly larger than the scatter of the shifts
obtained with the largest considered basis sets and the two
correlated methods. Using such a big basis set does not assure
similar confidence level for the first ππ* state. At d-aug-cc-
pVTZ, EOM-CCSD and ADC(2) shifts agree quite well (17.2
vs 23.7 atomic units). Unfortunately, the further increase of the
basis set to d-aug-cc-pVQZ increases the ADC(2)-derived shift
from 23.7 to 35.9 atomic units. It is worthwhile to notice that
the conventional counterpoise technique to account for the
incompleteness of the basis sets36,59 does not reduce this
difference (see Supporting Information). Reaching accuracy of
the shifts below 10 atomic units seems, therefore, to be out of
reach for routine calculations using high-quality correlated
methods applied within the supermolecular strategy. The 10
atomic unit accuracy threshold is probably not needed for
interpretation of the experimental data on TPA activities in
most cases. In the case of the second ππ* state, which is
symmetry-allowed in the isolated chromophore, the absolute
TPA cross section is about 30 times larger than the shift itself.
We target such a high accuracy for the identification of the key
factors determining the effect of environment on the TPA
activities. The shifts are actually equal to the absolute TPA
cross sections if the transition is symmetry-forbidden in the
isolated chromophore. Moreover, such accuracy is indispen-

sable for the sake of identification of the source of errors in the
used FDET-based method. The subsequent sections concern
the accuracy and numerical stability of the shifts obtained from
embedding methods.

4.2. Vertical Excitation Energies and TPA Cross
Sections from Exact Coulomb- and PC-Embedding
Potentials. In these cases, the embedding potential comprises
only the classical electric potential generated by the continuous
or discrete charge distribution. The quantum-mechanical
effects on the embedded wave function, which are represented
by means of the potential vxct

nad[ρA, ρB](r) in FDET, are
neglected entirely. Usually, the electrostatic potential is not
evaluated from the charge density but using simpler methods:
from atomic net charges and from multicenter multipole
expansion (including electronic polarizability or not), for
instance. In continuum methods, it comprises also contribu-
tions from the reaction field. If the exact charge densities are
used for this purpose, the electrostatic potential is given as:

ρ ρ ρ[ ] ≈ ‐v v vr r, ; ( ) ( ) ( independent)emb
FDET

A B B emb
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In PC embedding methods, this potential is simplified
further
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vemb
PC (r) is the simplest embedding approximation applied
frequently in multilevel simulations. It is an approximation to
vemb
exactCoulomb(r). The net charges (qH and qO) used in this work
are derived from the electrostatic potential generated by ρB

isol(r)
by means of the CHELPG method.60 The net charges are
given in the Supporting Information. The potentials
vemb
exactCoulomb(r) and vemb

PC (r) coincide in the long-range limit
but differ qualitatively near the nuclei of the environment. This
qualitative difference is responsible for the numerical instability
of the results obtained using vemb

exactCoulomb(r) and such basis sets,
which extend to the environment.61,62 In both eqs 10 and 11
cases, the ME is used. We underline that the ME is invariably
linked to the Coulomb embedding (exact or simplified using
PC embedding) if used in multilevel simulations. Whereas
exact Coulomb embedding is considered in the present work
to address directly the effect of vxct

nad[ρA, ρB](r) on the
embedded wave function, PC embedding is considered for
reasons of practical nature. vemb

PC (r) is much simpler to evaluate
than the FDET embedding potential. Numerous studies and
applications showed its usefulness for simulating environment
effects on OPA properties. It is worthwhile to investigate in
detail how vemb

PC (r) performs for properties, which require using
correlated wave function-based methods combined with large
basis sets on properties depending on the quality of more than
two electronic states. Although indirectly, PC embedding also
includes the non-Coulombic effects on the wave function.
Reducing the continuous distribution of charge to just one
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negative charge on the nucleus leads to almost perfect
screening of the attractive potential due to the nuclear charge.
As a result, a collapse of the embedded wave function onto the
nucleus localized in the environment is hindered to some
extent. In FDET, vxct

nad[ρA, ρB](r) assures that not only such
collapse is avoided but assures that the corresponding
expression for the total energy is consistent with the
Hohenberg−Kohn theorem. Unfortunately, in the applied
method, vxct

nad[ρA, ρB](r) is approximated. It is not known a
priori, how these two ways treating non-Coulombic effects deal
with the challenges of predicting the environment effect on
TPA properties.
The complexation-induced shifts of the vertical excitation

energies are shown in Table 2. The shifts obtained from eq 10

reproduce fairly the reference values for each basis set except
the largest one (d-aug-cc-pVQZ for which the embedding
calculation applying vemb

exactCoulomb(r) leads to a large number of
excited states but none of the ππ* character, see Supporting
Information for some example states). The deviations from the
reference are small compared to the magnitude of the shifts
(the relative errors in the 4−32% range). This indicates a
spurious feature resulting from the neglect of nonclassical
effects in vemb

exactCoulomb(r) (see the subsequent section). In almost
all remaining cases, vemb

exactCoulomb(r) leads to the shifts
approximating better than vemb

PC (r) compared to the reference
shifts.
The shifts in the TPA cross sections obtained using the exact

Coulomb- and PC-embedding methods and different basis sets
are collected in Table 3 showing a failure of the exact Coulomb

embedding for simulating this property. In contrast to what
happened for excitation energies, where exact Coulomb
embedding led to the improvement compared to the PC
embedding in almost all cases, the calculated TPA cross
sections are erratic. The need including non-Coulombic effects
on the embedded wave function in order to reach numerically
stable TPA cross sections has long been recognized in the
literature (see the recent overview in ref 32, for instance). In
FDET, it is made through the vxct

nad[ρA, ρB](r) component of the
embedding potential. The shifts obtained from the PC
embedding are less erratic and agree well with the reference
ΔδTPA for the first ππ* state. The shift is, however, significantly
underestimated for the second ππ* state. Before moving to the
next section reporting the FDET results, it is useful to analyze
the origin of reported erratic TPA cross sections obtained by
the exact Coulomb embedding in more detail. To this end, the
natural transition orbitals63 for the two simplified embedding
approximations are shown in Figure 3 together with the
reference natural transition orbital. The reference hole natural
transition orbital and its embedding counterparts obtained
using the embedding potential given in either eqs 10 or 11 are
very similar. The particle natural transition orbitals obtained
with the two embedding potential feature, however, qualitative
differences. Equation 10 leads to a spurious lobe on the top of
the chromophore present in neither the supermolecular
reference nor in the eq 11 embedding cases. Near the C−C
bond, the reference particle natural transition orbital and both
orbitals obtained by means of electrostatic embedding differ by
being principally localized on only one carbon atom (see
Figure 3).

Table 2. Complexation-Induced Shifts of the Vertical
Excitation Energy (Δϵ, in eV) from Embedded ADC(2)
Calculations Using Different Embedding Potentials
Evaluated with ρB(r) = ρB

isolH2O(r): Exact Coulomb
Embedding (eq 10), PC Embedding (eq 11), and Linearized
FDET Embedding (eq 2)

basis set Δϵemb (eq 11) Δϵemb (eq 10) Δϵemb (eq 2)

First ππ* State
6-31 + G* −0.052 −0.077 −0.084
aug-cc-pVDZ −0.050 −0.063 −0.065
aug-cc-pVTZ −0.065 −0.056 −0.065
aug-cc-pVQZ −0.055 −0.070 −0.063
d-aug-cc-pVDZ −0.047 −0.084 −0.117
d-aug-cc-pVTZ −0.039 −0.055 −0.096
d-aug-cc-pVQZ −0.072 −a −0.087
ADC(2)/d-aug-cc-pVQZ reference ΔϵADC = −0.083
EOM-CCSD/d-aug-cc-pVTZ
reference

ΔϵCCSD = −0.066

Second ππ* State
6-31 + G* −0.077 −0.109 −0.121
aug-cc-pVDZ −0.080 −0.095 −0.132
aug-cc-pVTZ −0.091 −0.108 −0.150
aug-cc-pVQZ −0.099 −0.120 −0.165
d-aug-cc-pVDZ −0.114 −0.151 −0.183
d-aug-cc-pVTZ −0.117 −0.160 −0.199
d-aug-cc-pVQZ −0.119 −a −0.207
ADC(2)/d-aug-cc-pVQZ reference ΔϵADC = −0.184
EOM-CCSD/d-aug-cc-pVTZ
reference

ΔϵCCSD = −0.182

aNo ππ* states were found among the available 10 states obtained
with this potential.

Table 3. Complexation-Induced Shifts of the TPA Cross
Section (ΔδTPA, in Atomic Units) from Embedded ADC(2)
Calculations Using Different Embedding Potentials
Evaluated with ρB(r) = ρB

isolH2O(r): Exact Coulomb
Embedding (eq 10), PC Embedding (eq 11), and Linearized
FDET Embedding (eq 2)

basis set ΔδTPAemb (eq 11) ΔδTPAemb (eq 10) ΔδTPAemb (eq 2)

First ππ* State
6-31+G* 26.2 3.9 12.7
aug-cc-pVDZ 9.1 3.1 19.2
aug-cc-pVTZ 48.4 6.9 10.1
aug-cc-pVQZ 17.1 5.3 13.7
d-aug-cc-pVDZ 35.7 45.4 81.5
d-aug-cc-pVTZ 32.1 62.1 36.7
d-aug-cc-pVQZ 43.9 −a 24.1

ADC(2)/d-aug-cc-pVQZ reference ΔδTPAADC = 35.9
EOM-CCSD/d-aug-cc-pVTZ
reference

ΔδTPACCSD = 17.2

Second ππ* State
6-31 + G* 8.8 11.5 22.5
aug-cc-pVDZ −0.6 109.3 −62.0
aug-cc-pVTZ 17.0 85493.2 35.0
aug-cc-pVQZ 8.9 −42.0 −121.8
d-aug-cc-pVDZ −21.5 32.6 −82.9
d-aug-cc-pVTZ −8.0 −140.8 −25.6
d-aug-cc-pVQZ −6.0 −a −23.2
ADC(2)/d-aug-cc-pVQZ reference ΔδTPAADC = −20.7
EOM-CCSD/d-aug-cc-pVTZ
reference

ΔδTPACCSD = −19.5

aNo ππ* states were found among the available 10 states obtained
with this potential.
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4.3. Vertical Excitation Energies and TPA Cross
Sections from Linearized FDET. The results collected in
the previous section show clearly that the neglecting non-
Coulombic effects in the embedding potential, although
commonly used in multiscale simulations of OPA properties
of embedded chromophores cannot be used for reliable
prediction of TPA properties. In terms of intermolecular
interaction theory such as SAPT,64 in which the wave function
of the environment is available, the antisymmetrization
operator is missing. In terms of FDET, the numerical
instability of the TPA cross sections originates from neglecting
the nonelectrostatic component of the FDET embedding
potential vxct

nad[ρA, ρB](r). In the FDET-based method used
here, vxct

nad[ρA, ρB](r) is not treated exactly but it is
approximated by means of a simple analytic formula. This
approximation can lead to errors in the obtained properties as
compared to reference supermolecular calculations. The
deviations from the reference can arise also from the used
ρB(r). From the practical perspective, it is useful to explore also
the applicability of the ME, which (if applied) is the third
factor contributing to the deviations from the reference results.
The subsequent parts address these three sources of errors in
detail.
4.3.1. Simplest FDET Protocol: ME and ρB(r) from the

Isolated H2O Molecule. In this protocol, the embedding
potential is given by the bifunctional depending on ρA(r) and
ρB(r) given in eq 2, but evaluated at ρB(r) = ρB

isol(r)
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This choice of ρB(r) was made previously used for a large
class of embedded chromophores, where it was shown to yield
very small deviations from the reference shifts obtained from
the corresponding supermolecular calculations.41

For all considered basis sets, the FDET shifts of the
excitation energies agree very well with the corresponding
supermolecular counterparts (see Tables 1 and 2 column 3).
The deviations do not exceed 0.03 eV.
Neglecting the vxct

nad[ρA, ρB](r) component of the FDET
embedding potential worsens the shifts. For the largest basis
set, neglecting this component leads to several spurious states
none of them with the ππ* character.

The complexation-induced shifts of the TPA cross section
obtained from FDET show a stronger dependency on the basis
set as their reference counterparts (see Tables 1 and 3 column
3). For the largest basis sets (double augmented), the FDET
shifts approach monotonically the d-aug-cc-pVQZ limits. For
the second ππ* state, this limit agrees remarkably with its
reference counterpart (−23.2 vs −20.7 atomic units). For this
state, the reference ADC(2) shifts obtained using augmented
basis sets behave monotonically. The above result convergence
of the shifts obtained from FDET and supermolecular
strategies is especially significant taking into account that the
shifts obtained in EOM-CCSD calculations and the largest
used basis set (d-aug-cc-pVTZ) is very similar (−19.5 atomic
units).
For the first ππ* state, however, the reference shifts do not

behave monotonically and a jump from 23.7 to 35.9 atomic
units occurs if the basis set increases from d-aug-cc-pVTZ to d-
aug-cc-pVQZ. The corresponding FDET shifts are 36.7 atomic
units and 24.1 atomic units. Using the Coulomb embedding
potential given in eq 11, in which vxct

nad[ρA, ρB](r) is also
neglected, whereas the exact Coulomb component is
approximated by the potential due to the net atomic charge,
brings the shifts closer to both FDET and reference values.
Compared to the reference shifts, the FDET results are slightly
(the first ππ* state) or noticeably (the second ππ* state)
superior to the ones obtained using the PC embedding.
Neglecting vxct

nad[ρA, ρB](r) (embedding potential given in eq
10) results in several spurious states leading to meaningless
TPA cross sections at the photon frequency corresponding to
the second ππ* state. For this state, the PC embedding also
fails but less dramatically.
Figure 4 shows the effect of addition of vxct

nad[ρA, ρB](r) on
the particle natural transition orbital. For a full embedding
potential, in which vxct

nad[ρA, ρB](r) is included, the electron
density is well localized around the chromophore and
resembles closely to the corresponding orbital obtained in
the reference calculations (see also Figure 3). If this term is
neglected (embedding potential given in eq 10), the electron
density is more likely to be attracted by the nuclei of H2O
going through the slit in Figure 4b. The repulsion part (blue)
of the embedding potential in Figure 4a is more dark than in
Figure 4b.
Concerning the complexation-induced shifts of TPA cross

sections, going beyond Coulomb embedding is indispensable.
The results obtained with neglected vxct

nad[ρA, ρB](r) (exact
Coulomb embedding) are erratic if the basis set changes. The
shifts obtained using the other two embedding potentials (PC
embedding and FDET embedding) are also strongly basis set
dependent but agree within 13 atomic units for the two largest
basis sets. The magnitude of the effect of going from d-aug-cc-
pVTZ to d-aug-cc-pVQZ is about the same in reference
ADC(2) and in the two embedding methods (PC embedding
and FDET embedding): 12.2, 11.8, and 12.6 atomic units,
respectively, for the first ππ* state. For the second ππ* state,
the corresponding values are 0.3, 2.0, and 2.4 atomic units. For
the first ππ* state and the largest basis sets, both PC- and
FDET-embedding deviate from the ADC(2) reference by
about the same amount (8 atomic units and 11.8 atomic units).
For the second state, the FDET and ADC(2) reference values
agree within 2.5 atomic units and the PC embedding
significantly underestimates the reference shift (−6.0 vs
−20.7 atomic units). Interestingly, the results obtained with

Figure 3. Natural transition orbitals of the second ππ* state calculated
using the aug-cc-pVDZ basis set in different methodsthe reference
ADC(2) supermolecular calculations (a) and embedding calculations
with the embedding potential given in either eq 10 (b) or eq 11 (c).
The cutoff was chosen to be 0.05 (in atomic units) in all cases.
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the largest basis sets for vertical excitation energies show a clear
advantage of the FDET over PC embedding in both cases.
The residual deviations between the reference ADC(2)- and

“embedded ADC(2)” shifts in the OPA and TPA properties
evaluated using the d-aug-cc-pVQZ basis sets and the protocol
considered in this section can be attributed to following
factors: (i) the incompleteness of the basis set used in the
reference ADC calculations; (ii) the incompleteness of the
basis set used in the FDET calculations; (iii) the choice made
for ρB(r), i.e., ρB(r) = ρB

isol(r), which might lead to the
inequality

ρ ρ ρ ρ[ ] = ≤ [Ψ ] = [ + ]E E E E,v v v v
HK I I FDET(I)

A
I

B
isol HK

A
I

BAB AB AB AB

(13)

where EvAB
I is the exact energy of the state I, EvAB

FDET[ΨA, ρB] is
the FDET energy functional,40 and ΨA

I is a stationary solution
of eq 1; (iv) the used approximation vxct

nad[ρA, ρB](r) ≈
ṽxct
nad[ρA, ρB](r).
Concerning the third factor (point iii), the quality of both

sides of eq 13 is assured only if ρB(r) satisfies the condition

ρ ρ∀ ≥r r( ) ( )vr
I

BAB (14)

which cannot be determined a priori. The equality on the left-
hand side of eq 13 is assured by the Levy−Perdew theorem on

extrema of the Hohenberg−Kohn functional,45 whereas the
equality on the right-hand side by construction of the FDET
energy functional.40 In the case of the linearized FDET, the
equality holds only up to the quadratic terms in the density
difference between ground and excited states. FDET can,
therefore, provide only the upper estimate of the energy of
each state. It is worthwhile to notice that the difference of
energy in the two states might be exact even if the condition
given in eq 14 is violated for two states. Because the effect on
the total energy for a given state due to the chosen ρB(r) is
non-negative by construction, a partial compensation of errors
occurs always if energy difference is evaluated. This explains a
very small error in the excitation energies obtained using the
same approximations as the ones used in the present work in a
benchmark set of embedded chromophores50 even if the effect
of interactions with the chromophore is not taken into account
explicitly in ρB(r).
The third factor (point iii) has some relation to the effect

known in embedding methods based on the intermolecular
interaction theories or energy decomposition schemes as the
effect of electronic polarization of the environment.31,32 In
FDET, it can be modeled explicitly by means of the state-
specific optimization of ρB(r).

65 Keeping the same ρB(r) for
different states has this advantage that combined with
linearized FDET leads to a set of orthogonal wave functions,
which can be used in the response theory in a straightforward
manner. The differential polarization of the environment is
treated implicitly in FDET even if each embedded wave
function for different states is obtained using the same ρB(r)
for each state.57 If the ME is used, the total density can be
different for different states only in the ρA − ρB overlap region.
If the supermolecular expansion is used, the total density can
be different anywhere.
Concerning the fourth factor (point iv), it is impossible in

practice to disentangle the effect on the calculated shift due to
vxct
nad[ρA, ρB](r) ≈ ṽxct

nad[ρA, ρB](r) and due to the choice of
ρB(r). In FDET, that is, for the exact vxct

nad[ρA, ρB](r), the
infinite number of choices for ρB(r) leads to the same exact
total energy of a given state. The sufficient condition is the
satisfaction of the inequality given in eq 14 by the used ρB(r).
If vxct

nad[ρA, ρB](r) is approximated, even if this condition is
satisfied, the calculated energy is not exact and depends on
ρB(r). The two effects combine.
In the subsequent section, two refined protocols are used to

estimate the combined effect of these two factors and to
investigate the dependence of the FDET results on the choice
made for ρB(r).

4.3.2. Refined Treatments of ρA(r) and ρB(r) in FDET. In
the first refined FDET model, the complexation-induced shifts
of OPA or TPA properties are evaluated using the same
functional for the ρA-dependent embedding potential given in
eq 2 but evaluated at the freeze-and-thaw optimized ρB(r)
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The excited states are still evaluated at the same ρB(r),
which is optimized in the ground-state minimization of the
total energy functional for a given approximation to
vxct
nad[ρA, ρB](r).
The other refinement consists of using the supermolecular

expansion (eqs 5 and 6) for both ρA(r) and ρB(r). The

Figure 4. Particle natural transition orbital and the corresponding
embedding potential for the second ππ* state obtained by eq 12 (a)
or FDET embedding potential with the neglected vxct

nad[ρA, ρB](r)
component (b) using the aug-cc-pVDZ basis set. For the orbital, the
same cutoff of 0.05 (in atomic units) was used.
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supermolecular expansion makes it possible to take into
account the differential polarization of the total density not
only in the overlap region but in the whole space. Using the
basis sets centered on all atoms in the system allows detecting
the flaws of the used approximation for vxct

nad[ρA, ρB](r). The
optimized density ρB(r) minimizes not the exact FDET energy
functional but the approximated ones. On the other hand,
supermolecular expansion might be used as an ultimate
verifications of the numerical stability of the results as far as
the completeness of the basis set is concerned for the used
approximation to vxct

nad[ρA, ρB](r).
As a consequence of the variational character of FDET,

these refinements [optimization of ρB(r) or adding more basis
set functions] can only lower the total energy at each state for a
given approximation to ρB(r). For vertical excitations,
therefore, the effect of these refinements on excitation energies
can be both positive, negative, or cancel completely.
We start with the analysis of the complexation-induced shifts

of the excitation energies collected in Table 4 obtained using

the FDET embedding potential at different choices for ρB(r)
and different basis sets. Data collected in Table 4 show that
these refinements do not improve the shifts. Optimization of
ρB(r) affects negligibly the shifts of the excitation energies,
whereas the supermolecular expansion worsens them signifi-
cantly especially if smaller basis sets are used. For the largest
basis sets used, the shifts obtained by means of the considered
three variants of FDET are very similar. This remarkable
convergence of the FDET results has its origin in the
variational principle and parallels the trends for the interaction
energies.66

Turning back to TPA cross sections, data collected in Table
5 show that these refinements do not improve the results. The

optimization of ρB(r) affects the TPA cross sections rather
negligibly especially for the largest basis sets. The freeze-and-
thaw procedure leads to a slight increase of errors in the TPA
cross sections for the first ππ* state especially for smaller basis
sets. Supermolecular expansion, on the other hand, affects the
TPA cross sections more noticeably leading to unacceptable
errors for some basis sets. This, most likely, is due do the used
approximation for vxct

nad[ρA, ρB](r). The approximation used for
this component of the embedding potential might lead to a
change in the order of states of different symmetry. This
actually takes place if the d-aug-cc-pVDZ basis set is used. The
large discrepancy (82.6 au) between TPA cross sections
obtained using the supermolecular expansion and the reference
in the first ππ* state is due to the additional intermediate state
located just below the first ππ* state. As a result, δTPA increases
almost 5 times. The emergence of this additional state affects
also the δTPA for the second ππ* resulting in also a large
discrepancy (82.5 au).
Similar to the trend observed for excitation energy shifts, the

differences between the shifts obtained using the three
considered FDET protocols decrease with the increasing
basis set size. For the largest basis set used, shifts obtained by
means of the considered three variants of FDET approach each
other closely for both states, thus showing great numerical
robustness of FDET.
From the practical perspective, the comparison of the results

(complexation-induced shifts in the excitation energies and in
the TPA cross sections in the C2H4−H2O complex) obtained
by means of the three considered variants of FDET

Table 4. Complexation-Induced Shifts of the Vertical
Excitation Energy (Δϵ, in eV) from Embedded ADC(2)
Calculations Using the Linearized FDET Embedding
Potential (eq 2) Evaluated at Different ρB(r): ρB

isolH2O(r)
Density of the Isolated Water Molecule; ρB

FAT(r)Freeze-
and-Thaw Optimized Density; and ρB

isol−gh−H2O(r))Density
of the isolated Water Molecule Represented Using the
Supermolecular Basis Set for Both ρA(r) and ρB(r)

basis set
ΔϵFDET

[ρB
isol−gh−H2O]

ΔϵFDET
[ρB

FAT]
ΔϵFDET
[ρB

isolH2O]

First ππ* State
6-31 + G* −0.103 −0.087 −0.084
aug-cc-pVDZ −0.110 −0.070 −0.065
aug-cc-pVTZ −0.099 −0.068 −0.065
aug-cc-pVQZ −0.089 −0.066 −0.063
d-aug-cc-pVDZ −0.137 −0.123 −0.117
d-aug-cc-pVTZ −0.104 −0.100 −0.096
d-aug-cc-pVQZ −0.092 −0.090 −0.087
ADC(2)/d-aug-cc-pVQZ reference ΔϵADC = −0.083
EOM-CCSD/d-aug-cc-pVTZ reference ΔϵCCSD = −0.066

Second ππ* State
6-31 + G* −0.176 −0.125 −0.121
aug-cc-pVDZ −0.548 −0.139 −0.132
aug-cc-pVTZ −0.417 −0.156 −0.150
aug-cc-pVQZ −0.342 −0.171 −0.165
d-aug-cc-pVDZ −0.190 −0.191 −0.183
d-aug-cc-pVTZ −0.207 −0.229 −0.199
d-aug-cc-pVQZ −0.213 −0.215 −0.207
ADC(2)/d-aug-cc-pVQZ reference ΔϵADC = −0.184
EOM-CCSD/d-aug-cc-pVTZ reference ΔϵCCSD = −0.182

Table 5. Complexation-Induced Shifts of the TPA Cross
Section (ΔδTPA, in Atomic Units) from Embedded ADC(2)
Calculations Using the FDET Embedding Potential (eq 2)
Evaluated at Different ρB(r): ρB

isolH2O(r)Density of the
Isolated Water Molecule; ρB

FAT(r)Freeze-and-Thaw
Optimized Density; and ρB

isol−gh−H2O(r))Density of the
Isolated Water Molecule Represented Using the
Supermolecular Basis Set for Both ρA(r) and ρB(r)

basis set ΔδTPAFDET [ρB
isol−gh−H2O] ΔδTPAFDET [ρB

FAT] ΔδTPAFDET [ρB
isolH2O]

First ππ* State
6-31+G* 13.3 11.4 12.7
aug-cc-pVDZ 44.6 11.6 19.2
aug-cc-pVTZ 27.0 9.1 10.1
aug-cc-pVQZ 20.5 12.0 13.7
d-aug-cc-pVDZ 104.9 89.5 81.5
d-aug-cc-pVTZ 43.6 38.8 36.7
d-aug-cc-pVQZ 26.7 24.4 24.1

ADC(2)/d-aug-cc-pVQZ reference ΔδTPAADC = 35.9
EOM-CCSD/d-aug-cc-pVTZ reference ΔδTPACCSD = 17.2

Second ππ* State
6-31+G* 13.2 23.9 22.5
aug-cc-pVDZ −319.4 −119.5 −62.0
aug-cc-pVTZ −215.8 37.1 35.0
aug-cc-pVQZ −153.3 −42.6 −121.8
d-aug-cc-pVDZ −115.4 −89.1 −82.9
d-aug-cc-pVTZ −40.6 −26.7 −25.6
d-aug-cc-pVQZ −32.9 −22.3 −23.2
ADC(2)/d-aug-cc-pVQZ reference ΔδTPAADC = −20.7
EOM-CCSD/d-aug-cc-pVTZ reference ΔδTPACCSD = −19.5
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calculations provides useful guidelines for setting up a FDET
based multiscale simulation. The convergence can be reached
by either expanding the size of the basis sets in the ME to
include diffuse functions or by including basis functions
centered in the environment via the supermolecular expansion.
The observed convergence indicates that the first strategy
should be rather used if the evaluated property (such as the
TPA cross sections) requires a large basis set including diffuse
functions. The supermolecular expansion should rather be
avoided for evaluating the two-photon activities despite the
fact that it provides the implicit way to represent in FDET the
effects on the electronic state due to the polarization of the
environment by the embedded species.57 In summary, among
the considered three variants of FDET, in which ρB(r) is taken
from the isolated water evaluated within the ME used also for
ρA(r) appears as the most robust one. Ground-state
optimization of ρB(r) negligibly affects the TPA cross section.
The supermolecular expansion takes into the full account the
effect of state-specific polarization of the electron-density
everywhere in space but also makes the different stationary
states prone to different errors due to the used approximation
for vxct

nad[ρA, ρB](r) and is not systematically reducing the
deviations from the reference.
Finally, we turn back to the relation between the FDET and

conventional embedding methods. Table 6 collects the OPA

and TPA properties obtained using the simplest variants of two
embedding strategies: FDET and PC embedding. Excitation
energies are quite well described using the two embedding
methods. The relative errors of the PC-embedding-derived
excitation energy shifts are almost 3 times larger than the
corresponding errors of the FDET shifts. Because ME was used
in both cases, the quantum confinement effects are taken into
account implicitly. The smaller errors of the FDET shifts are
probably due to the implicit treatment of differential
polarization of the environment. For TPA cross section shifts,
the PC embedding fails for the second ππ* state. For the first
ππ* state, FDET shifts underestimate the reference value,
whereas PC embedding overestimates it. The magnitude of the
error in the FDET shift (11.8 atomic units) is actually larger
than that obtained using the PC embedding (8.0 atomic units).
We recall that for this excitation the reference ADC(2) value
might still not be completely converged.

5. CONCLUSIONS

The present studies demonstrate the limitations of the
conventional (supermolecular) strategy for simulating the
effect of environment on TPA properties of an embedded
chromophore. Unlike in the case of OPA, the high-end ab
initio-correlated methods lead to numerically unstable absolute
TPA cross sections and their shifts unless large basis sets
comprising diffuse functions are used. Even using high-quality
correlated methods in the supermolecular strategy and a rather
large basis set does guarantee obtaining numerically stable
results. For instance, the reference shifts of the TPA cross
sections obtained from EOM-CCSD and ADC(2) using d-aug-
cc-pVTZ differ from each other by as much as 6.5 atomic units,
whereas the change of the basis set from d-aug-cc-pVTZ to d-
aug-cc-pVQZ affects the TPA cross section by as much as 12.2
atomic units. The effects of the environment on the TPA cross
section of an embedded chromophore of a magnitude smaller
than the above values can rather not be expected to be a good
target for high-level simulations based on the supermolecular
strategy. For systems comprising a typical organic chromo-
phore together with several molecules representing its
condensed phase environment, the supermolecular strategy
applying such methods is not practical (if not possible at all).
The exploratory study performed for the C2H4−H2O

complex shows that the multilevel methods, based on FDET,
provide an alternative that is applicable for larger systems. For
the largest basis sets, the basic FDET protocol applying only
fundamental constants without system-specific parametrization
of the embedding potential and the simplest way to generate
ρB(r) leads to environment-induced shifts in the TPA
properties of a good or excellent accuracy: ΔδTPAFDET/ADC =
24.1 versus ΔδTPAADC = 35.9 atomic units for the first ππ* state
and ΔδTPAFDET/ADC = -23.2 versus ΔδTPAADC = −20.7 atomic units for
the second ππ* state. The remaining deviations from the
reference could be attributed to several factors: (i) the local
density approximation for vxct

nad[ρA, ρB](r), (ii) the choice of
ρB(r) corresponding to the isolated molecule representing the
environment, and (iii) the linearization of Exct

nad[ρA, ρB] with the
chosen expansion point ρA

ref(r). Whereas the last factor can be
expected to affect the quality of the FDET results negligibly
based on its small role in OPA properties, the first two
combine and cannot be separated. Improvements of
vxct
nad[ρA, ρB](r) will reduce the relative significance of the first
factor. The second one, on the other hand, depends very much
on a particular system (type of excitation and the character of
the chromophore−environment interaction). In view of
practical impossibility of disentangling the two factors and
surprisingly good results obtained using the applied first-
principle-based computational protocol, it can be recommen-
ded as the basic protocol providing the proper description of
the dominant effects in pair with the conventional super-
molecular strategy. The numerical values lie within the range
determined by the largest two basis sets applied in the
reference supermolecular ADC(2) calculations.
The computational effort in FDET-based calculations is

determined by the size of the chromophore rather than that of
the environment. The FDET results depend on the choice
made for ρB(r) but this dependency is rather weak in the
studied system. Owing to the vxct

nad[ρA, ρB](r) term, great
numerical stability of the FDET shift is achieved especially if
the largest basis sets are used. Without this term, the TPA
spectrum of excited states becomes meaningless if large basis

Table 6. Complexation-Induced Shifts of the Vertical
Excitation Energy (Δϵ, in eV) and TPA Cross Sections
(ΔδTPA, in Atomic Units) Obtained Using Different
Embedding Methods, the ADC(2) Treatment of Electron−
Electron Correlation, and the d-aug-cc-pVQZ Atomic Basis
Setsa

method Δϵfirstππ* Δϵsecondππ* ΔδTPAfirstππ* ΔδTPAsecondππ*

FDET −0.087
(+5%)

−0.207
(+12%)

24.1
(−33%)

−23.2
(12%)

PC embedding −0.072
(−13%)

−0.119
(−35%)

43.9
(+22%)

−6.0
(−71%)

ADC(2)
reference

−0.083 −0.184 35.9 −20.7

aFDET results are obtained at ρB ≡ ρisolH2O. In PC embedding, the
CHELPG charges60 generated for ρisolH2O are used. In embedding
calculations, ME (eqs 3 and 4) is used. Relative errors are given in the
parentheses.
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sets are used. Worsening the results if the supermolecular basis
set is used in FDET indicates, however, that improvement over
the used local density approximation for vxct

nad[ρA, ρB](r) is
needed to assure a complete numerical stability of the FDET
results as far as the finite basis sets are concerned. At the
present stage of development of approximations to vxct

nad[ρA, ρB]-
(r), the undesired effects of the deficiencies of this functional
can be eliminated by including only basis sets centered on
atoms in the chromophore as it is made usually in multilevel
simulations.
Good performance of the used approximations in describing

the complexation-induced shifts in the TPA cross sections
could be expected. Prior to the present studies, it was already
established that the magnitude of the errors in the individual
excitation energies due to these approximations rarely exceeds
0.05 eV for valence excitations in chromophores weakly bound
to the molecules in the environment.41,67,68

The used approximation for vxct
nad[ρA, ρB](r) and recom-

mended choice for ρB(r) have clearly defined the limits of
applicability as far as the amenable systems are concerned.
Local or semilocal approximations feature an artificial
enhancement of the repulsion between ρA(r) and ρB(r).

39 As
a result, neither choosing the isolated molecule density as
ρB(r) nor optimizing it could lead to the proper description of
the electronic structure of a species covalently bound to the
molecules in the environment. For the same reasons, if the
excitation involves transfer of the charge between subsystems,
these approximations are doomed to fail leaving many
interesting systems (see ref 37) out of reach.
Concerning the approximations in FDET applied in this

work, we notice that neither electronic polarization of the
environment nor intermolecular correlation giving rise to
London dispersion forces are taken into account explicitly.
Mutual polarization of the interacting molecules is taken into
account in FDET implicitly provided that the used basis sets
comprise the functions allowing for some overlap between
ρA(r) and ρB(r) even if the used ρB(r) is the electron density of
the isolated water molecule. The vxct

nad[ρA, ρB](r) component of
the FDET embedding potential represents all non-Coulombic
effects on the embedded density (and the embedded wave
function), including the ones due to the fermion statistics (via
its kinetic component) and due to the electron−electron
correlation. These two effects behave differently at large
separations. Taking into account the former is needed only if
the densities ρA(r) and ρB(r) overlap. Neglecting the kinetic
component may lead to spilling the charge density to the
environment (and vice versa) and to the enhanced mutual
polarization. No such effect has been observed in the largest
basis sets used indicating the adequacy of the local-density
approximation to vxct

nad[ρA, ρB](r). Concerning the intermolec-
ular correlation effects, semilocal approximations to
vxct
nad[ρA, ρB](r) neglect it completely in the absence of the
ρA(r) and ρB(r) overlap.
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Chapter 5

Excitation energies of embedded
chromophores from Frozen-Density
Embedding Theory using state-specific
electron densities of the environment

5.1 Motivation and outcome

In multi scale methods, the importance of considering the excitation induced polarization re-
sponse from the environment has been widely recognized. In the density embedding methods this
can be achieved by the use of the state-specific embedding potential. However, the use of the state-
specific density from the environment to the expression of the excitation energy lacks a clear and
established relation.

In the framework of FDET, starting from the Perdew-Levy theorem, and the recent formulation
concerning the exact relation between i) the FDET energy functional for the use of variationally
obtained single determinant form of the embedded wavefunction and the correlation energy obtained
by non-variational methods, and ii) the Hohenberg-Kohn energy functional, a general formula was
derived to achieve the exact relation for the excitation energy in case of state-specific density from
the environment. Each term in this formula has its physical meaning and can be obtained by a
suitable quantum mechanical method in any computational software. This formula was used to
demonstrated the effect of the explicit consideration of the state-specific polarization response from
the environment. We showed that the effect of explicit treatment of the polarization is usually at
meV level. Depending on the targeting property, such as the need for multiple excited states, the
user might choose the optimal strategy in evaluation of the excitation energy within the FDET
formal framework.

Reprint of the paper is provided in the following pages. [Fu M, Wesolowski TA, J. Phys. Chem.
A. 127, 535-545 (2023)]

Supporting information for this paper can be found in Appendix E.
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ABSTRACT: Starting from the Perdew−Levy theorem on extrema of
the Hohenberg−Kohn functional, the expression for the vertical
excitation energy is derived within the formal framework of Frozen-
Density Embedding Theory (FDET) that makes it possible to use state-
specific electron densities of the environment (ρB) of an embedded
species. The derived general expression involves the embedded wave
functions for ground and excited states that are orthogonal and is exact
up to quadratic terms in the appropriate density expansion. It can be
applied in practice using various methods differing in the treatment of
the electron−electron correlation for embedded electrons, the method
to evaluate different contributions to the excitation energy, the method
to generate state-specific ρB, and the approximation used for the non-
electrostatic component of the FDET embedding potential. The derived
expression is applied for 47 local excitations in 10 embedded organic chromophores. The explicit treatment of the differential
polarization of ρB improves indeed the accuracy of the excitation energy as compared to the implicit treatment in which the same ρB
is used for all states of embedded chromophore. For 47 local excitations in 10 embedded organic chromophores, the average
absolute errors in excitation energies drop from 0.04 to 0.03 eV and their standard deviations from 0.032 to 0.025 eV, respectively.
The maximal errors show similar trends.

■ INTRODUCTION
Multiscale numerical simulations are frequently used for
modeling localized excitations in condensed phase. A common
element in such simulations is the use of some embedding
operator (v̂emb) as an addition to the isolated-chromophore
Hamiltoninan (ĤA). The embedded NA electron wave function
is evaluated from the eigenvalue equation of the general form

H vN embA
[ + ] = (1)

Multiscale/multilevel in this context means that eq 1 not only
reduces a quantum N-body problem to NA electrons (with
NA≪ N) but also that the generation of v̂emb involves either
less expensive methods of molecular quantum mechanics or
methods beyond quantum mechanics. The embedding
operator v̂emb comprises usually atom-specific terms represent-
ing classical electrostatic interactions. The non-electrostatic
contributions to the total energy originating in the Fermi
statistic of electrons are taken into account either a posteriori
as a correction to energy or directly as a component of the
v̂emb. Concerning the electrostatic contributions, they might be
represented by means of net effective atomic charges, atomic/
molecular dipoles, and atomic/molecular polarizabilities, for
instance. The constantly growing body of numerical data
available in the literature indicate that taking into account the

electronic polarization in the electrostatic component of the
embedding potential is frequently indispensable if methods
based on eq 1 are used for evaluation of the electronic
excitation energies (see refs 1−14 for representative examples).
In methods featuring, besides the electrostatic component of
v̂emb, also a part representing the non-electrostatic effects on
the embedded wave function, this additional component of
v̂emb is constructed starting from various basic principles:
partitioning the wave function following the pseudopotential
strategy,15 partitioning the one-particle density matrix,16 or
partitioning the electron density.17 In the last case, the
embedding operator is multiplicative. Moreover, it is uniquely
determined by the charge densities�that of the embedded
species (ρA) and that of its environment (ρB); i.e., it is a
functional of these quantities. Such unique dependency makes
it ideally suited for multilevel simulations.18 Not only the
generation of ρB can be decoupled from the optimization of ρA
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but also the embedding potential can be generated by means of
an universal functional applicable for both atomistic and
continuum levels of description for the environment19,20 and
include even experimentally derived ρB.

21 In our original work,
a non-interacting reference system was used as the quantum
descriptor for embedded NA electrons optimized in the
constrained minimization of the Hohenberg−Kohn energy
functional Ev

HK[ρ].18,22 Frozen-Density Embedding Theory
(FDET) is based on the same principle, but the constrained
minimization is performed by means of optimization of other
descriptors: interacting wave function22 or one-particle spinless
reduced density matrix.23 Most recent addition to the formal
framework of FDET is the exact relation between Ev

HK[ρ] and
the correlation energy obtained form nonvariational meth-
ods.24 With this last addition, the formal framework of FDET
covers practically all methods of molecular quantum mechanics
which might be used to solve eq 1 and provides the exact
relations between Ev

HK[ρ], the stationary embedded wave
function, embedding potential, and�in the case of nonvaria-
tional methods�the correlation energy and correlation density
in a specific auxiliary system of NA electrons. Concerning
accessing the excited-state properties, FDET provides two
possibilities: either via other-than-the-lowest-energy stationary
solutions of the FDET eigenvalue equation (see the next
section) or via the Linear-Response Time-Dependent Density
Functional Theory.25

The present work builds upon the numerical experience
concerning such FDET-based methods, in which the density
ρB is generated without taking into account the effect of the
embedded chromophore on ρB. It was shown that such
treatment of ρB results in a rather accurate description of the
effect of the environment on the vertical excitation energies.26

If a state-independent ρB is used for all electronic states, the
electronic polarization of the environment is taken into
account implicitly. The implicit treatment might, however,
result in the error in the energy of each state. Following the
second Hohenberg−Kohn theorem, the FDET expression for
the energy yields the upper bound for the energy of each state
if an arbitrary ρB is used.22 For the vertical excitation energy,
the errors in the FDET energy of each state compensate at
least partially even if common ρB is used. Numerical results
show indeed that the errors in the FDET energies of each state
are larger than the errors in the excitation energies.26,27 The
compensation of errors is more complete in the case of FDET
than in the case of methods using electrostatic embedding only
because of the variational character of FDET and the
consistency of the FDET energy functional with the
Hohenberg−Kohn theorems. For the electrostatic-only
embedding potential, the limit on either the sign or the
magnitude of the error does not exist. Ricardi et al. showed
recently that the errors in the total energy of a given state can
be greatly reduced if the common for all states density ρB is not
that of the isolated molecules of the environment but the
density of these molecules polarized by the field generated by
the chromophore.27 From the practical application perspective,
the question arises, therefore, whether the reduction of the
errors in the total energy of each state leads to a systematic
reduction of errors for all states, improving thus the vertical
excitation energies. This question cannot be answered in a
straightforward and general manner. First of all, the electronic
polarization of ρB is an ill-defined concept. (Exact) FDET
equations yield the same total energy for different ρB.

28 The
generation of state-specific densities ρB relies thus on some

arbitrary choices. Moreover, if approximations are used for the
non-electrostatic components of the embedding potential, they
contribute also to the error of the energy in each state. This
error does not have to be the same in all states. Finally, the
numerical results obtained with a common ρB yield already
rather good vertical excitation energies. Our previous work
indicates that using a state-independent environment density
ρB for all electronic states is an adequate choice for excitations
localized in the embedded chromophore.26,29 For 351
excitations in 52 clusters, the average absolute error of the
excitation energy due to all approximations used in the FDET-
based method (including the use of state-independent ρB) is as
low as 0.039 eV.26 Neugebauer and collaborators explored the
potential benefits of using state-dependent ρB a method
sharing with FDET several elements.30−32 The used method
involved several approximations/choices concerning the
generation of state-dependent and state-independent ρB. The
obtained excitation energies were compared to their state-
independent counterparts for several embedded/solvated
chromophores. Generally a good performance of the state-
independent variant of the method was reported with the
errors below 0.1 eV with a few exceptions. For the π−π
excitation in PNA complexed in water, the error of state-
independent excitation energy was the largest (0.24 eV) and
was reduced to 0.002 or 0.09 eV in two types of state-
dependent methods to generate ρB. On the other hand,
calculations with state-dependent ρB worsened the results in
some cases.

In this work, we take a closer look at the potential benefits
from using state-dependent ρB in FDET-based methods in an
attempt to disentangle various factors contributing to the
errors in the final excitation energies. The results obtained with
a common ρB depend on the choice made for this density. On
the other hand, using a state-dependent ρB relies on the choice
of the method to generate ρB for each state. In any case, the
excitation energies are affected by the approximations used for
the functionals Exct

nad[ρA, ρB] and vxct
nad[ρA,ρB](r) in FDET (see

next section). In calculations using state-independent ρB, the
method used is based on the linearized variant of FDET
equations formulated33 and applied26 previously.

The present work is organized as follows, we start with
overviewing the key elements of FDET and deriving the
expression for the excitation energy in the case where different
ρB are used for different states. The derivation is presented
here for the first time. In the numerical results part, the errors
in the vertical excitation energies are analyzed for 47 local
excitations in 10 embedded organic chromophores evaluated
using either state-independent or state-dependent ρB. The
state-dependent densities ρB are generated using the electric
field generated by the embedded chromophore in the
corresponding state.

■ THEORY
We start with the notations and key elements of FDET
concerning electronic ground states. The formal framework of
FDET concerns different quantum mechanical descriptors
used for the embedded species. In each case, it is based on
constrained optimization of the energy of the whole system
(embedded species and the environment) expressed using the
Hohenberg−Kohn density functional Ev

HK[ρ]. If the quantum
descriptor for the embedded NA electron system is a Kohn−
Sham-like reference determinant (Φ(KS)

A), the exact relation
between the FDET energy functional and the Hohenberg−
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Kohn energy functional, involving (a) the optimal embedded
wave function Φo(KS)

A, (b) the not-optimized component of
the total density ρB, and (c) the embedding potential
vemb

FDET[ρA,ρB;vB](r) expressed as a functional of charge
densities, is given in refs 18 and 22. Similar relations for
embedded interacting wave function ΨA

o and one-particle
reduced density matrix (ΓA

o ) are derived in refs 22 and 23,
respectively. In all of the above cases, the FDET energy
functional Ev dAB

FDET[ΨA,ρB] satisfies the basic equality. For the
embedded interacting wave function, it reads as

E E E

E

min , ,

min

N
v A B v A

o
B v A

o
B

N
v

r

FDET FDET HK

( )

HK

A
AB AB AB

AB
B ABr r r

A

( ) ( )

[ ] = [ ] = [ + ]

= [ ]

(2)

The optimization of the embedded wave function proceeds
through solving the FDET eigenvalue problem:

H v v

v v v v

r r r

r r
r

r r
r r

( , ; ) (3)

( ) ( )

, ; ( ) ( )
( )

d , ( ) (4)

A A
j

B B A
j

A
j

A
j

A
j

i

N

i A
j

A
j

B B B
B

A
j

B

emb
FDET

1

emb
FDET

xct
nad

A

+ [ ] =

= | |

[ ] = +
| |

+ [ ]

=

where ĤA is the Hamiltonian corresponding to NA electrons at
an external potential vA(r) with NA < NAB; vA(r) is an
arbitrarily chosen component of the total potential partitioned

as vAB(r) = vA(r) + vB(r); and v r, ( )A B
E

rxct
nad ,

( )
A B

A

xct
nad

[ ] = |[ ]
= ,

where Exct
nad[ρA,ρB] is a functional determined uniquely by the

pair of electron densities ρA(r) and ρB(r) defined in ref 22.
The FDET energy functional Ev dAB

FDET[ΨA,ρB] reads as

E H v v

E v

E V

r r r

, , ;

, , ( ) ( ) d

v A B A A A B B A

A B A B A

v B A B

FDET
emb
FDET

xct
nad

xct
nad

HK

AB

B

[ ] = | + [ ]|

+ [ ] [ ]

+ [ ] + [ ] (5)

where

V v

r r r

r r r

( ) ( )

( ) ( ) d

A A
i

N

i A

A B A B

1

A

= | |

[ ] =

=

Due to the dependency of vemb
FDET[ρA,ρB;vB] on the embedded

wave function, the expectation value of vemb
FDET[ρA,ρB;vB] cannot

be interpreted as the energy of interaction between the
embedded species and its environment. As a consequence, the
eigenvalue λj in eq 3 is not simply related to the energy. For
nonvariational methods used to obtain λj from eq 3, the
expression relating the solution of this equation to Ev dAB

HK[ρ] was
derived recently.24 It is used in the present work to derive the
exact relation for excitation energy in the case of state-specific
ρB.

FDET was originally formulated for ground states. The
solution of eq 3, for which Ev dAB

FDET[ΨA
j ,ρB] has the lowest value,

corresponds to the ground state. If eq 3 yields more than one

solution, the other-than-the-lowest-energy solutions can be
interpreted as excited states on the virtue of the Perdew−Levy
theorem34 on extrema of EvdAB

HK[ρ] as pointed out by Khait and
Hoffmann.35 According to this interpretation, the excitation
energy equals the difference between the total energies given in
eq 5 evaluated for the embedded wave functions (ΨA

j and ΨA
o )

being the stationary solutions of eq 3:

E E E E

E E, ,

j
j o

v A
j

B v A
o

B

v A
j

B v A B

HK HK

FDET FDET o
AB AB

AB AB

= [ + ] [ + ]

= [ ] [ ] (6)

where ρA
j (r) = ⟨ΨA

j |∑i=1
NA δ(ri−r)|ΨA

j ⟩ and ρA
o (r) = ⟨ΨA

o |∑i=1
NA δ-

ri−r)|ΨA
o ⟩.

The first equality in the above equation originates in the
Perdew−Levy theorem34 on extrema of Ev dAB

HK[ρ]. It is exact if
the density ρB does not violate the non-negativity conditions of
the target density:27

r B v
j
AB (7)

and

r B v
o
AB (8)

where ρvdAB

j and ρv dAB

o are the exact densities for the whole system
for the two considered states. If the above conditions are not
satisfied, the energy given by eq 5 evaluated for each state
using the corresponding embedded wave function lies above
the exact one (it follows from the the second Hohenberg−
Kohn theorem and the basic equality of FDET given in eq 2).
The second equality in eq 6 follows directly from eq 2.
Excitation Energies from FDET with a State-Inde-

pendent ρB. The straightforward use of eq 6 is impractical for
two principal reasons. One is of a computational nature. The
self-consistency of the embedding potential and the embedded
wave function requires repetitive solution of quantum NA-
electron problem with different embedding potentials. Each
time a multideterminant form of the embedded wave function
must be used to take into account electron−electron
correlation. Moreover, such an iterative procedure must be
performed independently for each electronic state. The second
practical drawback of eq 6 is due to the fact that the stationary
solutions of the FDET eigenvalue problems ΨA

o and ΨA
j are not

expected to be orthogonal. They are solutions of a NA-electron
problem for two different external potentials. Using them to
evaluate the transition moments and/or in combination with
response theory must involve additional approximations.

The non-orthogonality problem can be circumvented by
means of linearization of Exct

nad[ρA,ρB]:
33

E E v

O

E v

r

r

, , ( ) , d

( )

, ( ) , d

A B A B A A A B

A B A A A B

xct
nad

xct
nad ref ref

xct
nad ref

eq 9 2

xct
nad ref ref

xct
nad ref

[ ] = [ ] + [ ]

+

[ ] + [ ] (9)

which is not only numerically robust but also eliminates the
need to perform independent calculations for each electronic
state. The contributions from beyond-the-linear terms remain
negligible for ρA

ref, being either the ground-state density of a
free chromophore or the ground-state density of the embedded
chromophore, for instance.36 Linearization of Exct

nad[ρA,ρB]
combined with the Perdew−Levy interpretation of extrema
of the Hohenberg−Kohn density functional leads to a very
simple relation between the eigenvalues obtained from eq 3, in
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which embedded wave-function-independent potential
vxct

nad[ρA
ref,ρB] is used in eq 3 instead of vxct

nad[ρA
x ,ρB] with x = 0

or j:33

E E E E, ,

, ,

j
j o

v A
j

B v A
o

B

j A B o A B

FDET(lin) FDET(lin)

ref ref
AB AB

[ ] [ ]

= [ ] [ ] (10)

where Ev dAB

FDET(lin)[ΨA,ρB] differs from Ev dAB

FDET[ΨA,ρB] by replacing
Exct

nad[ρA,ρB] by Exct
nad[ρA

ref,ρB] + ∫ (ρA − ρA
ref) vxct

nad[ρA
ref,ρB] dr.

The eigenvalues λj[ρA
ref,ρB] and λo[ρA

ref,ρB] correspond to
different stationary solutions of eq 3 for for the same effective
potential (v) which does not depend on ΨA and is given as

v v vr r
r r
r r

r r( ) ( )
( ) ( )

d , ( )AB
A B

xct A B

ref
nad ref= +

+
| |

+ [ ]

(11)

Any correlated method (variational and nonvariational), which
yields excitation energies for NA electrons in a fixed external
potential, can be used to obtain the difference λj[ρA

ref,ρB] −
λo[ρA

ref,ρB] . For the absolute energy (Ev dAB

FDET(lin)[ΨA
x ,ρB], x = 0 or

j), the availability of the eigenvalue λx]ρA
ref,ρB] is not sufficient.

Excitation Energies from FDET with State-Specific ρB.
As in the previously considered case, we start with eq 6 relating
the excitation energy to the extrema of the Hohenberg−Kohn
energy functional and to the corresponding energies given by
EvdAB

FDET[ΨA,ρB]). If different ρB are used for different states,

E E E E

E E, ,

j
j o

v A
j

B
j

v A
o

B
o

v A
j

B
j

v A
o

B

HK HK

FDET FDET o

AB AB

AB AB

= [ + ] [ + ]

= [ ] [ ] (12)

The straightforward application of the above formula is not
practical for the same reasons as in the case of a state-
independent ρB discussed in the previous section. The
requirement that the embedded wave function has an adequate
multideterminant form (full CI form in the exact limit) can in
principle be avoided in both cases. For embedded wave
function of a truncated CI form, the corresponding FDET
energy functional differs from the one given in eq 5 (see ref
22). In the case of an embedded single determinant, the
corresponding FDET energy functional comprises the
correlation functional Ec[ρA]. As a consequence, the
embedding potential comprises also its derivative�correlation
potential. Both possibilities�the use of full CI form of the
embedded wave function or the use of the correlation potential
in the embedded single-determinant case�are impractical: the
former due to the involved computational costs, whereas the
latter due to the absence of good approximations for the
functional Ec[ρ] and its functional derivative in particular.

The linearization of Exct
nad[ρA,ρB] can be made as in the case

of a state-independent ρB discussed in the previous section, but
it will not result in the cancellation of the corresponding terms
in the FDET energy if ρB differs for different states. A formula
similar to that given in eq 10, which would involve only
eigenvalues, does not exist, as the result.

The use of the correlation potential can be eliminated owing
to the recently developed exact equality, which relates the
quantities obtained in computationally efficient methods to

treat electron−electron correlations with the Hohenberg−
Kohn functional. In the case of the embedded wave function of
the single-determinant form (ΦA′) and the correlation energy
obtained by means of some nonvariational method, this
relation reads as (eq 38 in ref 24):

( )
E E E

f

O

r r r r r r

,

( ) ( ) , ( , ) d d

( )

v A B v A B v

A v A B

HK FDET c

c
xct
nad

eq 13 2

AB AB
[ + ] = [ ] +

[ ]

+ (13)

where ρA(r) is the density obtained from the exact solution of
eq 3, ρA′ (r) = ⟨ΦA′ |∑i=1

NA δ(ri−r)|ΦA′ ⟩, v′(r) = vA(r) +
vemb

FDET[ρA′ ,ρB;vB](r), ΦA′ is the stationary single determinant
obtained with the potential v′, Ev′c is the correlation energy in
the NA-electron system defined by the potential v′,
f r r, ( , )A B

E

r rxct
nad ,

( ) ( )
A B

A A

2
xct
nad

[ ] = [ ]
, and Δρv′c is the correlation-

induced change of the electron density, and Oeq 13(Δ2ρ)
collects all contributions to energy due to the effect of
correlation on density that are of higher order.

Note that, for a given vAB and ρB, eq 13 derived in ref 24
holds only for specific ρA, Ψ′A, v′, and Ev′c . It is this relation for
numbers, not a relation for functionals such as the basic FDET
equation given in eq 2. All quantities in the right-hand side are
available in practical calculations in which Exct

nad[ρA,ρB] is
approximated by some analytical expression (Exct

nad[ρA,ρB] ≈
Ẽxct

nad[ρA,ρB]). The energy given in the left-hand side
corresponds to the total energy ρAB(r) = ρA(r) + ρB(r) . The
density ρA(r) differs from ρA′(r) . The former is the stationary
density obtained self-consistently using NA-electron functions
of the full CI form, whereas ρA′(r) is the stationary density
obtained self-consistently using NA-electron functions of the
single-determinant form AND with the neglected vc[ρA]
component of the FDET embedding potential.

Neglecting the higher-order contributions to energy O(Δ2ρ)
in eq 13 makes it possible to reduce significantly the
computational effort needed to evaluate the absolute energy.
The iterative evaluation of the embedded single determinant is,
however, still needed in order to satisfy the condition of self-
consistency of the embedded wave function and embedding
potential. For excitation energy, such self-consistent solution of
the FDET eigenvalue problem is made independently for the
ground and the excited states. Once the self-consistent optimal
determinants corresponding to the two electronic states are
obtained, the excitation energy is given by inserting eq 13 into
the second line of eq 12.

In the following considerations, a further approximation is
made. Exct

nad[ρA,ρB] is linearized near some ρA
ref. This leads to a

significant further simplification of eq 12. The term in the
right-hand side of eq 13 depending on the kernel f xct

nad

disappears upon linearization of Exct
nad[ρA,ρB]. The final

expression for the excitation energy is obtained from the
second line of eq 12 upon addition and subtraction of
Ev dAB

FDET[ΨA
o ,ρB

j ] (see the full derivation in the Supporting
Information) and by use of eq 13 for the total energy of
each state reads as
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where Φ′o(j) is the ground-state Slater determinant for the NA-
electron system in the external potential equal to v′j = vA +
vemb

FDET[ρA
ref,ρB

j ;vB], Φ′o(o) is the ground-state Slater determinant
for the NA-electron system in the external potential equal to v′o

= vA + vemb
FDET[ρA

ref,ρB
o ;vB], and ρA

ref is the density used for
linearization of Exct

nad[ρA,ρB].
For self-consistent ρA

ref and Φ′o(j), i.e., if ρA
ref(r) =

⟨ΦA′o(j)|∑i=1
N

Aδ(ri−r)|ΦA′o(j)⟩, the excitation energy given by eq
14 (ϵj[ρA

ref,ρB
j ,ρB

o ,vAB]) satisfies the following equality:

E E

v O O, , , ( ) ( )

v A
j

B
j

v A
o

B
o

j A B
j

B
o

AB

HK HK

ref eq13 2 eq9 2
AB AB

[ + ] [ + ]

= [ ] + +
(15)

The equality given in eq 15 assures that the energy evaluated
according to it is free from over- or undercounting any
contributions to the energy (up to small terms of the O(Δ2ρ)
order). Since the equality given in eq 14 holds only if ρA

ref(r) =
⟨ΦA

o′(j)|∑i=1
NA δ(ri−r)|ΦA′o(j)⟩, i.e., if the embedding potential and

the embedded wave functions are self-consistent. The
procedure such as the one used in ref 36 can be used for
this purpose. Note that owing to the relation given in eq 13,
the condition of self-consistency between vemb[ρA,ρB;vB] and ρA
is required only at the Hartree−Fock level and results only in
small deviation from the energy given by the Hohenberg−
Kohn functional in the order of Oeq 13(Δ2ρ).24 Our previous
work shows also even the computational effort due to this
condition can be avoided owing to the linearization of
Exct

nad[ρA,ρB] in the considered type of systems and the used
approximations for Exct

nad[ρA,ρB]. If the ρA
ref used in eq 9 is the

density of the Hartree−Fock density of the isolated
chromophore, neglecting the higher-than-linear terms in the
expansion results in errors in the total energy rarely exceeding
0.001 eV.36 They are thus more than 1 order of magnitude
smaller than the magnitude of errors, which are the subject of
the analysis of the present work. In the numerical examples
given in this work, the discussed energies are obtained from the
first iteration. The subsequent iteration starting from ρA

ref being
the Hartree−Fock density of the isolated chromophore affects
the excitation energies by less 0.002 eV at the most.

Equation 14 is particularly suitable for multilevel simu-
lations. All terms in the right-hand side of eq 14 can be
evaluated at the desired accuracy by means of an appropriate
method for each of them.

• ϵj
A = Ev′j

j − Ev′j
o is the excitation energy for the system of

the NA-electron system in the external potential equal to
v′j = vA + vemb

FDET[ρA
ref,ρB

j ;vB]. The potential v′j does not
depend on the embedded wave function. The ϵj

A

component of the excitation energy can be, thus,
obtained from any conventional method of molecular

quantum chemistry describing adequately the excited
state of the system of interest.

• ϵj
B = Ev′j

o − Ev′o
o is the difference between ground-state

energies for two NA-electron systems defined by two
different external (embedded wave function independ-
ent) potentials: vA + vemb

FDET[ρA
ref,ρB

j ;vB] and vA +
vemb

FDET[ρA
ref,ρB

o ;vB]. For each potential, the ground-state
energy is represented as the sum of the Hartree−Fock
and correlation energy. ϵj

B can be obtained from any
conventional method of molecular quantum chemistry
adequate for obtaining ground-state energies for the
system of interest.

• ϵj
C is a residual component due to nonlinear dependence

of Exct
nad[ρA,ρB] on ρB. This term could be in principle also

subject to the linearization approximation by expanding
Exct

nad[ρA,ρB] around some ρB
ref. Such an expansion is not

made here as it does not lead to any computational
advantages. Moreover, although Exct

nad[ρA,ρB] is symmetric
with respect of exchanging ρA with ρB, the corresponding
functional derivatives are not. The adequacy of
linearization of Exct

nad[ρA,ρB] with respect to ρA does not
imply, therefore, that the same can be made for ρB. Its
magnitude might be also affected by the approximation
used for Exct

nad[ρA,ρB].
• ϵj

D represents a “strain”�the energy needed to change
the density of the environment from ρB

o to ρB
j without

changing the external potential (position of nuclei for
instance). In multilevel simulations, the change from ρB

o

to ρB
j might reflect the differential electronic polarization

of the environment due to the change of the electronic
state of the embedded species. In such a case, ϵj

D has a
simple interpretation and the evaluation of ϵj

D does not
involve the quantum mechanical level of description. It is
the energy expense needed to polarize an atom or
molecule (case of atomic or molecular polarizabilities in
QM/MM type of simulations) or to polarize a volume
element (case of continuum models). ϵj

D can be also
evaluated using a quantum mechanical method (see
Miscellaneous Computational Details) as it is made in
the present work.

• ϵj
E is the contribution to the excitation energy due to the

effect of changing ρB on its interaction with the nuclei of
the embedded species. The evaluation of this term is
straightforward regardless of whether ρB is obtained
from quantum or classical levels of description.

Protocols to Generate ρB in FDET Calculations of
Vertical Excitation Energies. We start with the observation
that in FDET the embedding potential is state-dependent even
if the same density ρB is used for each state of the
chromophore. Its vxct

nad[ρA,ρB] component depends on the ρA
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which corresponds to the embedded wave function. This kind
of state-dependency results in non-orthogonality of the
embedded wave functions for different states. The amount of
the overlap between the functions for different states depends
on the system and the used approximation for vxct

nad[ρA,ρB].
Dresselhaus and Neugebauer showed that the violation of
orthogonality is not numerically significant in the considered
model systems. For the sake of evaluation of the transition
moments, the violation of the orthogonality could be thus
ignored.32 In the present work, we deal with this source of non-
orthogonality in a more general and system-independent way.
In all methods considered in this work, state-dependency of
the FDET embedding potential arising due to its dependency
on the embedded wave function (see eq 3) was eliminated
owing to the linearization of Exct

nad[ρA,ρB] proposed in ref 33,
which was shown to lead to negligible errors36 that are due to
higher-than-linear contributions in the expansion of
Exct

nad[ρA,ρB]. The used protocols differ, however, in the
treatment of state-dependency of ρB and are described
below. In all of them, ρB was obtained form Hartree−Fock
calculations but with different polarizing potentials added to vB.

• Protocol A: It is a basic protocol in which ρB
corresponds to the density of the molecules in the
environment that is not affected by the interactions with
the embedded species at all. It was used in ref 26 to
evaluate 351 excitations in 32 representative clusters,
each comprising a chromophore and a few non-
covalently bound molecules considered as the environ-
ment in FDET. In this set, the complexation-induced
shifts in the vertical excitation energy (Δϵ) vary from
−0.7 to 1.5 eV, whereas the mean absolute error (δϵ) of
the excitation energy is equal to 0.039 eV.

• Protocol B: This protocol represents a refinement of
Protocol A.37 A common ρB is still used, but the
interactions with the embedded species are taken into
account explicitly in a pragmatic way. The external
electric field generated by the isolated chromophore in
its ground state is used to polarize the environment.

• Protocol C: This protocol is similar to Protocol B, but
the prepolarizing field is not generated by the isolated
chromophore in its ground state but rather the average
of the fields corresponding to the 11 lowest electronic
states of the isolated chromophore.

• Protocol D: FDET equations are solved independently
for each state. In each case, ρB is prepolarized by the
field generated by the isolated chromophore in the
corresponding electric state as introduced in ref 37.

• Protocol E: This protocol requires a prior calculation
following Protocol B. The prepolarization stage is
repeated but with the prepolarizing field corresponding
to the embedded (not isolated as in the case of Protocol
D) chromophore. The difference between the prepola-
rizing charges in Protocols D and E is used as a measure
of self-consistency of the final solution. In principle,
Protocol E can be used iteratively until full self-
consistency between the field polarizing ρB and that
obtained from the embedded wave function is reached.

Protocols A−C are computationally attractive. The FDET
eigenvalue problem is solved only once with a common
embedding potential for each and every state. As a result, the
eigenfunctions are orthogonal and can be used in a
straightforward manner to obtain transition moments or to

be used in response-based formalisms.29 The polarization of
the environment (either state-specific or not) is taken into
account implicitly if the densities ρA and ρB do overlap. The
implicit treatment is not complete if the exact total density
corresponding to any of the involved states is locally smaller
than ρB used in the evaluation of the embedding potential.37 If
the basis sets centered on separate subsets of atoms are used
for the embedded species and for the environment, the
contribution to the excitation energy due to the differential
polarization of ρB is completely neglected. Protocol C takes
into account the effect of interaction between the chromo-
phore and the environment in an average way. It is a protocol
not explored previously. It could be expected to combine the
attractiveness of a method in which a common embedding
potential with the average treatment of the environment
response. Protocols D and E are computationally more
demanding because the quantum NA-electron problem has to
be solved independently for each excited state. Although the
embedded wave functions for different excited states might be
non-orthogonal, each excited state is orthogonal to that of the
ground state (see eq 14).

■ MISCELLANEOUS COMPUTATIONAL DETAILS
The FDET vertical excitation energies and their super-
molecular counterparts were obtained using the Q-Chem38

program. In all calculations the cc-pVDZ basis sets were
used.39 For checking the soundness of the reported numerical
results, some calculations were repeated using augmented basis
sets. The second-order Algebraic Diagrammatic Construction
(ADC(2)) method was used to evaluate vertical excitation
energies for reference supermolecular calculations.

The individual components of the excitation energy defined
in eq 14 are evaluated using the different methods. ϵj

A was
obtained from the ADC(2) calculations. For ϵj

B, the second-
order Møller−Plesset theory was used. For ϵj

D the Hartree−
Fock energies were used. Since the polarized density was
always obtained from the Hartree−Fock calculations, this
choice assures that the reference supermolecular ADC(2) and
embedding calculations yield the same excitation energies at
the dissociation limit.

In FDET, the basis sets used for ρA and ρB were restricted to
the ones centered on atoms defining vA and vB, respectively
(monomer expansion40).

Decomposable local-density approximation was used for
each component of vxct

nad[ρA,ρB](r) defined in ref 22, the Slater−
Dirac functional41 for exchange, Vosko−Wilk−Nusair para-
metrization42 for correlation, and Thomas−Fermi43,44 func-
tional for the kinetic component, whereas its vc[ρA](r) part was
neglected to satisfy the condition at which eq 13 is applicable.
The reference density made for ρA

ref is the ground-state density
of the isolated chromophore obtained from the wave function
given in the first-order Møller−Plesset perturbation theory.

Atomic charges were generated from the electron density
obtained from the first-order Møller−Plesset perturbation
theory using the CHELPG method45 based on fitting them to
the electrostatic potential.
Embedded Chromophores. The clusters chosen for the

present analysis form a representative sample differing in the
hydrogen-binding strength and arrangement. Each one consists
of a heterocyclic organic chromophore and up to five
molecules in its environment (see Figure 1).

The clusters were selected from a larger set of 52 clusters
used previously to estimate the overall errors in the vertical
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excitation energies localized in the chromophore due to the
approximations applied in the simplest FDET protocol
considered in the present work (Protocol A).26 The mean

absolute error in the vertical excitation energies (⟨|δϵ|⟩) for
351 assigned excitation in these clusters is equal to 0.039 eV.
Note that the error in shift of a given excitation energy due to
complexation δΔϵj is numerically equivalent to the error in the
excitation energy δϵj. The quantities Δϵj and ϵj differ by the
constant�excitation energy of the isolated chromophore. In
the selected subset of the data consisting of 47 excitations in 10
clusters, the complexation-induced shifts in the excitation
energies span the 0.5 eV wide range (−0.35 eV < Δϵ < 0.15
eV; see Results and Discussion), which is more than on order
of magnitude larger than the mean absolute error of the
excitation energy in the full set.

The geometries of the clusters are also taken from ref 26.

■ RESULTS AND DISCUSSION
Table 1 collects the average errors (⟨|δϵ|⟩) in the vertical
excitation energies due to the approximations used in FDET
(the approximation for the bifunctionals Exct

nad[ρA,ρB] and
vxct

nad[ρA,ρB](r) and the monomer expansion in the basis set)
and ρB generated using several protocols. For Protocol A, ⟨|δϵ|⟩
= 0.047 eV, the value which is slightly larger than the one
reported in ref 26 (0.039 eV) but which is still 1 order of
magnitude smaller than the range of the effect of the
environment on the vertical excitations in this set of reference
data. This also indicates that the chosen set of clusters does not
favor cases where the errors are small. The individual errors are
shown in Figures 2 and 3. The maximal error (0.159 eV)
occurs for the sixth excitation in the uracil−5H2O cluster for
which the complexation results in a red shift (−0.337 eV). For
red-shifted cases, Protocol A underestimates systematically the
magnitude of the shifts. Polarization of the environment
density ρB (Protocol B) by means of the electric field generated
by the isolated chromophore in its ground state leads to
smaller errors. ⟨|δϵ|⟩ drops from 0.0468 to 0.0395 eV. More
importantly, the standard deviations are reduced even more
(from 0.0414 to 0.0322 eV), which indicates that Protocol B
systematically improves the model. In some cases, the
magnitude of the errors increases compared to Protocol A
but the increase is rather small. Using the polarizing field
averaged over the 11 lowest states of the isolated chromophore
(Protocol C) leads, however, to the increase of errors ⟨|δϵ|⟩
from 0.0468 to 0.0527 eV. Similar deterioration of the result
was observed for a lower number of states used for averaging.
For this reason, such treatment of polarization of ρB was not
considered further. Protocol B emerges thus as the most
efficient among the ones which use the same embedding
potential for different states.

The simplest state-dependent embedding potential (Proto-
col D) leads to a small further reduction of the average
absolute error. Compared to Protocol B, ⟨|δϵ|⟩ drops from

Figure 1. Complexed organic chromophores. The molecules in the
environment described by means of ρB in FDET are specified in the
parentheses.

Table 1. Average Absolute Errors in the Vertical Excitation Energies (⟨|δϵ|⟩ ) due to the Approximations Used in FDET and
Different Choices of ρB

a

⟨|δϵ|⟩ (eV) for different choices of ρB

state-independent embedding potential state-dependent embedding potential

excitation type Protocol A Protocol B Protocol C Protocol D Protocol E

π−π* 0.0529 (0.0381) 0.0445 (0.0308) 0.0603 (0.0406) 0.0431 (0.0333) 0.0329 (0.0229)
n−π* 0.0208 (0.0261) 0.0185 (0.0222) 0.0208 (0.0220) 0.0104 (0.0200) 0.0177 (0.0276)
all 0.0468 (0.0414) 0.0395 (0.0322) 0.0527 (0.0418) 0.0384 (0.0337) 0.0300 (0.0258)

aStandard deviations are given in parentheses.
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0.0395 to 0.0384 eV. Interestingly, this overall improvement
leaves some cases behaving differently than the overall trend.
The most striking is the eighth state in the uracil−H2O cluster
for which δϵ increases from 0.105 to 0.167 eV. This anomalous
behavior occurs for the excitation for which the effect of
environment on the excitation energy is rather small (0.119
eV). The fact that the magnitude of the error for this excitation
is even larger than the complexation-induced shift is disturbing
and calls for a more detailed analysis.

We notice that the polarizing field takes into account the
effect of the environment on the chromophore in neither
Protocol B nor Protocol D. The results obtained using
Protocol E provide the interpretation of this anomalous
behavior. For the eighth excitation in the uracil−5H2O
complex, errors of the excitation energy (δϵ are equal to
0.101, 0.105, 0.167, and 0.082 eV for Protocols A, B, D, and E,
respectively). The failure of Protocols A, B, and D, in this case,
originates from the fact that the difference in the state-specific
polarizing electric fields cannot be represented sufficiently well

Figure 2. Complexation-induced shifts of vertical excitation energies (Δϵin [eV]) obtained using Protocols A, B, and C, to generate ρB used in
“embedded ADC(2)” calculations. n−π*excitations are shown in red. The reference shifts are obtained from conventional ADC(2) calculations.

Figure 3. Complexation-induced shifts of vertical excitation energies (Δϵ [eV]) obtained using Protocols A, D, and E, to generate different
densities ρB for “embedded ADC(2)” calculations. n−π* excitations are shown in red. The reference shifts are obtained form conventional ADC(2)
calculations.
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by just the redistribution of electron density occurring in the
isolated chromophore upon excitation. This can be illustrated
by comparing the net atomic charges used to polarize ρB in
Protocol D with the charges on the same atoms obtained in
Protocol D. The former corresponds to the excitation in the
isolated chromophore whereas the latter to the excitation in
the embedded chromophore. Actually, these two sets of atomic
charges differ the most in cases where Protocol E leads to the
largest improvement compared to Protocol D (see Table S3 in
the Supporting Information).

The main contribution to ϵj is from ϵj
A, which is of the same

order as the excitation energy itself (see Table S2 in the
Supporting Information). The next larger contributions are ϵj

B

and ϵj
D. Their magnitude is significantly smaller than that of ϵj

A.
Moreover, these two contributions have opposite signs, which
leads to an overall small “correction” to ϵj

A. ϵj
C affects negligibly

the excitation energy (it is smaller than 1.3 meV). The last
term ϵj

E representing the change of energy of the classical
electrostatic interaction between the nuclei of the chromo-
phore and ρB is small but not negligible (it reaches up to 0.044
eV).

In summary, Protocols A, B, D, and E represent a series of
systematically improvable approximations as indicated by the
monotonicity of the average absolute errors: 0.0468, 0.0395,
0.0384, and 0.030 eV, along this series.

■ CONCLUSIONS
The principal result of the present analysis is given in eq 14. Its
origin in the Perdew−Levy theorem on extrema of the
Hohenberg−Kohn functional together with the derived
recently FDET equality given in eq 13 guarantees that no
contribution to the total energy is either omitted or counted
twice. Two approximations are made in eq 14: (i) neglecting
O(Δ2ρ) and (ii) neglecting the higher-than-linear terms in the
expansion of Exct

nad[ρA,ρB] in ρA − ρA
ref. Equation 14 is a formal

result presented in this work for the first time. A wide spectrum
of methods can be used in its practical implementation. The
modeler can use it to select the optimal method from the
quantum chemistry toolbox to evaluate (a) the electronic
excitation for a given external potential (ϵj

A) and (b) the
ground-state energy of a system with a given external potential
(ϵj

B). The ϵj
D and ϵj

E contributions to the excitation energy can
be evaluated using either one of the computational chemistry
methods as it was made in the present work or without any use
of quantum mechanical descriptors of the environment.

Our previous work showed comprehensively that using ρB
corresponding to the ground-state density of the system
comprising only the molecules of the environment (branded
Protocol A in the present work), is a good starting point for
modeling localized excitations in FDET-based methods.26,29

The average absolute error due to approximations made in
FDET and the above choice of ρB is as small as 0.039 eV in the
case of 451 representative excitations considered in ref 26.
Protocol A rarely leads due to approximations made in FDET
exceeding 0.1 eV if used for localized excitations in
chromophores in noncovalently bound environments. The
accuracy thresholds in the excitation energy of the magnitude
of 0.04 eV or even 0.1 eV are acceptable for electronic
excitations for interpretation purposes and lie within the range
of intrinsic errors of the excitation energy obtained from
medium-quality methods of molecular quantum mechanics
such as ADC(2), EOM-CCSD.

The computational advantages of Protocol A are evident:
(a) combined with the linearization of Exct

nad[ρA,ρB] it guarantees
that embedded wave functions for different states are
orthogonal, (b) its numerical implementation is straightfor-
ward because it requires only feeding in the one-electron
component of the Hamiltonian to a software solving electronic
Schrödinger equation, (c) it is applicable for such multiscale/
multilevel simulations that do not use any quantum mechanical
descriptor for the environment opening this as a formal
possibility to use non-quantum-mechanical methods to
generate ρB, and (d) evaluation of the excitation energy uses
an approximation for the functional vxct

nad[ρA,ρB] without relying
on the approximation to Exct

nad[ρA,ρB].
The disadvantages of Protocol A lie in the fact that its

accuracy relies on compensation of errors due to the violation
of the non-negativity condition for the two target densities
corresponding to two considered states.27 It is, therefore, not
improvable in a systematic way. These errors compensate
efficiently because they are non-negative by construction but
might still leave room for improvement in order to go beyond
the 0.1 eV confidence level. If different densities ρB are used for
different states, the improvement of accuracy of the excitation
energies requires that the errors due to violation of the non-
negativity condition are reduced in both considered states. As
shown in ref 27, the error due to the violation of the non-
negativity condition for a given state can be efficiently reduced
by means of polarizing ρB with an external electric field
generated by the chromophore.

The present work shows that Protocol A can be improved
systematically. Concerning other choices for the state-
independent ρB polarizing it by the field generated by the
chromophore in its ground state (Protocol B) represents
already an improvement. Our attempt to find an optimal
density of the environment for state-independent calculations
in the form of the density obtained by polarizing it by a field
corresponding to the density of the chromophore averaged
over several lowest excited states (Protocol C) failed. Further
reduction of errors is possible not by other ad hoc choices of a
common density ρB but rather by using different ρB for
different states. Protocols A, B, D, and E represent a series of
methods corresponding to choices of ρB based on sound
physical assumptions. These choices lead usually to a
monotonic reduction of the overall errors in the excitation
energies. In some cases, the errors do not behave monotoni-
cally along the series. We attribute these exceptions to the fact
that the errors in the excitation energies are not only due to ρB
but also due to the approximation used for the functionals
(Exct

nad[ρA, ρB] and vxct
nad[ρA,ρB]), which might result in different

errors for different pairs ρA and ρB. We underline that the
errors due to the choice of ρB and due to approximations for
these functionals always combine in practice. Below the certain
threshold (0.015 eV in our case), disentangling their individual
contribution is not possible therefore. With Protocol A
remaining the most efficient computationally and straightfor-
ward in practice, Protocol E emerges as its recommended
improvement. It is comprehensively shown that the accuracy of
excitation energies obtained using Protocol E which reflects
differential polarization of ρB at different excited states are
superior to that obtained from Protocol B in which the
common ρB is used that takes into account the polarization
only for the ground state. The average absolute error drops
from 0.0395 ± 0.032 to 0.030 ± 0.026 eV. Especially
encouraging is the fact that not only the average absolute
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errors are reduced along this series but also their standard
deviations. The expense for this improvement is a significant
increase of the computational costs and the non-orthogonality
of the embedded wave functions corresponding to different
states. In the case of state-dependent ρB, the evaluation of
excitation energy for each state requires solving a quantum NA-
electron problem with a different external potential. As a result,
the computational effort scales linearly with the number of
states for which the excitation energy is evaluated. Given the
fact that the gain in accuracy although systematic is not
significant in absolute terms, the numerical examples provided
in this work indicate that the choice between state-
independent and state-dependent evaluation of excitation
energy within the FDET formal framework must be made on
the case-by-case basis. For most photochemical applications
and simulations of the emission spectra, the potential energy
surface for just one (the lowest) excited state is usually of
principal interest. In the case of Protocol E, the computational
effort in state-specific calculations is approximately doubled
which is still applicable.The built in orthogonality of the
ground and excited state makes it possible to evaluate the
transition moments in a straightforward manner. For
simulations of absorption spectra, on the other hand, state-
specific calculations might be not worthwhile for the effort
especially since the embedded wave functions for different
excited states will not be mutually orthogonal. The magnitude
of the effect of prepolarization on the excitation energy is
usually in the range of 0.01−0.03 eV and is a small correction
to the shifts evaluated without taking into account the
polarization of ρB explicitly. The errors drop further if the
polarization of ρB is state-specific�different field polarizing ρB
are used for different electronic states of the chromophore.
The magnitude of the drop in errors in such calculations is,
however, much smaller�a few meV usually. Since state-
specific polarization results in non-orthogonality of embedded
wave functions corresponding to different electronic state, such
calculations do not seem to be worth the additional effort. This
conclusion is in line with observations reported by Goodpaster
and collaborators.11

Finally, eq 14 can be applied for different methods to
generate state-specific densities ρB. In the present work, the
state-specific densities ρB were generated by means of
polarizing the density of the environment by the electrostatic
field generated by net atomic charges localized on the
embedded species. For small environments state-specific ρB
can be generated by inverting the role of the environment and
the embedded species in the FDET equations and doing it
either once or by means of the f reeze-and-thaw cycle.46 The
polarizing field comprising not only the electrostatic
component but the entire FDET embedding potential is
available in such a case. Such approaches have been proposed
and explored by Khait and Hoffman35 and Neugebauer and
collaborators.30,31 Performing the freeze-and-thaw cycle to
generate ρB is not practical if the size of the environment
exceeds significantly that of the embedded species and it is not
possible in multiscale methods, which use continuum
description of the environment19,20 or experimental electron
densities.21 Moreover, the freeze-and-thaw optimization of ρB
cannot be interpreted as the electronic polarization because the
change of ρB during such an optimization is the result of two
effects, none of them directly related to the polarization: the
reduction of the violation of the non-negativity condition of
the target density27 and the errors in the used approximation

for the non-electrostatic component of the FDET embedding
potential.46 The first effect is not uniquely defined in the
subsystem formulation of DFT17 (see ref 28).
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Chapter 6

Fine-tuning of entangled two-photon
absorption by controlling the
one-photon absorption properties of
the chromophore

6.1 Motivation and outcome

The classical photon pairs in two-photon absorption (TPA) can be replaced with the time-
frequency- entangled photon pairs (ETPA). However, ETPA phenomenon is not well understood in
both experimental and theoretical studies, such as the question of why some chromophores exhibit
large TPA activities in the classical case but no TPA activities in the entangled case.

The ETPA cross-section obtained quantum mechanically is not an absolute value but exhibits
periodic oscillations depending on the entanglement time. In certain cases, its magnitude drops to
several orders of magnitude, resulting in ETPA transparency. Our goal is to establish the relation-
ship between ETPA transparency and the electronic structure of the molecule. We found that the
electronic structure of the molecular sample, specifically the presence of two dominant intermediate
states, determines the oscillation of the ETPA cross-section. A simple relation based on the ETPA
transition amplitude was developed, which has the potential to switch on/off ETPA transparency
using only one-photon properties.

Reprint of the paper is provided in the following pages. [Fu M, D. Tabakaev, R. T. Thew, and
T. A. Wesolowski, J. Phys. Chem. Lett. 14, 2613-2619 (2023)]

Supporting information for this paper can be found in Appendix F.
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ABSTRACT: The detailed analysis of the sum-over-state formula for the entanglement-
induced two-photon absorption (ETPA) transition moment shows that the magnitude of the
ETPA cross-section is expected to vary significantly depending on the coherence time Te and
the relative position of just two electronic states. Moreover, the dependency on Te is periodic.
These predictions are confirmed by molecular quantum mechanical calculations for several
chromophores.

Since the seminal work of M. Göppert-Mayer on the two-
photon absorption formalism and its later generalization

for the case of entangled pairs,1−3 there have been multiple
attempts to describe the mechanism and properties of
entangled two-photon absorption (ETPA) .4−12 The interest
in ETPA was sparked by the potential for a significant increase
in efficiency for the absorption process compared to the
classical case. These studies have progressively tried to better
develop our understanding of this process, but have mostly
focused either on possible applications of ETPA, or the optical
part of the absorption/excitation process. Beyond this, there
has also been some work to find agreement between the
calculated ETPA cross-section values and the experimental
ones using numerical approaches with the aim of finding a
possible mechanism that would allow for the identification of
ETPA-sensitive molecules.13,14

In other studies, attempts have been made to put some
bounds on expected values to gauge why some experiments
observe ETPA and others do not.15,16 This was also motivated
by an attempt to understand the large variation−sometimes
several orders of magnitude - in the observed values for some
ETPA cross-sections,17 which built on the seminal work of Fei
et al.3 This focused on the connection between the observed
and microscopic cross-sections = fe AT

e

e
, where Te is the

coherence time, A is what is referred to as the entanglement
area, which, in practical terms, corresponds to the area of the
excitation beam,18 and f is a correction factor that takes into
account possible contributions such as the ratio between the
pump and entangled photon bandwidths.

Clearly, the factor ATe plays a fundamental role in the
efficiency of this process and exploiting that will be key for

practical schemes.19 However, another potential explanation
for the origin of the variations for the observed ETPA cross-
sections has been attributed to the so-called ETPA trans-
parency,3 which is also related, albeit quite differently, to the
photon pair coherence time Te, giving rise to an harmonic
behavior that connects the light−matter interaction. The aim
of this work is to relate the observed nonmonotonicity of
⟨σe(Te)⟩ to the properties of the chromophore, its excited
states in particular, in order to identify the origin of such
behavior.

The second-order perturbation11,20 of the light-matter
interaction Hamiltonian is given in its general form7,11

= +H t dE t( ) ( ) h.c. (1)

where d is the dipole-moment operator and E is an electric
field operator. In the experimentally relevant case, spontaneous
parametric down-conversion is used to generate the signal and
idler photons comprising, in general, energy-time entangled
pairs.21 Below, we consider only energy-time entangled pairs as
the most general case and do not take into account any other
degrees of freedom. A positive-frequency electric field operator
of such pairs is the sum of individual operators for signal and
idler22 given as
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=E t
cA

a( ) d
4

exp i t
1,2 1,2

1,2

0
1,2

1,2

(2)

where, a1,2 is the annihilation operator of signal and idler
photons with frequencies ω1,2, c is the speed of light, A is the
interaction area, and ϵ0 is a vacuum permittivity. The classical
TPA transition moments for two resonant photons are given
within the framework for the linear and quadratic responses23

as

= | | | | + | | | |
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Ç
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TPA
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For the entangled two-photon case, the corresponding matrix
elements are given as3

=

+
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(4)

where = | | | | =D k k f0k
a b a b

k
a

kf
b,

0 , i (i = x, y, or z) are
the Cartesian components of the dipole moment operator, |k
denotes the kth intermediate state, κk is the lifetime of the kth
intermediate state, and k

1,2 denotes the detuning energy

=k
k1,2 1,2.

From now we consider only the degenerate photon case in
eq 4, for which = = f1 2

1
2

and =k
k
1,2, where Ωf is

the resonance frequency for one-photon absorption. The

e T /2e
k

term in the numerator has a sufficiently minor
influence on ETPA cross-section that it can be neglected.14

Neglecting it leads to an approximate form of eq 4, which,
upon explicitly including the ground state |0 and final state |f ,
leads to the so-called “two-pathway”24 expression:
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(5)

If only the final state |f contributes to the sum, the ETPA
cross-section is proportional to the permanent dipole differ-
ence ff 00 in the ground and final states. This can be
considered as a “two-state model”. The square module of Ma b, ,
corresponding to the transition probability, oscillates rapidly
with a period equal to 4π/Ωf. If σe shows a periodic
dependence on Te, the period can be interpreted as the
oscillation period of the wave packet. These rapid oscillations
with a period in the order of a few fs lead to the entanglement-
induced TPA transparency. This happens usually for charge-
transfer excitations for which excitation energies of other
intermediate states are off resonance.

In eq 5, the coupling | · |Ma b,
2 between the polarization λ of

the incident light and the orientation of the molecules are not

considered and it gives the transition moment in the molecular
coordinate system. Taking orientation effects of the laboratory
and molecular system of coordinates into account yields the
rotationally averaged expression for the ETPA cross-section:25

= [ · + · + · ]* * *F M M G M M H M M1
30e

a b
a a b b a b a b a b b a

,
, , , , , ,

(6)

with F = G = H = 2 for parallel polarization of the light and F =
H = −1, G = 4 for the perpendicular polarization.

In order to identify the key element that determines the
oscillation period of the wave packet, we note that the
summation over a, b in eq 6 does not affect the detuning
energy. The oscillation period of the individual sin functions in
eq 5 affects only the weight in front of each periodic function.
The oscillation period of the averaged ETPA cross-section

Me a b,
2 can thus be determined as the following

compact equation:
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where = +D Dk
a b

k
a b

k
b a, , , .

Most of the previous analysis of the relation between the
molecular properties and the transition moments in the above
formula considered only three states, “three-state-model”.3

Below, we make a few observations concerning eq 7. If there is
only one intermediate state contributing to the sum-over-state
expression, this intermediate state can possibly mitigate the
transparency phenomenon. Because if the intermediate state
energy is close to the incident photon frequency, supposing

= 1/10k k f f
1
2

, then T1 = 4π/Ωf and T2 = 2π/Δk

show that the oscillation period can be 20 times larger than
that of permanent dipole pathway (the first term in the right-
hand-side in eq 5).

However, a detailed analysis on a more than “three-state
model” has not been made so far, and the relation between the
electronic structure of chromophores and Te has not been
established yet. Molecular quantum mechanics calculations
make it possible to access all relevant states in eq 7. To fill this
gap, we take a closer look at eq 7. The effect of multiple
intermediate states on the ETPA cross-section is represented
by the terms in the second term in the right-hand-side of eq 7.
Ma b,

2 is given by a sum of periodic functions of Te. In such a
case, the period of the slowest oscillations is determined by the

function with the longest period, which is
2

k k1 2 . The first

line in eq 7 usually does not affect the period of the slowest
oscillations.

The second term in the right-hand-side of eq 7 originates
from the coupling between different intermediate states. It
indicates a possible benefit of molecular quantum mechanical
calculations. They can determine the energies and transition
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moments for different intermediate states and, thus, the

smallest value of
2

k k1 2 for two dominant excited states.

Note that | |k k1 2
in the degenerate photon-pair case does

not depend on the incident photon frequency and only
depends on the excitation energy (ϵ) difference | |k k1 2

of
these two dominant excited states.

The above considerations suggest that a relatively simple
relation between the coherence time and | |k k1 2

could be
expected. In order to verify this, T( )e e has been evaluated for
several chromophores differing in their spectrum by the
number of intermediate states contributing to T( )e e and/or
their relative position on the energy scale of the one-photon
absorption levels with respect to the target state. To
demonstrate the possibility to control the period of T( )e e
by fine-tuning the one-photon absorption states, pairs of
systems were considered in which the position of the
intermediates states were perturbed by either intermolecular
interactions (free and complexed chromophores) or by the
chemical modification of the chromophore. In such a case, we
use the following convention Δdenotes the energy differences

= | |k k1 2
for nonperturbed chromophore and Δ′ for the

perturbed case.
The correlated excited state method of the Algebraic

Diagrammatic Construction (ADC) family in the second
order ADC(2)26 was employed to calculate the excitation
energies and transition dipoles. The correlation-consistent
augmented basis set aug-cc-pVDZ developed by Dunning and
Woon27 was used. In all sum-over-state expressions considered
in the present work, at least 10 electronic states were used.
This number of states was chosen based on the agreement of
the transition moments obtained from eq 3 truncated to either
10 or 20 states with the moments obtained from the matrix

inversion. For each considered chromophore, the analyses
were made for the final target state |f( ) chosen in such a way
that (i) the state shows a substantial TPA cross-section
compared with other excited states, for example, with the final
state of Ag or B2g symmetry in a D2h group; (ii) the same
orbitals are involved in the excitation in the corresponding
pairs of systems. The optimized structures of the molecules
and computational details are listed in the Supporting
Information. The pair of systems for which the analysis of
the dependence of ⟨σe⟩ on Te made in this section is
naphthalene (D2h symmetry) and 1-chloronaphthalene (Cs
symmetry). For naphthalene, the maximum ⟨σe⟩ = 5035 au
corresponds to S8 (Ag symmetry) for which Figure 1 shows
rapid oscillations of ⟨σe⟩ with the magnitude dropping 1 order
of magnitude in one cycle. According to the analysis of eq 7
given in the previous section, we can attribute the very short
oscillation period (1.4 fs) to only one intermediate state which
is S7 in case of naphthalene (see Figure 1). For 1-
chloronaphthalene, the oscillation period is extended to 27.3
fs with the peak ETPA cross-section reduced slightly to 4435
au. In this case, more intermediate states (S2, S6, S8) couple to
the final state (S8). As a result, the overall ETPA cross-section
fluctuates much less than that in the naphthalene case. The
additional intermediate states (S6 and S8) in 1-chloronaph-
thalene determine the slowest oscillation period of this
molecule. The ratio between the detuning energy of

naphthalene =( )S S S7 7
1
2 8 and Δ′(ϵS8 − ϵS6) of

1‑chloronaphthalene determines the ratio between the
oscillation periods for the two molecules. In this case,

= = 18.3
( )

S

S S

7

8 6
. The ratio of the oscillation periods

between 1-chloronaphthalene and naphthalene (see Figure 1)
is 17.3. The small deviation between the two numbers

Figure 1. ETPA cross-section of naphthalene and 1-chloronaphthalene molecule as a function of the coherence time Te, and the electronic structure
of the corresponding dominant intermediate states. The same target state in both molecules is considered. Color bar on the right indicates the
weight of each intermediate state contribution. The detuning energy =S S S7 7

1
2 8 for naphthalene and the energy difference Δ′ = ϵS8 − ϵS6

for 1-chloronaphthalene were considered.
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originates from the contributions of other less dominant
intermediate states.

In this section, we consider another type of perturbation of
the electronic structure of the chromophore which is due to
intermolecular interactions. The pairs of systems considered in
the discussion of the dependence of ⟨σe⟩ on Te are the free
chromophore and the chromophore in the complex. The same
geometry of the chromophore in the complex was used for the
calculation of the free chromophore in order to study only the
electronic effects. We found the most prominent environment
effect in benzaldehyde-2H2O complex of all systems, as shown
in Figure 2. In both free and complexed chromophores, several
intermediate states contribute to the final state. The ratio

= 6 was calculated with Δ(ϵS9 − ϵS5) for the free and Δ′(ϵS6

− ϵS4) for the complexed chromophore. For the evaluation of
the ratio, the excited state S6 of the free benzaldehyde
molecule was not considered because its contribution is
smaller than that of S5 (see Figure 2).

The maximum microscopic ETPA cross-section for the free
benzaldehyde molecule drops from 841 au to 408 au for the
benzaldehyde in the complex. The fluctuation of ETPA cross-
section is also reduced. The oscillation period for the free (6.9
fs) is 6.3 times shorter than that for the complexed
chromophore (43.6 fs). We point out that the sinusoidal
shape of the ETPA cross-section of this chromophore in the
complex (left corner in Figure 2) makes it most useful for
making predictions of cross-sections. It originates from a) the
small excitation energy difference between the state S4 and S6;
b) a state S4 with a much smaller weight than the state S6. In
the case of the small excitation energy difference, the weight
depends mostly on the transition dipole moment. The
magnitude of the transition dipole of state S4 is 18 times
smaller than the state S6.

Table 1 lists the target state |f , the maximum averaged
microscopic ETPA cross-sections ⟨σe⟩, the oscillation period P,

and the ratio determined from the difference in excitation
energies of the dominant intermediate states k1, k2 for all the
systems studied here. For all the chromophores, the maximum
ETPA cross-section is affected by the surrounding environ-
ment. Noticeably, all the chromophores have 1. The
period of the complexed chromophore is expected to be either
the same or larger than that of the free one. The larger is, the

Figure 2. ETPA cross-section of benzaldehyde and the benzaldehyde-2H2O complex as a function of the coherence time Te. On the right is the
electronic structure of the corresponding dominant intermediate states. The horizontal axis labels the target state |f for the chromophore in a free
and complexed form. Color bar on the right indicates the weight of each intermediate state contribution. Δ = ϵS9 − ϵS5 for the free and Δ′ = ϵS6 −
ϵS4 for the complexed were considered.

Table 1. Oscillation Period P (in fs) and the Ratio of the

Energy Differences ( ) between the Free Chromophore

and the Chromophore in the Complex for All Systems
= | |( )k k1 2

a

structures f k1, k2 ⟨σe⟩ period Δ/Δ′
ethylene S6 S1,S4 2792 6.1 1.0
ethylene-H2O S6 S2,S4 3005 5.9
pyrazine (D2h) S10 S14,S16 1464 17.4 2.1
pyrazine-H2O S11 S16,S17 1349 42.6
pyrimidine (C2v) S11 S11,S14 580 16.0 2.9
pyrimidine-H2O S12 S12,S13 299 53.6
7-hydroxyquinoline S8 S7,S8 3964 20.0 1.2
7-hydroxyquinoline-H2O S8 S6,S8 4455 23.1
7-hydroxyquinoline S8 S7,S8 3876 20.0 1.1
7-hydroxyquinoline-NH3 S8 S6,S8 5433 21.0
benzaldehyde S5 S9,S5 841 6.9 6.0
benzaldehyde-2H2O S4 S6,S4 408 43.6
dimethylaminopyridinium

cation
S4 S1,S2 1248 31.1 1.1

dimethylaminopyridinium
cation-4H2O

S5 S1,S2 1286 34.5

af denotes the target state, k1, k2 are two dominant intermediate states,
and ⟨σe⟩ (in atomic units) is the averaged ETPA cross-sections in the
target state.
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smaller the maximum ETPA cross-sections of the complexed
chromophore. For instance, in benzaldehyde-2H2O and
pyrimidine-H2O, is relatively large (6.0 and 2.9,
respectively). The maximum ETPA cross-sections in the
complex drop to 48% and 52% of its free chromophore value.

In the remaining complexes, ethylene-H2O, 7-hydroxyquino-
line-H2O, 7-hydroxyquinoline-NH3, and dimethylaminopyridi-
nium cation-4H2O, with the ratio being close to 1, the
maximum ETPA cross-section is larger in the complex,
especially for 7-hydroxyquinoline-NH3 (about 40% increase)
compared with the free chromophore. Both free 7-hydrox-
yquinoline in H2O or NH3 complexes show the identical
period of 20.0 fs, because Δ is almost not affected by the
complexation. The difference between excitation energies of
the dominant intermediate states for the chromophore in
different environments is less than 0.001 eV. We notice,
however, an effect of the complexation on the maximum ETPA
cross-sections due to the change in the transition dipole
moments. The molecules complexed to the chromophore
(either H2O or NH3) increase the maximum ETPA cross-
section of the isolated 7-hydroxyquinoline chromophore while
the period P increases only slightly.

For the pyrazine and pyrimidine cases, the ratio is larger
than two. The complexation with the H2O molecule leads to
the increase of the period (P) and the decrease of the peak
ETPA cross-section. For some chromophores, however, the
ETPA properties, are not affected significantly by the
complexation, ethylene-H2O and dimethylaminopyridinium
cation-4H2O, for instance. For ethylene, the peak ETPA
cross-section increases by 7.6%, whereas it increases by only
3% for dimethylaminopyridinium cation. For both systems, the
ratio is close to 1 indicating a slight change in the oscillation
period.

Figure 3 summarizes the observations concerning the
numerical examples. It shows a linear relation between the

ratio and the ratio of the period
P

P
complexed

free
. The former is

determined by perturbation of the one-photon absorption
properties of the chromophore, whereas the latter is crucially
linked to the experimental conditions.

The numerical results show that

(1) The period of the ETPA cross-section oscillations, as a
function of photon-pair coherence time, depends on the
number of intermediate states involved in the ETPA
transition.

(2) Both the amplitude and the period of this oscillation are
strongly affected by the intermolecular electronic
interactions.

Concerning point 1, breaking the symmetry of a molecule
can introduce more intermediate states, that couple with the
final state in the sum-over-state expression. As a result, the
wave packet behavior of ETPA cross-sections is affected, as
clearly shown in the change of the dependency of the ETPA
cross-section on Te. It comes, however, at the price of a
reduced amplitude of the cross-sections. One way to resolve
this problem is to substitute one atom (hydrogen, e.g.) with a
heavier atom.

Concerning point 2, the intermolecular interactions
influence the spectrum of excited states. Two nearest dominant
intermediate states that has the largest effect on the
wavepacket behavior of ETPA cross-section. The oscillation
period is inversely proportional to the position of these two
states, more specifically Δ and = | |k k1 2

.
The intermolecular electronic interactions demonstrated a

non-negligible role in the tuning of the microscopic ETPA
cross-sections. The ETPA cross-section can be easily
predictable, or show the least variation, if there exists at least
two dominant intermediate states, and the excitation energy of
these two dominant states should be close, while the wave
function or the excitation character of these two states differs
as much as possible. This could potentially provide an

Figure 3. Correlation between the ratio determined from the electronic structure of the chromophore and the ratio of the period
P

P
complexed

free
of

ETPA cross-sections for all chromophores in free and complexed forms.
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opportunity to tune or switch on/off the complex ETPA
process by modifying only one-photon absorption properties.

The simple relation between the properties of just two
excites states of the chromophore and its ETPA cross-section
properties was demonstrated using a small set of chromo-
phores and a “middle-of-the-road” method from the molecular
quantum mechanics toolbox (ADC(2)). This assures us that
properties of the considered electronic states (their order and
transition moments) used in the sum-over-state expressions are
free from qualitative failures for some excitations as it is
frequently the case of methods based on the liner-response
time-dependent density-functional theory. We believe, there-
fore, that using better methods to model excited states than
ADC(2) would not invalidate the existence of such a simple
relation. Another important approximation used in this work is
neglecting the vibrionic effects. The analysis was made for the
electronic states obtained within the Born−Oppenheimer
approximation at the equilibrium geometries. The vibronic
effects were comprehensively shown to contribute significantly
to the TPA cross-sections in the case of branched
chromophores28 in which large coupling between electronic
and vibrational modes is expected (large bond length
alternation and similar vibrational modes localized on different
branches). It is not the case of the chromophores considered in
this work. In principle, the numerical estimation of the effect of
vibronic coupling on the relation demonstrated in the present
work could be made following the approach proposed in ref
28.
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Chapter 7

What to take into account in the
modelling of two-photon absorption
properties in the condensed phase

This chapter serves as a practical guide for setting up the modelling of two-photon absorption
(TPA) cross sections in the condensed phase. While the computational methods introduced in
previous chapters emphasise various physical effects in modelling solvation effect, we explore the
significance of these physical effects on the TPA cross section by analyzing a specific chromophore
in a given solvent, represented either by the atomistic cluster or by the polarisable continuum.

The possible physical effects influencing two-photon absorption in the condensed phase can be
summarized as follows:

(a) The environment induced change of the chromophore geometry. The geometry of the chro-
mophore changes surrounded by different environments.

(b) The electrostatic interaction with the environment. The electron density of the chromophore
is polarised by the electric field generated by the environment.

(c) The long-range non-specific and specific environment polarisation. The state specific excitation
calculation is realized in PCM using the perturbation theory introduced in Chapter 2 Section
2.1.2. The state-specific polarisation effect to the TPA cross section is approximated with only
the excitation energy corrected by the perturbation technique introduced in Ref. 89, whereas
the transition dipole moments are not corrected in the truncated sum-over-state expression
given in Eq. 3.62.

(d) The short-range non-electrostatic confinement effect. This effect is introduced by the non-
electrostatic part of the embedding potential in FDET, whereas it is neglected in point charge
(PC) embedding, see detailed analysis in Chapter 4.

For the purpose of analysis, we decompose the total environment-induced shift of calculated prop-
erty into two components, arising from: the geometric effects and the electronic effect. For an
observable O, with O being the vertical excitation energy ϵi, the classical TPA cross section δr, this
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decomposition reads:

∆O = Ochromophore+environment
g(chromophore+environment) −Ochromophore

g(chromophore) (7.1)

= ∆Oelectr + ∆Ogeom

∆Oelectr = Ochromophore+environment
g(chromophore+environment) −Ochromophore

g(chromophore+environment)

∆Ogeom = Ochromophore
g(chromophore+environment) −Ochromophore

g(chromophore+environment)

where:
X in OX

g(Y ) specifies the system, for which the property O is evaluated, and Y in OX
g(Y ) specifies

the system, for which the geometry (either optimised with or without environment). The above
decomposition is general and can be applied for observable obtained from conventional treatment
of the chromophore and environment as one system or from embedding methods. In the case of
electronic excitation ∆Oelectr is the vertical excitation energy difference evaluated at the complex
geometry with and without the environment.

We use the pyrimidine as a mode chromophore and the water solvent to investigate the relative
significance of those key factors. The final target state studying in this work was chosen in such a way
that: i) the state shows a substantial TPA cross-section compared with other excited states; ii) the
same orbitals are involved in the excitation for the isolated geometry, and the embedded geometry
calculated from the reference or from other embedding methods. The excited state S5 chosen for
the free chromophore shows a n − σ∗ transition, while S10 corresponds to a π − σ∗ transition. In
addition to the first investigated state S5, S10 shows a more delocalized character as visualized from
the particle natural transition orbital.

We first assess the reliability of the FDET method by benchmarking it on a few small clusters
containing pyrimidine for which high-level supermolecular reference calculations are feasible. We
then proceed to present results obtained by various embedding methods in a much larger cluster.

The discussions regarding the entangled TPA cross section case and the impact of using a different
solvent will be addressed in a forthcoming publication.

7.1 Geometric effect

As can be seen in Table 7.1 that the geometric effect is small compared with the absolute
value of the isolated chromophore in vacuum. The vertical excitation energy varies in the second
decimal place depending on weather the geometry is optimised by the polarisable continuum or by
the atomistic representation. The change of TPA cross sections due to a different geometry is also
minor, not exceeding 10% of the absolute value observed in a vacuum.

7.2 Environment induced effects on small clusters

For the embedded chromophore, all considered electronic components of the environment-induced
shifts (∆electr

O ) presented in this part were obtained using FDET or PC embedding calculations. The
shifts obtained from FDET based calculations are not exact due to the approximations used for the
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vacuum polarisable continuum cluster models
H2O 1H2O 4H2O 23H2O

O ∆Ogeom (Eq. 7.1)

ϵ5 6.092 -0.045 0.002 -0.064 -0.062
δr 232.19 9.92 -22.69 17.11 5.49

ϵ10 7.082 0.014 0.038 0.043
δr 367.78 -2.11 -3.28 -6.56

Table 7.1 – Geometry component of the environment induced shifts of: vertical excitation energy
(∆ϵgeom in eV), the classical TPA cross-section (∆δr

geom in a.u.) for the S5 and S10 target states
of the isolated pyrimidine. The absolute values of ϵ, δr, for the isolated chromophore in vacuum are
also given.

FDET

∆geom ∆electr(ρisoB ) ∆electr(ρppB ) ∆electr(PCiso) ∆electr(PCpp) ∆electr
ref

ϵ5(n− σ∗) 0.002 0.232 0.261 0.238 0.266 0.236
δr -22.69 -40.9 -45.6 -42.7 -47.09 -55.7

ϵ10(π − σ∗) 0.038 0.093 0.107 0.105 0.12 0.12
δr -3.28 -17.09 -21.6 -26.8 -42.16 -23.5

Table 7.2 – Complexation induced shifts of the vertical excitation (ϵ in eV), the classical TPA cross-
section (δr in atomic units) for the S5 and S10 states in the pyrimidine-H2O complex. The geometric
and electronic components to the shifts of each observable are defined in Eq. 7.1

bi-functional for the non-electrostatic components of the exact FDET potential and due to the
procedure to generate ρB.

In all the tables, it can be observed that the electronic effect is much more significant than the
geometric effect, typically by one order of magnitude. The magnitude of the excitation energy ∆electr

O

increases in all studied cases with the pre-polarised ρB for FDET. This can be expected because the
ground state of the chromophore is stabilized by the polarised environment density. It is worthwhile
to note, however, that the effect of the ground-state pre-polarisation on the environment induced
shifts of δr does not follow such simple trends observed for ϵ.

In the case of 1 ∗H2O and 2 ∗H2O:

- Both FDET and PC embedding demonstrate similar electronic polarisation effects in terms of
magnitude and direction. However, PC embedding using pre-polarised charges shows an over-
polarisation effect on the excitation energy. DFET, on the other hand, gives more stable TPA
cross sections, which are invariant of the choice of ρB. The difference in ∆electr

O between the
choice of ρiso or ρppB is generally smaller than the corresponding differences in PC embedding.

- The Pauli repulsion effect reduces the excitation energy ϵ in the range of 5 meV to 29 meV
and its effect on the TPA cross section δr is around 1 to 21 a.u.. The inclusion of the Pauli



86CHAPTER 7. WHAT TO TAKE INTO ACCOUNT IN THEMODELLINGOF TWO-PHOTONABSORPTION PROPERTIES IN THE CONDENSED PHASE

FDET

∆geom ∆electr(ρisoB ) ∆electr(ρppB ) ∆electr(PCiso) ∆electr(PCpp) ∆electr
ref

ϵ5(n− σ∗) -0.038 0.407 0.461 0.438 0.488 0.387
δr 2.3 -86.7 -93.72 -89.52 -96.11 -91.25

ϵ10(π − σ∗) 0.024 0.134 0.156 0.176 0.197 0.164
δr -7.35 -53.8 -36.36 -52.54 -56.79 -30.02

Table 7.3 – Complexation induced shifts of the vertical excitation (ϵ in eV), and the classical TPA
cross-section (δr in atomic units) for the S5 and S10 states in the pyrimidine-2H2O complex. The
geometric and electronic components to the shifts of each observable are defined in Eq. 7.1

FDET

∆geom ∆electr(ρisoB ) ∆electr(ρppB ) ∆electr(PCiso) ∆electr(PCpp) ∆electr
ref

ϵ5(n− σ∗) -0.064 0.446 0.552 0.524 0.446 0.358
δr 17.11 -133.03 -147.74 -136.92 -111.19 -74.2

Table 7.4 – Complexation induced shifts of the vertical excitation (ϵ in eV), the classical TPA cross-
section (δr in atomic units) for the S5 state in the pyrimidine-4H2O cluster. The geometric and
electronic components to the shifts of each observable are defined in Eq. 7.1

repulsion mitigates the over-polarisation in the PC embedding, particularly in S10 state, from
-42 (PCpp) to -22 (ρppB ) for a reference value of -23 a.u., and from -57 (PCpp) to -36 (ρppB ) for
a reference value of -30 a.u.. The error of ∆electr

O in the TPA cross section is in general smaller
in FDET than in PC embedding.

In the case of 4 ∗ H2O, the error increases slightly for both FDET and PC. It’s worth noting
that the relatively large errors in the TPA cross sections observed in both FDET and PC methods
can be attributed to the missing dominant state S7, which is partially localized in the surrounding
water environment.

7.3 Environment induced effects on large clusters

7.3.1 Atomic representation by FDET

The benchmarking of the approximations used in FDET made for smaller clusters considered in
the previous section provide the justification for using the same approximation to vnadxcT and methods
to generate ρB.

7.3.2 Continuum representation by PCM

In this section, we analyse the shifts evaluated using the polarisable continuum model of the
environment. Two models are considered. Results labelled with no− ssp in Table 7.6 were obtained
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environment induced shifts (∆O)

23 ·H2O

O O in vacuum ∆geom(O) ∆electr(O)
ρisoB ρppB

S5 state (n− σ∗)
ϵ5 6.092 -0.062 0.636 0.855
δr 232.19 5.49 -90.23 -116.57

S10 state (π − σ∗)
ϵ10 7.082 0.043 0.435 0.552
δr 367.78 -6.56 -194.1 -204.14

Table 7.5 – Complexation induced shifts of the vertical excitation (ϵ in eV), the classical TPA cross-
section (δr in atomic units) for the S5 and S10 states of pyrimidine embedded in 23 ·H2O clusters.
The geometric and electronic components to the shifts of each observable are defined in Eq. 7.1.
In FDET calculations of the electronic contributions to the shift, either isolated density ρisolB of the
environment molecules or pre-polarised density (ρppB ) was used.

by PCM neglecting the state-specific polarisation of the environment. The reaction field corresponds
to the ground state of the chromophore and arises from both electronic and reorientation polarisation
of the environment in the ground state. The effect of state-specific response of the environment by
the reaction field for the ground and the target excited state is taken into account by means of a
method introduced in Ref. 89.

Considering the state-specific polarisation from the solvent lowers all the vertical excitation
energy in the range of 0.05-0.07 eV in Table 7.6. However, only a slight modification in the TPA
cross sections is observed after implementing this correction. It’s crucial to highlight that, in this
context, only the denominator, corresponding to the excitation energy in the truncated sum-over-
state expression, undergoes correction through the state-specific perturbation technique. Meanwhile,
the transition dipoles remain uncorrected. The classical TPA cross section increases about 10 a.u.
for the state S5. The alteration in TPA cross sections due to environmental polarisation is only
about 8% of that caused by the complexation effect. Regarding S10, the perturbation to ∆electr

O

from the environment is minimal, whether it be due to polarisation or electronic complexation.

7.4 Comparison of two representations and summary

We conducted calculations to assess the impact of the environment on the one and two-photon
properties of pyrimidine, employing two representations for the environment: atomistic and polar-
isable continuum. The objective was to investigate the importance of different physical effects in
modelling the environment-induced two-photon absorption (TPA) cross section. Our findings indi-
cate a negligible geometric effect (∆geom

O ) on the shifts of ϵ and δr, regardless of whether the solvents
are modeled as a continuum or a cluster. In contrast, the electronic components (∆electr

O ) dominate
the shifts, typically being one order of magnitude larger than the geometric effect.
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environment induced shifts (∆O)

O O in vacuum ∆geom(O) ∆electr(O)
no-ssp ssp

S5 state (n− σ∗)
ϵ5 6.092 -0.045 0.17 0.098
δr 232.19 9.92 -137.44 -128.97

S10 state (π − σ∗)
ϵ10 7.082 0.014 -0.01 -0.064
δr 367.78 -2.11 0.21 -0.01

Table 7.6 – Complexation induced shifts of the vertical excitation (ϵ in eV), the classical TPA cross-
section (δr in atomic units) for the S5 and S10 states of pyrimidine embedded in water represented as
a polarisable continuum. The geometric and electronic components to the shifts of each observable
are defined in Eq. 7.1. In the PCM calculations of the electronic contributions to the shift, the
differential polarisation of the solvent in the ground and excited states was either neglected (no-ssp)
or treated as in Ref. 89 (ssp).

In the results of the larger cluster, ∆electr
O exhibits consistent sign in shift values for both FDET

(0.855 eV) and PCM (0.098 eV). However, the magnitude of ∆electr
O is approximately one order of

magnitude smaller in the PCM embedding. Notably, this difference in magnitude of the excitation
energy does not correspondingly influence the TPA cross section. ∆electr

O values on the TPA cross
section for state S5 calculated by FDET closely align with those obtained from PCM. The shift in
the TPA cross section is -116.57 a.u. in FDET and -137.44 a.u. in PCM.

A contrasting result is observed for state S10. The ∆electr
O , as described by FDET, shows an

energy shift of 0.552 eV and a corresponding shift in the TPA cross section of -204.14 a.u., whereas
in PCM, these values are -0.064 eV and -0.01 a.u., respectively. For this state, PCM embedding
fails to capture the environment-induced effect in the modelling of the TPA cross section. This
discrepancy may be attributed to the excitation character of the second target state, which exhibits
greater delocalization compared to the first state. In such cases, the classical electrostatic effect
alone is not sufficient, and the inclusion of the quantum confinement effect becomes necessary to
accurately describe these states.

The state-specific polarisation appears to be non-crucial for evaluating TPA properties, as ev-
idenced by the PCM results. It exerts a minor influence on the TPA cross section and does not
yield improvements for the S10 state anyway. In the context of FDET, conducting state-specific
calculations is not advisable due to the disruption of orthogonality between excited states.

In conclusion, the environment can markedly alter the TPA cross section, leading to a reduction
of up to 60% for both target states in the case of pyrimidine in water. The selection of the excited
method for obtaining transition dipoles and excitation energy proves to be more critical than the
utilization of ground state methods to determine the geometry. An atomistic representation appears
to be more reliable than classical PCM representation. The inclusion of Pauli repulsion is essential
depending on the character of the target state.



Chapter 8

Conclusions

In previously studies within our group, it has been demonstrated that FDET, employing the sim-
ple variant with i) LDA functional to approximate vnadt [ρA, ρB] and ii) ρB generated by the isolated
fragment, already produces reasonable results for vertical excitation energies. A further improvement
has been achieved by utilizing pre-polarized ρB with the electric field of the isolated chromophore
in its ground state. In this thesis, we have explored further into this topic to improve the verti-
cal excitation energy by explicitly including polarization. Calculations made on ten chromophores
with 47 excitations show systematic improvement from using pre-polarized ρB to the state-specific
ρB, where ρB is polarized by the electric filed of the corresponding excited state of the embedded
chromophore. However, the improvement was not substantial, typically in the range of 10-20 meV.
Consequently, we conclude that users may choose how ρB is generated based on the investigated
property and the number of excited states. ρB generated by the isolated fragment remains a good
starting point for excited state calculations due to its computational efficiency and preservation of
orthogonality between excited states.

Chapter 4 examined TPA cross-sections evaluated with the simplest variant of FDET. We demon-
strated the critical role of including Pauli repulsion in modeling TPA cross-sections, particularly
when only the exact Coulomb interaction is present in the embedding potential. Building on this,
we further explored the significance of other physical factors in modelling this property in Chapter
7. We found that the environment-induced change in chromophore geometry has an effect approx-
imately one order of magnitude smaller than the electronic complexation effect. Classical PCM
embedding completely fails in characterising the solvent effect for one studied state, depending on
the excitation character. The atomistic representation of the environment is essential if the state is
delocalized. The state-specific polarization effect to TPA properties was shown to be insignificant
with PCM embedding.

Finally, we calculated the rotationally averaged entangled TPA cross section using a truncated
sum-over-state expression. The oscillation period of the entangled TPA cross section was derived
as T = 2π/(ϵk1 − ϵk2) and validated through QM methods. The inversely proportional relationship
between the oscillation period and the excitation energy difference between two close dominant
intermediate states can potentially be used to control the entangled TPA transparency.
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Appendix A

Derivations on expansions of Ψ̄(t)

The derivations follow the book by Patrick Norman and others [78].

A.1 Choice of the operator Ω̂

We review the core equation of motion that needs to be solved,

∂

∂t
⟨Ψ0|e−iP̂ (t)Ω̂e−iP̂ (t)|Ψ0⟩ =

1

iℏ
Ψ0|e−iP̂ (t)

[
Ω̂, Ĥ0 + V̂ (t)

]
e−iP̂ (t)|Ψ0⟩ (A.1)

The goal is to choose a convenient operator which gives back the time-dependent coefficient Pn(t).
Applying the Baker-Campbell-Hausdorff (BCH) expansion on the left hand side (l.h.s) of the equa-
tion,

e−iP̂ (t)Ω̂e−iP̂ (t) = Ω̂ + i[P̂ , Ω̂] − 1

2
[P̂ , [P̂ , Ω̂]] − i

6
[P̂ , [P̂ , [P̂ , Ω̂]]] + · · · (A.2)

Plugging Eq. A.2 into l.h.s of Eq. A.1 and using the orthogonality between unperturbed eigenstates,
we obtain a series of equations,

⟨Ψ0|[P̂ , Ω̂]|Ψ0⟩ = ⟨Ψ0|
[∑

n>0

[Pn(t)|Ψn⟩⟨Ψ0| + P ∗n(t)|Ψ0⟩⟨Ψn|] , Ω̂
]
|Ψ0⟩

=
∑

m

[
P ∗m(t)⟨Ψm|Ω̂|Ψ0⟩ − Pm(t)⟨Ψ0|Ω̂|Ψm⟩

]
(A.3)

The third term in Eq. A.2 reads,

⟨Ψ0|[P̂ , [P̂ , Ω̂]]|Ψ0⟩ = −2
∑

m,l>0

P ∗mPl⟨Ψm| ¯̂Ω|Ψl⟩ (A.4)

and
¯̂
Ω is the fluctuation operator defined as

¯̂
Ω = Ω̂ − ⟨Ψ0|Ω̂|Ψ0⟩.

After inspecting Eq. A.3 and Eq. A.4, by choosing the operator Ω̂ as the state transition operator
|Ψ0⟩⟨Ψn|, one finds,

⟨Ψ0|[P̂ , Ω̂]|Ψ0⟩ = −Pn(t)

⟨Ψ0|[P̂ , [P̂ , Ω̂]]|Ψ0⟩ = 0 (A.5)
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This immediately reduce the complexity when one tries to solve Eq. A.1.

A.2 Perturbation expansions on Pn(t)

Perturbation theory is applied to solve Eq. A.1. Pn(t) is expanded,

Pn(t) = Pn(t)(0) + Pn(t)(1) + Pn(t)(2) + · · · (A.6)

The parametrized phase isolated wavefunctions Ψ̄(t),

Ψ̄(t) = e−iP̂ (t)|Ψ0⟩

= (1 + (−iP̂ (t)) +
(−iP̂ (t))2

2!
+

(−iP̂ (t))3

3!
+ · · · )|Ψ0⟩ (A.7)

The corresponding phase isolated wavefunctions Ψ̄(t) up to first order after plugging in P̂ (t) =∑
n>0 [Pn(t)|Ψn⟩⟨Ψ0| + P ∗n(t)|Ψ0⟩⟨Ψn|] into Eq. A.7 is expressed as,

Ψ̄(t)(0) = |Ψ0⟩, (A.8)

Ψ̄(t)(1) = −i
∑

n>0

P (1)
n |Ψ0⟩. (A.9)

The expectation value of the time-independent operator Ω̂ on the unperturbed state does not vary
with time,

∂

∂t
⟨Ψ0|Ω̂|Ψ0⟩ = 0, (A.10)

The rotational operator e−iP̂ (t) up to the first order,

P̂ (t) = 1 − iP̂ (t)(1) (A.11)

Now we can rewrite the equation of motion Eq. A.1 up to the first order using Eq. A.10 and Eq.
A.11,

∂

∂t
⟨Ψ0|[P̂ (1)(t), Ω̂]|Ψ0⟩ =

1

iℏ
⟨Ψ0|[P̂ (1)(t), [Ω̂, Ĥ0]]|Ψ0⟩ −

1

ℏ
⟨Ψ0|[Ω̂, V̂ ]|Ψ0⟩ (A.12)

The commutator appears in Eq. A.12 can be further simplified,

[Ω̂, Ĥ0]] =
[
|Ψ0⟩⟨Ψn|, Ĥ0

]

= En|Ψ0⟩⟨Ψn| − E0|Ψ0⟩⟨Ψn|
= ℏωn0Ω̂ (A.13)

Inserting the state transition operator and using Eq. A.13, we arrive to the final equation of motion
of the Pn(t)(1) coefficient up to the first order,

∂

∂t
Pn(t)(1) = −iωn0Pn(t)(1) +

1

ℏ
⟨Ψn|V̂ |Ψ0⟩ (A.14)
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Integration over t→ −∞ to t of Eq. A.14 yields the time evolution of Pn(t)(1),

Pn(t)(1) =
1

iℏ
∑

ω

⟨Ψn|V̂ ω
α |Ψ0⟩Fω

α e
−iωteξt

ωn0 − ω − iξ
(A.15)

One obtains the first order correction to the phase isolated wavefunctions after substituting Pn(t)(1)

into Eq. A.9.
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Appendix B

The asymptotic behaviour of NDCS
functionals

B.1 Definitions of NDCS functionals and its variants

Non-Decomposable Complete Space (NDCS) approximation [90]previous introduced to remove the
undesired artificial well in the potential and allowing the complete space of admissible densities, is a
Non-decomposable in evaluation of the non-additive kinetic potential as part of the last contribution
in Eq. 2.21. The approximation can be written as:

ṽ
nad(NDCS)
t [ρA, ρB] = v

nad(LDA)
t [ρA, ρB] + fNDCS(ρB)vlimit

t [ρB] (B.1)

The limit potential vlimit
t [ρB] is approximated from the Weizsäcker functional in the limit case where

ρA → 0 and
∫
ρB = 2 and is given as,

vlimit
t [ρB] =

1

8

|∇ρB|2 − ρB∇2ρB
ρ2B

(B.2)

fNDCS(ρB) is the switching function depends only on ρB,

fNDCS(ρB) = 1 − e−ρB (B.3)

v
nad(LDA)
t [ρA, ρB] is non-additive kinetic potential derived from the Thomas-Fermi kinetic energy

functional which is the zeroth order expansion to the kinetic energy functional. This approximation
has successfully addressed the issue of ”charge leak” in charged systems.

GEA2 functional. The Thomas-Fermi kinetic functional can be seen as zeroth-order gradient
expansion approximation. The second order gradient expansion (GEA2) [91] reads,

TGEA2
s = T TF

s +
1

9
T VW
s (B.4)

where TGEA2
s and T VW

s have been given in Eq. 2.22 and Eq. 2.23 in Chapter 2.
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The NDCS functional evaluated with the GEA2 functional as the nondecomposable part in
Eq. B.1 is expressed as,

ṽ
nad(NDCS−GEA2)
t [ρA, ρB] = v

nad(LDA)
t [ρA, ρB] +

1

9
(1 − fNDCS(ρB))vlimit

t [ρB] (B.5)

LC94 functional. The general gradient approximation (GGA) has general form written as,

TGGA
s = CF

∫
ρ5/3(r)F (s)d3r (B.6)

where CF is the Thomas-Fermi constant and F (s) is the enhancement factor.

The generalized gradient approximation LC 94 functional [92] reads,

FLC94(s) =
1 + 0.093907s · arcsinh(76.32s) + (0.26608 − 0.0809615e−100s

2
)s2

1 + 0.093907s · arcsinh(76.32s) + 0.57767 · 10−4s4
(B.7)

where s = |∇ρ|
2(3π2)1/3ρ4/3

is the dimensionless reduced density gradient.

The NDCS functional evaluated with the LC94 functional as the nondecomposable part in Eq.
B.1 is expressed as,

ṽ
nad(NDCS−LC94)
t [ρA, ρB] = v

nad(LC94)
t [ρA, ρB] + fNDCS(ρB)vlimit

t [ρB] (B.8)

B.2 The long-range behavior of non-additive kinetic functionals

The long-range behavior of the non-additive kinetic functionals ṽnadt , including the decomposable
GEA0, GEA2 and LC94, and the nondecomposable ones defined in the above section. The accuracy
of different non-additive kinetic functionals in FDET, was inspected by the analysis of the dipole
moment and L2 distance norm between the embedded density and the reference density.

Systems studied. Three cations Li+, K+ and Na+ are considered, combined with three
monomers: CO2, H2O and NH3. The possibility of the charge leak from the environment to
the cation differ by the combination of one to another. The combination of K++NH3 leads to
the highest possibility of the charge leak issue, for instance. The charge leak happens when the
highest molecular orbital (HOMO) energy of one subsystem is close to the lowest molecular
orbital (LUMO) energy of another subsystem.

Computational details. The supermolecular basis expansion was used for all calculations.
The Freeze and Thaw procedure was employed to obtain the subsystem density ρA and ρB.
Kohn-Sham formalism was applied for calculations of the reference supermolecular system
and FDET embedding [26]. The exchange correlation functional PBE [93] and the uncontracted
6 − 311 + +g∗∗ basis set [94] were used.

The first line in all tables presented here denotes properties calculated from the equilibrium
geometry. The two subsystems are then separated from the equilibrium geometry. The distance
of the separation between two subsystems is measured by the coordinate of the center-of-mass
of each subsystem.
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B.2.1 L2 distance norm

In this section, the L2 distance norm is presented evaluated from different nonadditive kinetic
potentials in FDET for different combinations of subsystem A and B. The L2 distance norm is a
direct measure of the difference between two densities, and is defined in the following,

d(ρAB, ρref ) = ∥(ρAB − ρref )1/2∥2

=

∫
|ρAB − ρref | (B.9)

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

3.038 4.44E-01 3.86E-02 1.03E-01 5.55E-02 2.10E-02 3.61E-02 7.88E-02
3.338 3.73E-01 1.86E-02 7.15E-02 2.82E-02 9.57E-03 1.80E-02 5.65E-02
3.638 3.11E-01 8.56E-03 4.84E-02 1.32E-02 4.15E-03 8.09E-03 3.90E-02
3.938 2.60E-01 3.78E-03 3.15E-02 5.59E-03 1.76E-03 3.18E-03 2.58E-02
4.238 2.20E-01 1.60E-03 1.97E-02 2.18E-03 7.30E-04 1.11E-03 1.62E-02
4.538 1.87E-01 6.60E-04 1.17E-02 7.80E-04 3.00E-04 3.35E-04 9.63E-03
5.038 1.47E-01 1.60E-04 1.10E-04 8.00E-05 7.88E-05
5.538 1.19E-01 5.00E-05 5.00E-05 4.00E-05 4.83E-05
6.038 9.80E-02 4.00E-05 3.00E-05 3.00E-05 3.59E-05
6.538 8.30E-02 3.00E-05 3.00E-05 3.00E-05 2.98E-05

Table B.1 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is Li+ − CO2.



100 APPENDIX B. THE ASYMPTOTIC BEHAVIOUR OF NDCS FUNCTIONALS

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

1.905 3.59E-01 8.09E-02 1.69E-01 1.02E-01 4.69E-02 6.84E-02 1.27E-01
2.205 3.05E-01 5.06E-02 1.37E-01 6.49E-02 2.80E-02 4.28E-02 1.04E-01
2.505 2.53E-01 3.18E-02 1.13E-01 4.07E-02 1.68E-02 2.59E-02 8.54E-02
2.805 2.06E-01 1.97E-02 2.42E-02 9.98E-03 1.49E-02 7.00E-02
3.105 1.67E-01 1.20E-02 1.37E-02 5.81E-03 7.96E-03
3.405 1.37E-01 6.97E-03 7.39E-03 3.29E-03 4.05E-03
3.905 1.00E-01 2.56E-03 2.27E-03 1.18E-03 1.10E-03
4.405 7.70E-02 8.49E-04 6.40E-04 3.91E-04 2.80E-04
4.905 6.10E-02 2.67E-04 1.70E-04 1.29E-04 7.23E-05
5.405 5.00E-02 8.76E-05 5.97E-05 5.24E-05 3.68E-05
5.905 4.20E-02 2.57E-05 1.96E-05 1.81E-05 1.56E-05

Table B.2 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is Li+ −H2O.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.05 0.413 1.79E-01 3.15E-01 2.07E-01 1.16E-01 1.46E-01 2.42E-01
2.339 0.385 1.43E-01 2.92E-01 1.66E-01 8.90E-02 1.14E-01 2.24E-01
2.631 0.351 1.19E-01 1.37E-01 7.17E-02 9.12E-02
2.924 0.312 1.04E-01 1.18E-01 6.00E-02 7.47E-02
3.218 0.271 9.51E-02 1.05E-01 5.19E-02 6.26E-02
3.514 0.232 9.00E-02 9.74E-02 4.59E-02 5.33E-02
4.007 0.175 9.33E-02 3.80E-02 4.10E-02

Table B.3 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is Li+ −NH3.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

3.827 0.283 1.30E-02 5.41E-02 2.77E-02 1.17E-02 1.99E-02 3.37E-02
4.127 0.243 6.22E-03 3.11E-02 1.21E-02 6.32E-03 8.76E-03 2.18E-02
4.427 0.209 2.96E-03 5.21E-03 3.42E-03 3.85E-03 1.47E-02
4.727 0.18 1.41E-03 2.24E-03 1.71E-03 1.70E-03 9.76E-03
5.027 0.156 6.60E-04 9.45E-04 8.00E-04 7.28E-04 6.33E-03
5.327 0.136 3.14E-04 4.09E-04 3.75E-04 3.20E-04 3.96E-03
5.627 0.12 1.70E-04 1.89E-04 1.94E-04 1.54E-04 2.39E-03
5.927 0.106 9.67E-05 1.11E-04 1.02E-04 9.61E-05 1.45E-03
6.427 0.089 5.86E-05 6.32E-05 5.86E-05 6.20E-05 6.17E-04
6.927 0.075 3.53E-05 3.53E-05 3.54E-05 3.54E-05 2.74E-04

Table B.4 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is K+ − CO2.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.64 0.226 4.78E-02 7.74E-02 2.30E-02 4.02E-02 5.50E-02
2.94 0.192 2.37E-02 4.04E-02 1.18E-02 1.96E-02 3.53E-02
3.24 0.164 1.20E-02 2.13E-02 5.89E-03 9.68E-03 2.42E-02
3.54 0.139 6.03E-03 1.11E-02 2.88E-03 4.77E-03 1.71E-02
3.84 0.118 3.04E-03 5.69E-03 1.50E-03 2.27E-03 1.20E-02
4.14 0.1 1.56E-03 2.89E-03 7.82E-04 1.03E-03 8.26E-03
4.64 0.078 5.44E-04 9.70E-04 2.88E-04 3.10E-04 4.07E-03
5.14 0.063 1.80E-04 2.81E-04 1.04E-04 7.59E-05 1.82E-03
5.64 0.052 6.59E-05 8.22E-05 4.02E-05 3.43E-05
6.14 0.043 4.58E-05 4.50E-05 3.30E-04
6.64 0.037 4.72E-05 4.76E-05 1.48E-04

Table B.5 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is K+ −H2O.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.822 0.284 6.12E-02 9.12E-02
3.111 0.258 3.70E-02 5.82E-02
3.403 0.232 2.30E-02 3.81E-02
3.696 0.205 1.46E-02 2.51E-02 6.44E-02
3.99 0.179 9.45E-03 1.66E-02 5.51E-02
4.285 0.155 6.29E-03 1.11E-02
4.58 0.134 4.31E-03 7.47E-03
4.876 0.117 2.99E-03 4.77E-03
5.173 0.101 2.05E-03 2.99E-03
5.569 0.085 1.19E-03 1.64E-03
6.064 0.07 5.60E-04 6.94E-04

Table B.6 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is K+ −NH3.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

3.453 0.335 8.00E-03 1.71E-02 1.12E-02 1.24E-02 3.88E-02
3.753 0.285 5.71E-03 6.87E-03 7.73E-03 4.83E-03 2.60E-02
4.053 0.242 3.62E-03 1.88E-02 2.68E-03 4.57E-03 1.87E-03 1.74E-02
4.353 0.206 2.04E-03 1.19E-02 9.20E-04 2.47E-03 8.10E-04 1.12E-02
4.653 0.177 1.07E-03 7.30E-03 4.37E-04 1.26E-03 5.17E-04 6.98E-03
4.953 0.153 5.14E-04 4.35E-03 3.03E-04 5.96E-04 3.64E-04 4.20E-03
5.253 0.134 2.52E-04 1.96E-04 2.83E-04 2.24E-04 2.43E-03
5.553 0.118 1.19E-04 1.39E-03 1.10E-04 1.30E-04 1.19E-04 1.36E-03
6.053 0.098 5.44E-05 5.11E-04 5.65E-05 5.63E-05 5.83E-05 5.04E-04
6.553 0.082 7.18E-05 2.20E-04 7.24E-05 7.19E-05 7.25E-05 2.18E-04

Table B.7 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is Na+ − CO2.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.298 0.263 1.16E-02 6.58E-02 3.01E-02 1.23E-02 2.14E-02 5.55E-02
2.598 0.224 6.85E-03 4.78E-02 1.37E-02 1.05E-02 8.75E-03 4.12E-02
2.898 0.188 5.30E-03 3.53E-02 5.83E-03 7.80E-03 3.44E-03 3.11E-02
3.198 0.155 3.80E-03 2.58E-02 2.20E-03 5.25E-03 1.38E-03 2.30E-02
3.498 0.129 2.49E-03 1.84E-02 8.85E-04 3.30E-03 1.14E-03 1.66E-02
3.798 0.108 1.48E-03 1.28E-02 6.09E-04 1.92E-03 9.95E-04 1.16E-02
4.298 0.082 5.09E-04 6.30E-03 2.92E-04 6.57E-04 4.33E-04 5.74E-03
4.798 0.065 1.48E-04 2.77E-03 1.35E-04 1.92E-04 1.79E-04 2.53E-03
5.298 0.053 5.09E-05 1.14E-03 5.51E-05 5.93E-05 6.40E-05 1.05E-03
5.798 0.044 3.01E-05 3.29E-05 3.18E-05 3.46E-05 4.22E-04
6.298 0.037 2.53E-05 2.56E-05 2.56E-05 2.58E-05

Table B.8 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is Na+ −H2O.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.423 0.335 2.11E-02 5.29E-02 1.36E-02 3.64E-02
2.713 0.312 9.12E-03 3.14E-02 1.49E-02 1.93E-02 8.16E-02
3.005 0.282 6.45E-03 1.81E-02 1.46E-02 9.50E-03
3.298 0.249 6.44E-03 9.89E-03 1.30E-02 4.26E-03
3.593 0.216 5.86E-03 5.01E-03 1.09E-02 2.99E-03
3.888 0.185 4.95E-03 2.23E-03 8.78E-03 3.77E-03
4.184 0.158 3.96E-03 1.16E-03 6.83E-03 3.98E-03
4.481 0.135 3.01E-03 1.44E-03 5.11E-03 3.67E-03
4.777 0.116 2.17E-03 1.47E-03 3.63E-03 3.01E-03
5.174 0.095 1.30E-03 1.14E-03 2.15E-03 2.01E-03
5.67 0.077 6.20E-04 6.77E-04 1.01E-03 1.06E-03
6.167 0.063 2.86E-04 3.50E-04 4.55E-04 5.08E-04
6.764 0.052 1.03E-04 1.33E-04 1.59E-04 1.84E-04

Table B.9 – The complexation induced density change, labelled as “complexation”, of the isolated
fragments from the total density of Kohn-Sham treatment of the system is measured by the distance
norm d(ρAB, ρ

iso
A , ρisoB ). The errors of the distance norm of two subsystem densities after Freeze

and Thaw from the supermolecular reference are shown for the use of different nonadditive kinetic
potentials in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged
in this separation distance with the corresponding potential. The system is Na+ −NH3.
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From all the studies system, we can make the following observations,

- The kinetic energy approximated by the GEA2 functional usually gives more accurate kinetic
energies than GEA0. The non-additive kinetic potential generated by GEA2, however, does
not yield a more accurate density compared with GEA0. In some cases, GEA2 even fails to
converge in the Freeze and Thaw procedure, which means that most likely the electrons from
one subsystem are leaked into the other subsystem. One example of such a case in Li+−H2O,
where GEA2 does not converge will be been shown in the following.

(a) Decomposable: GEA0 (b) Decomposable: GEA2 (c) Non-decomposable: NDCS

Figure B.1 – The HOMO-LUMO energy from each of the freeze and thaw cycles of subsystem A
and B obtained by plugging different nonadditive kinetic potentials.

It can be seen in Fig. B.1 that if HOMO of system A is higher in energy than the LUMO of
system B, electrons tend to fill the empty orbitals of LUMO of system B. This is the reason
why the charge leak happens.

The blue solid line in Fig. B.1 representing HOMO of A, crosses with the orange dash line
that represents the LUMO of B, for both GEA0 and GEA2 in later FnT cycles, whereas NDCS
impose the LUMO for system A and B in high energy thus avoiding the charge leak problem.

- In case of Li+ system, both the Non-decomposable: NDCS and NDCS-LC94 are superior than
the Decomposable GEA0 in the middle to long-range distance. NDCS-GEA2 sometimes even
helps to cure the convergence problem of the nonadditive kinetic functional approximated by
the GEA2 function. The results from LC94 is very similar to GEA0.

- In case of K+ system, with the monomer K+ − 1H2O and K+ − 1NH3 the same conclusion
can be made as the one for the Li+ system. However, in case of K+ −CO2 the decomposable
GEA0 functional is slightly better than NDCS related functional.

- The Na+ case is more complicated. In the middle range, LC94 functional surpasses other
functionals, while in the long-range GEA0 is the best functional. NDCS related functionals,
on the other hand, does not show advantages in the middle to long-range distance. This calls a
further improvement of NDCS functionals. One possibility is to improve the switching function
f [ρB].

B.2.2 Dipole moment

In this section, dipole moments [D] is presented evaluated from different nonadditive kinetic
potentials in FDET for different combinations of subsystem A and B.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

3.038 -2.481 -1.22E-01 -3.91E-01 -1.77E-01 -3.58E-02 -9.32E-02 -2.85E-01
3.338 -2.126 -7.23E-02 -3.12E-01 -1.07E-01 -2.25E-02 -5.86E-02 -2.38E-01
3.638 -1.793 -3.92E-02 -2.36E-01 -5.74E-02 -1.15E-02 -3.07E-02 -1.84E-01
3.938 -1.504 -1.99E-02 -1.69E-01 -2.72E-02 -5.40E-03 -1.35E-02 -1.34E-01
4.238 -1.266 -9.51E-03 -1.15E-01 -1.17E-02 -2.32E-03 -5.06E-03 -9.20E-02
4.538 -1.076 -4.30E-03 -7.40E-02 -4.49E-03 -9.42E-04 -1.47E-03 -5.91E-02
5.038 -0.842 -1.07E-03 -6.22E-04 -2.26E-04 9.78E-05
5.538 -0.68 -2.11E-04 -4.88E-05 -2.31E-05 1.10E-04
6.038 -0.563 -3.35E-05 2.60E-05 7.05E-06 5.91E-05
6.538 -0.475 -1.98E-05 -5.54E-06 -1.12E-05 1.55E-06

Table B.10 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is Li+ − CO2.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

1.905 1.307 2.72E-01 5.98E-01 3.32E-01 1.40E-01 2.05E-01 4.38E-01
2.205 -1.192 2.07E-02 3.77E-01 6.76E-02 -7.61E-02 -2.59E-02 2.34E-01
2.505 -1.031 -1.46E-01 -5.21E-01 -1.78E-01 -7.45E-02 -1.09E-01 -3.87E-01
2.805 -0.858 -1.02E-01 -1.19E-01 -5.07E-02 -7.06E-02 -3.54E-01
3.105 -0.697 -6.80E-02 -7.45E-02 -3.32E-02 -4.22E-02
3.405 -0.561 -4.32E-02 -4.39E-02 -2.07E-02 -2.36E-02
3.905 -0.395 -1.78E-02 -1.54E-02 -8.34E-03 -7.43E-03
4.405 -0.288 -6.46E-03 -4.82E-03 -2.99E-03 -2.10E-03
4.905 -0.222 -2.16E-03 -1.38E-03 -9.88E-04 -5.11E-04
5.405 -0.179 -7.04E-04 -4.31E-04 -3.29E-04 -1.63E-04
5.905 -0.149 -2.17E-04 -1.34E-04 -1.03E-04 -5.39E-05

Table B.11 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is Li+ −H2O.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.05 -1.568 -7.14E-01 -1.25E+00 -7.98E-01 -4.60E-01 -5.57E-01 -9.61E-01
2.339 -1.619 -6.65E-01 -1.35E+00 -7.47E-01 -4.17E-01 -5.09E-01 -1.03E+00
2.631 -1.575 -6.25E-01 -6.99E-01 -3.78E-01 -4.60E-01
2.924 -1.468 -6.05E-01 -6.67E-01 -3.50E-01 -4.19E-01
3.218 -1.323 -6.04E-01 -6.55E-01 -3.31E-01 -3.86E-01
3.514 -1.161 -6.22E-01 -6.63E-01 -3.17E-01 -3.58E-01
4.007 -0.893 -7.30E-01 -2.95E-01 -3.14E-01

Table B.12 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is Li+ −NH3.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

3.827 -1.66E+00 -3.60E-02 -2.28E-01 -8.09E-02 9.62E-03 -2.69E-02 -7.81E-02
4.127 -1.40E+00 -1.31E-02 -1.33E-01 -3.78E-02 8.37E-03 -1.26E-02 -5.64E-02
4.427 -1.19E+00 -2.86E-03 -1.50E-02 7.08E-03 -3.60E-03 -3.82E-02
4.727 -1.02E+00 3.79E-04 -5.57E-03 4.93E-03 -4.24E-04 -2.56E-02
5.027 -8.82E-01 6.06E-04 -2.29E-03 2.70E-03 4.16E-05 -1.75E-02
5.327 -7.70E-01 2.71E-04 -1.11E-03 1.24E-03 -3.86E-05 -1.18E-02
5.627 -6.79E-01 1.24E-04 -6.44E-04 5.77E-04 -1.47E-04 -7.72E-03
5.927 -6.03E-01 -2.41E-05 -2.60E-04 1.89E-04 -2.90E-05 -4.92E-03
6.427 -5.04E-01 -7.54E-05 -1.40E-04 -1.57E-05 -7.61E-05 -2.08E-03
6.927 -4.28E-01 -5.54E-05 -3.67E-05 -3.90E-05 -1.95E-05 -7.90E-04

Table B.13 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is K+ − CO2.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.64 -9.66E-01 -1.91E-01 -2.92E-01 -2.96E-02 -7.05E-02 -1.30E-01
2.94 -8.05E-01 -1.13E-01 -1.76E-01 -1.60E-02 -4.44E-02 -1.05E-01
3.24 -6.70E-01 -6.42E-02 -1.01E-01 -5.60E-03 -2.34E-02 -7.94E-02
3.54 -5.55E-01 -3.55E-02 -5.68E-02 -2.68E-04 -1.10E-02 -5.92E-02
3.84 -4.62E-01 -2.00E-02 -3.20E-02 1.02E-03 -5.13E-03 -4.44E-02
4.14 -3.86E-01 -1.16E-02 -1.79E-02 7.21E-04 -2.42E-03 -3.29E-02
4.64 -2.93E-01 -4.68E-03 -6.77E-03 7.63E-05 -1.02E-03 -1.81E-02
5.14 -2.29E-01 -1.64E-03 -2.20E-03 -5.55E-06 -2.91E-04 -8.35E-03
5.64 -1.85E-01 -5.19E-04 -6.25E-04 -3.31E-06 -4.12E-05
6.14 -1.53E-01 -4.61E-05 -3.60E-05 -1.18E-03
6.64 -1.30E-01 8.35E-05 9.18E-05 -3.07E-04

Table B.14 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential.The system is K+ −H2O.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.822 -1.2696 -2.24E-01 -3.23E-01
3.111 -1.1779 -1.65E-01 -2.49E-01
3.403 -1.0732 -1.18E-01 -1.86E-01
3.696 -0.961 -8.39E-02 -1.37E-01 -3.75E-01
3.99 -0.8473 -6.10E-02 -1.00E-01 -3.53E-01
4.285 -0.7376 -4.56E-02 -7.39E-02
4.58 -0.6364 -3.46E-02 -5.44E-02
4.876 -0.5465 -2.59E-02 -3.79E-02
5.173 -0.4693 -1.88E-02 -2.55E-02
5.569 -0.3859 -1.16E-02 -1.50E-02
6.064 -0.3089 -5.85E-03 -6.92E-03

Table B.15 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is K+ −NH3.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

3.453 -1.865 -4.22E-04 -5.37E-02 2.08E-02 -3.11E-02 -1.54E-01
3.753 -1.62 8.52E-03 -2.32E-02 1.93E-02 -1.16E-02 -1.12E-01
4.053 -1.387 8.55E-03 -8.76E-02 -7.67E-03 1.38E-02 -2.00E-03 -7.97E-02
4.353 -1.185 6.29E-03 -5.87E-02 -9.59E-04 8.83E-03 1.74E-03 -5.44E-02
4.653 -1.017 3.98E-03 -3.78E-02 1.10E-03 5.18E-03 2.36E-03 -3.55E-02
4.953 -0.88 2.17E-03 -2.32E-02 1.22E-03 2.73E-03 1.80E-03 -2.20E-02
5.253 -0.769 1.10E-03 8.16E-04 1.35E-03 1.07E-03 -1.29E-02
5.553 -0.678 5.42E-04 -7.50E-03 4.80E-04 6.51E-04 5.89E-04 -7.21E-03
6.053 -0.561 1.32E-04 -2.74E-03 1.73E-04 1.56E-04 1.96E-04 -2.66E-03
6.553 -0.473 -5.68E-05 -1.08E-03 -4.20E-05 -5.23E-05 -3.77E-05 -1.07E-03

Table B.16 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is Na+ − CO2.

Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.298 -0.963 -1.99E-02 -2.32E-01 -8.26E-02 1.45E-02 -4.63E-02 -1.90E-01
2.598 -0.882 1.70E-03 -1.91E-01 -4.34E-02 2.34E-02 -2.02E-02 -1.61E-01
2.898 -0.76 9.36E-03 -1.55E-01 -1.92E-02 2.27E-02 -4.76E-03 -1.34E-01
3.198 -0.631 1.04E-02 -1.23E-01 -5.66E-03 1.85E-02 3.06E-03 -1.08E-01
3.498 -0.517 8.64E-03 -9.53E-02 6.69E-04 1.35E-02 5.81E-03 -8.42E-02
3.798 -0.423 6.04E-03 -7.10E-02 2.67E-03 8.83E-03 5.60E-03 -6.31E-02
4.298 -0.311 2.54E-03 -3.90E-02 1.74E-03 3.56E-03 2.79E-03 -3.48E-02
4.798 -0.238 8.41E-04 -1.87E-02 9.32E-04 1.17E-03 1.26E-03 -1.66E-02
5.298 -0.19 2.00E-04 -8.30E-03 2.80E-04 2.99E-04 3.76E-04 -7.33E-03
5.798 -0.156 6.66E-05 1.09E-04 9.51E-05 1.36E-04 -3.11E-03
6.298 -0.131 2.54E-05 4.15E-05 3.33E-05 4.88E-05

Table B.17 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is Na+ −H2O.
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Decomposable Non-decomposable
Separation(Å) complexation GEA0 GEA2 LC94 NDCS NDCS-LC94 NDCS-GEA2

2.423 -1.357 -6.03E-02 -1.66E-01 1.65E-02 -8.57E-02
2.713 -1.371 -2.20E-02 -1.14E-01 4.01E-02 -4.83E-02 -3.64E-01
3.005 -1.307 1.58E-03 -7.30E-02 5.20E-02 -1.88E-02
3.298 -1.197 1.45E-02 -4.22E-02 5.55E-02 2.34E-03
3.593 -1.066 2.05E-02 -2.07E-02 5.39E-02 1.58E-02
3.888 -0.931 2.21E-02 -6.25E-03 4.91E-02 2.32E-02
4.184 -0.802 2.10E-02 3.32E-03 4.24E-02 2.67E-02
4.481 -0.683 1.82E-02 8.81E-03 3.47E-02 2.65E-02
4.777 -0.578 1.46E-02 1.05E-02 2.68E-02 2.33E-02
5.174 -0.463 9.82E-03 9.20E-03 1.75E-02 1.69E-02
5.67 -0.357 5.28E-03 6.02E-03 9.13E-03 9.73E-03
6.167 -0.285 2.63E-03 3.31E-03 4.44E-03 4.98E-03
6.764 -0.227 1.07E-03 1.43E-03 1.76E-03 2.04E-03

Table B.18 – The complexation induced dipole moment change (∥µcomp∥ = ∥µAB∥−∥µisoA ∥−∥µisoB ∥),
labelled as “complexation”, of the isolated fragments, from the total dipole of the Kohn-Sham
treatment of the system. The errors of the dipole moment of two subsystem after Freeze and Thaw
from the supermolecular reference are shown for the use of different nonadditive kinetic potentials
in FDET. The empty entries mean that the Freeze and Thaw procedure is not converged in this
separation distance with the corresponding potential. The system is Na+ −NH3.
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In general, the results from the dipole moment follow a similar trend as the distance norm. NDCS
functional does not improve the dipole moment in the long range for the Na+ case.
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Table S1: The Cartesian coordinates of the complex C2H4 −H2O (in Å).

H -0.03483 -0.24421 0.06365
C -1.07660 -0.52427 -0.00236
H -1.31326 -1.57676 -0.07573
C -2.04363 0.39269 0.00613
H -1.81376 1.44592 0.08045
H -3.08598 0.11493 -0.05934
O 2.45322 0.21103 0.03922
H 2.72389 -0.57247 0.52337
H 2.57762 -0.03606 -0.88008

Table S2: The electrostatic potential derived net atomic charges from the Hartree-Fock
density of the isolated water molecule derived using different basis sets.

basis set qH qO

6-31+G* 0.42 -0.84
aug-cc-pVDZ 0.37 -0.74
aug-cc-pVTZ 0.37 -0.74
aug-cc-pVQZ 0.37 -0.73

d-aug-cc-pVDZ 0.36 -0.73
d-aug-cc-pVTZ 0.36 -0.72
d-aug-cc-pVQZ 0.36 -0.72

Table S3: The vertical excitation energies εisol (in eV) and the two-photon cross-sections
δisolTPA (in atomic units) for the two lowest ππ∗ transitions from the conventional ADC(2)
calculations applied to the isolated C2H4 and the corresponding shifts in the C2H4-H2O
complex without counterpoise correction. The EOM-CCSD results (if available) are given
in parentheses.

basis set εisol ∆ε δisolTPA ∆δTPA

first ππ∗ state:
cc-pVDZ 8.737(8.883) -0.017(-0.019) 0(0) 0(0.1)
cc-pVTZ 8.363(8.469) -0.026(-0.024) 0(0.7) 0.1(-0.6)
cc-pVQZ 8.215(8.305) -0.035(-0.031) 0(0) 0.2(0.3)

For the cc-pVXZ(X=D,T,Q) basis sets the second ππ∗ state is not found in ADC(2) and EOM-CCSD calculations.
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Table S4: The ADC(2) complexation-induced shifts in the vertical excitation energy
∆ε and the TPA cross-section ∆δTPA with the counterpoise correction and the value of
counterpoise correction in the vertical excitation energy δCP ε and the TPA cross-section
δCP δTPA of the corresponding basis set for the first ππ∗ state.

basis set ∆ε δCP ε ∆δTPA δCP δTPA

6-31+G* -0.058 0.004 24.7 -0.5
cc-pVDZ -0.006 0.011 -0.1 -0.1
cc-pVTZ -0.012 0.014 -0.1 -0.2
cc-pVQZ -0.019 0.016 -0.2 -0.4
aug-cc-pVDZ -0.088 0.006 41.8 -1.4
aug-cc-pVTZ -0.058 0.002 40.1 -0.3
aug-cc-pVQZ -0.075 0.001 20.7 -0.1
d-aug-cc-pVDZ -0.087 0.001 22.3 0
d-aug-cc-pVTZ -0.069 0 23.7 0
d-aug-cc-pVQZ -0.083 0 35.9 0

Table S5: The ADC(2) complexation-induced shifts in the vertical excitation energy ∆ε
and the TPA cross-section δTPA with the counterpoise correction and the value of counter-
poise correction in the vertical excitation energy δCP ε and the TPA cross-section δCP δTPA
of the corresponding basis set for the second ππ∗ state.

basis set ∆ε δCP ε ∆δTPA δCP δTPA

6-31+G* -0.101 0.024 0.2 -9.9
aug-cc-pVDZ -0.187 0.166 -81.7 59.2
aug-cc-pVTZ -0.180 0.107 -60.1 27.8
aug-cc-pVQZ -0.177 0.070 -35.1 16.5
d-aug-cc-pVDZ -0.179 0.002 -43.1 -10.2
d-aug-cc-pVTZ -0.183 -0.001 -22.4 -1.4
d-aug-cc-pVQZ -0.184 0 -20.2 0.5
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Figure S1: The natural transition orbitals of the lowest excited states obtained by the
exact Coulomb embedding using d-aug-cc-pVQZ basis sets.
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Hole NTOs: Particle NTOs:
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Appendix D

Additional supporting information for
[Fu M, Wesolowski TA, J. Chem.
Theory Comput. 17, 3652-3665
(2021)]

Additional analysis made after the publication is provided in this appendix.

D.1 Natural transition orbitals (NTOs) for the second ππ∗ state

To better illustrate the genuine excitation character of the second ππ∗ state, a smaller cutoff
value was selected to highlight the delocalized nature of this state.

D.2 The exciton descriptor

In this section, a quantitative tool for the analysis of the excitation character of excited states
was used. This approach utilizes the exciton wavefunction to analyze the excitation character of
states that may be challenging to discern through visualization alone. [95]. The exciton wavefunction
is introduced in which the hole and electron coordinate are written with the one-particle transition
density matrix between the ground and excited state. The hole size dh is defined as the variance of

position operator at the hole coordinate dh =
√
⟨r⃗h2⟩exc − ⟨r⃗h⟩2exc. The same applies to the electron

size except that the position operator r⃗h is substituted by r⃗e. The exciton size dexc =
√
⟨|rh − re|2⟩exc

measures both the spatial extension of particles and the distance between them.
In Table D.1, it is evident that the two states exhibit a similar hole size due to the similar ground

state wavefunction. However, the significantly larger electron size and exciton size for the second
ππ∗ state suggests that the second ππ∗ state is more delocalized in space than the first one.
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Figure D.1 – The natural transition orbitals of the isolated C2H4 for the second ππ∗ state calculated
by ADC(2) using aug-cc-pVDZ basis set.

Table D.1 – The exciton descriptors calculated by the reference ADC(2) method with the d-aug-cc-
pVDZ basis sets for two ππ∗ states.

hole size σh electron size σe exciton size dexc

first ππ∗ state 1.278 3.191 3.455
second ππ∗ state 1.270 4.926 5.083



Appendix E

Supporting document for [Fu M,
Wesolowski TA, J. Phys. Chem. A.
127, 535-545 (2023)]

Reprinted with permission from [87]. Copyright 2023 American Chemical Society.
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I. DERIVATION OF THE EXCITATION ENERGY IN A STATE-SPECIFIC

CASE

The FDET energy functional EFDET
vAB

[ΨA, ρB] satisfies the basic equality which for

embedded interacting wavefunction reads:

min
ΨA→NA

EFDET
vAB

[ΨA, ρB] = EFDET
vAB

[Ψo
A, ρB] = EHK

vAB
[ρoA + ρB]

= min
∀rρ(r)≥ρB(r)

ρ(r)→NAB

EHK
vAB

[ρ] (1)

Perdew-Levy theorem states that the stationary solutions other than the ground-

state in the ground-state Hohenberg-Kohn energy functional can be interpreted as

excited state.

ϵj =EHK
vAB

[ρjA + ρjB] − EHK
vAB

[ρoA + ρoB] (2)

=EFDET
vAB

[Ψj
A, ρ

j
B] − EFDET

vAB
[Ψo

A, ρ
o
B] (3)

=EFDET
vAB

[Ψj
A, ρ

j
B] − EFDET

vAB
[Ψo

A, ρ
j
B]︸ ︷︷ ︸

A

+EFDET
vAB

[Ψo
A, ρ

j
B] − EFDET

vAB
[Ψo

A, ρ
o
B]︸ ︷︷ ︸

B

(4)

The first equality from Eq. 2 to Eq. 3 is exact if the density ρB does not violate the

non-negativity conditions of the target density:

∀r⃗ ρB ≤ ρjvAB

and

∀r⃗ ρB ≤ ρovAB
,

where ρjvAB
and ρovAB

are the exact densities for the whole system for the two consid-

ered states. If the above conditions are not satisfied, the energy evaluated for each

state using the corresponding embedded wavefunction lies above the exact one.

Addition and subtraction EFDET
vAB

[Ψo
A, ρ

j
B] in Eq. 3 leads to Eq. 4.

We begin by evaluating A in Eq. 4. The linearization of the Enad
xc,T[ρA, ρB] is applied

to avoid the ρA dependency in the embedding potential. Therefore A can simply

be written as the eigenvalue difference between two states. For a same density ρjB
it can be shown:
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A =
〈

Ψj
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρjB; vB]

∣∣∣Ψj
A

〉
+ EHK

vB
[ρjB] (5)

+ VA[ρjB] + Enad
xc,T[ρrefA , ρjB] +

∫
(ρjA − ρrefA )vnadxct [ρrefA , ρjB]dr

︸ ︷︷ ︸
linearization of Enad

xc,T[ρ
j
A,ρjB ]

−
∫

ρjA(r)vnadxct [ρrefA , ρjB]dr

−
〈

Ψo
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρjB; vB]

∣∣∣Ψo
A

〉
− EHK

vB
[ρjB] (6)

− VA[ρjB] − Enad
xc,T[ρrefA , ρjB] −

∫
(ρoA − ρrefA )vnadxct [ρrefA , ρjB]dr

︸ ︷︷ ︸
linearization of Enad

xc,T[ρ
o
A,ρjB ]

+

∫
ρoA(r)vnadxct [ρrefA , ρjB]dr

=
〈

Ψj
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρjB; vB]

∣∣∣Ψj
A

〉
−
〈

Ψo
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρjB; vB]

∣∣∣Ψo
A

〉

=λj[ρ
ref
A , ρjB] − λo[ρ

ref
A , ρjB] (7)

Note this result can be used in any correlated methods for excited states such as

ADC(2), EOM-CCSD etc.

For the evaluation of B, the embedded interacting wavefunction ΨA can be replaced

by the single determinant wavefunction ΦA self-consistenly obtained using the re-

cent derived relation. In case of the correlation energy obtained by means of some

non-variational method, this relation reads:

EHK
vAB

[ρA + ρB] = EFDET
vAB

[Φ
′
A, ρB] + Ec

v′ (8)

−
∫

ρ
′
A(r)

(∫
∆ρcv′(r

′)fnad
xct [ρ

′
A, ρB](r, r′)dr′

)
dr + O(∆2ρ),

where ρA(r) is the density obtained from the exact solution of the FDET Schrodinger

equation, ρ
′
A(r) = ⟨Φ′

A|
∑NA

i=1 δ(ri − r)|Φ′
A⟩, v′(r) = vA(r) + vFDET

emb [ρ
′
A, ρB; vB](r),

Φ
′
A is the stationary single determinant obtained with the potential v′, Ec

v′ is

the correlation energy in the NA-electron system defined by the potential v′,

fnad
xct [ρ

′
A, ρB](r, r′) =

δ2Enad
xct [ρA,ρB ]

δρA(r)δρA(r′) , and ∆ρcv′ is the correlation-induced change of

the electron density, and O(∆2ρ) collects all contributions to energy due to the

effect of correlation on density that are of higher order.

We again apply the linearization on Enad
xc,T[ρA, ρB] and ignore the higher order terms

in (ρA − ρrefA ). The liner term in Eq. 8 disappears. Pluging in Eq. 8 and neglecting

higher order terms O(∆2ρ) to Eq. 4 leads to:
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B =
〈

Φ
′o(j)
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρjB; vB]

∣∣∣Φ
′o(j)
A

〉
+ Ec

v′j + EHK
vB

[ρjB]

+ VA[ρjB] + Enad
xc,T[ρrefA , ρjB] +

∫
(ρ

′o(j)
A − ρrefA )vnadxct [ρrefA , ρjB]dr

︸ ︷︷ ︸
linearization of Enad

xc,T[ρ
′o(j)
A ,ρjB ]

−
∫

ρ
′o(j)
A (r)vnadxct [ρrefA , ρjB]dr

−
〈

Φ
′o(o)
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρoB; vB]

∣∣∣Φ
′o(o)
A

〉
− Ec

v′o − EHK
vB

[ρoB]

− VA[ρoB] − Enad
xc,T[ρrefA , ρoB] −

∫
(ρ

′o(o)
A − ρrefA )vnadxct [ρrefA , ρoB]dr

︸ ︷︷ ︸
linearization of Enad

xc,T[ρ
′o(o)
A ,ρoB ]

+

∫
ρ

′o(o)
A (r)vnadxct [ρrefA , ρoB]dr

=
〈

Φ
′o(j)
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρjB; vB]

∣∣∣Φ
′o(j)
A

〉
−
〈

Φ
′o(o)
A

∣∣∣ĤA + v̂FDET
emb [ρrefA , ρoB; vB]

∣∣∣Φ
′o(o)
A

〉

+ Ec
v′j − Ec

v′o + EHK
vB

[ρjB] − EHK
vB

[ρoB]

+ VA[ρjB] − VA[ρoB]

+ Enad
xc,T[ρrefA , ρjB] − Enad

xc,T[ρrefA , ρoB]

−
(∫

ρrefA (r)vnadxct [ρrefA , ρjB]dr−
∫

ρrefA (r)vnadxct [ρrefA , ρoB]dr

)

The summation of the result from A and B gives the final result of ϵj in Eq. 14 in

the manuscript.

II. COMPLEXATION INDUCED SHIFTS

The density matrix and properties were obtained with cc-pVDZ basis set unless

specified.

III. CHELPG CHARGES USED FOR DIFFERENT PROTOCOLS
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System Excited state ϵrefshift Excitation type Protocol A Protocol B Protocol D Protocol C Protocol E

7-hydroxyquinoline(2NH3) 1 -0.2668 ππ∗ 0.0974 0.0728 0.0627 0.093 0.0583

4 -0.261 ππ∗ 0.0967 0.0753 0.0643 0.0948 0.0621

8 0.031 ππ∗ 0.0106 0.0147 0.0178 0.0275 0.0127

7-hydroxyquinoline(MeOH)(H-O) 1 -0.1017 ππ∗ 0.0406 0.0299 0.0261 0.029 0.0261

5 -0.1157 ππ∗ 0.0504 0.0398 0.0358 0.0389 0.036

9 0.0245 nπ∗ 0.0154 0.0221 0.0234 0.0221 0.0218

10 -0.0391 ππ∗ 0.0325 0.0306 0.0314 0.0302 0.0296

xanthine(MeCN) 1 0.1424 nπ∗ -0.0308 0.0015 0.0021 0.005 -0.0007

2 -0.0483 ππ∗ 0.0423 0.0367 0.0358 0.0464 0.0332

4 0.0208 nπ∗ 0.0052 0.0101 0.0111 0.0181 0.0095

5 -0.0317 nπ∗ 0.0291 0.027 0.0271 0.0361 0.0248

6 0.0847 ππ∗ 0.011 0.0309 0.0355 0.0344 0.0312

7 -0.0954 ππ∗ 0.0442 0.0314 0.0291 0.045 0.028

9 -0.0294 ππ∗ 0.0225 0.0231 0.0226 0.032 0.0222

7-hydroxyquinoline(2MeOH) 1 -0.2517 ππ∗ 0.0988 0.0745 0.0625 0.097 0.0485

4 -0.269 ππ∗ 0.1212 0.0886 0.0726 0.1113 0.0633

7 -0.1473 ππ∗ 0.0722 0.0594 0.0527 0.0798 0.041

xanthine(MeOH) 1 -0.1126 ππ∗ 0.0669 0.0559 0.048 0.0654 0.0295

5 0.0617 nπ∗ -0.0383 -0.0387 -0.037 -0.03 -0.0595

6 0.0825 ππ∗ 0.0077 0.0219 0.0314 0.0273 0.026

7 -0.0337 nπ∗ 0.0403 0.0422 0.0287 0.0471 0.0217

8 -0.0876 ππ∗ 0.0444 0.036 0.0339 0.048 0.0146

9 -0.0412 ππ∗ 0.0228 0.0218 0.0189 0.0307 0.0156

7-hydroxyquinoline(2H2O) 1 -0.2424 ππ∗ 0.0852 0.0657 0.0567 0.0858 0.0297

2 -0.1609 ππ∗ 0.0533 0.0412 0.0361 0.0598 0.0088

4 -0.2493 ππ∗ 0.0902 0.0725 0.0598 0.0923 0.0566

5 -0.2144 ππ∗ 0.0946 0.0715 0.0659 0.0888 0.0591

7 -0.1288 ππ∗ 0.0544 0.0445 0.0395 0.0626 0.0369

aminopurine(H2O) 1 -0.0148 ππ∗ 0.0131 0.0117 0.0105 0.0197 0.0061

2 0.1171 nπ∗ -0.0092 0.008 0.0161 0.0122 0.0096

3 -0.1077 ππ∗ 0.0483 0.0383 0.0379 0.0485 0.031

6 -0.0374 ππ∗ 0.0238 0.0215 0.0207 0.0297 0.0164

7 0.0763 ππ∗ -0.0078 0.0009 0.0038 0.0067 -0.0006

pyrimidine(H2O) 1 0.0725 nπ∗ 0.0054 0.0064 0.017 0.016 0.0113

2 0.1436 nπ∗ -0.0131 0.0108 0.005 0.0004 -0.0007

3 -0.034 ππ∗ 0.0127 -0.0019 0.0072 0.0177 0.0045

6 -0.0013 ππ∗ 0.0023 0.0 0.0013 0.0086 -0.0016

9 -0.0261 ππ∗ 0.0352 0.0355 0.0384 0.0417 0.0337

uracil(5H2O) 2 -0.2237 ππ∗ 0.1109 0.0974 0.0941 0.1493 0.0632

6 -0.3365 ππ∗ 0.1589 0.1406 0.1405 0.1943 0.1038

8 -0.1185 ππ∗ 0.1006 0.1045 0.1673 0.1431 0.082

7-hydroxyquinoline(MeOH)(N-H) 1 -0.0884 ππ∗ 0.0419 0.033 0.0277 0.0524 0.0198

3 -0.0999 ππ∗ 0.0455 0.0354 0.0304 0.0561 0.0248

4 -0.1192 ππ∗ 0.0583 0.0475 0.0363 0.0675 0.0302

7 -0.0786 ππ∗ 0.0508 0.0444 0.0421 0.0631 0.033

8 -0.0454 ππ∗ 0.0246 0.0206 0.0161 0.0385 0.0104

9 0.0148 ππ∗ 0.0156 0.02 0.0254 0.0352 0.0184

TABLE S1: The reference complexation induced shift [eV] and the error for

different choices of ρB for all systems studied.
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System Excited state ϵAj ϵBj ϵCj ϵDj ϵEj

7-hydroxyquinoline(2NH3) 1 4.083 0.6720 0.0002 -0.7016 0.0253

4 5.7354 0.5228 0.0005 -0.5586 0.0301

8 6.8347 -0.0273 -0.0001 0.0382 -0.0071

7-hydroxyquinoline(MeOH)(H-O) 1 4.1885 0.9376 0.0002 -0.9531 0.0148

5 5.7939 1.0746 0.0 -1.0911 0.0162

9 6.7668 -0.8819 0.0 0.8946 -0.0083

10 6.9821 -0.204 0.0 0.2076 -0.0029

xanthine(MeCN) 1 5.1777 1.0304 0.0011 -0.983 -0.0294

2 5.2738 -0.8843 -0.0003 0.8869 -0.0011

4 6.5491 -0.0529 0.0005 0.046 0.0058

5 6.6377 -0.3438 0.0 0.3528 -0.0076

6 6.7929 -1.042 0.0001 1.0464 -0.0026

7 7.0035 0.3961 0.0 -0.4096 0.0125

9 7.187 -0.18 0.0001 0.176 0.0036

7-hydroxyquinoline(2MeOH) 1 4.1005 0.7902 0.0004 -0.8172 0.0217

4 5.7552 0.559 -0.0002 -0.5979 0.0309

7 6.278 0.0409 0.0 -0.0579 0.0124

xanthine(MeOH) 1 5.2182 -1.1242 -0.0003 1.1149 0.0054

5 6.5394 -0.2127 0.0 0.22 -0.0054

6 6.7489 -0.3124 0.0003 0.3492 -0.0234

7 6.9782 -3.0021 -0.0007 2.9942 0.0084

8 6.9976 0.3351 0.0 -0.3443 0.0079

9 7.1613 -0.3094 -0.0001 0.3031 0.0038

7-hydroxyquinoline(2H2O) 1 4.1035 0.2278 0.0001 -0.2497 0.017

2 4.8162 0.3945 -0.0001 -0.4085 0.0112

4 5.7598 -0.0029 -0.0001 -0.0287 0.0241

5 6.1144 0.0714 0.0 -0.0859 0.0109

7 6.2879 -0.0703 0.0 0.0571 0.0095

aminopurine(H2O) 1 4.5654 -0.2476 0.0 0.246 0.0009

2 4.7202 1.1291 0.0001 -1.0983 -0.0158

3 5.5826 0.3424 0.0 -0.3448 0.0029

6 6.325 -0.0504 0.0 0.0481 0.0016

7 7.0039 0.0627 0.0 -0.0502 -0.0082

pyrimidine(H2O) 1 4.4055 0.5273 0.0 -0.5151 -0.0044

2 5.0542 0.8834 0.0 -0.8623 -0.0062

3 5.3256 -0.2629 0.0 0.2566 0.0032

6 7.1639 -0.0827 0.0 0.0808 0.0009

9 8.3354 0.205 0.0 -0.1999 -0.0021

uracil(5H2O) 2 5.3063 0.4489 0.0003 -0.4517 0.0052

6 6.872 -0.7644 -0.0005 0.7685 -0.0009

8 7.5271 1.404 0.0013 -1.2844 -0.044

7-hydroxyquinoline(MeOH)(N-H) 1 4.2593 -0.1255 -0.0002 0.1153 0.0068

3 4.9126 0.1541 -0.0003 -0.1635 0.0066

4 5.8779 -0.5272 -0.0004 0.5054 0.0148

7 6.2729 -0.1614 -0.0001 0.1568 0.003

8 6.3441 -0.3142 -0.0002 0.304 0.0065

9 6.8239 0.3777 0.0002 -0.3652 -0.0065

TABLE S2: The excitation energy [eV] contributions to ϵj in case of the state

specific embedding (Protocol D).
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System Excited state ϵrefshift Excitation type Protocol D Charge difference

7-hydroxyquinoline(2NH3) 1 -0.2668 ππ∗ 0.0627 -0.1023

4 -0.261 ππ∗ 0.0643 -0.0928

8 0.031 ππ∗ 0.0178 -0.084

7-hydroxyquinoline(MeOH)(H-O) 1 -0.1017 ππ∗ 0.0261 0.0808

5 -0.1157 ππ∗ 0.0358 0.0821

9 0.0245 nπ∗ 0.0234 0.0821

10 -0.0391 ππ∗ 0.0314 0.1049

xanthine(MeCN) 1 0.1424 nπ∗ 0.0021 0.0566

2 -0.0483 ππ∗ 0.0358 0.0577

4 0.0208 nπ∗ 0.0111 0.0538

5 -0.0317 nπ∗ 0.0271 0.0599

6 0.0847 ππ∗ 0.0355 0.061

7 -0.0954 ππ∗ 0.0291 0.08

9 -0.0294 ππ∗ 0.0226 0.0564

7-hydroxyquinoline(2MeOH) 1 -0.2517 ππ∗ 0.0625 -0.1683

4 -0.269 ππ∗ 0.0726 -0.1584

7 -0.1473 ππ∗ 0.0527 -0.1473

xanthine(MeOH) 1 -0.1126 ππ∗ 0.048 -0.0896

5 0.0617 nπ∗ -0.037 -0.1225

6 0.0825 ππ∗ 0.0314 -0.0699

7 -0.0337 nπ∗ 0.0287 -0.0516

8 -0.0876 ππ∗ 0.0339 -0.0676

9 -0.0412 ππ∗ 0.0189 -0.0552

7-hydroxyquinoline(2H2O) 1 -0.2424 ππ∗ 0.0567 -0.1656

2 -0.1609 ππ∗ 0.0361 -0.1574

4 -0.2493 ππ∗ 0.0598 -0.1558

5 -0.2144 ππ∗ 0.0659 -0.1371

7 -0.1288 ππ∗ 0.0395 -0.1512

aminopurine(H2O) 1 -0.0148 ππ∗ 0.0105 -0.1092

2 0.1171 nπ∗ 0.0161 -0.1457

3 -0.1077 ππ∗ 0.0379 -0.1235

6 -0.0374 ππ∗ 0.0207 -0.08

7 0.0763 ππ∗ 0.0038 -0.1073

pyrimidine(H2O) 1 0.0725 nπ∗ 0.017 -0.1784

2 0.1436 nπ∗ 0.005 -0.1716

3 -0.034 ππ∗ 0.0072 -0.0833

6 -0.0013 ππ∗ 0.0013 -0.0833

9 -0.0261 ππ∗ 0.0384 -0.0833

uracil(5H2O) 2 -0.2237 ππ∗ 0.0941 -0.1899

6 -0.3365 ππ∗ 0.1405 -0.182

8 -0.1185 ππ∗ 0.1673 -0.226

7-hydroxyquinoline(MeOH)(N-H) 1 -0.0884 ππ∗ 0.0277 -0.1255

3 -0.0999 ππ∗ 0.0304 -0.1113

4 -0.1192 ππ∗ 0.0363 -0.1242

7 -0.0786 ππ∗ 0.0421 -0.1463

8 -0.0454 ππ∗ 0.0161 -0.1011

9 0.0148 ππ∗ 0.0254 -0.1242

TABLE S3: The chelpg charge difference of the atom located on the chromophore

which is affected most by the complexation effect using the Protocol D and its

excitation error compared with the reference.
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Protocol D Protocol E

State In Out Charge difference In Out Charge difference

s2 -0.4548 -0.6447 0.1899 -0.6418 -0.6524 0.0106

s6 -0.447 -0.629 0.182 -0.6299 -0.6381 0.0082

s8 -0.315 -0.541 0.226 -0.6491 -0.5515 -0.0976

TABLE S4: The chelpg charge of the oxygen in the uracil used for pre-polarising

and after pre-polarising the environment applying Protocol D and Protocol E in

the uracil(5H2O) case.

System Excited state ϵrefshift Excitation type Protocol A Protocol B Protocol D Protocol C Protocol E

aminopurine(H2O) 1 -0.0143 ππ∗ 0.0095 0.0080 0.0062 0.0297 -0.0006

2 0.1104 nπ∗ 0.0076 0.0304 0.0413 0.0442 0.0313

7 -0.0579 ππ∗ 0.0187 0.0174 0.0182 0.0399 0.0106

pyrimidine(H2O) 1 0.0685 nπ∗ 0.0186 0.0274 0.0357 0.0351 0.0267

2 0.1306 nπ∗ 0.0078 0.0223 0.0317 0.0276 0.0237

3 -0.0273 ππ∗ 0.0091 0.0070 0.0033 0.0193 -0.0012

TABLE S5: The reference complexation induced shift [eV] and the error for

different choices of ρB using the augmented basis set aug-cc-pVDZ.

N N C C C C H H H H

s0 -0.3976 -0.403 0.1348 0.1528 0.1388 0.1492 0.0599 0.0526 0.0576 0.0548

s1 -0.1487 -0.1882 -0.0718 -0.0275 -0.0667 -0.0341 0.1392 0.1289 0.138 0.1309

s2 -0.0322 -0.0602 -0.1081 -0.0863 -0.1084 -0.0882 0.1238 0.1168 0.1235 0.1192

s3 -0.5061 -0.5121 0.2013 0.2214 0.2054 0.2164 0.0474 0.0394 0.0449 0.0419

s4 -0.0604 -0.0317 -0.0885 -0.0917 -0.0839 -0.0977 0.1148 0.112 0.1131 0.114

s5 0.0614 0.0922 -0.1313 -0.1465 -0.1317 -0.1481 0.1008 0.1004 0.1 0.1028

s6 -0.4436 -0.4456 0.1797 0.1899 0.1817 0.1875 0.0404 0.0344 0.0388 0.0368

s7 -0.2582 -0.2622 0.0869 0.1027 0.0963 0.0937 0.0378 0.0324 0.0361 0.0343

s8 -0.3347 -0.3483 0.1222 0.1419 0.1217 0.1428 0.0436 0.0338 0.0404 0.0366

s9 -0.0363 -0.0624 0.1622 0.1817 0.1714 0.1819 -0.1485 -0.1432 -0.1568 -0.1501

s10 -0.4602 -0.4692 0.0563 0.0799 0.0621 0.0737 0.1658 0.1634 0.1626 0.1656

TABLE S6: The chelpg charges used for the average in pyrimidine(H2O) complex.

N C C C C C C C C C O H H H H H H H

s0 -0.6222 0.3444 -0.4364 0.0626 -0.1172 -0.3459 0.5408 -0.7181 0.7568 -0.2414 -0.5396 0.402 0.2303 0.0549 0.173 0.1135 0.1473 0.1953

s1 -0.6253 0.2007 -0.2969 -0.0707 -0.1425 -0.4396 0.6075 -0.6475 0.7382 -0.1473 -0.4686 0.4148 0.2122 0.0545 0.1577 0.1059 0.1515 0.1956

s2 0.2439 -0.3141 -0.1133 -0.3934 -0.3026 -0.3374 0.4729 -0.6184 0.2206 0.1831 -0.5421 0.3977 0.2178 0.1968 0.1576 0.1669 0.1799 0.1841

s3 -0.6924 0.395 -0.5663 0.0484 -0.0032 -0.3075 0.4676 -0.5266 0.7937 -0.3433 -0.528 0.4092 0.2107 0.0438 0.1764 0.0925 0.134 0.1961

s4 0.2946 -0.2141 -0.2477 -0.2714 -0.2806 -0.2782 0.4254 -0.6206 0.1343 0.1201 -0.5432 0.3837 0.234 0.1897 0.1436 0.1888 0.174 0.1676

s5 -0.7022 0.3207 -0.4063 -0.0868 -0.0993 -0.3367 0.5415 -0.6032 0.7222 -0.176 -0.451 0.4079 0.221 0.0505 0.1565 0.1074 0.1509 0.1829

s6 -0.5955 0.263 -0.3168 -0.0113 -0.2013 -0.3625 0.573 -0.6268 0.6667 -0.2001 -0.435 0.3917 0.199 0.0454 0.1582 0.1182 0.1381 0.1958

s7 -0.6108 0.281 -0.466 0.1223 -0.1678 -0.266 0.4959 -0.7048 0.7212 -0.1982 -0.4815 0.4143 0.2233 0.0482 0.1661 0.0957 0.1531 0.1739

s8 0.2847 -0.1636 -0.0944 -0.2793 -0.4522 -0.2828 0.438 -0.66 0.131 0.1676 -0.5485 0.395 0.1969 0.1926 0.1534 0.1852 0.1637 0.1728

s9 -0.5671 0.3099 -0.4154 0.1366 -0.1992 -0.2271 0.4691 -0.7504 0.7975 -0.2755 -0.5516 0.4085 0.2188 0.0475 0.1701 0.1072 0.1427 0.1783

s10 -0.5751 0.3272 -0.3402 0.1126 -0.0813 -0.3619 0.4884 -0.3558 0.704 -0.2916 -0.2702 -0.0465 0.0566 0.0609 0.1599 0.096 0.1305 0.1864

TABLE S7: The chelpg charges used for the average in the

7-hydroxyquinoline(2H2O) complex.
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N C C C C C C C C C O H H H H H H H

s0 -0.6247 0.3488 -0.4554 0.0829 -0.1177 -0.3536 0.5702 -0.7519 0.7846 -0.2621 -0.5524 0.4114 0.2319 0.0531 0.1786 0.1099 0.1494 0.197

s1 -0.629 0.2061 -0.3168 -0.0539 -0.149 -0.4446 0.6378 -0.6812 0.7675 -0.164 -0.4834 0.4263 0.2137 0.0522 0.1636 0.1027 0.1549 0.1969

s2 0.2414 -0.3114 -0.1332 -0.3743 -0.3044 -0.3476 0.51 -0.6607 0.2543 0.1632 -0.5576 0.4081 0.2211 0.1953 0.1633 0.1633 0.1828 0.1864

s3 -0.6977 0.4016 -0.5864 0.0665 -0.0079 -0.3149 0.4964 -0.552 0.8165 -0.3601 -0.5393 0.4187 0.2117 0.041 0.1823 0.0889 0.1373 0.1974

s4 0.2927 -0.2119 -0.2679 -0.2494 -0.2844 -0.2841 0.4555 -0.6608 0.1651 0.1017 -0.5549 0.3926 0.2372 0.1892 0.149 0.1846 0.1771 0.1688

s5 -0.7071 0.3294 -0.429 -0.0658 -0.1066 -0.3364 0.5644 -0.637 0.7543 -0.1966 -0.4612 0.4169 0.2232 0.048 0.1628 0.1039 0.1538 0.1828

s6 -0.6031 0.2654 -0.333 -0.0048 -0.2212 -0.3589 0.603 -0.6637 0.6989 -0.2123 -0.4652 0.4277 0.2022 0.0437 0.1637 0.1169 0.1432 0.1975

s7 -0.6112 0.2892 -0.4933 0.146 -0.172 -0.2613 0.5206 -0.7435 0.7469 -0.2157 -0.4958 0.4243 0.226 0.0456 0.172 0.0928 0.1562 0.1734

s8 0.2833 -0.1623 -0.1151 -0.2547 -0.4581 -0.2946 0.4748 -0.7013 0.1672 0.1434 -0.5658 0.4087 0.1995 0.1921 0.1591 0.1813 0.1668 0.1757

s9 -0.5649 0.3104 -0.4312 0.1676 -0.2046 -0.2462 0.4998 -0.7766 0.8227 -0.2993 -0.5708 0.4246 0.217 0.0467 0.1762 0.1018 0.145 0.1821

s10 -0.4967 0.3091 -0.3127 0.1164 0.0695 -0.4544 0.5029 0.0289 0.5164 -0.2947 0.0002 -0.5102 -0.0919 0.0567 0.1617 0.0857 0.1241 0.189

TABLE S8: The chelpg charges used for the average in the

7-hydroxyquinoline(2NH3) complex.

N C C C C C C C C C O H H H H H H H

s0 -0.6145 0.3295 -0.4396 0.076 -0.1083 -0.3517 0.5486 -0.734 0.7737 -0.2672 -0.5534 0.4123 0.2325 0.0597 0.1764 0.1117 0.1484 0.1999

s1 -0.6185 0.1911 -0.3035 -0.0592 -0.1425 -0.4368 0.6154 -0.6722 0.7591 -0.1669 -0.4872 0.4265 0.2162 0.0588 0.1614 0.1049 0.1539 0.1996

s2 0.2498 -0.3314 -0.113 -0.3844 -0.2938 -0.346 0.4905 -0.6458 0.2453 0.1592 -0.5593 0.4098 0.2214 0.2004 0.1603 0.1658 0.1818 0.1895

s3 -0.6873 0.3755 -0.5668 0.055 0.0029 -0.315 0.4777 -0.5279 0.7986 -0.3598 -0.5387 0.4194 0.2117 0.0482 0.1798 0.09 0.1364 0.2003

s4 0.298 -0.2235 -0.254 -0.2567 -0.2703 -0.2864 0.4378 -0.6447 0.1581 0.0918 -0.5567 0.3948 0.2366 0.1935 0.147 0.1871 0.1751 0.1726

s5 -0.6975 0.309 -0.4127 -0.0742 -0.0961 -0.3378 0.5457 -0.6172 0.7418 -0.2 -0.462 0.4172 0.2235 0.055 0.1607 0.1055 0.1527 0.1865

s6 -0.5902 0.2472 -0.3207 -0.004 -0.2134 -0.357 0.5821 -0.66 0.6918 -0.2176 -0.4619 0.4255 0.2052 0.0505 0.1615 0.1185 0.1423 0.2002

s7 -0.6068 0.2747 -0.4814 0.1272 -0.154 -0.2567 0.5009 -0.7202 0.735 -0.2224 -0.4972 0.4248 0.2275 0.0514 0.1699 0.0958 0.1549 0.1768

s8 0.2899 -0.1779 -0.0978 -0.2623 -0.4492 -0.2921 0.4534 -0.6899 0.1628 0.1378 -0.5683 0.4104 0.2007 0.1968 0.1565 0.1841 0.166 0.179

s9 -0.5533 0.2996 -0.419 0.1655 -0.1939 -0.2492 0.4805 -0.7563 0.8056 -0.3085 -0.5705 0.4247 0.2165 0.0528 0.1748 0.103 0.1423 0.1855

s10 -0.6691 0.3349 -0.3648 0.1128 -0.2025 -0.2683 0.4641 -0.6842 0.8603 -0.3115 -0.521 0.4008 0.2011 0.063 0.1644 0.0994 0.1392 0.1816

TABLE S9: The chelpg charges used for the average in the

7-hydroxyquinoline(MeOH) complex(H-O).

N C C C C C C C C C O H H H H H H H

s0 -0.627 0.3543 -0.4478 0.0771 -0.1061 -0.3617 0.5547 -0.7258 0.7629 -0.2551 -0.5378 0.3974 0.2334 0.052 0.1762 0.1085 0.1466 0.198

s1 -0.63 0.2134 -0.3103 -0.0538 -0.1316 -0.4527 0.6178 -0.6539 0.7427 -0.1613 -0.4656 0.4086 0.2155 0.0511 0.1614 0.1006 0.1505 0.1977

s2 0.2409 -0.3043 -0.1242 -0.3789 -0.2941 -0.3499 0.4824 -0.6205 0.2209 0.1728 -0.5393 0.3924 0.2194 0.1942 0.1607 0.1619 0.1792 0.1863

s3 -0.6956 0.4046 -0.5778 0.0648 0.0062 -0.3216 0.4797 -0.5337 0.798 -0.356 -0.5261 0.4038 0.2135 0.0411 0.18 0.0871 0.1335 0.1984

s4 0.2934 -0.2085 -0.2549 -0.2618 -0.2749 -0.2907 0.4367 -0.623 0.1337 0.1139 -0.5423 0.3802 0.2352 0.1879 0.1461 0.185 0.1741 0.17

s5 -0.7062 0.3301 -0.4181 -0.0719 -0.0893 -0.3512 0.5545 -0.6095 0.7263 -0.1883 -0.4499 0.404 0.2237 0.0478 0.16 0.1021 0.1505 0.1854

s6 -0.5996 0.276 -0.3305 0.0093 -0.1797 -0.3829 0.5873 -0.6334 0.6728 -0.2183 -0.4235 0.3694 0.2018 0.0424 0.1621 0.112 0.1364 0.1983

s7 -0.6161 0.2912 -0.4756 0.1347 -0.1571 -0.2833 0.5086 -0.7075 0.7248 -0.2111 -0.4784 0.4092 0.2258 0.0453 0.1697 0.0903 0.1525 0.1769

s8 0.2815 -0.1541 -0.1044 -0.2675 -0.4412 -0.2937 0.447 -0.662 0.1304 0.1581 -0.544 0.3866 0.1986 0.1901 0.1562 0.1804 0.1633 0.1747

s9 -0.5748 0.324 -0.4288 0.1457 -0.1868 -0.2373 0.4821 -0.7583 0.802 -0.2862 -0.5469 0.3994 0.2228 0.0439 0.1735 0.1029 0.1423 0.1803

s10 -0.6066 0.3499 -0.3681 0.1287 -0.1211 -0.3466 0.4989 -0.4942 0.7677 -0.3029 -0.3572 0.0977 0.116 0.0573 0.1649 0.0942 0.1333 0.1879

TABLE S10: The chelpg charges used for the average in the

7-hydroxyquinoline(2MeOH) complex.
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N C C N C N C N C O O H H H H

s0 -0.5448 0.5727 -0.1998 -0.3191 0.1869 -0.6327 0.6936 -0.6447 0.5732 -0.4569 -0.4986 0.3779 0.3922 0.3641 0.1361

s1 -0.4696 0.4092 -0.1784 -0.3069 0.0155 -0.5528 0.6354 -0.6424 0.3301 -0.0598 -0.4664 0.4175 0.3678 0.3618 0.1391

s2 -0.5719 0.5661 -0.059 -0.3391 0.0997 -0.4466 0.6556 -0.6279 0.378 -0.4962 -0.4065 0.3824 0.3818 0.357 0.1266

s3 -0.5239 0.5092 -0.0678 -0.313 0.176 -0.5708 0.644 -0.5861 0.4409 -0.4689 -0.4866 0.3765 0.3942 0.3651 0.1113

s4 -0.5036 0.4783 -0.0922 -0.3969 0.1818 -0.6975 0.4549 -0.7347 0.5133 -0.4196 -0.1674 0.435 0.4421 0.3768 0.1299

s5 0.3062 0.122 -0.164 -0.1937 -0.4453 -0.4843 0.614 -0.5457 0.4288 -0.4832 -0.457 0.353 0.3662 0.3496 0.2333

s6 -0.5073 0.4817 -0.3342 -0.2633 0.0075 -0.6722 0.698 -0.3158 0.4555 -0.3699 -0.3808 0.3422 0.3961 0.3327 0.1299

s7 -0.5187 0.4236 -0.2308 -0.2947 -0.0015 -0.6122 0.7101 -0.6358 0.3451 -0.5285 0.0289 0.4221 0.4145 0.3453 0.1324

s8 -0.5223 0.5063 -0.0293 -0.3374 0.2434 -0.4708 0.5132 -0.6564 0.4616 -0.4423 -0.5436 0.3951 0.3926 0.3686 0.1215

s9 -0.582 0.5095 0.031 -0.3606 0.1605 -0.4557 0.5938 -0.6226 0.4099 -0.4748 -0.4754 0.3944 0.3776 0.3656 0.1288

s10 -0.4848 0.3676 -0.0247 0.3963 0.2665 -0.3271 0.6541 -0.6752 0.6429 -0.4106 -0.4301 0.4001 0.339 -0.708 -0.0059

TABLE S11: The chelpg charges used for the average in the xanthine(MeCN)

complex.

N C C N C N C N C O O H H H H

s0 0.561 -0.2015 0.5796 -0.6329 0.6857 -0.628 -0.3214 0.1845 -0.545 -0.4955 -0.4607 0.3756 0.3917 0.368 0.139

s1 0.3201 -0.1803 0.4196 -0.5525 0.623 -0.6248 -0.3216 0.0207 -0.4741 -0.4665 -0.0561 0.4146 0.3673 0.3706 0.14

s2 0.3683 -0.0585 0.57 -0.4451 0.6448 -0.6121 -0.3403 0.0982 -0.5719 -0.4058 -0.4967 0.3798 0.3807 0.3587 0.1296

s3 0.4341 -0.0694 0.5174 -0.5701 0.6365 -0.5794 -0.315 0.1748 -0.5242 -0.4858 -0.4695 0.3749 0.3936 0.3678 0.1142

s4 0.5055 -0.1 0.487 -0.7034 0.4583 -0.7233 -0.395 0.1737 -0.4973 -0.1767 -0.4191 0.4342 0.4423 0.3802 0.1337

s5 0.4179 -0.1657 0.1293 -0.4831 0.6051 -0.531 -0.1917 -0.4434 0.2976 -0.4529 -0.4842 0.3514 0.3657 0.3507 0.2345

s6 0.4523 -0.3363 0.4899 -0.6719 0.6914 -0.3122 -0.2684 0.0016 -0.5055 -0.3802 -0.3676 0.3414 0.3954 0.3369 0.1331

s7 0.3358 -0.2323 0.4323 -0.614 0.7054 -0.6231 -0.3018 -0.0006 -0.5215 0.0327 -0.5335 0.4203 0.4153 0.3505 0.1345

s8 0.4536 -0.0313 0.5177 -0.4751 0.4995 -0.6454 -0.3385 0.2495 -0.5218 -0.5481 -0.4431 0.3949 0.3929 0.3703 0.125

s9 0.3994 0.0217 0.5088 -0.4544 0.5913 -0.5986 -0.3527 0.1472 -0.578 -0.4701 -0.4762 0.3899 0.3761 0.364 0.1316

s10 0.6362 -0.0104 0.376 -0.3358 0.6497 -0.6688 0.3989 0.2298 -0.4835 -0.4292 -0.4129 0.4014 0.344 -0.7208 0.0254

TABLE S12: The chelpg charges used for the average in the xanthine(MeOH)

complex.

C N C C N C N C N N H H H H H

s0 0.2296 -0.5244 0.1221 0.4607 -0.4587 0.1077 -0.587 0.7664 -0.6494 -0.7395 0.1352 0.3245 0.3315 0.1167 0.3646

s1 0.2565 -0.5264 0.2091 0.5388 -0.5489 -0.1245 -0.5482 0.7146 -0.7265 -0.487 0.122 0.303 0.3182 0.1134 0.3859

s2 0.0428 -0.4445 0.359 0.1743 -0.3724 -0.5561 0.0225 0.3304 -0.2675 -0.685 0.2385 0.3228 0.337 0.1388 0.3594

s3 0.1454 -0.4388 0.1539 0.4257 -0.3283 -0.0379 -0.5644 0.7094 -0.6201 -0.6814 0.1291 0.312 0.3205 0.1106 0.3642

s4 -0.1832 0.0154 -0.0312 0.4149 -0.3479 -0.209 -0.3234 0.6235 -0.5704 -0.7532 0.1581 0.3228 0.3404 0.1865 0.3567

s5 0.1417 -0.4318 0.2749 0.0614 -0.4012 -0.2512 -0.0871 0.2364 -0.1494 -0.7461 0.2228 0.3233 0.3288 0.1274 0.3503

s6 0.1945 -0.4724 0.2002 0.4327 -0.4177 -0.0236 -0.5814 0.6678 -0.6559 -0.5465 0.1295 0.2908 0.3085 0.108 0.3655

s7 0.1113 -0.6315 0.2134 0.5088 -0.5187 0.1292 -0.5669 0.735 -0.6685 -0.5176 0.1274 0.3002 0.2972 0.1119 0.3688

s8 -0.077 -0.2576 0.1223 0.2679 -0.3806 -0.1446 -0.3997 0.5714 -0.3466 -0.6843 0.1553 0.33 0.3367 0.1539 0.353

s9 0.1659 -0.4072 0.0851 0.5379 -0.491 -0.1291 -0.5518 0.6556 -0.6547 -0.4336 0.1376 0.2918 0.3041 0.1193 0.3701

s10 0.1697 -0.3008 -0.0462 0.444 0.0335 0.1975 -0.5271 0.704 -0.5113 -0.5892 0.1122 0.3187 0.313 0.0579 -0.3758

TABLE S13: The chelpg charges used for the average in the aminopurine(H2O)

complex.

C C C H O N C H N H H O

s0 0.0736 -0.4988 0.6844 0.2131 -0.4922 -0.5349 0.634 0.3426 -0.4016 0.3298 0.1525 -0.5027

s1 -0.203 -0.5837 0.4817 0.2626 -0.0451 -0.4713 0.5623 0.3565 -0.3395 0.3097 0.157 -0.4871

s2 -0.1386 -0.3511 0.4506 0.2039 -0.4548 -0.442 0.5492 0.3227 -0.1703 0.3289 0.1315 -0.43

s3 -0.0479 -0.5765 0.6369 0.2046 -0.405 -0.6058 0.5132 0.3803 -0.4706 0.379 0.1517 -0.1598

s4 -0.217 -0.6885 0.5665 0.244 -0.3766 -0.1211 0.6469 0.283 -0.4764 0.3442 0.1509 -0.3559

s5 -0.1376 -0.6146 0.5617 0.2294 -0.2615 -0.5092 0.558 0.3762 -0.4044 0.3454 0.1628 -0.3061

s6 -0.0644 -0.4881 0.5664 0.2093 -0.4057 -0.5868 0.4937 0.4068 -0.4218 0.3443 0.1643 -0.218

s7 0.1845 -0.0593 0.521 0.1105 -0.3809 -0.6258 0.596 0.3722 0.1522 -0.2958 -0.1786 -0.396

s8 0.0615 -0.1439 0.5101 0.1606 -0.447 -0.6007 0.4437 0.381 -0.1542 0.2289 0.1037 -0.5435

s9 0.1247 -0.4601 0.6369 0.1542 -0.1617 -0.4303 0.5823 0.236 -0.2464 -0.0042 -0.0395 -0.3918

s10 0.0666 -0.5326 0.6449 0.1825 -0.3146 -0.3711 0.5389 0.3493 -0.3295 0.1216 0.0785 -0.4344

TABLE S14: The chelpg charges used for the average in the uracil(5H2O) complex.
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N C C C C C C C C C O H H H H H H H

s0 -0.7388 0.7867 -0.2669 -0.1139 -0.3472 0.5516 -0.6279 0.34 -0.4407 0.0799 -0.5604 0.4151 0.2329 0.0572 0.1745 0.1093 0.1484 0.2001

s1 -0.6763 0.7724 -0.1709 -0.1465 -0.4389 0.62 -0.629 0.1983 -0.301 -0.0536 -0.4923 0.4296 0.216 0.0568 0.159 0.1023 0.1537 0.2004

s2 -0.6451 0.2434 0.1668 -0.3003 -0.3432 0.4919 0.2516 -0.3331 -0.1059 -0.3878 -0.5662 0.4123 0.221 0.201 0.1578 0.1648 0.1814 0.1897

s3 -0.5406 0.8146 -0.3606 -0.0079 -0.3052 0.4785 -0.6975 0.3872 -0.5678 0.0643 -0.548 0.4229 0.2124 0.0458 0.178 0.0877 0.1366 0.1998

s4 -0.6466 0.16 0.0981 -0.2738 -0.2832 0.4413 0.2949 -0.221 -0.2514 -0.2613 -0.563 0.3966 0.2376 0.1936 0.1448 0.186 0.1744 0.1729

s5 -0.6252 0.7561 -0.2029 -0.0991 -0.3377 0.5512 -0.7112 0.3204 -0.4151 -0.0677 -0.4659 0.4196 0.2245 0.0525 0.1581 0.103 0.1523 0.1869

s6 -0.6912 0.7092 -0.222 -0.2257 -0.3582 0.5811 -0.5882 0.2565 -0.3341 0.037 -0.4664 0.4324 0.2063 0.0489 0.1605 0.113 0.1415 0.1995

s7 -0.7011 0.7455 -0.2213 -0.1532 -0.2591 0.5113 -0.6309 0.2828 -0.4665 0.0987 -0.5053 0.4271 0.226 0.0491 0.1668 0.0956 0.1552 0.1794

s8 -0.6899 0.162 0.1472 -0.4574 -0.2856 0.4564 0.2902 -0.1799 -0.0921 -0.2695 -0.5761 0.414 0.2008 0.1972 0.1543 0.1831 0.1659 0.1794

s9 -0.7648 0.8213 -0.3025 -0.2025 -0.2384 0.4818 -0.5668 0.3055 -0.42 0.1643 -0.5788 0.4295 0.2183 0.0504 0.1726 0.1015 0.1437 0.1851

s10 -0.7047 0.8797 -0.3125 -0.2184 -0.2538 0.4658 -0.687 0.3519 -0.375 0.1193 -0.5417 0.4277 0.2072 0.0599 0.1634 0.0969 0.1398 0.1813

TABLE S15: The chelpg charges used for the average in the

7-hydroxyquinoline(MeOH) complex(N-H).
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GEOMETRY

In Fig. 1, structure of (1),(3),(4),(7) were optimised at the second-order Møller-
Plesset perturbation theory /cc-pVTZ level of theory, and the rest of structures
were taken from our benchmarking paper[1].

UNIT CONVERSION

The macroscopic ETPA cross-section in the cgs unit of cm2 using Lorentzian line
shape functions for the resonant two photons can also be calculated as follows[2, 3]:

σe =
4π2αa50ω

2⟨σ⟩
cΓAeTe

(1)

where α is the fine constant, a0 the Bohr radius, c the speed of light, Γ the half
width, and Ae is the entanglement area. Averaged ETPA cross-sections ⟨σ⟩ and the
photon frequency ω are in atomic units. Ae is typically 10−6cm2[2]

MICROSCOPIC AVERAGED ETPA CROSS SECTION FOR ALL THE
COMPLEXES

The intermediate state will be considered as dominant if by considering only this
one intermediate state the ETPA cross section constitutes at least 5% of the final
sum-over-state cross section. The natural transition orbitals are used to visualize
the transition orbitals of different excited states in order to diagnose the excitation
character or the symmetry if it presents. The results from the quantum calculations
including excitation energies and transition properties for the selected number of
excited states, were processed using our Python script to obtain the final averaged
microscopic ETPA cross-section. Fig. 2 shows the microscopic ETPA cross section
for the different complexes varied by the coherence time and the electronic structure
of the corresponding dominant intermediate states.
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FIG. 1: The optimised geometry for all structures.
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(a) 7-hydroxyquinoline -NH3 (b) 7-hydroxyquinoline -H2O

(c) pyrimidine(C2v)-H2O (d) pyrimidine(D2h) -H2O

(e) ethylene-H2O (f) dimethylaminopyridinium cation-4H2O

FIG. 2: The microscopic ETPA cross section for the different complexes a− f

studied in this work. For each complex, on the right is the electronic structure of
the corresponding dominant intermediate states. The horizontal axis labels the
target state |f⟩ for the free chromophore and the chromophore in the complex.

Color bar on the right indicates the weight of each intermediate states contribution.
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Properties of the deGFP1 Green Fluorescent Protein Using a Unique Polarizable Force Field.
J. Chem. Theory Comput., 10(8):3492–3502, August 2014.

[50] Riccardo Guareschi, Omar Valsson, Carles Curutchet, Benedetta Mennucci, and Claudia Filippi.
Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin.
J. Phys. Chem. Lett., 7(22):4547–4553, November 2016.

[51] Xuelan Wen, Daniel S. Graham, Dhabih V. Chulhai, and Jason D. Goodpaster. Absolutely Lo-
calized Projection-Based Embedding for Excited States. J. Chem. Theory Comput., 16(1):385–
398, January 2020.

[52] Linus Scholz and Johannes Neugebauer. Protein Response Effects on Cofactor Excitation Ener-
gies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory
with Many-Body Expansion Techniques. J. Chem. Theory Comput., 17(10):6105–6121, October
2021.

[53] Claudia Filippi, Francesco Buda, Leonardo Guidoni, and Adalgisa Sinicropi. Bathochromic
Shift in Green Fluorescent Protein: A Puzzle for QM/MM Approaches. J. Chem. Theory
Comput., 8(1):112–124, January 2012.



BIBLIOGRAPHY FOR THE THESIS 143

[54] Mark S. Gordon, Quentin A. Smith, Peng Xu, and Lyudmila V. Slipchenko. Accurate First
Principles Model Potentials for Intermolecular Interactions. Annual Review of Physical Chem-
istry, 64(1):553–578, 2013.

[55] Lyudmila V. Slipchenko. Solvation of the Excited States of Chromophores in Polarizable En-
vironment: Orbital Relaxation versus Polarization †. J. Phys. Chem. A, 114(33):8824–8830,
August 2010.

[56] Marco Caricato, Filippo Lipparini, Giovanni Scalmani, Chiara Cappelli, and Vincenzo Barone.
Vertical Electronic Excitations in Solution with the EOM-CCSD Method Combined with a
Polarizable Explicit/Implicit Solvent Model. J. Chem. Theory Comput., 9(7):3035–3042, July
2013.

[57] Giovanni Macetti and Alessandro Genoni. Quantum Mechanics/Extremely Localized Molec-
ular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density
Functional Theory and Equation-of-Motion Coupled Cluster. J. Chem. Theory Comput.,
16(12):7490–7506, December 2020.

[58] Csaba Daday, Carolin König, Omar Valsson, Johannes Neugebauer, and Claudia Filippi. State-
Specific Embedding Potentials for Excitation-Energy Calculations. J. Chem. Theory Comput.,
9(5):2355–2367, May 2013.

[59] Simon J. Bennie, Basile F. E. Curchod, Frederick R. Manby, and David R. Glowacki. Pushing
the Limits of EOM-CCSD with Projector-Based Embedding for Excitation Energies. J. Phys.
Chem. Lett., 8(22):5559–5565, November 2017.

[60] Christoph R. Jacob and Johannes Neugebauer. Subsystem density-functional theory. WIREs
Computational Molecular Science, 4(4):325–362, 2014.

[61] Georgios Fradelos and Tomasz A. Weso lowski. Importance of the Intermolecular Pauli Repulsion
in Embedding Calculations for Molecular Properties: The Case of Excitation Energies for a
Chromophore in Hydrogen-Bonded Environments. J. Phys. Chem. A, 115(35):10018–10026,
September 2011.

[62] Dhabih V. Chulhai and Lasse Jensen. External orthogonality in subsystem time-dependent
density functional theory. Phys. Chem. Chem. Phys., 18(31):21032–21039, 2016.

[63] Jochen Schirmer. Beyond the random-phase approximation: A new approximation scheme for
the polarization propagator. Physical Review A, 26(5):2395–2416, November 1982.

[64] F. J. Dyson. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Physical Review,
75(3):486–502, February 1949.

[65] Alexander L. Fetter and John Dirk Walecka. Quantum theory of many-particle systems. Inter-
national series in pure and applied physics. MacGraw-Hill, San Francisco, 1971.

[66] Aleksej A Abrikosov, Lev P Gorkov, IE Dzyaloshinski, Richard A Silverman, and George H
Weiss. Methods of quantum field theory in statistical physics. American Institute of Physics,
1964.



144 BIBLIOGRAPHY FOR THE THESIS

[67] Arkadii Beinusovich Migdal and S Chomet. Theory of finite Fermi systems and applications to
atomic nuclei. Interscience monographs and texts in physics and astronomy vol. 19. J. Wiley,
New York [etc, 1967.

[68] J. Schirmer and A. B. Trofimov. Intermediate state representation approach to physical proper-
ties of electronically excited molecules. The Journal of Chemical Physics, 120(24):11449–11464,
June 2004.

[69] Jane K Cullum and Ralph A Willoughby. Lanczos algorithms for large symmetric eigenvalue
computations: Vol. I: Theory. SIAM, 2002.

[70] H.-D. Meyer and S. Pal. A band-Lanczos method for computing matrix elements of a resolvent.
The Journal of Chemical Physics, 91(10):6195–6204, November 1989.

[71] S. Knippenberg, D. R. Rehn, M. Wormit, J. H. Starcke, I. L. Rusakova, A. B. Trofimov, and
A. Dreuw. Calculations of nonlinear response properties using the intermediate state represen-
tation and the algebraic-diagrammatic construction polarization propagator approach: Two-
photon absorption spectra. The Journal of Chemical Physics, 136(6):064107, February 2012.

[72] Jǐŕı Č́ıžek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of
Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Meth-
ods. The Journal of Chemical Physics, 45(11):4256–4266, December 1966.

[73] Henrik Koch and Poul Jørgensen. Coupled cluster response functions. The Journal of Chemical
Physics, 93(5):3333–3344, September 1990.

[74] John F. Stanton and Rodney J. Bartlett. The equation of motion coupled-cluster method. A
systematic biorthogonal approach to molecular excitation energies, transition probabilities, and
excited state properties. The Journal of Chemical Physics, 98(9):7029–7039, May 1993.

[75] Rodney J. Bartlett and Monika Musia l. Coupled-cluster theory in quantum chemistry. Reviews
of Modern Physics, 79(1):291–352, February 2007.

[76] Anna I Krylov. Equation-of-motion coupled-cluster methods for open-shell and electronically
excited species: The hitchhiker’s guide to fock space. Annu. Rev. Phys. Chem., 59:433–462,
2008.
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