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Introduction 
 

In the last decades, digital health data has sparked new hopes for better medical 

research. A highly controversial topic is the re-use of such data for regulating 

medicines and guiding treatment decisions in healthcare. This thesis studies how 

real-world evidence changes medical knowledge about the effectiveness of medical 

treatments by looking at the epistemic shifts, opportunities, and risks involved in 

its use. Real-world evidence is an umbrella term for evidence that has been 

generated from analysing non-experimental health data, such as electronic health 

records (EHR), pharmacy records or insurance claims data. It lends itself to various 

analytical methods, including observational studies, pragmatic clinical trials, or 

historically controlled trials. Real-world evidence is an intriguing idea that has the 

power to challenge the well-established gold standard – the randomised controlled 

trial (RCT).  

Sabina Leonelli, who pioneered the philosophy of data-centric science, 

describes such data as embarking on a journey. Leonelli drew philosophers’ 

attention to the coming avalanche of travelling data and the frictions and costs that 

accompany it. She introduced this metaphor to illustrate that ‘there is nothing 

smooth about data journeys’ and that journeys of data require planning, involve 

different material infrastructure and are generally fragmented and complex just like 

human journeys’ (Leonelli 2016). This insight is not only relevant to philosophers 

but also to policy makers and policy advisors, including the Swiss Science and 

Innovation Council (SSIC). In her exploratory study on behalf of the SSIC, 

Leonelli pointed to various challenges involved in data journeys including concerns 

for technical and semantic standardisation of data for various sources, questions of 

ownership and value of data, or the question of sustainable funding of research 

infrastructures (Leonelli 2017a). After eight years and more than CHF 100 million 

invested in a national health data infrastructure in Switzerland, many of these 

challenges remain.  

Data from real-world sources have now arrived on the desks of those who 

regulate the use of medicines. We can currently witness the uptake of such data as 

an accepted form of evidence into the practices, laws and norms that govern human 

research and the regulation of medicines. In 2016, the 21st Century Cures Act 

introduced the possibility for using real-world evidence for the approval of 

medicines and mandated the Food and Drug Administration (FDA) to evaluate 
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this idea (114th Congress). From the very beginning, opinions on the amendment 

were divided. Its advocates argued that it would accelerate and multiply therapeutic 

opportunities for patients, whereas its opponents warned that the easing of 

evidential standards might expose patients to unnecessary risks. In 2018, the FDA 

published  its real-world evidence program, outlining a working plan on how they 

intend to execute the mandate (US Food and Drug Administration 2018). Since 

then, the agency has produced a series of guidelines on the subject and in July 2021, 

the FDA took a landmark step and announced the first approval of a drug 

exclusively based on real-world evidence (US Food and Drug Administration 

2021a). The EMA already conducted a pilot program for adaptive licensing in 

which real-world evidence plays an essential role in 2014 (European Medicines 

Agency 2014). In 2021 the agency announced that they envision to enable the use 

of real-world evidence and establish its value for regulatory decision-making in 

Europe by 2025 (Arlett et al. 2021). The Swiss regulatory agency, Swissmedic, 

followed suit and published a brief position paper in July 2022 on their openness 

to consider real-world evidence in certain circumstances (Swissmedic 2022). Most 

recently, a globally recognised reference organisation for evidence standards in 

clinical research, the International Council on Harmonisation (ICH), has revised 

two of its core guidelines to include innovations from the real-world evidence 

movement (International Council for Harmonisation 2021b, 2023). The evolution 

seems irreversible. 

Real-world evidence raises high hopes. The phrase ‘real-world evidence’ 

alludes to a widely recognised shortcoming of the RCT gold standard. As RCTs 

are generally conducted under highly, artificially controlled conditions, critics claim 

that the evidence they generate has little to say about the conditions and patients 

outside experiments. Contrary to this, data collected during actual health care 

practices promise to be more informative about ‘real’ treatment settings and ‘real’ 

patients. In light of the limitations of the randomised method, philosophers and 

clinical researchers have welcomed the promise of the new evidence regime to 

provide applicable and widely generalisable evidence to better inform healthcare 

decisions (Hemkens et al. 2016; Kalkman et al. 2017a; Borgerson 2013; 

Zwarenstein and Treweek 2009; Mc Cord et al. 2018). However, the phrase ‘real-

world evidence’ is first and foremost a clever rhetorical marketing manoeuvre. It 

rephrases the data’s greatest weakness – the absence of experimental control – as 

their main advantage. The rhetorical manoeuvre certainly contributed to the 

current success of this development. 
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Another driving motivation of this development is that such data is a less 

expensive way to produce evidence, which responds to an innovation crisis in drug 

development (Eichler et al. 2013; Rawlins 2004). In the view of these authors, less 

costly standards for regulatory decision making will lead to more knowledge (and 

more treatments). Wilholt has shown that concerns for resources are 

philosophically and epistemically relevant (Wilholt 2013, 2016). It is epistemically 

desirable to rely on methods that can produce more results with the same 

resources, so Wilholt argues, and calls this desiderata a method’s ‘power’. Data 

that travel between multiple epistemic and non-epistemic users are the epitome of 

a powerful research approach in Wilholt’s terms. The desire for the epistemic 

power that such data bring has raised high hopes for more efficient drug 

development and exhaustiv medical knowledge about the effectiveness of 

treatments in health care (Mc Cord and Hemkens 2019).  

Digital health data are at the centre of even larger visionary concepts, which 

try to highlight the potential to revolutionise healthcare and to drive progress in 

medical knowledge and patient care. A particularly prominent vision, the ‘health 

data ecosystem’, portrays investments in health data generation as investments in a 

sustainable resource for various uses within science, policy, healthcare and 

technology development with the potential to circulate within an interdependent 

network of data users and producers. Another vision with a large scope is the 

‘learning healthcare system’, which takes the concept of a data ecosystem a step 

further by advocating for the continuous recording of healthcare experiences in 

data, which are then to be transformed into scientific knowledge that is not confined 

to scientific journals (or drawers) but supposed to directly inform and enrich the 

everyday practices of healthcare providers (Eichler et al. 2019). As such, this vision 

might be able to bridge the gap between clinical expertise encoded in data and 

scientifically accepted ways of knowing.  

To make these visions real, policy makers have initiated a wide range of 

initiatives and large-scale investments into digital health data. These range from 

small local or national initiatives, such as the Swiss Personalised Health Network, 

Findata or the All of Us project, to large international collaborations like the 

Beyond 1 Million Genomes (B1MG) project, EU Darwin, or the European Health 

Data Space. In these developments, healthcare professionals have become an 

indispensable part of the data collection pipeline. Many governments are now 

investing in the streamlining of data collection processes at the source, that is, in 

the clinics. One such investment programme is the US Medicare and Medicaid 

Electronic Health Record Incentive Program (also known as ‘Meaningful Use’) that 
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rewards health care professionals for the adoption of EHR technology and (among 

others) for the structured recording of core medical data. Finally, patients and the 

public are increasingly expected to contribute to these visions and share their health 

data as an act of solidarity for the greater social good. The hopes are high but critical 

engagement with these hopes is widely absent in the debate. 

 

The controversy of epistemic pluralism in clinical research 

The uptake of travelling data into the norms of clinical research induces a shift 

towards evidential pluralism on two ends: it broadens the scope of the methods 

and the types of data that are deemed acceptable as potential evidence for the 

effectiveness of medicines. The advent of real-world data challenges the established 

idea that quality of evidence is largely determined hierarchically and ensured by a 

fixed set of rules (called Good Clinical Practice). Instead, it introduces a 

contextualised approach to evaluate the quality of evidence that understands the 

quality of evidence relative to how well a certain piece of evidence serves in 

achieving a particular purpose – referred to as ‘fitness-for-purpose’.  

The scope of this thesis is to analyse the controversial use of real-world 

evidence for assessing the effectiveness of medical therapies for practical decision-

making contexts. This aspect of the discussion is particularly controversial as it 

culminates in the fundamental question whether we can and should substitute 

conventional randomised trials with real-world evidence for the regulation of 

medicines or decision-making in healthcare (Franklin and Schneeweiss 2017). To 

solve this controversy, stakeholders in the field have created various real-world 

evidence expert groups like the Get-Real consortium and launched research 

projects that are dedicated to the replication of such evidence (Franklin et al. 2020a; 

Bartlett et al. 2019; García-Albéniz et al. 2017; Wallach et al. 2021). Authorities 

and data infrastructures have published numerous position papers and guidelines 

(US Food and Drug Administration 2023; European Medicines Agency 2024). 

Scientists have weighed in with countless opinion pieces in scientific journals and 

the skills and expertise required to generate real-world evidence are taught in 

various webinars. Many of these resources emerged during the last four years of 

writing this thesis.  

For decades, randomised controlled trials (RCTs) have been an 

indispensable method for making decisions on drug approvals and informing 

healthcare decisions. A large part of the success of RCTs can be traced to the US 

Food and Drug Administration (FDA) reliance on them since 1970 and to the 

advent of evidence-based medicine (EBM) in the 1990s, with its hierarchical theory 
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of evidence that orders methods according to their quality and puts randomised 

controlled trials (RCTs) near the top of the evidence hierarchy. The EBM 

approach was so successful that RCTs nearly replaced all other types of evidence 

for decision making, such as consensus conferences, mechanistic knowledge, or 

clinical expertise. Many philosophers have convincingly criticised this categorical 

use of RCTs and proposed alternative evidence standards. For example, Osimani 

has argued that randomised trials are inadequate for evaluating harms (Osimani 

2013) and in subsequent work with Landes and Poellinger they developed an 

approach for evidence amalgamation that takes all forms of evidence into account 

(Landes et al. 2018). Cartwright has advocated for a plurality of evidence to increase 

the applicability of evidence outside the research context (Cartwright 2012, 2007, 

2009). The movement that calls itself EBM+ defended the claim that evidence 

standards should consider mechanistic knowledge (the ‘+’) in addition to statistical 

evidence from randomised trials (Clarke et al. 2013, 2014). Borgerson argued that 

we should move towards evidence that has more social value than the current gold 

standard (Borgerson 2013) and Stegenga criticised the hierarchies and instead 

advocated for the use of quality assessment tools that turn towards method tokens 

rather than types (Stegenga 2018, chapter 5).  

I concur insofar with the critics of EBM, as I think that deliberating on 

evidence standards should not be limited to assessing the internal validity of the 

scientific method. As my study shows, the uptake of real-world evidence into the 

norms of clinical research goes far beyond considerations of validity. These new 

methods also create conceptual shifts in our causal knowledge, impact the practical 

relevance of evidence or allocate resources differently. Hence, my study illustrates 

that the narrow view of the quality of evidence promoted by the EBM standard 

cannot adequately explain what awaits us with the real-world evidence 

transformation. The advantage of a contextualised approach is that we can 

recognise the multidimensionality of ‘quality’ of evidence, highlight those 

dimensions that are most essential in a particular context, account for available 

resources and resource constraints and carefully tailor the choice of methods to 

these circumstances. However, such a contextual approach is vulnerable to misuse 

and comes with serious epistemic risks that potentially outweigh its epistemic 

benefits. 

During exchanges with practitioners and stakeholders involved in this 

development, I learned that many stakeholders in the field are not so much 

concerned with the plurality of methods as they are with the plurality of data. One 

reason why randomised studies are so valuable as a source of evidence for the 
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community is that they are embedded in a large body of globally accepted rules, 

with decades of accumulated experience of how data should be translated into 

decisions. Among these are the pivotal rules of ‘Good Clinical Practice’ (GCP) 

(International Council for Harmonisation 2016). This sixty-pages set of 

conventions contains globally accepted rules and principles that create 

accountability for the integrity of data and the safety of patients in a clinical trial. At 

the heart of these rules is the idea that data are inextricably linked to their purpose 

and they closely govern how data in clinical trials are collected, stored, reported, 

and verified. The GCP rules are based on the logic that there is a ‘sponsor’ who 

has overall responsibility for data integrity and that patients give informed consent 

to participate in a trial with a particular purpose. GCP rules also introduce the idea 

of data monitoring and auditing as control mechanisms for the quality of data. Data 

that are governed by these rules are seen as a reliable and trustworthy source of 

evidence by the community.  

What is peculiar about the use of real-world data in contrast to clinical trial 

data is that the former have not been made for a specific research purpose, they 

have – in theory – not even been made for research. The recording of such data is 

not constrained by the rules of GCP but driven by the diverse needs, incentives, 

and constraints of local healthcare contexts. Consequently, the quality of real-world 

data emerges as a major concern in this development. To deal with this problem, 

regulators began developing data quality frameworks defining criteria and 

suggesting strategies to assess the ‘fitness-of-purpose’ of data (European Medicines 

Agency 2022; US Food and Drug Administration 2021c, 2021b). Many data 

sharing networks have published their own guidance papers on these questions 

(Bernal-Delgado et al. 2022; NIH Pragmatic Trials Collaboratory 2014, 2024). 

However, bridging the gap between the highly abstract idea of fitness-for-purpose 

and concrete measures of data quality has proven a notoriously complex tasks with 

a wide lack of convergence on how to best approach it (Illari 2014). Despite the 

prevalence of these discussions in the methodological literature, philosophers of 

medicine have largely neglected the role that data handling practices play for the 

reliability and trustworthiness of medical knowledge. With this thesis I contribute 

to closing this gap. 

The scope of this thesis 

My philosophical study of real-world evidence and the evolution of evidence 

standards for medical knowledge explores the concerns, the hopes, and the trade-

offs involved in using travelling data for the clinical evaluation of medical 

treatments. This involves careful engagement with long standing discussions in the 
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epistemology of medical research such as the significance of randomisation, the 

problem of extrapolation, conceptual and methodological issues of data quality 

practices, and trust in clinical research. Each chapter not only attempts to apply 

insights from existing philosophical literature to understand ‘real-world evidence’ 

as a special case but also aims to advance these debates by bringing back the lessons 

we can learn from this development. My in-depth discussion of the increasingly 

popular pragmatic trial method and the epistemic importance of Good Clinical 

Practice (GCP) also covers genuinely new ground. I closely analyse pragmatic 

clinical trials, their aptness to generate valid causal conclusions and the foundations 

of their perceived social value. My inquiry into the epistemic value of GCP 

highlights the importance of these rules for both the reliability and the 

trustworthiness of data that philosophers of medicine hitherto largely neglected.  

The thesis is structured into two parts. In Part I, I address the shift towards 

method pluralism by discussing pragmatic clinical trials as a novel method to 

generate evidence, while in the second part, I address the shift towards data 

pluralism by evaluating emerging practices of data quality assessment for real-world 

data. My work builds on two in depth case studies. Part I introduces the case of the 

Salford Lung Study, a pragmatic clinical trial using electronic health record data to 

investigate the effectiveness of an inhaler to treat COPD. My analysis of this case 

will focus on the problem of valid causal inference and the question of the practical 

relevance of evidence. Part II introduces an observational study using registry data 

to establish the effectiveness of an immunosuppressant for lung transplant 

recipients. My analysis of the second case will focus on conceptual and 

methodological issues of data quality assessments, the question of epistemic power 

of evidence and the problem of trustworthiness of data. 

My work on the case studies is supplemented by insights from published 

medical research articles within this development, from training courses and 

webinars dedicated to researchers on real-world evidence and pragmatic trials, and 

from numerous opinion papers by medical professionals and meta-research on the 

topic. The most invaluable source of materials on which my study builds were the 

numerous guidelines and white papers published by regulatory agencies, service 

providers, and expert groups as well as the legal frameworks that govern clinical 

trials and real-world evidence. Moreover, my research benefited from informal 

interviews and discussions with practitioners in the field including medical 

scientists, physicians, and regulators. Finally, I benefited from working alongside 

experts in the field of clinical research for the past five years in clinical research 

infrastructures devoted to the facilitation of clinical trials and health data sharing in 
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Switzerland. I tried to pay justice to the opinions and rationales articulated in these 

materials while critically studying the risks and opportunities that this evolution will 

bring. The goal of the study is to critically evaluate the use of real-world data for 

assessing the effectiveness of medical interventions, so the best can be made out of 

the challenges and opportunities that this evolution will bring. 
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Chapter 1 
The gold standard 

 

In medical research, randomised controlled trials (RCTs) are widely regarded as 

the gold standard for drawing reliable causal conclusions. Since the 1970s, the US 

Food and Drug Administration (FDA) has relied on randomised trials to make 

decisions about drug approvals, and since the advent of evidence-based medicine 

(EBM) in the 1990s, the method has become indispensable for informing 

healthcare decisions. At the heart of the EBM approach is the noble idea that 

treatment decisions should rely only on high-quality evidence. Its biggest success is 

the hierarchical theory of evidence with randomised trials ranking near the top of 

the evidence hierarchies that order methods according to their quality. The 

hierarchical theory of evidence was so successful that randomised trials nearly 

replaced all other types of evidence for decision making, such as consensus 

conferences, mechanistic knowledge, or clinical expertise. 

With the advent of real-world evidence, the evidence standard is about to 

change. Real-world evidence challenges the hierarchical theory of evidence, and 

with it the dominance of the randomised trial, and instead proposes a 

contextualised approach to evidence standards. Observational studies are the most 

prominent and controversial method that has (re)emerged within the real-world 

evidence paradigm. However, there are other variations of statistical methods for 

analysing real-world data. They include pragmatic clinical trials, which are 

randomised trials that are embedded in healthcare settings and can measure 

treatment effects under natural conditions. In addition, registry-based trials 

randomise patients from an observational cohort and use the rest of the cohort as 

the control group. Finally, there are externally controlled trials, in which a single 

group study is conducted, with a control group that is not part of the same trial. In 

short, real-world evidence is more than just a new name for observational evidence. 

However, the randomised method remains the reference standard against which 

these new methods must be validated and tested. 

In the last 20 years, the philosophy of EBM has poked so many holes into 

the evidence hierarchies and the randomised method that the method’s role as the 

reference standard for evaluating new methods has lost its meaning. Critics have 

addressed the unjustified downgrading of mechanistic knowledge or clinical 

expertise (Clarke et al. 2013, 2014) and emphasised the poor external validity of 
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randomised trials (Cartwright 2007, 2009). They have also argued that quality 

assessments need to be based on method tokens rather than types (Stegenga 2018) 

and that randomised trials are ill-suited to demonstrate harmful effects (Osimani 

2013). They have also questioned the epistemic pertinence of randomisation itself 

(Worrall 2007; Worrall 2002). Only a few philosophers have defended the 

randomised trial as a justified gold standard (Martinez and Teira 2021; Teira 2020).  

The goal of this chapter is to clarify some ground rules. The first rule is 

this: The methodology of the randomised trial is a good reference standard because 

it can produce unbiased statistical evidence to inform causal claims; furthermore, 

those who rely on such evidence for decision making can generally distinguish 

between successful and unsuccessful instances of the method. The rule does not 

mean that every instance of a randomised trial succeeds in producing unbiased 

evidence. It also does not mean that a randomised trial is necessary to produce 

causal knowledge; nor does it mean that unbiased statistical evidence is all we 

require for our practical and epistemic aims. Most importantly, I do not mean to 

embrace all properties of the randomised method that are not essential for the 

production of unbiased evidence. Drawing a distinction between essential and non-

essential properties of the method to produce such evidence is a recurring topic in 

the first part of this thesis.  

The second rule that I establish is that there is just one essential property 

of the randomised method, namely, proper randomisation. ‘Proper’ comes with 

several requirements attached. Randomisation is ‘proper’ only if it is correctly 

implemented and maintained throughout the trial. This requires not only 

randomising patients to treatment groups but also concealing the randomisation 

sequence before randomisation, as well as controlling problems like drop-out rates, 

cross-over and contamination problems after randomisation. I elaborate on these 

problems below. The good news for critics of the randomised method is that many 

of the widely criticised properties of the randomised method are, in my view, non-

essential properties. These include homogeneity of the study population and strict 

eligibility criteria; small sample sizes; placebo controls; short-term outcomes; and, 

most controversially, blinding. I argue that blinding is not necessary in trials that 

are in line with patients’ preferences, and may be insufficient in trials that are against 

patients’ interests. I hold that aligning trials with patient preferences, if possible, is 

the better strategy to minimise the risk of bias than increasing control over their 

behaviour. 

If experimentalists introduce some flexibility regarding the non-essential 

features, the randomised method can deal with a remarkably wider range of 
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problems than it is currently credited with. Indeed, one of the promises of analysing 

real-world data within randomised trials is that we can increase the feasibility of 

large or long-term and heterogeneous trials. Two substantial concerns regarding 

this promise, however, are the worry that the blinding of patients – the practice of 

concealing which treatment each patient receives – might be necessary to address 

problems related to drop-out rates, cross-over and contamination and is therefore 

necessary for valid causal inference. The second concern is that blinding is equally 

necessary to deal with the problem of placebo effects for valid causal inference. 

Although real-world evidence can be generated using randomised procedures, such 

evidence is generally not obtained under blinded conditions. To respond to these 

concerns and provide a justification for the two rules, I begin my philosophical 

inquiry with several old debates about the value of randomisation and blinding in 

clinical trials.  

My work proceeds as follows. In sections 1.1–1.2, I defend the epistemic 

value of randomisation against Worrall’s famous objection of the infinitely many 

confounders. I show that Worrall’s arguments misfire because he neglected the 

role of statistical significance testing. Section 1.3. defends the claim that 

randomisation is valuable because its success conditions are accessible to those who 

rely on the evidence for decision making. Section 2 turns towards issues of blinding 

and placebo controls. Section 2.1 introduces the methodological rationale of 

blinding and placebo controls and differentiates between two roles of blinding, the 

first being to prevent protocol violation and the other to deal with placebo effects. 

Sections 2.2. and 2.3 discuss two arguments in favour of blinding articulated by 

Teira and colleagues. The first argument relates to its role for enforcing the 

protocol (section 2.2) and the second to its role as a warrant for the non-

interference condition (section 2.3). I argue that blinding is not necessary to enforce 

the protocol in trials that are in line with patients’ preferences, whereas blinding 

might be insufficient in trials that are against their interests. The problem of non-

interference reinforces the lesson that well-organised patient communities might 

reinforce the problems of placebo effects and protocol violations, however, I argue 

that the lack of blinding does not pose an additional problem of non-interference. 

The last section (section 2.4) proposes additional measures to strengthen the 

enforcement of proper randomisation and deal with placebo effects.  

  

1. The epistemic value of randomisation 
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The basic idea of a randomised trial is simple. Researchers select an eligible study 

population, split the population into two groups (the treatment group receiving the 

intervention that is being tested, and the control group receiving a control 

intervention) and randomly assign the patients to these two groups. At the end of 

the experiment, the two groups are compared with each other regarding an 

outcome of interest. If there is a clinically relevant and statistically significant 

difference in outcomes between the two groups, the method allows the researcher 

to identify the intervention as the cause of the difference. The RCT and the 

rationale for causal conclusions are often explained in terms of Mill's method of 

difference. The idea is this: In scenario A, we observe a certain effect E, whereas 

in scenario B, no effect E is observed. If all but one of the causally relevant factors 

F1–Fn are identical in both situations, we eliminate the identical factors as possible 

causes until only the single remaining cause is left. The elimination of alternative 

explanations is a deductive inference using modus tollens:  

1) If Fn is the cause of E and Fn is present in all situations, we can observe the effect E 
2) Fn is present in all situations 
3) We do not observe the effect  
From 1)-3): Fn is not a cause of E 

 
Although the method provides deductive logical rigour, it assumes that the list of 

alternative hypotheses is complete – and also known to us. Therefore, the method 

of difference is often classified as an inductive method known as ‘eliminative 

induction.’ The precise classification of the method, however, is subject to debate. 

Pietsch holds that Mill’s method of difference is an instance of variational 

induction, which confirms the causal relevance of circumstances for phenomena 

rather than eliminating competing hypotheses (Pietsch 2021). Cartwright uses 

Mill’s method of difference to argue that ideal randomised experiments are a 

deductive method.  

Mill’s method of difference relies on a comparability or homogeneity 

assumption between the two situations. That is, all causally relevant factors, except 

the factor of interest, must not change in value across the scenarios that are being 

compared. This assumption is highly unlikely to hold for randomised trials. It is a 

truism that the objects of biomedical research are prone to variability, and no 

scientist would affirm that it is possible to compare two populations that are exactly 

alike. Indeed, dealing with such variation is the reason statistical theory has become 

indispensable and lies at the heart of biomedical research. It is also not highly 

plausible that scientists have a complete list of causal factors at hand. Randomised 

experiments are valued precisely because they can license causal inference under 

the assumption that there are unknown causal factors.  
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A common attempt to bridge these discrepancies is to think that 

randomisation can ensure that the homogeneity assumption holds. Broadbent, for 

example, states that randomised trials are not controlled in the classical sense but 

rather employ randomisation as a substitute for the classical sense of control 

(Broadbent 2013, chapter 1). To assess the rigour of RCTs, Broadbent states that 

the pertinent philosophical question concerns the extent to which randomisation 

is epistemically equivalent to control in the classical sense. This interpretation is 

strongly reinforced by a recurring claim in the methodological literature that sounds 

like the Millean homogeneity assumption. The argument here is that 

randomisation is sufficient to ‘balance all known and unknown confounding 

factors’. Attempts to draw a link between Mill’s homogeneity condition and the 

role of randomisation, however, seem to have led to serious misunderstandings 

about the epistemic role of randomisation. A similar point has recently been made 

by Martinez and Teira, who distinguish between three conceptions of balance. 

These authors argue that Millean balance is not required in randomised trials, but 

only what they call ‘fisherian balance’ and ‘efficiency balance’ (Martinez and Teira 

2021). In a similar vein, Baetu distinguishes between two methods for causal 

inference in the biomedical sciences, namely directly controlled experiments and 

randomised experiments and argues that only the former can be explained by using 

Mill’s method of difference (Baetu 2020).  

Building mostly on the work of statistician Stephen Senn, I support the 

notion that the role that randomisation plays in (frequentist) statistical inference 

can, at best, be a highly sophisticated version of Millean balance. In the next 

section, I reconstruct the statistical rationale to establish two claims that disentangle 

the relation between randomisation and homogeneity. First, randomisation has an 

epistemic role to play for valid causal inference, but it has no bearing on 

homogeneity in Mill’s sense. Second, homogeneity in Mill’s sense does play an 

epistemic role in randomised experiments, but it has no bearing on valid causal 

inferences.  

 

1.1. The ‘infinitely many confounders’ objection 

Two decades ago, Worrall published an influential critique about the claim that 

randomisation can balance all known and unknown causal confounders (Worrall 

2007; Worrall 2002). His argument is intriguing: Since randomisation is a 

probabilistic process, it cannot guarantee that causal factors are balanced in any 

actual trial; instead, they could well be unbalanced by chance. Moreover, Worrall 
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continues, given that there are plausibly an infinite number of potential unknown 

confounding factors, it is certain that at least one of them is unbalanced. Hence, 

the strong claim that randomisation can balance confounding factors applies only 

in the long run – but this does not help to ensure balance in an actual trial. As a 

positive proposal, he states that we should instead rely on our knowledge about 

potential confounders and actively allocate groups such that these confounders are 

balanced.  

The core of Worrall’s argument has been well-received by most scholars 

and is often reiterated to defend the claim that randomised trials are unduly ranked 

at the top of the evidence hierarchy (Rocca and Anjum 2020; Borgerson 2009; 

Cartwright 2017; Clarke et al. 2014). For example, in her earlier work, Cartwright 

built on Worrall’s critique and drew a distinction between ideal RCTs and real 

RCTs – which, I believe, is partially motivated by the discrepancies between Mill’s 

method and randomised trials. In an ideal RCT, all the theoretical assumptions for 

a deductive inference are, by definition, met. This includes the homogeneity 

assumption: ‘By definition of an ideal RCT, [the confounding factors] are 

distributed equally in both the treatment and control wing’ (Cartwright 2009, 

p. 64). In another article, she calls this requirement simply the ‘idealization 

assumption’ (Cartwright 2007, p. 16). While her critique on randomised trials is 

mainly focused on their limited scope of applicability, or their external validity, she 

also criticises real RCTs for falling short of being ideal RCTs. Among other 

problems, she emphasises that in real RCTs, randomisation can go wrong because 

it often does not make it the case that the idealisation assumption is met for an 

ideal RCT. Cartwright together with Deaton modified this position in a later piece 

on randomised trials. Nonetheless, she still seems to consider that the requirement 

for perfect balance of confounding factors is an appropriate starting point to explain 

and criticise the method (Deaton and Cartwright 2018).1 Others have incorporated 

Worrall’s critique by qualifying the balance claim with a probability clause. La 

Caze, for example, writes that randomisation ‘improves the probability that 

 

1

 They attempted to reconcile the requirement for balance with the frequentist position that 

I introduce below. Cartwright and Deaton follow the frequentist position in that they 

distinguish between the precision and unbiasedness of an RCT result. They seem to 

acknowledge that a randomised allocation, without balance, only raises concerns for 

biasedness if (for example) the allocation sequence was not truly random because the 

random number generator failed (Deaton and Cartwright (2018, p. 14). Their counter 

argument against randomisation is then directed towards its ‘wastefulness’ compared to 

using prior knowledge. This point mirrors the frequentist position regarding the 

importance of balance or homogeneity for precision rather than unbiasedness (Deaton 

and Cartwright 2018, pp. 17–18).  
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extraneous risk factors (known and unknown) are roughly balanced’ (La Caze 

2017, p. 201). This point is what La Caze calls a ‘fragile’ claim, which cannot 

deliver what is implied by many of the unqualified statements about randomisation 

(La Caze 2017). 

Worrall also has critics. Miriam Solomon, for example, acknowledges the 

validity of the argument, yet claims that Worrall is merely making a logical point 

with (almost) no practical relevance. According to Solomon, Worrall’s concern is 

only relevant in a case where many unrelated population variables could influence 

the outcome (Solomon 2015, Chapter 6). Similar arguments have pointed out that 

it is not the balance of individual causal factors that matters but rather the overall 

potential outcomes among the participants (Dahly 2019; Fuller 2018). Still others 

have argued that Worrall’s proposed alternatives to randomisation fail to 

outperform randomisation in terms of balance (Larroulet Philippi 2022). More 

recently, philosophers followed a line of argument by Worrall’s strongest critic, 

statistician Stephen Senn, and have argued that the whole idea of balance is 

misguided (Baetu 2020; Martinez and Teira 2021). One does not need to delve 

into the details of statistical significance testing to see that Worrall’s arguments 

misfire. Baetu proposes a clever argument to make that point. As he points out, 

the purpose of statistical significance testing is to reject the hypothesis that an 

observation occurs by chance alone. Yet, if randomisation could ensure that all 

relevant factors are – in Mill’s sense – homogeneously distributed, we could simply 

eliminate the chance hypothesis on a priori grounds. The existence of statistical 

techniques to perform that task is evidence that the role of randomisation has been 

misidentified (Baetu 2020).  

I follow the same route of criticism, but I attempt to restore the meaning of 

balance in this context by drawing an analogy between random sampling and 

random allocation. In short, Worrall too easily dismissed the epistemic significance 

of significance testing when he wrote:  

I shall not consider this often-examined argument [The Fisherian 

Argument from the Logic of Significance Testing] in any detail here (it is 

in any event not the one that has carried most persuasive force 

sociologically speaking). I just report first that it is not in fact clear that the 

argument is convincing even on its own terms; and secondly that there are, 

of course, many – not all of them convinced Bayesians – who regard the 

whole of classical significance-testing as having no epistemic validity, and 

hence who would not be persuaded of the need for randomisation even if 

it had been convincingly shown that the justification for a significance test 

presupposes randomization. (Worrall 2002, p. 321)  
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Together with Senn, Martinez and Teira, and contra Worrall, I hold that the 

practice of significance testing is convincing on its own terms. Hence, I argue that 

Worrall unsatisfyingly neglected its role for the epistemic value of randomisation. 

To demonstrate my point, I spend some time reconstructing the logic of statistical 

significance testing. As I show, by understanding the practice we can disentangle 

the relation between homogeneity and valid causal inference. Furthermore, 

disentangling this relation clarifies a distinction between essential and non-essential 

properties of randomised trials. Some philosophers, of course, would still object 

that the focus on frequentist statistics is unjustified and that arguments developed 

within a theory-dependent approach are irrelevant, as such arguments do not apply 

to those philosophers subscribing to Bayesian methodology. I would respond as 

follows: first, the vast majority of clinical trials do not follow a Bayesian 

methodology but employ frequentist statistics. Even guidelines at the highest 

organisational levels, such as the International Council for Harmonisation (ICH) 

E9 Guideline on Statistical Principles for Clinical Trials, focus only on frequentist 

statistical methods (International Council for Harmonisation 1998). Second, I draw 

attention to carefully cashed out arguments regarding the epistemic superiority of 

randomisation over the proposed (Bayesian) alternatives (Larroulet Philippi 2022) 

and (Martinez and Teira 2021) who argue that within Bayesian methodology, 

randomisation can provide consensus about which covariates to consider if priors 

about their relevance differ. 

1.2. The logic of statistical significance testing 

Random processes play a role in two different practices, random sampling and 

random allocation in experiments (called randomisation). These techniques are 

based on two different theoretical frameworks and should not be confused. 

However, they do share some high-level features, and I use these features to draw 

an analogy between the two and elaborate on their epistemic value. I argue that we 

can understand the notion that ‘random allocation balances confounding factors’ 

as analogous to the notion that ‘random sampling can ensure representativity’. In 

both cases, the phrase can be understood in a probabilistic sense that does not fall 

prey to Worrall's critique when understood in the context of statistical significance 

testing. I begin by explaining the value of random processes in the framework of 

random sampling. I then apply these insights to random processes in experiments. 

In a world filled with variability, statistical inference is a crucial scientific 

method to understand what limited observations indicate about an entire 

population. The rationale to generalise such familiar inferences from a sample to 
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the population is based on the technique of random sampling, where researchers 

select the individuals to be observed based on a random process. The process of 

random sampling introduces a probabilistic risk that the observed individuals 

constitute, by chance, a set of more extreme cases than the other unobserved 

individuals in the population. However, what is important is that the process of 

random sampling ensures that every individual in this population has an equal 

chance to be observed. This assumption can support an objective probability 

model against which the actual observation can be tested. The job of statistical 

significance testing is to attach an uncertainty estimate to an observation regarding 

the risk of a particular observation having occurred by chance alone because – by 

chance of random sampling – we were looking at extreme cases only.  

The practice of significance testing first requires that the scientist needs to 

stipulate what an unsurprising observation would look like, which is captured in the 

null hypothesis. The null hypothesis usually states that nothing unusual is expected; 

hence, all observations are entirely due to variability. For example, there is no 

difference between an observation and a historically expected value. Under the 

assumption that each instant had an equal chance to be observed, it is then possible 

to calculate the probability of obtaining the observed result or a more extreme 

result. The conclusion of such a statistical test is a conceptually complex 

proposition. It is a probabilistic proposition that is conditional on the truth of the 

null hypothesis. The null hypothesis is itself a comparative proposition; it requires 

comparing a measured value with another value of interest. Typically, significance 

statements take the following form: 

(1) The probability that the observed result occurred by chance alone is α or 

a smaller value, if the null hypothesis is true.  

Scientists reject the null hypothesis if the resulting probability of an observation 

resulting from chance alone is sufficiently small. This would mean the result is 

statistically significant.  

For random sampling to support such a claim, it is not required that the 

process of random sampling generates a representative sample in the sense that all 

the relevant traits occur in identical proportions among both the sample and the 

population. As we have seen, it is possible that the random process produces an 

extreme set of observations by chance. What is required, however, is an objective 

probability model that allows for the calculation of an uncertainty estimate for the 

observation. The role of random sampling in this procedure is precisely to support 

this objective probability model by supporting the assumption that all individuals 
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had an equal chance to be observed in the experiment. Hence, a random sample 

is considered representative of the population simply in virtue of being a random 

sample. In the context of statistical testing, reading this notion to mean that all 

relevant characteristics are proportionally represented would be an inadequate 

interpretation. In addition, this is an unnecessary assumption for the statistical 

inference to be valid. 

Similar reasoning can be applied for the case of random allocation (or 

randomisation) in interventional studies but there exists also an important 

conceptual difference. Random allocation refers to allocation of preselected 

subjects to two or more groups in a comparative experiment, where the allocation 

and not the selection of subjects is supported by a random process. In a random 

sampling scenario, researchers draw an inference from the sample to the 

population from which the sample has been drawn. In a randomised experiment, 

statistical inference does not extend to the population from which the sample is 

recruited. Instead, randomisation creates a hypothetical population consisting of 

all possible group allocations of the people enrolled in the study. Within Fisher’s 

framework this allows to distinguish between observed differences between the 

groups that occurred by chance and differences that occurred for other reasons. 

Let me elaborate.  

In Fisher’s framework, causal factors (other than the intervention) that 

contribute to the outcomes – called covariates – merely contribute to the overall 

variability of an observed effect. Thus, the more influence from covariates, the 

more variability can be observed. To distinguish between the causal influence of 

covariates and the intervention, Fisher’s framework compares the variability of the 

outcome within the groups to the variability between the two groups (Senn 2013; 

Martinez and Teira 2021). Under the null hypothesis, the within-group variability 

and the between-group variability should be equal – but only if all individuals had 

an equal chance to be observed in either of the two groups. This is where 

randomisation comes into play. By allocating the individuals to either of the two 

groups at random, the researcher provides a justification for the assumption that 

all individuals had equal chance to be observed in either of the two groups. This 

assumption supports the objective probability model against which the observation 

can be tested. The valuable epistemic result of this process is that the risk that 

random allocation may, by chance, generate two extreme groups is indeed 

considered in the assessment of statistical significance:  

As already explained, conventional analyses of randomised trials make an 

allowance for the distribution of unmeasured confounders. They do this 



 

 24 

by judging the probability with which the groups can differ from each other 

by looking at the way in which results differ within groups. Unmeasured 

confounders make a contribution to both of these measures of variation 

(between and within group), and the comparison of the two is the 

cornerstone of the technique of analysis of variance developed by RA 

Fisher in the 1920s. (Senn 2013, p. 1446) 

In other words, the risk of making an error because of unbalanced covariates is 

already included in the risk of accepting a false-positive or false-negative error that 

is bound by the statistical significance threshold. No additional risk comes into play 

here. Consequently, unbalanced covariates are no longer confounders that pose 

any additional risk for the inference. Instead, they are what frequentists would call 

a random error that is well-controlled by statistical theory. In short, in the context 

of significance testing, randomisation can turn the risk of potential confounders 

into well-controlled statistical error (Senn 2013). 

Hence the randomised experiment supports the claim that, within the 

calculated uncertainty boundaries, the difference would have been observed in all 

possible group allocations
2

. Among other things, this conception of a hypothetical 

population in frequentist randomised trials is what Bayesian statisticians take issue 

with (Howson and Urbach 2006, chapter 6). For Bayesians, it is indeed far from 

obvious what information about hypothetical populations and possible 

observations would add to the statistical inference. Yet, for frequentists, such 

information is precisely what is required for the objective probability model against 

which the actual observation can be tested – and its uncertainty quantified. 

It follows from the above discussion that the epistemic pertinence of random 

allocation does not rest on the fact that causal factors are ‘balanced’ or ‘distributed 

equally’ in Mill’s sense. What is critical is that they are distributed randomly (Senn 

2020). Indeed, the role of randomisation resists being reduced to ideas about 

balance or homogeneity, at least not in Mill’s sense. More importantly, the idea 

that randomisation can ‘go wrong’ or that researchers ‘get unlucky’ – in any sense 

other than by manipulating the random process – is clearly mistaken. One might 

wonder then why the concepts of balance, comparability and homogeneity persist 

 

2

 The frequentist theory is far from providing a universal route to causal inference, mostly 

because statistical inferences are not thought to be causal in nature. Martinez and Teira 

assume that causal background assumptions from the experimenter add the causal 

knowledge that is needed and simply write about statistical and causal inference 

simultaneously. Baetu on the other hand argues that it is the context of the controlled 

experiment – i.e., an accurate intervention with a standardized context – that does the 

heavy work for the causal interpretation of the statistical result. 



 

 25 

in the literature. In my view, the analogy with the case of random sampling can help 

to restore the meaning of these assertions. As I discussed above, random sampling 

does not ensure that all relevant traits are represented in the sense that all causal 

factors occur in identical proportions to those of the population. Rather, a sample 

is representative in a purely statistical sense, namely in virtue of being a random 

sample. Randomly allocated groups are homogeneous, comparable or balanced in 

the same way; that is, not despite their randomness but because of it. In both 

instances, there is an implicit probabilistic reading underpinning their use that does 

not fall prey to Worrall’s critique, if properly understood in the context of statistical 

significance testing. 

So far, I have shown that randomisation is relevant for valid statistical 

inference within the frequentist framework, although it has no bearing on balance 

or homogeneity in Mill’s sense. Another puzzle that emerges from this discussion 

is that there is an apparent tension with scientific practice. For all we know, 

researchers use practices that attempt to increase homogeneity in Mill’s sense, for 

example, by strictly restricting the study population or stratifying the population. 

The conceptual tool to explain this tension is the distinction between validity and 

precision in statistical inferences. Homogeneity in Mill’s sense can increase the 

experiment’s precision but not its validity (Senn 2013, 1989). A comprehensive 

reconstruction of Senn’s argument has been made by Martinez and Teira, which I 

do not repeat here (Martinez and Teira 2021). The distinction between precision 

and validity is explained with the image of a dartboard. If one repeatedly throws 

darts at the bullseye, each arrow would represent the point estimate of an 

experiment, whereas the bullseye is the true value. In repeated experiments with 

low precision, the arrows will be scattered in a wide circle with the bullseye at its 

centre. In an experiment lacking validity, arrows will be scattered in a circle with a 

centre that is skewed away from the bullseye. By increasing the homogeneity in 

Mill’s sense, we increase the experiment’s precision. This means the arrows will 

create a smaller circle. Reducing the experimental bias increases its validity, which 

means that the centre of the circle shifts towards the actual bullseye. A lack of 

precision is evident in the estimate as a large confidence interval, which indicates 

the uncertainty boundaries of the estimate. By contrast, a lack of validity is not 

directly visible.  

The distinction can be utilised to explain the view that larger sample sizes 

make it more likely that causal factors are roughly balanced. It is true that an 

increase in sample size increases the balance, in the sense that it becomes more 

probable that important factors will be evenly distributed among the groups. 
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However, following Senn, this fact has no bearing on the validity of the inference, 

but only on its precision:  

When sample sizes increase, it is certainly the case that the expected 

random difference between two groups will reduce, and this reflects, 

amongst other things, the greater expected balance in proportionate terms 

between groups. In this sense, the belief that larger trials are more balanced 

than smaller ones is not a myth. However, by the same token, the standard 

error of the treatment effect will be smaller and the confidence interval will 

be narrower, and for any given observed difference at outcome, the p-value 

will be smaller. Thus, the effect of increasing sample size is consumed by 

conventional analyses in terms of increased precision. There is no further 

benefit in terms of increased validity. (Senn 2013, p. 1446) 

Philosophical frameworks rarely account for the difference between validity and 

precision. In philosophical terms, these are both epistemic risks. I believe the 

difference matters epistemically for two reasons. First, the uncertainty that is 

introduced by a lack of precision is known in precise probabilistic terms, in the 

form of the confidence interval or the p-value; this fact allows fine-grained 

conventions to be formed about the amount of risk the scientific community is 

willing to take. The same does not hold for validity. The severity of this epistemic 

risk lies precisely in the fact that it remains hidden in the statistical quantification 

of uncertainty. Instead, it needs to be made visible with measures such as risk-of-

bias assessments (see Chapter 2). Consequently, in scientific practice, there is 

officially zero tolerance towards a lack of validity. Second, precision can be 

controlled by several parameters that can be tailored to each other to ensure a fixed 

and deemed acceptable level of uncertainty. Thus, wide variability within the trial 

can be compensated by a larger study population to achieve sufficient precision; 

and small sample sizes can result in sufficient precision in trials with high 

homogeneity. For these two reasons, I suggest keeping precision and validity apart. 

Certainly, we require both of them to make a valid causal inference with acceptable 

uncertainty. However, because precision is not subject to a zero-tolerance norm 

and can be achieved by several complementary properties, we can consider each 

of the properties that pay into the inference’s precision as non-essential for valid 

and informative causal inference. This is relevant because randomised trials have 

been widely criticised for using properties like the many exclusion criteria or highly 

standardised training processes because this minimises the method’s relevance for 

patients outside the scope of the trial (see for example Travers et al. 2007). If 

randomised trials do not require any of these properties to provide valid causal 

inference, this is good news. 
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1.3. Accessibility of success conditions 

In the previous section 1.2, I argued that randomisation together with the statistical 

machinery of significance testing can support valid causal inference. Whether 

randomised trials are better than other statistical methods – or just equally good as 

them – in supporting valid causal inference remains to be discussed. The 

superiority of randomisation has been defended on various grounds. Even Worrall 

accepts that randomisation is a good (although unnecessary) mean to prevent the 

problem of selection bias, which is the problem that human judgement can – 

intentionally or unintentionally – distort the allocation procedure (Worrall 2002). 

Senn has argued that randomisation is a necessary means of maintaining blinding 

and preventing manipulation (Senn 2013, 1994). Larroulet Philippi holds that 

randomisation purports rational stability and rational agreement (Larroulet 

Philippi 2022) and Martinez and Teira argue that it is a good mean for resolving 

disagreements (Martinez and Teira 2021). Furthermore, randomisation is often 

seen as a fair procedure to allocate subjects to unequal interventions  (Kombe et 

al. 2019) . 

Another epistemic advantage of randomisation that I want to highlight is the 

simplicity of the mechanical procedure. The successful design of non-randomised 

studies relies on causal background knowledge and expert judgements, including 

knowledge about relevant covariates and the choice of appropriate methods to 

control for their influence, as well as skills in applying those methods successfully. 

Hence, for non-randomised studies to be successful, our knowledge of 

confounding factors must be true and complete, and researchers must be 

sufficiently skilled and impartial. These conditions are not only hard to satisfy but 

also difficult to verify. Consequently, it is not uncommon to read statements like 

the following, which appears in a guidance paper by the Swiss regulatory agency 

Swissmedic: ‘[S]tatistical methods to adjust for, e.g., unbalanced baseline 

characteristics often rely on subjective assumptions with respect to the relevant 

factors’ (Swissmedic 2022, p.2, my emphasis). While prior knowledge is not 

subjective in the strong sense of the term, determining what prior knowledge is 

relevant to consider is prone to error and disagreement. Furthermore, the 

assumption that prior knowledge is complete is not epistemically accessible.  

Randomisation replaces these assumptions with a simple mechanical 

procedure. This procedure is robust under the assumption that prior knowledge is 

incomplete or incorrect, and it is also robust under the assumption that researchers 

make mistakes or try to manipulate results in their favour. The epistemic 
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advantages of this mechanical procedure are not only that randomisation is less 

fallible than relying on skilful use of prior knowledge, but also that its success 

conditions are accessible to verification. Indeed, even external parties who do not 

have the same level of medical and scientific expertise as the researchers can verify 

the success conditions of randomisation. All that is required is that researchers 

follow a simple mechanical procedure. In Chapter 6, I expand on this idea. I argue 

that oversight by external parties, such as regulators or ethics committees, is 

essential to ensure the trustworthiness of clinical evidence. For these external 

parties to play their role effectively and judge whether an experiment is reliable, the 

conditions for success of an experiment must be accessible to them. 

What the research community came to appraise as a great advantage has 

been criticised by Cartwright and Deaton, who stated that ‘The systematic refusal 

to use prior knowledge and the associated preference for RCTs are recipes for 

preventing cumulative scientific progress’ (Deaton and Cartwright 2018, p. 19). I 

do not share their intuitions about scientific progress or the intuition that a 

preference for randomised trials amounts to a ‘systematic refusal’ of prior 

knowledge. I put these issues aside for now. In this chapter, it is irrelevant how 

randomised trials relate to a particular theory of scientific progress; what matters is 

that randomised trials, in a given instance, provide epistemic advantages over the 

use of prior knowledge. They are reliable even if the prior knowledge is erroneous; 

they are feasible even if prior knowledge is incomplete; and they come with 

epistemically accessible success conditions that allow to distinguish between 

successful and unsuccessful instances of the method. In the context of medical and 

pharmaceutical research, the reliability and trustworthiness of a particular causal 

conclusion matter more to patients than does long-term scientific progress. 

In summary, I have argued that randomisation – together with the statistical 

machinery of significance testing – can support valid causal inference. Hence, 

Worrall’s arguments fall short because he neglects the important epistemic role of 

the practice of significance testing. It is within this context that we can make sense 

of the ubiquitous talk in the literature about ‘balance’ of experimental groups 

namely in the same way as we can make sense of the ‘representativity’ of random 

samples. The good news for the critics of the method is that increasing the 

homogeneity of samples in Mill’s sense, although a common practice, is not 

essential for the validity of the causal inference. Finally, I have argued that 

randomisation comes with the epistemic advantage that its success conditions are 

easily accessible for verification by external parties.  
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2. The epistemic value of blinding and 
placebo controls 

Blinding and placebo controls are techniques that have emerged specifically for 

experimental purposes. Blinding refers to techniques that withhold information 

about treatment allocation from patients – and sometimes also care givers and 

outcome assessors. A placebo control is a dummy treatment that mimics the test 

treatment in its phenomenological properties but has no effect on the target 

disease. Data from routine data collection processes is thus never obtained under 

blinded or placebo-controlled conditions. This point has already raised major 

concerns among critics of the real-world evidence movement. Fraile Navarro, 

Tempini and Teira argued that pragmatic trials fail to provide informative evidence 

about the effectiveness of treatments, mostly on the ground that these trials are 

unblinded (Fraile Navarro et al. 2021). Hemkens pointed out that ‘a specific 

beauty’ of real-world outcomes data is that the data are formally blinded, because 

people who collect such data are generally independent from a research endeavour 

(Hemkens 2018). The epistemic value of blinding has been a matter of debate for 

clinical trials in general. Howick cast doubt on the assumption that blinding is 

necessary to maintain the evidential rigour of the gold standard (Howick 2011, 

Chapter 6), whereas Teira argued that blinding is necessary for the integrity of the 

causal inference as a warrant of the non-interference condition (Teira 2013). 

In my contribution to this debate, I argue that blinding is not necessary in 

trials that are in line with patient preferences. However, in trials that go against the 

interests of patients, blinding is necessary but may not be sufficient. Consequently, 

aligning trials with patient preferences, if possible, is the better strategy to minimise 

the risk of bias than increasing control over their behaviour. Chapter 2 expands on 

this idea and shows how pragmatic clinical trials can do without blinding because 

these trials serve a different purpose. 

2.1. Problems with the methodological rationale 

Blinding and placebo controls are intimately intertwined. It is common but too 

simplified to conceptualise a placebo control as an ‘inactive treatment’ with ‘no 

effect’. Placebos often do have effects and are sometimes designed to replicate 

common side-effects of the test treatment. To clarify the concept, Grünbaum 

introduced a distinction between ‘characteristic features’ and ‘incidental features’ 

of a treatment. Characteristic features are related to treatment of the condition by 



 

 30 

a therapeutic theory (e.g., the mechanism of action), while all else is incidental. 

Placebos for a certain disease then replicate the incidental features but none of the 

characteristic features (Howick 2017). Methodologists particularly encourage the 

use of placebos in trials where no alternative treatment exists; however, active-

controlled trials can also use placebos to maintain the blinding.  

Trials use placebo controls for three reasons. The first is that such a trial 

allows the researcher to subtract the effect from the incidental features of a therapy 

by replicating all the incidental features and their effects in the control group. The 

net effect of these additional components (together with the effect of expectations) 

is usually subsumed under the ‘placebo effect’ of an active treatment. The 

remaining effect is thought to be the absolute or true effect of the treatment 

(Howick 2011, Chapter 8). Interestingly, placebo controls have become 

entrenched into notions of effectiveness, as treatments are usually considered 

effective if they are more effective than a placebo in a well-controlled randomised 

trial. A second reason for using placebos is that they make the blinding of patients 

and physicians possible by making the placebos resemble the appearance of the 

investigational treatment. Sometimes, placebo controls even replicate common 

side-effects of the treatment to enhance the resemblance with the treatment. Here, 

placebos are merely the physical basis to make blinding possible. The third reason 

for using placebo controls is to warrant a property of trials called ‘assay sensitivity’. 

A clinical trial is said to have assay sensitivity if it can distinguish between an 

effective treatment versus a less effective or ineffective treatment. Active-controlled 

trials can run into problems with assay sensitivity in so-called non-inferiority 

designs, which only need to demonstrate that a test treatment is not inferior to a 

control treatment. A suggested solution is to require a demonstration of the 

superiority of treatments over their control rather than non-inferiority (Howick 

2011, Chapter 8). In Chapter 3, I propose a similar argument that placebo controls 

are helpful properties in ideal trials to increase the likelihood of identifying an 

ineffective treatment. Therefore, I do not consider the argument about assay 

sensitivity here. While placebos can help to make certain aspects of treatments 

visible, they are not required to license valid causal inference and hence non-

essential properties. 

Blinding refers to techniques that keep patients in a state of ignorance about 

the treatment they receive. The counterpart of blinded trials is open-label trials, 

where patients are randomly assigned to a treatment, and their treatment 

assignment is revealed to them after the randomisation process. Blinding helps to 

avoid two types of problems. The first problem is another type of placebo effect 
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that occurs because of people’s expectations or beliefs about treatment assignment. 

By keeping participants in a state of ignorance, researchers avoid the possibility that 

strong attitudes towards the treatment can be formed and may impact the outcome. 

Hence, blinding is supposed to break any systematic connection between mental 

states about the treatment and its success. The second problem addressed by 

blinding concerns actions that result from patients’ awareness about the treatment 

allocation, which would harm the rules of the experiment and hence undermine its 

capacity to support a valid causal conclusion. Generally, these rules aim to 

minimise the number of patients who drop out of the trial and prohibit patients 

from switching to another treatment group or seeking treatments outside the trial, 

because such behaviour could bias the treatment effect estimate. These rules of the 

experiment are defined in the trial protocol; hence I follow Fraile Navarro and 

colleagues in calling these problems ‘protocol violations’. The idea is that if patients 

are ignorant about what treatment they receive, they have no ground to act upon 

their interests and violate the protocol. 

Sometimes ‘allocation concealment’ is incorrectly added to the list of 

techniques covered by blinding. However, it is important to keep these techniques 

apart (Schulz et al. 2002). Allocation concealment refers to the process of 

concealing the randomisation sequence. That is, researchers who recruit patients 

for participation in a trial should themselves be ignorant of whether the next 

random number assigns a patient to the treatment or the control group. If such 

concealment is violated, the trial is likely to suffer from bias, because recruiters can 

then select the patients they think are suitable for the upcoming allocation. This 

would mean randomisation is overridden. According to Schulz and colleagues, a 

participant is successfully blinded if both the allocation sequence and the treatment 

are concealed. This notion is correct; we cannot plausibly argue that blinding was 

maintained if the allocation sequence was not properly concealed. Yet, it does not 

follow that a trial cannot – or should not – conceal the randomisation sequence just 

because it is open-label. Open-label trials can and should conceal the allocation 

sequence before the recruitment to avoid such bias. However, the treatment status 

can be revealed after randomisation has allocated the patients to the treatments. 

The role of blinding for protocol enforcement is to ensure that patients stay in the 

group after the randomisation, whereas the role of allocation concealment is to 

ensure that recruiters cannot bias the allocation before randomisation. Together, 

these techniques are what I call proper randomisation. Allocation concealment is 

commonly recognised as relevant for proper randomisation and hence is an 
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essential feature (Schulz et al. 2002). What remains to be determined is whether 

blinding is too. 

In sum, blinding participants is an attempt to keep them in a state of 

ignorance about their treatment assignment with a twofold purpose: first, to inhibit 

formation of attitudes that impact treatment outcome, and second, to further 

inhibit participants to act upon their interests. Together with the use of placebos, 

such trials provide not only an unbiased estimate of the treatment effect but also 

an absolute or true treatment effect that is cleansed from different types of 

undesired contingent effects (sometimes all subsumed under the placebo effect): 

Effects from the incidental features of the therapy, effects from attitudes of patients 

about the treatment and patients’ actions resulting from their attitudes about the 

treatment. In my view we should care a lot about unbiased effects that are ensured 

by proper randomisation, but we need not necessarily care about true effects that 

require blinding and placebo-controls.  

To begin with, I think the methodological rationale is problematic for a 

couple of reasons. First, we should note how demanding the requirements are for 

these techniques to be successful. Howick argues that only legitimate placebos can 

fill this role – those that control for all (and only) the incidental features of a 

therapy. Howick provides examples of why placebo controls often violate these two 

conditions and thereby under- or overcontrol the effect of the treatment (Howick 

2011, Chapter 7). The same holds for blinding, which is known to be hard to 

achieve. Second, researchers still have a rather poor empirical and conceptual 

understanding of placebo effects and the driving factors in patients’ behaviour. I 

elaborate this point with reference to the debate on how to measure successful 

blinding (Teira 2013; Sackett 2007).  

The most common method to measure successful blinding is to ask trial 

participants at the end of the trial to guess in which group they were placed; blinding 

is considered successful only if the rate of correct guesses is no higher than chance. 

This approach appears plausible. However, blinding first and foremost prevents 

patients from knowing in which treatment group they were placed. Hence, the 

approach is contested for two reasons. First, unblinding that occurs because of a 

positive effect from the treatment poses no problem for causal inference (Senn 

1994). Otherwise, we would run into Phillip’s paradox, namely, the problem that 

the most effective treatments could not be supported by the best evidence, as it is 

almost impossible to keep people blinded if a treatment is highly effective (Howick 

2011, Chapter 6). Second, it is unclear whether true beliefs about treatment 

assignment are really what cause bias. For example, participants who falsely believe 
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that they receive a placebo could also confound the trial results by dropping out of 

the trial. A second approach to measuring the success of blinding instead suggests 

testing for the persistence of beliefs, whether true or false. However, this approach 

also suffers from problems. The first is that it is unclear why blinding should 

prevent persistent beliefs. Blinding can prevent patients from learning which 

treatment they receive via an information leak. It cannot, however, stop them from 

forming beliefs, whether true or false and persistent or not. Relatedly, it is not clear 

whether beliefs about treatment assignments cause the placebo effect – rather than 

it being caused by preferences, expectations or hopes or something else. Relying 

on blinding to prevent all of these potentially relevant attitudes seems overly 

optimistic. The second problem of the persistent belief approach is that persistent 

beliefs about the treatment do not seem a good indicator for protocol violations, 

such as patients seeking other treatments. Indeed, as the next section 2.2 illustrates, 

being in a state of ignorance is a good reason to act upon such ignorance and break 

the trial protocol. Similarly, some scholars have argued that being in a state of 

ignorance makes it equally plausible that participants understate the treatment 

responses. This can happen because participants bias their responses towards a 

moderate response because of the desire not to err too greatly. The standard 

interpretation, on the other hand, is that open-label trials overestimate the 

treatment responses, without further grounds to justify such an interpretation. 

Hence, as Teira noted, the different approaches to measure blinding imply 

different conceptions about confounding through unsuccessful blinding (Teira 

2013). I concur that these are severe conceptual confusions about what it means 

for blinding to be successful. One might doubt whether it is sufficient to ground an 

epistemic necessity claim for blinding in clinical trials if we cannot justify which 

kind of beliefs might cause bias; why beliefs should be privileged over hunches, 

hopes or expectations as causes of bias; how blinding could block all of these 

potentially relevant attitudes; or why ignorance itself cannot cause such bias.  

Although I am sceptical about how convincing the methodological rationale 

is, my main argument does not rely on its plausibility or implausibility. What is 

relevant for my purposes is that we clearly understand what blinding is thought to 

deliver, keep blinding apart from allocation concealment and distinguish between 

the two functions of blinding. One is to control for patients’ attitudes to eliminate 

placebo effects, and the other controls for patients’ behaviour to avoid protocol 

violations. 
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2.2.  Blinding to prevent protocol violations 

Clinical trial protocols pre-specify the experimental plan. Their main role is to 

define the rules of the experiment and coordinate its execution. Since clinical trials 

are commonly distributed experiments across several hospital facilities, protocols 

are indispensable to ensure the integrity of the data collection and preserve the 

unbiasedness of the experiment. Fraile Navarro, Tempini and Teira pointed out 

that it is not only investigators and study nurses who need to play by the rules – but 

also patients (Fraile Navarro et al. 2021). The two most important rules for 

participating patients are that they are not allowed to switch to the other treatment 

group, nor should they seek additional treatments. Moreover, patients are expected 

to adhere to treatments as specified in the protocol; that is, they should take the 

treatment with the frequency and dosage foreseen in the protocol. They are also 

expected to stay in the trial throughout, although for ethical reasons they are 

allowed to end their participation at any time. However, playing by the rules is not 

always in the patients’ best interests. Therefore, blinding is used to prevent at least 

the first two problems. If patients are ignorant about their treatment assignment, 

they cannot know which action would be in their best interest; hence, their best bet 

is simply to comply with the protocol. 

Fraile Navarro et al. discuss the role of blinding as a mean to enforce the 

protocol against patients’ interests within the context of organised patient 

communities. What they have in mind are cases of well-organised patient 

communities that cooperate and even conspire against experimenters to enforce 

their own interests (Fraile Navarro et al. 2021). They illustrate the problem with 

two historical cases. Their first example is the famous case of trials on AZT for 

treating HIV/AIDS. The first phase II trial on AZT was terminated early because 

evidence suggested significant benefits of the treatment over a placebo. At the time 

the trial was stopped, 19 participants in the placebo group had died, but only one 

patient in the treatment group had (Fischl et al. 1987). This strong evidence, 

together with patients’ unwillingness to participate in placebo-controlled trials, 

spurred vivid discussions about the ethicality and practicality of another well-

controlled phase III clinical trial. However, even before the phase II trial ended, 

rumours emerged that the HIV/AIDS community had broken the trial protocol by 

analysing the medicines in the laboratory or pooling pills among the participants to 

ensure that everyone would receive at least some of the active treatment (Epstein 
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1996)
3

. The second example is from a phase II trial testing a treatment for 

amyotrophic lateral sclerosis. Trial participants took advantage of the online 

platform called PatientsLikeMe, which is designed for patients to share their health 

data and experiences. The participants used the online platform to share their 

experiences from the trial and eventually successfully unblinded the trial.  

The examples are well-chosen to illustrate the authors’ claim that patients 

can successfully defend their interests against the experimenters, to a point where 

they might even sabotage the trial’s protocol. In both cases, patients seriously 

interfered with the validity of the trial. Hence, the authors are right to guard against 

harmful interests that are not limited to pharmaceutical companies but also affect 

patient communities. The examples by Fraile Navarro and colleagues illustrate that 

in some cases interests of patients can be so strong that blinding is insufficient to 

control patients’ behaviour. Indeed, in the HIV/AIDS example, patients pooled 

their treatments precisely because they were ignorant about the treatment 

allocation
4

. Hence clinical trials can suffer from a risk of bias despite the 

researcher’s best efforts to control patients’ behaviour by keeping them ignorant 

about their treatment. It is plausible that in this case a trial with less controls for 

patients’ preferences would have suffered from even more biases. However, they 

generalise this example to an extent that is unsubstantiated. As they state: 

‘In these two vignettes we see the trade-off between impartiality and trial 

participants’ freedom in RCTs at work: the less control on the patients’ 

preferences, the more biases will affect the trial outcome’ (Fraile Navarro 

et al. 2021, p. 7).  

What is characteristic of the HIV/AIDS example is that patients have strong 

interests that conflict with the rules of the trial protocol. In cases where the protocol 

is in line with patients’ preferences, concerns about patients breaking the protocol 

are less relevant. To illustrate, consider the difference between active-controlled 

and placebo-controlled trials. Without evidence, a placebo control might be 

equivalent to an active treatment, from a population perspective. From the patient’s 

perspective, however, a placebo cannot be equivalent to an active treatment. A 

placebo treatment has, by definition, no positive effect on the condition, whereas 

an active treatment has at least the potential to have a positive effect until proven 

otherwise. From the individual patient’s perspective, the patient can only lose if 

 

3

 He further refers to the (fictional) work by Lapierre, Beyond Love, 366-367. 
4

 The HIV/AIDS trial example has been used to support the claim that well-controlled 

randomised trials are not necessary for conclusive evidence about the causal efficacy of a 

treatment Solomon (2015). 
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they agree to receive a placebo treatment; hence, it seems irrational to agree to a 

placebo if one’s health is at stake.
5

 In other words, placebo controls commonly run 

strongly counter to the interests of patients. This point reinforces the view that 

controlling for patients’ behaviour can be crucial to the integrity of a placebo-

controlled trial. If we tell patients they are receiving a placebo treatment, we might 

not expect them to comply with the protocol; such compliance could be irrational. 

Yet, my point also questions whether we can simply generalise empirical evidence 

from unblinded placebo-controlled trials to open-label trials that use active 

treatment or even the standard of care. In an earlier paper, Teira partially addresses 

this point when he writes as follows:  

People can break protocol if this is in their interests. If the outcome of a 

trial, be it a drug or a social policy, is important enough for the participants, 

we cannot expect them to comply with a randomized protocol, unless they 
believe the treatments in both arms are equivalent. (Teira 2013, p. 362, 

my emphasis) 

If patients believe that the treatments in both arms are equivalent, patients have no 

interest in breaking the rules of the protocol. Hence controlling their behaviour 

through blinding is unnecessary. It is plausible that an unblinded trial where 

patients believe that treatment groups are equivalent is subject to fewer biases than 

a blinded trial that does not fulfil the equivalence requirement. As the historical 

cases of Fraile Navarro and colleagues illustrate, when patient interests are strong, 

blinding is insufficient to prevent patients from breaking the trial protocol. One 

option, and sometimes all that scientists can do, is to increase control over patients 

when their preferences differ from the protocol requirements. The better option, 

if possible, is to reduce the tension between patients’ preferences and protocol 

requirements.  

Assuming that the standard of care is an effective treatment, trials using the 

standard of care as the comparator are plausible candidates to fulfil the equivalency 

requirement.  In reality, patients’ motivation and attitudes towards participation 

and compliance with trial protocols are not only determined by their perception of 

the equivalence of the treatment groups. Their willingness to comply with the 

protocol is plausibly also related to the severity and natural course of their disease, 

available alternative treatments and the burden to participate in the trial. For 

example, if patients are not suffering from a rapidly progressing disease and trust 

 

5

 The sceptic might object that placebos can be a rational option, if one wants to avoid harm. 

I hold that in such a case the really rational patients would simply not participate in the 

trial. 
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that they will receive the investigational treatment if the trial is successfully 

completed, it is in their best interest to comply with the protocol despite believing 

that the treatments are not equivalent
6

. In non-severe diseases, widespread altruistic 

motives to contribute to science might be sufficient to comply with the protocol, 

despite knowing their treatment assignment. Hence, equivalence between 

treatment options is only one way to align the protocol with the interests of patients.  

2.3. Blinding as a warrant for the non-interference 
condition 

A second argument assigns blinding the crucial role as a warrant for the so-called 

‘non-interference assumption’, which is essential for causal inference in 

experiments (Teira 2013). If the argument is convincing, it not only states that 

unblinded trials are problematic because of protocol violations but also that 

unblinded trials can harm the basic principles of causal inference. The non-

interference assumption generally excludes ‘spill over’ effects. Teira follows Gerber 

and Green (Gerber and Green 2012), who describe the non-interference 

assumption more precisely:  

[F]or each participant in the experiment, the value of the potential 

outcome depends only upon whether or not she or he gets the treatment. 

More precisely, the potential outcomes that would arise if a subject were 

affected by the treatment of other subjects are declared negligible. (Teira 

2013, p. 359)  

To illustrate the assumption, Gerber and Green cite the example of the causal 

impact of female policy makers on the sanitary budget of their village. The 

allocation of a female instead of male council is the policy intervention that is tested 

in seven villages. Assuming non-interference means whatever happens in one 

village does not spill over or interfere with the outcome in any of the other villages. 

Accordingly, the assumption is violated if the budget from village A depends on 

whether village B has a female councillor or not. There are various ways in which 

we can imagine this to happen. Village B might set an example and inspire village 

A to spend more; or the opposite: village B might provide a free-ride opportunity 

and encourage village A to spend less. Whether or not the non-interference 

assumption is justified in each case, Gerber and Green argue, depends on various 

local facts and is not easily determined. The geographical relation, the participants’ 

 

6

 The sceptic might argue that this scenario is also the best option because patients in the 

placebo group can avoid harm of an active but potentially ineffective treatment while only 

receiving the treatment after its effectiveness has been proven.  
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ways of communication and potential budget dependencies all matter.
7

 In other 

words, non-interference would mean that each village has only two potential 

outcomes: one if assigned to the treatment group and the other if assigned to the 

control group. If interference occurs, each village’s potential outcomes are 

multiplied manyfold for each possible assignment of all the other villages. Crucially, 

non-interference is a necessary requirement for causal inference in the sense that 

if interference takes place between the two groups, naïve comparison of the mean 

outcomes is meaningless. 

It is mostly in the social sciences where this assumption poses important 

problems. Other examples discussed by Gerber and Green concern 

communication interventions and displacement interventions. They also discuss 

the more relevant example of the chance that a vaccinated person could contract a 

disease in a way that depends on the vaccination status of others nearby. In clinical 

trials testing drugs, by contrast, the problem of interference is usually deemed 

negligible. Teira argues that this assumption is only warranted in blinded trials:  

I am taking pill A, there is no physical mechanism by which it can have an 

effect on your intake of pill B. This interference can only take place 

through the expectations of the patients about each treatment: if I think 

that the experimental treatment is better than the standard alternative and 

I believe I am receiving this latter, these expectations may impinge on the 

outcome. There is wide evidence about such placebo effects, and in order 

to prevent them, clinical trials are double blinded, if the therapy allows it: 

the treatments are masked so that participants remain ignorant of which 

one they are receiving, at least during the initial stages of the trial. In other 

words, the masking of treatments constitutes the methodological warrant 

of the NIA [non-interference assumption]. (Teira 2013, p. 359) 

According to the argument, interference between patients can occur through 

placebo effects. Certainly, placebo effects are widely acknowledged and have been 

empirically demonstrated. Yet, the placebo effect is usually conceived like this: It 

is my assignment status, prompting my expectations about the effectiveness of the 

treatment, that will influence my outcome, but my expectations will not influence 

the outcome of other participants. Hence, it is obscure how the mechanism could 

allegedly spill over to other participants. Non-interference requires that my 

outcome is independent of the assignment status of others, which seems to be the 

case despite any placebo effects.  

In defence of the argument, we might suggest a scenario like the one 

discussed above. If Peter is part of a well-organised patient community and shares 

 

7

 For an extended discussion of the example, see Gerber and Green p. 43-44 and 253-256. 
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with other participants in the trial that he experiences certain improvements while 

receiving treatment A, this news could reinforce the placebo effect of people in the 

same group. In turn, they might experience similar improvements, which they 

otherwise might not have experienced. Such effects, however, seem to be no 

additional problem to the general problem that placebo effects can impact 

treatment outcomes. Whether the placebo effect has been caused by what I believe 

about the treatment or by what I hear that others experience from taking the 

treatment seems irrelevant. If that is the case, however, comparison of mean 

outcomes is not meaningless; it merely means that we compare the treatments 

effects including any placebo effects. The relevance of the assumption increases for 

behavioural interventions, psychopharmacological interventions or infectious 

disease interventions if the people who participate in the trial are part of the same 

community. 

Even if we consider placebo effects problematic for the non-interference 

assumption, the threat is greater in blinded trials than in open-label trials. In the 

former, effects more easily spill over between control and treatment groups. If I 

hear Peter’s report about treatment regimen A, while knowing that I am on 

treatment regimen B, it is less plausible that Peter’s report has an impact on my 

outcome than if I were ignorant about our treatment assignments. My hope, 

expectation, or hunch that I might be receiving the same treatment as Peter could 

be absolutely sufficient to prompt a placebo effect – even if I am not in fact 

receiving the same treatment. By contrast, hopes, hunches and expectations are 

less likely to influence my placebo response if I know for certain that I do not 

receive the same treatment as Peter. Without our ful understanding how the 

mechanisms of placebo effects work, I acknowledge that such arguments are 

speculative and insufficient to settle the issue. Overall, the non-interference 

problem in clinical trials is negligible in the sense that it does not pose an additional 

problem to the problem of placebo effects. In unblinded trials comparisons of the 

mean outcomes are not meaningless; it is simply that mean outcomes would 

include placebo effects – which is a different problem. 

Communication between participants could be more problematic if it affects 

the behaviour of patients that violates the trial protocol. If Peter shares with other 

participants in the trial that he experiences certain improvements while receiving 

treatment A, this news could prompt other participants to seek the same treatment 

as Peter receives. In this case, open-label trials have a clear disadvantage. If I hear 

Peter’s report about treatment regimen A, while knowing that I am on treatment 

regimen B, I have a direct reason to seek the same treatment as Peter. However, 
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even if Peter and I are both ignorant about each other’s treatment assignments, 

Peter’s report might suffice as a reason to switch to the other group than the one I 

am currently allocated if I am not experiencing similar success with the treatment 

I receive. Being ignorant about the treatment allocation is again insufficient to 

prevent patients from acting upon their interests. I acknowledge that 

communication among participants can reinforce the problem that patients act 

upon their interests and break the trial protocol. I also acknowledge that this 

problem is slightly more plausible in open-label trials than it is in blinded trials. 

However, the non-interference problem, again, does not pose an additional 

problem to the problem of protocol violations.  

Overall, if patients are well-organised and communicate with each other 

about their outcomes, this can clearly reinforce the problem of placebo effects and 

protocol violations. Both issues can be problematic, but they are not problematic 

for the non-interference condition. More importantly, the problem that organised 

communication poses for the validity of clinical trials is not significantly different 

for blinded and unblinded trials. 

2.4. Measures to reinforce compliance with the 
protocol 

I have argued that blinding is not in all circumstances effective or necessary to 

prevent protocol violations. However, the fact that blinding is sometimes 

insufficient does not give rise to an argument to dispense with it. Rather, we should 

complement trials with strategies that reinforce our epistemic aims. Here are two 

suggestions to that end. First, to minimise protocol violations, the straightforward 

solution is to align the trial protocol with patient preferences. This could mean that 

patients receive the standard of care or any other comparative treatment that 

patients think is equivalent. Contra Fraile Navarro et al., who argue that there is a 

trade-off between the freedom of patients and the impartiality of the evidence, I 

hold that including patient preferences does not negatively impact the impartiality 

of the trial; on the contrary, it helps prevent biases if it motivates patients to play by 

the rules of the protocol. However, I do not mean to argue that placebo controls 

should be avoided under all circumstances. The Chapter 3 develops a position 

about when we should not.  

Second, a simple way to reinforce control over protocol violations is by 

directly testing for such harmful behaviour, like patients dropping out from the trial 

or seeking additional treatments outside the study. Such strategies have been 

suggested already (Sackett 2007; Howick 2011). This strategy can measure protocol 
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violations in both, blinded and open-label trials, and even facilitate a better 

comparison between the two on a meta-research level. The approach does not 

minimise the risk of protocol violations but helps to distinguish between successful 

and unsuccessful instances of a trial. The methodological literature commonly 

distinguishes two options to deal with protocol violations. Scientists can choose to 

exclude these patients from the final analysis, that is, only patients who receive and 

adhere to the treatment as defined by the protocol are included in the analysis. The 

methodological literature calls this a ‘per-protocol’ analysis. The epistemic costs of 

this approach are that it undermines the randomisation scheme. The alternative is 

an ‘intention-to-treat’ approach, where all patients are included in the final analysis 

according to the group they were first assigned to. This approach maintains 

randomisation but prompts a different interpretation of the estimated treatment 

effect (Tripepi et al. 2020). Both options are generally considered acceptable, 

which implies that scientists have some tolerance for protocol violations in real 

clinical trials. However, it is rarely the case that scientists comprehensively measure 

protocol violations and (pre-)define limits to the amount of protocol violation that 

is acceptable. If protocol violations exceed this threshold, scientists should choose 

a third option: Declare their experiment unsuccessful. 

I have argued that blinding is not essential to ensure adherence to the 

protocol and hence ensure proper randomisation. However, none of the measures 

discussed so far can address the issue of placebo effects. In my view, placebo effects 

are problematic if scientists are interested in the true or absolute treatment effect, 

but they are not problematic if scientists are only interested in an unbiased effect 

estimate. While unbiased treatment effects are essential, the importance of true 

treatment effects depends on the purpose of an experiment. The standard 

distinction between the 'per-protocol' analysis and the 'intention-to-treat' analysis 

already illustrates that the concept of a true treatment effect can be interpreted 

differently. I expand on this idea in the next chapter when I discuss blinding and 

treatment effects in pragmatic clinical trials.  
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Chapter 2 
The epistemic rigour of 
pragmatic clinical trials 
 

Renowned medical statistician Douglas G. Altman opened his editorial in the 

British Medical Journal (BMJ) in 1994 by saying that ‘We need less research, better 

research and research for the right reasons’ (Altman 1994). His provocative point 

was that biomedical research is a scandal. There are too many publications that 

misinterpret results, selectively report them or are built entirely on false premises. 

Three decades have passed since Altman's editorial but it seems that little has 

changed. In 2000, Balas and Boren estimated that only 14% of the available 

evidence is successfully implemented into clinical practice – and this takes, on 

average, 17 years (Balas and Boren 2000). In 2009, the Lancet series ‘Increasing 

Value and Reducing Waste’ estimated that around 85% of the investment in 

biomedical research is ‘research waste’, meaning inadequately produced or 

reported evidence (Chalmers and Glasziou 2009). In 2014, the former editor of 

the BMJ reiterated Altman’s call in his opinion paper ‘Medical research – still a 

scandal’ (Smith 2014). In 2016, Ioannidis wrote a piece called ‘Why Most Clinical 

Research is Not Useful’ (Ioannidis 2016). In recent years, others have followed 

suit, estimating that 56% of patients still participate in ‘bad’ clinical trials (Pirosca et 

al. 2022) and that only about 26% of randomised trials are informative for clinical 

practice (Hutchinson et al. 2022). Philosophers have likewise reached rather 

pessimistic conclusions about the state of medical research and have argued for 

fewer clinical trials (Borgerson 2016) or have adopted medical nihilism (Stegenga 

2018).  

The root causes of these problems are manifold. However, one widely 

acknowledged and highly criticised shortcoming of randomised clinical trials is the 

problem that their results do not easily apply to routine care and that they lack 

external validity (Cartwright 2009; Rothwell 2005; Borgerson 2013). Indeed, effects 

demonstrated in traditional trials often diminish or disappear when treatments are 

introduced into clinical practice. This problem is known as the efficacy–

effectiveness gap (Eichler et al. 2011). Concerns regarding the external validity of 

highly controlled trials have commonly supported arguments in favour of 

observational studies. Another more recently popularised response to the problem 
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is the so-called pragmatic clinical trial. Pragmatic clinical trials are randomised trials 

that are conducted under practical conditions and lack many of the control 

measures of traditional clinical trials. Their promise is that they preserve the 

epistemic rigour of randomisation while producing practically useful and widely 

applicable evidence (Borgerson 2013; Schwartz and Lellouch 2009; Thorpe et al. 

2009; Ioannidis 2016; Tunis et al. 2003; Mc Cord et al. 2018; Hemkens 2018). 

Hence, pragmatic clinical trials have been suggested as a potential solution to the 

vexing problem of extrapolation (Fuller 2019; Howick et al. 2013a; La Caze 2017). 

Advocates of pragmatism have argued that the research community ought to 

prioritise pragmatic trials (Zwarenstein and Treweek 2009; Borgerson 2013). 

Indeed, pragmatic trials are becoming increasingly popular, and some scholars 

have even proclaimed the ‘rise of pragmatism’ (Patsopoulos 2011). Within the 

Food and Drug Administration’s (FDA) real-world evidence framework and the 

ongoing evolution of evidence standards, pragmatic clinical trials play a prominent 

role because these study designs often allow for outcome data to be collected from 

real-world data sources (US Food and Drug Administration 2018). 

There is no consensus yet among researchers on whether pragmatic trials 

adhere to the fundamental standards for quality. Indeed, pragmatic trials often 

violate some of the standard principles for high-quality clinical trials. For example, 

they often do not blind patients; nor do they control adherence to treatment or 

treatment delivery practices, factors that are commonly thought to be important for 

the unbiasedness of experiments. Consequently, researchers often say that 

pragmatic trials have decreased internal validity. Fraile Navarro and colleagues 

explicitly criticised pragmatic trials for their lack of impartiality (Fraile Navarro et 

al. 2021). Advocates of pragmatic trials – whom I call ‘the pragmatists’ in the rest 

of this chapter – counter the critics by referring to the randomised nature of the 

pragmatic experiment. They also stress that pragmatic trials have a different 

purpose (Zuidgeest et al. 2017) or they emphasise the practical value of the 

evidence (Borgerson 2013). The pragmatists’ position echoes the newly revised 

version of an international reference guideline for clinical trial designs by the ICH, 

which explicitly refers to the quality of a clinical trial as its ‘fitness-for-purpose’ 

(International Council for Harmonisation 2021b). Similarly, the revised Cochrane 

Risk-of-Bias assessment tool (RoB2) mentions an exception for pragmatic trials 

regarding certain quality standards. However, the authors barely justify why such 

an exception is warranted (Higgins et al. 2019). In this chapter, I discuss the 

concerns regarding the aptness of pragmatic trials to provide unbiased estimates of 
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treatment effects. In Chapter 3, I continue the discussion of these trials and study 

the practical value of these designs.  

In short, regarding the question of the quality of these designs, I agree with 

the pragmatists. My  discussion shows how the slight shift in purpose between the 

two types of trials effectively changes the rules of the game. Pragmatic trials can 

maintain the validity of the causal conclusion, despite a lack of standard controls, 

by broadening the description of the intervention. However, the manoeuvre comes 

at the price of informativeness of the causal conclusion, and this situation prompts 

new epistemic challenges. The first challenge is to meaningfully reconceptualise 

interventions in pragmatic trials. The second is to establish the practical and ethical 

relevance of pragmatic interventions for decision-making in healthcare or 

regulatory contexts. The peculiarities of pragmatic interventions also pose new 

challenges to the widely held belief that the results of pragmatic trials are easily 

applicable elsewhere.  

To familiarise the reader with pragmatic trials and illustrate what is at stake 

in the debates, I begin section 1 by introducing two studies – one pragmatic one 

explanatory – on the effectiveness of the Relvar Ellipta inhaler for treating chronic 

obstructive pulmonary disease (COPD) as a case study (section 1.1). In section 2, 

I discuss the epistemic rigour of both types of trials. I compare traditional attitudes 

to pragmatic attitudes regarding unbiasedness in clinical trials (sections 2.1-2.2). I 

argue that pragmatists can preserve the validity of causal inferences despite the lack 

of standard controls by broadening the description of the intervention (section 2.3). 

This effectively moves the discussion towards the question of how to conceptualise 

the interventions of pragmatic trials in a sensible way, which I address in section 3. 

First, I compare the metaphysical ideal underlying effectiveness attributions from 

traditional trials with that of pragmatic trials (section 3.1); then, I argue that we can 

adequately conceptualise pragmatic interventions at the level of therapeutic actions 

(section 3.2). Doing so at once reinforces the practical value of pragmatic trials but 

also uncovers the knowledge loss associated with pragmatic trials. Section 4 is 

dedicated to the practical use of pragmatic interventions for decision-making in 

healthcare and regulatory contexts.  

1. Pragmatic trials as field experiments  
There are many ways to design a randomised trial. The pragmatic–explanatory 

distinction is an increasingly popular classification of such trials. The distinction 

dates to a landmark paper in 1967 (reprinted in 2009) by Schwartz and Lellouch, 
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whose main concern was that most clinical trials were inadequately designed 

because their design was not aligned with their aim. While most trials aim to inform 

decision-making (pragmatic), they are in fact designed to increase understanding 

(explanatory; Schwartz and Lellouch 2009). A similar distinction was made two 

years earlier by Schneidermann, who distinguished between patient-oriented trials 

and drug-oriented trials. According to Schneidermann, the former are concerned 

with the question: ‘How shall I treat the next patient […] who comes into my care?’ 

By contrast, the latter ask: ‘Has this drug enough promise that I can bring it into a 

patient-oriented trial?’ (Schneidermann 1966). Since Schwartz and Lellouch’s 

publication in 1967, the pragmatic trial design has been further systematised and 

multiplied. While the term ‘pragmatic trial’ is gaining popularity, related or 

synonymous terms such as ‘practical trials’, ‘large simple trials’ or ‘naturalistic trials’ 

are also used. I employ the standard terms ‘pragmatic trial’ and ‘explanatory trial’ 

because these are the terms of choice in a well-systematised assessment tool, the 

Pragmatic Explanatory Continuum Indicator Summary (PRECIS-2) (Loudon et al. 

2015). This tool conceptualises pragmatic trials along nine domains, such as 

recruitment, administration of the treatment and the flexibility of the follow-up. It 

then ranks them according to how closely the conditions in the trial resemble the 

practical context in which the experiment is taking place. As its name indicates, 

PRECIS-2 conceptualises the difference not as a sharp distinction but as a 

continuum. This is appropriate at the methodological level, because all 

combinations of rankings in the nine domains are possible practically. In the 

following discussion, ‘pragmatic trial’ and ‘explanatory trials’ mean the extreme 

ends of the pragmatic–explanatory continuum. In Chapter 3, I introduce the 

PRECIS-2 tool in more detail for a discussion on the practical relevance of the 

designs of interest. For the current discussion, the basic principles of a pragmatic 

trial are sufficient.  

I preferably describe pragmatic trials as field experiments of clinical 

research. Pragmatic trials are embedded into existing infrastructures, processes and 

resources of the healthcare setting (‘the field’). Only those processes and resources 

that are available to healthcare staff are used, without experimental activities. 

Hence, pragmatic trials interfere as little as possible in the natural therapeutic 

situation, which means the therapeutic situation as it would take place without the 

experiment. For example, pragmatic trials are relatively permissive in their 

eligibility criteria, they do not control how physicians administer treatments or 

whether patients adhere to these treatments and they do not require the blinding 

of patients.  In contrast, explanatory trials optimally standardise the experimental 
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situation. The researcher attempts to shield the causal effect of various 

interferences (‘the lab’) and therefore artificially alters the natural therapeutic 

situation for experimental purposes. With pragmatic trials researchers attempt to 

measure treatment effects ‘under routine care conditions’ – or natural conditions 

– rather than under controlled and standardised or somewhat artificial research 

conditions. To illustrate to consequences of this approach, I compare two trials, 

one explanatory one pragmatic, as a case study. 

1.1. The effectiveness of the Relvar Ellipta inhaler 

The Salford Lung Study on the effectiveness of the Relvar Ellipta inhaler is 

particularly interesting because it illustrates so well the benefits and risks related to 

pragmatic designs. On the one hand, the pragmatic design of the Salford Lung 

Study accounted for an important contextual factor in estimating the treatment 

effect, revealing practically relevant differences between treatments. On the other 

hand, the pragmatic design in this case favoured the pharmaceutical company 

GlaxoSmithKline (GSK), which reinforces the critics’ concerns that pragmatic 

studies could undermine the critical standards of evidence. Relvar Ellipta is the 

brand name of a dry powder inhaler developed by GSK; it contains a combination 

therapy to treat two different indications, namely, asthma and COPD. Its 

effectiveness was tested in two pragmatic trials known as the Salford Lung Studies 

(Vestbo et al. 2016). The trial was discussed as a paradigm case in a stakeholder 

workshop by the US National Academies of Science, Engineering and Medicine 

(Downey et al. 2017) because GSK promoted the trials as the first pragmatic phase 

III pre-marketing study, i.e., conducted before official marketing authorisation of 

the inhaler was received. Although the trial was a pre-marketing study, the results 

were not used as evidence submitted for the marketing authorisation. There are 

also many traditional phase II to III studies available that supported the market 

authorisation with the European Medicines Agency (EMA; European Medicines 

Agency 2013). Hence, there is a unique opportunity to directly compare the two 

approaches in otherwise very similar trials. I only discuss the trial conducted for 

COPD. 

The most interesting aspect of this trial is related to the medicine that was 

tested, the Relvar Ellipta inhaler. The inhaler contained a combination therapy 

consisting of the two pharmacological substances vilanterol and fluticasone; the 

former causes muscle relaxation and the latter decreases inflammation. Vilanterol 

is a derivate of salmeterol, also developed and marketed by GSK. The major 

innovation of vilanterol over salmeterol is that it is a longer-acting substance, which 
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reduces treatment administration by half (from twice-daily to once-daily 

administration). It is a well-established fact that the lack of adherence to treatment 

is a major obstacle in clinical practice particularly for chronic diseases. Regarding 

COPD, empirical research indicates that adherence to therapy is below 50% 

(Lareau and Yawn 2010); research also suggests an inverse relationship between 

the number of daily doses and the adherence rate (Claxton et al. 2001). The 

practical advantage of a less frequent administration with the Relvar Ellipta inhaler 

thus has the potential to increase real health outcomes. To leverage this advantage, 

the Salford Lung Study did not use any measures to artificially increase the 

adherence of patients in the study. By contrast, the traditional trial that GSK 

conducted on the inhaler for submission with the EMA reported adherence rates 

as high as 97.5% (Agustí et al. 2014). 

In addition, an open-label or unblinded design was chosen. In active-

controlled treatments with different administration regimens, participants could 

only be blinded by taking both their active treatment and a dummy placebo 

treatment that mimicked the treatment of the other group. Such a design would 

increase the burden of treatment regimens for all participants, and the practical 

advantage of the inhaler would be neutralised. Thus, the administration regimens 

differed between the two groups. It was twice-daily for the control group and once-

daily for the treatment group, which gave the treatment group a practical advantage 

in terms of a simplified dose regimen. Table 1 compares relevant aspects of the 

Salford Lung Study with a traditional counterpart trial that GSK submitted to the 

EMA for authorisation.8  

Table 1: Comparing the Salford Lung Study with an explanatory counterpart study 

Salford Lung Study (Vestbo et 
al. 2016) 

Explanatory counterpart study (Agustí 
et al. 2014) 

Duration: 12 months Duration: 12 weeks 

Intervention: 
vilanterol/fluticasone 
combination therapy 
Comparator: usual care  
(12% mono therapy, 34% dual 
therapy, 54% triple therapy, for 
details see table 2 Chapter 3.) 

Intervention: vilanterol/fluticasone 
combination therapy  
Comparator: salmeterol/fluticasone 
combination therapy 
 

 

8

 It is noteworthy that the explanatory counterpart trial only played a secondary evidential 

role in the drug licensing process. The primary studies compared the new inhaler to a 

placebo or to the individual components of the inhaler, while the one I cite here compares 

the new inhaler to its predecessor. In this regard this traditional study was already slightly 

pragmatic in the choice of its comparator. The details of the evaluation process appear in 

the public assessment report by the EMA: European Medicines Agency (2013). 
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Administration: 
Treatment group: 1x daily active 
inhaler 
Control group: usual care (mostly 

2x daily= 

 

Administration:  
Treatment group: 1x daily active inhaler 
plus 2x daily placebo inhaler 
Control group: 2x daily active inhaler 
plus 1x daily placebo inhaler 

Primary conclusion: The rate of 
moderate or severe 
exacerbations was moderately 
but significantly lower with 
fluticasone furoate–vilanterol 
therapy than with usual care 
(p = 0.02). 

Primary conclusion: Improvements in 
lung function and health status were 
not significantly different between 
FF/VI 100/ 25 mg once-daily and 
FP/SAL 500/50 mg twice-daily. 

 

Perhaps not surprisingly, the Salford Lung Study and its traditional counterpart 

reached different conclusions. While the Salford study presented evidence of 

moderate health benefits from the Relvar Ellipta inhaler compared with usual care, 

the explanatory trial found no such evidence when comparing the inhaler to its 

predecessor. Interestingly, the investigators in the Salford study were transparent 

about the fact that they counted on the practical advantage of the simplified dose 

regimen to make a causal difference: 

[In conventional trials] frequent face-to-face monitoring ensures high 

adherence to therapy and good inhaler technique. This comparative 

effectiveness trial that was conducted in a population of patients with 

COPD was largely unsupervised over the yearlong period, which allowed 

important factors in usual clinical care, such as adherence, frequency of 

dosing, and persistence of good inhaler technique, to come into play. 

(Vestbo et al. 2016, p. 1260, my emphasis) 

In short, the reasoning of the authors suggests that the Relvar Ellipta inhaler is more 

effective because it is easier to use. The Salford Lung Study, with its pragmatic 

design, translated the practical advantage of the Relvar Ellipta inhaler into the 

overall effect-size estimate, and this advantage was sufficient to demonstrate 

superiority over usual care. If we compare the two trials, the standard trial supports 

the view that there is no relevant difference between the new inhaler and an 

alternative treatment. The Salford Lung Study, by contrast, implies that there is a 

relevant difference – which only a pragmatic design could make visible. This 

difference in perspective lends plausibility to the idea that evidence from a 

pragmatic trial is practically valuable. If it is indeed the case that patients benefit 

from the ease of adherence such that it improves their real health outcomes, then 

clearly decision-makers should consider such evidence.  

At the same time, certain methodological features together with the 

discordant evidence from the traditional trial raise concerns about the quality of 
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the obtained evidence, for at least two reasons. First, the difference in treatment 

administration between the two groups introduces a systematic advantage for one 

group. This point challenges the common understanding of a truly fair comparison, 

where all contextual factors are kept equal. Second, and perhaps more importantly, 

while the open-label character of the trial is necessary to leverage the practical 

advantage, it introduces the risk of placebo effects and other factors associated with 

unblinded trials. These issues can bias the results. 

2. Assessing unbiasedness in clinical 
trials 

It is a common conception that the gain in practical relevance in pragmatic trials 

comes at the price of epistemic rigour. While there is some truth to this idea, I 

believe critics have misidentified the problem. Usually, the lack of epistemic rigour 

is identified as a lack of internal validity or a risk of bias, while I believe that we 

should understand the problem primarily as an information loss. In the current 

literature, we can find three views regarding the principled unbiasedness of 

pragmatic trials. The pragmatists seem to hold that there is nothing wrong, in 

principle, with the internal validity of pragmatic trials, because they are randomised 

trials and because they pursue a practical purpose. Zuidgeest et al., for example, 

argued that ‘all other features of such trials are secondary to randomisation and a 

matter of choice rather than of principle’ (Zuidgeest et al. 2017, p. 9). Critics, 

however, argue that pragmatic trials neglect standard controls, which in any case 

introduces a risk of bias such as placebo effects, which in turn impairs their internal 

validity. Fraile Navarro, Tempini, and Teira make such an argument in terms of a 

lack of ‘impartiality’ (Fraile Navarro et al. 2021).
9

 Taking an ethical perspective, 

Borgerson argues that regardless of the ongoing debate on the epistemic rigour of 

pragmatic trials, the gain in social value could potentially outweigh a certain lack of 

epistemic rigour (Borgerson 2013). If pragmatists want to defend their approach 

against the well-established traditional epistemology of clinical trials, they need to 

substantiate their position. They need to show, first, why experimental controls that 

are well-established standards are ‘a matter of choice’ in pragmatic trials. Second, 

 

9

 Their argument has a historical and social perspective. Within that perspective, 

‘impartiality’ of a method is relevant to promote the acceptability of results among 

experimentalists. Yet, on the methodological level, I understand that impartiality implies 

the same operationalisation and epistemic rationale for experimental controls as the 

standard epistemology does for unbiasedness. 
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they need to show what they can gain from making such choices in epistemic and 

practical terms.  

I develop a line of argument that explains how pragmatists attempt to 

preserve the internal validity of their causal inferences through broadening the 

scope of the intervention that is being tested. This echoes with some assertions 

found in the literature. Schwartz and Lellouch asserted that pragmatic trials have 

somehow broader notions of the intervention that ‘absorb’ the context in which 

they are administered (Schwartz and Lellouch 2009). Bluhm recognises that 

pragmatic trials are not as good at ‘isolating’ the treatment (Bluhm 2017, p. 100). 

However, they do not provide a systematic explanation what these expressions 

mean and what the epistemic and practical consequences of such treatment 

definitions are. My contribution closes this gap. 

2.1. The traditional EBM attitude towards unbiasedness 

Today’s standard epistemology of clinical trials is a result of the EBM movement, 

which advocates for the noble goal of supporting all healthcare decisions with the 

best available evidence. The main activity of these communities is to publish 

systematic reviews that amalgamate the best available evidence in the service of 

clinicians. Their biggest success has been the wide uptake of their hierarchical 

theory about the quality of evidence, the well-known evidence hierarchies that place 

RCTs at the apex. The most influential organisation in the EBM movement, the 

Cochrane Collaboration, additionally requires assessing individual randomised 

trials with a quality assessment tool that examines the individual risk of bias, to 

weight the trial’s impact on the overall evidence synthesis. I agree with Stegenga 

that this is a worthwhile undertaking, because method types are insufficient to 

support the quality of individual instantiations (Stegenga 2018, Chapter 5; for a 

discussion of quality assessment tools, see Stegenga 2018, Chapter 7). Hence, in 

these quality assessments, pragmatic trials can run into trouble regarding 

judgements about their quality of evidence.  

Quality assessment tools look at the individual features and the detailed 

execution of a trial, such as the randomisation process, allocation concealment, 

blinding, adherence control and drop-out rates. These tools come in various forms, 

with different levels of complexity. One of the most detailed developed tools, the 

Cochrane Risk-of-bias (RoB) tool developed a rule-based decision framework 

(Higgins et al. 2019). The tool ranks the individual experiments according to their 

risk of bias, where bias is considered a distortion of the estimate relative to the true 
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treatment effect.  Depending on the tool that is used, it could alert us to several 

risks of bias in the Salford Lung Study, such as the following: 

1. Participants were not blinded as to which treatment they received. 

2. Adherence of participants was not controlled.  

3. Patients in the treatment group were allowed to change to the control group 

at any time. 

A critic who questions the quality of the Salford study could point out that the study 

lacked standard controls and therefore incurred a risk of bias, which is a sign that 

clinicians should not rely on the results produced by such trials. Fraile Navarro and 

colleagues, for example, criticise the Salford study precisely on the ground that it 

was unblinded (Fraile Navarro et al. 2021).  

Philosophically, the role of experimental controls that are captured in these 

quality assessment tools is intuitively explained by using Mill’s method of difference 

and the principle of eliminating alternative hypotheses. Such controls are crucial in 

the trial because they make the treatment and control groups comparable regarding 

relevant factors. This equality allows for eliminating those factors from the list of 

possible alternative explanations. These factors include the placebo effect, which 

could have caused clinical improvements; the experimenter, who could have 

intentionally selected the patients; or patients dropping out from a study, among 

others.  

In Chapter 1, I distinguished between precision and validity and argued that 

measures to increase homogeneity in a Millean sense are meant to increase the 

experiment’s precision and not its validity. The distinction between validity and 

precision is highly relevant in this context because many experimental controls that 

pragmatic researchers drop are controls that pay into the precision of the estimate 

but not its validity. For example, pragmatic trials include patients of diverse ages, 

diverse administration practices, diverse practical settings with diverse disease 

stages or diagnoses based on different criteria. The lack of such standardisation 

measures must be compensated by an increased sample size to reach sufficient 

precision, but it does not diminish the experiment’s validity. Quality assessment 

tools like the Cochrane RoB-2 build on this distinction and generally do not 

include checks for experimental measures that are meant to increase precision.
10

 

 

10

 As part of risk-of-bias assessments, researchers sometimes check for ‘imbalances’ of 

causal factors in the characteristics of patients. We should understand this task as aiming 

to detect potential signs of failed allocation concealment in the randomisation process. 

This is, of course, an imperfect indicator for a failure of allocation concealment, because 

it cannot distinguish between an imbalanced but random allocation and an intentionally 

imbalanced allocation. To recall the relevant epistemic difference from the frequentist’s 
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These tools are employed to make risks visible that would otherwise remain 

invisible in the causal inference. Following Baetu, all practices that increase the 

precision in an experiment can be understood as eliminating the hypothesis that an 

effect occurs by chance alone (Baetu 2020); however, the uncertainty implied by 

the chance hypothesis is already made visible in the uncertainty estimate produced 

by statistical significance tests. Hence, the absence of controls in pragmatic trials 

that increase precision can be neglected because they are not required for unbiased 

causal inference and already made visible in the value of statistical significance.   

Not all controls that pragmatic trials abandon are like that. Among the 

others, the lack of blinding is arguably the greatest threat for pragmatic trials. The 

unavoidable consequence of omitting such controls is simply that the experimental 

setup does not provide an immediate justification to rule out certain alternative 

hypotheses. If a trial lacks blinding, for example, we cannot rule out the hypothesis 

that the placebo effect has caused the benefit, or that patients in the control group 

sought additional treatments. These risks weaken the support for the cause–effect 

hypothesis of interest, namely that the treatment and not something else caused the 

benefit.  

The standard strategy to deal with such a risk is to use background 

knowledge and evaluate the chance of a certain bias occurring in a particular case. 

For example, Howick argues that large effect sizes of highly effective medicines 

count as a reason that blinding can be unnecessary (Howick 2011, chapter 6). 

Similarly, the methodological literature often holds that objective outcomes, such 

as mortality, are relatively unlikely to be affected by a lack of blinding. Within the 

standard approach to unbiasedness, such additional assumptions can count as 

reasons to (cautiously) neglect the influence of certain biases. Such assumptions are 

arguably more difficult to defend than the successful implementation of blinding 

because they rely on rare events and reliable background knowledge. Therefore, 

stakeholders usually only tolerate such indirect approaches in cases where blinding 

is either impossible or unethical. Hence, the critical argument regarding the lack of 

unbiasedness in pragmatic trials remains: Given that blinding (and other controls) 

are generally acknowledged as standard quality measures to ensure unbiasedness, 

the omission of blinding implies a prima facie risk of drawing false causal 

 

perspective: the random allocation has a known probability distribution, while the 

probability distribution of a purposeful allocation is anyone’s guess. From a Bayesian 

perspective, it makes no relevant epistemic difference how the allocation came about. 
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conclusions. To the extent that pragmatic trials are unblinded and avoid other 

controls, we run a higher risk of drawing false causal conclusions. 

2.5. Pragmatic attitudes towards unbiasedness 

How can pragmatists reply to the threat that the omission of blinding and other 

controls poses to their work? First, they can employ the kind of reasoning 

according to background knowledge mentioned above. For example, it is not 

unusual for pragmatic trials to employ objective outcomes, such as mortality or the 

use of healthcare resources, to minimise biases in the subjective evaluation of 

outcomes. In the Salford Lung Study on COPD, the primary outcome was acute 

exacerbation of COPD, which is objective in the sense that these outcomes are not 

reports of how patients evaluate their own wellbeing; they are based on physical 

symptoms that are externally evident. These outcomes are also robust in the sense 

that symptoms are so severe that they require patients to contact the treating 

physicians. The risk of events going unnoticed because patients decide to care for 

their symptoms by themselves is relatively small. Hence, Fraile Navarro and 

colleagues might be right when they criticise the Salford Lung Study on asthma was 

unreliable because the primary outcome was based on subjective outcomes from 

the asthma control test (Fraile Navarro et al. 2021), which includes items such as 

‘Asthma keeps you from getting much done at work/school’ (Nathan et al. 2004, 

p. 62).  

 Second, the pragmatist can adopt a different attitude: The pragmatist can 

argue that they do not need to eliminate certain alternative hypotheses at all, 

because this serves their research interest. I cite again the case of blinding to assess 

the success of such an argument. Blinding is used to put participants in a state of 

ignorance with a twofold epistemic role. If implemented successfully and together 

with a placebo control, a trial can estimate only the effect of the ‘characteristic 

features’ of an intervention, i.e., those that are assumed to play a causal role in the 

mechanism of action (Howick 2017). Blinding also ensures proper randomisation 

by preventing protocol violations resulting from awareness about treatment 

allocation, such as patients dropping out from the trial or seeking other medication 

outside the trial (Howick 2011; Teira 2013, for a discussion see Chapter 1). 

Regarding the first role of blinding, namely eliminating the effects of attitudes 

towards a treatment, the pragmatist’s case is not complicated. They acknowledge 

that patients’ expectations can modify what the patient believes about a treatment 

and thus affect how the patient benefits from a certain treatment.  What they want 

to learn from the experiment is how patients benefit from healthcare decisions 
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‘under the conditions of routine care’, and these conditions include the effects of 

patients’ attitudes about the treatment. Consequently, pragmatic trials estimate the 

effectiveness of treatments, including placebo effects. Pragmatists can, if they want, 

embrace the claim that this is precisely what they attempt to measure:  

In pragmatic trials, as in the real world delivery of care, blinding of 

participants and clinicians may be impossible. Belief (or disbelief) in the 

intervention, extra enthusiasm and effort (or less), and optimism (or 

pessimism) in the self-assessment of outcomes may thus add to (or detract 

from) the effects of an intervention. Pragmatic trials may incorporate these 

factors into the estimate of effectiveness, rendering the findings more 

applicable to usual care settings. (Zwarenstein et al. 2008, p. 6) 

This strategy is conceptually consistent. If pragmatists embrace this line of 

reasoning, placebo effects are no longer a bias in the study but become part of the 

effect that is being measured. If they stand by their word – that such estimates of 

effectiveness render ‘findings more applicable to usual care settings’ – they could 

even argue that blinding in pragmatic trials is not only impossible but also 

undesirable. 

To explain why pragmatic trials might also not require blinding to prevent 

protocol violations requires a bit more work. In Chapter 1, I argued that this 

problem affects trials differently depending on how well they are aligned with the 

preferences of patients. If assignment to the control group contradicts their 

interests, they are more likely to act upon their interests and break the protocol. 

The interests of patients depend on the severity of their disease, its progression, 

alternative treatment options and the effectiveness of the active treatment. The 

more treatment options appear equivalent for individual patients, the less severe is 

the risk that they might break the protocol to act upon their own interests. In a trial 

of pragmatic nature, patients usually receive the standard of care, which has a good 

chance to be aligned with their interests. Hence, unlike in some placebo-controlled 

trials, the basic cooperation of patients is highly plausible. 

As I argue in Chapter 1, all clinical trials can tolerate some protocol 

violations, particularly those taking an ‘intention-to-treat’ approach for the analysis. 

Pragmatic trials are particularly tolerant for these types of behaviours. Of course, 

patients in pragmatic trials still have certain preferences, expectations or habits 

regarding specific treatments. These can prompt certain behaviours, such as 

patients dropping out from the trial because they preferred their old therapy or 

seeking additional treatments because they are unsatisfied with the outcome of the 

trial. However, the same types of behaviour also occur under normal treatment 

conditions. To the extent that these are natural behaviours of patients, the same 



 

 55 

reasoning applies to these factors as reasoning about the problem of placebo 

effects. These behaviours do not need to be controlled if we aim to estimate the 

treatment effect under routine conditions. Indeed, we certainly would not want to 

control them. In short, because pragmatic trials have a different epistemic aim, 

these types of behaviours are formally allowed by the protocol. They just represent 

the type of behaviours that patients typically do – which sometimes means that they 

stop treatments, switch treatments or seek additional care from elsewhere. Hence, 

pragmatists are right in claiming that changing the purpose of the trial also changes 

the rules of the game. 

The pragmatic attitude towards blinding applies to other experimental 

controls, too. For example, the Salford Lung Study wanted to reflect the adherence 

of patients as it would happen without the experiment. Therefore, the systematic 

difference in the treatment regimen did not introduce a bias into the experiment 

but mainly reflected the research interest. Similarly, the risk that patients 

misdiagnosed with COPD might have been included in the Salford study, is not a 

genuine risk if it reflects the fact that those patients receive the treatment in routine 

care. In other words, if we are interested in the benefit that patients gain from 

therapies in routine care conditions, controlling for contextual factors – even if they 

are systematically different between the compared groups – does not necessarily 

increase the validity of the experiment. Quite the opposite can be the case. 

The pragmatic attitude towards biases is, however, a nuanced matter. 

Pragmatists can run into problems with biases if the trial introduces systematic 

differences in beliefs and behaviours that solely occur because of the experiment. 

Examples are ‘being in the control group’ or ‘receiving an experimental medicine’. 

In other disciplines, such effects are known as the Hawthorne effect. They occur if 

research participants form expectations about the experimental procedure and 

react to those expectations (Teira and Reiss 2013). These effects could lead 

patients to report outcomes that are not actually occurring because they are in an 

experiment and not because their reports reflect their natural behaviour. Such 

effects are a clear threat to the pragmatic attitude towards biasedness; pragmatists 

do need to minimise this threat to achieve their goal.  

A choice for objective outcomes might be crucial in this regard. Interestingly, 

pragmatism itself also has a role to play. The pragmatist’s efforts to seamlessly 

embed the experiment into the routine care processes is an attempt to make 

patients indifferent to their participation in a study and eliminate any strong 

expectations about the experimental procedures. To support that goal, certain trial 

designs and consent procedures have been developed to withhold information 
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from patients about their participation in a control group.
11

 In a similar vein, there 

are ongoing discussions about whether pragmatic trials with minimal risks could 

neglect the requirement to seek informed consent (Kalkman et al. 2017b; Faden 

et al. 2014). To the degree that pragmatic trials can accomplish their mission to 

make patients indifferent, pragmatists have grounds to neglect such risks. Certainly, 

this requires a careful conduct of the trial, similar to successful blinding in 

traditional trials. Furthermore, some argue that the use of real-world data comes 

with ‘a specific beauty’ that outcome collection by physicians is formally blinded 

because the physicians who collect the data are generally independent from the 

research endeavour (Hemkens 2018). Other scholars have pointed out that it might 

still be possible and desirable to blind assessors in pragmatic trials (Zwarenstein et 

al. 2008).  

My point is not that pragmatic trials never carry a risk of bias, nor that we 

should embrace the pragmatic approach in all circumstances. The point is simply 

to illustrate that the considerations that are relevant to assess the risk of bias in 

pragmatic trials differ from those that are relevant in assessing such risks in 

traditional trials. Hence a shift towards a pragmatic purpose of the trial changes the 

rules for quality assessments.  

2.2.  The costs of unbiasedness in pragmatic trials  

A common statement about the epistemic characteristics of pragmatic trials is along 

the lines of ‘pragmatic trials increase external validity at the expense of internal 

validity’. In the previous section, I argued that pragmatic trials have different rules 

to assess their internal validity or unbiasedness. However, this comes at the price 

of invoking a broader notion of the treatment. Turning back to the historical 

origins, we find that Schwartz and Lellouch drew attention to this fact early on:  

The basic principle that two treatments must be compared in two groups 

which are in every other respect comparable is in no way contradicted by 

optimization of the contextual factors. Instead, these factors become 
themselves part of the therapies to be compared and are thus distinguished 

 

11

 Such trials, also called registry-based trials or TwiCs (Trials within a Cohort), sample a 

subgroup of patients within an observational cohort and randomly allocate the selected 

patients to a treatment group and a control group. However, only patients who are 

allocated to the new treatment must be asked for consent to receive the new treatment. 

For patients in the control group, nothing changes. Because all patients consented to these 

procedures upon their entry in the cohort, the control group does not need to be re-

consented, hence they do not know about their participation in the control group until 

the end of the experiment (when they are usually informed) James et al. (2015). Finally, 

for retrospective observational studies using real-world data, the concerns about such 

artificial experimental effects completely disappear. 
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from non-contextual factors for which comparability must be assumed. It 

is characteristic of the pragmatic approach that the treatments are flexibly 

defined and ‘absorb’ into themselves the contexts in which they are 

administered. (Schwartz and Lellouch 2009, p. 500, my emphasis) 

By ‘optimisation’ of the contextual factors, the authors mean that some factors can 

be tailored to the control and treatment groups separately rather than being 

equalised between them. In the Salford Lung Study, for example, administration 

of the treatments was tailored to the groups separately by allowing the treatment 

group to take the medicine once daily and the control group to take it twice daily. 

The following two phrases in the quote, although slightly obscure, point to the 

conceptual consequence of such a design choice: ‘these factors become themselves 

part of the therapies’; and the idea of treatments which ‘absorb into themselves the 

contexts in which they are administered’. A causal explanation draws a distinction 

between the cause (the medicine) and its causally relevant background conditions 

(e.g. adherence to the medicine). To clarify their wording, I suggest understanding 

this as a shift in the distinction between the primary cause and its background 

conditions. In a pragmatic trial, all causes that are not equalised between treatment 

and control group are not part of the background conditions but instead included 

in the conceptualisation of the primary cause, that is the medical intervention. This 

is consistent with the observation from the Salford Lung Study. What is usually 

deemed to be a mere background condition – the adherence of patients to a 

therapy – was allowed to play an active causal role in the study. In other words, 

since these experiments cannot and do not attempt to equalise certain background 

conditions, the conditions can be reinterpreted as primary causes contained within 

the intervention.  

This conceptual shift is key to understanding the pragmatist’s attitude 

towards unbiasedness. Pragmatic trials can fulfil the following plausible explication 

for internal validity – which I believe is in line with one relevant use in the 

methodological literature:  

 

IV:  An internally valid experiment supports a causal inference from the observed 
effect to the intervention as its cause.  

 

In the Annex, I further elaborate and defend this definition. Pragmatic trials can 

support an inference from the observed effect to the intervention as its cause, 

because the trial includes all unequal factors within its notion of the intervention. 

Likewise, controls other than randomisation are a matter of choice if pragmatists 

are willing to pay the price of a broader notion of their treatment. In other words, 
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all other features than proper randomisation are non-essential properties for valid 

causal-inference in randomised trials. 

These findings also illustrate what the true costs of pragmatic trials are. Valid 

causal inference in these trials comes with the price of an information loss about 

the contribution of any of the individual causal factors contained within the broad 

notion of the intervention. Particularly, they come at the price of an information 

loss about the causal contribution of the pharmacological properties of the drug. 

Hence, pragmatic trials cannot fulfil the requirements of another widespread use 

of the notion of internal validity, namely where internal validity is preserved for 

causal inferences that allow an inference to a single causal variable.
12

 Pragmatists 

would be fighting a losing battle if someone were to insist that this narrow sense of 

internal validity is the only one. However, this battle would not even be worth 

fighting, because the property of internal validity then just becomes irrelevant to 

pragmatists. What is at stake in the debate is the risk of drawing false causal 

conclusions – and not the number of causal variables involved.  

I hold that the perceived lack of epistemic rigour in pragmatic trials is better 

understood as an information loss about individual causal variables, rather than as 

a risk of drawing false causal conclusion about the intervention, broadly conceived. 

Hence choosing between pragmatic and explanatory trials is not a matter of 

different risks for drawing false positive or false negative causal conclusions, which 

philosophers call inductive risks. Bluhm used the example of pragmatic clinical 

trials to argue that the inductive risk perspective is helpful but insufficient to 

describe the epistemology of different types of clinical trials, and I agree (Bluhm 

2017).  Rather it is, as Schwartz and Lellouch made clear early on, a question of 

choosing the right design for the right purpose.   

My comment is intended as a principled point to lend plausibility to the 

pragmatist’s unconventional view. This principled point can motivate the position 

that the difference in purpose between pragmatic and traditional trials necessitates 

different quality assessment rules – where blinding and other controls do not play 

an identical role as in traditional trials. Furthermore, pragmatism itself can become 

relevant to ensure unbiasedness. However, it is the burden of the pragmatists to 

clearly define such rules and develop a suitable and rigorous quality assessment 

 

12

 Campbell’s dissatisfaction with this particular usage of the term led him to rename the 

terms in his later work, as this usage was not what he envisioned when he coined the term 

in the 1950s (Campbell (1986)). His new term of art was ‘local molar validity’, which 

evaluates the question: ‘Did this complex treatment package make a real difference in this 

unique application at this particular place and time?’  
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tool to address risks of biases that are unique to pragmatic trials. The current state 

of the methodological literature does not fulfil this requirement. For example, the 

Cochrane Risk-of-Bias 2 tool mentions an exception for pragmatic trials regarding 

the need for blinding because trials measure ‘intervention strategies of individuals 

who are aware of their care’ (Higgins et al. 2019, p. 23). Yet the authors barely 

justify such an exception or explore other risks that can occur in pragmatic 

unblinded trials (as discussed above). The state-of-the-art tool for pragmatic trials, 

the PRECIS-2 tool (Loudon et al. 2015), allows researchers to assess the degree of 

pragmatism of a trial – yet it does not address the relation between pragmatism and 

unbiasedness. Neither does it address the impact of blinding on either of these 

dimensions. In fact, pragmatists do not claim that pragmatic trials are necessarily 

unblinded; it just seems to be implied by their attitudes. I have demonstrated the 

direction in which such an assessment could go. The other project that pragmatists 

need to undertake is to provide a theory of medical intervention that pragmatic 

trials measure and demonstrate that such notions of the intervention truly are 

practically more useful than interventions measured in conventional explanatory 

trials. I illustrate what such a theory of pragmatic interventions could like in the 

next section. 

3. Conceptualising pragmatic 
interventions 

3.1. Hunting true treatment effects 

Theories about hypotheses that are tested in clinical trials have mostly focused on 

distinguishing between different levels of outcome measures (Stegenga 2018, 

chapter 8) or the range of background conditions within which the obtained results 

hold true (Cartwright 2012). It seems there is little of philosophical interest in the 

fact that experiments can test different interventions. The previous discussion 

however has shown that the medical interventions tested in pragmatic trials differ 

markedly from the subject matter of traditional trials. The former interventions 

contain causal factors that conventional trials conceptualise as risky biases or 

background factors. The shift between the primary causal factor and its background 

conditions, I believe, creates a tension with what we mean when we attribute 

effectiveness to medical interventions. This tension moves the discussion towards 

the question of whether we can conceptualise the interventions of pragmatic trials 

in a sensible way. 
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According to Stegenga’s hybrid theory of disease, medicines are said to be 

effective if they either target the causal basis of disease – the biological dysfunction 

– or the normative target of disease – the harms. Moreover, medicines can target 

different levels of disease. They can, for example, target the physiological 

mechanism or the clinical symptoms (Stegenga 2018, chapter 3). Ashcroft’s analysis 

of clinical effectiveness focuses on what it means to attribute effectiveness to 

medical interventions and he attempts to get to the metaphysical grounds of the 

notion (Ashcroft 2002). He argues that clinical effectiveness is a therapy’s ‘capacity 

to φ’, understood as a property of a therapy. In his view, such a capacity can be 

further analysed as a therapy’s function to φ, which supervenes on its ‘intrinsic’ 

physical features. For example, when we say that aspirin has clinical effectiveness, 

we mean that aspirin has the capacity to relieve headaches by virtue of its intrinsic 

physical properties (which are to inhibit the enzymes COX-1 and COX-2). 

Ashcroft’s analysis fits well with what Schwartz and Lellouch identified as the 

explanatory attitude in traditional trials, i.e., an attempt to establish a narrow 

physiological hypothesis and isolate the effect of the medicine.  

While the intrinsic properties of a medicine that are directly involved in the 

mechanism of action are of special interest in clinical trials, medicines have various 

other properties that can determine how effective they are. For example, medicines 

come with side-effects, a treatment schedule and a route of administration – and 

with a certain taste, colour and shape. They even involve, in the wider social 

context, an image, a supply chain, a reimbursement plan and a healthcare delivery 

system. It is the effect of this rich causal nexus of medicines and the various 

interactions between healthcare agents and social context that is the research 

interest of pragmatic trials. As Ashcroft’s analysis implies the special interest in the 

pharmacological properties is generally justified by the idea that the 

pharmacological properties involved in the mechanism of action are intrinsic, 

whereas others are merely accidental. I do not think that such a clear-cut distinction 

can be drawn. In the case of the Relvar Ellipta inhaler, the practical advantage of 

the medicine was not a mere contingency of the medicine. The medicine’s 

simplified administration supervened (in Ashcroft’s words) on the medicine’s 

intrinsic physical properties of being a longer-acting substance. The same holds for 

most of a medicine’s side-effects, which cause different interactions with the 

medicine. Even properties that appear purely contingent somehow supervene on 

intrinsic properties. The supply chain of a medicine, for example, supervenes on 

the physical properties that determine when a medicine expires or at what 

temperature it needs to be stored. Sunscreen that would not expire after a year 
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could certainly prevent more sunburns than a conventional sunscreen. 

Importantly, these properties are not only additive to the genuine effect of the 

medicine but can modify the treatment effect in highly interactive ways. For 

example, inhalers that prompt a quick response could motivate patients to adhere 

to a frequent administration, which would increase the long-term effectiveness.  

I think it is an idle question which of these effects is more genuine and real 

or even the true treatment effect. This point applies to the critics as well as the 

advocates of pragmatic trials. Critics widely share the intuition that there is 

something particularly genuine about the effects of well-controlled trials. By 

contrast, advocates of pragmatic trials refute this intuition with the rhetoric of 

generating evidence about the ‘real world’ or ‘real patients’. Indeed, the entire real-

world evidence movement exploits such rhetorical persuasion. In both cases, 

patients either genuinely benefit from a certain treatment or do not. In one case 

they benefit from the isolated effect of the medicine, while in the other case they 

benefit from the treatment with various interaction effects. I propose that the 

considerations above establish that both effects are legitimate subjects of clinical 

investigation.  

Indeed, because of their flexibility on the level of the intervention, pragmatic 

trials have the advantage of accommodating more complex interventions more 

easily. For example, a common argument states that complementary and 

alternative medicine (CAM) treatments cannot adhere to the standards of EBM 

because they rely on highly individualised and holistic notions of medical 

interventions. That is, CAM treatments are often described as including the 

patient’s relationship to practitioners as well as self-healing effects such as the 

placebo effect, and the interventions are not identical for any two patients. In other 

words, advocates of CAM treatments argue that the distinction between intrinsic 

and accidental features of a treatment is not meaningful in the context of CAM 

treatments. They reject a method that relies on such a distinction as inadequate to 

evaluate the effectiveness of CAM treatments; hence they reject the meaningfulness 

of the randomised trial (Ernst 2002; Borgerson 2005; Tonelli and Callahan 2001). 

Defenders of the EBM paradigm have countered, and I think rightly so, that 

pragmatic clinical trials are indeed well suited to accommodate such 

unconventional therapeutic approaches (Hansen and Kappel 2010). For example, 

a pragmatic clinical trial could answer the broad question: ‘Can assignment to a 

CAM practitioner increase patients’ wellbeing?’ Or ‘Can assignment to a CAM 

practitioner reduce patients’ use of traditional medical resources?’ The 

intervention here is conceptualised in the broadest possible terms. From such a 
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trial scientists cannot infer that something intrinsic to the CAM treatment reduces 

the use of other medical resources. Nonetheless, the effect of such an intervention 

is not less real because we cannot attribute it to a precise individual causal variable. 

Yet, the challenge remains to provide a theory of medical interventions that would 

allow for agreement about what a pragmatic trial measures and to develop the 

necessary conditions for valid causal inference. Below I propose what such a theory 

could look like. 

 

3.2. Interventions as therapeutic actions 

When Schwartz and Lellouch introduced the pragmatic–explanatory trial 

distinction into the literature, they proposed distinguishing between the effects of 

drugs and ‘treatment strategies’. The former is the subject matter of traditional 

trials; the latter is of interest in pragmatic trials. The distinction indicates that a 

treatment strategy goes beyond the mere choice of a single therapy, suggesting that 

in healthcare, one often opts for a combination of therapies. Today, the main tool 

to explain the difference between pragmatic and explanatory hypothesis is the 

efficacy–effectiveness distinction (Eichler et al. 2011; Nordon et al. 2016). 

According to this characterisation, the difference lies in the background conditions 

under which the effect of a therapy holds. The efficacy–effectiveness distinction, 

although commonly employed, is an inadequate tool to conceptualise the 

difference between the two types of trials. The distinction implies that the intrinsic 

properties are the most important causal drivers; everything else is subsumed under 

the notion of (unimportant) background conditions that do not need to be specified 

further. The distinction does not capture that the intervention itself has a broader 

scope. An adequate theory should at least partially specify what the causal factors 

are that are ‘absorbed’ into the intervention; more importantly, it should set 

boundaries as to what counts as a successful pragmatic intervention.  

My proposal to refine pragmatic interventions is to conceptualise them at 

the level of therapeutic actions. By ‘therapeutic action’ I mean, for example, ‘to 

prescribe therapy X’, ‘to administer therapy X’, ‘to take medicine X’ or ‘to 

recommend a health behaviour Y’ and so on. This concept of medical 

interventions allows complex causal interactions to take place at a low level of 

description and reflects appropriately what we can and cannot learn from pragmatic 

trials. Most importantly, the suggestions reflect that, in many cases, researchers 

remain ignorant about the lower-level causal description and the precise 

contribution of such causes, particularly the contribution of characteristic features 
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of the drug. At the same time, the description can be adjusted to reflect different 

degrees of experimental controls. For example, the action ‘taking medicine A’ 

implies that adherence can be assumed (the medicine has been taken). It does not 

rule out that the act of ‘taking’ has played a causal role in the effect (it was not 

blinded and thus did not eliminate placebo effects). Likewise, the action of 

‘prescribing medicine A’ does not determine how the causal story continues after 

the action of prescribing the therapy has occurred; the patient could go home and 

throw the prescription in the garbage. This intervention captures what we can learn 

from a trial with no control or follow-up of adherence. Reflecting the level of 

control in the conceptualisation of the intervention prevents our being led astray in 

our causal inferences, particularly in terms of attributing the causal efficacy to the 

treatment alone (which clearly risks being an erroneous inference).  

Bringing this logic together with the previous section, it follows that 

pragmatic trials support valid causal inferences; however, these inferences relate to 

therapeutic actions rather than the pharmacological properties of a medicine. 

When adequately designed and conceptualised, pragmatic trials can also underpin 

meaningful causal conclusions. Note this proposal does not suggest that the 

medicine can be eliminated or replaced altogether in the therapeutic action. The 

comparative and randomised nature of the experiment supports that it is the 

prescription of this medicine, rather than another, that has caused the observed 

effect. What is at stake is (only) which of the properties of the intervention precisely 

contributed to the effect. In an unblinded trial, the difference might be caused by 

patients’ expectations about this medicine rather than the pharmacological 

properties of this medicine. Nonetheless, some property of the medicine – even if 

only the property of being new on the marked – must be involved in the effect.  

In addition, a theory of pragmatic interventions must set limits to meaningful 

and practically useful pragmatic interventions. A pragmatic intervention of 

‘prescribing medicine A’ might cause side-effects motivating patients to seek 

additional treatment, which is in fact the direct causal driver of the health benefit. 

In this case, it seems undesirable for our practical interests to conclude that 

‘prescribing medicine A’ is a good therapeutic decision. To avoid such undesirable 

conclusions, pragmatists should set boundaries to the tolerated natural behaviour 

and measure these behaviours in their trials as an indirect form of control. If 

researchers find that the behaviour of patients exceeds these thresholds, they 

should conclude that the implementation of the medical action failed. To that end, 

a better theory of therapeutic interventions in pragmatic trials is indispensable; 
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otherwise, we risk only multiplying the evidence base without agreeing on what the 

evidence is about.  

4. What is the use of pragmatic 
interventions? 

In the first three sections, I have substantiated the pragmatists’ position by 

developing the conceptual scaffold to better understand causal inferences in 

pragmatic clinical trials. I have shown that pragmatic trials can maintain the validity 

of the conclusion simply through broadening the scope of the intervention. I 

proposed that we could try to conceptualise such interventions in terms of medical 

actions. Understandably, critics are hardly convinced by the pragmatist’s move 

because it does not respond to the driving factor behind their concerns. That is, it 

does not respond to the concern that pragmatic evidence could increase the risk 

that treatments are prescribed or authorised mainly because of placebo effects or 

other contingent contextual factors. Rephrasing the problem in terms of an 

information loss rather than validity does not eliminate this risk. A second concern 

is that the information loss in pragmatic trials is practically relevant for treatment 

decisions because making sensible treatment decisions requires knowledge about 

the effects of stable causal factors and not accidental contextual factors. Chapter 3 

is dedicated to the question of extrapolation in pragmatic clinical trials, so I 

postpone discussing the second concern to the next chapter.  

I see three potential responses to the concern about placebo effects. The 

bold pragmatic response to the critic’s concern could reiterate the pragmatic 

attitude from section 2.2: As long as the health benefits are real, it does not matter 

what exactly caused such benefits. What matters is that we help patients, not why. 

Coming back to the example of CAM treatments, one could insist that it really does 

not matter whether patients are feeling better because they have a healing 

relationship with the practitioner, because they believe in and activate their self-

healing capacities or because needles were inserted into the body. What matters is 

that patients are doing better as a consequence of their visits to the CAM 

practitioner. A similar claim could be made about our case study. The Relvar 

Ellipta inhaler seems to be moderately more beneficial than patients’ usual care. 

There are two potential explanations for this observation. One is that the benefit 

was caused by the ease of administration, which increases natural adherence to the 

medicine and hence its effectiveness. The other explanation is that the moderate 

benefit is caused by the placebo effect or other behaviour that resulted from 
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patients’ awareness about the treatment.
13

 The pragmatist might hold that the 

difference does not really matter; in either case, the Relvar Ellipta inhaler improves 

health outcomes and seems the best treatment option. One might even argue that 

it is only due to the pragmatic perspective that we can make the best treatment 

decisions, which is to prefer the most effective therapeutic action.  

While there is some appeal to this argument, it is a bold move to defend 

such a position in all circumstances. The position seems to imply that we are ready 

to accept that we might expose patients to unnecessary harms. The following 

assumptions give rise to this concern. First, it is plausible to assume that relevant 

harms are primarily caused by the characteristic features of a therapy rather than 

contextual factors. Second, if the benefit is actually not caused by the characteristic 

features, we could imagine swapping the harmful properties of the medicine with 

something else – a placebo – to preserve the benefit, while eliminating the harms. 

Hence, exposing patients to these harms would be unnecessary and therefore 

hardly a good treatment choice. If we want to make ethically justifiable treatment 

decisions, we need to know that the harms of a treatment necessarily accompany 

its benefits – that is, both aspects are causal effects of the characteristic features of 

the medicine. Given the difficulties in distinguishing intrinsic versus contingent 

features of a medicine (see section 3.1), one might doubt whether these 

assumptions truly hold. However, I accept that the ethical weight of these concerns 

outweighs the problem that the underlying assumptions are idealised.  

The usual response by pragmatists to these conncerns is to limit the use of 

pragmatic trials to situations where the risk of unnecessary harms can be ruled out. 

In current practice, this is ensured by assigning pragmatic trials the role of post-

marketing studies. They are conducted after an explanatory study has 

demonstrated effectiveness under controlled conditions for regulatory decision-

making; complementary to explanatory trials rather than being in competition. 

Moreover, pragmatic trials are still clearly preferred to evaluate non-pharmaceutical 

interventions instead of drugs (Hirt et al. 2024). However, with the emergence of 

the real-world evidence paradigm, this situation is changing, and pragmatic trials 

and real-world evidence are increasingly of interest also for regulatory approvals. 

 

13

 In any randomised trial there is always a third alternative explanation, namely that the trial 

has not been well-conducted and hence the measured effect is unreal. Following the 

medical nihilist’s position, this might even be the most likely explanation. In my view, 

whatever the likelihood of this third explanation is, such likelihood is comparable in 

pragmatic and explanatory trials. 
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In the regulatory context, without prior evidence that allows regulators to 

rule out the risk of unnecessary harms, it seems there are two options. The first 

option is to question the relevance of placebo effects in the bigger picture. An 

important motivation behind the pragmatic stance is the discrepancy between the 

health benefits found in clinical trials and the benefits that actually occur in 

healthcare. What draws the attention of practitioners to this problem is not that 

moderate effects in clinical trials demonstrate greater therapeutic power in practice. 

On the contrary, in most cases, the discrepancy is expected to run in the opposite 

direction. Hence, so the assumption goes, in most cases pragmatism can counteract 

an interest in bringing to market a therapy that shows only a moderate effect. In 

turn, this would eliminate from clinical practice those substances that cannot bridge 

the efficacy-effectiveness gap. In this bigger picture, the threat that a few exceptional 

cases nevertheless may introduce the risk of unnecessary harms then is a bullet one 

could be willing to bite. If this intuition is true (or we could at least identify instances 

where it is true), this rationale could undergird the pragmatic approach with 

considerable epistemic value. However, this notion is mostly based on intuitions 

rather than reliable empirical evidence. It is a widespread assumption that 

pragmatism yields, overall, smaller effect sizes than placebo-controlled explanatory 

trials. If this is true, we could assume that the factors that decrease the effect sizes 

of treatments in natural conditions outweigh the factors that increase it, like placebo 

effects. However, meta-research on how pragmatism influences effect estimates is 

still scarce, and the little that exists is rather inconclusive. I come back to this 

proposal in Chapter 3.  

The second option is to counterbalance the risk by raising the standards for 

a sufficient benefit–risk balance. Stegenga has convincingly shown that small effect 

sizes are common in clinical trials and create the problem that we cannot 

distinguish between biases and treatment effects (Stegenga 2018, chapter 11). The 

same holds for distinguishing between placebo effects and other causes of the 

treatment effect. A simple way to adjust this balance is by increasing the threshold 

that defines the minimal clinically important difference. This measure defines the 

minimal change in a treatment outcome that is relevant from a clinical perspective. 

A successful clinical trial needs to meet two thresholds, i.e., the minimal clinically 

important difference as well as statistical significance. By raising the former 

threshold, placebo effects become a less convincing explanation for the treatment 

effect. Such a solution would shift our focus from measuring (theoretically hard to 

justify) true effects toward clinically relevant effects that matter despite placebo 

effects. This solution has the advantage of being equally applicable to both 
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pragmatic trials and conventional trials that carry a risk of unsuccessful blinding. 

However, it entails the difficulty that there is no obvious answer to how large such 

an effect size must be, particularly in active-controlled trials, where the effect 

estimate depends not only on the effectiveness of the treatment but also on the 

effectiveness of the control. Following Stegenga, the industry mostly develops ‘me-

too’ drugs. These are treatments that belong to the same class of medicines as 

already available treatments; the Relvar Ellipta inhaler is a good example of such a 

drug. It would be surprising if ‘me-too’ drugs were markedly more effective than 

other members of the same class (Stegenga 2018, chapter 4). Moreover, this 

solution is in tension with the first one above, stating that effect sizes in pragmatic 

trials further diminish, and it is not evident how this tension can be resolved.  

Let’s take stock. The choice between pragmatic or explanatory attitudes 

implies a shift in perspective. The traditional epistemic question regarding which 

of these two methods produces more true results, however, does not make sense. 

Because these trials measure the causal effects of different therapeutic entities, we 

cannot compare the false-positive and false-negative rates between the two types of 

trials in an attempt to fit them into the EBM evidence hierarchies. Instead, the 

choice between these trials is determined by the goals that need to be achieved. 

The good news is that clinical trials can deal with a wider range of problems than 

the randomised method is currently credited with doing. That is, randomised trials 

do not rely on homogeneous populations, placebo controls or blinding to provide 

unbiased causal knowledge. These properties are, from the pragmatic perspective, 

non-essential. They also can deal with unconventional interventions such as CAM 

treatments. An interesting upshot of my arguments is this: The epistemic and 

practical merits of pragmatic trials demonstrate that many of the widely criticised 

limitations of randomised trials are in fact limitations of explanatory trials. In other 

words, arguments in favour of observational studies are often based on a false 

dichotomy. They imply that our only choice is between explanatory and 

randomised trials (blinded, placebo-controlled, highly selective, narrow 

interventions) versus observational studies (which do not have the same 

limitations). However, pragmatic clinical trials seem to outperform observational 

studies in terms of both epistemic rigour and practical relevance of evidence. 

Choices such as routine care comparators are, by definition, baked into the 

pragmatic design. Observational studies, by contrast, can have pragmatic features 

that increase the study’s practical utility. Yet it is not required that they do so; all an 

observational study requires is the lack of randomisation. A pragmatic randomised 
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trial should therefore generally be preferred over a comparable observational 

study. 

However, pragmatists have yet to theorise about pragmatic interventions and 

define the limits of a successful pragmatic intervention. The proposal I have 

developed is the idea of conceptualising these interventions as therapeutic actions, 

but this only points to the beginning of such a theory. In addition, the bold 

pragmatic attitude towards blinding as a non-essential property is most convincing 

if the risk of unnecessary harm can be neglected for one reason or another and if 

we have confidence that patients complied with the protocol to the extent required 

by our epistemic goals. Throughout the last two chapters, I have proposed several 

alternatives to blinding to achieve these goals: aligning trial designs with the interests 

of research participants; increase control by measuring the extent of protocol 

violations; increase the threshold for the minimal clinically important difference; 

building on prior knowledge from explanatory trials. Pragmatism can yield new 

insights into the effectiveness of medical interventions but it is certainly not a free 

pass for sloppy trial designs.  
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Chapter 3 
The practical value of 
pragmatic clinical trials 

 

Among the many criticisms levelled against randomised trials, the most persuasive 

is that their results do not easily apply outside the context of the experiment. The 

rhetoric of ‘real-world evidence’ cleverly exploits this concern by promising 

evidence about the ‘real world’ that applies to ‘real patients’. Pragmatic trials are 

widely perceived as a source of evidence that is widely applicable and easily 

generalisable. This point has sparked the interest of bioethicists because the gain 

of social value is considered necessary for clinical trials to be ethical (Kalkman et 

al. 2017a; Borgerson 2013). The potential value of pragmatic trials has also 

prompted the hope of evidence that is epistemically rigorous and practically useful 

among clinical researchers (Thorpe et al. 2009; Ioannidis 2016; Tunis et al. 2003; 

Mc Cord et al. 2018; Zwarenstein and Treweek 2009; Hemkens 2018). Few 

scholars have thoroughly scrutinised the practical value of pragmatic trials. 

Kalkman and colleagues specify that many perceive that ‘the pragmatic trial has 

social value due to the fact that it generates real world knowledge that is directly 

applicable to decision-making’. They analyse three different interpretations of the 

added social value including ‘real world relevance’, ‘real world answers’ and the 

probability of direct uptake of the results by decision making (Kalkman et al. 

2017a, p. 140). Borgerson explains the additional value of pragmatic trials in terms 

of increased ‘direct social value’. This is in contrast to explanatory trials, which have 

only ‘indirect social value’, as their results apply only indirectly to problems of 

clinical practice (Borgerson 2013). Some philosophers have suggested pragmatic 

trials as a potential solution to the vexing problem of extrapolation (Fuller 2019; 

Howick et al. 2013a; La Caze 2017). Cartwright questions whether evidence from 

pragmatic trials is better applicable than evidence from conventional trials 

(Cartwright 2017; for a general version of this argument see Cartwright 2009).  

In this chapter, I substantiate three rationales that could explain the practical 

usefulness of pragmatic clinical trials. I begin with introducing the properties of 

pragmatic trials according to the PRECIS-2 tool (section 1). Then I turn towards 

discussing the three rationales (section 2). The first is the modest idea that 

pragmatic trials explore questions that are notably relevant for clinical decision-
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making (section 2.1). In this rationale, evidence from pragmatic trials is practically 

useful simply because it provides an answer to a question that is generally of interest 

to clinicians and patients. This rationale could be called the ‘applicability’ of 

pragmatic trials. The second and far more ambitious idea is that pragmatic trials 

can support extrapolation inferences due to their naturalness (section 2.2). In this 

sense, pragmatic trials are useful practically because they can inform treatment 

decisions in a particular context, outside the trial. This rationale could be called the 

‘generalizability’ of pragmatic trials. The third alternative that I discuss relates to 

the desideratum of causal robustness (section 2.3). It develops the intuition that 

routine care conditions are often deficient conditions for treatments to be effective 

by proposing a definition of non-idealness. I will show that all three have something 

to say about the practical and epistemic value of pragmatic trials but none of them 

is fully convincing. I finally defend the view that combines a modest interpretation 

of these proposals holding that pragmatic trials provide effect estimates that are 

more realistic than effects from explanatory trials because they are a) conducted 

under a set of natural conditions and b) these conditions tend to be non-ideal 

(section 2.4). 

1. Pragmatic trials as natural 
experiments 

On a methodological level, whether a trial is pragmatic or explanatory is mostly 

constituted by operational features (i.e., institutional, procedural and material 

properties) rather than high-level methodological considerations, such as 

randomisation and blinding. The PRECIS-2 tool by Loudon et al. conceptualises 

pragmatic trial designs along nine domains, including prominent design features 

such as eligibility criteria and the comparator treatment. It also covers less 

prominent features, such as the strategies to recruit patients and the level of 

expertise that is required to administer a treatment (Loudon et al. 2015).  

In the PRECIS-2 tool, most of the nine domains are ranked according to 

the (informal) degree of deviance between the experimental and natural healthcare 

contexts. A ranking of ‘very pragmatic’ in the domain ‘organisation’ implies 

‘making use of no more than the existing healthcare staff and resources in that 

setting’; by contrast, a trial in this domain is ‘very explanatory’ if it relies on many 

such additional resources. Similarly, to rank very pragmatic in the domain ‘follow-

up’ Loudon et al. propose to ‘have no more follow-up of recipients than would be 

the case in usual care’. In contrast a trial will rank very explanatory in this domain 
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if it requires many additional follow-up visits only for research purposes (Loudon 

et al. 2015, pp. 6–8). It is precisely to avoid such follow-up meetings for data 

collection that pragmatic trials typically analyse data that is stored in electronic 

health records; here, the data collection process is integrated into healthcare and is 

indirectly made available for research. Hence, the use of routine data in pragmatic 

trials is not just a convenience but serves a genuine epistemic function. For these 

domains the contrast between naturalness and artificiality can generally distinguish 

between pragmatic and explanatory trials. Naturalness is the therapeutic situation 

as it would take place without the experiment and artificiality is every deviance from 

that state induced by the experiment.  

Two other dimensions of the tool concern the comparator intervention and 

the outcome measures. For these two domains it is not so much the deviance from 

the routine care context but rather the clinical relevance that ranks pragmatic on 

the PRECIS-2 tool. For the comparator, the most pragmatic choice is to compare 

the intervention with ‘usual care’, and the outcomes should ideally be patient-

relevant. 

I illustrate the PRECIS-2 tool with the Salford Lung Study as an example. 

The study tested the effectiveness of the Relvar Ellipta inhaler to treat COPD and 

asthma in the area of Salford (Vestbo et al. 2016). The study implemented several 

pragmatic elements. For example, the general practitioners of the participants were 

the primary investigators in the trial, and patients were recruited at the primary care 

practices by their healthcare professionals. The treatment inhalers were supplied 

through local pharmacies. The outcome data was primarily collected using an 

electronic health record system by NorthWestEHealth. To enrol patients, no 

standardised diagnostic test or expert clinical judgment was required, instead, a 

COPD diagnosis by a general practitioner was sufficient. The control group was 

treated with the same treatment they received for their usual care, which meant the 

control patients took a variety of different control medications, ranging from 

monotherapy to triple therapy (as is usual in the treatment of COPD). Physicians 

were allowed to adjust the therapy of all patients to achieve optimal care. 

Additionally, only a few broad inclusion and exclusion criteria were employed. The 

primary outcome of the study was the number of severe exacerbations (acute 

worsening of the condition). The trial lasted one year. 

The Relvar Ellipta inhaler was also tested in a trial that can be seen as its 

explanatory counterpart (Agustí et al. 2014). This trial compared the Relvar Ellipta 

inhaler to another active two-component inhaler for only 12 weeks. All participants 

had to take their active treatment together with a placebo to maintain blinding. The 
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seven inclusion criteria required a COPD diagnosis in accordance with the 

definition by the American Thoracic Society and the European Respiratory Society 

and spirometry test results that delineate COPD from asthma. The researchers 

additionally stated 17 exclusion criteria. Moreover, the trial contained a two-week 

so-called placebo run-in period to select only patients with good adherence and 

inhaler techniques. The primary outcome was a measure of lung function, 

operationalised as the amount and speed of air that could be inhaled and exhaled 

in a predefined time. All sites were equipped with a spirometry measuring device, 

and study personnel were trained in their use.14 Table 2 compares the two trials 

across the nine domains of the PRECIS-2 tool in detail. 

Table 2: Comparison of the Salford Lung Study on COPD across the PRECIS-2 domains 

PRECIS-2 
dimension 

Explanatory trial Pragmatic trial 

Study 
identification 

Title: A comparison of the 
efficacy and safety of once-
daily fluticasone 
furoate/vilanterol with twice-
daily fluticasone 
propionate/salmeterol in 
moderate to very severe COPD 
(Agustí et al. 2014) 
 
DOI: 
10.1183/09031936.00054213 
NCT identifier: NCT01342913  
GSK Identifier: HZC113107 
 

Title: Effectiveness of 
Fluticasone Furoate–
Vilanterol for COPD in 
Clinical Practice (Vestbo et 
al. 2016). 
 
 
DOI: 
10.1056/NEJMoa1608033 
NCT identifier: 
NCT01551758 
 
 

Comparator 
Was a clinically 
relevant 
comparator 
used? 

fluticasone 
propionate/salmeterol 
(Inhaled glucocorticoids and 
LABA) 

Usual care: 
12%: single component 
therapy  
(LABA, a LAMA, or both) 
 
34%: combination dual 
therapies (glucocorticoids, 
OR a combination of 
inhaled glucocorticoids and 
a LABA, OR a combination 
of inhaled glucocorticoids 
and a LAMA)  
  

 

14  Despite the overtly significant differences between the Salford Lung Study and 

conventional trial, the contrast could be even more accentuated. Most importantly, the 

explanatory study used an active comparator treatment, which is considered a pragmatic 

choice, whereas the most explanatory choice would be a placebo control. Moreover, Dal-

Ré (2018) rated the pragmatic Salford Lung Study retrospectively using the PRECIS-2 

tool and reasoned that the average score of the COPD trial was only about 2.8 (where 1 

= very explanatory and 5 = very pragmatic). Their criticisms were that the recruitment was 

supported by a local advertising campaign and accompanied by a lengthy consent process; 

eligibility criteria did not perfectly match the target population, as approved by the EMA; 

and the package of the investigational inhaler contained a warning ‘investigational drug – 

for clinical trials use only’.  
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54%: combination triple 
therapy (inhaled 
glucocorticoids, a LABA, 
and a LAMA) 

Eligibility 
Were all 
patients eligible 
who would 
receive the 
treatment in 
clinical care? 

Seven inclusion and 17 
exclusion criteria, among which 
are the following inclusion 
criteria:  

• Established history of COPD 
according to the ATS/ERS 
definition 

• Above the age of 40 
• Spirometry test values with 

typical criteria to delineate 
COPD from asthma 

• Long-term smoker (one pack 
daily for more than 10 years) 

• Women without child-bearing 
potential during study 
(physiologically incapable or 
using effective contraceptives) 

 
Exclusion criteria contain:  

• Diagnosis of asthma or other 
respiratory diseases  

• Poorly controlled COPD that 
requires treatment 

• Carcinoma 
• Use of certain medication  
• Subjects who are unable to 

withhold certain other 
treatment 4 hours prior to 
spirometry testing at each visit 

Five inclusion and seven 
exclusion criteria, among 
which are the following 
inclusion criteria: 
 

• Subjects with documented 
diagnosis of COPD from a 
general practitioner 

• Above the age of 40 
• Current COPD 

maintenance therapy 
• Exacerbation history 
• Women without child-

bearing potential during 
study (physiologically 
incapable or using effective 
contraceptives) 

 
Exclusion criteria contain:  

• Life-threatening condition 
• Unstable COPD 
• Chronic user of oral 

corticosteroids according to 
the opinion of the general 
practitioner 

• Subjects who plan to move 
away from the 
geographical area 

Recruitment 
Are patients 
recruited using 
low-threshold 
methods? 

unknown According to (Dal-Ré 
2018), recruitment was 
linked to an advertisement 
campaign and therefore 
not very pragmatic 

Setting 
The choice of 
healthcare 
institution for 
the trial (e.g. 
primary care vs. 
specialised 
research 
facility) 
 

unknown General practices in the 
area of Salford, UK 
 

Organisation 
The resources 
used at the 
healthcare 
institution, e.g. 
diagnostic 
devices, 
healthcare 
personnel 

All outcome assessments were 
conducted using standardised 
equipment.  
All sites were issued with 
Biomedical Systems (BMS) 
Vitalograph 6800 Fleisch 
pneumotach for spirometry 
assessments prior to study 
start.   
Study personnel underwent 
training for the use of the 
pneumotach by BMS. 
 

Data was captured using 
an electronic health record 
system connecting primary 
and secondary care by 
NorthWestEHealth  
 
The medication was 
supplied through the local 
pharmacies and 
investigators were the 
general practitioners. Both 
general practitioners and 
pharmacists were trained 
in the basics of good 
clinical practice 

Flexibility 
delivery 

Only several specified 
additional treatments were 
allowed and list of not 

General practitioners were 
able to adjust medication 
throughout the study to 
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Does clinical 
expertise / 
preferences 
enter in the 
delivery of the 
medication or is 
it rigidly 
standardised? 

permitted medications during 
the study exists 

allow for optimal treatment 
of COPD, and patients 
were allowed to switch 
from FF/VI to usual care 

Flexibility 
adherence 
How tightly are 
patients 
controlled in 
their adherence 
to the 
treatment? 

The trial used a 2-week 
placebo run-in period to obtain 
baseline assessments and to 
evaluate adherence with study 
treatment and procedures, 
diary card completion and 
assessment of disease stability 
 
Compliance with treatment 
was assessed by reviewing the 
dose counters on both inhalers 
at randomisation (day 1), day 
28, day 56 and on day 84  

Used inhalers had to be 
returned to the pharmacies 
to assess adherence 
 
 

Follow-up 
Are patients 
followed-up by 
meetings in 
addition to 
what is needed 
for patient 
care? 

Unclear. Outcome assessment 
only at screening, day 1 and 
day 84 

Face-to-face visits only at 
initiation and the end of the 
trial  
Patients were followed via 
the electronic health record 
(EHR) database; three 
monthly phone-calls for 
safety check-up 

Primary 
outcome 
Were the 
primary 
outcomes 
chosen relevant 
for patients? 

24-h effect after 12 weeks on 
lung functioning, measured as 
forced expiratory volume in 1 s 
(FEV1) – the volume of air 
exhaled in the first second 
during forced exhalation after 
maximal inspiration. 

Severe exacerbations – i.e., 
an acute increase in the 
severity of the condition 
(requiring contact with the 
GP) 

 

The pragmatic trial resembled the natural therapeutic situation in many ways, 

particularly how patients were diagnosed, treated and cared for during the trial. The 

explanatory trial by contrast went to great lengths to create a highly artificial research 

setting. Further meta-research on this case reinforces two striking differences. First, 

the population in the explanatory trial was considerably narrower. A meta-research 

study comparing the Salford Lung Study to six large conventional trials on COPD 

reinforces this point (Woodcock et al. 2018). Based on a retrospective analysis of 

a database, the authors reasoned that about half of COPD patients who were 

registered in a general practice in the area were eligible for the Salford Lung Study; 

of those eligible, about half eventually participated in the trial. This sample 

represents a quarter of the population. In comparison, only 15% of the same 

patient population would have been eligible for any of the conventional trials. The 

authors further found that patients in the Salford Lung Study were older, had 

higher exacerbation rates, a higher proportion of current smokers and a higher rate 

of comorbidity than the population in the conventional studies. The second 

difference concerns the reported adherence rate. The explanatory trial reported 

average adherence rates as high as 97.5%, whereas the normal rate in routine care 
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is expected to be well below 50% (Lareau and Yawn 2010). Presumably, artificial 

measures such as the placebo run-in period, the short-term follow-up for a chronic 

disease and several follow-up visits all contributed to the high adherence rate in the 

explanatory trial.  

 In addition, the trial includes features that are relevant in the 

therapeutic setting. In the Salford Lung Study the comparator intervention was 

usual care that included three different treatment regimens commonly 

administered to COPD patients. Moreover, the primary outcomes differ in their 

practical relevance. The Salford Lung Study measured exacerbations as primary 

outcome. An exacerbation is an acute worsening of the condition, which – almost 

by definition – severely interferes with the functioning of a patient in daily life. In 

contrast, the explanatory trial measured lung function as the forced expiratory 

volume in 1 second (FEV1). This measure is widely used for diagnostic or 

therapeutic decision-making, yet its clinical relevance can only be established by 

additional evidence. Finally, the Salford Lung study comes closer to establishing 

long-term effects with its length of 12 months rather than 12 weeks. It is intuitive 

that the pragmatic trial as a natural experiment with a focus on clinically relevant 

features has a unique practical value. The next section discusses what the practical 

value of these trials is. 

2. The practical value of pragmatic 
trials  

The methodological literature proposes some notions to further contrast pragmatic 

trials with their explanatory counterparts but they seldom explain what grounds the 

assumption about their practical usefulness. One often reads that pragmatic trials 

measure the ‘effectiveness’ rather than ‘efficacy’ of a treatment and that they are 

conducted ‘under routine care conditions’; by contrast, explanatory trials are 

conducted ‘under controlled conditions’. Pragmatic trials ‘maximise external 

validity’, while explanatory trials ‘maximise internal validity’, or explanatory trials 

answer the question ‘Can it work?’ while pragmatic trials answer the question ‘Does 

it work?’ (Luce et al. 2010); for an overview of these notions, see Table 3. 

Particularly, the intuition that pragmatic trials increase external validity at the 

expense of internal validity is commonly cited to explain the epistemic merits, 

problems and tensions of these designs (Godwin et al. 2003). While these ideas 

offer important explanations, they also introduce potential misunderstandings and 

new puzzles. An example is the question of how internal and external validity relate 
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to each other (Jimenez-Buedo and Miller 2010; H. Chytilová and R. Maialeh 

2015). I develop three rationales that could explain the practical usefulness of these 

trials and show how they relate to these notions. 

Table 3: Methodological comparison between pragmatic and explanatory trials 

 Conventional trial Pragmatic trial 

Validity Internal validity External validity 

Causal 

conclusion 

Efficacy Effectiveness 

Epistemic aim Explanatory Pragmatic 

Causal question Can it work? Does it work? 

Background 

conditions 

Experimental 
Artificial 
Homogeneous 

Routine care 
Natural 
Heterogeneous 

 

2.1.  Applicability to decision-oriented research 
questions 

Pragmatic trials are practically valuable in the modest sense that they ask a question 

that is relevant for decision-makers in healthcare. A typical question in a pragmatic 

trial mirrors the logic of decision-making in healthcare by measuring patient-

relevant outcomes and choosing a practically relevant comparator. Unlike many 

traditional randomised trials, pragmatic trials encourage ‘usual care’ as comparator, 

which means comparing the new intervention with whatever care patients would 

receive without the experiment. Hence, the comparative question in the trial would 

be ‘Is A more beneficial than B?’ Here, A and B both represent relevant options 

to choose from, and the question directly mirrors the logic of the clinical judgement 

of choosing between different treatment options. A second reason why pragmatic 

trials fill decision-relevant knowledge gaps is that they encourage the use of patient-

relevant outcomes. Such outcomes are relevant to inform patients’ choices because 

they measure effects that matter to patients. In contrast, trials that measure 

surrogate outcomes or outcomes on the physiological level are less relevant for a 

patient’s decision about treatment choices, because their clinical benefit or patient-

relevant benefit is uncertain (Fleming and DeMets 1996).  In addition, pragmatic 

trials can relatively easily measure long-term outcomes, particularly if they use data 

from an electronic health database. Such trials have reportedly measured long-term 

outcomes with zero loss to follow-up (i.e., the problem of investigators losing track 

of patients after a while) (Hemkens 2018). In contrast, explanatory trials 
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demanding high resource investment and compliance rarely maintain an 

acceptable follow-up rate for a long period; they risk patients dropping out because 

of the burdensome requirements for participating in the trial. This is the modest 

sense that Borgerson argues that pragmatic trials have ‘direct social value’ while 

explanatory trials have ‘indirect social value’ (Borgerson 2013). Kalkman and 

colleagues also highlight these benefits of pragmatic trials to substantiate the view 

that pragmatic trials have ‘real world relevance’, and provide ‘real world answers’ 

(Kalkman et al. 2017a). 

Another potentially interesting feature for decision-making is pragmatic 

interventions. Chapter 2 showed that the medical interventions in pragmatic and 

explanatory trials differ substantially. Explanatory trials allow an inference about 

the precise contribution of the pharmacological properties of the drug that are 

involved in the drug’s mechanism of action. For this reason, Schwartz and Lellouch 

use the term ‘explanatory’ trial, because these trials contribute to our mechanistic 

knowledge, which can explain why drugs are effective and not only that they are 

effective. Pragmatic trials only support inferences to broader intervention notions 

that can include contextual causal factors like adherence or awareness about the 

medicine. One advantage of such interventions is that they can make the impact of 

contextual factors visible. I discussed this aspect in Chapter 2 and the example of 

the Relvar Ellipta inhaler illustrates this point. Particularly in situations where 

physicians and patients can choose between different drugs of the same class with 

similar effectiveness in controlled trials, the choice for the most effective 

therapeutic action is plausibly determined by other properties of the medicine. If 

so, evidence that can make the impact of such causal factors visible is clearly 

practically useful. 

According to some pragmatists such pragmatic interventions have also 

increased applicability. Zwarenstein and colleagues argue that ‘Pragmatic trials may 

incorporate these factors into the estimate of effectiveness, rendering the findings 

more applicable to usual care settings’ (Zwarenstein et al. 2008, p. 6). The idea 

that pragmatic interventions are more applicable seems counterintuitive because 

these interventions contain causal factors – such as patient preferences or physician 

skill levels – that are highly contingent and change across settings. Hence, 

implementing them in settings outside the trial would also require bringing about 

all these contingent factors. This point is true, but the same holds for traditional 

medical interventions. An explanatory trial standardises causal background factors 

so as to measure the treatment effect independently from the influence of these 

contextual factors. Yet, this does not mean that the medicine is effective regardless 
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of the contextual factors. We still require patients to adhere to the treatment, 

physicians to administer the treatment correctly and so forth. The experimental 

intervention that brings about the effect in an explanatory trial not only administers 

the medicine but also includes the training of physicians or the monitoring of 

patients. Bringing about the effect elsewhere would require physicians to get 

trained, administer the treatment and monitor patients. The pragmatic experiment, 

only intervenes to the degree that also a physician can do in healthcare. Doctors 

can often only prescribe, recommend or administer a treatment. Hence, the effect 

estimates from a pragmatic trial are practically valuable for treatment decisions 

because they provide an estimate about the kind of interventions that physicians 

can make. 

The first proposal suggests that pragmatic trials are practically valuable and 

applicable to decision-making in the sense that they ask questions, measure 

outcomes and implement interventions that closely mirror practical interests. Such 

evidence is relevant to health care professionals because it provides an answer to 

question that is relevant for healthcare professionals. This is the modest sense in 

which pragmatic trials can be said to be applicable to practical contexts. Although 

I acknowledge that this contribution is already valuable, advocates of these trials 

clearly make stronger claims when they hold that these trials are highly applicable 

and generalisable. Furthermore, most of the dimensions of pragmatic trials in the 

PRECIS-2 tool are not required for this benefit. Researchers can measure 

outcomes and comparators that matter to healthcare professionals and patients in 

clinical trials that are purely conventional in all other ways. If this is all we can gain 

from pragmatic trials it seems that we do not need the explanatory-pragmatic 

distinction to create such benefits. 

2.2. Pragmatic trials as a solution to the problem of 
extrapolation 

A prevalent idea about pragmatic trials is that they are highly generalisable or have 

high ‘external validity’ and have therefore been proposed as a response to the 

problem of extrapolation by several philosophers. (Fuller 2019; Howick et al. 

2013a; La Caze 2017). Problems of extrapolation consist in the challenge that we 

have some evidence about a causal relation in a study population and want to infer 

whether the relation will hold in another population of interest, i.e., the target 

population. Thus, the general problem of extrapolation in clinical research is 

concerned with inferences of this sort:  
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(1) C causes E in Context1  

from which we would infer that: 

(2) C will cause E in Context2, 

where C is the cause, E the effect and Contexti is the context in which the causal 

relation holds. The problem of extrapolation is concerned with the question of 

what kind of evidence and reasoning strategies would allow us to infer (2) from (1). 

Strategies to deal with the problem of extrapolation mostly attempt to establish 

sufficient similarity between the context or populations in the study and that of the 

target. Researchers do this by establishing that both contexts are governed by 

analogous biological and social mechanisms (See for example Howick et al. 2013b; 

Steel 2008; Guala 2010; Cartwright 2009). The complexity of these philosophical 

proposals is in stark contrast with the far simpler strategies used in clinical research, 

and philosophers have repeatedly argued that these simple strategies are an 

unreliable guide to extrapolation (Fuller 2013, 2019; Stegenga 2018; Cartwright 

2017; Howick et al. 2013b). However, many of the arguments against these simple 

strategies are based on the assumption that all clinical trials are explanatory trials. 

The question arises to what extent simple extrapolation strategies can be a reliable 

guide if they draw on results from pragmatic clinical studies from the outset. 

I briefly summarise the three simple strategies. The first strategy advocated 

by proponents of the EBM movement in clinical research has been called simple 

induction or simple extrapolation. As its name suggests, this simple solution implies 

that results from standard clinical trials are ‘generally generalisable’. Fuller argues 

that neither the empirical evidence nor arguments from theory support the general 

generalisability thesis (Fuller 2013, 2019). Empirical evidence in support of this 

thesis is provided by converging results from RCTs; yet these results are unfaithfully 

selected, as RCTs often do not converge. In addition, evidence from within 

multiple RCTs does not extrapolate beyond the RCTs (Fuller 2013). In his 2019 

article, Fuller argues further that mathematical theory does not support the 

assumption that the usual outcome measure is insensitive to differences in causal 

factors. Furthermore, we cannot conclude from biomedical theory that there are 

no such differences of causal factors (Fuller 2019). Indeed, as Stegenga points out, 

the opposite is true, as the medical community knows that environmental or 

physiological differences can modify treatment effects (Stegenga 2018, chapter 8). 

For example, there is ample evidence that the expertise of a surgeon, the level of 

infrastructure at a care site and the timing of a treatment can be crucial to treatment 

success. 
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Another slightly more sophisticated strategy is what Stegenga calls ‘simple-

extrapolation-unless’ (Stegenga 2018, chapter 8). The strategy is similar to simple 

extrapolation but adds an ‘unless clause’, which states that the general 

generalisability principle holds unless there is a compelling reason why it might not. 

Fuller argues that proponents of this thesis fail to show what would count as a 

compelling reason; hence, the thesis collapses into the general generalisability 

thesis. A second objection concerns the logical fallacy of the clause itself. The 

unless clause, Fuller argues, is based on an argument from ignorance, which 

concludes from the fact that one does not know that P to not P. Such arguments 

are only reasonable if the knowledge base that would include P, if P were true, is 

reasonably complete. This is a profoundly mistaken assumption in the case of 

medicine (Fuller 2019). This intuitive point is reinforced by Stegenga, who 

emphasised that a vast evidence base is withheld from the medical community 

because investigators fail to make mostly negative trial results public; this is called 

the problem of publication bias (Stegenga 2018, chapter 8). 

A third strategy to cope with the problem of extrapolation relies on the 

inclusion and exclusion criteria to identify the subpopulations to which the results 

are generalisable. If some individuals who belong to a certain subpopulation 

participate in a study, then (so the reasoning goes) the result is generalisable to all 

individuals of that subpopulation. Cartwright pointed out several problems with 

this line of reasoning. First, the inclusion and exclusion criteria to delineate 

subpopulations are usually based on criteria such as gender, ethnicities, stages of 

disease, age and so on (Cartwright 2012). They constitute a mixture of biological, 

social and clinically relevant criteria – a ‘potpourri’ in Cartwright’s words, lacking 

systematicity. In addition, such criteria are only an indirect indicator for the relevant 

causal mechanisms. The criteria can only serve as the basis for extrapolation if they 

delineate the subpopulations such that the relevant causal mechanism is shared 

among all the individuals fulfilling the criteria and no other mechanism is present 

that overrides the treatment effect. It is doubtful whether these conditions are ever 

satisfied by superficial eligibility criteria. 

Although pragmatic researchers cannot respond to all the objections raised 

against these simple extrapolation strategies, it is intuitive that pragmatic trials 

(which resemble the natural therapeutic environment) are good candidates to get 

them off the ground. However, the simple strategies still do not get us very far. To 

gain practical value, we require at least that the results extrapolate in time; i.e., 

results extrapolate to future patient populations within the same setting. Such an 

extrapolation in time holds if two conditions are met:  
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1) The trial population is representative of future patient populations within the 
scope of recruitment. 
 

2) The therapeutic context is sufficiently stable across time. 

A well-conducted pragmatic trial has a good chance of fulfilling condition 1) 

to a sufficient degree; indeed, that is why the design is generally valued. The merit 

is commonly attributed to the few eligibility criteria of pragmatic trials; however, 

the hard epistemic work is done by the low-threshold recruitment techniques of 

patients. Eligibility criteria only define who can and cannot participate. The correct 

recruitment techniques ensure that the identified patients in fact participate in the 

trial. Explanatory researchers go to great lengths to recruit the ideal patients into 

their studies, for example, by sending out invitation letters with questionnaires. 

Such high-threshold recruitment techniques introduce considerable biases 

regardless of how many exclusion criteria are explicitly mentioned. Pragmatic trials 

on the other hand employ recruitment in an inclusive, low-threshold manner, 

which usually means that patients are invited to participate in the trial when they 

contact the healthcare facility for a routine visit. Such strategies ensure that all 

patients who would receive a new treatment in routine care – within the scope and 

period of the trial recruitment – are offered participation in the trial. The result of 

the pragmatic recruitment efforts is what we might call an inclusive patient 

population. The inclusiveness speaks primarily in favour of the method’s ethical 

value, as it contributes to justice in health research. However, inclusivity can also 

speak towards representativity if three requirements hold: First, we need to assume 

that a mostly unbiased proportion of the patients who are invited to participate also 

consent to participate. Arguably there might still be some self-selection bias at this 

stage – which has prompted discussion about whether it is justifiable for pragmatic 

trials to overlook the informed consent procedure to mitigate this problem 

(Kalkman et al. 2017b). Despite these difficulties, I think we can be generous and 

assume that the remaining bias is acceptable. Second, if the target group is 

described as ‘all patients with COPD in the Salford area’, pragmatic recruitment 

techniques would usually overrepresent frequent healthcare users. To mitigate this 

problem, researchers should adopt a pragmatic definition of the target population, 

such as ‘all patients who would receive the new treatment in routine care’. Since 

frequent healthcare users are more common in both the trial and the target 

population, bias is avoided. Third, the period of the recruitment must be 

comparable to future periods. For example, patients participating in a trial during 

a public health crisis might not be representative of future patient populations 

within the same scope of recruitment.  
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What about condition 2)? Because pragmatic trials preserve the natural 

therapeutic environment, the sameness of contexts (i.e., between the experimental 

and therapeutic environments) can be assumed as long as the context remains 

sufficiently stable. Assessing the stability of the healthcare context requires 

background knowledge about causally relevant contextual factors. However, such 

an assessment only requires assessing the causal relevance of changing factors in 

the therapeutic environment, rather than establishing the similarity among all 

causally relevant factors across two contexts. Hence, establishing stability within a 

context is epistemically less demanding than establishing the similarity between 

contexts. 

To summarise, results from pragmatic trials have a good chance to 

extrapolate in time within the scope of recruitment until there are significant 

changes that interfere with the stability of the healthcare context or the composition 

of the patient population. A modified version of the simple strategy of 

‘extrapolation unless’ applies and involves what we could call ‘simple extrapolation 

until’; here, significant change in the context would prevent the simple 

extrapolation. If the few epistemically relatively undemanding assumptions 

outlined above hold, extrapolation in time is justified within the scope of 

recruitment and for a limited period in the history of healthcare. Hence, they 

respond to some local versions of the extrapolation problem. 

While extrapolation in time comes relatively cheap, extrapolation in space 

is a different matter. The naturalness of an experiment warrants its approximate 

sameness within the setting and scope of recruitment, yet this property cannot do 

much work beyond this context. Inclusive sampling cannot speak in favour of the 

representativity of the study population if the recruitment involves a patient 

population that differs from the target population in relevant respects. The 

pragmatic trial by Vestbo et al. on COPD, for example, was conducted in Salford, 

a region that was highly affected by the post-industrial crisis and thus presents a 

peculiar research context – to what extent then are its results applicable to patients 

in Swiss hospitals? The study population in the study was sufficiently representative 

of future patients in the Salford area. But it is probably not a representative sample 

for regions that display different demographics, social-economic status, smoking 

policies, healthcare provision or air quality. Extrapolation in space not only 

requires assessing the stability of one healthcare context but also the similarity 

between contexts, which is epistemically far more demanding. The former only 

requires assessing the causal relevance of changing causal factors, the latter requires 

comparative assessments regarding all causally relevant factors, and these are many. 
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For example, healthcare settings in different countries are equipped and staffed 

differently, they use different standards of care or different insurance policies might 

determine what treatments are administered. Such similarity judgements about 

relevant causal factors require vast evidence and background knowledge. There is 

little that pragmatic trials can do to meet these requirements.  

Unlike the simple strategies recommended by the EBM movement, 

pragmatists are painstakingly aware of the limitations for generalising the results of 

pragmatic trials across contexts. For this reason, the CONSORT extension for the 

transparent reporting of pragmatic trials requires, first, the reporting of key causal 

factors in the local setting. Second, researchers must ‘discuss possible differences 

in other settings where clinical traditions, health service organisation, staffing, or 

resources may vary from those of the trial’ (Zwarenstein et al. 2008, p. 6). This 

recommendation does not amount to a simple extrapolation strategy, because such 

an assessment again needs substantial evidence from outside the trial. The second 

point is in line with Cartwright’s argument that the limits of applicability of 

pragmatic trials are approximately the same as the limits of applicability for ideal 

trials; any attempt to simply extrapolate pragmatic trial results across contexts does 

not get us very far very easily. There is, however, a crucial difference between the 

two trials. The naturalistic character of pragmatic studies at least nourishes the hope 

that searching for other settings with similar conditions is not in vain. Conversely, 

such hope is indeed misplaced for most explanatory trials, as their artificial 

experimental conditions almost certainly do not occur anywhere else
15

. Hence, we 

should keep in mind that explanatory trials neither extrapolate in time to the 

context in which it has been conducted because this context ceases to exist after the 

trial ends, nor is it plausible that the conditions of an explanatory trial can be found 

in any other natural health care setting. Nevertheless, the pragmatic trial’s 

contribution to issues of extrapolation is relatively modest, and these trials cannot 

fulfil the promise of their great generalisability in virtue of their naturalness. 

 Pragmatic trials have been criticised not only for not solving the 

problem of extrapolation but even for making the problem worse (Cartwright 2017; 

La Caze 2017; Gedeborg et al. 2019). I consider this criticism briefly. Cartwright 

and others repeatedly and convincingly argued that an average result from a clinical 

 

15

 Many hold that the most promising route to extrapolation is by mechanistic knowledge. 

The reason why Schwarz and Lellouch opted for the term explanatory trial is because, in 

their view, these trials contribute to our mechanistic knowledge about the causal 

mechanism of action by measuring narrow interventions and physiological outcomes. 

From this perspective, explanatory trials may well outperform pragmatic trials to solve 

extrapolation problems.  
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trial only establishes that there is some set of conditions in which the causal relation 

holds; i.e., ‘it works somewhere’. A group trial can neither establish that the causal 

relation holds under all conditions included in the trial nor that it holds under any 

particular set of conditions included in the trial. Indeed, a positive average effect 

can be perfectly consistent with two opposite effects for two different 

subpopulations. For these reasons, it has been argued that the problem of 

extrapolation begins within randomised trials and not only outside them. In La 

Caze’s words, it is ‘the main selling point’ of pragmatic trials to increase 

heterogeneity, which in turn exaggerates rather than solves the problem of 

extrapolation (La Caze 2017). Karnicoloas and colleagues argue against the 

pragmatic-explanatory distinction on related considerations. They hold that 

evidence from a trial that include non-compliant patients does not have any bearing 

on the outcomes for highly motivated patients (Karanicolas et al. 2009) . 

Consequently, the solution preferred by Cartwright and others who follow this 

critique is to abandon the project of averaging treatment effects over heterogeneous 

populations and instead investigating the causal efficacy of potential effect modifiers 

individually (Cartwright 2017; Gedeborg et al. 2019). 

The problem of subgroups within clinical trials prompts a qualification to 

the above discussion. First, pragmatic trials, just like any other group-comparative 

method, support only population-level causal claims and, consequently, 

population-level extrapolation inferences. If one is looking for evidence to predict 

outcomes for individuals, Cartwright is right that any clinical trial – whether 

explanatory or pragmatic – is not a suitable source of information. Hence, it is only 

at the population level that pragmatic trials yield the modest advantage for 

extrapolation of population-level average treatment effects discussed above. A 

related concern is that such population-level average treatment effects are 

practically meaningless. Gedeborg illustrates the concern by arguing that it would 

be practically meaningless to average the treatment effects across adult and 

paediatric populations in a pragmatic trial (Gedeborg et al. 2019). However, in 

situations where clinical practitioners do not differentiate between subpopulations 

in the trial because the causes of treatment variability are unknown, the average 

treatment effect is probabilistically informative for making treatment decisions 

about future patients. This does not mean that the search for the causes of 

treatment variability can be abandoned. Still, it seems worth reinforcing that 

inclusive patient populations in pragmatic trials do not justify an inference to any 

particular individual of a certain subpopulation included in the trial and, a fortiori, 

effects cannot be generalised to all individuals of these subpopulations outside the 
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trial. Hence, efforts to specifically include marginalised and otherwise under-

represented communities in clinical trials might be epistemically overrated by the 

medical community. (Nonetheless, I think these efforts are worth pursuing for 

reasons of health justice.) 

I do not think that the problem undermines the epistemic value of pragmatic 

trials. However, it reinforces the concern that pragmatic trials have at best only a 

moderate advantage in terms of addressing extrapolation problems through their 

naturalness. In the Annex to this thesis I propose a definition of the notion of 

external validity that captures this moderate epistemic advantage of experiments to 

respond to extrapolation problems. 

2.3.  The epistemic value of non-ideal trials 

I develop a third proposal that might explain the value of pragmatic trials, namely, 

the ability of these trials to provide robust conclusions about effectiveness. In this 

section, I introduce the ideal vs. non-ideal distinction to show how non-ideal trials 

can support robust positive causal conclusions. The distinction captures the 

intuition that pragmatic trials are conducted in unfavourable conditions that 

generally reduce the effectiveness of medical intervention rather than increasing it. 

If this intuition is true (or at least we could identify cases where it is true), this 

rationale could be of considerable epistemic value in support of the pragmatic 

approach. 

Rather than focusing on the role of naturalness in pragmatic trials, I ask what 

purpose artificiality serves in clinical trials. I have so far discussed two roles of 

control measures, namely controlling for biases and increasing the homogeneity in 

a trial. Both fail to account for all standardisation practices in explanatory trials. 

Notably, homogeneity cannot explain why clinical researchers commonly do not 

merely standardise background conditions at an arbitrary value but rather employ 

specific values. For instance, a clinical trial generally does not standardise 

adherence at 50% – which would satisfy the need for homogeneity – but rather at 

the rate that is ideal for the treatment under scrutiny. To explain this practice, I 

draw on the notion of an INUS condition. The acronym stands for ‘insufficient but 

necessary part of an unnecessary but sufficient’ condition. Medical treatments are 

thought to be such INUS conditions, meaning that the medicine is a necessary part 

for the effect to occur but is by itself insufficient. In addition to the treatment, 

numerous other conditions must be in place, such as accurate patient diagnosis, 

adherence to the treatment and the right genetic make-up for a response to 

treatment. The primary objective of many artificial controls is to meticulously 
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guarantee the presence of all other causal factors to maximise the effectiveness of 

the treatment. Hence, what is peculiar and epistemically pertinent about 

explanatory trials is that they artificially interfere in the causal setup not only to 

standardise but also to idealise many INUS conditions. That is, they employ an 

ideal set of values – such as ideal age, ideal disease states, ideal adherence or ideal 

treatment conditions. For example, explanatory trials exclude patients with 

comorbidities because those patients often respond less effectively to treatments. 

Furthermore, patients are motivated to adhere to a treatment at a rate that is known 

to be ideal for the treatment to be effective or treatments are administered in a way 

that is known to be ideal for the treatment to be effective. Due to these ideal 

background conditions, explanatory trials are epistemically privileged in the sense 

that they increase our chances of observing a causal effect if one exists.  

‘Idealness’ here refers to the values of supporting causal factors in the causal 

complex. Determining an ideal value is a purely empirical question. Assumptions 

about what is ideal adherence or ideal dosage are built on prior empirical evidence 

from drug development programmes or other evidence. Such a notion of an ideal 

trial is distinct from the other notions of ideal trials discussed by Cartwright (2009) 

and Reiss (2019), who state that ideal trials are those that fulfil all the conditions for 

the causal inference to follow deductively. Consequently, determining ideal 

conditions in the sense introduced here is dependent on the state of knowledge 

about what the ideal background conditions are and the methods at hand to 

instantiate those conditions. Idealness in that sense is clearly an idealised 

assumption. Nonetheless, the assumption carries explanatory and prescriptive 

value, as I show in the next paragraph. 

Let us define ‘ideal conditions’ as the values of all causal background factors 

such that an effective treatment is most effective. An ideal trial in that sense then is 

a trial that attempts to standardise background conditions at ideal values such that 

an effective treatment would be most effective. From this definition of ideal 

conditions, the following two claims can be derived:  

 

1.1 If a treatment is effective under ideal conditions, it may or may not be effective 
under non-ideal conditions. 
 

1.2 If a treatment is effective under non-ideal conditions, a fortiori, it is effective 
under all more-ideal conditions.  

 

Claim 1.1) confirms what many have criticised about ideal clinical trials, namely 

that a positive result in an ideal trial only strictly confirms the causal conclusion 
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under the conditions of the trial and does not extrapolate beyond. Learning that a 

treatment is effective under ideal conditions does not tell us anything about how 

that treatment would perform under non-ideal conditions. We have only tested the 

treatment under the conditions under which the treatment would be most effective. 

Claim 1.2) is more interesting. It states that positive results from non-ideal trials 

generalise to all more-ideal conditions. Thus, a treatment that is effective under 

non-ideal conditions will certainly be effective under more-ideal conditions 

(because ideal conditions are those under which an effective treatment is the most 

effective). In other words, the fact that the positive effect does not disappear despite 

non-ideal conditions is evidence for the claim that the set of background conditions 

under which the treatment is effective is wider than the set of non-ideal conditions 

in the trial, including at least all more-ideal conditions. In this sense, non-ideal trials 

can establish more general or robust causal conclusions than ideal trials – and such 

knowledge is valuable practically. Its utility value lies in evidential support for the 

claim that the treatment’s effect extends beyond the background conditions 

included in the trial, providing at least some supportive evidence for using the 

treatment outside the context of the trial.  

The distinction between ideal and non-ideal conditions also has interesting 

implications for negative results. Again, given the definition of ideal conditions as 

the conditions in which an effective treatment is most effective, we can infer the 

following:  

 

2.1 If a treatment is ineffective under ideal conditions, a fortiori, it is ineffective 
under all (non-ideal) conditions. 
 

2.2 If a treatment is ineffective under non-ideal conditions, it may or may not be 
effective under ideal conditions.  

Claim 2.2. articulates a familiar principle to proponents of pragmatic trials: 

If a treatment is ineffective under non-ideal conditions, it remains uncertain 

whether the treatment would have been effective under ideal conditions. This point 

holds significance. Without knowing whether treatments work under ideal 

conditions, we cannot discern whether the treatment is truly inert or the 

experimental conditions deviated too greatly from the ideal conditions. Hence, 

negative results in non-ideal trials are crucially underdetermined. At the same time, 

from claim 2.1. it follows that this is precisely the epistemic advantage of ideal trials, 

as their negative results generalise to all non-ideal conditions. If a treatment is 

ineffective under the conditions under which it would be most effective, there is no 

doubt that there are no conditions under which the treatment would be effective. 
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In that regard, ideal trials are a very efficient method to learn from negative results 

and eliminate ineffective treatments. This notion is equivalent to the idea that such 

trials can provide a ‘proof of concept’; the same idea is described in terms of 

explanatory trials answering the question ‘Can it work?’ What my proposal adds to 

these views is that we also gain important information from a negative result, 

because we have certainty that the treatment does not work elsewhere.  

This rationale has considerable explanatory value in support of non-ideal 

trials. In my view, it is a trial’s non-idealness and not its naturalness that can bring 

support to the causal conclusion beyond the context of the trial. Its shortcoming is 

that the definitions of ideal and non-ideal trials only partially capture real 

explanatory and pragmatic trials for several reasons. First, explanatory trials are 

rarely truly ideal trials. Researchers rarely know who the ideally responding patients 

are, they cannot force patients to fully adhere to treatments and a negative result 

could be the result of a chance process. A single negative explanatory trial is not 

fully convincing to eliminate a medicine as truly inert. However, idealness can serve 

as an epistemic aim pursued by researchers for designing trials with the aim of 

maximising certainty about negative results. A second qualification to consider is 

that the definition of ideal and non-ideal conditions does not account for the 

comparative nature of clinical trials. Effect size estimates in comparative 

experiments depend fundamentally on the effectiveness of the comparator 

treatment. Even if all INUS conditions are ideally chosen, an experiment does not 

result in a large effect size if the treatment is compared to an equally effective 

alternative. The use of placebo controls is imperative to identify inert treatments. 

The third and perhaps most detrimental short coming is that the definition of ideal 

and non-ideal conditions only ranges over support factors. It neglects the role of 

other causal factors that affect the treatment effect independent of support factors 

like patient’s awareness of the treatment or the intake of other medicines. Placebo 

effects or other uncontrolled causal factors can produce positive result in a 

pragmatic trial even if the treatment is ineffective under (non)-ideal conditions. The 

rationale from the non-idealness is only convincing to the degree that the positive 

contribution of such factors can be neglected. Let’s take stock. 

2.4. Pragmatic trials provide realistic treatment effects 

I have discussed three epistemic rationales to ground the widely hold assumption 

that pragmatic trials are somehow better applicable, widely generalisable or have 

high practical relevance. The notion that pragmatic trials are practically useful 

because they compare treatments, measure outcomes that are relevant for 
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healthcare professionals is most convincing. However, the pragmatic-explanatory 

distinction becomes superfluent. Pragmatic trials only partially fulfil the 

requirements of two more demanding proposals. If the few epistemically relatively 

undemanding assumptions hold, pragmatic trials can solve some local version of 

the extrapolation problem. However, the pragmatic trial’s contribution to problems 

of extrapolation is relatively modest. The intuition that pragmatic trials can establish 

more robust causal effectiveness claims because of their non-idealness is intriguing, 

but it also suffers from several shortcomings that it fails to be fully convincing. 

Nevertheless, both interpretations have something to say in favour of 

pragmatic trials, but the discussions show that these benefits need to be formulated 

more modestly. My analysis clearly supports the critics who argue that explanatory 

trials are insufficient to support the use of treatments outside artificial experimental 

conditions and insufficient evidence for regulatory approval. Contrary to a widely 

hold view, I have argued that the main problem is not their lack of representativity 

but their tendency to be conducted under ideal conditions. These causal 

conclusions are particularly fragile. I think pragmatic trials go some way of 

addressing this problem by providing treatment estimates that are more realistic 

than those from highly controlled trials. Realistic I have in mind a combination of 

the two requirements discussed above but modestly interpreted: the conditions of 

pragmatic trials are realistic in the sense that they are a) conducted in a set of natural 

conditions and b) that tend to include non-ideal conditions.  

Such realistic treatment effects do not simply generalise beyond the local 

context of the experiment, and they are not robust in the sense proposed above. 

Estimates about such treatment effects provide a different perspective on the 

effectiveness of medical interventions. This perspective is valuable because it 

complements effect estimates from explanatory trials that tend to provide estimates 

under ideal conditions. 
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Part II  
Data pluralism  
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Chapter 4 
Data: Good, bad or good 
enough  

 

This second part of this thesis is devoted to data. In the philosophy of medicine, 

much attention has historically been payed to the examination and assessment of 

methodological attributes, such as randomisation or blinding. With the advent of 

real-world evidence, it becomes evident that stakeholders in clinical research are 

not only concerned with the plurality of research methods but also, and perhaps 

more relevantly, with the plurality of data. Over the past three decades, the 

collection and management of data in clinical trials have been meticulously 

governed by a comprehensive sixty-page document known as ‘Good Clinical 

Practice’ (GCP). These globally accepted rules and principles play a pivotal role in 

ensuring the integrity of data and the safety of patients participating in clinical trials 

by defining essential requirements for data collection, storage, and verification. 

Central to the rules of GCP is the fundamental premise that data and its purpose 

are inextricably linked in the sense that data are produced by data users with a 

specific scientific purpose in mind. Contrary to this, the new real-world evidence 

paradigm allows that data can be used for research even though the data were 

produced by someone else than their user and for an entirely different purpose. 

Such data are shaped by the local needs, constraints, and incentives of local health 

care agents rather than concerns for their epistemic value. 

Sabina Leonelli, who pioneered the philosophy of data-centric science, 

describes such data as embarking on a journey (Leonelli 2016). She drew 

philosophers’ attention to the coming avalanche of travelling data and the frictions 

and costs that accompany it. She holds that ‘there is nothing smooth about data 

journeys’ and that ‘journeys of data require planning, involve different material 

infrastructure, and are generally fragmented and complex just like human journeys’ 

(Leonelli 2016, chapter 1). As such, data journeys require laborious and skilled 

work to decontextualise data from their original purpose, to package them with 

contextual information for travelling, and to recontextualise them to be used for a 
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new purpose. Leonelli further discusses the essential epistemic work that data 

infrastructures contribute to data journeys, the emergence of the professional role 

of data curators, and organisational structures like research consortia, that regulate 

data journeys (Leonelli 2016, chapter 2). Consequently, data became a valuable 

scientific product in its own terms, which is why Leonelli refers to data-centric, 

rather than data-driven science. In Leonelli’s framework, real-world data are data 

that travel from sources like clinical information systems to new places where they 

can serve as evidence for scientific claims. It inspired new perspectives on data 

sharing practices across disciplines (Leonelli and Tempini 2020). My study focuses 

on epistemic issues of data users and those who rely on knowledge that was 

generated with repurposed health data.  

Data that fits Leonelli’s framework is described by a range of different terms, 

frequently used are ‘real-world data’, ‘secondary use data’ and ‘routine data’. The 

term ‘real-world data’ became the most popular among stakeholders in the field. It 

is a clever rhetorical manoeuvre as it turns the main weakness of this type of data 

into one of its most compelling advantages: The problem that such data are shaped 

by the practices, needs, and incentives of ordinary healthcare settings is reframed 

as a representational value about natural settings in general. A brief philosophical 

look into the notion of data illustrates what is problematic about this. A common 

conception in the philosophy of science is to think of data as records or traces that 

represent the world. Practices of data journeys have complicated this picture 

because these practices imply that data do not have fixed representational value but 

instead can be interpreted by various experts for yet unknown research questions. 

Consequently, Leonelli has proposed to adopt a relational view of data, where data 

are constituted by their ability to circulate among individuals that treat data as 

potential evidence for a scientific claim (Leonelli 2016, chapter 3). Recent theories 

of data restored the representational view while incorporating Leonelli’s lesson that 

data does not have fixed evidential value. Pietsch critically discusses several 

definitions of data and defends a causal representational view of data where data 

represents the world in virtue of them being caused by singular facts in the world 

(Pietsch 2021). Bokulich and Parker similarly reconcile both aspects by proposing 

a pragmatic representational theory of data and data models. In their view data 

have open evidential value but their representational content is still constrained ‘by 

the fact that they are the product of a particular set of causal factors and not others’ 

(Bokulich and Parker 2021, p. 8). Their view is pragmatic because they emphasise 

that the evidential value of data is not only determined by how well data (and data 

models) represent the world but also by other pragmatic factors. These 
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representational proposals illustrate why real-world data are epistemically rich and 

poor at the same time: data that were generated in natural therapeutic settings 

represent therapeutic facts from these settings. Yet, such data are also causally 

affected by all kinds of factors like the needs or interests of healthcare professionals, 

reimbursement incentives, or institutional structures and policies that make 

interpreting these data extremely difficult. I comment on the most common 

problems with such data in section 2 of this chapter. 

Another notion that is widely used is that of ‘secondary use’ data. The notion 

refers to the fact that such data were initially generated for a different (non-

epistemic) primary purpose of a primary user. Its meaning acknowledges the data’s 

weakness that they are not tailored to the needs of its secondary user. Researchers’ 

needs for data generally differ greatly from the needs of those who generate the 

data, as researchers require exceptionally extensive, finely grained, highly accurate, 

complete, and representative data. Because primary users of ‘secondary use data’ 

are not driven by such considerations, the quality of secondary use data emerges as 

a major epistemic concern. The notion also emphasises another valuable aspect of 

these data as a (presumably) cheap by-product of data collection processes in 

healthcare. The concept of ‘secondary use’ data echoes with a larger vision in which 

health data are seen as a sustainable resource capable of circulating within a vast 

and interconnected network of data users and producers. Leonelli noted that the 

mobility of data is one of the great promises of big and open data because people 

with diverse expertise can interpret data and generate scientific insight (Leonelli 

2020) . ‘Secondary use data’ highlights the aspect that data can even circulate 

between epistemic and non-epistemic users to make the most out of limited 

resources. However, there is an enormous tension between the promise of 

‘secondary use data’ and extensive political efforts to increase data quality ‘at the 

source’ to make secondary use possible. I elaborate on this tension in Chapter 5.  

Together with the advent of traveling data came the essential question of 

how to evaluate the quality of such data for reuse. Stakeholders in clinical research 

turned towards a contextualised approach to data quality. In such an approach, 

favourably assessed by Leonelli and Canali  (Canali 2020; Leonelli 2017b), data 

cannot be said to be good or bad independent of a specific context of use. Bokulich 

and Parker developed an adequacy-for-purpose approach to data models in 

analogy to such an approach to scientific models (Bokulich and Parker 2021). A 

recurring topic of the second part of this thesis is the comparison of such a 

contextualised approach with the current rule-based reference standard for good 

data called ‘Good Clinical Practice’ (GCP). I show that this standard is a widely 
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neglected source of the epistemic value of conventional clinical trials to ensure not 

only the reliability but also the trustworthiness of data. 

Data quality is known to be a notoriously multifaceted notion. Bridging the 

gap between the abstract idea of ‘fitness-for-purpose’ and concrete measures to 

quantify data quality is a complex task with countless possibilities to approach it 

(Illari 2014). Leonelli noted that the wide variability of these practices makes it 

difficult to define international standards (Leonelli 2017b). The thesis of the 

underdetermination of evidential significance articulated by Stegenga for assessing 

the quality of methods is strongly accentuated in practices that assess the quality of 

data (Stegenga 2018, chapter 7). Nonetheless, regulators are currently developing 

their own data quality frameworks to coordinate data quality assessments in clinical 

research and establish new rules for what counts as acceptable data in the field 

(European Medicines Agency 2022; US Food and Drug Administration 2021b). 

However, my investigations in Chapter 6 reinforce the worry that the deep local 

contextuality of these practices pose a remarkable challenge to the trustworthiness 

of data. 

In this chapter, I introduce and contrast the reference standard for data 

quality, GCP, with the emerging contextualised approach, fitness-for-purpose. I 

establish GCP as the main reference standard for what counts as acceptable data in 

the clinical research community and argue that these rules contribute epistemic 

value to clinical trials that is widely neglected by philosophers of science. I then 

briefly introduce the main problems of data quality that researchers encounter with 

real-world data and point towards two major transformations of research and health 

care that these problems will bring along. First, studies will move towards more 

hedged clinical research questions, broader patient populations and more clinically 

relevant outcomes because routine data would otherwise be unavailable. Second, 

we will witness continuous efforts to increase data quality ‘at the source’ by 

systematic attempts to train and incentivise data collection in healthcare according 

to the needs of research. I then turn towards the new paradigm for data quality, 

‘fitness-for-purpose’. Conceptual reflection of the fitness-for-purpose approach 

together with a detailed case study support the view that the turn towards a 

contextualised approach is a two-sided sword: If used with sufficient skills, expertise 

and the right moral attitudes it is a powerful tool that allows the research community 

to carefully tailor the choice of methods and data to the community’s epistemic 

and practical aims. At the same time the contextualised approach is highly 

susceptible to errors and misuse. Chapter 5 reinforces this view by introducing the 

complexity of data quality assessments and the difficulties to perform them reliably. 
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In Chapter 6 I extent this line of thinking by showing that data quality assessments 

raise concerns about the trustworthiness of data because they are nearly impossible 

to verify by impartial third parties. 

Section 1 introduces the Guideline for Good Clinical Practice and the 

essential role of monitors to verify and increase the accuracy of data. Section 2 

turns towards bad data and provides an overview of the common problems 

associated with real-world data and its broad practical and epistemic implications. 

Section 3 introduces analyses the notion of fitness-for-purpose and exposes the 

theoretical and normative commitments required to put the notion to use. Section 

4 illustrates the fitness-for-purpose approach with a detailed case study about the 

approval of Prograf as an immunosuppressant for lung transplant recipients. 

Section 5 articulates the idea that a contextualised approach to data quality can be 

a powerful tool to increase epistemic opportunities while at the same time a free 

pass for misuse with little tolerance for errors. 

1. Good data: Good clinical practice  
The Guideline for Good Clinical Practice (GCP) published in 1997 by the 

International Council for Harmonisation (ICH) is a pivotal document that sets 

forth globally accepted conventions and principles for conducting clinical studies 

(International Council for Harmonisation 2016). Many countries reference this 

particular guideline in their national laws, which makes those guidelines legally 

binding. Hence, this set of conventions is not just one among the countless 

conventions in the field but is a particularly influential one. These conventions are, 

so to speak, the gold standard for what counts as acceptable data in clinical 

research. However, the pivotal epistemic role of these conventions for the reliability 

and trustworthiness of data has been largely overlooked by philosophers.  

These conventions contain rules and principles that create accountability 

for the integrity of data and the safety of patients in a clinical trial. Their goal is to 

‘facilitate the mutual acceptance of clinical data by the regulatory authorities’ 

(International Council for Harmonisation 2016, p. 1). The focus of the document 

is not the design of clinical studies; rather, it addresses the practical implementation 

of such studies. These guidelines define high-level principles about data quality and 

practical measures to implement them. That is, they define roles and 

responsibilities, mandatory instruments and documents, reporting duties and much 

more. As the document is structured according to roles and responsibilities rather 

than ideas, it presents a most unusual read for philosophers.  
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The high-level principle about data quality states that ‘All clinical trial 

information should be recorded, handled, and stored in a way that allows its 

accurate reporting, interpretation and verification’ (International Council for 

Harmonisation 2016, principle 2.10). Throughout the document, various 

responsibilities and measures are defined to implement this principle, 

encompassing data collection, documentation, verification and reporting. 

The general epistemic approach to data quality entailed in this document is 

the approach of prospective quality management, meaning the prospective 

planning of data collection, controlling mechanisms and corrective feedback loops. 

The aim is to increase the likelihood of high quality data as defined in the 

document (see Figure 1). The first step is to plan and implement standardised data 

collection processes. To that end, investigators must have quality management 

systems in place, with well-established instruments. Examples are standard 

operating procedures that define the processes to generate, record and report data 

in line with the protocol and other regulatory requirements. Although this is a 

somewhat trivial point, the prospective and tailored control of data collection 

procedures in line with the specific purpose constitutes the essential epistemic 

difference between data that is generated according to the rules of GCP and data 

that is repurposed from routine healthcare. By contrast, retrospective quality 

assessment of repurposed data is mostly limited to describing the quality of existing 

data.  

Figure 1: The process of data quality management in clinical trials. 

 

The next step is more interesting and is unique to human research. Under the GCP 

guideline, data must be verified by independent and specially trained experts called 

‘monitors’. Following GCP, monitoring fulfils three purposes:  
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The purposes of trial monitoring are to verify that: 

(a)  The rights and wellbeing of human subjects are protected. 

(b)  The reported trial data are accurate, complete, and verifiable from source 

documents. 

(c)  The conduct of the trial is in compliance with the currently approved 

protocol/amendment(s), with GCP, and with the applicable regulatory 

requirement(s). (International Council for Harmonisation 2016, 5.18.1) 

 

Item (b) explicitly charges monitors with the responsibility to ensure that data is 

accurate, complete and verifiable, i.e., to ensure that data is of high quality. In 

Chapter 6, I argue that the purpose stated under (c) makes an essential contribution 

to the trustworthiness of the data used in clinical trials. Here, I focus on the role of 

monitors for assuring data quality as stated in item (b). The extent of monitoring 

activities is negotiable and depends on the risks involved in a specific trial. 

However, the standard approach is for monitors to visit, in person, the sites where 

the research is conducted, at the beginning of, during and after the trial. On site, 

monitors have various responsibilities (the document lists 17). Among them – and 

in line with the overall purpose – they are charged with ‘Checking the accuracy and 

completeness of the CRF [case report file] entries, source documents and other 

trial-related records against each other.’ (International Council for Harmonisation 

2016, 5.18.4 (m)) The case report form is a purposefully designed data collection 

form for each research participant. The guideline specifies what exactly monitors 

should verify:  

 

(i) The data required by the protocol are reported accurately on the CRFs 

and are consistent with the source documents. 

(ii)  Any dose and/or therapy modifications are well documented for each 

of the trial subjects. 

(iii)  Adverse events, concomitant medications and intercurrent illnesses are 

reported in accordance with the protocol on the CRFs. 

(iv)  Visits that the subjects fail to make, tests that are not conducted, and 

examinations that are not performed are clearly reported as such on 

the CRFs. 

(v)  All withdrawals and dropouts of enrolled subjects from the trial are 

reported and explained on the CRFs. (International Council for 

Harmonisation 2016, 5.18.4 (m, i-v)) 

To check whether data collection adheres to these requirements, monitors verify 

data entries against source documents (such as laboratory test results), conduct 

consistency checks within the database or interview trial personnel. In case of any 

irregular findings, monitors are obliged to inform investigators about any data entry 

error, omission or illegibility and ensure that ‘appropriate corrections are made, 

dated, explained and initialled’ by an authorised person (International Council for 
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Harmonisation 2016, 5.18.4 (n)). The overall result of their activities is 

documented in a monitoring report with recommended actions for improvement. 

Thus, monitors not only detect issues in data quality but initiate step 3 of the quality 

management process. Feedback loops ensure that erroneous data is corrected and 

that standard operating procedures are adjusted to ensure that errors are not 

repeated. In case of repeated non-compliance or repeated lack of follow-up on a 

monitor’s findings the research site is excluded from the trial. Quality management 

with on-site monitoring and the verification of source data poses a high bar for data 

accuracy and completeness: empirical evidence indicates that data that was 

completely verified by monitors on site can have error rates as low as 0.27%, with 

variability depending on the type of data and ranging from 0.0% to 0.36% 

(Andersen et al. 2015).  

The ICH GCP Guidelines aim to foster mutual acceptance of data as 

evidence by researchers and regulators alike across countries. I have here provided 

a ‘snapshot’ of a 60-page document, but it is sufficient to illustrate that the bar for 

acceptable data in the field is set high. Not only is such data collected through 

tailored processes, it is also verified by specially trained experts and appropriately 

corrected by specially authorised personnel. While the prospective planning of 

data collection is a familiar practice in many fields, the role of specially trained 

monitors to verify data at the point of data capture is unique to human research. 

Due to such mandatory data collection and verification procedures, the data is 

relatively likely to be good in the sense that it is highly accurate and complete. 

The application of these guidelines is in principle not limited to randomised 

trials; nor is their implementation methodologically necessary to conduct a 

randomised experiment. In previous chapters, I discussed the method of pragmatic 

trials. These are randomised trials that can measure outcomes through real-world 

data sources like electronic health records, the production of which was not 

governed by the rules of GCP. How to implement appropriate monitoring in such 

trials that ensures data quality while respecting the pragmatic attitude to leave the 

natural therapeutic situation intact is a matter of ongoing discussions (Simon et al. 

2019; Irving et al. 2017). Hence, if one is looking for a criterion that sets real-world 

evidence apart from the gold standard as we know it today, it is not the familiar 

distinction between randomised and observational studies. Rather, it entails the 

processes that govern data collection and handling. 
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2. Bad data: Problems with real-world 
data 

‘Real-world data’ is an umbrella term for all types of data generated outside a 

controlled experimental environment. Examples of sources include electronic 

health records, claims data, administrative data or registry data. The recording of 

health-related data outside experimental contexts is generally driven by the local 

needs, incentives and constraints of healthcare and not by the needs of researchers. 

In the words of pharmacoepidemiologist Sebastian Schneeweiss such data is 

‘filtered through the sociology of health care systems’  (Schneeweiss 2016, p. 263). 

Yet, researchers have different needs for data compared with the needs of other 

practitioners: researchers often need more data, standardised data, fine-grained 

data, and particularly accurate, complete or representative data, to name a few. 

Hence, it is generally acknowledged by stakeholders in clinical research that real-

world data is ‘bad’ data, in the sense that it often does not fulfil the needs of 

researchers and might compromise the integrity of a scientific inquiry. Schneeweiss 

and Avorn provide a useful overview of the various problems that can occur along 

the data collection processes (Schneeweiss and Avorn 2005).  

Leonelli has carefully studied the decisive epistemic work that data curators 

contribute to making data journeys possible. Many of these practices increase the 

quality of data in an essential way. This includes the formatting, cleaning, 

standardisation and classification of data as well as the annotation of data with 

metadata. Metadata provide information about the data’s context of generation and 

is essential to interpret the data and recontextualise it for a new use (Leonelli 2016, 

chapter 1). Depending on the level of curation that health data has been subjected 

to, its quality can differ greatly with regards to properties like structuring, 

standardisation or annotation with metadata. However, data curation has only 

limited influence on other quality dimensions such as the completeness or accuracy 

of the data. To illustrate the difference, I make a simple example of a weight 

measurement. Data curation ensures that the weight of a patient is recorded at the 

place, with the format and unit defined by a data model. Data curation transforms 

individual records to conform with the rules of the data model and might highlight 

or delete entries that show implausible values (such as negative values). If 

information about the context is available, data curators could add metadata about 
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how the measure was taken (with or without cloths)
16

. However, data curation has 

limited influence if a weight measurement was never recorded or deliberately 

exaggerated. I say a bit more what this limited influence is in the next chapter. 

Researchers and other stakeholders in the field are most concerned with those data 

quality issues that cannot be fully addressed by data curation. Such quality issues 

can generally not be corrected. Instead, the approach is to describe the extent of 

the problem and assess whether the use of the data for a specific purpose can 

tolerate the problem or not. This is what ‘fitness-for-purpose’ assessments are 

about. Here, I am taking the perspective of researchers and stakeholders and focus 

on the quality problems that cannot be fully addressed by data curation. 

 The list of potential epistemic problems that are inherent to such data is 

long (see, for example, Bower et al. 2017; Farmer et al. 2018). I briefly introduce 

three of the most common issues. The first problem is misrepresentation. If data 

collection is driven by the constraints and needs of insurers or healthcare providers, 

factors such as reimbursement incentives, time constraints or insurance coverage 

become part of the set of causal factors that are represented in the recorded data. 

Indeed, real-world data from electronic health records is often said to represent 

reimbursement realities rather than patient realities. An example is the ‘upcoding’ 

of diagnoses, which refers to physicians documenting a more complex diagnosis 

than the actual diagnosis for reimbursement purposes (Daniel et al. 2018; 

Schneeweiss 2019; Schneeweiss 2016).  

Missing data values is another ubiquitous problem in routine data sources. 

As data values are collected on an ‘as needed’ basis, even key data elements are 

often missing for patients if they are not clinically useful. Tempini and Teira 

illustrate this point with the example of the Welsh Electronic Cohort for Children, 

where data about maternal smoking was found to be missing in 50% of the cases 

(Tempini and Teira 2020, p. 217). These concerns were also evident in a study 

that exposed potential data quality issues in the Scientific Registry of Transplant 

Recipients (SRTR). Yanik et al. evaluated the completeness of the SRTR data 

regarding the reporting of cancers in transplant recipients. Cancer reporting is 

mandatory in the SRTR database because transplant recipients have an increased 

risk of cancer due to the lifelong use of immunosuppressive therapy. However, the 

 

16

 As Leonelli has shown these processes are far from trivial transformation processes but 

shape the evidential value of data and subsequent research greatly. This is particularly due 

to the choices for semantic standards, data models or metadata but also, as shown in her 

later work, by data security measures, see Tempini and Leonelli (2018). 
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researchers found that only 36% of cases reported in other cancer-specific registries 

were also reported in the SRTR database (Yanik et al. 2016).  

A third common problem is the insufficient coverage of such data. While 

completeness pertains to missing values for individual patients, coverage pertains 

to absence of entire data fields or patient populations on a database level. Coverage 

has been empirically studied in meta-research that evaluated the feasibility of 

replicating clinical trials with real-world studies. One study examined 220 clinical 

trials published in 2017 and found that only for 15% of these trials were all key data 

elements available in routine data sources. The other 85% of the trials measured 

an intervention, an indication or an outcome that was unlikely to be recorded 

accurately in the routine data (Bartlett et al. 2019). Another study limited the 

feasibility check to post-approval trials. These are trials that the FDA requires 

because an investigational drug was licensed based on an accelerated approval 

programme. Such post-approval trials are likely candidates to be replaced by real-

world studies under the FDA’s Real-World Evidence Programme. However, the 

authors’ conclusion is even more detrimental: for none of the 50 post-approval 

trials between 2009 and 2018 were all of the necessary data available in routine 

sources (Wallach et al. 2021). 

A related concern is about the underrepresentation of healthy patients in routine 

data. In routine settings, data collection is initiated by patients’ needs to contact 

healthcare services, which is often associated with the patient’s health status. This 

leads to the problem that healthier patients, mild symptoms or the simple 

worsening of an existing problem are commonly not covered or at least 

underrepresented in routine data sources (US Food and Drug Administration 

2021b).  

Based on the various risks associated with routine data, many scholars 

warned against its use for research. Tempini and Teira contrast these risks with 

established principles for data quality and conclude that ‘what counts as data 

depends on the risk threshold one works with’ (Tempini and Teira 2020, p. 219). 

It is widely accepted that routine data cannot uphold the quality standards of good 

data according to the rules of GCP. However, a key critique of the GCP guidelines 

is that they overcontrol the quality of data by imposing a rule-following attitude that 

unnecessarily increases the costs of clinical trials (Collins et al. 2020). The FDA 

and other regulatory agencies are aware of the risks posed by real-world data while 

at the same time intrigued by the promises of real-world data. The solution to deal 

with data quality issues in real-world data is a contextualised approach to data 

quality. Data quality assessment frameworks help to systematise the process of 
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identifying data that is just ‘good enough’ for use in research – or ‘fit-for-purpose’. 

Consequently, standardised frameworks to retrospectively assess the quality of data 

have become an indispensable piece of the puzzle for making repurposing efforts 

viable. Regulators and stakeholders in the field are currently developing such 

guidance and frameworks (European Medicines Agency 2022; US Food and Drug 

Administration 2021b). My aim in this Part II is not to show that real-word data is 

generally bad data. It is. My interest concerns data that has passed a data quality 

assessment test and is deemed fit-for-purpose for a specific research study. 

Throughout Part II of this thesis, I explore the epistemic risks involved in these 

assessments from different angles beginning by conceptual reflections on the 

notion of ‘fitness-for-purpose’ in section 3. 

Before I turn towards this discussion some broad implications of the quality 

of routine data are worth noting. The current state of ‘bad data’ as largely 

unavailable and incomplete creates epistemic tensions and substantially limits the 

settings in which such studies are suitable. As a response to these limitations of 

routine data, we are likely to witness two transformations of research and 

healthcare. Firstly, routine data will affect what clinical studies look like and which 

research questions are asked. Studies will move towards more hedged clinical 

research questions, broader patient populations and more robust outcomes 

because routine data would otherwise be unavailable. Whether such conceptual 

transformations are acceptable to those who rely on such evidence will require 

substantial negotiation on a general and contextual level. The shift from surrogate 

outcomes towards clinically relevant and robust outcomes, or the shift towards 

broader patient populations, will be welcomed even by critics. Other conceptual 

shifts may be more controversial. I discuss the conceptual shift in the notion of a 

medical intervention that accompanies pragmatic trials in Chapter 3. Here, I want 

to note that such conceptual shifts will be fairly common in real-world studies for 

all sorts of concepts involved, and I provide further examples in the case study 

below. Secondly, aspirations to use routine data for various purposes will change 

data collection and data handling at the source – in the clinics. Because the needs 

and incentives for data collection in routine settings diverges from data needs of 

science, some countries have already implemented new policies or programmes to 

incentivise the collection of data to make data reuse possible. Green and colleagues 

trace the practical ethical consequences of such ‘data work’ for health care in 

Denmark (Green et al. 2022), and I discuss their contribution in Chapter 5. This 

second transformation clearly belies the idea that routine data is ‘secondary use 

data’ that researchers can simply reuse at minimal additional costs. Moreover, 
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routine data might have the advantage of being representative of a wide variety of 

patients, yet this is often no longer the case once the data has been cleaned of all 

potential quality issues. Worse, the subset of patients with sufficiently high-quality 

data could represent generally less-healthy and better-cared-for patients. This 

concern has been raised repeatedly (Schneeweiss 2016) . With the current quality 

of real-world data, a phenomenon like the trade-off between internal and external 

validity occurs: Data that is of sufficient quality to generate unbiased evidence may 

represent a highly selective subset of patients. This tension belies what is believed 

to be one of the main epistemic strengths of such data. The generally ‘bad’ quality 

of real-world data is not a general obstacle for their use. However, the current ‘bad’ 

quality of such data plausibly decreases two of its main purported advantages. 

3. Good enough data: Data quality as 
fitness-for-purpose 

Traditional data handling practices were built on the assumption that data and its 

purpose are inextricably intertwined. For example, data protection laws often only 

allow the collection of data for a specific purpose. GCP guidelines therefore do not 

need to reflect about the purpose of data, because the existence of the data itself 

presupposes its purpose. In the realm of big data and data repurposing fitness-for-

purpose is a widely adopted success criterion for data quality across scientific 

disciplines (Floridi and Illari 2014). With the advent of routine data, clinical 

research recently also turned towards such an approach. For example, the EMA 

adopted the criterion in their data quality framework (European Medicines Agency 

2022), the FDA sometimes uses the related notion of ‘fitness-for-use’ in their 

guidelines (US Food and Drug Administration 2021b) and the revised ICH 

Guidelines on General Considerations for Clinical Studies adopted the notion as 

an overall quality criterion for clinical studies (International Council for 

Harmonisation 2021b). Such data quality frameworks rarely reflect on the meaning 

of fitness-for-purpose but proceed to disentangle the notion into ‘quality 

dimensions’ and propose metrics to measure them. However, this has been proven 

a notoriously complex tasks with a wide lack of convergence on how to best 

approach it (Illari 2014). The first systematic data quality framework for EHR data 

was developed only in 2013 by Weiskopf and Weng. A widely used framework 

was published Kahn and colleagues in 2016 (Kahn et al. 2016; Weiskopf and 

Weng 2013).  
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Clinical research has a well-established tradition of quality assessment for 

the design of clinical trials, examining properties such as randomisation or drop-

out rates. The question of data quality assessment is, however, relatively new. 

Within the philosophy of biomedicine, engagement with the notion of data quality 

or practices to ensure data quality is likewise relatively scarce. Stegenga approaches 

the question of information quality from the perspective of risk-of-bias assessment 

tools for clinical trials (Stegenga 2014). Canali turns to examples from biomedicine 

to argue for a general turn towards contextual data quality assessments (Canali 

2020). Leonelli discusses six methods of data quality assessment in biology: a 

review of the data by peers; the involvement of data curators and investigators; 

review of data through automated processes; crowdsourced assessments; ratings by 

future data users; and the reliance on specific technologies for data production. She 

explicitly argues against tying data quality to the use of particular technologies to 

avoid that quality data require a resource rich environment  (Leonelli 2017b).  

Philosophers of information and computer sciences have critically engaged with 

detailed epistemic questions of data quality frameworks such as those mentioned 

above (Floridi and Illari 2014). Bokulich and Parker recently developed an 

adequacy for-purpose account for data models (Bokulich and Parker 2021).   

In this section, I reflect on conceptual issues of the notion of fitness-for-

purpose and illustrate the difficulties to bridge the gap between this abstract notion 

and concrete criteria to measure it. Defining the notion’s success criteria involves 

various normative and theoretical commitments about the purpose of a study, the 

necessary conditions to achieve the purpose and the uncertainty that can be 

tolerated in this endeavour. Some interpretations of the notion might almost imply 

a free pass for the use of routine data while others might set the bar so high that it 

is nearly impossible for routine data to meet the requirements. Chapter 5 focuses 

on methodological issues of how to measure and evaluate data quality.  

Philosophers have thought about adequacy-for-purpose in the scope of 

scientific models for a while. Bokulich and Parker recently explicitly proposed 

adopting an adequacy-for-purpose criterion for data models (Bokulich and Parker 

2021). In the adequacy-for-purpose view on scientific models, the success of 

models is not solely determined by how closely a model represent their target, but 

rather whether the model can be used to achieve a desired purpose. The same 

criterion can be applied to data or data models. Data quality then is a part of a 

‘larger problem space’ where evaluating data models becomes a question about 

how well data ‘stands in a suitable relationship with the representational target, a 

data user, and available methodologies’ (Bokulich and Parker 2021, p. 11).  
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Following Bokulich and Parker, we can define adequacy-for-purpose as 

follows: ‘[A] dataset or data model D is adequate for purpose just in case the use 

of D in instance I would (or would be very likely to) result in the achievement of P’ 

(Bokulich and Parker 2021, p. 11) . Fit-for-purpose, in their account, is simply the 

graded notion of adequacy-for-purpose. The concept can be used in cases where a 

certain purpose can be achieved to a greater or lesser extent. Bokulich and Parker 

also propose distinguishing between two meanings of ‘adequacy-for-purpose’, 

namely, adequate-in-an-instant and adequate-given-resources. The second term 

refers to situations where the adequacy might depend on access to an extended set 

of resources, such as technologies to successfully use the data and achieve the 

intended purpose. For example, data might not be adequate-in-an-instant if the 

researcher lacks access to a reference dataset that would help to correct errors in 

the data. However, the same data might be adequate-given-resources if one has 

access to such reference data. The distinction is not always clear-cut, because using 

data successfully always requires certain resources. The distinction however hints 

at the interesting aspect that there is a wide range of additional resources that could 

be used together with a set of data. As I show in my case study in the next section, 

the FDA inexplicitly included various additional resources in their assessment to 

make up for potential shortcomings of the data. 

To put the criterion to use, researchers require first a good understanding 

of the purpose and the epistemic and non-epistemic properties of data needed to 

achieve that purpose. The common purpose of data is to answer a research 

question. Yet, as Bokulich and Parker argue, the ultimate purpose could also be a 

practical aim that is only mediated by the epistemic aim of answering a question 

(Bokulich and Parker 2021). In the context of clinical trials, the purpose of data is 

often to produce evidence to enable regulatory decision-making or healthcare 

decision-making. The ICH recently revised their Guideline on General 

Considerations for Clinical Trials and explicitly defined the quality of a clinical 

study as fitness-for-purpose. They briefly reflect on the purpose of a study as 

follows:  

The purpose of a clinical study is to generate reliable information to 

answer the research questions and support decision-making while 

protecting study participants. The quality of the information generated 

should therefore be sufficient to support good decision-making. 

(International Council for Harmonisation 2021b, p. 6) 

Following the ICH’s reflection, data quality depends on requirements of 

data for good (regulatory) decision-making. Depending on one’s view what good 
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decision-making entails, data might require different epistemic and non-epistemic 

properties to be fit-for-purpose. The traditional GCP approach is to rely on data 

from highly controlled trials with highly accurate and complete data. Pragmatists, 

however, might hold that highly accurate data from ideal clinical trials is 

epistemically inadequate to support good decisions, because these data are not the 

right kind of evidence to support the use of treatments outside the context of the 

trial (for a discussion see Chapter 3). Irving et al. for example have argued that the 

rules of GCP impact how well data represent routine clinical care which 

compromises generalisability (Irving et al. 2017). The purpose dependency of data 

quality runs deep. Illari argues that purpose-dependency of data quality can even 

affect the meaning of quality dimensions, such as accuracy – and I agree (Illari 

2014). The concern for pragmatism illustrates her point. If measuring ‘real-world’ 

effects is the purpose of a study, ‘bad’ data could be accurate data precisely because 

it represents the local variability one is interested in. By contrast, ‘good data’ would 

be inaccurate in this context because it does not accurately represent local realities. 

Furthermore, Bokulich and Parker propose that the adequacy-for-purpose 

of data models can also depend on pragmatic criteria analogous to the adequacy-

for-purpose of scientific models. In their view, pragmatic criteria could incorporate 

the need for fast or cheap availability of data into fitness-for-purpose evaluations 

(Bokulich and Parker 2021). The FDA’s criteria of provenance – the property that 

data can be traced back to its origins – can be understood as such a pragmatic 

criterion.  

For putting the fitness-for-purpose criterion to use, researchers also require 

a good understanding of both the degree of informativeness and the acceptable 

uncertainty to achieve the purpose. Unlike data controlled by GCP, routine data is 

generally not fully accurate and complete. The fitness-for-purpose approach 

acknowledges that perfect accuracy and completeness might not be required to 

achieve a certain purpose. Instead, all that is needed is that data are sufficiently 

accurate, complete, relevant and others. Consequently, researchers need to 

determine thresholds for sufficiently accurate, complete or relevant data for 

achieving the intended purpose. There are several ways to approach this. A way to 

define such a threshold recommended in the FDA’s guidelines is by saying that a 

level of uncertainty is acceptable as long as it does not change the interpretation of 

the results. Another way to approach the issue is by balancing uncertainty in light 

of the social and ethical implications of error. Thus, data might be said to be 

sufficiently complete if it is meant to answer a question with no ethical stakes 

attached. A third approach to accommodate inaccurate data is by hedging the 
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scientific hypothesis. To use the example of Bokulich and Parker: A rain gauge 

reading that shows 40 mm on average, but is known to systematically overestimate 

the amount of rain, can still be used to reliably answer the question of whether the 

rain was less than 100 mm, while it cannot be used to estimate the exact amount of 

rain (Bokulich and Parker 2021). Here, inaccurate data is sufficiently accurate if 

the question asked is sufficiently hedged. Rephrasing effectiveness claims in terms 

of therapeutic actions rather than pharmaceutical properties of drugs, as I proposed 

for pragmatic clinical trials in Chapter 2, is another example of hedging to account 

for uncertainties in the data. 

Operationalising fitness-for-purpose is a complex task. The reflections on 

the notion show that its success criteria depend on various normative and 

theoretical commitments. They include one’s view what good decision-making 

entails, the epistemic and non-epistemic properties of data to achieve a specific 

purpose as well as commitments about the necessary level of informativeness and 

certainty. Nonetheless, Illari holds that fitness-for-purpose judgements are deeply 

relational but not subjective judgements. That is, once the user has determined the 

purpose, evaluating whether some dataset is fit-for-purpose only depends on 

objective judgement. Even if this view is correct under some sense of objectivity, 

without making explicit what the entailed commitments are, the notion does not 

sufficiently constrain what data might pass the fitness-for-purpose test. Some of 

these commitments almost imply a free pass for the use of routine data while others 

might set the bar so high that it is nearly impossible for routine data to meet the 

requirements.  

Data quality frameworks usually disentangle the notion into various quality 

dimensions (such as accuracy and completeness) as well as data quality categories 

(such as intrinsic, foundational and contextual). The main issue that philosophers 

and scientists have identified with these attempts is that there is little convergence 

on how to divide the concept of data quality into quality dimensions and quality 

categories (Illari 2014; Weiskopf and Weng 2013). To illustrate, the list below 

shows the quality dimensions and their definitions suggested in a pioneering 

framework by Weiskopf and Weng. 

⎯ Completeness: Is a truth about a patient present in the EHR? 

⎯ Correctness (accuracy, reliability): Is an element that is present in the EHR 

true? 

⎯ Concordance (coherence): Is there agreement between elements in the 

EHR, or between the EHR and another data source? 

⎯ Plausibility: Does an element in the EHR make sense in light of other 

knowledge about what that element is measuring? 
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⎯ Currency (timeliness): Is an element in the EHR a relevant representation 

of the patient state at a given point in time? (Weiskopf and Weng 2013, 

p. 145) 

A recent review of data quality frameworks found that more recently, researchers 

have expanded the frameworks to include the following domains and definitions 

(Bernal-Delgado et al. 2022): 

⎯ Relevance: pertaining to the availability of data items in a data model 

⎯ Coverage: pertaining to the population and timeframe that is covered by a 

database 

Finally, the FDA added domains that are particularly relevant in the regulatory 

context, along with the following definitions in each instance: 

⎯ Provenance: An audit trail that accounts for the origin of a piece of data (in 

a database, document or repository) together with an explanation of how 

and why it got to the present place. 

⎯ Traceability: Permits an understanding of the relationships between the 

analysis results (tables, listings, and figures in the study report), analysis 

datasets, tabulation datasets, and source data.  

 

The lack of convergence in the frameworks for data quality is an obstacle for 

scientists to make progress in the field because it hampers the sharing of experience 

and expertise (Illari 2014). Leonelli has likewise noted that the diversity of data 

quality assessments make it difficult to establish international standards (Leonelli 

2017b). Some scholars have argued in favour of abandoning the search for data 

quality dimensions entirely, because the dimensions do not perform any useful 

function for the development of concrete metrics to measure the data quality 

(Embury and Missier 2014). Others attempt to support researchers with a new 

approach to mapping quality dimensions that overcomes the conceptual 

confusions that have hampered progress (Illari 2014). Thus, although there exists 

an abundance of such frameworks, they are barely helpful to guide scientific 

practice. 

4. Case study: FDA approval of Prograf 
In this section, I introduce the second case study to illustrate the epistemic 

opportunities and risks that the contextualised approach to data quality entails. It 

is the first study submitted to the FDA under their new real-world evidence 

programme. The case is fascinating because the kind of evidence submitted to the 

FDA diverges considerably from the gold standard requirements. At the same time, 
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the study is neither particularly risky nor innovative. It appears that the researchers 

achieved their purpose with considerable efficiency – and probably a piece of luck. 

The case illustrates the opportunity this approach entails to recognise various forms 

of evidence as sufficient for good decision-making. However, it also raises various 

serious concerns about the risks entailed for future applications.  

Prograf is the proprietary name of an immunosuppressant drug widely 

used to prevent rejection of solid organ transplantation. It contains the active 

ingredient tacrolimus, a calcineurin inhibitor (CNI) that inhibits T-lymphocyte 

activation. Despite there being a variety of immunosuppressant available, CNIs are 

a main component of most immunosuppressive regimens. Tacrolimus was initially 

approved in the US for liver transplants in 1994 and is marketed by Astellas 

Pharma US, Inc. In July 2021, the FDA decided to extend the label to adult and 

paediatric patients who receive lung transplantation – a paradigm decision which 

was exclusively based on real-world evidence. On 16 July, the FDA announced in 

a press release:  

Today, the U.S. Food and Drug Administration approved a new use for 

Prograf (tacrolimus) based on a non-interventional (observational) study 

providing real-world evidence (RWE) of effectiveness. … This approval 

reflects how a well-designed, non-interventional study relying on fit-for-

purpose real-world data (RWD), when compared with a suitable control, 
can be considered adequate and well-controlled under FDA regulations. 

(US Food and Drug Administration 2021a, my emphasis) 

An amendment to the Food, Drug and Cosmetics Act in 1962 introduced the 

requirement that only ‘adequate and well-controlled clinical studies’ were 

acceptable as evidence for regulatory approvals. This amendment marked the 

advent of the RCT becoming the regulatory gold standard for such assessments. 

Later, a more specific interpretation of the requirement was included in the US 

Code (21 CFR 314.126) (Teira 2020). The amendment to the US Code on the use 

of real-world evidence, which came with the 21st Century Cures Act, states that the 

use of real-world evidence should not be interpreted as undermining these well-

established quality criteria. The FDA’s press release on 16 July clearly stated that 

the approval of Prograf met these evidential requirements because the submitted 

study was ‘well-designed’, was based on ‘fit-for-purpose data’ and used a ‘suitable 

control’. In their publication, the research team mentions the use of real-world 

evidence even as one of two main strengths of the study (Erdman et al. 2022, 

p. 1241). I examine the available evidence behind these claims and identify 

relevant epistemic concerns. I argue that accepting such evidence as proof of 
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efficacy cannot be explained by the quality of the study and the submitted data 

alone; instead, additional contextual evidence did most of the epistemic work.  

Before delving into the case, I provide a few more helpful details about the 

regulatory context. At the centre of attention in the FDA’s Real-World Evidence 

Programme is the use of such evidence to support the efficacy of treatments for 

new indications and to fulfil post-approval requirements.
17

 The approval of a new 

indication means that the use of medicines that are already available on the market, 

after a regular approval procedure, is extended for treating another disease or for 

another population or for prescribing a different dosage. A post-approval 

requirement means that the medicine is granted approval that is conditional on 

additional evidence about safety and efficacy. The most innovative component of 

the current development concerns the exclusive use of real-world evidence for 

efficacy estimates, i.e., its use to substitute clinical trials and not merely to 

supplement trials. The use of such evidence in a supplementary way – to partially 

replace data collection within clinical trials or in post-marketing safety studies – has 

a longer tradition. Studies about these experiences with real-world data for these 

supplemental uses have been published (Franklin et al. 2020b; Jonker et al. 2022; 

Mahendraratnam et al. 2022). Hence, when the FDA announced its first approval 

of Prograf based on real-world evidence, this was an approval to extend the 

indication of tacrolimus for use in lung transplantations, exclusively based on real-

world evidence.  

My analysis of the case is based on the following available materials. First, 

the FDA assessed the effectiveness of tacrolimus through a multi-discipline review. 

The results were published together with additional reviews and the label (rules on 

how to prescribe and administer the drug) on the FDA’s website (CDER 2021). 

The FDA also published a press release, and expert discussions were held in which 

 

17

 The relevant section of the 21st Centuries Cures Act (21 CCA) is section 3022, stating 

‘The FDA must evaluate and issue guidance on the use of evidence from sources other 

than clinical trials to support approval of a drug for a new indication.’ Section 3022 of the 

21 CCA initiated the development of section 505f of the Federal Food, Drug and 

Cosmetics Act titled Utilizing Real-World Evidence (US Code, Title 21, Chapter 9, 

Subchapter 5, §355g), which defines ‘real-world evidence’ and further develops the 

mandate to say that the two purposes for which the use of real-world evidence must be 

evaluated are: ‘a) to approve of a new indication of an already approved drug’ and ‘b) to 

fulfil post approval study requirements’. Available online: https://www.congress. 

gov/bill/114th-congress/ house-bill/34?s=2&r=34 last accessed 10 October 2021. The 

article by Fraile Navarro et al. (2021) on the Salford Lung Study was so timely that they 

refer to an earlier version of the 21CCA (H.R.6 instead of H.R.34), where the relevant 

section 2062 still said ‘[the FDA] must evaluate the use of evidence from clinical 

experience (in place of evidence from clinical trials) and establish a streamlined data 

review program.’ The explicit mention of ‘clinical experience’ is an unfortunate wording 

that did not pass into law. 
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stakeholders and third parties discussed details of the case (US Food and Drug 

Administration 2021a). The research team published their findings in the journal 

Transplantation (Erdman et al. 2022). Second, my analysis draws from a webinar 

that was hosted by the real-world evidence special interest group of the Statistics in 

the Pharmaceutical Industry Association (PSI RWD SIG 2021). In the webinar, 

various stakeholders involved in the planning, conduct and review process of the 

case discussed details about the process. The speakers were:  

⎯ Richard Croy, Global Statistical Lead at Astellas Development 

⎯ David Nimke, Real-World Evidence US Lead at Astellas 

⎯ Josi Wolfram, Clinical Development Applications Lead at Astellas 

⎯ Tim Weaver, Statistician at Chronic Disease Research Group (CDRG), 

operating the SRTR 

⎯ Tae Hyun (Ryan) Jung, Biostatistics Reviewer at the FDA 

 

When quoting from the webinar, I refer to the speaker by their last name and 

indicate the time-point in the video in brackets. No written transcripts or audio-

visual recording are available from the FDA Advisory Committee because the 

extension approval of Prograf did not require the involvement of the Committee, 

whose role is to advice only on controversial cases. 

4.1. The primary evidence submitted to the FDA 

‘A well-designed, non-interventional study’ 

The approval of the medicine was based on an observational study that the FDA 

evaluated as being ‘well-designed’. The study included 20,080 US patients, during 

nearly a 20-year period (1999–2017), who received lung transplantations. The 

primary outcome was a composite outcome of either death or graft failure after one 

year; it allowed for estimating a clinically highly relevant outcome of overall graft 

survival after one year. Because patients usually receive tacrolimus as a regimen, 

which means a combination of different immunosuppressive drugs, the 

effectiveness of tacrolimus was measured as a regimen rather than an individual 

component. The study had few inclusion and exclusion criteria, and only 12% of 

patients were excluded from the study because of the criteria.  

A main complexity of the design and statistical analysis was a problem that 

is common to observational studies, called ‘immortal time bias’. This bias usually 

happens when researchers assign participants to treatment groups based on an 

observation from after the beginning of the study, such as the filling of a 
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prescription. In this case, the beginning of the study was intended to be on the day 

of the transplant; however, data on the patient’s treatment regimen was available 

only at the day of discharge from the hospital. Patients must have survived the time 

lapse between study entry and group assignment in order to be allocated to the 

treatment group. Hence, they contributed ‘immortal’ time to the treatment group. 

Once recognised, immortal time bias is usually simple to correct for. The Astellas 

research team had two options to account for the problem. They chose one option 

as their primary analysis (left truncation), which constituted the primary evidence; 

the other option was used as a sensitivity analysis (incident user design). Sensitivity 

analysis is used to test the robustness of results, whereas the primary analysis 

provides the main results for the assessment.
18

 The team’s reasoning for choosing 

one option over the other was interesting:  

The reason for choosing left truncation over the incident user design was 

based on the idea that we would be able to have language in our label in 

the future that would be consistent with the way clinical trials were designed 

so we would be able to say the risk of some outcome post-transplant was 

this, that's a little bit different than saying the risk of some outcome post-

discharge date is this other estimate. (Nimke, 34:35) 

Hence, the team wanted to have effectiveness claims from their study that are 

conceptually familiar from clinical trials. In a prospectively planned clinical trial 

researchers would generally estimate the treatment effect of the 

immunosuppressant drug directly after the transplantation. One of the two 

solutions to analyse the routine data could only estimate the treatment effect after 

hospital discharge, therefore they opted for the other solution. Unfortunately for 

the team, the solution they chose for their primary analysis resulted in an 

uninterpretable and imprecise estimate; hence, the team conducted another post-

hoc analysis to account for the difficulties. Ultimately, by decision of the FDA, the 

results of the sensitivity analysis (which represented the second solution to the 

immortal time bias and were consistent with the results of the post-hoc analysis) 

were accepted as the primary analysis and reported in the label. 

 

 

 

 

18

 A sensitivity analysis is conducted to test the impact of key assumptions in the statistical 

design. If results of the sensitivity analysis are consistent with the primary analysis and 

support similar conclusions, a result is robust under different key assumptions. The 

primary analysis, however, is usually the one that constitutes the primary evidence about 

efficacy. 
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‘Suitable control’ 

The team initially planned a comparative study to compare a tacrolimus-containing 

regimen with another regimen used in clinical practice. They suggested a 

comparative analysis using Cox modelling, which is commonly used to investigate 

associations between survival time and predictive risk factors. Surprisingly, in pre-

approval discussions with the FDA, the FDA clarified that their decision would not 

be based on this comparative analysis. According to a speaker in the PSI webinar, 

the FDA indicated instead that ‘the rate of death or loss of graft in the tacrolimus 

IR + MMF arm will be our primary consideration to determine the efficacy of this 

product’ (Nimke, 36:13). Thus, the primary comparison considered by the FDA 

was not the comparative analysis but ‘the well-documented natural history of a 

transplanted drug with no or minimal immunosuppressive therapy’ (US Food and 

Drug Administration 2021a).  

Wolfram elaborates that the FDA approached the team towards the end of 

the review period to ask for a ‘literature based review of historical patient outcomes 

in the absence of immunosuppressive therapy, … in particular to elucidate the 

contribution of tacrolimus to the triple regiment’ (Wolfram, 49:15). Even more 

surprisingly, the main reason indicated by the FDA for the recommendation was 

that ‘the non-randomised comparator groups might be ‘too different’ to be 

compared, even after adjusting for confounders’ (Nimke, slide 30). The historical 

literature review, as reported in the multi-discipline review by the FDA, tells the 

story how – and partially why – transplants (including lung transplant) were made 

possible by the invention of the first CNI medicine, cyclosporine. It traces the 

history of lung transplantation in humans, based on the earliest case reports as well 

as nonclinical studies on animals, mechanistic evidence and comparative reasoning. 

The conclusion was that ‘Both the nonclinical and the clinical lung transplantation 

outcomes using cyclosporine, clearly prove the contribution of cyclosporine to 

success which otherwise would not be possible’ (CDER 2021, p. 14). 

As mentioned above, the US Code not only states that studies must be 

adequate and well-controlled but also provides a more precise interpretation of this 

phrase under different circumstances. While the use of a historical control can be 

adequate under particular circumstances, the use of a historical literature review – 

including case studies on different treatments and indications – is quite unusual. 

Acknowledging this, the FDA reasoned that  

While historically controlled studies usually involve a treatment group with 

drug assignment according to a protocol (as in a single-arm clinical trial), 

the regulations do not require such a design when comparing outcomes of 

treatment and historical control groups. (CDER 2021, p. 16) 
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It is certainly puzzling that the FDA considered a historical literature review a 

‘suitable control’ and sufficient for the study to count as ‘well-controlled’. Even 

more puzzling is that such a control was deemed more acceptable than a 

comparative design that would adjust for confounders, because the groups could 

be ‘too different’ despite the adjustment.
19

  

 

‘Fit-for-purpose real-world data’ 

Many discussions about the quality of real-world evidence revolve around the 

quality of data. When communicating their decision, the FDA and other 

stakeholders repeatedly adopted the term ‘fitness-for-purpose’. In one section in 

their press release, the FDA specifies that the notion of fit-for-purpose refers to the 

dimensions ‘relevance’ and ‘reliability’ of data, which are developed in detail in a 

guidance document on assessing the quality of real-world data (US Food and Drug 

Administration 2021b). I discuss the specifics of this document in Chapter 5 

together with an in-depth analysis of the methods and reasoning used by Astellas 

and the FDA to evaluate the quality of the data. For now, I briefly introduce the 

database and expose the overt limitations of the data that the team was willing to 

accept.  

The database used for the study was the US Scientific Registry for 

Transplant Recipients, (SRTR). As its name says, this is a registry database. Such 

databases collect observational data on a specific area, for example a disease or a 

medical device, and they are built to serve scientific and sometimes policy 

purposes. However, registries are intended to be agnostic towards specific research 

questions; they do not follow the strict rules for data collection and management 

that guide clinical trials. Therefore, they pose similar problems in data quality as 

other sources of repurposed health data, even though they often contain more 

disease-relevant information than other sources.  

 

19

 The publication from the study did report the comparative treatment effects in terms of 

a proportional hazard ratio, one estimate unadjusted and two adjusted. The reported 

adjusted covariates are mentioned in a footnote alongside the results table and include a 

multivariable proportional hazard model adjusting for age at transplant, recipient sex, lung 

transplant procedure, transplant time period, diagnosis, BMI, race, ethnicity, LAS at 

transplant, serum creatinine (mg/dL) at transplant, eGFR [estimated glomerular filtration 

rate] at transplant, total bilirubin (mg/dL) at transplant, length of hospital stay (days), 

donor age group, donor race, lung total ischemia time (hours), donor–recipient weight 

ratio, donor–recipient CMV matching and induction with IL-2 receptor antagonists. 

Erdman et al. (2022, p. 1239) While the team acknowledges the possibility of residual 

confounding for unadjusted covariates, there is no discussion about the choice of 

covariates.  
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Since 1987, the SRTR has collected data on all solid organ transplants in the 

US, by law. The database is generally acknowledged as highly representative of the 

transplant population. It has been used by the Organ Procurement and 

Transplantation Network (OPTN) and the transplant community for decades, 

mainly to facilitate the regulation of organ donation and allocation in the US. It 

allows practitioners to register candidates for transplants, match donated organs to 

candidates and submit data on donors, candidates and recipients, both before and 

after the transplants. Moreover, the law requires the mandatory and 

comprehensive reporting of transplant procedures and outcomes into the registry, 

with a focus on the ‘breath of data rather than its depth’ (Waves, ca. 51:00).  

The largest part of the data is collected by the OPTN and comes from 

various sources such as transplant programmes or histocompatibility laboratories. 

Such data is collected through specific forms and guided by OPTN policies on the 

timely collection of data. The data is supplemented by additional data sources, 

particularly the Death Master File at the National Technical Information Services. 

Both the robust operational structure and the use of a trusted external data sources 

were recognised by the FDA as contributing to the quality of data contained in the 

database. To assess the relevance of the data sources, the research team compiled 

a list of the data elements needed in an ideal scenario and assessed the availability 

of the data element in different data sources. They found that while none of the 

data sources contained all the data elements for the ideal case scenario, the SRTR 

was a ‘research-driven data collection that is generally relevant to the disease, 

potentially representative although continuity might be lacking’ (Nimke ca. 21:00).  

In addition to the robust operational structure of the database, Astella 

collaborated with local experts regarding the database. The Chronic Disease 

Research Group (CDRG) at the academic Hennepin Healthcare Research 

Institute in Minneapolis has operated the SRTR database for decades. Astellas was 

using data over a 20-year period, during which data elements had changed. Faced 

with the decision to either insource or outsource the data management and analysis, 

they opted for outsourcing to the CDRG. The CDRG is responsible for providing 

statistical and other support to the OPTN, and in that role, CDRG works with the 

data to publish various publicly available reports. Examples are programme-

specific reports and organ-specific reports. Acknowledging the added value of the 

GDRG expertise, the Clinical Development Applications Lead at Astellas 

confirmed that ‘We figured having their experience and expertise with analysing 

these data would be a value add and I can say it was. … they know the data collection 

and reconciliation steps best and so could better communicate considerations in 
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that regard’ (Wolfram, 51:33). Leonelli and others who applied her framework 

have repeatedly highlighted the local expertise that is required to interpret and 

analyse repurposed data (Leonelli 2016). In this case, the investigators 

acknowledged this concern and planned their collaboration accordingly.  

Despite the overall promising outlook of the database as potential evidence 

for the approval of Prograf, the researchers had to deal with considerable 

limitations. First, as discussed, the team had to account for the problem of 

treatment exposure data only being available from the day of hospital discharge 

rather than from the day of the transplant. The lack of this data traces back to the 

policies on the timely collection of data that govern the registry (Organ 

Procurement and Transplantation Network 2023). According to these policies, the 

data on which drug regimen patients received was collected on the Transplant 

Recipient Registration Form, which the data collection policy states must only be 

filled in at hospital discharge. 

Second, for the primary outcome, data was available and was reported with 

exact dates, which allowed for the desired time-to-event analysis. However, the 

analysis of secondary outcomes was limited to coarse-grained time intervals because 

the data did not reflect the precise dates of these events. The reason traces back to 

the precise wording of the data collection forms and rules. For example, to assess 

whether a patient has been hospitalised, the follow-up form asks ‘Has the patient 

been hospitalised since the last patient status update?’ – which can be answered by 

either yes or no. Yet the time interval since the last patient status update spans 

usually an entire year (Waver, 50:00).  

A third limitation of these data is that tacrolimus is always administered 

together with other immunosuppressants. Consequently, the data did not allow for 

estimating the treatment effect of tacrolimus in isolation but only as one component 

among others in a regimen-based therapy.  

The final and most serious limitation concerned the dosage. Tacrolimus has 

a narrow therapeutic window, which means that the range of drug concentration in 

the blood between the minimal effective and the minimal toxic concentration is 

narrow. The dosing recommendation on the label therefore only suggests an initial 

dose together with recommended ranges to target trough levels that need to be 

tailored to patients (target tough levels are the desired minimum concentration of 

the drug in a patient's blood at the end of the dosing interval, just before the next 

dose is given). The problem is that ‘large amounts of data are needed to support as 

such a label recommendation’ (Croy 09:40). Obtaining such data was a challenge 
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for the submission because none of the databases the team could access, including 

the SRTR, contained data on target trough levels (Nimke 26:54). 

Despite these shortcomings the FDA and Astellas considered the data fit-

for-purpose. However, an undetected data-quality issue was probably the main 

reason for the problem with the primary analysis that resulted in an uninterpretable 

and imprecise estimate. Prompted by this unusual finding, the researchers 

scrutinised the data. They found that a few patients were reported for hospital 

discharge at the day of the transplant, which clinical experts think is implausible. 

Unfortunately, the method of analysis they chose depended on the number of 

patients who were discharged at the time of the first event and was highly sensitive 

to early events. During their review, the FDA was interested to understand the 

reasons for the data indicating these early hospital discharges. The team reasoned 

that it could either be an error in the data (e.g., a mix-up of dates) or could mean 

there was no proper distinction between patients who were discharged and those 

who were transferred to another hospital. All parties acknowledged that they could 

not go beyond speculation. Given the retrospective nature of the study; going back 

to the research site to verify what had happened was not an option. Thus, despite 

the vast data, a few patients with incorrect data about their hospital discharges were 

sufficient to render the primary analysis uninterpretable (CDER 2021, see section 

8.3 Statistical Issues). 

To make up for this problem, the team conducted a post-hoc analysis in 

which they set the dates of these early events to a later date. Both the post-hoc 

analysis and the sensitivity analysis that estimated the treatment effect after the day 

of discharge now provided precise treatment effects. The FDA decided to accept 

the sensitivity analysis as the primary analysis and granted approval for the 

medicine. The label now states 

 14.4 Lung Transplantation 

The efficacy and safety of PROGRAF-based immunosuppression in 

primary lung transplantation were assessed in a noninterventional 

(observational) study using data from the US Scientific Registry of 

Transplant Recipients (SRTR). The study analyzed outcomes based on 

discharge immunosuppression treatment regimen in recipients of a 

primary lung transplant between 1999 and 2017 who were alive at the time 

of discharge. In adult patients receiving tacrolimus immediate-release 

products in combination with MMF (n=15,478) or tacrolimus immediate-

release products in combination with AZA (n=4,263), the one-year graft 

survival estimates from time of discharge were 90.9% and 90.8%, 

respectively. […] (CDER 2021, 14.4) 
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Let’s take stock. The SRTR is generally a highly relevant, disease-specific and well-

established database. It contains data on all transplant patients in the US since 

1987, among whom almost all patients during a 20-year period were included in 

the study. The primary outcome was a robust outcome and was reliably captured 

in the database. However, the team accepted the data as ‘fit-for-purpose’ despite 

the known and relevant limitation that dosing recommendations were unavailable 

in the data and treatment effects could only be estimated for entire regimens, and 

only at the day of hospital discharge. Moreover, an important data-quality issue 

went undetected. To account for the failed analysis, the team made a post-hoc 

switch between the primary and sensitivity analyses.  

Confidence in accepting the evidence as ‘adequate and well-controlled’ 

proof of efficacy clearly cannot be explained by the design being ‘well-controlled’, 

a ‘suitable control’ or the ‘fit-for-purpose real-world data’ alone. Indeed, in their 

multi-discipline review, the FDA review team provided further justification for 

accepting the study as fulfilling the ‘adequate and well-controlled’ requirements by 

referring to additional contextual evidence. I identify three kinds of contextual 

evidence that further supported the evidence and the FDA’s assessment that the 

evidence was ‘adequate and well-controlled’. Such evidence was the unambiguous 

natural history of the disease, the large effects and the sufficient comparability of 

other indications. 

4.2. Three kinds of contextual evidence  

Unambiguous natural history of disease 

In the multi-discipline review, the FDA justified the use of the natural history as 

the control in reference to the requirements for well-controlled studies as outlined 

in the US Code. These requirements mention two examples where historical 

controls can be considered adequate: diseases with ‘high and predictable mortality’ 

and treatments in which ‘the effect of the drug is self-evident’. A brief look at the 

history of transplants shows that lung transplantation is a clear case of the first kind. 

For example, the historical literature review mentions a non-interventional study 

with 36 patients in the late 1960, with a median survival of less than two weeks and 

no patients surviving to one year. Wolfram commented on the results from their 

historical literature review: ‘Essentially with no or with minimal 

immunosuppressive therapy, the graft survival rate is – well there isn’t really a 

survival rate’ (Wolfram 49:52). Not only was mortality high but the outcome also 

occurred rapidly, within a few weeks. With such high and rapid mortality in the 

absence of treatment, there is no need to account for the natural remission of 
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transplant patients in the effect estimate. This point limits an important source of 

bias in the study and the effect estimate.  

Large effects 

The FDA reported in their press release that in the study ‘a dramatic improvement 

in outcomes was observed among lung transplant patients receiving Prograf as part 

of their immunosuppression medications’. They did not understate that point. The 

graft survival rate for the two tacrolimus-containing regiments after one year were 

above 90% in adults and slightly lower for paediatric patients. Mortality without 

immunosuppressive medicines is around 100%, and the effectiveness of the 

treatment regimens is thus remarkable. Experts widely acknowledge that the impact 

of various biases is irrelevant given such large effect sizes, because it is implausible 

that mere bias could explain such strong treatment effects. Therefore, the absence 

of bias in such cases would not change the interpretation of the results. Accordingly, 

the FDA wrote as follows in their multi-discipline review: 

The division acknowledges that given the lack of contemporaneous data 

collection, differences may exist between the treatment and the historical 

control groups. The SRTR data go back to 1999 and some differences 

would be expected between patients in the SRTR and historical controls 

due to changes in baseline characteristics of patients receiving 

transplantation, surgical techniques, and supportive medical care over 

time. Nonetheless, the clinical benefit seen with the tacrolimus-containing 

immunosuppressive regimen studied is so large compared to historical 

controls that differences in baseline characteristics, surgical technique, 

and/or supportive care between groups are highly unlikely to explain the 

outcome differences, and therefore do not change the conclusion of 

effectiveness. (CDER 2021, pp. 17–18) 

 

Sufficient comparability of other indications 

In several instances, the FDA used analogous reasoning about different indications 

and different drug regimens to support their conclusion. Evidence from 

randomised trials on other solid organ transplants was used as confirmatory 

evidence of effectiveness; evidence of safety was equally supplemented from other 

solid organ transplants; and dosing recommendations were analysed from clinical 

guidelines and extrapolated from patients receiving heart transplants. Finally, the 

individual contribution of tacrolimus within the regimen was inferred mostly based 

on the effect of another CNI medicine regarding kidney transplants.  

 Generally, the FDA requires two rather than one adequate and well-

controlled study to provide ‘substantial evidence’ for approval. For certain cases, 

the US Code foresees an exception to this rule if confirmatory evidence is 

provided. After its initial approval for liver transplantation in 1994, the label of 
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Prograf had been extended twice already. The first was in 1997, for kidney 

transplantation, and the second in 2006 for heart transplantation. Although Astellas 

did not submit any additional evidence or link to previous submissions (Croy, ca. 

09:00), the FDA stated that they considered evidence from these RCTs on other 

solid organ transplant settings as confirmatory evidence of effectiveness. In the 

multi-discipline review, the FDA referred to the mechanistic comparability of the 

different indications and reasoned as follows:  

Alloimmune response to these transplanted organs is mechanistically 

similar, regardless of the organ involved, and rejection is known to occur 

in the absence of therapy. Therefore, and based on these related uses, it is 

scientifically reasonable to conclude that tacrolimus as part of an 

immunosuppressive regimen should decrease and delay rejection in lung 

transplantation, consistent with the findings of the SRTR study. (CDER 

2021, p. 58) 

Hence, due to mechanistic comparability between alloimmune responses of 

different transplanted organs, earlier RCTs were used as confirmatory evidence 

together with the SRTR study. These studies jointly provided substantial evidence 

of effectiveness as required by the US law. Similarly, in the scientific publication of 

this study, the team mentions published clinical trials comparing tacrolimus with 

cyclosporine; these trials provided additional evidence that was congruent with the 

team’s own results:  

However, the observed rates of rejection at 1 y posttransplant (25.3% in 

the TAC + MMF group compared with 31.3%–49.4% in the other groups) 

are in line with the results of multicenter, prospective, randomized trials in 

lung transplant recipients showing rates of acute rejection at 1 y 

posttransplant to be numerically lower in TAC + MMF than CsA + MMF 

groups. (Erdman et al. 2022, p. 1240) 

Despite the accepted relevance of the database, it did not contain the necessary 

data on dosage. Evidence for dosing recommendations was again found in external 

sources. According to the multi-discipline review, the information came from 

published ‘clinical practice guidelines’ other ‘published studies’ and by 

‘extrapolation from the dosing information for heart transplantation’ (CDER 2021, 

pp. 14–15). Astellas’ lead investigator addressed the FDA’s decision as follows:  

Most interesting to me was the agreement to have label recommendations 

for dose based on published literature, and notably it was primarily from 

heart transplant patients. … But that said though, there was a scientific 

connexion made between a lung and heart transplant to support this, it 

wasn't just empty. (Croy 14:46) 
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The review did not state more clearly which scientific connection was made to 

support the extrapolation of dosing recommendation. The connection that 

probably served this purpose was a comparison of pharmacokinetics (i.e., the 

process of absorption, distribution, metabolism and excretion of a drug) between 

lung and heart transplant patients, which indicated ‘similar patterns’ (CDER 2021, 

p. 30). 

The historical literature review not only established the mortality rate in the 

absence of therapy but also aimed to identify the specific contribution of tacrolimus 

within the regimen-based therapy of lung transplant patients. Tacrolimus was only 

the second CNI medicine on the market. Hence, the historical information 

primarily supports the contribution of the earlier product, cyclosporine, to the 

success of the transplant procedure. Moreover, a crucial piece of empirical 

evidence referred to a comparison from two trials in the 1990 on kidney rather 

than lung transplants. In one trial, patients received an immunosuppressive 

regimen without a CNI; in the other trial, the regimen contained the CNI 

cyclosporine. Acknowledging the gap between the evidence and the conclusion, 

the FDA reasons:  

Nonetheless, the similarity of the regimens to those used in the SRTR 

study as well as the similarity between kidney and lung transplantation are 

sufficient to support the finding that CNIs contribute to graft and overall 

survival in the setting of an immunosuppressive regimen in lung 

transplantation. (CDER 2021, p. 19) 

The final piece of evidence was a trial that compared two regimens for lung 

transplantation, one containing tacrolimus and the other containing cyclosporine; 

otherwise, the regimens were identical. The evidence suggested similar 

effectiveness of the two regimens in lung transplant patients. These to studies 

support jointly the FDA’s analogous reasoning that the regimen without tactrolimus 

would be comparably insufficient in lung transplants.  

In summary, mechanistic and analogous reasoning played a crucial role to 

confirm the effectiveness of the medicine, fill evidence gaps on dosage 

recommendations and demonstrate the contribution of tacrolimus to the outcome 

and eventually to support the data as ‘fit-for-purpose’. A reference to the 

mechanistic similarity of alloimmune response in different transplanted organs and 

the similarity in pharmacokinetic patterns between lung and heart transplant 

patients is used to justify the analogy. Clearly such contextual evidence has done 

most of the epistemic work. 
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5. Fitness-for-purpose: A two-sided 
sword  

On 16 July, the FDA announced that the approval of Prograf for lung transplant 

recipients reflected that ‘a well-designed, non-interventional study relying on fit-for-

purpose real-world data, when compared with a suitable control, can be considered 

adequate and well-controlled under FDA regulations’ (US Food and Drug 

Administration 2021a, my emphasis). A closer look at the evidence behind these 

claims shows that the FDA’s confidence in this decision was not solely based on 

evidence from real-world data. The FDA relied heavily on prior evidence, 

analogous reasoning and contextual evidence to account for various deficiencies in 

the data and support its decision.  

This case illustrates several of the observations made in the previous 

sections. The flexibility of the fitness-for-purpose approach enabled the FDA to 

recognise sufficient evidence for good decision-making where it clearly existed. 

One might even argue that the FDA’s choice of a historical control was a risk-

minimising move, since it greatly diminished the risk of falsely denying the 

approval, compared to a comparative design. Hence, critics who are concerned 

that the emergence of real-world evidence in the regulatory realm will increase the 

risks for patients will not find their foil in this case. At the same time, the case raises 

concerns regarding the future use of real-world data and a contextual approach to 

data quality. The first concerning aspect about this case is about how many 

compromises the team made along the way. The research team hedged the primary 

causal conclusion by accepting treatment effects based on regimens and accepted 

the uncertainty that accompanies treatment effect estimates that are blind to events 

occurring during the hospital stay. They also hedged all causal conclusions for 

secondary outcomes by accepting broad time intervals rather than precise dates. In 

addition, some research interests could not be pursued because the available data 

did not allow for them. Most relevantly, to make up for the lack of target trough 

levels to make dosage recommendations, the team included data from prior 

evidence and used analogous reasoning to fill this evidence gap. This is clearly a 

case where the FDA and Astellas used the ‘adequacy-given-resources’ criteria, 

where the resources even included prior evidence that could make up for a lack of 

coverage in the current data. 

The second concern about this case is that despite all efforts and many 

compromises made along the way, the team missed a highly relevant quality issue 

that rendered the primary analysis uninterpretable. If such data errors occurred in 
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a clinical trial, there a monitor would probably have caught the issue and corrected 

it by urging investigators to train their study stuff in clearly distinguishing hospital 

discharge from hospital transfer when collecting data. It is, however, questionable 

whether any quality assessment of routine data could have detected the issue. The 

percentage of erroneous data was also notably low, so it might not have raised the 

alarm even if the team had tested for its accuracy. The researchers were lucky that 

the quality issue was clearly visible in the effect estimate of the analysis and the 

researchers could react accordingly. The example is indicative for the complexity 

of data quality assessments and risks it can entail. Such limits of retrospective data-

quality assessment methods are further discussed in Chapter 5. 

Thirdly, the most concerning issue of all is that the FDA simply 

compensated for this problem by accepting the results of the sensitivity analysis as 

the primary analysis to be reported in the label. Admittedly, in light of the 

convincing contextual evidence, the convergence of the sensitivity analysis with the 

post-hoc analysis, and the plausible reasoning the team applied for their post-hoc 

analysis, it is indeed reasonable that the FDA made this decision. Nevertheless, 

such a switch between analyses is a protocol violation that should raise concerns 

about the possibility of fraud. In addition to the many compromises made before 

the investigation, the researchers missed a relevant data quality issue and made 

compromises after the analysis by breaking the rules of the protocol. Chapter 6 

elaborates on the problem of trustworthiness of evidence. 

The contextualised approach to data quality is a two-sided sword. It can be 

a powerful tool to increase epistemic opportunities. If used with sufficient skills, 

expertise and the right normative commitments it is a powerful tool that allows the 

research community to carefully tailor the choice of methods and data to the 

community’s epistemic and practical aims. The conceptual reflections on the 

notion show that the notion of fitness-for-purpose involves decisive theoretical and 

normative commitments including commitments about the necessary epistemic 

and non-epistemic requirements and the level of informativeness and certainty 

needed to achieve a purpose. The flexibility of the notion allows to recognise the 

multidimensionality of ‘quality’ of evidence, highlight those dimensions that are 

most essential in a particular context, account for available resources and resource 

constraints and carefully tailor the choice of methods to these circumstances.  

It appears that the contextualised approach is also highly susceptible to 

misuse and error in absence of the right skills and attitudes. Working with messy 

data will always yield surprises like the primary result of the Prograf case. Such 

issues will be the rule and not the exception and dealing with them requires 
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reflective judgments and the right attitudes. Prograf, however, is the exception and 

not the rule. The amount of contextual evidence available in this case is extremely 

rare. Most diseases do not have such high mortality, most treatments are not as 

effective. Moreover, the intense use of such analogous reasoning is puzzling. The 

reason that indication extensions generally require the same evidence requirements 

as new approvals lies precisely in non-comparability. As my analysis has shown 

contextual evidence has done most of the epistemic work in the case of Prograf, 

even though the SRTR database is arguably one of the better real-world data 

sources. This point raises concerns about how much epistemic work even high-

quality real-world data could do by itself in the absence of such contextual evidence. 

Moreover, it appears that the team was merely lucky that the quality issue in their 

data was so clearly visible in the effect estimates as imprecision and not a bias so 

they could react accordingly. In future cases such a quality issue might well go 

unnoticed. This raises more concerns about the risks future uses of real-world data 

will bring. 
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Chapter 5 
The power and reliability of 
real-world data  

 

The internationally renowned medical newspaper STAT called it ‘one of the most 

seductive ideas in medicine that ‘real-world evidence,’ including data from 

electronic health record systems and even records of insurance payouts, could 

replace the far more expensive and time-consuming studies currently considered 

the gold standard’ (Herper 2019). Two years earlier, the 21st Century Cures Act 

had introduced the possibility of using real-world evidence for the approval of 

medicines as an alternative to RCTs and had mandated the FDA to evaluate this 

idea. The idea has put a global movement into motion. Following the FDA’s 

initiative, the EMA announced in November 2021 that they envisioned enabling 

the use of real-world evidence and establishing its value for regulatory decision-

making in Europe by 2025 (Arlett et al. 2021). The Swiss regulatory agency, 

Swissmedic, published a brief position paper in July 2022 about their openness to 

consider real-world evidence in certain circumstances (Swissmedic 2022). The 

globally recognised reference organisation for evidence standards in clinical 

research, the ICH, is currently revising two of its core guidelines to include 

innovations from the real-world evidence movement.  

From the beginning, opinions on the amendment diverged. Advocates 

argued that it would accelerate and multiply therapeutic opportunities for patients. 

Opponents warned that the easing of evidential standards would expose patients to 

unnecessary risks. The main motivation behind the evolution of evidence 

standards is the need for pharmaceutical innovation and concerns about the high 

costs of drug development. Wilholt has drawn philosophers’ attention to the 

problem that resources matter. In a resource and time constraint research 

environment, evidence standards must balance the need for certainty with the risk 

of ignorance. It is thus epistemically desirable to rely on methods that produce 

results more efficiently. Wilholt calls this desideratum a method’s ‘power’  (Wilholt 

2013, 2016). Real-world data is not only a powerful idea; it is also the epitome of a 

powerful method in Wilholt’s terms. The promise of real-world data is not just that 

it is quickly available as a cheap by-product of healthcare but also that we can reuse 
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the data to answer many different questions. Wilholt’s insight, however, holds that 

there is always a trade-off between power and reliability. In light of this notion, the 

ongoing evolution of evidence standards can be seen as a shift in the established 

power–reliability trade-off, in favour of power and at the cost of reliability. 

This chapter is dedicated to an epistemic study of both, the power and the 

reliability (or quality) of real-world data. My goal is to challenge whether real-world 

data can fulfil explicitly or implicitly articulated expectations about its reliability and 

its power. Regarding data reliability, I focus my critique on the problem that the 

methods used to assess the reliability of data tend themselves to be unreliable. This 

point is particularly relevant if a threshold already makes a critical allowance for 

decreased reliability, as in the ‘fitness-for-purpose’ approach to data quality. If 

thresholds make an explicit allowance for reduced reliability, the techniques we use 

to establish the reliability of data should clearly not introduce additional 

uncertainty. The strength of my argument is that it applies to any normative 

reliability threshold. For this discussion, I engage in an in-depth epistemic study of 

data-quality assessments to establish the fitness-for-purpose of data. I criticise two 

approaches. The first is the idea that purpose-independent data-quality assessments 

can be performed and standardised on the side of the data provider and used as a 

reliable indicator of purpose-specific data quality. Against this trend, I argue that 

not only the thresholds of data-quality measures but the metrics themselves need 

to be purpose-specific to be reliable. The second trend is the validation of data 

against an external reference standard. Combining three case examples, I show that 

three commonly used reference standards all lack epistemic rigour and are 

therefore generally unreliable standards to quantify data quality.  

The second and shorter part of the chapter focuses on the data’s power. I 

argue that real-world data is not well suited to deal with time or resource constraints. 

Regarding the problem of time constraints, I argue that real-world data can only 

avoid these constraints in retrospective contexts where we typically lack a true 

unmet medical need. For the problem of resource constraints, I argue that real-

world data might not reduce but mostly distribute the costs for the production of 

evidence towards public third parties. These could include governments, 

healthcare facilities, regulators and patients.  

Here is how I proceed: Section 1 substantiates the need for fast and cheap 

data using Wilholt’s notion of power. I introduce two different regulatory 

approaches to articulate implicit and explicit assumptions about the reliability and 

power of real-world data. Section 2 examines the reliability of data-quality 

assessments. To illustrate in detail how such an assessment could look like, I first 
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provide a complementary analysis of the case study from Chapter 4 and explore 

the FDA’s reasons to accept the SRTR as ‘fit-for-purpose’ to support the 

effectiveness of Prograf (section 2.1). I then examine the methods used for quality 

assessments from two angles. The first concerns purpose-independent quality 

assessment on the side of the data provider (section 2.2). The second angle is the 

validation of data against an external reference standard (section 2.3). Section 3 

turns to the perceived power of real-world data. I first criticise the assumption that 

real-world data can deal better than randomised trials with time constraints (section 

3.1.). In the final section, I examine the assumption that real-world data can deal 

better with resource constraints (section 3.2). 

1. Costs of clinical trials and power of 
real-world data 

Developing new drugs is an expensive and risky business. Recent empirical 

research has estimated that the median costs for bringing a new compound to the 

market is around $320 million. If additionally the costs of other compounds that 

failed during the development phases are factored in, the median costs exceed $1,1 

billion (Wouters et al. 2020). Earlier estimates reached comparable figures by 

estimating the development costs at $800 million, of which 30% to 60% are spent 

entirely on the clinical development (Rawlins 2004, p. 360). Others have estimated 

that for medicines that reach market approval, about 90% of all expenditure relates 

to phase III clinical trials (Roy 2012). Furthermore, while the costs of bringing a 

compound to the market have grown vastly in recent decades, the approval rate for 

new medicines has remained stable since the 1950s (Munos 2009).  

A commonly cited reason for the steady increase of costs is the steadily 

increasing regulatory requirements. Munos estimates that regulatory requirements 

cause a yearly increase in the costs of more than 8% (Munos 2009). Others have 

found that about 50% of the clinical trial budget is allocated to activities to ensure 

compliance with the GCP guidelines, of which 50% is allocated to the on-site 

verification of data by monitors alone (Funning et al. 2009). There is considerable 

pressure on the industry, regulators and governments to decrease the costs of the 

overall development process and the regulatory requirements in particular. It has 

even been argued that the increased complexity of the regulatory requirements has 

made pharmaceutical companies dependent on so-called contract research 

organisations, which provide professional but expensive research services to these 

companies (Collins et al. 2020). Rawlins has called for the rigorous examination of 
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the ‘rituals’ in the drug development practices and to test these regulations for their 

evidence basis and their cost-effectiveness (Rawlins 2004, p. 361).  

These concerns are not only coming from the industry but also from 

regulators themselves. Historians and social scientists have argued that regulators 

see themselves not only as gatekeepers but also as enablers of innovation (Hauray 

2017). A pressing issue for regulators was described by former senior medical 

officer at the EMA, Hans-Georg Eichler, as the ‘opportunity costs’ of high 

regulatory standards (Eichler et al. 2013). In his view, regulators are generally quite 

risk-averse and have a low tolerance for uncertainty. Decreasing uncertainty and 

meeting high standards in one case requires valuable resources that will no longer 

be available for another research undertaking. In Eichler’s words:  

The issue at stake here is this: if the resources required for the second trial 

had been reallocated to another drug development programme, how 

much more overall knowledge — and ultimately health benefit — could 

have been gained? (Eichler et al. 2013, p. 911) 

Particularly in times where basic research produces more potential hypotheses than 

can be pursued with available resources, Eichler argues, all resources spent on one 

claim create an opportunity cost for all other unpursued hypotheses. Eichler 

follows Roy in embracing the bold view that opportunity costs are even plausibly 

responsible for the ‘great tragedy of the pharmaceutical industry’. He describes this 

tragedy as the problem of ‘promising drugs that are not being prescribed because 

of the expense and risk of developing them’ (Roy 2012, p. 7). Eichler speculates 

that opportunity costs could explain the disinterest of the industry in antibiotics 

(Eichler et al. 2013), while Roy cites the industry’s disinterest in common illnesses 

such as heart disease, stroke and obesity (Roy 2012). Eichler and colleagues have 

argued that regulators should be allowed to factor such opportunity costs into the 

development of evidence standards and decisions about individual cases. 

 Academic clinical researchers have also emphasised that routine data and 

pragmatic trials are valuable because they provide cost-effective evidence. 

Hemkens and colleagues note that it is unlikely to approach an ‘exhaustive 

evaluation’ of treatment effects and harms with RCTs and advocate that less costly 

real-world studies could fill many evidence gaps (Hemkens et al. 2016, E159). Mc 

Cord and colleagues similarly argue that real-world evidence can help extend the 

research agenda to questions that are not generally approached by the industry (Mc 

Cord et al. 2018). 

In a resource-constrained research environment, general concerns about the 

correct allocation and efficient use of resources are well justified. Wilholt’s notion 
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of a method’s ‘power’ substantiates these concerns philosophically (Wilholt 2013, 

2016). Traditionally, evidence standards have been seen as a trade-off between two 

types of reliability, namely a type I error (the error of accepting a claim that is in 

fact false) and a type II error (the error of rejecting a claim that is in fact true). The 

insight that the right balance cannot be determined in a purely epistemic way but 

depends on the social and ethical consequences of making either of these errors 

has prompted fruitful research on the roles of non-epistemic values in research. 

The most famous example is the work of Heather Douglas (Douglas 2000; Douglas 

2009). Wilholt has convincingly argued that evidence standards also balance an 

overlooked third risk, namely the risk of not obtaining any result within the 

available time and resources (Wilholt 2013). Consequently, methods are not only 

epistemically valuable in terms of how likely they are to produce a true result but 

also in terms of how efficient they are in producing any result at all. In a world with 

potentially endless scientific questions but limited time and resources, this 

epistemic desideratum of a method matters to our epistemic aim of accumulating 

scientific knowledge. We not only want reliable knowledge; we also want as much 

knowledge as possible. Wilholt referred to the ‘power of the method’ to describe 

this epistemic desideratum. Following Wilholt, we define the power of a method 

as: ‘the rate at which a method or type of inquiry generates definitive results, given 

a certain amount of effort and resources’ (Wilholt 2016, p. 227). In Wilholt’s 

definition, this rate includes all conclusive results produced by a method, whether 

they are true or false. As he notes, the difference between negative results and 

inconclusive results is not always clear-cut. Particularly, experiments that lead to 

results below the statistical significance threshold can count as either negative or 

inconclusive, depending on the statistical theory used or the applied statistical 

practice. Cases where experiments are discontinued or not even started because of 

resource or time constraints count as failing to produce any result. Crucially, in 

clinical research, resources are not only a matter of money but also of patients who 

are available to become research participants. Empirical studies have shown that 

the failure to recruit sufficient patients is the most common reason for 

discontinuation of a clinical trial in academic research (Briel et al. 2016).  

Following Wilholt, the epistemic power of a method generally trades-off 

with its reliability, where reliability means the risk of making a traditional type I or 

type II error. Reliability could always be increased, he argues, by increasing the 

amount of evidence that is required to support a particular claim. For example, 

instead of the common rule of requiring two clinical trials for market approval, 

regulatory agencies could demand five such trials. The generally accepted 
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significance threshold of 0.05 could be increased to a threshold of 0.01. Clearly, 

more resources are required to meet these higher standards, and there is nothing 

to gain from such an increase if we lack the resources to uphold these standards. 

Hence, concerns for power are what put an end to the potentially unlimited 

increase of the reliability of our claims. Consequently, in Wilholt’s view, settling on 

conventions for evidence standards is not a convergence on the most reliable 

standards but rather a conventional agreement about how to balance power and 

reliability. To illustrate, Wilholt contrasts the preference for randomised trials over 

observational studies in EBM. In his view, the question which method is more 

suited to scientific inquiry ‘makes no sense’ because they balance power and 

reliability in different ways (Wilholt 2016, p. 227). Whereas randomised trials are 

better at answering a few questions more reliably, observational studies are better 

at answering more questions with the same resources. Finding the right balance for 

evidential standards is therefore a question of making the right value judgements. 

Evolving evidence standards are a consequence of evolving preferences about 

ethical or social goods and ‘irreducibly social’ (Wilholt 2016, p. 219). The current 

evolution of evidence standards can be seen as a shift in the established power–

reliability trade-off, in favour of power and at the cost of reliability. 

Critics of the current regulatory standards, such as Eichler and colleagues, 

need to respond to the criticism that their proposed evidence standards do not get 

this balance right or that they focus on the wrong ethical and social goods. For 

example, in Fraile, Tempini and Teira’s view, the new standards might wrongly 

prioritise the freedom of patients over impartiality (Fraile Navarro et al. 2021). 

Stegenga has argued that we should care more about cost-effectiveness of 

treatments rather than costs per se (Stegenga 2017). My goal here is not a critique 

of the normative balance. My goal is to challenge whether real-world data can fulfil 

explicitly or implicitly articulated expectations about the epistemic and normative 

goods that can be gained, and the losses in reliability that are paid, regardless of 

how well these normative goods are justified ethically or socially. Hence, I am 

interested in these two questions: Can real-world data deliver the expected gain in 

power and the expected normative goods? Can the data meet expectations about 

its reliability? To apply to data, I interpret reliability in terms of quality dimensions 

like accuracy completeness of data. If data tend to be less reliable than expected, 

the evidence generated with them risks being less reliable as well. 

To begin, I roughly establish what the expectations of stakeholders in the 

field are regarding the data’s power and reliability. There are two kinds of 

regulatory approaches that allow for using real-world evidence, which articulate 
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different expectations and balance the power and reliability in different ways. The 

first regulatory approach is the use of real-world data in accelerated approval 

programmes or related programmes that explicitly foresee an exception from the 

standard requirements for evidence. In the past, the FDA has adopted a wide range 

of programmes that knowingly and explicitly accept the premise that the evidence 

does not fulfil their criteria for ‘substantial evidence’ at the time where patients get 

access to the treatment. In return, patients gain earlier access to potentially life-

saving treatments. In this trade-off, the increased power accelerates the approval 

process. 

 A well-known example of this regulatory approach is the adoption of so-

called compassionate use programmes, where patients can get access to treatments 

that are still under development. Another example is the EMAs ‘adaptive pathways’ 

programme, launched in 2014, in which selected treatments receive a conditional 

or restricted market authorisation based on preliminary evidence, and real-world 

evidence is used to quickly reduce the uncertainty and adapt decisions accordingly 

(Davis et al. 2016; European Medicines Agency 2014). Gloy et al. demonstrate that 

the FDA has made wide use of this option for new cancer treatments during the 

last 20 years. This has led to the situation of only 7% of newly approved cancer 

drugs having been supported by the conventional two clinical trials; all the others 

were supported by only one randomised trial or none at all (Gloy et al. 2023). Fraile 

Navarro and colleagues describe this driver for the change in evidential standards 

as a trade-off between impartiality and the freedom of patients (Fraile Navarro et 

al. 2021). The applicability of these programmes is restricted to treatments and 

diseases that fulfil certain ethical or social requirements to count as high-priority 

among regulatory agencies. Stegenga has cast doubt on the assumption that these 

programmes deliver on their expectations by arguing that the new medicines are 

barely the life-saving good that people hope for (Stegenga 2017). Others have 

argued that the EMA’s adaptive pathway programme cannot fulfil the expectations 

about its promised reliability (Davis et al. 2016). In section 3 of this chapter, I 

support the critics by arguing that the most essential time gain with real-world data 

can only be expected for treatments whose ethical benefits are marginal. 

The FDA’s real-world evidence programme is part of a second regulatory 

approach for using real-world data. Here, the use of the data is not restricted to 

particularly valuable treatments and it does not explicitly sell the current reliability 

standards for an ethical or social good. Instead it aims at using real-world evidence 

more generally, while maintaining similar evidence standards for decision-making. 

For example, the US Code on the Utilization of Real-World Evidence states that 
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allowing the use of such evidence under this article should not be interpreted as 

undermining the ‘substantial evidence’ and ‘adequate and well-controlled’ evidence 

requirements (US Code, Title 21, Chapter 9, Subchapter 5, §355g). However, this 

regulatory proposal still allows for a reduction in the reliability of data. This 

reduction in reliability is made explicit in the notion of ‘fitness-for-purpose’. The 

aim of this approach is to identify data that is sufficiently accurate to support good 

decision-making. (For a discussion of the fitness-for-purpose approach to data 

quality, see Chapter 4).  

The underlying assumption of this regulatory framework seems to be that 

the current evidence standards are, at least in some instances, either more reliable 

than necessary – or ineffective at promoting reliability. What this means is clearly 

illustrated by the second revision of the GCP Guidelines in 2016. A cornerstone 

of these guidelines is the mandatory verification of clinical research data by so-

called monitors. This ‘source data verification’ practice was established in 1988 by 

the FDA’s guideline on Monitoring of Clinical Investigations. The goal was to 

achieve 100% accuracy and completeness of data submitted to the FDA, relative to 

the respective source data (Andersen et al. 2015). Empirical evidence indicates that 

this practice is effective and reduces the error rate to as little as 0.0% – 0.36%, 

depending on the type of data. Nonetheless, in 2011 the FDA withdrew its 

guidance in favour of a so-called risk-based approach to monitoring. In 2013, the 

EMA followed suit with their reflection paper on risk-based monitoring for clinical 

trials. In 2016, the second revision of the GCP added an Addendum, which 

similarly recommended a risk-based approach to monitoring (International 

Council for Harmonisation 2016; Andersen et al. 2015). The idea behind this shift 

is that we do not need error rates that are as low as 0.36% for all types of data in a 

clinical trial in order to license valid, precise and statistically significant causal 

inferences. Monitors should therefore focus on trials and data items that pose a 

high risk to the integrity of data or the safety of participants and should thus assess 

the data ‘proportional’ to the risks they pose. In the second revision of the GCP 

guidelines, the purpose of these revisions and the problem are clearly addressed:  

Since the development of the ICH GCP Guideline, the scale, complexity, 

and cost of clinical trials have increased. Evolutions in technology and risk 

management processes offer new opportunities to increase efficiency and 

focus on relevant activities. … Therefore, this guideline has been amended 

to encourage implementation of improved and more efficient approaches 

to clinical trial design, conduct, oversight, recording and reporting while 

continuing to ensure human subject protection and reliability of trial 

results. (International Council for Harmonisation 2016, my emphasis) 
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The idea of proportionality introduced in the second revision of the GCP 

guidelines was reinforced and expanded in the third revision of the guidelines. The 

third edition introduces the idea that the overall quality of a clinical study is its 

‘fitness-for-purpose’. Furthermore, high-quality designs attend proportionally to 

those aspects of the study that are ‘critical to quality factors’ (International Council 

for Harmonisation 2023, 2021b). In this proposal, the increase in power aims at 

decreasing the material resources required to achieve a result. Its use is not 

restricted to medicines promising a high social good. However, the reliability of the 

data should be sufficient for good decision making, that is, data should be ‘fit-for-

purpose’. The two proposals highlight three expectations about the data’s power 

and reliability: accelerated access to priority medicines, decreased costs of drug 

development and sufficient reliability for good decision making. The following 

sections analyse whether real-world data can deliver on these expectations, 

beginning with a critical study of the reliability of real-world data. 

2. Critical study of the reliability of real-
world data 

Real-world data is acceptable as evidence if it is ‘fit-for-purpose’. A conceptual 

discussion of this notion in Chapter 4 has shown that putting the notion to use 

requires defining the purpose and the criteria required to achieve the purpose. 

These generally include properties such as accuracy, completeness, or relevance of 

data but determining the necessary properties depends on the purpose of the study. 

Here, I subsume the list of these properties under the idea of reliability. That is, 

data are reliable if they are accurate, complete, relevant, or other required 

properties. To clarify, the same argument could be cast in terms of quality rather 

than reliability and sometimes I use the terms interchangeably in this chapter. 

The notion of fitness-for-purpose makes an allowance for data to be less 

than perfectly reliable, as long as the data is sufficiently reliable for sound decision-

making. Directly targeting the idea of sufficient reliability is challenging. Since the 

standard makes an allowance for reduced reliability, simply pointing out 

discrepancies from the current standard is an idle strategy. Other philosophers 

have answered the challenge by gesturing towards the concern that real-world data 

might not be just a little less reliable but rather a lot less (John 2021). We might 

read such a gesture as doubting that real-world data can in fact be fit-for-purpose 

given a certain normative idea about what good decision-making entails. I support 

the critics, but my strategy is a different one. I accept the idea that real-world data 
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can be fit-for-purpose to support decisions about the effectiveness of medicines. 

Yet, I doubt that we can reliably assess whether some data is in fact fit-for-purpose 

in a particular instance. Hence, I do not target the normative reliability threshold 

but rather the methods and strategies that are used to establish whether data meets 

this threshold. Here I am interested in the methods and practices that are used to 

determine that data is sufficiently reliable to be used for a particular purpose, that 

is, to determine whether data is ‘fit-for-purpose’. If this argument is successful, it 

follows that real-world data is not acceptable as evidence because we cannot reliably 

establish that it is fit-for-purpose. 

The difficulty with this strategy is that the methods and techniques used to 

assess the quality of data are manifold, and discussion of such methods is still 

relatively scarce in the philosophy of science. This undertaking therefore requires 

a detailed epistemic study of these techniques – which accounts for the length of 

this chapter. Section 2.1 provides a starting point and a guiding example by taking 

a closer look at the FDA’s quality assessment of the SRTR, which led to the FDA’s 

first approval exclusively based on real-world evidence in 2021. I then turn my 

attention to attempts to systematise data quality frameworks and standardise data 

quality checks on the side of data providers (section 2.2). This is followed by a 

longer discussion of the practice of validating data against an external reference 

standard (section 2.3). Both techniques were used in the assessment of the SRTR 

and are repeatedly recommended or envisaged as reliable techniques in regulatory 

guidance on data quality. 

2.1. Assessing the quality of the SRTR 

In July 2021, the FDA approved the use of Prograf as an immunosuppressant for 

lung transplant recipients exclusively based on real-world data from the SRTR. The 

recent label extension was the third extension after its initial approval for liver 

transplant recipients and later for kidney and heart transplants. Chapter 4 contains 

an in-depth discussion of this decision and the overall evidence submitted to the 

FDA. I argued there that the data submitted to the FDA can be regarded as 

adequate and well-controlled in light of the highly conclusive contextual evidence, 

such as the large effect size and comparability of indications. Here I complement 

the analysis of this case and I explore why the quality assessment the FDA and 

Astellas used in this case were insufficient to catch a particular problem in the data. 

I also examine what this failure can teach us about data quality assessments in 

general. 
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To recall, the database used for the study was the US SRTR. Since 1987, 

the SRTR collected data on all solid organ transplants in the US, by law. The 

database has been used primarily for the purpose of facilitating the regulation of 

organ donation and allocation in the US. It allows registering of candidates for 

transplants, matching of donated organs to candidates and submission of data on 

donors, candidates, and recipients for and after transplants. Moreover, the law 

required the mandatory and comprehensive reporting of transplant procedures 

and outcomes into the registry (For details see Chapter 4).  

I now take a closer look at the methods used to determine that the SRTR 

data is fit-for-use. According to the multi-discipline review by the FDA, their 

assessment of the data as being fit-for-purpose was based on a wide variety of 

criteria and assessment methods (CDER 2021). In summary, these are the reasons 

that appear in the FDA review:  

1) High regulatory oversight and mandatory data collection for all US solid 

organ transplants. 

2) The database has a well-established and robust operational structure. 

3) The processing steps within the database include the verification of data 

quality. 

4) Some data, including mortality data, is verified against data from other 
trusted sources. 

5) An assessment of missing data revealed no concerns. 

To support their judgement for 1)–3), the FDA relied on a ten-year-old publication 

by Leppke et al. describing the legal basis, operational structure, data collection 

and data use of the SRTR in some depth (Leppke et al. 2013). According to 

Leppke and colleagues, the SRTR is indeed embedded in well-established legal 

and operational structure. The SRTR is a database with the main purpose of 

facilitating organ procurement and allocation in the US and improving policies on 

which these decisions are based. Its legal basis is the National Organ 

Transplantation Act, passed into law in 1984. By its mandate, the registry collects 

data ‘necessary to an ongoing evaluation of the scientific and clinical status of organ 

transplantation’, which has been mandatory for all US solid-organ transplant 

recipients since 1987 (Leppke et al. 2013). The National Organ Transplantation 

Act simultaneously mandated the establishment of the OPTN to overview a 

national strategy for organ matching. The contracts for both mandates (OPTN and 

SRTR) are managed by the Health Resources and Services Administration within 

the US Department of Health and Human Services and overseen by the division 

of transplantation. Since its foundation, the SRTR has been operated by three 

different institutions. Since 2010 the operation of the database has been mandated 

to the Hennepin Healthcare Research Institute (formerly Minneapolis Medical 
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Research Foundation) and executed by their CDRG. The SRTR is further 

overseen by a steering committee and a technical advisory committee. The director 

oversees the SRTR senior staff, including 18 experts from diverse fields, such as 

clinical experts and biostatisticians (Leppke et al. 2013).  

Regarding data collection and processing steps, most of the data in the SRTR 

is collected by the OPTN. They collect data from transplant centres, organ 

procurement organisations and histocompatibility laboratories (Leppke et al. 

2013). The data collection is guided by standardised data collection forms and 

OPTN policies on data collection. These policies define which entity must submit 

what types of data within what specific timeframe (Organ Procurement and 

Transplantation Network 2023). To further check the quality of this data, the 

SRTR applies several data processing steps, including the validation of data quality. 

Importantly, these measures include a feedback loop with the data providers to 

address and resolve data quality issues. Leppke et al. stated that  

Numerous tests are performed to identify potential errors in the data. A 

report is generated and sent to OPTN so these issues can be addressed 

and resolved, enhancing the overall quality of the data in future releases. 

(Leppke et al. 2013, p. 53) 

The authors do not describe in detail what type of tests are applied or what exactly 

these tests can support.  

The operational structure of the database is of relevance for the FDA’s 

assessment because the  processes through which data are generated and made 

available causally determine several dimensions of data quality like their accuracy 

or their timeliness. Leonelli aptly writes that ‘data are regarded as reliable on the 

basis of the methods, instruments, commitments, values and goals employed by 

the people who generate them’ (Leonelli 2017b, p. 3). The EMA’s data quality 

framework calls these the ‘foundational determinants of data quality’ and clarifies 

that assessing them is intended to ensure that the data is collected and curated in a 

way that the ‘correspondence between the data and the real entity is not altered’ 

(European Medicines Agency 2022, p. 9). In this example, the fact that the SRTR 

at least has policies for the timely collection of data speaks in favour of data quality, 

because it is likely that data is in fact collected according to these policies. I discuss 

the relevance of these criteria in the next section 2.2 on purpose-independent 

quality assessment. 

What seems to be of greater relevance in the FDA’s review than the SRTR’s 

foundational drivers of data quality is reason 4), namely the database’s linkage to 

other data sources that the FDA deems ‘trusted’. The first external data source is 
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the Social Security Administration’s Death Master File. This is the most 

comprehensive list of all diseased individuals in the US. According to Leppke et 

al., this data is important because the OPTN policies do not require any follow-up 

on transplant donors and candidates, only on recipients, beyond two years. 

Additionally, it seems that the SRTR also uses data from the Death Master File for 

complete verification of the data on death among organ recipients. That is, the data 

from the Death Master File is used as a reference standard to complete and correct 

the data for each individual patient.  

The SRTR is also enriched by data from the Centres for Medicare and 

Medicaid regarding patients with end-stage renal disease. Not only the FDA, but 

also the research team, affirmed their confidence in the assessment of the primary 

outcome measuring death or graft failure because the SRTR relies on these 

external data sources. The high level of confidence in this data item in the SRTR 

is expressed by other experts too (Stock 2017, p. 3001). Within the FDA’s multi-

discipline review, there was no overt justification for their reliance on these other 

data sources; however, the Social Security Death Master File is generally known 

and acknowledged as the most reliable source on deaths in the US. This approach 

to data quality is covered in the discussion of data validation in section 2.3.  

Finally, the team took additional steps to assess and increase the quality of 

the data at the level of the individual study, as stated in item 5). They assessed the 

extent and impact of missing data by measuring the percentage of patients who had 

complete data for all secondary outcomes. They found that the missing data 

amounted to 5% or less, except for one outcome. To assess the impact of the 

missing data, they performed a sensitivity analysis, where they assumed that all cases 

with missing data would in fact be cases that experienced the primary outcome 

(death of graft failure). They concluded that ‘data availability was considered 

relatively robust’. They acknowledged that missing data in the treatment arm of 

their main interest (rather than in the overall population) was higher than 5% and 

could be as high as 14.2%; however, they still concluded that ‘Data availability was 

considered relatively robust in this study’ (Erdman et al. 2022, p. 1241). Another 

measure they took was to exclude patients with data patterns that were unsuitable 

to answer the study question. This step involved the exclusion of about 6% of 

patients who died during their stay at the hospital, to prevent immortal time bias. 

A further 3.3% of patients were excluded due to missing data on their 

immunosuppressive regimen at discharge (Erdman et al. 2022). 

Overall, the FDA’s assessment of the data as being fit-for-purpose is based 

on a wide variety of indicators and assessment methods in line with the respective 
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guidelines on real-world data (US Food and Drug Administration 2021c). Yet, all 

these measures did not prevent the team from running into a severe problem with 

their primary analysis because of a data quality problem. To recall, here is brief 

version of what went wrong: The team did not discover the problem that a small 

percentage of the data reported implausible early hospital discharge dates. Patients 

who experienced an event (death or graft failure) and were discharged from the 

hospital were considered by the analysis and unfortunately the team chose an 

analysis method that was highly sensitive to early events. Most likely, the early 

hospital discharge dates are an error in the data and occurred because some sites 

did not properly distinguish between hospital discharge and hospital transfer (PSI 

RWD SIG 2021; CDER 2021).  

The example is indicative for the complexity of data-quality assessments and 

the risks it could entail in other circumstances. Luckily, the quality issue was clearly 

visible in the effect estimate of the analysis and the researchers could react 

accordingly. In the following sections I examine two practices for data quality 

assessments more systematically to see what the case of Prograf implies for the 

reliability of data quality assessments in general.  

2.2. Purpose-independent quality checks by data 
providers  

A critical challenge for data quality practices is to bridge the gap between the highly 

abstract success criteria, ‘fitness-for-purpose’ and concrete quantitative assessments 

of data quality. To that end, quality frameworks usually disentangle the notion into 

various quality dimensions. The difficulties of this endeavour are discussed in 

Chapter 4. The second important aspect of data quality assessments is the 

definition of metrics and concrete quality checks that are performed to support 

claims about data quality.  

To illustrate what such metrics could look like, here are a few examples from 

the EMA’s data quality framework to assess the quality dimension called 

‘plausibility’:  

a) Height and weight are positive values 

b) Discharge date happens after admission date 

c) Sex values agree with sex-specific context, such as for prostate cancer 

d) Oral and auxiliary temperature for the same patient agree 

e) Recorded date of birth is consistent between EHR data and registry data 

for the same patient 

f) Count of immunisation per month shows an expected spike during flu 

season. (European Medicines Agency 2022) 
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It goes without saying that the possibilities to construct such data quality metrics are 

endless. However, following Illari, these metrics have an interesting property: 

Unlike the abstract notion of fitness-for-purpose, which is deeply purpose-

dependent and can only be understood in the context of a specific use, such metrics 

can apparently be constructed and applied to data regardless of the data’s context 

of use. Hence, unlike the notion of fitness-for-purpose, quality metrics are not 

necessarily a relational property of the data and its user. The metrics can be sensibly 

defined according to the data itself; i.e., they are properties of the data (Illari 2014). 

For Illari, this property of quality checks provides a path out of the problem which 

she calls the ‘rock and the hard place’ problem. Data-quality practices are between 

‘a rock and a hard place’ because data sharing requires making (high-quality) data 

available in a purpose-agnostic manner, whereas data quality practices are limited 

if the data’s purpose is unknown.  (Illari 2014). In other words, the purpose-

independency of quality metrics opens the possibility to perform purpose-agnostic 

quality checks on data sets by the data providers and data curators. The provider 

can then report about the success of these checks as a quality indicator. Reason 

number 3) cited for the assessment of the SRTR database precisely relied on such 

purpose-agnostic ‘verification’ of the data by the data providers.  

It seems already to be common practice that data infrastructures perform 

multiple such quality checks to support the quality of their data. Callahan and 

colleagues examined data quality practices across six large data-sharing networks in 

Europe; they compared the infrastructures by counting the number of quality 

checks performed and mapping them onto the quality dimensions by Kahn et. al. 

They found that these infrastructures performed between 174 and 3434 quality 

checks on their data, most of which classify as plausibility checks (60%), followed 

by conformance checks (27%) and completeness checks (13%) (Callahan et al. 

2017). In the case of the SRTR, a naïve version of this approach was used when 

the team relied on the data providers’ general report that data is verified by internal 

processes. The publication by Leppke et al. on which the FDA relied did not 

further specify what precisely has been verified (Leppke et al. 2013). The less naïve 

version is what the EMA envisages for the future, when data infrastructures are 

likely to develop into more mature organisations. A standardised set of quality 

checks will be performed across datasets and infrastructures and packaged as 

metadata to accompany the data on its journey to the user (European Medicines 

Agency 2022). 

The problem I see with this approach is that data quality metrics are not 

truly purpose-independent. Such quality checks by data providers are therefore 
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insufficient to establish the purpose-specific quality of data. To begin with, the 

different metrics clearly differ in how permissive or strict they are for what counts 

as plausible data. Consider metric a) ‘Height and weight are positive values’ and b) 

‘Discharge date happens after admission date’. Both are weak criteria for 

plausibility, because the requirement is also satisfied by a wide range of otherwise 

implausible values. Metric f), which compares summary statistics with medical 

background knowledge, is an even weaker indicator of the plausibility of individual-

level data; again, a wide range of implausible or inaccurate values would fulfil this 

requirement. Finally, e), which assesses the consistency between different data 

sources, depends on the accuracy or plausibility of the external source. If such a 

source can be considered a gold standard, consistency with this source strongly 

confirms the accuracy of individual data values. But if it is simply another 

independent data source, agreement between the data values would provide some 

– but certainly weaker – support of plausibility.  

Although the number of quality checks performed by data infrastructures 

is impressive, the endless possibilities of such checks together with their unequal 

support for data quality implies that no amount of purpose-agnostic quality checks 

can provide sufficient support for the plausibility of any particular subset of the data 

for a specific context of use; only the right quality checks can. For example, if a 

metric of the form b) ‘Discharge date happens after admission date’ was used to 

assess the SRTR data, 100% of the SRTR data would have passed this plausibility 

check. By contrast, a plausibility check of the form b) ‘Discharge date happens after 

the minimally plausible length of hospital stay’ could have revealed the problem in 

the data.  

Of course, one could package more information into the metadata and 

report the precise metrics employed to assess the data quality. This unburdens 

researchers to perform the tests themselves, however this does not change the fact 

that a contextualised, and skilled interpretation of these measures is required to see 

whether they are sufficient for a particular purpose. Following a lesson taught by 

Leonelli, interpreting  metadata remains a complicated task which requires experts 

skills (Leonelli 2017b). Interpreting data quality checks is not just a matter of setting 

the right quantitative threshold required for data to be fit-for-use but rather a matter 

of defining the right metrics that are informative for the kind of plausibility required 

for a specific purpose. Hence, the purpose-dependent nature of data quality 

persists even at the level of concrete data quality metrics, despite their seeming to 

be purpose-independent. Consequently, no amount of quality metrics is a reliable 
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indicator of the quality of any particular subset of data, unless one ensures that the 

correct metrics are included.  

Reason 2) on the FDA’s assessment of the SRTR, namely ‘the database 

has a well-established and robust operational structure’ suffers from the same 

problem. Assessing the operational structure of a data infrastructure is relevant for 

the quality of data. It might convince data users to use some data as a starting point 

for their research because such data could be of sufficient quality (Leonelli 2017b). 

However, without assessing whether the operational structure is sufficiently robust 

for the precise purpose of the study, the purpose-independent assessment thereof 

is not a reliable indicator for the kind of data quality required by the study. To 

prevent the problem in the SRTR data, we require specific policies and operational 

structures that are quality-conducive for the type of data required in the study. 

The issues I raise here are not a principle concern that no data quality 

checks could have caught the problem in the SRTR data. In principle, the team 

could easily have subjected the data to the purpose-specific quality check that asks 

whether ‘Discharge date happens after the minimally plausible length of hospital 

stay’ and they might have recognised the problem in the data. My argument points 

out that there is no escaping the contextuality of such an approach, which requires 

skilful and purpose-specific engagement with quality metrics. Hence the failure of 

the team to capture the problem in the data nevertheless points to another general 

concern regarding the broad fitness-for-purpose approach to data quality. A 

plausible reason why they did not perform such a test is that they might not have 

known about the impact that discharge dates could have on the analysis; after all, it 

seems not a straightforward relation. Following their own reports, it was only after 

they were surprised by the results that they investigated the reasons for the problem 

and found that the analysis they had chosen was highly sensitive to these early 

events (PSI RWD SIG 2021). This implies that they simply failed to identify 

erroneous discharge data as critical to the quality of the data before the study and 

therefore did not think about testing the data’s plausibility. It is precisely because 

data quality assessment is such a highly contextualised undertaking that it requires, 

at any and all points, knowledgeable, skilful, laborious and sincere handling by 

experts. This is, of course, the lesson that Leonelli has taught philosophers some 

time ago (Leonelli 2016). The contextualised approach to data quality assessments 

raises the risk that critical details might go unnoticed, as they did in the SRTR case. 

The main problem here is not one of reliability of the methods but rather of the 

trustworthiness of data quality assessment, which I discuss in the final chapter 
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(Chapter 6). For now, I conclude that a purpose-independent assessment of data 

quality is an unreliable indicator of the fitness-of-purpose of a particular dataset.  

2.3.  Data validation against an external standard  

The FDA guideline on using EHR data for submission to the FDA seems to suggest 

that the preferred and most reliable method for data quality assessment is – what 

the FDA calls – ‘complete verification’ of data. By this the FDA refers to a 

procedure where all individual subject–level values are compared against an 

external trusted gold standard and corrected accordingly. This is precisely what the 

SRTR does with data on mortality, by comparing it against data from the Death 

Master File – which the FDA deems a ‘trusted data source’. Established gold 

standards that allow for the complete verification of data are hard to find. A related 

procedure is the validation of a subset of data against a reference standard, which 

is then extrapolated to describe the accuracy of the dataset in terms of measures 

known from diagnostic tests, such as sensitivity or positive predictive value
20

. 

Following the FDA’s non-binding recommendations, this procedure is considered 

the second most reliable technique and has been repeatedly recommended (US 

Food and Drug Administration 2021b). The same recommendation is made by 

the NIH Pragmatic Trials Collaboratory (NIH Pragmatic Trials Collaboratory 

2014).  

In this section, I engage in a critical study of the method and explore how 

reliable such validation procedures are. My main critique is easily summarised: the 

validation of data against an external reference standard is as reliable as the 

reference standard used. As I show with three examples, the most commonly used 

reference standards for such studies encounter various problems.  

The general approach of data validation against an external reference 

standard includes three broad steps (A summary is provided in Figure 2):  

1. Classification of the data that needs to be validated 

2. Construction of a reference standard dataset 

3. Quantification of the data quality against the reference standard  

I elaborate on the first step using my first example. Researchers aimed to evaluate 

different algorithms for classifying acute exacerbation in COPD patients in the 

 

20

 Different data quality frameworks use the terms verification and validation differently. 

Most popular became the distinction introduced by Kahn et al. In their framework 

‘verification’ refers to the comparison of data against ‘internal’ constraints (such as 

background knowledge, consistency relations). They use the term ‘validation’ to refer to 

practices that compare data against an external reference standard. Kahn et al. (2016). 
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Clinical Practice Research Datalink (CPRD). The study was performed by Rothnie 

and colleagues (Rothnie et al. 2016). In 2015 the database contained UK general 

practice data from about 4.4 million registered patients, or 7% of the UK 

population; it has reportedly been used in about 1000 studies (Herrett et al. 2015). 

Acute exacerbation of COPD is an outcome that is often used in real-world studies, 

as it is robust in the sense that it usually requires patients to contact the care facility 

to receive appropriate treatment. The comparative frequency of acute 

exacerbations can then be used to estimate the effectiveness of new COPD 

treatments. 

 

 

Figure 2: The three steps of data validation against an external reference standard 

To support the fitness-for-purpose of the database, the researchers aimed to 

validate the recordings of ‘acute exacerbations of COPD’ in the CPRD. The first 

step was to export from the overall database all and only the events of ‘acute 

exacerbation of COPD’. Often the translation of this medical term into a 

representation used in a database is not straightforward and can be approached in 

various ways. At least, it requires combining the medical codes from different 

medical terminologies, such as the ICD dictionary, and accounting for variability 

in reporting practices. The FDA guideline refers to these aspects as the ‘operational 

definition’. We might also call it a classification algorithm because it classifies events 

into acute exacerbation of COPD or its absence using a rule-based decision 

procedure. Strictly speaking, such the practices validate algorithms rather than data. 

The question that a validation study seeks to answer is how well different 

classification algorithms perform in capturing true events, and only true events, 

within a specific database. In this case, the true event is acute exacerbation of 

COPD.  

Classification algorithms can compensate for misrepresentation in the data. 

For example, if the classification algorithm not only requires a COPD diagnostic 

code but also a recurring prescription of treatments that are indicative of COPD, 
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the extracted data can minimise problems of reporting errors in the diagnosis. By 

contrast, if an algorithm broadens the scope by requiring only a highly predictive 

test result as the criterion, one might avoid cases of misdiagnosis at the point of 

medical judgement. In short, the medical term ‘acute exacerbation of COPD’ can 

be operationalised into several different rule-based algorithms for a single database. 

Not only might the database use different terminologies to represent the same 

event; these representations might also contain errors, which a more sensitive or 

specific classification can compensate for. Depending on how broadly or narrowly 

the classification algorithm is constructed, one risks capturing either more false-

positive or false-negative events, respectively. Estimating the number of false 

negatives and false positives for different algorithms is precisely the purpose of a 

data validation study. In highly curated databases, the construction of such 

algorithms could be less complex because data curators already accounted for 

reporting variability and other issues. As argued in Chapter 4, data curation is 

limited what it can do about problems of misrepresentation or missing data. 

Therefore, even in well-curated databases it might be worthwhile to use more 

complex classification algorithms. 

Let’s take a close look how the researchers addressed this question in the 

first example. The medical code systems commonly used in UK general practices 

are called Read Codes. Based on these codes, the researchers constructed 15 

algorithms that plausibly captured acute exacerbations of COPD with different 

combinations of diagnostic codes, commonly administered treatments and typical 

symptoms. The team assembled a list of 1043 different medical codes that were 

used to construct the 15 algorithms. Within these 1043 codes, only two represented 

the diagnosis of acute exacerbation of COPD. The rest (1041 codes) were either 

codes for commonly administered treatments for COPD exacerbations (47 codes 

for corticosteroids, 822 for antibiotics) or represented symptoms such as lower 

respiratory tract infection (77 codes) and breathlessness (26 codes). Judging the 

plausibility of these algorithms required expertise from respiratory physicians, 

primary care physicians with experience in UK primary care, and epidemiologists 

with experience in the design of large UK primary care database studies. The team 

then used a previously validated algorithm to preselect only the patients with a 

COPD diagnosis between 2004 and 2013. They then recorded how many times 

these patients experienced an acute exacerbation of a COPD event according to 

the 15 different algorithms. This constituted the first step of the three-step 

procedure to validate the data.  
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The second step was the construction of a reference standard, which was the 

external standard against which the performance of the algorithms was assessed. 

The standard was assumed to be an accurate representation of the patient’s health 

or disease state. To construct this reference standard, the researchers selected 1600 

patients randomly from the previously constructed sample of all patients with acute 

exacerbation outcomes. Every patient could experience more than one acute 

exacerbation during the nine-year period of the data. Therefore, the researchers 

randomly selected up to ten instances, for each patient, that any algorithm classified 

as an event of acute exacerbation of COPD. The research team then contacted the 

treating physicians for the patients and asked them to verify the selected events for 

their patient. The doctors were asked to notify the researchers about any additional 

event that was not on the list. The researchers additionally asked for any additional 

source material that supported the physician’s judgement, such as test results or 

hospital discharge letters. This information was reviewed by two respiratory 

physicians and was used to construct the true classification of exacerbation events 

for the subsample of patients.  

In the third step, the events were categorised into true and false positives or 

negatives respectively. The performance of each algorithm was calculated in terms 

of its positive predictive value and its sensitivity (see Table 4). The team counted 

as true positive cases for an algorithm all events that were a) part of the subsample, 

b) identified as an event by the algorithm and c) confirmed by the reference 

standard. False positives met the first two criteria but were not confirmed by the 

reference standard. This approach allowed the team to calculate the positive 

predictive value of an algorithm (i.e., the proportion of true events among all the 

positive events classified by an algorithm). For estimating sensitivity, the team 

examined how many true cases each algorithm missed. First, it was necessary to 

learn about the baseline of all true events in the subsample of events. They 

classified every event as true if it was a) identified as an event by any of the 15 

algorithms and b) confirmed by the general practitioner, OR if the event was listed 

as an additional event by the general practitioner. False negatives could now be 

defined as the events that were a) not identified by the specific algorithm (but were 

identified by at least one of the other 14 algorithms); and b) confirmed by the 

general practitioner OR listed as an additional event by the general practitioner. 

Because the validated subsample was random, the team could extrapolate the 

positive predictive value and sensitivity from the subsample to the entire event 

population statistically. 
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Table 4: Classification of events into true and false positives or negatives 

 GP assessment positive GP assessment negative  

Classified 
by 
specific 
algorithm 

a 
True positives: 
identified by the specific 
algorithm and confirmed 
by GP 

c 
False positives: 
Identified by the specific 
algorithm and not 
confirmed by the GP 

Positive 
predictive 
value: 
a/(a+c) 

Not 
classified 
by 
specific 
algorithm 

b 
False negatives: 
Identified by any 
algorithm (except the one 
being tested) and 
confirmed by GP, OR 
listed by GP as additional 
event. 

 

d 
True negatives: 
Not assessed 

 
 
 
 

Negative 
predictive 
value:  
d/ (d+b) 

 

 Sensitivity: a/(a+b) Specificity: d/(d+c)  
 

Sensitivity and positive predictive value commonly trade-off against each 

other. The stricter the criteria in an algorithm to include a case as a true positive, 

the higher is its positive predictive value because it rarely includes false positives. 

At the same time, such narrow algorithms will miss many true events, falsely 

classifying them as false negatives. The results in this case illustrate this. They found 

that the positive predictive value varied between 61% and 97%. As expected, 

algorithms that combined symptoms or medical outcomes with the prescription of 

a medicine had a high positive predictive value, above 90%. Broad criteria, such as 

the sole use of COPD-related antibiotics, had low positive predictive value. 

Sensitivity was generally below 30%, with some algorithms performing as 

poorly as below 2%. Algorithms with high positive predictive value displayed 

sensitivity of no more than 25%, with one as low as 1.7%. One algorithm had a 

notably high sensitivity of 70% but a positive predictive value of only 60%. The 

team also tried to disjunctively combine all algorithms that showed a positive 

predictive value above 75%; this approach increased the sensitivity up to 63% while 

maintaining a reasonably high positive predictive value of 85%. The authors 

concluded their study with recommending the use of composite algorithms. 

Additionally, they recommended not using definitions containing COPD-specific 

medicines unless combined with a relevant medical diagnosis, as such definitions 

had low predictive value and risked misclassifying events as exacerbations when 

they were not. Following the authors, such a strategy has been pursued by some 

studies (Rothnie et al. 2016). 

Compared with other validation studies, this study has several valuable 

features that make it a good validation study. First, the authors went to great lengths 

to construct different options whose performance could be assessed against each 
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other. This not only allowed optimising the final strategy by combining different 

algorithms, but it also allowed estimating the sensitivity of the algorithms and not 

only the positive predictive value. Secondly, by using a random sampling approach 

for the subset of events to be validated, the authors could extrapolate the measures 

to the entire event population using reliable statistical techniques.  

However, there is a problem with the reliability of the reference standard. 

We can imagine that when the general practitioner was asked to confirm or 

disconfirm the diagnosis, she might simply check whether the diagnosis was 

recorded in the same EHR system that fed the data into the databases. The 

reference standard would then no longer be truly external to the data that needs to 

be validated but introduces circularity into the procedure. Given this circularity, 

algorithms that include the information that a general practitioner has used to verify 

the events would have a high positive predictive value, solely because of the circular 

procedure to validate that data. A second issue of the reference standard is that it 

cannot avoid various sources of misrepresentation. Most importantly, it cannot 

exclude that the patient was misdiagnosed by a physician to begin with. Thus, the 

reference standard used in this case was problematic because of the unreliable 

construction method and because it might not be a valid representation of the 

patient’s true disease state.  

The second example I briefly examine took a slightly different approach, 

precisely to address the problem of misdiagnosis in the reference standard. The 

study aimed to validate data recordings of COPD diagnosis within the same 

database discussed above. The difficulty in identifying true COPD patients from 

an electronic database is that the diagnosis of COPD is not indicated by a single 

test but usually requires clinical judgement based on a combination of physical 

examination and health history. Therefore, the estimated proportion of 

misdiagnosis is as high as 20% (Quint et al. 2014). The research team aimed to 

address the problem with the reference standard they used. As in the above study, 

the researchers sent out questionnaires to general practitioners, asking them to 

verify the diagnosis and send copies of all relevant source documents – such as test 

results and letters. In this study, they clearly stated that the gold standard against 

which they assessed the algorithms was not the clinician’s judgement but the review 

of the source documents by two expert respiratory physicians and their clinical 

judgement. For the cases where additional material was available, the general 

practitioner’s diagnosis was verified against the expert’s judgements. In cases of 

divergence, the experts corrected the diagnosis in the reference standard to match 

their own judgement. Such expert judgement differs from the expert judgement 
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applied in clinical trials, because it occurs asynchronously to data collection and is 

distant from the patient. One might wonder how experts can judge from afar a 

patient they have never seen, based on potentially incomplete data. The most 

serious obstacle to this approach however is a practical problem, namely that 

source data on most data variables and/or patients is simply not available. In this 

particular study, among the 696 patients who were classified as COPD patients by 

any of the algorithms, additional source data were received for only 39% (Quint et 

al. 2014). For the other 61%, the only information the experts obtained were the 

physicians’ answers to this simple questionnaire:  

1. Do you think this patient has COPD? Yes / No / Uncertain 

2. What was the diagnosis of COPD based on? (please circle all that apply) 

o smoking history  

o symptoms  

o spirometry  

o other (please describe) 

3. Has a respiratory physician seen the patient and confirmed a diagnosis of COPD? 

4. Does the patient have any other respiratory condition? If yes, then what?  

(Quint et al. 2014, supplementary material). 

It seems implausible that even an expert physician could judge a patient’s true 

disease status accurately based solely on information from the questionnaire. 

Nevertheless, the study included all patients in the reference standard, both those 

with and those without independent information. The result was a reference 

standard that was a mixture of expert judgement and (potentially circular) 

confirmation by general practitioners. The option of including only those cases 

where source data was available was, however, not viable. They would have risked 

ending up with a heavily biased estimate, for two reasons: first, misdiagnosis for 

cases where diagnostic reports are available is less likely. This is evidenced by the 

high positive predictive value of 95% that the team found when validating the 

general practitioners’ diagnosis against the experts’ diagnosis for only the subset of 

cases where additional data was available. Second, the positive predictive value 

based on asynchronous expert judgement can be manipulated rather easily. If 

experts only receive a sample that was already positively classified by the algorithm, 

every case rated as a true case would increase the positive predictive value. People 

trying to demonstrate high accuracy of the data could leverage this point. Another 

limitation of this reference standard is also that it cannot account for 

misrepresentations that are already contained in the source data, such as poor 

measurement equipment, poor measurement performance at the site or 

incomplete or unfaithful reporting by the patient of his or her health history, and 

many more. Asynchronous expert verification of data against source data is 
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generally one of the most reliable techniques. However, it suffers from epistemic 

biases related to sampling procedures, potential bias in expert judgements and any 

problems of misrepresentation that may be contained in the source data.  

Constructing reference standards by sending surveys to clinicians seems a 

fairly common practice. Yet it is a laborious approach and entails many practical 

hurdles. Therefore, the FDA explicitly mentions a third approach as an alternative 

option, namely the use of another routine data source. I therefore complete my 

analysis with a final example.  

Kahn et al. introduced the idea of a relative gold standard and illustrated this 

approach by validating data entries about the ethnicity of patients. They compared 

the ethnicity classifications of patients in an electronic medical record database with 

the ethnic classifications of a subset of patients who were also registered in the 

Hematology, Oncology, Bone Marrow Transplant database (HOB-DB) at a 

children’s hospital in Denver. They extrapolated the results to the entire database 

based on a similarity assumption (Kahn et al. 2010, p. 357). What is interesting 

about this example is how the researchers supported the assumption that the HOB-

DB could serve as a reference standard: Their judgement was based solely on the 

author’s knowledge about the database. Key characteristics were the data-recording 

procedures, available staff and training requirements as well as the database’s 

important role for other users (e.g., clinical trial recruiters). These features were 

deemed indicative of high-quality data. To illustrate, here is a lengthy excerpt from 

the publication: 

[T]he data contained within the HOB-DB is collected by dedicated 

research coordinators and data collection personnel with oversight by a full 

time database coordinator. […] Because of the critical role of the HOB-

DB on multiple departmental missions, substantial efforts are expended 

to ensure an extremely high level of data quality, including detailed data 

collection procedures and extensive validation checks […]. One data 

element that is deemed especially critical to the HOB investigators is the 

accurate assessment and recording of patient race […]. This is a key 

element for NIH grants and for clinical trials recruitment. Substantial 

efforts have been put in place to ensure that HOB personnel are trained 

to assess and record this data element. Thus, race data are highly accurate 

in the HOB-DB, making the HOB-DB a relative gold standard for patient 

race. (Kahn et al. 2010, p. 357). 

It is knowledge about the database’s governance, usages and funding incentives that 

justifies the database’s standing as a relative gold standard for a particular data item 

of interest. Kahn and colleagues call this ‘meta knowledge’; in the EMA’s 

framework, such factors are called the ‘foundational determinants’ of data quality. 

The researchers specifically looked at the drivers for quality of the data on ethnicity 
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and did not rely on a general purpose-agnostic assessment. The reliance on 

knowledge about the causal drivers of data quality is nevertheless problematic, 

because it is too unreliable and imprecise to quantify the data’s quality into clear 

estimates regarding its accuracy. Kahn and colleagues were aware of this limitation 

and duly called the reference standard a ‘relative gold standard’ – to indicate that 

the accuracy measures obtained from such standards indicate only the relative 

improvement over the reference standard and not true accuracy.  

The problem is that such relative quality measures cannot justify that data 

is sufficiently accurate if it is unknown how accurate the reference standard is. At 

best, relative measures could justify that some data is insufficiently accurate. 

However, if researchers err about the fact that the reference standard is more 

accurate than the data that is validated, the relative reference standard cannot even 

justify that latter. Rather than being a reliable source for data validation, other 

routine data sources as reference standards only push the question of data quality 

a step further away. Despite these shortcomings of using one routine data source 

to validate another, it seems a generally accepted approach. Indeed, the FDA’s 

guidelines proposes using routine data sources as the reference standards, for 

rather weak reasons:  

For prescribed medications used in outpatient settings, dispensing or 

billing data would tend to be more accurate than most EHRs in reflecting 

exposure to a drug by documentation that the prescriptions were filled. In 

such cases, validation of EHR prescribing data by examining medical 

claims data may be warranted. For drugs administered in the health care 

setting (e.g., vaccines, injectables, blood products), administration 

recorded in the EHR may provide more complete information than is 

available in medical claims records. In these cases, it may be useful to 

validate medical claims data by examining the EHR. (US Food and Drug 

Administration 2021b, p. 17) 

 

Even if ‘billing data tends to more accurate than most EHRs’, such a relative 

improvement on quality is insufficient to quantify data quality. These measures do 

not reliably represent data quality. In the case of the SRTR, which corrected its 

mortality data in line with the data in the Death Master File, the FDA applied a 

similar reasoning. Yet, the FDA did not elaborate on which causal drivers of data 

quality made them deem it trustworthy. Without going into the details here, a quick 

search on the Social Security Death Master File indicates the following two key 

quality drivers: first, accuracy of this data is of economic interest, e.g., to prevent 

identity theft and stop benefit payments from and to deceased people. Second, the 

Social Security Administration has stringent reporting requirements and 
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verification processes in place to ensure data quality, including the verification of 

death certificates and cross-checking information from multiple reporting sources. 

In the absence of any incentives for the government to forge such data, one might 

be satisfied with the FDA’s assessment that the Death Master File is indeed a 

‘trusted data source’ on mortality data. However, the Death Master File is an 

exceptionally specialised database that only collects data on mortality, which is a 

very rare case. 

Table 5: Common problems reference standards for data validation 

Reference 
standard 

Reliability of the method 
Validity of the 
representation 

Clinical 
judgement using 
questionnaires 

Circularity 
Misdiagnosis and 
measurement errors 

Expert judgement 
using source data 
verification 

Sample biases and conflict 
of interest, misdiagnosis by 
asynchronous expert 
judgement 

Measurement errors 

Other routine 
data sources 
using meta-
knowledge 

Fallible und insufficient 
informative knowledge 

Misdiagnosis, 
measurement error, 
coding errors 

 

 To conclude, the three examples use three commonly used reference 

standards in data validation studies. The first is judgement by the treating physician, 

the second is verification of source data by expert clinicians and the third is the use 

of a second (relatively more accurate) routine data source. All come with epistemic 

problems because they use unreliable methods to construct the reference standards 

or because they are not good representations of the truth. (For a summary 

overview, see Table 5.) If the reference standards are unreliable, the quality metrics 

that are constructed on their basis are also unreliable, and so are the judgements 

about the data’s fitness-for-purpose. Data quality assessments use various 

techniques and a range of different quality metrics. Some are as simple as checking 

whether values conform to certain logical constraints (e.g., discharge date is later 

than admission date), while others are built in comparison to laboriously 

constructed external reference standards (e.g., the positive predictive value of 

COPD diagnostic codes relative to expert clinicians’ judgements). I have shown 

that two common strategies also entail common problems and are therefore often 

unreliable.  

This is not to say that all instances of data quality assessments are unreliable; 

with the right data and skills, a thorough purpose-specific quality assessment might 

well produce a reliable quality assessment. My epistemic study of some of these 
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practices has shown how complex such a purpose-specific quality assessment is and 

how easily data fail to be a reliable reference standard. This work supports the view 

that we should at least be sceptical about the reliability of fitness-for-purpose claims. 

The notion of fitness-for-purpose already makes an allowance for reduced 

reliability of the data; therefore, it seems risky if the methods that establish the 

reliability of data are themselves unreliable. The expectations about the data’s 

reliability already make an allowance for decreased reliability (we paid the price for 

power, so to speak). In Chapter 6, I deepen the problem by arguing that data quality 

assessments cannot be embedded in the network of regulatory oversight precisely 

because of their local contextuality. 

3. A critical study of the power of real-
world data 

An essential motivation for turning towards a fitness-for-purpose approach is the 

promised gain in epistemic power. Following Wilholt, a loss of reliability might be 

justified by a gain in epistemic power understood as the rate at which a method 

produces results (Wilholt 2016). In the previous section, I have criticised that real-

world data fails to meet explicit expectations about their reliability because the 

methods used to establish the reliability of data are themselves unreliable. 

Therefore, the failure to meet the expectations are serious. In this section I turn 

towards the desiderata of power. I established in section 1, in the context of health 

research, the power of real-world data raises two promises: The first is a hope for 

accelerating the evidence-generation process to allow patients early access to 

potentially life-saving medicine. The second is the hope for less expensive evidence 

generation that would enable redistributing the limited resources to foster more 

innovation. Intuitively, real-world data seem to be the epitome of a powerful 

research approach. As Leonelli noted, the mobility of such data is one of their 

greatest promises (Leonelli 2020). It can travel across users to be used for various 

purposes. In addition, ‘secondary use data’ is perceived to be a readily available by-

product of routine data collection processes. In this last section, I challenge the 

idea that real-world data can fulfil these promises. 

3.1. Accelerating access to medicines: Who is in a 
rush? 

The first perceived advantage of real-world data is that they accelerate the 

generation of evidence. Rapidly obtainable evidence is valuable in cases where 
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prolonged ignorance can cause major harms, and fast access to medicines has 

potentially life-saving consequences. Stegenga has cast doubt on the assumption 

that acceleration programmes deliver on their expectations by arguing that the new 

medicines are barely the life-saving good that people hope for (Stegenga 2017). 

Others have argued that the EMA’s adaptive pathway programme cannot fulfil the 

expectations about its promised reliability (Davis et al. 2016). It is undoubtedly true 

that retrospective real-world evidence can be generated rapidly. In the case of the 

approval of Prograf for lungtransplants, the research team at Astellas reported that 

it took them only 20 months from planning the study until the FDA’s decision. In 

comparison, it took Astellas 10 years to get Prograf approved for heart transplant 

recipients through the regular path (PSI RWD SIG 2021). However, according to 

Astellas, the use of real-world evidence for lung transplants not only accelerated 

the approval but made it possible in the first place. Tacrolimus for lung transplant 

recipients was granted orphan designation, with only 2500 patients per year in the 

entire US, and because of the small population Astellas argued that a randomised 

experiment would not be feasible. Without the opportunity to use real-world data, 

Astellas might not even have sought approval with the FDA. 

Although Prograf is highly effective, there is something else puzzling about 

the FDA’s and Astellas’ reasoning. Tacrolimus has been used in clinical practice 

for almost two decades; since 2010, it has even been the standard of care to treat 

lung transplant recipients. Statistics show that between 2010 and 2017, 79% of 

adults lungtransplant recipients had already been treated with tacrolimus in the US 

(Erdman et al. 2022). Similarly, the 2018 annual SRTR data report that is 

referenced in the FDA review states that 85% of all patients have been treated ‘off-

label’ with tacrolimus-based regimens (CDER 2021). Clearly, this is not a case 

where access to a life-saving medicine is withheld from patients because we need 

to wait for evidence. Nonetheless, the FDA granted a priority review because there 

were no treatments approved for this indication, which constitutes an ‘unmet 

medical need’ (CDER 2021). Since patients already had wide access to the 

medicine, it seems there was no real unmet medical need.  

This will be the typical scenario for the use of retrospective real-world data 

in the second regulatory scheme. If we want data to be immediately available, of 

course it must be data about medicines that are already on the market and 

prescribed to treat the disease that is subject to approval. Moreover, it is plausible 

that high-quality real-world data in particular is mostly available for cases where the 

medicines off-label use is already well-established, be it informally or in official 

treatment recommendations. For approvals on the basis of retrospective real-world 
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data, the benefit to patients is typically marginal, because there is no convincing 

unmet medical need – and without such an unmet medical need, it seems we do 

not need accelerated evidence. A valid concern against this argument is that patients 

can run into issues with reimbursement if treatments are prescribed ‘off-label’. 

Approving the medicines thus relieves patients of a financial burden. I 

acknowledge that this issue is a problem. Nonetheless, problems with 

reimbursement have far less severe ethical implications than does the situation in 

which access to medicines is denied. Hence, the social or ethical value that can be 

gained from using real-world data seems marginal in this case.  

More promising attempts to accelerate evidence development and provide 

access to truly innovative treatments occur through accelerated approval 

programmes, such as the EMA’s Adaptive Pathways launched in 2014. The 

programme allows the early approval of particularly valuable medicines based on 

some preliminary evidence, followed by the confirmation or disconfirmation with 

prospectively collected real-world data. In these cases, patients really do gain faster 

access to medicines that would not be on the market otherwise. Whether or not 

this is to the patient’s benefit is a different discussion. The epistemic work to 

accelerate the process, however, is not done by the use of real-world data but by 

whatever preliminary evidence is deemed sufficient for the initial approval. Real-

world data features only after the medicine gains access to the market. Whether 

the gathering of post-market real-world data is actually faster than running a trial is 

not yet certain. The EMA’s final report on the programme’s pilot phase provides 

a disillusioning conclusion on the use of real-world data (European Medicines 

Agency 2016). Some scholars doubt that real-world data can play a role in rapidly 

decreasing uncertainty during the post-marketing phase (Davis et al. 2016) and it is 

not clear why such prospectively collected real-world data should be more rapidly 

available than experimental data. One reason might be that the data is easily 

available in a bigger volume. However, such data also has higher variability which 

easily consumes the advantage of having a larger volume of data. Hence, it is 

plausible that collecting a conclusive volume of real-world data might require an 

equally long or even longer period than for experimental data. In the case of 

Prograf, the researchers relied on data that was collected over almost 20 years. 

Overall, the reason for using real-world data to generate evidence rapidly 

does not hold up to critical scrutiny. In the first regulatory proposal, retrospective 

real-world data can be analysed rapidly, but only for medicines that are already on 

the market. In the second regulatory proposal, the scheme can provide early access 

to newly marketed medicines. However, the main epistemic work to accelerate the 
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process is not done by the use of real-world data, and whether such data can uphold 

to the expectations to be more rapidly available than experimental data remains to 

be seen. 

3.2. Saving resources: Cheap for whom? 

The second perceived advantage of real-world data is that it helps to prevent 

opportunity costs, because such data are a comparatively cheap by-product of 

healthcare. However, there are many costs involved in the production of such data 

that need to be accounted for. Thanks to the pioneering work of Leonelli, 

philosophers have learned that it is a laborious, skilful and very costly task to render 

data reusable. It requires work such as structuring the data, cleaning data, coding 

data with semantic standards or annotating the data with metadata. Building data 

curation processes that transform clinical data from a ‘raw’ form, as mostly 

unstructured text, into so-called FAIR data – which stands for Findable, Accessible, 

Interoperable, Reproducible – takes years of skilled labour (Leonelli 2016). 

Countries across the world are investing large amounts of money into initiatives to 

perform such work. These initiatives include large data-driven projects such as the 

Beyond 1 Million Genome Project, the All of Us project, EU Darwin, Findata, the 

European Health Data Space and the Swiss Personalised Health Network, to name 

a few. Yet the work of such initiatives goes well beyond the data curation itself. It 

begins with negotiating semantic and technical standards, building secure IT 

environments for sharing sensitive health data and negotiating legal frameworks 

and data governance processes. With an increased need for high-quality data, such 

infrastructures are increasingly also confronted with the need to invest in 

monitoring or certification (Bernal-Delgado et al. 2022; Daniel et al. 2018). Not 

only is the development and maintenance of such infrastructures costly, it is paid 

for largely by public money. A cross-European survey on data quality practices 

among health data–sharing networks identified 31 initiatives in Europe that had a 

primary focus on sharing health data. The study also found that almost all of these 

initiatives were exclusively paid for by public funds (Bernal-Delgado et al. 2022; 

Daniel et al. 2018).  

The direct cost of data infrastructure, however, is just the most visible of all 

the costs that are attached to the production of real-world data. To decrease the 

continuous costs incurred by data curation, governments are additionally investing 

into streamlining data-collection processes at the source. A well-known investment 

programme is the Medicare and Medicaid Electronic Health Record Incentive 

Program in the US, also known as Meaningful Use, which was launched in 2009. 
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The programme allocated USD 34 billion for incentive payments for healthcare 

facilities to stimulate the adoption of EHR technology in health and the further 

demonstration of its ‘meaningful use’, including, among other requirements, the 

provision of structured data for secondary use. In 2018, the programme was 

transformed into a revised version of the incentive payment programme, the 

Promoting Interoperability Programme. As a consequence of the political desire 

for high quality data ‘at the source’, healthcare professionals became an 

indispensable part of the data collection pipeline. Inverso et al. estimated that the 

costs for clinics to meet the meaningful use requirements amount to USD 184 per 

patient, with a total of roughly USD 3700 per day per clinic (Inverso et al. 2016). 

Based on interviews with healthcare providers in Denmark, Green and colleagues 

showed that the political desire for high-quality reusable health data imposes all 

kind of invisible ‘data work’ and invisible costs within healthcare facilities (Green 

et al. 2022). For example, healthcare professionals must spend more time on 

multiple testing, collecting data or validating data, which drains considerable 

resources from patient care (Green et al. 2022). Hence, repurposable health data 

does not imply merely reusing data from clinics; instead, new data-collection 

requirements are imposed that follow the needs of the secondary user. Ironically, 

Green et al. show that the additionally collected data is often not only irrelevant for 

clinical purposes but even risks harming clinical care through problems such as 

information overload in the patient’s documentation. Efforts to fundamentally 

reorganise data collection at the source clearly challenge the idea that real-world 

data is ‘secondary use’ data, when much of this data never even had a primary user.  

Another form of invisible costs occurs at the side of regulatory bodies. 

Historians and social scientists have argued that the biomedical sciences are 

governed by a unique complexity and number of scientific conventions – which are 

indispensable for the good functioning of the community (Cambrosio et al. 2006, 

2009; Hauray 2017). With the evolving regulatory standards, the scientific 

community together with regulatory bodies around the world are working at full 

speed to develop new standards and accumulate new experience regarding how 

such standards can be put into practice. The FDA alone has produced eight new 

guidelines since the launch in 2018. Various initiatives have been funded to 

conduct experimental pilot projects to accumulate new experience with the type of 

research that underpins these guidelines. The Get-Real consortium, the RCT 

DUPLICATE initiative (Franklin et al. 2020b; Franklin et al. 2021) and the EMA’s 

pilot projects to explore the potential of adaptive pathways (European Medicines 

Agency 2016) are a few examples. That these initiatives involve substantial costs is 
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acknowledge by Rawlins, a critic of the costly regulatory standards for the industry. 

It is because of these costs that ‘the international community should ‘embark on 

collaborative methodological research’, ‘because … [i]t would be perverse to expect 

the pharmaceutical industry to undertake such a programme: it would only, at least 

in the short term, further increase the costs of drug development’ (Rawlins 2004, 

p. 363). However, the substantial costs do not disappear just because they are 

redistributed towards public parties.  

There are yet other costs to be expected. Andreoletti and Teira used the 

legal distinction between rules and standards to draw philosophers’ attention to the 

economic costs involved in adopting a standard-based regulatory paradigm 

(Andreoletti and Teira 2019). Unlike rules that apply regardless of their 

justification, the applicability of standards needs to be continuously re-evaluated in 

light of their justification, which increases the costs of enforcing such standards on 

a daily basis. I think from discussions in section 2 it should be clear that quality 

assessment of real-world data cannot amount to rules that apply regardless of their 

justification. As an aside, Andreoletti and Teira also note that the unpredictability 

of standards (as opposed to rules) might ironically even increase the costs on the 

side of the industry, because companies can no longer anticipate what the 

regulatory requirements entail. Regulatory agencies are sometimes criticised for 

their high approval rates. Yet one reason for the high approval rate lies precisely in 

the predictability of their requirements, which directs companies to develop 

medicines that have a strong chance of acceptance. 

A final point is worth making regarding the costs of the EMA’s adaptive 

pathway programme. Within the programme it is foreseen that companies receive 

scientific advice from the EMA and health technology assessment bodies that are 

in charge of evaluating reimbursement conditions for products. The main purpose 

of such advice is to increase the chance that medicines will be directly reimbursed 

at the time they receive the first market authorisation (Davis et al. 2016). Hence, 

unlike compassionate use programmes – where companies typically provide early 

access to medicines at their own cost – within the new adaptive pathway programme 

these costs are covered by insurance or patients. These programmes would relieve 

companies from the burden of paying for clinical trials and would support evidence 

production by redistributing much of the data collection cost to public parties. 

Additionally, companies would be paid by insurers for the continuous testing of 

their treatments. 

As we can see, throughout the data production and review cycle, real-world 

data entail considerable costs. These include costs for the negotiation of data 
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standards or the setting up of data governance processes; costs for the laborious 

collection of data in the clinics, and for the skilled curation and validation of data 

in data warehouses; and costs for the negotiation of new regulatory guidelines, their 

empirical testing and the continuous reinterpretation of such standards to enforce 

them. Although real-world data promises to be ‘secondary use data’, it appears that 

much of this data in reality never had a primary user. Rather, public parties are 

producing new data according to the needs of secondary users. It appears that the 

costs are not reduced but largely redistributed towards public parties. 

The common view is that most of these costs are an investment into the 

future and will decline over time. This is precisely the seductive aspect of this idea: 

Once data has been made reusable, it can be reused for all kinds of different 

purposes, and in the long run our investments will pay off. Yet the facts here remain 

unclear. Unless real-world data gains considerably in quality, we have reason to 

suspect that the number of purposes for which a particular set of real-world data is 

fit-for-purpose will be minimal. Yet bringing the data up to a high level of quality 

and maintaining it is certain to be costly. To underline my point, I return to our 

case study on the approval of Prograf. The data submitted to support the 

medicine’s approval was deemed fit-for-purpose, and the submission was accepted 

as ‘adequate and well-controlled’, in line with the FDA’s requirements. Yet the data 

had various problems, two of which I have mentioned in this chapter, namely the 

failed primary analysis and the lack of data on dosage. In Chapter 4, I presented 

additional issues. The reason why the FDA nevertheless accepted the evidence as 

adequate and well-controlled was that they could rely on various contextual 

evidence, such as the fact that lung transplants without therapy have a high mortality 

rate and Prograf is effective at preventing mortality. Moreover, the FDA relied on 

the mechanistic comparability of earlier interventions to fill relevant evidence gaps, 

such as missing data on dosage (for a detailed discussion see Chapter 4). The issue 

here is not the reliability of the overall evidence. The issue is that the contextual 

evidence did most of the epistemic work, but in most other cases, such contextual 

evidence will be unavailable. For most diseases, the natural course of disease is 

much more complex and heterogeneous than the natural history of lung transplant. 

In addition, most medicines today are minimally effective, as exemplified by a list 

of widely used medicines with questionable effectiveness in line in Stegenga’s 

medical nihilism (Stegenga 2018). Moreover, the mechanistic comparability 

between indications was another exception. Hence, data from the SRTR was only 

fit-for-purpose in light of already conclusive and rare contextual circumstances.  
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Nonetheless, overall, the SRTR is a promising data source. It is a well-

established infrastructure that has been managed by experts for almost 40 years. 

Moreover, establishing the effectiveness of Prograf for the general population is 

probably one of the most basic usages for this data. If data from this database is 

only fit-for-purpose in light of rare contextual evidence, my concern is that we 

would widely overestimate the number of purposes that the same set of data can 

actually fulfil. These concerns are supported by two other specialised studies for 

which the SRTR failed to provide fit-for-purpose data. First, Yanik et al. directly 

evaluated the accuracy and completeness of the SRTR data on the reporting of 

cancers in transplant recipients. Cancer reporting is mandatory in the SRTR 

database because transplant recipients have an increased risk of cancer due to the 

lifelong use of immunosuppressive therapy. However, the researchers found that 

only 36% of cases reported in other cancer-specific registries were also reported in 

the SRTR database (Yanik et al. 2016). Second, Sawinski et al. used the SRTR 

database to examine the effect of protease inhibitor (PI)-based regimens to treat 

HIV by studying the outcomes among transplant patients; they linked the SRTR 

database with pharmacy disposal data. The results failed to confirm an effect of PI-

based regimens on the risk of acute rejection, although such a finding was clearly 

expected (Sawinski et al. 2017). 

Perhaps the problem is that we are not thinking far enough into the future. 

Eichler and colleagues argue that the 21st century will see a shift from last century’s 

‘blockbuster drugs’, such as statins – which are mostly chemicals with small effects 

for large populations – towards more complex medicines. Hence, we might soon 

witness a shift towards 21st-century medicines such as biologicals, cell or gene 

engineering therapies and drug–device combinations. The trends are likely towards 

ever smaller target populations in rare diseases and in biomarker-driven drug 

development in oncology. These trends are already visible in the type of approvals 

since 2000 and are supported by horizon scanning of regulators (Eichler et al. 

2021). It is in this future where real-world data will no longer be optional but one 

of the only ways to generate evidence about populations that are becoming too 

small – and treatments that are becoming too complex for randomised trials.  

If Eichler and colleagues are right in their forecast, these trends would 

change the way evidence is generated to support the effectiveness of treatments. In 

such a future, the main use of real-world data would be as an external control arm 

for small single-arm trials. Empirical research indicates that this is already common 

practice in the production of evidence for cancer treatments with orphan 

designation (Gloy et al. 2023). In this future scenario, the use of real-world data is 
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based on the premise that its use will become a necessity in instances where 

randomised trials are unfeasible. In those cases, evidence from real-world data is a 

priori more reliable and powerful than having no evidence at all. However, in 

Eichler’s future vision, these 21st-century medicines will be embedded in a shift 

towards the further specialisation of medical practices. Such a shift itself offers the 

opportunity to generate high-quality real-world data at the source:  

[I]n the future, specialized tertiary care facilities should be expected and 

held accountable to implement a high level of patient documentation that 

enables generation of high-quality real-world data, and ultimately the 

development of a ‘learning health care system’ with the ability to provide 

increasingly robust assessments of drug effects over time. (Eichler et al. 

2021, p. 1214) 

 

I think it should be clear by now that such data generation envisioned by Eichler et 

al. will entail considerable costs for patients and public healthcare providers. 

 The arguments in this section support the critical view that the use of real-

world data might not reduce the costs but rather distribute them towards public 

third parties, including governments, regulators, healthcare facilities and patients. 

Current problems with the use of such data suggests that the power of this data is 

considerably overestimated. Even a well-established registry barely supported a 

simple use of its data. Making data reusable for more purposes requires substantial 

investments into collecting more data, better structured data and different data. 

Ironically, we are caught in a cycle in which our attempts to increase the power of 

data actually decrease that power.  
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Chapter 6 
The trustworthiness of real-
world data 

 

The ‘Surgisphere scandal’ stands out as a troubling instance of fraudulent research 

conduct during the early days of the COVID-19 pandemic. The private company 

Surgisphere claimed to possess evidence about the effectiveness of 

hydroxychloroquine to treat COVID-19 from EHR data from almost 100,000 

patients across 671 hospitals on six continents (Mehra et al. 2020). It did not take 

long until suspicions about the authenticity of the publication by Mehra and 

colleagues piled up, which prompted its retraction. Yet, in the midst of an ongoing 

pandemic, the publication still had a major impact on public health policy (Offord 

2020). Among the numerous flaws in the publication that aroused suspicion 

regarding its authenticity were the nearly impossible scale and the claimed 

sophistication of the database. An illustrative excerpt from their publication 

describes the infrastructure as follows: 

The Surgical Outcomes Collaborative […] ensures compliance with the US 

Food and Drug Administration (FDA) guidance on real-world evidence. 

Real-world data are collected through automated data transfers that 

capture 100% of the data from each healthcare entity at regular, 
predetermined intervals, thus reducing the impact of selection bias and 

missing values, and ensuring that the data are current, reliable, and 

relevant. Verifiable source documentation for the elements include 

electronic inpatient and outpatient medical records. […] Collection of a 

100% sample from each health-care entity is validated against financial 

records and external databases to minimise selection bias. […] Data have 
been collected from a variety of urban and rural hospitals, academic or 

community hospitals, and for-profit and non-profit hospitals. (Mehra et al. 

2020, p. 2, my emphasis) 

In the preceding chapters, I delved into the epistemic risks of claims about data 

quality and illustrated the risks involved and the extensive effort needed to 

substantiate such claims. Given that discussion, the sheer implausibility of 

maintaining such a sophisticated database should be self-evident. The logistical and 

legal obstacles that would need to be surmounted to assert possession of verifiable 

source documentation on such a vast scale are considerable. It would require 

extensive effort to verify a sample from each healthcare entity against an external 

database. In the Surgisphere scandal, it seems that Mehra and colleagues not only 
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fabricated data or claims about the data's quality but falsified the entire database 

itself (Offord 2020).  

In light of such a disturbing scandal, real-world data raises major concerns 

in the clinical research community regarding the risk of fraud. Among philosophers 

of science, John argued explicitly against the use of real-world evidence for health 

policy making on the ground that such evidence is not ‘robust’ against manipulation 

(John 2021). Despite its immediate plausibility, the challenge such an argument 

must address is to show why real-world evidence should be more susceptible to this 

concern than data from clinical trials. Philosophers have unravelled various 

problems with clinical trials, and the problem of data manipulation is one of them 

(Borgerson 2009; Stegenga 2018).  

In 2017, the editor of the journal Anaesthesia, John B. Carlisle, became so 

concerned about the potential prevalence of untrustworthy data in clinical trials that 

he began scrutinising all clinical trials submitted to the journal. He used the label 

‘zombie trial’ to categorise a trial ‘when the extent of data fabrication lost my trust’. 

Specifically, he lost trust in studies if he thought that ‘the authors had compromised 

science by lying or being incompetent’ (Carlisle 2021, p. 477). Carlisle analysed 

153 trials at the level of individual patient data between 2017 and 2020, of which 

26% made it into this category. Interestingly, among the 373 trials that he analysed 

at the level of published summary statistics, he identified only 1% of trials as zombie 

trials. This finding indicates that many questionable studies remain undetected 

unless someone meticulously scrutinises the data.  

These results have spurred a new discussion about the prevalence of 

fraudulent data in clinical trials going undetected. In response to these concerns, 

several trustworthiness screening tools were developed for clinical trials to identify 

trials with untrustworthy data in a more systematic manner. Trustworthiness 

screening tools extend the more commonly known risk-of-bias assessment of 

clinical trials by assessing factors such as good research governance, plausibility of 

baseline characteristics, plausibility of the study’s feasibility and the plausibility of 

results.
21

 The first applications of such tools to a systematic selection of trials found 

that about 25% failed the check (Alfirevic 2023).  

The challenge I tackle in this last chapter is how we could be confident that 

claims about data quality are made with sufficient competency, are reported 

 

21

 Two of the better known tools are the Cochrane Pregnancy and Childbirth 

Trustworthiness Screening Tool, developed by said Cochrane group, and the 

REAPRAISED checklist developed by Grey et al. Grey et al. (2020). For a discussion of 

risk-of-bias assessments, see Chapter 2. 
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sincerely and do not involve controversial value judgements. Hence, I attempt 

examine how such claims might be trustworthy despite the community’s 

susceptibility to conflicts of interest. I first develop a proposal regarding how clinical 

trials have (successfully) responded to this issue. Then I argue that the same 

solution cannot be applied to solve the problem of trustworthiness of real-world 

data studies. My proposal about the trustworthiness of clinical trials is only a rough 

sketch of what should be a much more rigorous discussion of various conceptual 

issues involved in trust in science or trust in institutions, and it is beyond the scope 

of this chapter to address any of them. Yet, I hope to draw philosophers’ attention 

to the fundamental function that regulatory institutions, professional roles (such as 

monitors) and tools (such as audit trails) play in ensuring the trustworthiness of 

experimental data in clinical trials and the proper functioning of the clinical 

research community. 

I first develop my proposal on the trustworthiness of clinical trials by closely 

examining once more the crucial guidelines of GCP by the ICH. From that 

examination, a social epistemology perspective emerges, in which trust in clinical 

trials is grounded in the mandatory involvement of impartial experts throughout 

the research process. These impartial experts exhibit roles within institutions – such 

as ethics committees, independent monitors or inspection authorities – that use 

tools such as monitoring reports, audit trails or trial protocols to execute their role. 

Building on John’s two-premise model of trust in science, I propose to understand 

these instruments and roles as signs of a ‘well-ordered community’. I then develop 

three arguments to show that trust in real-world data cannot rest on the same 

grounds. The first argument hinges on the contingent fact that currently none of 

these roles or tools are commonly employed to produce real-world data. The 

second argument rests on the normative problem that employing these tools and 

agents to augment the data’s trustworthiness comes at a high and potentially 

undesirable price: an increase in trustworthiness is a trade-off with the data’s main 

epistemic advantage, its epistemic power.  The third and main argument is a 

conceptual argument building on the methodological features of data validation. 

Through another close look at data validation practices, I highlight its deep local 

contextuality and value-ladenness. I develop the view that the local contextuality 

and value-ladeness of these practices are substantial obstacles for embedding the 

production of claims about data quality into the larger well-ordered clinical 

research community. Overall, I suggest that the ongoing evolution of evidence 

standards seems to be a rather radical shift from the paradigm of regulatory 

oversight of rule-based execution of research to a paradigm of trust in local experts. 
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This shift suggests that the clinical research community might bring about new 

foundations of trust and different ways of coordinating its cooperation. 

Section 1.1 develops the proposal for the trustworthiness of clinical trials. 

Section 1.2 presents the first two arguments against the trustworthiness of real-

world data. Section 2 turns toward data validation. I first elaborate on the local 

contextuality and deep value-ladenness of the method (section 2.1) and then 

develop the third argument against the trustworthiness of real-world data (section 

2.2). 

1. Trustworthiness of clinical trials 
Trust in general and trust in science in particular have been popular topics in the 

philosophy of science for some time. In this literature, philosophers are commonly 

interested in what trust is and how it is distinct from related concepts, such as 

reliance. They also consider whether trust relationships occur only between 

individuals or can also occur between individuals and institutions or between 

individuals and communities. It is not the project of this chapter to tackle 

conceptual puzzles about the notion of trust or trustworthiness. What I am 

interested in are the reasons we could possibly have to believe that data in clinical 

research has been gathered with sufficient expertise and reported sincerely and has 

not been compromised by inacceptable value judgements. I consider such reasons 

a necessary requirement for the (justified) uptake of evidence by various 

stakeholders. My goal for this section is to provide an analysis of the instruments, 

actors and rules employed within the clinical research community that constitute 

such a warrant. Who or what exactly the bearer of trustworthiness is, or whether 

the subsequent relationship is one of trust or mere reliance, are questions that are 

irrelevant to that analysis.  

I begin with the three common sources of mistrust alluded to above: 

concerns about expertise, sincerity and acceptable value judgements. In the context 

of science, we are mostly interested in a special kind of trust called ‘epistemic trust’, 

meaning that we trust a person as an information provider (Wilholt 2013). That is, 

trust as a three-place predicate understood as trust in someone to do something. 

As a basic requirement, if we place epistemic trust in someone, we need to be 

confident that the person who generated the knowledge did so with the necessary 

competence and reported the results sincerely. A violation of either of these two 

requirements was what motivated Carlisle, the editor of Anaesthesia, to classify 

some clinical trials as zombie trials. That is, in such cases he felt that ‘the authors 
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had compromised science by lying or being incompetent’ (Carlisle 2021). Most 

philosophers think of epistemic trust as having a performative component 

(competence) and a normative component (sincerity).  

In recent decades, philosophers of science have made a convincing case that 

the normative component of epistemic trust is more nuanced than just the absence 

of outright fraud. Philosophers widely acknowledge that ethical, political or social 

values cannot be eliminated from the generation of scientific knowledge. A forceful 

argument for this position, the argument from inductive risks, departs from the 

insight that no amount of scientific evidence can ever be fully conclusive about the 

truth of a scientific hypothesis but always remains uncertain to a degree. Thus, 

researchers must determine what is considered an appropriate level of evidence to 

accept a hypothesis as true or reject it as false. Settling on evidence levels, however, 

involves trade-offs between different inductive risks. The most prominent example 

is the risk of accepting a hypothesis as true when it is in fact false (the risk of false 

positives) and the risk of rejecting a hypothesis as false when it is in fact true (the 

risk of false negatives). The question then becomes how scientists balance – or 

ought to balance – these different risks. A common answer is that they consider – 

or ought to consider – political, ethical, or social goods involved when any of these 

errors are made. The argument was first proposed by Rudner, focusing on the 

problem at the stage of hypothesis testing. More recently, the debate has been 

revived and strengthened by Douglas (2000; 2009), who argued that researchers 

encounter similar trade-offs throughout the research process.   

The implications of these arguments for the question of trust and 

trustworthiness are twofold. First, it has become a consensus among philosophers 

of science that the ideal that science is value-free is unattainable and perhaps even 

undesirable (Douglas 2009). Consequently, the absence of values in scientific 

research cannot be the basis for any claims about the objectivity and trustworthiness 

of science. Rather, it is ‘the right use’ of values that demarcates good science from 

bad science.  

Second, these arguments have added another source of mistrust, namely 

uncertainty about which values scientists emphasise to make the various 

judgements in their research. Some researchers who stress values such as the 

wellbeing of patients might deserve our trust, because those values are aligned with 

our own. Researchers who emphasise other values – such as the profitability of 

products – do not deserve our trust. Irzik and Kurtulmus accordingly distinguish 

between basic and enhanced epistemic trust to capture the difference between trust 
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that only considers expertise and sincerity versus the enhanced version that also 

considers the alignment of value judgements (Irzik and Kurtulmus 2019).  

Since trustworthiness involves the right moral attitudes of individual 

scientists, strategies to foster trust in science have often focused on the virtues of 

individuals, such as honesty, sincerity or epistemic self-assessment. Measures such 

as transparency and public involvement have attracted considerable support among 

philosophers as promoters of trustworthiness of researchers. Irzik and Kurtulmus, 

for example, discuss hybrid deliberation forums – such as consensus conferences, 

citizens’ juries and panels – as indicators of the trustworthiness of research (Irzik 

and Kurtulmus 2019). Solomon critically assessed the widely hold ideal that 

consensus conferences in medicine can promote democracy and objectivity 

(Solomon 2015, chapter 4). Accounts that focus on the trustworthiness of 

individual scientists, however, fall short of accounting for the difficulties and 

complex realities of clinical research. In a field that is prone to conflicts of interests, 

we have good reason not to believe that value judgements are aligned among 

researchers, authorities and public stakeholders. We might not even have a good 

reason to believe that scientists have noble intentions to report evidence truthfully. 

Consequently, scandals in biomedicine have not just resulted in the loss of public 

trust in specific individual scientists but have also prompted an ever-tighter 

regulatory oversight and narrow net of globally binding conventions regarding the 

epistemic and ethical standards that hold researchers accountable. Hence, any 

discussion about the trustworthiness of clinical research(ers) needs to consider the 

socio-economic reality in which the research occurs.  

Two philosophers who pay justice to such sociological considerations are 

Stephen John and David Teira. John has developed a two-premise model of 

epistemic trust in science that considers not only the epistemic but also the 

sociological conditions of research (John 2021, 2018). The idea of his model is that 

trust must fulfil a sociological and an epistemological requirement. The sociological 

premise is that communities that produce scientific claims must be well-ordered, 

such that the best explanation for a scientific claim meets a set of epistemic 

standards set by the community. The epistemological premise is that if a claim 

meets the epistemic standards, I should accept that claim as well. The 

epistemological premise provides John with the grounds to argue that the scientific 

community should adopt epistemic standards that are ‘broadly acceptable’ to 

maximise public agreement about which scientific claims are true (John 2021, 

p. 5). In his view, high epistemic standards can play this role of being broadly 

acceptable. The reason is that disagreeing parties can generally agree that claims 
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that meet the highest standards are established, whereas parties might disagree 

about whether claims that adhere to lower standards are sufficiently well 

established. Assuming that randomised trials are a higher standard than real-world 

evidence, the political need for maximising agreement about which scientific claims 

hold gives John a political reason to prefer randomised trials over real-world 

evidence. That is, we can achieve agreement about the claims that are established 

with RCTs, whereas parties might disagree about claims that adhere only to real-

world evidence standards.  

The sociological premise adds another perspective to these epistemic 

debates. The premise requires not only that the community agrees on acceptable 

standards, but also that it is well-ordered, in the sense that it adheres to these 

standards when producing scientific claims. Hence, the sociological premise can 

bypass all disagreement about epistemic standards: if the community is not well-

ordered, we should not accept results, because they might not be the result of 

meeting some standards, regardless of what these standards are. Hence, we not 

only need generally acceptable standards but we also need markers of ‘well-

ordered’ communities to foster trust in science. One way to understand John’s 

proposal is that in a community that is not well-ordered, factors such as 

incompetence, insincerity, conspiracies or misaligned value judgements could be 

equally good explanations for the community to make certain scientific claims. In 

our case, the highly commercialised nature of the clinical research community is a 

good reason to believe that the community is not well-ordered. Hence, insincerity 

and economic interests are equally good explanations for scientists to assert a 

certain claim.  

Using his two-premise model of epistemic trust, John identifies the real-

world evidence standard as untrustworthy based on two premises. The first states 

that the clinical research community is not well-ordered; the second premise states 

that real-world evidence is not robust against manipulation by this community. He 

argues: 

[R]eliance on RWE is problematic because it is very easy for the 

pharmaceutical industry to ‘game’ real-world trials (Davis et al., 2016). For 

example, in real world trials, researchers have a huge amount of leeway in 

choosing which evidence to include or exclude. In the case of CDF2 

[where the use of real-world evidence is allowed] specifically, researchers 

can present evidence from cancer registries in favour of their claims; 

however, there are concerns that this data is partial, incomplete, and easy 

prey for cherry-picking ... [T]he use of such evidence is not ‘robust’, in the 

sense that it can easily be manipulated by interested parties (Holman & 

Geislar, 2018). We have good reason to be wary of CDF2. The epistemic 

community is not ‘sociologically well-ordered’. (John 2021, p. 6) 
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I share John’s concern that real-world data in clinical research poses this problem 

of trustworthiness. One might wonder, however, why the absence of a well-ordered 

community poses problems only for the production of real-world evidence and not 

for the conduct of clinical trials. After all, it is the same community that produces 

both types of evidence. Teira’s work on the impartiality of the randomised method 

helps to explain this point. He thoroughly analysed the origins of the randomised 

clinical trial within the regulatory context and argues that the method emerged as 

an acceptable standard because it ensures the best possible impartiality (Teira 

2020). For example, randomisation spares the community from the task of agreeing 

on the relevant confounders, which fosters acceptability of the method and its 

results (Martinez and Teira 2021). Blinding as a methodological control prohibits 

various parties from manipulating the results according to their interests (for an 

extended discussion see Chapter 1). Hence, in Teira’s view, the randomised trial 

became the preferred gold standard in the community precisely because it is a 

highly impartial method on which all conflicting parties could agree (Teira 2016). 

Hence, the adoption of the randomised trial as the evidential gold standard could 

be a sign of order in an otherwise not well-ordered community, because the 

method is robust against manipulation.  

I want to add a second answer to this puzzle that refers to the social network 

in which the method is embedded. This network plays a role in protecting data 

against manipulation, controversial value judgements and even incompetence. This 

network includes institutions such as ethics committees and regulatory agencies; 

professional roles, such as monitors or auditors; and various instruments, such as 

audit trails, monitoring reports and research protocols. I suggest that the relevant 

clinical research community consists not only of researchers within pharmaceutical 

companies but also this larger network of institutions and actors that jointly 

contribute to the good ordering of the community – and hence the trustworthiness 

of evidence produced by this community. However, as I argue later, any attempt 

of stakeholders to embed practices of quality assessments for real-world data within 

this broadened and well-ordered community has to face potentially 

unsurmountable obstacles. 

1.1. Ensuring trust with Good Clinical Practice 
conventions 

The ICH-GCP-E6(R2) is a pivotal document that sets forth globally accepted 

standards and principles for conducting clinical studies, first published in 1997. It 

governs the quality of data by creating accountability, defining mandatory 
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instruments and rules for data collection, storage and reporting. In Chapter 4, I 

introduced parts of these guidelines in detail and argued that if functions as a gold 

standard for data quality in the community. The fact that real-world evidence is 

generated from data that was not governed by these guidelines is, for many 

stakeholders, evidently a greater source of concern than the fact that such data was 

analysed using an observational or pragmatic method. During informal 

conversations with practitioners, I repeatedly heard spontaneous comments such 

as ‘without these guidelines, I have to do all the work by myself’, or ‘having these 

guidelines is crucial, and without them we would descend into anarchy’.  

Historians and sociologists have emphasised the unique and unprecedented 

role played by the vast number of conventions in biomedicine. Cambrosio follows 

Daston and Galison in historicising the concept of objectivity and argues that the 

volume of regulation (or conventions) in biomedicine has created a new type of 

objectivity, which he calls ‘regulatory objectivity’ (Cambrosio et al. 2006, 2009). 

Hauray shows how the narrow net of hundreds of national, regional and 

international guidelines – for every type of study and all medical fields – serves to 

disguise the messy regulatory decision-making process as scientific and objective 

(Hauray 2017).  

Naturally, transitioning to new conventions deeply disrupts the coordination 

within the community. The transition deprives the community of decades of 

accumulated experience of working with the previous guidelines. This fact has also 

been observed by practitioners themselves (Franklin et al. 2019). The current rush 

in the real-world evidence movement to produce new guidelines, as well as efforts 

to study and accumulate past experiences using real-world data, illustrate this 

disruption and the community's need to uphold a ‘regulatory objectivity’. In that 

regard, the historical observation is spot on: The FDA alone has published 9 

different guidance documents since the launch of their real-world evidence 

programme in 2018 (US Food and Drug Administration 2023). Many articles 

discussing past experiences with real-world evidence in regulatory decision-making 

have been written (Flynn et al. 2022; Hatswell et al. 2016; Jonker et al. 2022; 

Mahendraratnam et al. 2022). Initial experiences, such as the FDA’s approval of 

Prograf and the Salford Lung Study, are discussed at length and disseminated as 

paradigm cases in the community (PSI RWD SIG 2021). The socio-epistemic 

perspective on conventions in biomedicine holds that it is only a matter of time 

until the new ‘regulatory objectivity’ is established, and stakeholders will perceive 

real-world data as objective as data from clinical trials. New accumulated 

experiences will serve as guidance in the process of turning such data into decisions. 
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 What the socio-epistemic perspective cannot account for, however, is the 

epistemic value contained within a particular set of conventions. That is, it cannot 

explain why the adoption of some set of conventions rather than another might be 

epistemically preferable. In Chapter 4, I argued that the guidelines for GCP are a 

good convention to ensure data quality because they increase the likelihood of 

reliable data with prospective planning and corrective feedback loops. Here, I am 

interested to see how the norms within these guidelines safeguard the data’s 

trustworthiness by protecting data from manipulation, controversial value 

judgements and incompetence. I show that the GCP guidelines not only define the 

epistemic standards for good data but also ensure that everyone plays by the rules 

and adheres to these standards. The GCP guidelines respond to both – the 

epistemic and sociological premise – and are therefore an exceptionally pivotal set 

of rules within the community. Practitioners who are worried about the divergence 

of real-world data from these guidelines are not only worried about the transition 

to any new standard, but they are worried because they might loose a source of 

trustworthiness of data that is difficult to restore. 

The GCP guidelines enjoy a high level of legitimacy. They are published by 

one of the most important bodies to define globally accepted standards in the field 

of pharmaceutical research and development, namely the International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 

(ICH). Its primary mission is to harmonise drug development globally in order to 

facilitate decision-making by regulators and avoid unnecessary duplication. The 

ICH was founded in 1990 as an informal international partnership between 

industry and regulators. Today, it is a legal entity, a non-profit organisation 

established under Swiss law. To strengthen its independence and trustworthiness, 

the organisation underwent a reform in 2015 to ensure its financial independence 

from the pharmaceutical industry. Other aims of the reform were to increase 

transparency in its decision-making process and clarify its governance roles. The 

development and implementation process of each guideline, building on expert 

consensus, public consultation and international endorsement, is essential for the 

legitimacy and acceptability of these conventions. Each guideline is developed by a 

working group of delegated international experts appointed by the ICH member 

organisations and obliged to represent the view of their respective organisation. 

The development of each guideline follows a transparent and standardised five-

step procedure. This includes the consensus-building among the experts in the 

working group about a draft document, further endorsement of this document by 

the ICH assembly and regulatory topic leaders and a public consultation process 



 

 171 

that is open to all interested stakeholders. As part of the implementation, the 

guidelines for GCP are often referenced in the national laws, making the guidelines 

legally binding for all clinical trials (International Council for Harmonisation 

2021a).  The legitimacy of this organisation and its processes contributes to the 

high standing of its guidelines in the community and reinforces their acceptance. 

The main epistemic value of their content is as follows. The GCP guidelines 

protect data from untrustworthy human behaviour by embedding clinical trials into 

a larger socio-epistemic context, which includes the mandatory involvement of 

impartial experts throughout the research process. Ethics committees approve the 

research plan before the experiment begins, monitors verify that research staff are 

adhering to the rules throughout the trial and authorities can inspect the trial at any 

time. Research protocol, monitoring reports, audit trails and training logs are only 

a few of the essential instruments that the community employs to execute their 

roles. Moreover, by clearly defining roles and responsibilities within the research 

team these conventions create accountability for the integrity of the data. All these 

agents and their roles and responsibilities as well as the instruments they work with 

are binding rules required by the pivotal conventions of GCP. In these guidelines 

we can find specific measures that address all three potential sources of mistrust. 

The next paragraphs elaborate on some of these requirements in detail. All 

references refer to Revision 2 of the GCP guidelines published by the ICH in 2016 

(International Council for Harmonisation 2016). 

To ensure expertise, the GCP guidelines have several sections devoted to 

training requirements, beginning from a high-level principle stating ‘Each individual 

involved in conducting a trial should be qualified by education, training, and 

experience to perform his or her respective task(s).’ (International Council for 

Harmonisation 2016, principle 2.8). Throughout the document, the area of 

expertise required for different tasks is specified, including training in GCP, 

medical training, familiarity with the investigational product and specific expertise 

for roles such as monitors and auditors who control the ongoing activities. To 

ensure the research team is knowledgeable about project-specific procedures, 

handling of electronic systems and other activities that are relevant for data 

collection, each research member must undergo training. The guidelines further 

require that CVs and training activities must be documented and reviewed by 

monitors and, to an extent, ethics committee members.  

To address the risk of fraud, the GCP require so-called ‘audit trails’ for data 

in regular clinical trials. Audit trails are a documentation of all changes made to the 

data, including that all changes to the data are dated and initialled by the person 
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who made the changes. This instrument is crucial as it ensures that data changes 

could be inspected by an impartial expert in the case of suspicious activities. 

Another well-known instrument that addresses the risk of fraud is the requirement 

for a research protocol, where researchers have to plan how data will be collected 

and analysed (International Council for Harmonisation 2016, principle 2.5). 

Publication of the research plan ahead of the study mitigates fraudulent techniques, 

such as the selective reporting of data or the manipulation of significance thresholds 

with ‘p-hacking’. All members in possession of the protocol can verify that data was 

reported as planned.  

The research protocol also helps to constrain the possibility of controversial 

value judgements in a twofold way. First, once the parties have agreed upon a 

protocol, all sites are required to conduct the data collection in accordance with 

this plan, which narrows the range of acceptable value judgements of individual 

researchers during the conduct of the trial. Second, trial protocols must be 

approved by an independent ethics committee before the experiment is conducted. 

Their role is to ensure that the expected benefits outweigh the expected risks and 

that the conduct is in line with ethical and social requirements. Hence, although 

the planning of a trial involves various value judgements, the planned experiment 

has to be reviewed and deemed acceptable by an impartial ethics committee.  

Finally, so-called monitors play an essential role throughout the research 

process. Their responsibility is usually to visit each research site; they not only verify 

the quality of the data (as discussed in Chapter 4) but also ensure that everyone 

adheres to all the other rules outlined in the GCP and the research protocol. They 

review documents (such as training documentation or CVs) and check whether the 

on-site storage and supply of the investigational medicine is in accordance with the 

protocol, and they verify the reported data against the available source data on-site 

(International Council for Harmonisation 2016, section 5.18). 

Clinical trials that are conducted according to the rules of GCP thus involve 

various impartial experts throughout the research process: ethics committees, 

monitors and potentially even governmental authorities. The guidelines (together 

with the research protocol) provide the impartial experts with the set of rules against 

which the researchers can be hold accountable. So-called ‘sponsors’ defined in 

these guidelines are the main responsible legal entity in a clinical trial to ensure 

final accountability of all the responsibilities outlined in the document. The 

document also provides impartial experts with the tools that help them to execute 

their roles, e.g. audit trails, monitoring reports or training logs.  
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As specially trained experts, these roles add to the expertise available in the 

research team. They are also impartial in the sense that the actions and judgments 

of impartial experts are often constrained by institutional principles and explicitly 

articulated values (e.g. principles of research ethics) and the institutions of which 

these experts are part of have mechanisms that can hold these experts accountable 

in the case of wrongdoing. Often, governance rules of such institutions require the 

absence of financial ties, or other conflict of interests. Being bound by their 

institutional roles, these experts increase the impartiality of the research 

undertaking. In line with John’s two-premise model of trust in science, these 

guidelines define the epistemic standards for good data (e.g., ‘Principal 

Investigators need to be adequately educated’) while also enabling the enforcement 

of this standard (e.g., through impartial ethics committees that verify whether 

Principal investigators are adequately educated). The impartiality of randomisation 

and blinding procedures’ plausibly adds to the acceptability of th eRCT as the main 

method to generate acceptable evidence by all parties, as argued by Teira. 

Randomisation and blinding alone, however, cannot ensure that data collection 

also implements these features with competence and integrity. For that, we need to 

turn towards the functioning of the community. Clinical practice guidelines indicate 

that a focus on researchers alone would be too narrow to capture how well the 

community is organised. Rather we need to extend the focus and include 

stakeholders, such as ethics committees and monitors, in this well-ordered 

community to understand how evidence produced by this community can be 

trustworthy
22
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 The sociological literature has repeatedly shown that these requirements that I am 

sketching here are not always fulfilled. Quite the opposite might be true: Employees of 

regulatory agencies often do have conflict of interests; they have close ties to people 

working in pharmaceutical companies and it is not uncommon that they circulate between 

jobs at the agency and regulators (the ‘revolving door’). In a similar vein, Hauray argues 

that the scientific ideal of regulatory decision making – the ideal that decisions are made 

solely based on scientific evidence – is only a pretence. See Hauray (2017). This literature 

shows that trust even in the larger biomedical research community can be misplaced. 

What I am interested here, is the contrast between clinical trials and real-world data. If 

one holds that trust in biomedical research is always misplaced, this is a fortiori the case 

for real-word data. 
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1.2. Two arguments against the trustworthiness of 
real-world data 

The previous section provided an understanding of the enablers of trustworthiness 

in clinical trials. In this section, I explore how these enablers could be employed 

in the production of real-world data to similarly ensure its trustworthiness. The 

question I explore is how the practice of data quality assessment could be 

embedded into the overall well-ordered clinical research community to make the 

practice of quality assessment trustworthy. To begin with, it might surprise that 

studies using routine data require none of the instruments or impartial experts to 

be involved that are so commonly employed in clinical trials. Recall the first study 

submitted to the FDA for the indication extension of Prograf discussed in the 

previous two chapters. Because the study was observational and built on 

retrospective data, a data use agreement between the SRTR and the researchers 

was sufficient. As indicated by the authors of the published study, ‘The SRTR is 

made available under a Data Use Agreement to external researchers. No 

Institutional Review Board, Independent Ethics Committee, or Competent 

Authority approval was required for this analysis.’ (Erdman et al. 2022, p. 1234). 

In most countries, studies using routine data do not require ethics approval and the 

research protocol is optional. Registries or EHR databases are generally not 

equipped with audit trail functions and do not require monitoring. A review of 

about 50 international routine health data–sharing initiatives in Europe found that 

none of the initiatives used software that was suitable for external audits (Bernal-

Delgado et al. 2022). Moreover, the expertise required to handle repurposed data 

is remarkable, yet experience with the requisite skills for routine studies is still 

lacking. Leonelli mentions that consortia provide an important platform to discuss 

what counts as expertise in the field of bioinformatics  (Leonelli 2016, chapter 2). 

For clinical trials, the skills and competencies requires are quite well understood 

and have been systematically documented in form of ‘core competencies 

frameworks (Glaettli et al. 2022).  

The community that performs these types of studies differs substantially 

from the community in which the production of evidence from clinical trials is 

embedded. Generally, none of the requirements to ensure the trustworthiness of 

clinical trial data are employed for studies based on routine data.  In some cases, 

this general picture is more nuanced. Data that is submitted to regulators certainly 

undergoes critical examination by these regulators after it has been produced. 

Moreover, following its real-world evidence guideline, the FDA recommends pre-
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planning the study with a protocol, and in most cases the FDA would probably 

review the protocol and provide critical feedback to minimise controversial value 

judgements (US Food and Drug Administration 2021b). Moreover, in some 

countries, ethics approval is required for studies with routine data. Yet even in these 

cases, the critical scrutiny of such data still falls behind the well-established 

standards employed for clinical trials. 

This argument hinges on the contingency of the status quo. Yet this situation 

is busy changing. Stakeholders are well aware of the impactful consequences of the 

lack of instruments to ensure the trustworthiness of data. Many stakeholders are 

thus advocating for the deeper involvement of impartial experts and the use of 

related instruments in real-world studies. For example, reporting guidelines 

recommend the pre-registration of such studies (Kwakkenbos et al. 2021). Large 

initiatives advocate for the transparent documentation of data curation and 

verification practices of large databases (Bernal-Delgado et al. 2022). Data sharing 

initiatives advocate that data infrastructures should be monitored or that EHR 

systems should be equipped with audit trail functions (Monitoring Platform of the 

SCTO 2023). There are various ongoing activities to embed this research into the 

extended and trustworthy social community. These developments may imply that 

real-world evidence could eventually attain the same level of acceptance and 

trustworthiness as clinical trials due to the increased regulatory standards. However, 

two key obstacles remain: increasing the regulatory standards might not be 

desirable and it might not be feasible. I elaborate on the first obstacle now, with the 

second discussed later in this chapter. 

 Why should increased regulatory standards for real-world evidence not be 

desirable? The primary reason is straightforward: every additional requirement 

imposed on research that employs routine data diminishes the main epistemic 

value of such studies – its power. Real-world data enables researchers to use the 

limited resources more efficiently and answer more questions more rapidly, 

because real-world data is cheaper and quicker to obtain than experimental data. 

Wilholt coined the term epistemic ‘power’ to refer to this desiderata, that is, the 

ability of a method to produce results at a high rate with limited resources. He has 

further shown how power generally trades-off with reliability  of evidence (Wilholt 

2013; for a discussion see Chapter 5) I suggest that another trade-off emerges 

namely between the data’s power and its trustworthiness. Undeniably, a major 

factor contributing to the high cost and prolonged duration of clinical trials is the 

slow, highly demanding and costly regulatory process in which they are embedded. 

Some scholars argue that the complexity of these regulatory requirements has led 
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pharmaceutical companies to depend on the expensive services of so-called 

contract research organisations and gave rise to a whole research infrastructure 

industry (Collins et al. 2020). In contrast, research with routine data is considered 

a ‘last resort’ that is easily accessible even to low-resourced research environments. 

It is clear that increasing the regulatory requirements would deprive routine data of 

this advantage.  

I agree with Wilholt that power of evidence is a desirable value of real-world 

evidence and hence data. I argue in Chapter 5 that this desideratum could 

substantiate and partially legitimise the epistemic shift towards using real-world 

evidence. I further argued that the epistemic power of real-world evidence is 

already overestimated. Hence, it should be a high priority not to further diminish 

the data’s power. Balancing the trustworthiness of data is a delicate task: It is crucial 

for ensuring the community's acceptance of evidence, yet it must be done without 

compromising the data’s power, since that power is a primary source of legitimacy 

of the epistemic shift in the first place.  

Trustworthiness and reliability of data are closely linked, yet they come 

apart. Trustworthiness indicates that we have reason to believe that the data has 

been acquired with the necessary expertise and has been reported truthfully and 

handled with uncontroversial value judgements. The first two requirements for the 

data’s trustworthiness are prerequisites for the data to be reliable. However, 

conversely, data can be reliable without being trustworthy if we are not given any 

good reason to think so. Reliability and trustworthiness come fully apart regarding 

the issue of controversial value judgements; data can be reliably collected even if 

highly controversial criteria are employed. In other words, even if real-world data 

are sufficiently accurate to be ‘fit-for-purpose’ as required by data quality 

frameworks, they might not be trustworthy – in the sense that we cannot rule out 

that the data was fabricated, incompetently handled, only partially reported or 

collected based on controversial value judgements. Counteracting this threat comes 

at the price of the data’s power, depriving us of the main reason for using such data 

to begin with. With the trade-off between the data’s trustworthiness and its power 

we might be caught between a rock and a hard place. 

2. Trustworthiness of data validation 
So far, I have substantiated the view that the clinical trial community is well-

ordered, and the evidence produced by this community is trustworthy – because 

the community includes impartial experts whose involvement is mandatory by law. 
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I provided a factual and normative argument against the idea that routine data 

research is or should be well-ordered in the same sense. In this section, I develop 

a third conceptual argument casting doubt on the idea that routine data could be 

well-ordered in the same sense. This third argument builds on methodological 

features of data validation, which play a central role in supporting claims about 

data’s fitness-for-purpose according to the FDA guidelines for using real-world data 

for regulatory submissions (US Food and Drug Administration 2021b).  

To illustrate what I am concerned with here, I use two claims made by 

Mehra and colleagues as an example. To support the fitness-for-purpose of the 

data in the Surgisphere publication they claimed that  

‘Collection of a 100% sample from each health-care entity is validated 

against financial records and external databases to minimise selection bias.’  

and 

‘Verifiable source documentation for the elements include electronic 

inpatient and outpatient medical records.’ (Mehra et al. 2020)  

In Chapter 5, I explored methodological and epistemological issues of such claims. 

The questions I address in this chapter are as follows: ‘Could the production of 

such claims be embedded in the larger well-ordered clinical research community 

to make them trustworthy? If so, how?’ 

I hold that there are two methodological features of data validation 

procedures that make it difficult or even impossible to embed the production of 

such claims into the larger well-ordered clinical research community. These 

features are deep local contextuality and high value-ladenness. These 

characteristics present considerable obstacles for identifying impartial experts and 

defining clear rules to which the community can be held accountable. With the 

argument in this section, I contend that the combined influence of local 

contextuality and the inherent value-ladenness of these practices might ultimately 

erode trust in data. 

2.1. Local contextuality and value-ladenness of data 
validation 

I noted in Chapter 5 that data validation practices require skilful and 

knowledgeable handling by experts. This was evident in the example of the 

assessment of the SRTR, where the researchers missed an essential quality issue in 

the data that rendered their primary analysis uninterpretable. It was mostly mere 
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luck that the problem was so clearly visible in the result and the researchers could 

act accordingly. Here, I deepen this line of argument by showing that data 

validation not only requires expert knowledge about the research context but deep 

local knowledge and various value judgements. If a scientific practice is contextual, 

this means that its epistemic goodness depends on the context in which it is 

performed or for which it is being used. Thus, doing the right epistemic thing 

requires tailoring scientific practices to these contexts. The corollary is that 

contextual factors may constrain the range of what counts as the right epistemic 

practice. In some sense of ‘context’ this is the case for many scientific practices. 

Clinical trials, for example, distinguish between many different medical contexts, 

e.g., types of diseases or different classes of treatments. Depending on these 

aspects, some outcomes might be considered informative while others are not. 

Tailoring scientific practices to the different contexts requires medical background 

knowledge; generally, people trained in the relevant medical specialty are 

competent experts to evaluate any given practice within its context. The 

contextuality of data validation runs deeper. Data quality depends not only on the 

type of medical context or the study question at hand but also on features that are 

local to a particular healthcare setting or database. Examples are local medical 

practices or local data handling practices that are not generally shared but need to 

be acquired by professionals by closely engaging with this local context. Leonelli 

has convincingly shown that data curation similarly relies on skilful handling of data 

and knowledge about the local contexts in which data have been generated. As part 

of their job, data curators report such local contexts in form of metadata (Leonelli 

2016). The following elaborations are mostly show that the same is true not only 

for the curation of data but also of its validation. 

To support this claim, I briefly summarise how data validation against an 

external reference standard works and point towards various sources of local 

contextuality. (My detailed discussion appears in Chapter 5 of this thesis.) 

Validation of data against an external reference standard involves three steps: 

classification of the data, construction of a reference standard dataset and 

quantification of data quality against the reference standard. The goal of a data 

validation study is to quantify how well an algorithm performs in capturing all – and 

only – the true events the researchers are interested in. In the simplest case, the 

algorithm simply translates the medical term into the semantic standards used in 

the database. For example, to classify the clinical event ‘COPD’, the algorithm 

extracts all instances of the ICD Code known as J44 and related codes. A subset of 

the resulting classification is then compared with a reference classification known 
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to be (more) accurate to estimate the accuracy of classification in terms of measures 

known from diagnostic tests, such as sensitivity or positive predictive value. An 

acceptable classification should at least account for reporting variability within the 

database; e.g., where different semantic standards are used. More complex 

algorithms can also account for various misrepresentation problems in the data, 

including reporting errors, errors of misdiagnosis or even measurement errors. For 

example, to classify a patients’ record as an instance of COPD, an algorithm can 

be optimised to avoid false positive classifications of events as COPD that were 

none, by requiring the presence of commonly administered treatments for COPD 

together with the diagnostic code for COPD. Or an algorithm can be optimised to 

avoid false negative classifications of COPD by requiring broad symptoms rather 

than diagnosis. Validation studies usually compare different options and evaluate 

which one performs best. The second step is to create a reference standard against 

which the classified data can be validated. Common practices for constructing a 

reference standard include sending surveys to practicing physicians to ask them to 

confirm/disconfirm the classification, collecting original source data (such as 

laboratory reports) or using another routine data source (such as financial claims). 

I argue in Chapter 5 that the main methodological issues arise with this second 

step, because reliable and valid reference standards are hard to obtain. The third 

step is to compare the data that needs validating against this external reference 

standard and quantifying the difference in terms of measures well-known form 

diagnostic test such as specificity and positive predictive value.  

Local expertise is required at several instances. To begin with, constructing 

a classification algorithm certainly requires familiarity with semantic standards and 

data structure that are local to a particular database. It also requires general medical 

knowledge as well as familiarity with local medical practices. One study constructed 

algorithms to classify the event ‘acute exacerbations of COPD’ and used medical 

knowledge about common symptoms of the condition as well as commonly 

prescribed medications to treat the condition. In cases where medical practices 

follow local standards that diverge from more widely shared medical knowledge, 

familiarity with the local practices is essential for constructing well-performing 

classification algorithms. Overall, success in algorithm construction is contingent 

upon a deep understanding of the local intricacies in both data curation and 

medical practices.  

Choosing a suitable and feasible reference standard also requires local 

expertise about the standard’s strengths and weaknesses. For example, in a widely 

used reference standard, researchers send out questionnaires to the practicing 
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physician of a subsample of patients, asking the doctor to confirm or disconfirm 

the data. The main problem of this procedure is its circularity, because physicians 

might ‘confirm’ the classification by looking up the very same data that is being 

verified. To judge the validity of such a reference standard, one needs to know 

whether physicians have an independent source of information available in this 

local setting. Using another routine data source as the reference standard requires 

local knowledge about the drivers of data quality in this reference standard. For 

example, a validation study used the HOB-DB as a reference standard to validate 

data on ethnicities in EHR data. The team relied on the high quality of the HOB 

database, based on their local knowledge about data-collection processes, funding 

incentives etc. Such knowledge was available to the team because one of its 

members was an employee at the hospital that curated the database (Kahn et al. 

2010). Because of the local contextuality of the reference standard, data quality 

measures should be understood in relation to the specific factors that affect data 

quality in the reference standard. A positive predictive value of 95% might be good 

enough if the validation procedure lacks circularity but might be insufficient 

otherwise. Hence, these precise quality measures are barely informative unless one 

possesses local knowledge about potential pitfalls in the assessment.  

Validating data against an external reference standard also involves decisive 

value judgements. One such judgement concerns the choice of a reference 

standard. Since generally all reference standards come with different epistemic 

risks, determining which reference standard is the best is not just a matter of making 

the right choice in a purely epistemic sense – but making the right choice in the 

sense of balancing the various risks aligned with non-epistemic value judgements. 

The most obvious value judgement involved in data validation is to determine a 

threshold for successful validation. This requires first determining which measures 

are most important in a certain case, e.g. specificity in combination with the positive 

predictive value. Second, one must set a threshold for these measures, e.g. a 

positive predictive value of 95%. Undoubtedly setting such a threshold depends on 

whether one is more concerned about false positives or false negatives. The 

medical context can put constraints on the range of acceptable value judgements, 

and the FDA’s guidelines provide a few hints about this issue. For example, for 

rare or infrequent outcomes, the FDA recommends achieving high sensitivity and 

specificity. Yet, the question remains how high is high enough? The general 

recommendation by the FDA is the following: ‘Some misclassification might be 

tolerable in some studies when the presence of misclassification is not expected to 

change the interpretation of results’ (US Food and Drug Administration 2021b, 
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p. 11).  In rare cases, the impact of misclassification on the results can be 

quantified. Yet, even in those cases, the quantification cannot eliminate the need 

for evaluative judgements about the quantitative threshold at which the 

interpretation of the results would change. Moreover, such quantification itself 

clearly includes value judgements. The idea is to recalculate the results of the 

clinical study under slightly varied assumptions to get an idea of how the different 

assumptions impact the result. This approach was used in the validation of the data 

that supported the FDA approval of Prograf for lung transplant recipients. The 

researchers recalculated the effect size of the treatment under the modified 

assumption that all patients whose outcome data was missing would have had an 

undesirable outcome. This assumption provided the researchers with the most 

conservative estimate of the treatment effect. The decision that this conservative 

estimate is the right assumption to make is a value judgement; the researchers 

accept the risk that the missing data is judged to be non-negligible, although the 

most conservative assumption might not be the most plausible. Hence, we cannot 

escape the need to make value judgements when setting quality thresholds, even if 

those judgements are based on quantitative information.  

Validation of a single data item contributes only little towards an overall 

judgement about the data’s fitness-for-purpose for a certain study. Assessing the 

overall fit-for-purpose of a dataset for a study requires to repeat this process for all 

essential data item, including diagnosis, treatment, safety and efficacy outcomes, 

eligibility criteria or confounding variables. How many of these variables must be 

validated before the data can be judged fit-for-purpose? According to the FDA, this 

point depends on how much uncertainty one is willing to live with:  

Overall, the required extent of validation should be determined by 

necessary level of certainty and the implication of potential 

misclassification on study inference. (US Food and Drug Administration 

2021b, p. 21) 

Moreover, ‘data quality’ is a multidimensional concept that covers the data’s 

accuracy, completeness, relevance and more. All the study variables should be 

evaluated for each of these dimensions, and every dimension for every data variable 

will involve the problems of local contextuality and value-ladenness. Hence, there 

are not just a few but almost countless value judgements involved in the evaluation 

whether data is fit-for-purpose. These considerations reinforce concerns about the 

method’s trustworthiness. Both, value judgements and local contextuality make the 

method highly susceptible to all sources of mistrust: lack of expertise, fraud or 

controversial value judgments. The solution that clinical trials employ is the 
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involvement of impartial experts who assure that everyone plays by the rules. The 

question I ask in the final section is whether this solution could be employed to 

ensure the trustworthiness of data validation.  

2.2. A third argument against the trustworthiness of real-
world data 

The argument I develop in this last section is that these characteristics run so deep 

that they present veritable obstacles for embedding the production of claims about 

data quality into the larger well-ordered clinical research community to make them 

trustworthy. The claims I am interested in are claims of the sort: ‘The SRTR 

database is fit-for-purpose to support the effectiveness of Prograf for lung transplant 

recipients’, and ‘Data for the primary outcome have been validated against financial 

records and deemed sufficiently accurate with a positive predictive value of 95%’. 

To recall, clinical trials that are conducted according to the rules of GCP can be 

seen as generating data that is trustworthy because they involve various impartial 

experts throughout the research process. Moreover, GCP guidelines and the 

research protocol provide these experts with a set of standards to which the 

community can be hold accountable; they also establish a standardised set of tools 

to execute roles such as audit trails, monitoring reports or training logs. This 

prompts two crucial questions: Who counts as an impartial expert? What are the 

rules everyone can be held accountable to in data quality assessment practices? 

I begin with trying to identify impartial experts. Tailoring clinical research 

practices to the different contexts generally requires medical background 

knowledge. In this case, people trained in the relevant medical specialty are 

qualified experts to evaluate the practice at hand within its context. What expertise 

is required to tailor data quality assessment to the local contexts of its production? 

The most obvious answer is to involve someone who is knowledgeable about the 

local context. Leonelli has shown, that most data infrastructures have professional 

data stewards or curators whose job it is to clean, annotate or transform the data 

and make it available to others for secondary use (Leonelli 2016, chapter 2). After 

some years of experience, professionals in these roles would count as experts 

regarding the data in the database. Hence a potential solution could be to make it 

mandatory to involve such local experts into the quality assessment of routine data. 

Leonelli discusses this option and notes that this form of assessing data quality by 

data curators would mean to put a lot of responsibility to data curators and that 

‘this type of quality assessment is only as reliable as the curators in charge’ (Leonelli 

2017b, p. 4). She sees this option particularly problematic in cases where data 
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curators are disconnected from the community of data users or where datasets 

become so large that they cannot be manually handled by data curators. I agree 

that the expertise of data curators might pose a problem particularly because such 

expertise is yet not well-defined. Moreover, assessing the data’s fitness-for-purpose 

requires both, knowledge about the data and about the research. Data curators 

know their data but they are rarely medical experts. 

The greater concern, however, arises about whether these professionals also 

qualify as impartial. Data curators are at least partially responsible for the quality of 

their data and therefore might have an interest in overlooking potential quality 

issues. Moreover, data infrastructures might financially depend on collaborations 

with research projects that use their data. In that case, employees would experience 

a classical conflict of interest when assessing whether their own data is fit-for-

purpose to be used in such a collaboration. An alternative approach could involve 

obtaining approval from an impartial ethics committee for a planned data 

validation method and quality thresholds. Although the ethics committee would 

qualify as impartial, they would not qualify as experts, because they do not possess 

the local knowledge required to evaluate the appropriateness of the measures. 

Hence, there seems to be a general tension between both desiderata – being an 

expert versus being impartial – to qualify as an impartial expert who could execute 

or verify data quality assessments. Without the involvement of impartial experts, 

however, the community is not well-ordered. Tempini and Leonelli present an 

interesting case study of information security practices at Secure Anonymised 

Information Linkage (SAIL). Within this infrastructure, the staff was divided into 

two roles they call ‘infrastructure-facing’ and ‘research-facing’. Only the research 

facing analysts are involved in particular research projects which allows the 

infrastructure-facing experts to remain as free as possible from potential conflict of 

interests (Tempini and Leonelli 2018). For data infrastructures that are large 

enough and well-founded perhaps such divisions of roles could provide a partial 

solution to the problem of trustworthiness. 

The second obstacle to embed data quality assessments into the well-

ordered community is that we lack suitable rules to which everyone could be hold 

accountable. The variability in data quality practices is considerable and it has been 

repeatedly noted that this makes it difficult to define international standards 

(Leonelli 2017b) and that this hampers progress in the field (Illari 2014). 

Moreover, because the goodness of quality assessment practices depends so 

strongly on local contexts, it seems impossible to formulate rules that apply to all 

contexts. Such rules must be so general that they are almost idle. I consider here 
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the convention ‘data must be validated against an external reference standard’. 

Because this convention allows for so much variability and necessitates countless 

value judgements, following this rule is insufficiently informative. The most specific 

propositions that guidelines might define is set of bold heuristics such as ‘Claims 

data on prescription tend to be more accurate than EHR data and could be used 

as a reference standard to validate treatment data.’ Such recommendations can 

provide some guidance, but they cannot be binding, because they might not hold 

in a particular context. Hence, it seems difficult if not impossible to establish a set 

of epistemic conventions that coordinate judgements about the data’s fitness-for-

purpose. Yet without such rules, neither of the two premises for trust can be 

fulfilled: Neither can such conventions be broadly acceptable to the community, 

nor can we claim that adherence to these conventions is the best explanation of a 

claim if we simply to not know what these conventions entail. Hence it is no longer 

the case that data that has been deemed fit-for-purpose according to the standards 

of one group of researchers must be accepted as fit-for-purpose according to the 

standards of another group of researchers. 

The alternative is to fully entrust local experts to judge the relevance of 

general heuristics for their particular context on a case-by-case basis. Leonelli 

clearly holds that the contextuality and diversity of data quality practices calls for 

embracing a localised approach to data quality and a reflexive exercise about its 

underlying assumptions. (Leonelli 2017b). Although adopting a contextualised 

approach to data quality assessment is a viable option, fully embracing it carries 

profound implications. It means giving up on shared epistemic rules about what 

counts as good data and instead entrusting the definition of such standards on a 

case-by-case basis to the few local experts who are competent for this job. Such a 

locally contextualised approach to data quality also means giving up on the 

accumulation of shared experience in working with a particular set of rules – rules 

on which the current good functioning of the global research community is based.  

It appears that RCTs lend themselves particularly well to the current rule-

based operationalisation. Randomisation already minimises the number of 

judgements needed. The practice of verifying research data against source data is 

an unambiguous rule that anyone, even without medical expertise, could follow. 

The control over data collection makes it possible to formulate conventions about 

the precise data that is required for each type of investigation. For example, 

guidelines can define the type of outcomes that are acceptable as proof of 

effectiveness for every type of disease. This is not to say that RCT do not require 

medical expertise or background knowledge to be designed, they certainly do. 
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They also involve value judgements. For example, researchers have to judge the 

acceptable drop-out rate in an experiment. Such judgements require medical 

expertise, yet they are by far less dependent on local contextualities. 

The turn towards a contextualised approach of data quality implies a radical 

shift. Currently the community coordinates its judgments on a global scale, based 

on a set of highly legitimate and legally binding rules. Adherence to these rules is 

overseen by a network of impartial experts throughout the research process. 

Embracing the locality of real-world data means to settle for a set of unbinding 

heuristics whose relevance can only be evaluated by a few highly specialised local 

experts with uncertain impartiality. Consequently, the epistemic shift that is busy 

happening is not only a shift from one set of rules to another one. Rather, we might 

be witnessing a more radical shift from the paradigm of regulatory oversight to a 

paradigm of trust in local experts. The aim of turning toward a fitness-for-purpose 

approach is precisely to abandon the ‘one-size-fits-all’ approach and embrace the 

role of expert judgments. The future will show whether the clinical research 

community and those reliant on the knowledge it produces are prepared to 

embrace such a radical shift.  
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Conclusion 
The uptake of real-world evidence into the norms and practices of clinical research 

will transform knowledge about medical interventions in various ways. I explored 

how pragmatic trials create conceptual shifts in our medical knowledge including a 

shift towards broader medical interventions (Chapter 2). I argued that such 

conceptual shifts will also be fairly common for other concepts because of the many 

limitations that are prevalent in real-world data (Chapter 4). I further showed that 

some of these limitations will bring advantages like an increased focus on outcome 

measures, comparator treatments or populations that are clinically and practically 

relevant (Chapter 3), while their limitations might introduce controversial 

compromises like some of the compromises made in the assessment of Prograf 

(Chapter 4). Moreover, I argued that real-world studies can provide a valuable 

perspective because they yield effect estimates that can be seen as more ‘realistic’ 

(Chapter 3).  

My study highlights that issues about data quality are becoming another 

paramount topic in medical research. Real-world data shifts the current 

understanding of data quality from adherence to the rules of GCP towards the idea 

of ‘fitness-for-purpose’ (Chapters 4). Data quality assessments are very 

heterogeneous practices, and I argued that their reliable assessment is difficult to 

achieve (Chapter 5). The deep local contextuality and value-ladenness of these 

practices might even bring about new foundations of trust in medical knowledge 

because they are no longer easily verifiable by impartial experts (Chapter 6). To 

prepare for the changes ahead, it seems paramount to start exploring new 

mechanisms of accountability, to further advance a theory of medical interventions 

and to reflect deeper on the interdependence between purpose and epistemic 

notions such as validity, bias, or data quality. 

With the advent of real-world evidence into the regulatory realm, 

evidential standards transition from a hierarchical and rule-based evidence 

paradigm towards a more contextualised approach where evidence is flexibly 

defined depending on the context of use. My study of pragmatic clinical trials has 

demonstrated how even a subtle shift of the purpose of a clinical trial can change 

what counts as bias (Chapter 2). The discussion on the notion of fitness-for-purpose 

has shown how flexible the notion is to incorporate various commitments about 

the necessary conditions to achieve a purpose (Chapter 4).  
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The advantage of a contextualised approach is that it can recognise the 

multidimensionality of ‘quality’ of evidence, can highlight those dimensions that 

are most essential in a particular context, account for available resources and 

resource constraints and carefully tailor the choice of methods to these 

circumstances. Both case studies illustrate these strengths. The Salford Lung Study 

has shown that pragmatic trials that are conducted under routine care conditions 

can yield new insights about the effectiveness of treatments that are relevant for 

making treatment decisions (Chapter 2). The approval of Prograf as an 

immunosuppressant for lung transplants demonstrated its effectiveness with 

remarkable efficiency and low risk of making an erroneous decision (Chapter 4). 

However, putting the approach to use comes with serious risks. Most serious is the 

risk of unreliable data quality assessments. Since the notion of ‘fitness-for-purpose’ 

already makes an allowance for reduced data quality, tolerating unreliable data 

quality assessments is a risk that we should not be willing to take (Chapter 4). The 

deep local contextuality and value-ladenness of such practices make data quality 

assessments even more worrisome because this undermines the possibility of 

regulatory oversight by impartial experts. The new evidence paradigm might 

require new foundations of trust (Chapter 6). Where researchers will rely on 

observational designs, the problems of data quality will be accompanied by the old 

problem of confounding. I have argued that this problem can and should be 

avoided by preferring pragmatic trials over observational designs (Chapter 1). 

Nevertheless, the high flexibility of the contextualised approach introduces 

considerable leeway for the research community that easily lends itself to misuse. 

 Real-world evidence comes with great promises. I have studied two of them: 

the promise that such evidence is informative of clinical practice settings and the 

promise that it uses limited resources more efficiently. I agree with the advocates 

of this development that these are real concerns that could, in principle, provide a 

substantial epistemic justification for a change in evidence standards. However, my 

investigations have shown that we should take a more critical stance towards these 

promises. ‘Real-world evidence’ is first and foremost a clever rhetorical trick 

distracting its users from the many quality issues that such data entails. I have 

argued that properly conducted real-world studies, like pragmatic trials, can provide 

what I called ‘realistic’ effect estimates because they are conducted under natural 

and non-ideal conditions. However, this rational falls short of the widely hold 

intuition that such evidence is ‘widely generalisable’ or informative about patient 

level treatment decisions. Rather it might provide a glimpse into the effects of 

medical interventions in interaction with ‘imperfect users’ (Chapter 3). ‘Secondary 
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use data’ appears to be the epitome of a powerful research approach and 

constitutes the second promise of this development. Yet, I argued that the 

production of real-world data also distributes the costs of producing medical 

knowledge towards public third parties, including healthcare providers, regulators, 

governments and patients. Taking all the costs into account that accompany this 

development, it is likely that we overestimate the power of real-world data. 

The diversity of real-world evidence comes with a greater risk still. Our 

understanding of the RCT gold standard is built on decades of experience and 

many lessons learned from failures in the past. In light of the sheer endless diversity 

of methods and data that real-world evidence brings along, it is questionable 

whether the community will ever reach a similar level of methodological 

understanding about its use. Increasing the diversity of evidence comes with the 

chance to look at treatments from different perspectives, but it fundamentally also 

comes with the risk that disconvergent evidence will multiply disagreement. The 

difference between pragmatic and explanatory trials is just one example of the 

increased diversity of evidence that we are going to see. Already in this case, 

understanding their complementary strenghts and weaknesses is a complex task. It 

has become common sense among opinion leaders in the field that real-world 

evidence and RCTs are not in competition but merely complement each other. 

The risk that such an attitude entails is that we multiply the evidence without a 

proper understanding how the different approaches complement each other. 

 

I have tried to do pay justice to the multifaceted characteristics of the 

evidential evolution that awaits us. Nonetheless, many interesting philosophical 

questions and important scientific practices could not be addressed that present 

avenues for future research. Most importantly, this concerns a detailed study of the 

ongoing empirical efforts to replicate results from RCTs with real-world evidence. 

It would be interesting to study not only the success of these replication studies, but 

also their replication goals and the methods used. These empirical investigations 

hopefully yield insights into the sources of heterogeneity of evidence or the 

possibility to reproduce data quality assessments that could complement my 

philosophical investigation. Moreover, despite the breadth of my study on real-

world evidence, the scope I covered is only a fraction of all the uses of this evidence. 

I focused on the use of such evidence for the study of effectiveness of medical 

interventions, while I did not look at its use for the study of safety or other purposes, 

including hypothesis generation, cost-effectiveness studies or the monitoring of 

quality in routine care. Finally, at the end of writing of this thesis, the ICH has 
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published the third revision of the GCP guidelines, containing new principles for 

data management for research with secondary use data. Hopefully, a closer look at 

these guidelines might reveal a solution to what I exposed as the problem of 

trustworthiness of real-world data. 
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Annex: A deflated definition 
of the internal–external 
validity distinction 
Many arguments about the epistemic strength and weaknesses of RCTs in clinical 

research employ the notions of internal validity and external validity. Particularly 

the epistemic superiority of RCTs has been criticised, on the ground that such 

designs lack external validity. That is, it is generally not possible to generalise 

evidence from RCTs to other settings and populations (Deaton and Cartwright 

2018). Similarly, pragmatic trials are thought to increase external validity at the 

expense of internal validity; this point is often mentioned when discussing the 

epistemic merits, problems and tensions of these designs (Godwin et al. 2003). In 

this Annex, I use lessons learn from the strengths and weaknesses of pragmatic-

explanatory distinction to substantiate the internal-external validity distinction and 

defend the definition I used in Chapter 2. 

Conceptual and theoretical reflections on the internal–external validity 

distinction are dominated by vague claims that conflate several aspects of these 

concepts. In the scientific literature, external validity and internal validity are usually 

introduced simultaneously, and the former is defined in close relation to the latter. 

For example, Patino and Ferreira (2018) describe internal validity as ‘truth in the 

study’ and external validity as ‘truth in real life’. In the philosophical literature, 

Guala clarifies that internal validity is ‘a problem of identifying causal relations’ and 

‘is achieved when the structure and behaviour of a laboratory system … have been 

properly understood by the experimenter’. By contrast, ‘external validity involves 

an inference to the robustness of a causal relation outside the narrow circumstances 

in which it was observed’ (Guala 2003). Schram states that internal validity ‘will 

yield results that are robust and replicable’ (Schram 2005).  

Most importantly, the weak conceptual scaffold has fostered conflicting 

views on the relation between internal and external validity and how to prioritise 

them. A popular view is that internal validity trades-off with external validity; i.e., 

increasing the external validity comes at the expense of decreasing the internal 

validity. Cartwright called the trade-off between internal and external validity a ‘well-

known truism’ (2007). In her view, the deductive rigour of any experiment is gained 

through rather demanding assumptions, which in turn necessarily limit the scope 

of the conclusion. Others have attempted to explain the trade-off as a tension 
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between ‘artificiality’ and ‘reality’ (Schram 2005). Another popular view is that 

internal validity occurs epistemically prior to external validity. For example, Guala 

influentially argued that it does not make sense to bring up the question of external 

validity unless one is first confident about internal validity, because internal validity 

is epistemically antecedent (Guala 2003).  

It is mostly in the philosophical literature on experimental economy that we 

find attempts to clarify these two mainstream perspectives and whether they are 

compatible (Jimenez-Buedo and Miller 2010; Schram 2005; H. Chytilová and R. 

Maialeh 2015; Persson and Wallin 2015). However, these contributions mostly 

work with implicit definitions of the terms that make decisive presuppositions. I 

want to make explicit some of these presuppositions and propose an account of 

internal and external validity that relies on a threefold characterisation of the 

concepts. In this view, a trade-off between the two can occur contingently, because 

some experimental properties are incompatible practically. The view that internal 

validity is prior to external validity, on the other hand, is based on an equivocation 

of the terms. 

I defend this deflated explication of the internal–external validity distinction 

as preserving its usefulness. The usefulness of the distinction lies in its role for 

assessing, criticising and designing experimental designs. It is in this role that the 

distinction fostered various quality assessment tools and a collection of empirical 

evidence about factors that impact the validity of experimental designs. Such work 

is in line with the distinction’s historical origin when Campbell first introduced it in 

1957. Thus, equally important to the meaning of these terms is to clarify what is at 

stake if we attribute their presence or absence to an experiment. Hence, I am aware 

that these concepts are used in several ways that depart from my proposal. I believe 

the meaning I am defending here preserves the distinction’s usefulness. 

 

Substantiating the internal–external validity distinction 

The general concept of validity in experimental research has been systematised by 

attempts to distinguish between different types of validity. Most prominently, in the 

late 1950s Campbell introduced a typology of validity: First, he distinguished 

between internal and external validity, and later he extended the typology by adding 

the terms ‘statistical conclusion validity’ and ‘construct validity’. I am in no position 

to propose a comprehensive exegetical analysis of Campbell’s work and the 

evolution of the concepts he introduced. Here, I make a few comments about how 

my proposal relates to and diverges from its origins in Campbell 1957. 
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I propose an explication of internal and external validity that relies on a 

threefold characterisation of the concepts: each type is characterised by a) a type of 

proposition that can be inferred from the experimental results, which is b) 

supported in virtue of a cluster of properties of an experimental design that c) 

perform a corresponding epistemic role. 

For internal validity, the following explication holds:  

An experimental design is internally valid if an inference from its results to the 
proposition that the ‘result was caused by the intervention’ is supported in virtue of its 
experimental properties. 
 

This is the corresponding explication for external validity:  

An experimental design is externally valid if an inference from its results to the 
proposition that ‘the experimental results will generalise to this target’ is supported by 
virtue of its experimental properties. 
 

These explications are deflated in three ways. First, the content of the propositions 

supported by either quality attribute is modest. E.g. internal validity inherits the 

notion of the intervention from the experiments, and external validity only requires 

that the results generalise to a specific target setting. Second, validity is an attribute 

of experiments that pertains to them in virtue of their experimental properties. 

Thus, attributing the absence of either internal or external validity to an experiment 

does not imply anything about the overall evidential support of the proposition 

outside the experiment. In other words, neither type of validity is necessary to gain 

knowledge. Third, neither internal nor external validity require establishing the 

truth of the propositions but only lends some support to the proposition. This 

amounts to saying that experiments with such quality attributes are not sufficient to 

establish the truth of the propositions; sometimes they might not be sufficient to 

establish any strong support. Hence, I argue that the usefulness of the internal–

external validity distinction lies in its use as a tool to assess and characterise 

experiments. A deflated notion highlights the usefulness of the distinction because 

it acknowledges its limits, as both quality attributes are neither necessary nor 

sufficient for knowledge generation. I now elaborate on all three aspects. 

 

Propositional content  

Internal validity supports causal claims, so much is common sense. When thinking 

of an internally valid experiment, many people have in mind an experiment that 

licenses a causal inference to a single causal variable. Such usage became so 

commonplace that in his later work Campbell intended to relabel his internal–

external validity distinction to free it from such connotation: ‘… the term internal 
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validity now means similarity to the pure treatment (rule-of-one-variable), fully 

controlled, laboratory experiments. Since that is not what we had in mind, we need 

to try again, with new terms’ (Campbell 1986 - Relabelling internal and external 

validity). In such an understanding of internal validity, the effects of 

multicomponent interventions, therapeutic actions or even holistic interventions – 

which are common in CAM – cannot be supported by internally valid experiments, 

by definition. However, in that, case internal validity is no longer worth pursuing 

for every experiment, as the accusation that an experiment fails to investigate a 

single variable is largely uninteresting. What is at stake when experiments are 

criticised for lacking internal validity is nothing less than the reliability of the causal 

inference, not the number of variables involved. Those who adopt such a notion 

of internal validity are willing to forego its evaluative import and the very reason 

why internal validity is usually considered indispensable. 

In contrast, I hold that we should understand internal validity as supporting 

causal claims that relate the experimental results to the intervention. Thus, the 

validity attribute simply inherits the notion of the intervention from the experiment, 

which creates a conceptual interdependence between the validity attribute and the 

definition of the intervention. I elaborated this aspect when discussing pragmatic 

clinical trials in Chapter 2. If one wants to measure the isolated effect of the 

characteristic features of a therapy, then all other causal factors (e.g., the awareness 

of patients) have to be considered a distortion or bias in the treatment effect. If, 

however, the intervention of interest is a therapeutic action, a multicomponent 

therapy or even a holistic therapy, such factors are part of the intervention for which 

a causal relation has to be established.  

External validity, on the other hand, is concerned with generalisation to a 

target setting. Here, the precise content of the subject and predicate are of great 

relevance. If one aims to generalise some results to all target settings, one requires 

from external validity what no single experiment can deliver. Another aspect is 

where the generalisation departs from. In my proposal, we depart from ‘the 

experimental results’. As this notion is ambiguous, we need to clarify. It can mean 

at least three things: The measured difference by comparing groups or states with 

each other; a statement about the statistical significance of the measured 

differences; or even the causal interpretation of this difference. If one assumes that 

the generalisation departs from the causal interpretation of the results, one buys 

into the logical or epistemic primacy of internal validity by definition. If all that is 

required for generalisation is the statistical significance of the measured difference 

(whether causal or correlational), the logical or epistemic primacy disappears. 
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Hence, such a logical dependency seems uninteresting, as the preference for a 

certain order of inferential steps has been built into the definition of the terms. If 

what one is interested in are causal claims that generalise to a certain target setting, 

both to be established: That the causal conclusion holds and that the results are 

generalisable. There is no special order required in which these points are 

established. Hence, I assume that external validity has not built the causal 

interpretation into its definition, as this further reflects how these quality attributes 

are instantiated separately on the experimental design level. 

 

An attribute of experiments 

External validity and internal validity have been attributed to various things, 

including experiments, experimental results, inferences, inferred claims and even 

interventions. What is thought to be the bearer of validity makes a difference to 

how these terms are used. For example, among philosophers, it is not unusual to 

use the terms as in these examples: ‘Knowledge of mechanisms can help with 

determining the external validity of an intervention’ and ‘internal validity is not 

necessary to gain causal knowledge’. However, these concerns are distinct from 

concerns of researchers who are trying to ‘resolve the struggle between internal and 

external validity’. Researchers would use the terms in ways like this: ‘We describe 

the design of the trials and the steps taken to deal with the competing demands of 

external and internal validity’ and ‘External validity is maximised by having few 

exclusion criteria and by allowing flexibility in the interpretation of the intervention 

and in management decisions.’ Because the internal–external validity distinction is 

a tool for assessing and characterising the quality of experiments, these terms are 

attributes of the experiments themselves. Thus, an experiment is internally or 

externally valid by virtue of its experimental properties.  

In the case of internal validity, it is widely acknowledged that a reference to 

the experimental design is necessary in order to say something about the internal 

validity of its results. Moreover, the experimental properties that relate to internal 

validity are well-known and widely studied: randomisation, blinding, adherence 

control, drop-out control and others. Yet, experimental techniques to ensure 

internal validity are many; they not only depend on the method type and the 

research goal but can be domain- or even subject-specific. The epistemic role that 

the control fulfils is well-founded and usually explained as the role of eliminating 

alternative hypotheses.  

For external validity, the claim is less intuitive. The literature on 

extrapolation in the philosophy of science mostly uses the term ‘external validity’ 
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to denote the search for any kind of evidential support to generalise causal claims 

from all kinds of experiments. Here, ‘mechanistic knowledge can support the 

external validity of a causal claim’ might be a perfectly fine way to talk; extrapolating 

a causal claim means the same as establishing its external validity. However, in such 

usage, external validity is no longer attributed to the experiment but to the causal 

claim. It becomes an indicator for generalised knowledge in general. In my view, it 

is of little surprise that philosophers have claimed that the external validity 

terminology can do little work for them (e.g. Cartwright). It provides no means to 

disentangle the many different questions that are involved in extrapolation. Instead, 

notions such as ‘causal robustness’ and frameworks for extrapolation inferences do 

a much better job at establishing the scope of causal claims.  

In my view, the quality attributes of an experiment do not imply or require 

saying anything about other evidential support, outside the experiment. Hence, the 

two questions of how to design an experiment to achieve maximal support for the 

generalisability of its results to a target, and what evidence can support that a causal 

claim holds in a different context, can be kept apart. If we think of validity attributes 

as pertaining to the experiment and not the proposition independent of any specific 

experiment, it is clear why internal or external validity are not necessary for 

supporting the proposition with evidence from outside the experiments. To 

illustrate, philosophers repeatedly argue that causal knowledge about medical 

interventions does not necessarily come from internally valid RCTs. They are right 

in claiming this – yet their point does not diminish the value of internal validity but 

only exposes its limits. Likewise, an externally valid experiment is not necessary to 

establish general causal claims, as we have various other methods to establish the 

scope of causal claims. Many of those methods could be more successful than 

considerations about the external validity of an experiment. However, if we follow 

the suggestions of some philosophers to drop the notion of external validity 

entirely, we will deprive ourselves of an important method to evaluate and criticise 

experimental designs. Notably, we could not articulate what is wrong with many 

randomised trials when they provide results that only hold within an artificially 

idealised experiment. While the properties that support external validity are 

generally less well-systematised than those supporting internal validity, pragmatic 

clinical trials have greatly contributed to develop such understanding. Hence, we 

should not nullify the difference between experiments with and without the 

following properties: random sampling or inclusive sampling, experiments that are 

embedded into ordinary processes or experiments that suffer from artificial effects 

that only occur in the experimental context (e.g. Hawthorne effect). There are 
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other examples beyond that list. For external validity, the experimental design 

supports local extrapolation of the results in a target setting, perhaps because it has 

optimised the experimental conditions to be similar to the target setting. 

A final point is noteworthy. As an attribute of the experiment, validity can 

only play a justificatory role and comes without a truth condition. Thus, validity is 

not – as is sometimes erroneously claimed – a warrant or a promoter for truth or 

the discovery of facts. Take for example this widely quoted description of internal 

validity by Guala:  

[T]he result of an experiment E is internally valid if the experimenter 

attributes the production of an effect B to a factor (or set of factors) A, and 

A really is the (or a) cause of B in E. (Guala 2003, p. 1198) 

Guala seems to say that internal validity is implied by a true belief, i.e., a given 

correspondence between the experimenter’s belief about a causal proposition and 

a causal fact in the world. This idea demands a lot more from internal validity than 

the best experimental setup could deliver. Acknowledging the supportive role of 

validity instead yields useful consequences: Experimental results can be statistically, 

internally and externally valid – and still be false. In other words, validity is not 

sufficient to establish the truth of the propositions involved. Indeed, we can imagine 

plenty of things that can go wrong beyond the lack of internal validity. Such a 

justificatory role is also more in line with the notion that validity comes in degrees. 

Rather than being concerned with the truth simpliciter, internal validity is 

concerned with degrees of justification or support.  

I believe that the reflections above support that the quality dimensions of 

an experiment can be assessed and judged independently of each other. That is, 

an experimental design can be evaluated for how it supports the applicability of its 

results to a target context, without having raised the question of whether it supports 

a causal interpretation of its results. Any other usage in this regard seems to 

undermine the very reason for drawing the distinction in the first place.  
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Figure 3: Experimental properties justify simultaneously two inferences from the observed results. 

 

A contingent trade-off  

The deflated understanding supports the view that there is a trade-off between the 

two although a contingent one. Cartwright called the trade-off between internal and 

external validity a ‘well-known truism’ (2007). In her view, the deductive rigour of 

any experiment is gained through rather demanding assumptions, which in turn 

necessarily limit the scope of the conclusion. Others have attempted to ground the 

trade-off in a tension between ‘artificiality’ and ‘reality’ (Schram 2005). While 

others have argued that  there is no general tension between ‘artificiality’ and 

‘reality’ have rejected the idea of a trade-off on these grounds (Jimenez-Buedo and 

Miller 2010; Schram 2005). From the reflections above, it follows that the trade-off 

simply emerges because some experimental properties that are useful to increase 

either type of validity are mutually exclusive with properties that increase the other 

type: blinding is mutually exclusive with the natural awareness of patients, flexibility 

in adherence excluded its control and the use of randomisation excludes the use 

observational data. Indeed, Campbell proposed the same idea:  

Both criteria are obviously important although it turns out that they are to 

some extent incompatible, in that the controls required for internal validity 

often tend to jeopardize representativeness. (Campbell 1957) 

It is important to recognise that this is not a necessary trade-off in every instance, 

as there are means to increase the external validity that do not diminish the internal 

validity, and vice versa. The choice of a representative patient population can 

increase external validity without impacting internal validity. Similarly, 

randomisation can greatly increase the internal validity while only minimally 

impacting external validity.  
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