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ABSTRACT
We develop new higher-order asymptotic techniques for the Gaussian maximum likelihood estimator in
a spatial panel data model, with fixed effects, time-varying covariates, and spatially correlated errors. Our
saddlepoint density and tail area approximation feature relative error of order O(1/(n(T − 1))) with n
being the cross-sectional dimension and T the time-series dimension. The main theoretical tool is the
tilted-Edgeworth technique in a nonidentically distributed setting. The density approximation is always
nonnegative, does not need resampling, and is accurate in the tails. Monte Carlo experiments on density
approximation and testing in the presence of nuisance parameters illustrate the good performance of
our approximation over first-order asymptotics and Edgeworth expansion. An empirical application to
the investment–saving relationship in OECD (Organisation for Economic Co-operation and Development)
countries shows disagreement between testing results based on the first-order asymptotics and saddlepoint
techniques. Supplementary materials for this article, including a standardized description of the materials
available for reproducing the work, are available as an online supplement.
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1. Introduction

Accounting for spatial dependence is of interest from both an
applied and a theoretical point of view. Indeed, panel data with
spatial cross-sectional interaction enable empirical researchers
to take into account the temporal dimension and, at the same
time, control for the spatial dependence. From a theoretical
point of view, the special features of panel data with spatial
effects present the challenge to develop new methodological
tools.

Much of the machinery for conducting statistical inference
on panel data models has been established under the simplify-
ing assumption of cross-sectional independence. This assump-
tion may be inadequate in many cases. For instance, corre-
lation across spatial data comes typically from competition,
spillovers, or aggregation. The presence of such a correlation
might be anticipated in observable variables and/or in the unob-
served disturbances in a statistical model and ignoring it can
have adverse effects on routinely applied inferential procedures.
See, for example, Gaetan and Guyon (2010), Rosenblatt (2012),
Cressie (2015), Cressie and Wikle (2015), and recently Wikle,
Zammit-Mangion, and Cressie (2019) for book-length discus-
sions in the statistical literature. In the econometric literature,
see, for example, Kapoor, Kelejian, and Prucha (2007), Lee and
Yu (2010), Robinson and Rossi (2014b), Robinson and Rossi
(2015), and, for book-length presentations (Baltagi 2008, ch. 13;
Anselin 1988; Kelejian and Piras 2017).

Different nonparametric, semiparametric, and parametric
approaches have been proposed to incorporate cross-sectional
dependence in panel data models. The choice on the modeling
approach depends on the time series (T) and cross-sectional (n)
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dimensions. A nonparametric approach is only feasible when
T is large relative to n. In other situations, typically when T
is very small (e.g., T = 2) and n is large, semiparametric
models have been employed, including time-varying regressors
(namely factor models) and spatial autoregressive component,
when information on spatial distances is available. Least-square
and quasi-maximum-likelihood estimator represent the main
popular tools for estimation within this setting. When both
T and n are small, the parametric approach is the sensible
choice and (Gaussian) likelihood-based procedures are applied
to define the maximum likelihood estimator (MLE).

There is a vast literature on the MLE for spatial autoregressive
models, an early reference being Ord (1975). The derivation
of the first-order asymptotics is available in the econometric
literature; we refer to the seminal article by Lee (2004). For
the class of spatial autoregressive processes, with fixed effects,
time-varying covariates, and spatially correlated errors that we
consider in this article, the first-order asymptotic results for the
Gaussian MLE are available in Lee and Yu (2010), where the
authors derived asymptotic approximations (the exact finite-
sample distribution being intractable), when the cross-sectional
dimension n is large and T is finite or large.

The main issue related to the first-order asymptotic approx-
imations is that, when n is not very large, such approximations
may be unreliable: alternatives are highly recommended. Bao
and Ullah (2007) provided analytic formulae for the second-
order bias and mean squared error of the MLE for the spa-
tial parameter λ, in a Gaussian model. Bao (2013) and Yang
(2015) extended these approximations to include also exoge-
nous explanatory variables, which remain valid also when the
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process is not Gaussian. Robinson and Rossi (2014a,b) devel-
oped Edgeworth-improved tests for no spatial correlation in
spatial autoregressive models for pure cross-sectional data based
on least-squares estimation and Lagrange multiplier tests. More-
over, Robinson and Rossi (2015) worked on the concentrated
likelihood and derived an Edgeworth expansion for MLE of
λ in the setting of the first-order spatial autoregressive panel
data model, with fixed effects and without covariates. Hillier
and Martellosio (2018) (see their Section 6) and Martellosio
and Hillier (2020) (see their Section 3.5) proposed saddlepoint
approximations for the profile likelihood estimator of λ.

Resampling methods are also available alternatives to
improve on the first-order asymptotics, achieving higher-order
asymptotic refinements in terms of absolute error. However,
they require either a bias correction or an asymptotically
pivotal statistics; see Hall (1992) and Horowitz (2001) in the iid
setting. To the best of our knowledge, for spatial panel models
considered in this article, such results are not available.

The aim of this article is to introduce saddlepoint approx-
imations for parametric spatial autoregressive panel data
models with fixed effects and time-varying covariates. They
overcome the problems mentioned above by means of the
tilted-Edgeworth technique. For general references on sad-
dlepoint approximations in the iid setting, see the seminal
article of Daniels (1954) and the book-length presentations
of Field and Ronchetti (1990), Jensen (1995), Kolassa (2006),
and Brazzale, Davison, and Reid (2007). For a result about
testing on spatial dependence, see Tiefelsdorf (2002), and
for developments in time series models, see La Vecchia and
Ronchetti (2019).

We remark that we could cast the methodology of this article
into the framework of statistical analysis of random fields on a
network graph, where the underlying, known, network graph
describes the spatial structure; see, for example, Kolaczyk (2009,
chap. 8 ) for a book-length introduction. In Section 2, we briefly
comment on this approach. For the ease-of-reference to the
extant econometric literature, in the rest of the article, we prefer
to stick to the econometric notation and terminology of spatial
panel data models.

The article is organized as follows. In Section 2, we provide a
motivating example. Section 3 defines the general model setting
and the estimation method, whereas the detailed methodol-
ogy is presented in Section 4. Section 5 provides numerical
comparison with other methods and, in Section 5.2, we tackle
the problem of testing in the presence of nuisance parameters.
In Section 6, we present an empirical application. The online
supplementary material contains detailed derivations, techni-
cal appendices (algorithms and computational aspects are in
Appendix C) and additional numerical experiments.

2. Motivating Example

We motivate our research by a Monte Carlo (MC) exercise
illustrating the low accuracy of the routinely applied first-order
asymptotics. We consider the model:

Ynt = λ0WnYnt + Xntβ0 + cn0 + Ent ,

Ent = ρ0MnEnt + Vnt , t = 1, ...., T,
(1)

where Ynt = (y1t , y2t , ..., ynt)′, Xnt is an n × k matrix of non-
stochastic time-varying regressors, cn0 is an n × 1 vector of
fixed effects, and Vnt = (v1t , v2t , .., vnt)′ are n × 1 vectors with
vit ∼ N (0, σ 2

0 ), iid across i and t. The matrices Wn and Mn are
weighting matrices describing the spatial dynamics. Following
the literature, we label this model SARAR(1,1) to emphasize the
spatial dependence in both the response variable Ynt and the
error Ent .

As in the MC example in Lee and Yu (2010) p. 172, we
generate samples from (1) using θ0 = (β0, λ0, ρ0, σ 2

0 )′ =
(1.0, 0.2, 0.5, 1)′, T = 5, and k = 4 covariates. The quan-
tities Xnt , cn0 and Vnt are generated from independent stan-
dard normal distributions and, as it is customary in the econo-
metric literature, we set Wn = Mn, where the off-diagonal
elements are different from zero, while the diagonal elements
are all zero. We consider two sample sizes: n = 24 (small
sample) and n = 100 (moderate/large sample). The choice
of n = 24 is related to the empirical data analysis that we
consider in Section 6, where we apply the model in Equation
(1) to conduct inference on the investment-saving relation for
the 24 OECD (Organisation for Economic Co-operation and
Development) countries. Similar sample sizes arise in many real
data analyses, where panel datasets contain a limited number
of cross-sectional units, for example, because sampling can be
expensive and time consuming, as it is often the case in field
studies.

We consider three different spatial weighting matrices: Rook,
Queen, and Queen with torus. They are commonly applied in
statistics/econometrics; see, for example, the real-data examples
in Bivand et al. (2008, chap. 9), the numerical examples in Lee
and Yu (2010) and references therein. Besides, those matrices
are implemented in the statistical/econometric software. For
example, they are readily available in the R packages spml and
spdep that we apply in our MC exercices.

In Figure 1, we display the geometry of Ynt as implied by
each considered spatial matrix: the plots highlight that different
matrices imply different spatial relations. For instance, we see
that the Rook matrix implies fewer links than the Queen matrix.
Indeed, the Rook criterion defines neighbors by the existence
of a common edge between two spatial units, whilst the Queen
criterion is less rigid and defines neighbors as spatial units
sharing an edge or a vertex. Besides, we may interpret {Ynt}
as a n-dimensional random field on the network graph which
describes the known underlying spatial structure. Then, Wn
represents the weighted adjacency matrix (in the spatial econo-
metrics literature, Wn is called contiguity matrix). In Figure 1,
we display the geometry of a random field on a regular lattice
(undirected graph). In the real data example of Section 6, we
consider a random field over a manifold (a sphere), providing
two additional examples for Wn.

For each type of Wn, we generate a sample of n observations.
Since cn0 creates an incidental parameter issue, we eliminate it
by the standard differentiation procedure, and we estimate the
model parameter θ by MLE using the transformation approach
of Lee and Yu (2010) for each MC run. We set the MC size
equal to 5000 and compare the distribution of λ̂ to the Gaussian
asymptotic distribution (see Section 4.1 for details). Via QQ-
plot analysis, Figure 2 shows that the Gaussian approximation
can be either too thin or too thick in the tails with respect to the
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Figure 1. Different types of neighboring structure for Ynt , as implied by different types of Wn matrix, for n = 24.

Figure 2. SARAR(1,1) model: QQ-plot vs normal of the MLE λ̂, for different sample sizes (n = 24 and n = 100), λ0 = 0.2, and different types of Wn matrix.

“exact” distribution. For instance, when n = 24 and Wn is Rook,
the Gaussian quantiles are larger than the “exact” ones in the left
tail, while we observe the opposite phenomenon in the right tail.
Similar considerations hold for the other types of Wn. The more
complex is the geometry of Wn (e.g., Wn has Queen structure)
the more pronounced are the departures from the Gaussian. For
n = 100, and Wn Rook, the MLE displays a distribution which
is in line with the Gaussian one. However, when Wn becomes
more complex (e.g., Queen with torus), larger departures in
the tails are still evident. In Appendix D.1, we illustrate that
similar conclusions are available also for the simpler SAR(1)
model:

Ynt = λ0WnYnt + cn0 + Vnt , for t = 1, 2, (2)

where θ0 = (λ0, σ 2
0 )′. More generally, unreported results

suggest that, in the considered SARAR setting, the “exact”
and the asymptotic distribution, as well as the saddlepoint
approximation, agree for the considered types of Wn, when
n ≥ 250.

3. Model Setting and Estimation Method

Let us consider a random field described by the SARAR(1,1)
model in Equation (1). We label by Pθ0 ∈ P , with θ0 ∈ � ⊂ R

d,
the actual underlying distribution, which is characterized by
θ0 = (β0, λ0, ρ0, σ 2

0 )′, the true parameter value. The matrix Wn
is an n × n nonstochastic spatial weight matrix that generates
the spatial dependence on yit among cross-sectional units. The
matrix Xnt is an n × k matrix of nonstochastic time varying
regressors, and cn0 is an n × 1 vector of fixed effects. Similarly,
Mn is an n×n spatial weight matrix for the disturbances—quite
often Wn = Mn. Moreover, we define Sn(λ) = In − λWn, and
analogously Rn(ρ) = In − ρMn.

The vector cn0 introduces an incidental parameter problem;
see Lee and Yu (2010) and Robinson and Rossi (2015). To
cope with this issue, we follow the standard approach, and we
transform the model in order to derive a consistent estimator
for the model parameter θ = (β ′, λ, ρ, σ 2)′ and θ ∈ � ⊂ R

d.
To achieve the goal, we first eliminate the individual effects by
the deviation from the time-mean operator JT = (IT − 1

T lTl′T),
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where IT is the T × T identity matrix, and lT = (1, ..., 1)′,
namely the T ×1 vector of ones. Without creating linear depen-
dence in the resulting disturbances, we adopt the transformation
introduced by Lee and Yu (2010). First, let the orthonormal
eigenvector matrix of JT be [FT,T−1, 1√

T
lT], where [·] represents

a matrix horizontal concatenation and FT,T−1 is the T × (T −1)

submatrix corresponding to the unit eigenvalues. Then, for any
n×T matrix [Zn1, ..., ZnT], we define the transformed n×(T−1)

matrix [Z∗
n1, ..., Z∗

nT] = [Zn1, ..., ZnT]FT,T−1. Similarly, we define
X∗

nt = [X∗
nt,1, X∗

nt,2, ..., X∗
nt,k]. Then, we transform the model in

Equation (1) and we obtain

Y∗
nt = λ0WnY∗

nt + X∗
ntβ0 + E∗

nt ,
E∗

nt = ρ0MnE∗
nt + V∗

nt , t = 1, 2, ..., T.
(3)

Since
(

V∗′
n1, ..., V∗′

n(T−1)

)′ = (
F′

T,T−1 ⊗ In
) (

V ′
n1, ..., V ′

n(T−1)

)′
,

and the vit are iid, we have

E

[(
V∗′

n1, ..., V∗′
n(T−1)

)′ (
V∗′

n1, ..., V∗′
n(T−1)

)]
= σ 2

0 In(T−1),

where E[·] represents the expectation taken w.r.t. Pθ0 . The
Gaussian assumption on the innovation terms implies that v∗

it
are independent for all i and t—without this assumption, they
would be simply uncorrelated; see Lee and Yu (2010, p. 167).
Thus, defining ζ = (β ′, λ, ρ)′, the log-likelihood is

ln Ln,T(θ) = 	n,T(θ) = −n(T − 1)

2
ln(2πσ 2)

+ (T − 1)[ln |Sn(λ)| + ln |Rn(ρ)|]

− 1
2σ 2

T−1∑
t=1

V∗′
nt(ζ )V∗

nt(ζ ),

where V∗
nt(ζ ) = Rn(ρ)[Sn(λ)Y∗

nt − X∗
ntβ]. As remarked in Lee

and Yu (2010), the function Ln,T has a conditional likelihood
interpretation: it is the likelihood conditional on the time aver-
age

∑T
t=1 Ynt/T, which is a sufficient statistic for cn0, under

normality.
We rewrite 	n,T(θ) in terms of a quadratic form in Ṽnt(ζ ) as

	n,T(θ) = −n(T − 1)

2
ln(2πσ 2)

+ (T − 1)[ln |Sn(λ)| + ln |Rn(ρ)|]

− 1
2σ 2

T∑
t=1

Ṽ ′
nt(ζ )Ṽnt(ζ ), (4)

where Ṽnt(ζ ) = Rn(ρ)[Sn(λ)Ỹnt − X̃ntβ], with

Ỹnt = Ynt −
T∑

t=1
Ynt/T, X̃nt = Xnt −

T∑
t=1

Xnt/T. (5)

The MLE θ̂n,T for θ is an M-estimator obtained by solving
θ̂n,T = arg maxθ∈� 	n,T(θ). It implies the system of estimating
equations:

0 = ∂	n,T(θ̂n,T)

∂θ
=

T∑
t=1

(T − 1)−1ψnt(θ̂n,T), (6)

where ψnt is the likelihood score function

ψnt(θ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T−1
σ 2 (Rn(ρ)X̃nt)′Ṽnt(ζ )

T−1
σ 2

((
G̈nẌntβ

)′ Ṽnt(ζ ) + Ṽ ′
ntG̈

′
nṼnt

)
− (T−1)2

T tr(Gn(λ))
T−1
σ 2 (Hn(ρ)Ṽnt(ζ ))′Ṽnt(ζ ) − (T−1)2

T tr(Hn(ρ))

T−1
2σ 4

(
Ṽ ′

nt(ζ )Ṽnt(ζ ) − n(T−1)
T σ 2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where Gn(λ) = WnS−1
n , Hn(ρ) = MnR−1

n , G̈n(λ) =
RnGnR−1

n , and Ẍnt = RnX̃nt .

4. Methodology

We assume n 
 T, so we deal with the so-called micro panels.
Within this setting for T being fixed, the standard asymptotic
arguments rely crucially on the number n of individuals tending
to infinity; see Lee and Yu (2010). In contrast, in our devel-
opment, we consider small sample cross-sectional asymptotics
(Field and Ronchetti 1990), and we still leave T fixed (possibly
small). However, we will keep T in the notation of normalizing
factors to demonstrate the improved rate of convergence that
would result if T → ∞ or it is large. The derivation of our
higher-order techniques relies on three steps: (i) defining a
second-order asymptotic (von Mises) expansion for the MLE,
see Section 4.1; (ii) identifying the corresponding U-statistic, see
Section 4.2; (iii) deriving the Edgeworth expansion for the U-
statistic and deriving the saddlepoint density by means of the
tilted-Edgeworth technique, see Sections 4.3 and 4.4. Similar
approaches are available for the standard setting of iid random
variables in Easton and Ronchetti (1986), Barndorff-Nielsen and
Cox (1989), and Gatto and Ronchetti (1996).

4.1. The M-Functional Related to the MLE and Its
First-Order Asymptotics

The likelihood score function in Equation (7) is a vector in R
d,

and each lth element of this vector, for l = 1, ..., d, is a sum of n
terms. In what follows, for i = 1, ..., n, we denote by ψi,t,l(θ) the
ith term, at time t, of this sum for the lth component of the score.
To specify ψi,t,l(θ), we set Rn(ρ) =

(
r′

1(ρ), r′
2(ρ), · · · , r′

n(ρ)
)′

,

X̃nt =
[

X̃nt,1, X̃nt,2, · · · , X̃nt,k
]

,

Ṽnt(ζ ) = (
ṽ1t(ζ ), ṽ2t(ζ ), · · · , ṽnt(ζ )

)′ and Hn(ρ) = (h′
1(ρ),

h′
2(ρ), · · · , h′

n(ρ))′, where ri(ρ) and hi(ρ) are the ith row of
Rn(ρ) and Hn(ρ), gii and hii are ith element of the diagonal
of Gn(λ) and Hn(ρ), respectively. Then, from Equation (7), it
follows:

ψi,t(θ) =

⎛
⎜⎜⎜⎝

ψi,t,1(θ),
ψi,t,2(θ)

...
ψi,t,d(θ)

⎞
⎟⎟⎟⎠

d×1
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T−1
σ 2 ri(ρ)X̃nt,1ṽit(ζ )

T−1
σ 2 ri(ρ)X̃nt,2ṽit(ζ )

...
T−1
σ 2 ri(ρ)X̃nt,kṽit(ζ )

T−1
σ 2 ri(ρ)

(
GnX̃ntβ + GnR−1

n (ρ)Ṽnt(ζ )
)

ṽit(ζ )

− (T−1)2

T gii
T−1
σ 2 hi(ρ)Ṽnt(ζ )ṽit(ζ ) − (T−1)2

T hii
T−1
2σ 4

(
ṽit(ζ )2 − T−1

T σ 2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d×1

.

(8)
Thus, for every t = 1, 2, ..., T, we have

ψnt(θ) =
( n∑

i=1
ψi,t,1(θ), ...,

n∑
i=1

ψi,t,d(θ)

)′
,

and, from Equation (6), it follows that the MLE is the solution
to

1
n

T∑
t=1

( n∑
i=1

(T − 1)−1ψi,t,1(θ̂n,T), ...,

n∑
i=1

(T − 1)−1ψi,t,d(θ̂n,T)

)′
= 0. (9)

The M-functional ϑ related to the MLE is implicitly defined as
the unique functional root of

E

{ T∑
t=1

(T − 1)−1 ψnt
[
ϑ(Pθ0)

]} = 0, (10)

or equivalently via the asymptotic maximization θ0 =
arg maxθ∈� E[	n,T(θ0)]; see, for example, Lee (2004). In what
follows, we write θ0 = ϑ(Pθ0) to emphasize the dependence of
the functional on the measure Pθ0 . The finite sample version
of the M-functional in Equation (10) is the M-estimator
defined in Equation (9), or equivalently via the finite sample
maximization θ̂n,T = arg maxθ∈� 	n,T(θ). In what follows, we
write θ̂n,T = ϑ(Pn,T), where Pn,T is the measure associated
to the n-dimensional sample. We can check the uniqueness of
the M-estimator on a case-by-case basis, using Assumption A
(see below) and working on the Gaussian log-likelihood. For
instance, in the case of the SAR model, we can compute the
second derivative of 	n,T w.r.t. λ and check that 	n,T is a concave
function, admitting a unique maximizer. Alternatively, we can
solve the estimating equations implied by first-order conditions
related to 	n,T resorting on a one-step procedure and using
for instance the GMM estimator (see Lee and Yu 2010 and
reference therein) as a preliminary estimator; for a book-length
description of one-step procedure, see, for example, Van der
Vaart (1998, chap. 5).

In what follows, we set m := n(T − 1), with m → ∞, as
n → ∞. Then, we introduce

Assumption A.

(i) The elements ωn,ij of Wn and the elements mn,ij of Mn
in Equation (1) are at most of order h̃−1

n , denoted by
O(1/h̃n), uniformly in all i, j, where the rate sequence {h̃n}
is bounded, and h̃n is bounded away from zero for all n. As
a normalization, we have ωn,ii = mn,ii = 0, for all i.

(ii) n diverges, while T ≥ 2 and it is finite.
(iii) Assumptions 2–5 and Assumption 7 in Lee and Yu (2010)

are satisfied.
(iv) Denote Cn = G̈n − n−1tr(G̈n)In and Dn = Hn −

n−1tr(Hn)In, where G̈n = RnGnR−1
n and Hn = MnR−1

n .
Then Cs

n = Cn + C′
n and Ds

n = Dn + D′
n. The limit of

n−2 [tr(Cs
nCs

n)tr(Ds
nDs

n) − tr2(Cs
nDs

n)
]

is strictly positive as
n → ∞.

Assumptions A(i) characterizes the behavior of Wn and Mn
in terms of n, and Wn and Mn are row-normalized. It means
ωn,ij = dij/

∑n
j=1 dij, where dij is the spatial distance of the ith

and the jth units in some (characteristic) space. For each i, the
weight ωn,ij defines an average of neighboring values. In what
follows, we consider spatial weight matrices (like, e.g., Rook and
Queen) such that

∑n
j=1 dij = O(h̃n) uniformly in i and the row-

normalized weight matrix satisfies Assumption A(i); see, for
example, Lee (2004). For instance, Wn as Rook creates a square
tessellation with h̃n = 4 for the inner fields on the chessboard,
and h̃n = 2 and h̃n = 3 for the corner and border fields,
respectively. Assumption A(ii) defines the asymptotic scheme
of our theoretical development, in which we consider n cross-
sectional units and we leave T fixed. Assumption A(iii) refers
to Lee and Yu (2010), who develop the first-order asymptotic
theory. All Wn, Mn, S−1

n (λ), R−1
n (ρ) are uniformly bounded

by Assumption A(iv), which guarantees the convergence of the
asymptotic variance, see below. Assumption A(iv) states the
identification conditions of the model and the conditions for
the nonsingularity of the limit of the information matrix. In
particular, it implies that the (d × d)-matrix

Mi,T(ψ , Pθ0) = E

[
−(T − 1)−1

T∑
t=1

∂ψi,t(θ)/∂θ

∣∣∣
θ=θ0

]
(11)

is non-singular. Under Assumption A(i)–(iv), Theorem 1
part(ii) in Lee and Yu (2010) showed that lim

n→∞ θ̂n,T = θ0.
Furthermore, Theorem 2 point (ii) in Lee and Yu (2010) implied,
as n → ∞, that θ̂n,T satisfies

√
m(θ̂n,T − θ0)

D→ N
(
0, �−1

0,T
)

,
and �0,T = plimn→∞�0,n,T . The operator plim stands for the
limit in probability and the expression of �0,n,T is available in
the online supplementary material (see Appendix B). The first-
order asymptotics is obtained letting n → ∞, while there is no
need for T → ∞.

4.2. Second-Order von-Mises Expansion

To derive a higher-order asymptotic expansion of the MLE, we
introduce the following assumption.

Assumption B.

(i) ∂2ψi,t,l(θ)/∂θ∂θ ′ exists at θ = θ0, for every i = 1, .., n, t =
1, ..., T and l = 1, .., d.

(ii) The d×d-matrixE
[
(T−1)−1 ∑T

t=1 ∂2ψi,t,l(θ)/∂θ∂θ ′
∣∣∣
θ=θ0

]
is positive semi-definite, for every l = 1, .., d.

Then, we state the following
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Lemma 1. Let the MLE be defined as in Equation (6). Under
Assumptions A and B, the following expansion holds:

ϑ(Pn,T) − ϑ(Pθ0) = 1
n

n∑
i=1

IFi,T(ψ , Pθ0)

+ 1
2n2

n∑
i=1

n∑
j=1

ϕi,j,T(ψ , Pθ0) + OP(m−3/2),

(12)
where

IFi,T(ψ , Pθ0) = M−1
i,T (ψ , Pθ0)(T − 1)−1

T∑
t=1

ψi,t(θ0), (13)

and
ϕi,j,T(ψ , Pθ0)

= IFi,T(ψ , Pθ0) + IFj,T(ψ , Pθ0) + M−1
i,T (ψ , Pθ0)�i,j,T(ψ , Pθ0)

+M−1
i,T (ψ , Pθ0)

{
(T − 1)−1

T∑
t=1

∂ψj,t(θ)

∂θ

∣∣∣
θ0

IFi,T(ψ , Pθ0)

+(T − 1)−1
T∑

t=1

∂ψi,t(θ)

∂θ

∣∣∣
θ=θ0

IFj,T(ψ , Pθ0)

}
, (14)

where
�i,j,T(ψ , Pθ0)

′

=

⎛
⎜⎜⎜⎜⎜⎝

IF′
j,T(ψ , Pθ0) E

[∑T
t=1

∂2ψi,t,1(θ0)
∂θ∂θ ′

∣∣∣
θ=θ0

]
IFi,T(ψ , Pθ0)

...

IF′
j,T(ψ , Pθ0) E

[∑T
t=1

∂2ψi,t,d(θ0)
∂θ∂θ ′

∣∣∣
θ=θ0

]
IFi,T(ψ , Pθ0)

⎞
⎟⎟⎟⎟⎟⎠ ,

(15)
and Mi,T(ψ , Pθ0) is defined by Equation (11).

In Equation (12), we interpret the quantities IFi,T(ψ , Pθ0), the
first-order von Mises kernel, and ϕi,j,T(ψ , Pθ0), the second-order
von Mises kernel, as functional derivatives of the M-functional
related to the MLE; see Fernholz (2001). Specifically, the first
term, of order m−1 ∝ n−1, is the influence function (IF) and
represents the standard tool applied to derive the first-order
(Gaussian) asymptotic theory of the MLE; see, for example,
Van der Vaart (1998) and Baltagi (2008). The second term in
Equation (12), of order m−2 ∝ n−2, plays a pivotal role in our
derivation of higher-order approximations.

4.3. Approximation Via U-Statistic

The result of Lemma 1 together with the chain rule define the
second-order asymptotic expansion for a real-valued function of
the MLE, such as a component of ϑ(Pn,T) or a linear contrast. In
Lemma 2, we show that we can write the asymptotic expansion
in terms of a U-statistic of order two. To this end, we introduce
the following assumption.
Assumption C.
Let q be a function from R

d to R, which has continuous and
nonzero gradient at θ = θ0 and continuous second derivative at
θ = θ0.

Then, we have

Lemma 2. Under Assumptions A–C, the following expansion
holds:

q[ϑ(Pn,T)] − q[ϑ(Pθ0)] = 2
n(n − 1)

n−1∑
i=1

n∑
j=i+1

hi,j,T
(
ψ , Pθ0

)
+ OP(m−3/2),

where

hi,j,T
(
ψ , Pθ0

)
= gi,T

(
ψ , Pθ0

) + gj,T
(
ψ , Pθ0

) + γi,j,T(ψ , Pθ0)

= 1
2

{
IF′

i,T(ψ , Pθ0) + IF′
j,T(ψ , Pθ0) + ϕ′

i,j,T(ψ , Pθ0)
} ∂q(ϑ)

∂ϑ

∣∣∣
θ=θ0

+1
2

IF′
i,T(ψ , Pθ0)

∂2q(ϑ)

∂ϑ∂ϑ ′
∣∣∣
θ=θ0

IFj,T(ψ , Pθ0), (16)

with

gi,T(ψ , Pθ0) = 1
2

(
IF′

i,T(ψ , Pθ0)
∂q(ϑ)

∂ϑ

∣∣∣
θ=θ0

)
, (17)

γi,j,T(ψ , Pθ0) = 1
2

(
ϕ′

i,j,T(ψ , Pθ0)
∂q(ϑ)

∂ϑ

∣∣∣
θ=θ0

+IF′
i,T(ψ , Pθ0)

∂2q(ϑ)

∂ϑ∂ϑ ′
∣∣∣
θ=θ0

IFj,T(ψ , Pθ0)

)
.

(18)

The function q may select, for example, a single component
of the vector θ0. In many empirical applications, the most inter-
esting parameter is the spatial correlation coefficient λ0, and
the null hypothesis is zero correlation versus the alternative
hypothesis of positive spatial correlation—the aim being to
check whether there is a contagion effect.

4.4. Higher-Order Asymptotics

Making use of Lemmas 1 and 2, we derive the Edgeworth and the
saddlepoint approximation to the distribution of a real-valued
function q of the MLE.

Let fn,T(z) be the true density of q[ϑ(Pn,T)]−q[ϑ(Pθ0)] at the
point z ∈ A, where A is a compact subset of Rd. Our derivation
of the saddlepoint density approximation to fn,T(z) is based on
the tilted-Edgeworth expansion for U-statistics of order two.
With this regard, a remark is in order. From Equation (8), we see
that the terms in the random vector ψnt(θ0) depend on the rows
of the weight matrix Wn(ρ) and Mn(λ). As a consequence, these
terms are independent but not identically distributed random
variables, and we need to derive the Edgeworth expansion for
our U-statistic taking into account this aspect. To this end, we
approximate the cumulant-generating function (c.g.f.) of our
U-statistic by summing (in i and j) the (approximate) c.g.f. of
each hi,j,T kernel. This is an extension of the derivation by
Bickel, Götze, and Van Zwet (1986) for iid random variables. To
elaborate further, we introduce

Assumption D.
Suppose that there exist positive numbers δ, δ1, C and positive
and continuous functions χj: (0, ∞) → (0, ∞), j = 1, 2,
satisfying limz→∞ χ1(z) = 0, limz→∞ χ2(z) ≥ δ1 > 0, and
a real number α such that α ≥ 2 + δ > 2,
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(i) E
[|γi,j,T(ψ , Pθ0)|α

]
< C for any i and j, 1 ≤ i < j ≤ n,

(ii) E
[
gi,T(ψ , Pθ0)

41[z,∞)(|gi,T(ψ , Pθ0)|)
]

< χ1(z) for all z > 0
and any i, 1 ≤ i ≤ n,

(iii)
∣∣∣E [

eινgi,T(ψ ,Pθ0 )
] ∣∣∣ ≤ 1 − χ2(z) < 1 for all z > 0 and any i,

1 ≤ i ≤ n and ι2 = −1,
(iv) ||Mi,T(ψ , Pθ0) − Mj,T(ψ , Pθ0)|| = O(n−1) uniformly in λ

and ρ.

A few comments are in order. Assumptions D(i)–(iii) are
similar to the technical assumptions in (Bickel, Götze, and
Van Zwet 1986, pp. 1465 and 1477). However, there are some
differences between our assumptions and theirs. Indeed, to take
into account the nonidentical distribution of ψi,t and ψj,t , for
i �= j, we consider the first- and second-order von Mises kernels
for each i (as in D(i)–(iii)). It is different from Bickel, Götze, and
Van Zwet (1986): compare, for example, our D(ii) to their eq.
(1.17). D(iv) is not considered in Bickel, Götze, and Van Zwet
(1986): it is a peculiar assumption needed for our higher-order
asymptotics (the technical aspects are available in Lemma A.1
and its proof in Appendix A). In Appendix D.2, we illustrate
that, in the case of the SAR(1) model, the validity of D(iv) is
related to more primitive expressions involving the entries of
(some powers of) Wn. For other models, one should derive
such primitive expressions on a case-by-case basis. For the
sake of generality, here we provide an intuition on D(iv). Let us
consider two different locations i and j. From Equation (11), we
see that D(iv) imposes a structure on the information available
at different locations. Indeed, Mi,T(ψ , Pθ0) and Mj,T(ψ , Pθ0)

contribute to the asymptotic variance of the MLE. Since
Mi,T(ψ , Pθ0) is related to the information available at the
ith location, D(iv) essentially assumes that there exists an
informative content which is common to location i and j, whilst
the (Frobenius norm of the) information content specific to
each location is of order O(n−1).

Proposition 3. Under Assumptions A–D, the Edgeworth expan-
sion �m(z) for the c.d.f. Fm of σ−1

n,T{q[ϑ(Pn,T)] − q[ϑ(Pθ0)]} is

�m(z) = �(z) − φ(z)

{
n−1/2 κ

(3)
n,T
3! (z2 − 1)

+n−1 κ
(4)
n,T
4! (z3 − 3z) + n−1 κ

(3)
n,T
72

(z5 − 10z2 + 15z)

}
,

(19)

where z ∈ A, σn,T is the standard deviation of q[ϑ(Pn,T)] −
q[ϑ(Pθ0)], �(z) and φ(z) are the c.d.f. and p.d.f of a stan-
dard normal r.v. respectively, κ

(3)
n,Tn−1/2 and κ

(4)
n,Tn−1 are the

approximate third and fourth cumulants of σ−1
n,T{q[ϑ(Pn,T)] −

q[ϑ(Pθ0)]}, as defined in Equations (A.15) and (A.18), respec-
tively. Then supz |Fm(z) − �m(z)| = o(m−1).

We can get the saddlepoint density approximation by expo-
nentially tilting the Edgeworth expansion.

Proposition 4. Under Assumptions A–D, the saddlepoint den-
sity approximation to the density of q[ϑ(Pn,T)] − q[ϑ(Pθ0)] at

the point z ∈ A is

pn,T(z) =
[

n
2πK̃′′

n,T(ν)

]1/2

exp
{

n
[
K̃n,T(ν) − νz

]}
, (20)

with relative error of order O(m−1), ν := ν(z) is the saddlepoint
defined by

K̃′
n,T(ν) = z, (21)

the function K̃n,T is the approximate c.g.f. of
√

n(q[ϑ(Pn,T)] −
q[ϑ(Pθ0)]), as defined in equation (A.42), while K̃′

n,T and K̃′′
n,T

represent the first and second derivative of K̃n,T , respectively.
Moreover,

P
{

q[ϑ(Pn,T)] − q[ϑ(Pθ0)] > z
}

=
[

1 − �(r) + φ(r)
(

1
c

− 1
r

)] [
1 + O(m−1)

]
, (22)

c = ν
[
K̃′′

n,T(ν)
]1/2

and r = sgn(ν)
{

2n
[
νz − K̃n,T(ν)

]}1/2
.

The proofs of these propositions are available in Appendix
A. Following Durbin (1980), we can further normalize pn,T by
dividing the right-hand side of Equation (20) by its integral
with respect to z. This normalization typically improves even
further the accuracy of the approximation. In Appendix C.1, we
provide an algorithm (see Algorithm 1) in which we itemize the
main computational steps needed to implement the saddlepoint
tail area approximation, for a given transformation q, and for
a given reference parameter θ0, for example, the parameter
characterizing the null hypothesis in a simple hypothesis testing,
where the tail area probability yields an approximate p-value.

4.5. Links With the Econometric Literature

The expansions in Propositions 3 and Proposition 4 are con-
nected with the results on higher-order expansions available in
the spatial econometric literature, as cited in Section 1. However,
some key differences are worth a mention.

(i) The Edgeworth expansion in Robinson and Rossi (2015)
is for the concentrated MLE of λ and it is based on a higher-
order Taylor expansion of the concentrated likelihood score; see
also Robinson and Rossi (2014a,b, 2015), Hillier and Martel-
losio (2018), and Martellosio and Hillier (2020). In contrast,
our method is based on a von Mises expansion of the MLE
functional of the whole model parameter and we resort on a
marginalization procedure to obtain the saddlepoint density
approximation of the parameter(s) of interest. Therefore, Lem-
mas 1 and 2 give generality and flexibility to our approach: not
only we may focus on λ, but also, for example, on ρ (which
contains information on the spatial dependence of the inno-
vation terms) and/or on β (which convey information on the
significance of the time-varying covariates).

(ii) Our saddlepoint approximation is more general than the
Edgeworth-based approximations available in the econometric
literature, since we work with a larger class of models, which
includes the model in Robinson and Rossi (2015) as a special
case.
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(iii) Although the inference (e.g., testing) derived using
the Edgeworth expansion improves on the standard first-
order asymptotics, it is well known (see, e.g., Field and
Ronchetti 1990) that, in general, this technique provides a good
approximation in the center of the distribution, but can be
inaccurate in the tails, where the Edgeworth expansion can even
become negative. It can lead to inaccurate approximations. Our
saddlepoint approximation is a density-like object and is always
nonnegative.

(iv) Our saddlepoint approximation yields a tail-area approx-
imation via a Lugannani-Rice type formula. A similar result is
not available for the Edgeworth expansion of the concentrated
MLE derived in Robinson and Rossi (2015). Recently, Martel-
losio and Hillier (2020) studied the adjusted profile likelihood
estimation method and obtained a result similar to our tail-area
approximation. Their formula is derived for the spatial autore-
gressive model with covariates. However, they do not prove
the higher-order properties of their approximation. In Propo-
sition 3, we prove that our saddlepoint density approximation
features relative error of order O(1/(n(T − 1))). This has to be
contrasted with the extant Edgeworth expansion, which entails
an absolute error of lower order—more precisely, the error order
is o((nT)−1/2), when the entries of the spatial matrix are O(1);
see Eq. (2.15) in Robinson and Rossi (2015). Achieving a small
relative error is appealing in tail areas where the probabilities are
small.

(v) In the comparison with the bootstrap, our methodology
does not need resampling. Moreover, it does neither require bias
correction, nor any studentization.

5. Comparisons With Other Approximations and
Testing in the Presence of Nuisance Parameters

We compare the performance of our saddlepoint approxima-
tions to other routinely applied asymptotic techniques. To
start with, we consider the SAR(1) model, where λ is the only
unknown parameter. Then, we move to the SARAR(1,1) model,
where we illustrate how to take care of nuisance parameters.
We use the same setting as in Section 2; we refer to the
online supplementary material (Appendix D) for details and
for additional results.

5.1. Comparisons With Other Asymptotic Techniques

Saddlepoint vs first-order asymptotics. For the SAR(1) model,
we analyse the behavior of the MLE of λ0, whose PP-plots are
available in Figure 3. For each type of Wn, for n = 24 and
n = 100, the plots show that the saddlepoint approximation is
closer to the “exact” probability than the first-order asymptotics
approximation. For Wn Rook, the saddlepoint approximation
improves on the routinely applied first-order asymptotics. In
Figure 3, the accuracy gains are evident also for Wn Queen
and Queen with torus, where the first-order asymptotic theory
displays large errors essentially over the whole support (specially
in the tails). On the contrary, the saddlepoint approximation is
close to the 45-degree line.

Saddlepoint vs Edgeworth expansion (testing simple hypothe-
ses). The Edgeworth expansion derived in Proposition 3 repre-
sents the natural alternative to the saddlepoint approximation
since it is fully analytic. To gain insights into the different behav-
ior of the saddlepoint and Edgeworth approximations, we inves-
tigate the size of a hypothesis test based on the approximations.
We set n = 24 and we assume that σ 2 is known and equal to one.
We consider the simple null hypothesis H0: λ0 = 0 for a one-
sided test of zero against positive values of spatial correlation.
We use 25,000 replications of λ̂n,T to get the empirical estimate
F̂0 of the c.d.f. F0 of the estimator under the null hypothesis. We
use the generic notation G for the c.d.f. of one of the Edgeworth,
or saddlepoint approximations, under the null hypothesis. For
the sake of completeness, we also display the results for the
Gaussian (first-order) approximation. The empirical rejection
probabilities α̂ = 1 − F̂0(G−1(1 − α)) are shown in Figure 4
for nominal size α ranging from 1% to 10%, and correspond
to an estimated size. We have overrejection when we are above
the 45-degree line. We observe strong size distortions for the
asymptotic and Edgeworth approximations as expected from
the previous results. The saddlepoint approximation exhibits
only mild size distortions. For example, we get an estimated
size α̂ of 11.72%, 7.36%, 5.70%, for the Normal, Edgeworth, and
saddlepoint approximations, for a nominal size of 5%.

Saddlepoint vs. parametric bootstrap. The parametric boot-
strap represents a (computer-based) competitor. To com-
pare our saddlepoint approximation to the one obtained by

Figure 3. SAR(1) model: PP-plots for saddlepoint (continuous line) vs asymptotic normal (dotted line) probability approximation, for the MLE λ̂, for n = 24 and n = 100,
λ0 = 0.2, and different Wn .
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Figure 4. SAR(1) model: Estimated α̂ versus nominal size α between 1% and
10% under saddlepoint (continuous line), Edgeworth (dotted line with diamonds)
and first-order asymptotic approximation (dotted line). Wn is Rook, n = 24 and
λ0 = 0.0.

bootstrap, we consider different numbers of bootstrap repeti-
tions, labeled as B: we use B = 499 and B = 999. For space
constraints, in Figure 5, we display the results for B = 499
(similar plots are available for B = 999) showing the functional
boxplots (as obtained iterating the procedure 100 times) of the
bootstrap approximated density, for sample size n = 24 and for
Wn is Queen.

To visualize the variability entailed by the bootstrap, we dis-
play the first and third quartile curves and the median functional
curve; for details about functional boxplots, we refer to Sun
and Genton (2011) and to R routine fbplot. We notice that,
while the bootstrap median functional curve (representing a
typical bootstrap density approximation) is close to the actual
density (as represented by the histogram), the range between
the quartile curves illustrates that the bootstrap approximation
has a variability. Clearly, the variability depends on B: the larger
is B, the smaller is the variability. However, larger values of B
entail bigger computational costs: when B = 499, the boot-
strap is almost as fast as the saddlepoint density approximation
(computation time about 7 minutes, on a 2.3 GHz Intel Core i5
processor), but for B = 999, it is three times slower.

5.2. Testing in the Presence of Nuisance Parameters

5.2.1. Saddlepoint Test for Composite Hypotheses
An interesting case (suggested by the Associate Editor and an
anonymous referee) that has a strong practical relevance is
related to testing a composite null hypothesis. It is a problem
which is different from the one considered so far in the article,
because it raises the issue of dealing with nuisance parameters.

To tackle this problem, several possibilities are available.
For instance, we may fix the nuisance parameters at the MLE
estimates. Combined with the saddlepoint density in Equation
(20), this yields a ready solution to the nuisance parameter
problem. In our numerical experience (see Appendix D.6 for
an experiment about the SAR(1)), the use of the maximum
likelihood estimates may preserve reasonable accuracy in some
cases. Alternatively, one may consider to use profile estimators,
as suggested, for example, in Hillier and Martellosio (2018) (see
their numerical exercises on p.416) and Martellosio and Hillier
(2020). The main theoretical drawback related to the use of both
MLE or profile estimates for the nuisance parameter(s) is that
the results currently available in the literature do not guarantee
that the second-order properties still hold. To cope with this
issue, we propose to build on Robinson, Ronchetti, and Young
(2003), who derived a saddlepoint test statistic which takes into
account explicitly the nuisance parameters, while preserving
relative error in normal region. This test statistic is derived going
through steps which are similar to ours. Robinson, Ronchetti,
and Young (2003) define the statistic in the iid setting, while Lô
and Ronchetti (2009) and Czellar and Ronchetti (2010) extend
it to non-iid data.

Let us consider a SARAR model whose parameter is θ =
(θ10, θ2)′, where θ10 is specified by the null composite hypothe-
sis: typically, the null concerns λ only, while θ2 contains all the
nuisance parameters. More specifically, the parameter is θ =
(λ, β , ρ, σ 2)′ and the general function q(θ) used in the previous
sections is simply q(θ) = λ. Thus, we have the composite
hypothesis

H0 : λ = λ0 = 0 vs H1 : λ > 0, (23)
where θ = (λ, θ2)

′, with θ10 = λ0 and θ2 = (β , ρ, σ 2)′. Then,
we define the test statistic

SADn(λ̂) = 2n inf
θ2

sup
ν

− Kψ(ν, λ̂, θ2). (24)

Figure 5. SAR(1) model. Left panel: Density plots for saddlepoint (continuous line) vs the functional boxplot of the parametric bootstrap probability approximation to the
exact density (as expressed by the histogram and obtained using MC with size 25000), for the MLE λ̂ and Wn is Queen. Sample size is n = 24, while λ0 = 0.2. Right panel:
zoom on the right tail. In each plot, we display the functional central curve (dotted line with crosses), the 1st and 3rd functional quartile (two-dash lines).
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The function Kψ(ν, (λ, θ2)) is the c.g.f. of the estimating func-
tion

Kψ(ν, λ̂, θ2) = n−1
n∑

i=1
ln EP(λ0,θ2)

exp(νTψ
(T)
i (λ̂, θ2)), (25)

where ψ
(T)
i (λ, θ2) := ∑T

t=1(T − 1)−1ψi,t(λ, θ2) and ψi,t is as in
(4.1). The c.g.f. Kψ has a role analogous to the one of the c.g.f.
of the U-statistic, that we derived in Section 4. We highlight that
the expected value in Equation (25) is taken w.r.t. the probability
P(λ0,θ2), where λ0 is specified by the null, while the nuisance
parameters are not fixed: the infimum over θ2 takes care of the
nuisance parameters. In our inference procedure, we have that
θ̂n,T = (λ̂, θ̂2)

′ is the solution to
∑n

i=1 ψ
(T)
i (λ, θ2) = 0. Under

the null hypothesis, the test statistic SADn(λ̂) is asymptotically
χ2

1 distributed with a relative error of order O(m−1) in the
normal region.

Appendix C.2 outlines an algorithm (Algorithm 2), which
itemizes the main computational steps.

5.2.2. Numerical Results
Let us work with a SARAR(1,1) model, having no covariates
and known variance σ 2 = 1 and n = 24. It implies that
θ = (λ, ρ)′ and we consider the problem in Equation (23), with
ρ being the nuisance parameter. We set three different values
ρ = 0.25, 0.5, 0.75 to analyze numerically the impact that the
spatial dependence in the innovation term has on SADn. We
study the behavior of the Wald test, as obtained using the first-
order asymptotic theory and making use of the expression of
the asymptotic variance as available in Appendix B. We compare
the Wald test to SADn–to implement (24) we make use of the R
routine nlm. We consider two types of spatial matrix Wn, the
Rook and the Queen, and we set Wn ≡ Mn. Both test statistics
are asymptotically χ2

1 distributed under the null hypothesis.
To compare them in small samples, we first obtain the 95th
and 97.5th quantile of each test statistic; then we compute the
corresponding probability as obtained using the χ2

1 . We display
the results in Table 1. We see that the Wald test has severe size
distortion. For instance, for ρ = 0.25, we observe a relative
error of about 30%, for the quantile of 95%, when Wn is Rook,
while the saddlepoint test entails a relative error of about 1.8%.
Looking at the performance of SADn, we see that it is uniformly
more accurate than the Wald test: considering all cases, we
observe a maximal relative error of about 2%, for the quantile of
95%, when ρ = 0.75 and Wn is Queen; in the same setting, the
Wald test entails a relative error of about 24%. Moreover, the size

Table 1. Wald and SADn test for the problem (23)–spatial dependence in the
presence of a nuisance parameter, in a SARAR(1,1) model–with no covariates and
known variance.

ρ = 0.25 ρ = 0.5 ρ = 0.75

95.00% 97.50% 95.00% 97.50% 95.00% 97.50%

Rook
Wald 66.08% 89.89% 98.33% 99.41% 99.99% 99.99%
SADn 96.71% 97.18% 96.66% 97.18% 95.55% 96.04%

Queen
Wald 72.71% 80.20% 90.48% 98.00% 98.36% 99.22%
SADn 94.79% 96.94% 95.90% 98.20% 96.94% 97.49%

NOTE: The quantiles are obtained using 100 repetitions of each test statistic.

is fairly constant for the different values of ρ: it illustrates that the
test statistic takes care correctly of the nuisance parameter.

6. Empirical Application

Feldstein and Horioka (1980) documented empirically that
domestic saving rate in a country has a positive correlation
with the domestic investment rate. It contrasts with the
understanding that, if capital is perfectly mobile between
countries, most of any incremental saving is invested to get
the highest return regardless of any locations, and that such
correlation should actually vanish. Debarsy and Ertur (2010)
suggested to use spatial modeling since several articles challenge
these findings but under the strong assumption that investment
rates are independent across countries. Such an assumption
might influence the conclusions of applied spatial economics.

In this empirical exercise, we investigate the presence of
spatial autocorrelation in the investment-saving relationship.
We consider investment and saving rates for 24 OECD countries
between 1960 and 2000 (41 years). Because of macroeconomic
reasons (deregulating financial markets), we divide the whole
period into shorter sub-periods: 1960–1970, 1971–1985 and
1986–2000, as advocated by Debarsy and Ertur (2010). Since the
cross-sectional size is only n = 24, the asymptotics may suffer
from size distortion as documented in Section 5. Therefore, we
resort on a saddlepoint test to investigate whether or not there
are inferential issues (coming from finite sample distortions and
nuisance parameters) in the use of the first-order asymptotic
theory. In line with the econometric literature, we specify the
following SARAR(1,1) model for the three sub-periods:

Invnt = λ0Wn Invnt + β0Savnt + cn0 + Ent ,
Ent = ρ0MnEnt + Vnt , t = 1, 2, . . . , T

(26)
where Invnt is the n × 1 vector of investment rates for all coun-
tries and Savnt is the n × 1 vector of saving rates. Each element
vit in Vnt is iid across i and t, having Gaussian distribution with
zero mean and variance σ 2

0 . cn0 is the vector of fixed effects.
We assume Wn = Mn and adopt two different weight matri-

ces as in Debarsy and Ertur (2010). The first one is based on the
inverse distance. Each element ωij in Wn is d−1

ij , where dij is the
arc distance between capitals of countries i and j. The second is
the binary seven nearest neighbors (7NN) weight matrix. More
precisely, ωij=1, if dij ≤ di and i �= j. Otherwise, ωij = 0, where
di is the 7th-order smallest arc-distance between countries i and
j such that each country i has exactly 7 neighbors. Both weight
matrices are row-normalized.

We estimate the parameters using the MLE described in
Section 3. Table 2 gathers the point estimates (and their standard
errors) that agree with the magnitudes found by Debarsy and
Ertur (2010). To investigate the validity of the model (26), we
test for spatial dependence, working on λ = 0 and/or ρ = 0.
Specifically, our aim is to detect if and in which period(s) the
inference yielded by the first-order asymptotic theory differs
from the inference obtained using our saddlepoint test. With
this goal, in Table 3 we provide the p-values for testing (at the
5% level) three different composite hypotheses: in the first row,
we consider the problem of testing for λ = 0; in the second row,
we test for ρ = 0; in the third row, we test for λ = ρ = 0. To
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Table 2. SARAR(1,1) model: Maximum likelihood estimates of parameters β , λ, ρ.

Weight matrix: inverse distance Weight matrix: 7 nearest neighbors

1960–1970 1971–1985 1986–2000 1960–1970 1971–1985 1986–2000

β 0.935(0.05) 0.638(0.04) 0.356(0.07) 0.932(0.05) 0.633(0.04) 0.368(0.07)
λ 0.004(0.10) 0.381(0.11) 0.430(0.30) −0.016(0.09) 0.340(0.10) 0.437(0.18)
ρ −0.305(0.22) 0.334(0.16) 0.222(0.40) −0.219(0.19) 0.258(0.15) 0.025(0.28)

NOTE: Standard errors are between brackets.

Table 3. SARAR(1,1) model: p-values of Saddlepoint (SADn) and Wald (ASY) tests for several composite hypotheses.

Weight matrix: inverse distance Weight matrix: 7 nearest neighbors

1960–1970 1971–1985 1986–2000 1960–1970 1971–1985 1986–2000

λ = 0 SADn 1.0000 0.0096 0.0000 0.9998 0.2248 0.0000
ASY 1.0000 0.0116 0.5679 0.9987 0.0130 0.1123

ρ = 0 SADn 0.1134 0.0024 0.1217 0.3232 0.0403 0.9993
ASY 0.5890 0.2261 0.9578 0.7101 0.3898 0.9998

λ = ρ = 0 SADn 0.1414 0.0000 0.0000 0.2603 0.0000 0.0000
ASY 0.4615 0.0000 0.0000 0.5042 0.0000 0.0000

perform the tests, we consider the routinely applied Wald test (as
obtained using the first-order asymptotic approximation, ASY)
and the saddlepoint test (SADn). In each testing procedure,
we treat the parameters not specified by the null hypothesis
as nuisance parameters. In the SADn test, we take care of the
nuisance as indicated in Equation (24), while in the ASY test we
simply plug-in the MLE estimates for the nuisance parameters—
as it is customary in the econometric software based on the first-
order asymptotic theory.

In the periods 60–70, both ASY and SADn yield the same
inference, for both the considered types of weight matrix, with
conventional significance levels. The other sub-periods display
some discrepancies between the inference obtained via ASY and
via SADn. We do not want to discuss all discrepancies but only
briefly comment on some key differences—we highlights the
corresponding values in Table 3. In the sub-periods 71–85 under
7NN Wn, the saddlepoint test finds no evidence against no
spatial dependence in the investing rates across countries, and
vice-versa for the asymptotic approximation. Moreover, the ASY
test does not find evidence against ρ = 0, while the SADn test
rejects this composite hypothesis. Thus, the SADn test indicates
a spillover through the contemporary shocks between countries.
This spillover goes through the innovations, that is, through the
unexpected part of the model dynamics, a finding not docu-
mentable when one relies on the first-order asymptotic theory.
This results suggests that a test statistic designed to perform well
in small samples and in the presence of nuisance parameters is
able to document spatial dependence in the disturbances Ent .
Some differences are detectable also in the sub-periods 86–00,
under the inverse distance matrix.

Supplementary Material

The online supplementary material includes proofs, lengthy analytical
derivations and additional numerical results for the SAR(1) model. All
the codes and data are available in our Github repository https://github.
com/ChaonanJiang/Sadd_Panel.
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