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ometry. Off-shell worldlines of the particle correspond to subdominant contributions in the

Euclidean conformal block expansion, but these same operators must be included in order

to correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a

complex saddle dominates under certain circumstances; in this case, the CFT correlator is

not given by the Virasoro identity block in any channel, but can be recovered by summing

heavy operators. This effectively converts the conformal block expansion in CFT from a

sum over intermediate states to a sum over channels that mimics the bulk path integral.
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1 Introduction

The AdS/CFT correspondence equates the bulk path integral to the CFT generating func-

tional, ∫
J
DgDφ exp (iSbulk[g, φ]) = Zcft[J ] , (1.1)

where g is the bulk metric and φ denotes all the other bulk fields. Boundary conditions

in the bulk are set by sources J in the CFT. This expression is somewhat schematic non-

perturbatively, since the path integral on the left is difficult to define any other way. It

necessarily includes a sum over off-shell geometries, and off-shell configurations of all the

bulk fields φ.

Nonetheless in the semiclassical gravity limit, both perturbative and non-perturbative

contributions to the gravitational path integral can be calculated by standard methods.

When a single geometric saddlepoint dominates, this becomes ordinary effective field theory

in curved space, and in certain cases with enough supersymmetry, even the sum over

geometric saddles can be performed and matched to CFT [1, 2].

The CFT correlators appearing on the right-hand side of (1.1) are also naturally writ-

ten as sums, not over field configurations but over conformal blocks. For example, the

vacuum correlator G = 〈O1O2O3O4〉 can be decomposed into conformal blocks as

G =
∑

primaries p

〈O1O2‖p‖O3O4〉 (1.2)

where ‖p‖ denotes the projection onto a primary state p and all of its conformal descen-

dants. This sum over blocks must reproduce the bulk path integral, but the map from one
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to the other is remarkably intricate and understood only in certain limits. In perturbation

theory, the mapping from conformal block sums to bulk Witten diagram calculations has

been explored extensively in d dimensions; see for example [3, 4]. A salient feature of this

story is that the bulk calculation is always manifestly crossing invariant, since it involves

a sum over channels. The CFT calculation, of course, is not manifestly crossing invariant,

but crossing-symmetric expansions in the CFT appear to be in one-to-one correspondence

with consistent effective field theories in the bulk.

In 3d gravity, this mapping from boundary conformal blocks to bulk calculations can

be explored even at the non-perturbative level, in certain cases. In situations where the

gravitational backreaction is large, but other interactions are small, the picture that has

emerged is that the full nonlinear gravity answer can be reproduced by the Virasoro iden-

tity block in CFT [5–7]. The identity block in two dimensions includes the contributions of

all operators built from the stress tensor, so this is an obvious guess — the all-orders con-

tribution of multiple stress tensors should reproduce nonlinear interactions of the graviton

— but what makes it useful is that technology from Liouville CFT enables one to calcu-

late interesting correlators in great detail and generality, essentially because these Liouville

CFT techniques only depend on the conformal algebra. Applications include entanglement

entropy [7], thermodynamics [8], black hole correlators [9], the information paradox [10],

and collapsing black holes [11].

The Virasoro identity block is not unique. It depends on a choice of channel, specifying

where to cut the CFT path integral to project onto intermediate states. In all of the

applications mentioned above, the working assumption is that the leading gravity answer

is equal to the Virasoro identity block in the channel where it is largest:

e−Sbulk ≈ max
Γ

∣∣FΓ
0

∣∣2 (1.3)

where FΓ
0 is the Virasoro identity block in the channel Γ. It is squared to account for

left and right movers. Thus at leading order, on the gravity side we have the bulk action,

evaluated on the dominant semiclassical saddle, and in CFT, the identity contribution in

the dominant channel. The approximation (1.3) can be completely justified for the thermal

partition function [8] and certain correlators [12] assuming the CFT has a sufficiently sparse

spectrum, but in general, it is an assumption, to be tested by comparison to the bulk.

What about other contributions to the path integral in the semi-classical limit? A

natural interpretation of (1.3) is that this is the leading term in the schematic relation∑
saddles

e−Sbulk[g] =
∑

Γ

∣∣FΓ
0

∣∣2 , (1.4)

and that individual terms on the left are in one-to-one correspondence with individual

terms on the right. That is, the gravitational path integral in the semiclassical limit is a

sum over channels of the Virasoro identity block, and saddles correspond to channels. This

general idea was first introduced with the ‘black hole Farey tale’ [1, 13], where the thermal

partition function is formulated as a sum over modular images, and has since appeared in

a variety of contexts. For example, it was applied to correlation functions in [14], and in
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perturbation theory, it is automatically implemented by Witten diagrams and by the Mellin

space formulation of conformal correlators [15]. However, aside from supersymmetric or

perturbative examples, it has been difficult to access more than a single leading term in

the sum (1.4). Our goal is to explore (1.4) in a simplified setting where the sum over bulk

configurations is the sum over worldlines of a single massive particle, moving on a fixed

geometry, and the subdominant terms can be probed quantitatively.

The sum (1.4) agrees with the maximum (1.3) when a single, real saddle dominates. It

also concords with the point of view that the gravitational contributions are summarized by

an effective Liouville field [16–19]. On the other hand, it is surprising from a CFT point of

view, where we normally sum operators in a given, fixed channel, rather than summing over

channels. This is justified if, to leading order, the identity operators in various channels

do not overlap when dualized into a single channel.

In previous work on large-c correlators, the difference between (1.3) and (1.4) was

purely a matter of interpretation. The leading semiclassical answer was always dominated

by a single configuration, and there was no way to test the non-perturbatively suppressed

other channels. This will always be the case in Euclidean signature: the bulk action is real,

and to leading order, summing a real exponential is equivalent to taking its maximum. But

having a sum, rather than a maximum, is essential in order to interpret the CFT calculation

as a bulk path integral, and subleading contributions are physically relevant for questions

like late-time behavior [20, 21], bulk reconstruction [22, 23], and extremal CFTs [13].

In this paper, we study the 2-point function of a light probe operator during a non-

equilibrium thermalization process, building on [11]. The state is dual to a collapsing

black hole in AdS3. We find that for general insertions of the probes, the dominant bulk

configuration is a complex worldline of the probe particle, which crosses the collapsing

shell at a complex value of the boundary coordinate. This is interesting because it makes

it possible to distinguish between the maximum (1.3) and the sum (1.4). Interestingly the

CFT reproduces the bulk only if we sum over channels, confirming (1.4). Put differently, the

CFT correlator is not dominated by the Virasoro identity block in any one channel; many

channels have identity blocks with the same magnitude but different phases, and these must

be summed. The sum over channels can be performed by a saddlepoint approximation —

now on the CFT side — which leads us to introduce a ‘complexified OPE channel’ dual to

a corresponding complex saddle in the bulk.1

1.1 Setup and summary

In more detail, we consider a state |V〉 created by a product of a large number of a local

operator insertions at t = 0. Each operator insertion can be interpreted as creating a

highly boosted dust particle in the bulk, so this state is dual to the Vaidya geometry,

which describes a collapsing shell of null, pressureless perfect fluid [11]. In bulk language,

the 2-point function of a probe operator is computed by the worldline path integral of a

1At timelike separation, the bulk worldline is always complex, in the sense that the radial coordinate is

complex at the turning point. The important difference in the Vaidya case is that the crossing point is also

complex in the direction parallel to the boundary, so that the CFT channel also becomes complex.
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O(t1, x1)

O(t2, x2)

(xc, zc(t))

Figure 1. Schematic representation of the setup and main result. In a collapsing black hole, the

boundary conformal block expansion becomes a sum over channels labelled by a boundary point

xc. This corresponds semiclassically to a bulk geodesic crossing the shall of infalling matter at a

point (xc, zc(t)) with zc the radial coordinate. Both in the CFT and in the bulk this crossing point

takes on complex values, signaling that a complex saddle point dominates the bulk path integral,

and no single channel dominates in CFT.

point particle in this background:∫
Dx(τ) eim

∫
dτ ∼ 〈V|O(x1)O(x2)|V〉 (1.5)

where m is the mass of the particle dual to the operator O, and the bulk paths x(τ) are

anchored to x1,2 at the boundary. This path integral is a simple case of (1.1), where the

bulk geometry is fixed, but nontrivial, and away from the collapsing shell, the only matter

in the bulk is a single point particle. It can be further simplified by splitting the wordline

x(τ) into two (or more) segments, before and after it crosses the collapsing shell. This

reduces the bulk path integral to an ordinary integral over the crossing point xc,∫
dxc exp (imL(x1, xc) + imL(xc, x2)) ∼ 〈V|O(x1)O(x2)|V〉 (1.6)

where L is the length of a (potentially complex) geodesic in a Vaidya background. (This

is written for a single crossing point xc, but the generalization to multiple crossings is

straightforward). Note that despite the appearance of geodesic lengths, this still contains

off-shell contributions, due to the integral over xc.
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As we will show, each choice of crossing point xc corresponds to a channel of the

boundary OPE, so we may label these channels Γ(xc). We will show that the off-shell

worldline labelled by xc gives a contribution to the bulk path integral equal to the identity

block in the corresponding CFT channel:

eimL(xc) ≈
∣∣∣FΓ(xc)

0

∣∣∣2 . (1.7)

This off-shell equality, illustrated in figure 1, directly maps the bulk path integral in the

form (1.6) to a sum over channels in the CFT, including subdominant contributions. Per-

forming the sum over CFT channels by a saddlepoint approximation must of course re-

produce the bulk, since it is precisely the same sum. When the saddlepoint is real, the

sum is dominated by a single channel — this was the case in [11], where we considered the

Vaidya geometry with probe operators separated in space or time, but not both. When the

saddlepoint is complex, a large family of channels contributes, and they must be summed

to reproduce the gravity result. This sum over channels, reinterpreted in a fixed channel,

is a sum over heavy operators, so this effectively continuous family of heavy operators is

playing an essential role in reproducing thermalization in the bulk. By summing over chan-

nels, we have assumed that the heavy operators corresponding to the identity propagating

in each channel are independent from each other. This assumption implicitly restricts the

light spectrum and OPE coefficients along the lines of [8, 12].

2 CFT correlators in the Vaidya state

2.1 The state

In CFT, the Vaidya state on the real line is defined by inserting heavy ‘dust’ operators ψ,

offset in imaginary time [11]:

V =

∞∏
k=−∞

ψ(zk, z̄k), zk = k/n− iσ , (2.1)

with 0 < σ � 1, and the state is |V〉 = V|0〉. (Note that we are quantizing on fixed Im z

slices, not radially. Hermitian conjugation acts by reflecting across the real line, so the

operators defining 〈V| are inserted at z∗k = k/n + iσ.) We study this state in the limit of

large central charge c→∞ and a large density of insertions, n→∞. In order to produce

a black hole with finite energy density, the limits are taken with energy/(length×c) held

fixed, or in terms of the scaling dimension, hψ ∼ σc/n.

In this state, we consider the two-point function of a probe operator O,

G(t1, x1|t2, x2) = 〈V|O(t1, x1)O(t2, x2)|V〉 , (2.2)

where the dimension of O satisfies

1� hO � c . (2.3)

(We return to the question of operator ordering below.) All of these limits are designed to

accomplish three things. First, the classical geometry is the Vaidya solution, describing a
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collapsing BTZ black hole. Second, the dual of O is a probe particle, massive enough to

travel on a geodesic but light enough so that its backreaction can be neglected. And third,

the operator dimensions are scaled in a way that enables us to take advantage of a large-c

methods in CFT. In particular, the Virasoro conformal blocks simplify dramatically in the

large-c limit [24, 25]:

F(c, h,∆) ≈ e− c6f(h/c,∆/c) , (2.4)

where h and ∆ are the external and internal dimensions. The semiclassical block f appear-

ing in the exponential can be computed by solving a monodromy problem. As described

in [11], the monodromy method can be implemented even in the limit of an infinite number

of operator insertions, and in the Vaidya state, this renders the calculation tractable as the

background becomes translation invariant.

The state |V〉 can also be defined for the CFT on a circle, but inserting operators

symmetrically around the circle [11]. Here we will focus on the CFT on R for simplicity,

but the calculation is easily generalized to the CFT on S1. Formulas in the latter case are

presented without derivation in appendix A.

2.2 Monodromy prescription for the vacuum block

To illustrate the discussion in the introduction, we will compute the correlator G with

t1 < 0 < t2, using large-c CFT methods. The spatial Fourier transform of this correlator

was computed via bulk methods in [26–28]. Since we study the correlator in the real

space representation our results and their implications are new in the bulk, while our CFT

calculations are entirely new.

Following our notation in [11], the large-c two-point function can be obtained by study-

ing the monodromy properties of the differential equation

χ′′(z) + Tcl(z)χ(z) = 0 (2.5)

where

Tcl ≡ Th + ε Tl (2.6)

is the expectation value of the stress tensor, which we have split into contributions coming

from the heavy insertions defining the Vaidya quench, i.e. the state |V〉, and from the light

insertions coming from the probe operators O whose correlation function we are interested

in. The small quantity ε ≡ 6hO/c, where hO is the holomorphic weight of O. To correctly

define the Vaidya state — dual to a collapsing planar-black hole in AdS3 — we take

Th(z) = −π
2

β2
Θ
(
σ − Im(z)

)
Θ
(
Im(z) + σ

)
(2.7)

with 0 < σ � 1 as above. Since Th(z) is holomorphic only away from the Im z = ±σ lines,

we will need to supplement the normal monodromy procedure with additional ingredients.

We will give a quick review of the procedure in what follows but refer the reader to [11]

for a more in-depth analysis.
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The light stress tensor

Tl(z) =
1

(z − z1)2
+

1

(z − z2)2
− b1
z − z1

− b2
z − z2

(2.8)

has parameters bi which are fixed by imposing certain monodromy conditions on (2.5).

The basic statement of the monodromy method is that once the bi are determined, the

semiclassical block f appearing in (2.4) can be calculated from

∂zif =
6hO
c
bi . (2.9)

This will eventually allow us to obtain the correlator.

Let V = (v1, v2) be a basis of solutions to (2.5) at O(ε0), then at O(ε1) the solutions

can be written as

χ(z) =

(
I + ε

∫ z

F

)
· V (z) (2.10)

where F is a 2× 2 matrix with components

F j
i =

viε
jkvk

v1 v′2 − v2 v′1
Tl (2.11)

where a prime denotes derivation with respect to z and the path used in the integral

in (2.10) will be specified later. We will take z1 outside the strip where Th = 0 and z2

inside the strip where Th 6= 0, as shown in figure 2. Our choice of operator location is

the Euclidean analog of placing them respectively before and after the Vaidya quench. In

the holographic dual, this means we place the insertions respectively before and after the

dust supporting Vaidya is released from the boundary. If we view our CFT procedure as

a Euclidean path integral preparing the Vaidya dual, then the insertion z1 placed in the

region where Th = 0, which upon analytic continuation to Lorentzian signature, captures

the information that the CFT is in its vacuum state before the quench.

A basis of solutions to (2.5) inside and outside the strip are:

Vinside =
(
e
−πz
β , e

πz
β

)
, Voutside = (1, z) . (2.12)

As is explained in [11], we can deal with the discontinuities of Th by using the jump matrix

J(xc) defined as follows:

Vinside(xc) = J(xc)Voutside(xc) , J(xc) =
1

β

(
(π xc + β)e

−πxc
β −πe−

πxc
β

−(π xc − β)e
πxc
β πe

πxc
β

)
. (2.13)

The crossing point xc, see figure 2, labels the path we take in the complex plane to bring

the two operators together in the OPE expansion, hence it is a continuous label for the

OPE channel. We fix the bi by demanding that the monodromy matrix M that takes the

solutions to (2.5) around a loop encircling z1 and z2 and crossing at xc be trivial, that is

M = 1. At first order in ε, this yields the equation

Resz2Finside + J(xc)Resz1FoutsideJ
−1(xc) = 0 . (2.14)

– 7 –
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Figure 2. Monodromy path Γ labelled by the crossing point xc.

This is a matrix equation for the accessory parameters bi. The solution gives the semiclas-

sical block f in the channel Γ(xc) via (2.9):

f =
12hO
c

log

[
β

π
sinh

(
π(z2 − xc)

β

)
− (z1 − xc) cosh

(
π(z2 − xc)

β

)]
. (2.15)

In integrating (2.9), the integration constant is chosen such that f exhibits the correct UV

singularities, and the result (2.15) is given up to an additive constant that is irrelevant

because we will compute only the exponential dependence of the correlator.

The contribution to the correlator from a particular conformal block is a product of

left- and right-movers,

GΓ(z1, z2) ≈ exp
(
− c

6
f(z1, z2)− c

6
f̄(z̄1, z̄2)

)
. (2.16)

The subscript Γ indicates that this is the contribution to the correlator from the vacuum

block in the channel Γ = Γ(xc). Let us now analytically continue to Lorentzian time. In

general, this can be subtle due to the presence of branch cuts, but here we achieve this

simply by performing the following replacements in (2.16):

z1 → x− t1 , z̄1 → x+ t1 , z2 → −t2 , z̄2 → t2 , (2.17)

where we have set x2 = 0 without loss of generality. The analytic continuation of (2.16)

leads to (with ∆ ≡ 2hO)

GΓ(xc)(t1,x|t2) = i−2∆

{[
β

π
sinh

(
π(t2+xc)

β

)
−(t1−(x−xc))cosh

(
π(t2+xc)

β

)]
×
[
β

π
sinh

(
π(t2−xc)

β

)
−(t1+(x−xc))cosh

(
π(t2−xc)

β

)]}−∆

. (2.18)

This is the final answer for the contribution of the vacuum representation, in the channel

Γ(xc), to the correlator (2.2). It is accurate to leading exponential order in 1/c.

– 8 –
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2.3 Computing the correlator

The full 2-point correlator is, in principle, given by the vacuum block (2.18) plus the sum

over heavy primaries in the channel Γ(xc). By crossing, this produces the same answer for

any real value of xc. This holds even when the O’s are inserted in Lorentzian signature,

provided that in regimes where the sum diverges, it is defined by analytic continuation in

z1, z̄1, z2, z̄2. Note, however, that the label xc is a choice of channel, not the coordinate

of any operator insertion, so even if the operators are inserted at Lorentzian points, xc is

always real and fixed in the usual formulation of the conformal block expansion.

As discussed in the introduction, to reproduce gravity in Euclidean signature, we would

choose xc as the channel where the identity contribution is maximized. In this dominant

channel, the full gravity answer is reproduced by the identity block, and heavy operators

are suppressed. This procedure, however, fails in Lorentzian signature, because for real

(x, t1, t2), the right-hand side of (2.18) is an unbounded function of xc — it diverges at

one or more points along the real-xc line. As we will demonstrate in section 3, the gravity

answer is finite except at the expected lightcone singularity.

The resolution of this puzzle is that heavy operators in the conformal block expansion

must either cancel, or contribute significantly, in these Lorentzian kinematics. We will show

that both possibilities are realized. When the heavy operators cancel, the gravity result

is reproduced by a channel Γ(xc) that extremizes, rather than maximizes, the identity

contribution. When the heavy operators become important, they serve to effectively shift

the value of xc into the complex plane.

The first step is to replace the conformal block expansion by a sum over channels:2

G =
∑

primary Op

∣∣∣FΓ(xc)
p

∣∣∣2
≈
∫ ∞
−∞

dxc

∣∣∣FΓ(xc)
0

∣∣∣2 (2.19)

where
∣∣∣FΓ(xc)

0

∣∣∣2 ≈ GΓ(xc)(t1, x|t2) is given in (2.18) at leading order in 1/c. That is, instead

of summing over all operators in a fixed channel, we will sum the identity block over all

channels. This makes precise the schematic equation (1.4) discussed in the introduction,

adapted to the present context. In making this replacement, we are assuming that (i) other

heavy operators in the theory, which do not correspond to the identity in any channel,

are suppressed; and (ii), there is no overlap of the identity in different channels, so that

we are not overcounting heavy operators. The first assumption is plausible in a theory

with a large gap in operator dimensions above the identity, as in holographic theories. The

second assumption is certainly true for any two channels: the identity block in one channel,

when reinterpreted in another channel, only has very heavy contributions (in holographic

language, above the black hole threshold) [29]. It is less clear for an infinite sum of channels

2While the integrand in (2.19) may appear to be real, by |F0|2 we simply mean a product over left and

right movers |F0|2 = F0F̄0. In Lorentzian signature this product is not real due to z̄i 6= z∗i . See e.g. (2.17)

and (2.18).
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but we will assume that it is true, and view the match with gravity as strong evidence in

favor of this proposal. This is similar in spirit to [14].

Performing the integral (2.19) requires an iε-prescription. This will ensure that the

integral is finite, by moving any would-be divergences of the integrand (2.18) off the real

xc axis. The specific choice of iε-prescription also fixes the time ordering of the resulting

correlation function (see section 3 of [30] for a review). Essentially, the ordering in Eu-

clidean time becomes the ordering of operators upon evolving to timelike separation. We

will consider the ordering

G = 〈V†O(t2)V O(t1, x)〉 . (2.20)

This is the choice most amenable to the monodromy prescription, since it corresponds

to analytic continuation of operators inserted as shown in figure 2. In the Lorentzian

expression (2.19), the ordering (2.20) is achieved by sending t1 → t1 + iε.

Although it is an integral over the real line, the resulting saddlepoint can of course land

at a complex value of xc. This corresponds, in practice, to allowing complexified channels

in the conformal block expansion, and evaluating the identity block at the extremum rather

than the maximum. When the extremal channel has complex xc, it means physically that

there is no actual OPE channel where the identity operator dominates — heavy operators

contribute at leading order in any particular channel, but in such a way as to simply shift

xc off the real axis.

We will discuss the subtleties associated with this extremization shortly. The extrem-

ization condition means we choose an xc that solves:

πcoth

(
π (t2 − xc)

β

)
− β

t1 + (x− xc)
= πcoth

(
π (t2 + xc)

β

)
− β

t1 − (x− xc)
. (2.21)

This equation can have zero, one or several real solutions for xc. We will denote solutions

(real or complex) to (2.21) by x?c . Before we discuss the various possibilities, let us first

verify that a solution to (2.21) when x = 0 is simply x?c = 0, reproducing the result obtained

in [11, 31]:

G(t1, x = 0|t2) ≈ i−2∆

(
β

π
sinh

(
π t2
β

)
− t1 cosh

(
π t2
β

))−2∆

· (2.22)

When x 6= 0, and if there are several solutions to (2.21), we define a procedure, outlined

in the next section, for selecting the correct x?c that matches the integral (2.19) given the

iε-prescription described above. The resulting value for the correlator is then obtained by

plugging xc = x?c in the right-hand side of (2.18) and we denote the result by

G?(t1, x|t2) ≡ GΓ(x?c)(t1, x|t2) . (2.23)

2.4 Saddle point analysis

The last step is to find the saddlepoint x?c for a generic Lorentzian configuration of (x, t1, t2).

An analytic solution to (2.21) is beyond reach. Instead we can express G?(t1, x|t2) as a

parametric function of xc by solving (2.21) for t2:

t2 =
β

2π
cosh−1

[
cosh

(
2πxc
β

)
− π

β

t21 − (x− xc)2

x− xc
sinh

(
2πxc
β

)]
. (2.24)
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Figure 3. Lines where solutions to the critical equation (2.21) merge with the real-xc axis. The

solid blue line is the lightcone of O(t1, x) defined by −(t2 − t1)2 + x2 = 0. The dashed orange

line is a mirrored light cone defined by −(t2 + t1)2 + x2 = 0. The dotted green line is obtained

by evaluating (2.24) at xc = y? with y? defined as the solution to (2.25). The horizontal red line

defines the moment of the quench t2 = 0.

We now need to determine the xc saddle parametrizing t2. In general, there are multiple

saddles. Rather than attempting a detailed analysis of the function in the complex plane,

we simply pick the saddle that agrees with numerical integration of (2.19). The details

depend on whether the initial separation at t2 = 0 is spacelike or timelike, so we will

describe these separately.

Regardless of the location of the insertion O(t1, x), equation (2.24) indicates that for

t2 = 0 there always exists a saddle at x?c = 0. By comparing with the integral (2.19), and

given our choice of iε-prescription, we found that the relevant saddle at t2 = 0 is always

given by x?c = 0. This corresponds to sitting at the saddle point x?c = 0 anywhere along

the horizontal red lines in figure 3.

As we increase t2, the saddle will generically move away from x?c = 0 along the real-xc
axis until the operator O(t2) crosses any one of the three curves depicted in figure 3. The

solid blue curve is the lightcone of O(t1, x) defined by −(t2 − t1)2 + x2 = 0. The dashed

orange curve is a “mirrored” lightcone defined by −(t2 + t1)2 + x2 = 0. The dotted green

curve is found by evaluating (2.24) at xc = y? with y? a solution to:

tanh

(
2πy?
β

)
+

2π

β
(x− y?) = 0 . (2.25)

We will define this time as tc ≡ t2(xc = y?).

The initial configuration at t2 = 0, specifically whether the operators are initially

timelike or spacelike separated, determines which of these lines is crossed first, if at all, as

t2 is increased. After crossing any one of these three lines, the dominant x?c saddle may

move off the real axis into the complex plane or vice-versa. We now proceed to describe

the relevant saddles in detail.

The case x = 0. Let us now revisit the case x = 0 for which the solution x?c = 0 is

always an exact saddle. In [11, 31] it was assumed that this x?c = 0 solution is dominant

for all configurations t1 < 0 < t2. We will show that this is not necessarily the case for the

ordering (2.20).
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t1 -t1

Re xc

Im
x c

t2< tc

t1 -t1

Re xc

Im
x c

tc< t2 < -t1

t1 -t1

Re xc

Im
x c

-t1 < t2

Figure 4. Saddle point solutions to (2.21) for x = 0 and fixed t1 < 0. As t2 increases from zero the

number of real solutions goes from three to five to one. Arrows indicate the direction of movement

of the saddles for increasing t2.

Let us first describe the saddle points in detail. When x = 0 the solution to (2.25)

occurs at y? = 0 and hence the operator O(t2) crosses the dotted green curve of figure 3 at

t2 = tc =
β

2π
cosh−1

[
1 +

1

2

(
2πt1
β

)2
]
< −t1 . (2.26)

Notice that, as t2 is increased from zero, the dotted green curve is crossed before the

“mirrored” light cone at t2 = −t1. For t2 < tc there exist three real solutions to (2.21),

including the dominant solution x?c = 0. As t2 is increased towards t2 = tc, the x?c = 0

saddle collides with two complex solutions and becomes triply degenerate. As t2 continues

to increase for tc < t2 < −t1 there are five real solutions to (2.21): the three original

real critical points and the two formerly complex solutions that move away from xc = 0

along both the positive or negative real-xc axis. Finally when O(t2) crosses the “mirrored”

lightcone at t2 = −t1, pairs of solutions merge and the three real solutions are: x?c = 0

and x?c = ±t1. For t2 > −t1 the additional real solutions move into the complex xc plane

leaving x?c = 0 as the only real solution. We depict this in pictures in figure 4.

Which of these saddles is picked out by the integral (2.19) given our iε procedure? It

turns out that it is given by x?c = 0 for 0 < t2 < tc, then it moves along the negative real-xc
axis for tc < t2 < |t1| until two real solutions merge at xc = t1 when O(t2) crosses the

mirrored lightcone of figure 3, then the solution moves into the complex plane for |t1| < t2.

We will see that this story is basically unchanged for x > 0 so long as the initial

configuration is initially timelike separated, i.e. x2 − t21 < 0.

Initially timelike separated: x2 − t21 < 0. For 0 < x < −t1, the story is analogous

to the strict x = 0 case. However, for x 6= 0, the solution x?c = 0 is only exact when

t2 = 0. As t2 is increased, this solution moves along the negative real-xc axis until it

collides with another real saddle. This happens when O(t2) crosses the mirrored lightcone

at t2 = |x + t1|, upon which both of these solutions become complex. Unlike the strict

x = 0 case, the original x?c = 0 solution does not collide with the complex saddles that

exist in the range 0 < t2 < min{tc, x − t1}. These instead merge with the real-xc line at

xc = min{y?, x−t1}. As t2 continues to increase, one saddle moves left towards xc = x while

– 12 –
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Figure 5. Saddle point solutions to (2.21) for 0 < x < −t1 and fixed t1 < 0. We have picked a

configuration where |x+ t1| < tc < |x− t1| however the story is similar for any possible ordering.

the other solution merges with yet another real saddle once O(t2) crosses max{tc, x − t1}
corresponding to either the mirrored lightcone t2 = |x− t1| or the t2 = tc curve, whichever

comes first as depicted in firgure 3. The motion of these saddles as t2 is increased with x

and t1 fixed is presented in figure 5. The strict x = 0 case described in the previous section

can be thought of as a degenerate limit of this discussion wherein y? = x = 0. This implies

that some of the special points in figure 5 collapse onto the origin.

The relevant saddle that matches onto our integral is the one that starts at x?c = 0

and moves left until it collides with another saddle and then moves into the complex plane.

Hence when plotting the correlation function for insertions which are timelike separated at

t2 = 0 we will make parametric plots of G?(t1, x|t2) with parameter x?c following a contour

as in the left plot of figure 7.

Initially spacelike separated: x2−t21 > 0. For −t1 < x we encounter a slightly differ-

ent scenario. Here the x?c = 0 solution is again exact for t2 = 0, however it now moves to the

right as we increase t2. Once O(t2) crosses the lightcone of O(t1, x) this saddle collides with

another and they both move into the complex xc plane. These saddles merge with the real-

xc axis at xc = min{x−t1, y?} corresponding to t2 = min{x−t1, tc}. Either case is possible

as shown in figure 3. Once this happens one of the saddles moves towards xc = x while the

other moves towards xc = max{x− t1, y?}. This signals another collision of saddles where

both again become complex for max{x− t1, tc} < t2. We depict this in pictures in figure 6.

Again our integral procedure picks out the x?c = 0 saddle at early times, which becomes

complex after the lightcone singularity. This solution then becomes real and once it merges

with its complex conjugate, then moves left or right along the real axis as t2 →∞ (which

– 13 –
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x+t1<t2< tc
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Re xc

Im
x c
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0 x+t1 x-t1y*x

Re xc

Im
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Figure 6. Saddle point solutions to (2.21) for −t1 < x. We have picked a configuration where

tc < x− t1, however the story is exactly the same for x− t1 < tc with their rolls reversed.

direction is not important for our purposes). An example of this contour is depicted in the

right hand figure of 7.

After plotting some example correlation functions in the next section, we will proceed

to show that the bulk computation of the same correlator, via a Witten diagram, picks out

the exact same complex saddles once we specify the correct iε procedure, this time in the

bulk. These complex saddles are not mysterious from the bulk perspective, as the Witten

diagram involves integrating over a bulk point. However, without (2.19) we would have no

way of interpreting them on the CFT side.

2.5 Plots

We have analyzed how to represent G?(t1, x|t2) as a parametric function along a complex

x?c contour. These contours are depicted in figure 7 and we plot a few examples of the

correlation function in figure 8. The correlation function so computed exhibits all expected

features, including the lightcone singularity for t2 = x+ t1 > 0, as well as the exponential

decay at late times.3 In our plots we distinguish between the portions where x?c is complex

versus purely real. Note that, as displayed, the correlation function away from the lightcone

singularity is both continuous and smooth, giving further evidence that we have chosen the

correct saddles.

3We note that for the CFT on R, the exponential decay is not in contradiction with unitarity as it would

be for the CFT on S1 where it would signify information loss at leading order in the 1/c expansion [11].
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Figure 7. Motion of saddlepoints in the complex-xc plane. The dashed red curve is the saddlepoint

x?c(t2), parameterized by real t2 ∈ [0,∞], that solves (2.24). The solid curves are contours of

constant Re t2(xc) evaluated on the r.h.s. of (2.24) and the dashed curves have Im t2(xc) = 0. Left:

insertions initially timelike separated at t2 = 0 with β = 1, x = 0.6, t1 = −0.8. The saddlepoint

starts at the lower right at t2 = 0, and moves to the left as t2 increases. Right: insertions initially

spacelike separated at t2 = 0 with β = 1, x = 0.6, t1 = −0.4. The saddlepoint starts at the origin

at t2 = 0, and moves initially to the right as t2 increases.
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Figure 8. Left: two-point function for insertions initially spacelike separated at t2 = 0 with

β = 1, x = 0.8, t1 = −0.2 and ∆ = 3. The divergence is the expected lightcone singularity at

t2 = x+t1 = 0.6 . Right: two-point function for insertions initially timelike separated at t2 = 0 with

β = 1, x = 0.8, t1 = −1 and ∆ = 3. The solid blue parts of the curves represent configurations with

purely real x?c . The orange dashed sections of the curves represent configurations with complex x?c .

3 Bulk calculation

We now proceed to show that our choice of complex x?c has a precise analog in the holo-

graphic calculation, leading to a match between correlators on both sides of the duality. We

will calculate the same correlation function as in the previous section, but this time by eval-

uating a Witten diagram in planar-AdS3-Vaidya. The Vaidya metric for an infinitesimally

thin shell reads

ds2 =
`2

z2

(
−F (z, v)dv2 − 2dvdz + dx2

)
, F (z, v) ≡ 1−Θ(v)

(
2πz

β

)2

, (3.1)
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and describes a simple black hole collapse geometry, obtained by gluing vacuum AdS3 to

BTZ along the null surface v = 0. To go back to more standard coordinates in each patch

of the spacetime we substitute

v =

t− z , v < 0

t− β
2π tanh−1

(
2πz
β

)
, v > 0 .

(3.2)

To obtain G(t1, x1|t2, x2) with t1 < 0 < t2 and (ti, xi) boundary points, we will evaluate the

leading Witten diagram. This leading diagram starts at (t1, x1, z = 0), gets propagated to

the null shell using the retarded boundary-to-bulk planar AdS3 propagator, and then from

the null shell back to the boundary at (t2, x2, z = 0) using the retarded bulk-to-boundary

planar BTZ propagator. This configuration is depicted in figure 1.

The vacuum AdS3 retarded bulk-to-bulk propagator for a scalar of dimension ∆ satis-

fies (
−� +

∆(∆− 2)

`2

)
Gr(x, x′) =

δ(x− x′)√−g , (3.3)

and vanishes for t′ < t. By symmetry it must be a function of the chordal distance:

uAdS(x, x′) ≡ −(t− t′)2 + (x− x′)2 + z2 + z′2

2z z′
, (3.4)

and must vanish as z∆ if z → 0. This implies

GAdS
r = Θ

(
t′ − t

)
u−∆

AdS 2F1

(
∆ + 1

2
,

∆

2
,∆, u−2

AdS

)
(3.5)

up to an overall normalization and inclusion of iε’s. We can extract the boundary-to-Bulk

and Bulk-to-boundary propagators using the peeling method (or from Green’s theorem):

GAdS
bB ≡ lim

z→0
(2 z)−∆GAdS

r (x, x′) = Θ
(
t′ − t

)( z′

−(t− t′)2 + (x− x′)2 + z′2

)∆

, (3.6)

GAdS
Bb ≡ lim

z′→0
(2 z′)−∆GAdS

r (x, x′) = Θ
(
t′ − t

)( z

−(t− t′)2 + (x− x′)2 + z2

)∆

. (3.7)

The BTZ analog of these propagators are obtained by starting with (3.5) and replacing

uAdS by uBTZ in the right hand side of (3.5), where

uBTZ ≡
cosh

(
2π(x−x′)

β

)
− cosh

(
2π(t−t′)

β

)√(
1−

(
2πz
β

)2
)(

1−
(

2πz′

β

)2
)

(
2πz
β

) (
2πz′

β

) (3.8)

which obeys limβ→∞ uBTZ = uAdS. Now we want to compute:

G(t1, x1|t2, x2) =

∫ ∞
−∞

dxc

∫ ∞
0

dzc
√−g gvµ (3.9)

×
[
GAdS

bB (t1, x1, z1 = 0|xc, zc)
←→
∂µG

BTZ
Bb (xc, zc|t2, x2, z2 = 0)

]
v=0
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where (xc, zc) is a point on the shell located at v = 0 and f
←→
∂µg ≡ f∂µg − (∂µf)g. This

formula can be proven using Green’s identities, the basic idea being that we can think of

half of the Vaidya spacetime as the BTZ spacetime with a boundary at v = 0. An initial

condition slightly before the shockwave gets propagated into the BTZ spacetime using a

modified version of the above equation, and we treat the AdS propagator as that initial

condition. The evaluation at v = 0 means that we take v → 0− for the AdS propagator

and v → 0+ for the BTZ propagator, using (3.2).

The integral in (3.9) is hard to evaluate in general, but for sufficiently large ∆ it admits

a saddle point approximation. To leading order in ∆

G(t1, x1|t2, x2) ≈ e−∆S? , (3.10)

where

S≡− lim
∆→∞

1

∆
log

(√
−ggvµ

[
GAdS

bB (t1,x1,z1 =0|xc,zc)
←→
∂µG

BTZ
Bb (xc,zc|t2,x2,z2 =0)

]
v=0

)
(3.11)

=−log

 4π2z2
c e

2πxc
β /β

(−t21+(xc−x1)2+2t1zc)

(
β
[
e

4πxc
β +e

4πx2
β

]
−2e

2π(xc+x2)
β

[
βcosh

(
2πt2
β

)
−2πzcsinh

(
2πt2
β

)])


and S? is evaluated on the solution of

∂xcS = ∂zcS = 0 . (3.12)

To check that we have done things correctly, we evaluate (3.10) in the simplest case where

x1 = x2 = 0. There is a saddle point at:4

x?c = 0 , z?c =
t1

1 + πt1
β coth

(
πt2
β

) (3.13)

and we recover

G(t1, t2) ≈ i−2∆

(
β

π
sinh

(
π t2
β

)
− t1 cosh

(
π t2
β

))−2∆

, (3.14)

as expected. This agrees with (2.22) obtained using the CFT monodromy method when

x = 0. Moreover, notice that the saddle point value of xc corresponds precisely to the

saddle point value of the crossing point in the CFT calculation. This is no accident. We

will now show that this holds true at nonzero spatial separation.

By translation invariance, the general result will only depend on x2 − x1, hence from

now on we will set x2 = 0 and x1 = x. It is straightforward to solve ∂zcS = 0 for zc, yielding

z?c =

 t1
t21 − (xc − x)2

+

π
β sinh

(
2π t2
β

)
cosh

(
2π t2
β

)
− cosh

(
2π xc
β

)
−1

. (3.15)

4We note, as in the previous section, that this may not necessarily be the dominant saddle for all (t1, t2),

but still use this as a check of our procedure.
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What remains is to solve

0 =

cosh
(

2πt2
β

)
−
[
cosh

(
2πxc
β

)
− π

β
t21−(x−xc)2

x−xc sinh
(

2πxc
β

)]
cosh

(
2πt2
β

)
− cosh

(
2πxc
β

)


×

cosh
(

2πt2
β

)
−
[
cosh

(
2πxc
β

)
− π

β
t21−(x−xc)2

t1
sinh

(
2πt2
β

)]
cosh

(
2πt2
β

)
−
[
cosh

(
2πxc
β

)
+ π

β
t21−(x−xc)2

t1
sinh

(
2πt2
β

)]
 (3.16)

for xc and evaluate the correlation function

G(t1,x|t2)= i−2∆

 2
(
t21−(xc−x)2

)[
cosh

(
2πt2
β

)
−cosh

(
2πxc
β

)]
[(
t21−(xc−x)2

)
sinh

(
2πt2
β

)
− t1β

π

{
cosh

(
2πt2
β

)
−cosh

(
2πxc
β

)}]2


∆

(3.17)

on this extremal value of xc.

Notice that the saddle point equation in CFT (2.24) automatically satisfies (3.16).

Hence there exists a branch of saddles for which x?c in AdS is in one-to-one correspondence

with x?c in CFT. Using the on-shell condition (2.21) we can massage (3.17) such that its

expression is exactly that of (2.18). This establishes that (3.17) and (2.18) are equal once

evaluated on the on-shell solution x?c solving (2.21) and (3.16).

The bulk integral (3.9) requires an iε-prescription to make it finite and well-defined.

This prescription picks out one of the saddles of (3.16), and we have shown that one

branch of these saddles is in one-to-one correspondence with saddles on the CFT side as

described by (2.21), including the complex saddles described in section 2.4. Hence the

saddle point analysis of the bulk Witten diagram calculation matches precisely with the

corresponding analysis of the sum over identity channels of the CFT, confirming the sum

prescription (2.19).

We conclude by emphasizing once more that the complexification of x?c is completely

natural from the point of view of the Witten diagram — it implies that no real configuration

dominates the integral (3.9) and that the steepest descent curve moves into the complex

plane. This leads us to take the same intepretation in CFT, this time viewed as a sum over

conformal blocks as in (2.19).
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A CFT on S1

The discussion in the main text applies in the more general case of correlators probing a

Vaidya quench in a large-c CFT on S1. In this appendix we provide the final formulas

without derivation, but the interested reader should find it straightforward to obtain these

results using a combination of the methods found in the main text and in [11].

The correlation function on the circle of radius R = 1 with t1 < 0 < t2 in the Vaidya

quench is:

G(t1,θ|t2) = i−2∆

{[
β

π
cos

(
t1−(θ−φc)

2

)
sinh

(
π(t2+φc)

β

)
−2sin

(
t1−(θ−φc)

2

)
cosh

(
π(t2+φc)

β

)]

×
[
β

π
cos

(
t1+(θ−φc)

2

)
sinh

(
π(t2−φc)

β

)
−2sin

(
t1+(θ−φc)

2

)
cosh

(
π(t2−φc)

β

)]}−∆

, (A.1)

with φc determined by the equation:

πcoth

(
π(t2−φc)

β

)
−β

2
cot

(
t1+(θ−φc)

2

)
=πcoth

(
π(t2+φc)

β

)
−β

2
cot

(
t1−(θ−φc)

2

)
.

(A.2)

We can solve (A.2) for t2:

t2 =
β

2π
cosh−1

cosh

(
2πφc
β

)
−

4π sin
(
t1+(θ−φc)

2

)
sin
(
t1−(θ−φc)

2

)
β sin(θ − φc)

sinh

(
2πφc
β

) ,
(A.3)

which allows us to plot G?(t1, θ|t2) as a parametric function of φc along a complex contour

where t2 is real and monotonically increasing.
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