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Abstract
We derive the equations for a thin, axisymmetric elastic shell subjected to an
internal active stress giving rise to active tension and moments within the shell.
We discuss the stability of a cylindrical elastic shell and its response to a
localized change in internal active stress. This description is relevant to describe
the cellular actomyosin cortex, a thin shell at the cell surface behaving elastically
at a short timescale and subjected to active internal forces arising from myosin
molecular motor activity. We show that the recent observations of cell defor-
mation following detachment of adherent cells (Maître J-L et al 2012 Science
338 253–6) are well accounted for by this mechanical description. The actin
cortex elastic and bending moduli can be obtained from a quantitative analysis of
cell shapes observed in these experiments. Our approach thus provides a non-
invasive, imaging-based method for the extraction of cellular physical
parameters.
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1. Introduction

Living systems have the ability to generate internal forces from the energy provided by
adenosine triphosphate (ATP) consumption. Inside the cell, the main generator of forces are
molecular motors binding to networks of filaments forming the cytoskeleton. The cellular actin
cortex is one of the essential cytoskeletal structures: it is a thin shell of actin filaments and
molecular motors connected to the cell membrane, playing an essential role in controlling cell
shape [1].

Actin filamentous networks are generally viscoelastic, with elastic properties at short
timescales and viscous properties at long timescales, as the network rearranges and dissipates
stresses. We discuss here the properties of the actin cortex in the limit of short time scales, for
which actin networks behave elastically. For the sake of simplicity, we assume that the network
elastic material properties are isotropic. The actin cortex can then be represented by an active
elastic material, whose constitutive equation for the stress can be written for small deformations
[2]
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such that the stress has two contributions: the first part is an elastic stress arising from the
symmetric part of the deformation gradient αβa , and the second term ζαβ is an internal stress

arising from active processes in the material. The elastic stress depends on the Youngʼs
modulus E and the Poisson ratio ν of the filamentous network. The Poisson ratio has to take
values between −1 and 1

2
for the undeformed material to be stable. The active stress ζαβ arises

from out-of-equilibrium cellular processes consuming ATP. In cellular actin networks, myosin
molecular motors, which hydrolyze ATP and use the released energy to slide actin filaments
with respect to each other, are the key examples of processes that introduce active stresses. The
active stress is introduced in addition to the passive elastic stress and depends on the chemical
potential of ATP hydrolysis Δμ; we refer the reader to [2] for a detailed derivation. In addition,
ζαβ in general has an isotropic and an anisotropic part. The latter reflects local anisotropies in the

material, such as filament ordering, which is characterized by a nematic-order parameter.
In this paper, we consider a thin shell made of an active elastic material, following the

constitutive equation (1). A thin shell has negligible thickness compared to characteristic
transverse-length scales, and is represented in a thin shell theory by a two-dimensional surface.
To reduce the 3D equations for the deformation of the material in the shell to the 2D equations
for the surface shape, assumptions on the deformations occurring in the thin shell cross-section
are required. We follow the hypothesis of the Love–Kirchhoff theory: transverse normal
stresses are negligible, and points on a straight line normal to the surface before deformation are
on a straight line normal to the deformed surface after deformation [3]. Forces acting in the
three-dimensional bulk of the shell give rise to tensions and moments acting on the two-
dimensional shell cross-section. Equation (1) states that the stress within the shell material is the
sum of an elastic and an active stress; therefore, the resulting tensions and moments can also be
separated into elastic and active contributions. Passive elastic shells have been extensively
studied [3, 4], and we focus here on the effects introduced by the active tensions and moments
in the shell. Because these forces act internally in the bulk of the material, they generate
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deformations that are different from those induced by external forces acting on the boundary of
the shell.

In the last section of the paper, we apply this theory to describe cell deformations of
adhering zebrafish embryo cells. We use image analysis to extract geometrical parameters
characterizing the cell deformation. Using a fitting procedure to compare these measurements
with theoretical deformation profiles, we extract the elastic and bending moduli of the cell
cortex, which are key parameters of the cell mechanics. The strength of this method is that it
allows for nonperturbative measurements, where information is obtained by analyzing the
shapes of cells.

The paper is organized as follows. In section 1, force and torque balance equations are
derived for an active elastic shell in the framework of differential geometry. These equations are
then obtained in the special case of an axisymmetric surface. To gain insight into the effect of
active terms, we consider the stability of a cylinder under internal tension and its response to a
localized increase of active tensions or moments. In section 2, we apply this model to the
analysis of the shape of three adhering cells and the cell deformation resulting from the
disruption of the contact between two of the cells. We show that the predicted shapes obtained
with the active shell theory reproduce experimental observations, and we extract from fits of
experimental cell deformations a value for the cortex stretching modulus and cortex thickness.

2. Derivation of shell theory with active tensions and moments

2.1. Tensions, moments, and force and torque balance

We start by deriving constitutive equations for the tensions and moments within an active
elastic shell, following the assumptions detailed in the introduction. We use notations from
differential geometry, with lower indices denoting covariant coordinates and upper indices
denoting contravariant coordinates. Indices can be raised or lowered by contraction with the
surface metric tensor g defined in equation (A.2). We denote with indices (i, j) the coordinates
on the shell surface and with greek letters α β γ( , , ) the 3D coordinates. Partial derivatives are
denoted ∂i and covariant derivatives are denoted i . We consider a two-dimensional surface

parametrized by two coordinates s sX( , )1 2 (figure 1(A)). The two local tangent vectors are
denoted e1 and e2, the normal vector to the surface is n, g

ij
is the metric tensor, and Cij is the

curvature tensor (appendix A).
The surface is assumed to be subjected to internal tensions and moments. Considering a

curve drawn on the surface sX( ) with local tangent vector τ = ∂ sX( )s and normal vector
τν = ×n , the force f and torque Γ acting on a section of the curve in between s and +s ds is

related to the tension and moments t and m by

ν νΓ= =ds t dsf m, (2)i
i

i
i

with | |νds the length of the section (figure 1(B)). Decomposing t i and mi in to tangential and
normal components yields the definition of the tension and moment tensors

= + = +t t t m me n m e n, (3)i ij
j n

i i ij
j n

i

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

3



With these definitions, force balance on the surface X reads [5]

 σ σ− = −t C t (4)i
ij
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 ϵ+ + =m C m t 0 (7)i n
i

ij
ij

ij
ij

with ϵij the Levi-Civita tensor defined such that ϵ ϵ= = 011 22 and ϵ ϵ= − = g12 21 (appendix A).

These equations correspond, respectively, to force balance parallel and normal to the local plane
tangent to the surface, and moment balance parallel and normal to the local tangent plane. σ n

out and
σ n

in are the external stresses acting on the shell from the medium inside and outside the shell, and
we assume that no external torque density acts on the surface. In this paper, we consider physical
situations where ti

j is a symmetric tensor and where mij is the product of a symmetric tensor with

the Levi-Civita tensor (appendix B).
We now consider a thin layer of material whose constitutive equation is given by equation

(1), and derive the tensions and moments in the thin shell. We assume that the thin shell has a
thickness h, and z denotes the transverse coordinate going across the z direction in the shell,
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Figure 1. Notations for physical quantities associated with the elastic shell. (A) The
shell is represented by a surface denoted by s sX ( , )1 2 , with tangent vectors e1, e2 and
normal vector n, deformed into a new surface ′ = +s s s s s sX X u( , ) ( , ) ( , )1 2 1 2 1 2 . (B)
Forces and moments acting in the shell: a tension tensor t and a moment tensor m are
introduced such that the force acting on a segment of the shell with length ds normal to
ν is given by νds ti

i, and the torque acting on the segment is given by νds mi
i. (C)

Schematic illustrating how stresses acting within the shell result in tensions and
moments acting along the thin shell surface.



with z = 0 in the middle of the shell. Tensions and moments are obtained by integrating the
force and torques acting on an infinitesimal cross-section of the shell of length ds and normal
vector ν (figure 1(C)):

∫ ∫σ σν ν ν ν= = ×
− −

( )t dz z dz zm r( ), (8)i
i

h

h

i
i

i
i

h

h

i
i

2

2

2

2

where r is a vector spanning the shell cross-section and ν z( ) is the local vector on the cross-
section at position z, with ν ν=(0) .

Because the total stress acting inside the shell has contributions from the elastic and active
stresses (equation (1)), the tensions and moments are also the sums of the elastic tensions and
moments te and me and the active tensions and moments ta and ma:

= +t t t (9)e a

= +m m m . (10)e a

To obtain the expression of the elastic tensions and moments, X is defined to be the
reference surface, i.e., the surface configuration in which elastic stresses exerted in the shell
vanish. The elastic tensions and moments are then obtained by writing that the surface X is
deformed to a new surface = +′ s sX X u( , )1 2 , where u is the vector of deformation of the shell
(figure 1(A)). To first order in the deformation u, the surface ′X has a modified metric tensor

≃ +′g g u2
ij ij ij, where = · ∂ + · ∂u e u e u( )ij i j j i

1

2
is the 2D strain of the surface X, and a modified

curvature tensor ≃ +′C C ci
j

i
j

i
j. Note that ci

j is defined as the difference of the curvature tensors
in mixed coordinates, and in general, ≠ +′C C cij ij ij.

To obtain the 3D strain of the shell from the expression of uij and cij, we follow the Love–

Kirchhoff approximation for thin shells [3]: the surface X is defined to be the middle surface of
the shell, points on normals of the initial surface lie on normals to the deformed surface after
deformation, and the transverse normal stresses σiz are negligible, because the shell is in contact
with a viscous fluid that, at steady state, is at rest. As a consequence, for thin shells, internal
shear stresses acting parallel to the surface of the shell are small compared to internal stresses
that compress or extend the mean surface [6].

With these assumptions, the 3D deformation in the shell is given by ϵ = −u zcij ij ij. From

this expression, the elastic tensions and moments can be obtained using the derivation detailed
in appendix B:

ν ν= − +( )( )t S u u g2 1 (11)
ij ij k

k

ije

ν ν δ ϵ= − − +( )( )m B c c2 1 (12)
ij i

k
m
m

i
k

kje

with =
ν−

S Eh

2(1 )2 the stretching modulus of the shell and =
ν−

B Eh

24(1 )

3

2 its bending modulus.

We now proceed to obtain the active contribution to tensions and moments ta and ma.
These quantities will, in general, depend on the profile of active stress within the shell. We
assume here that the shell is subjected to the active stress

ζ ζ δ= −αβ αβ α β( )( )z n n (13)a
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with αn the components of the vector normal to the surface so that the active stress is assumed to
act along the directions parallel to the shell, both in the reference and deformed configuration. In
the cell cortex, such a stress distribution can be generated, for instance, by filaments oriented
parallel to the surface of the cell [7]. ζ z( )a is the active stress profile perpendicular to the
midsurface of the shell. Tensions depend on the integral of the stress profile along the cross-

section ∫ ζdz z( )a , while moments depend on the integral ∫ ζdzz z( )a . For simplicity, we assume

here that the stress profile is linear within the shell, such that the active stress profile can be

written ζ ζ ζ≃ + ∂
=

z z( ) (0) z za a 0
. This expression can also be seen as an expansion to first order

in z of the active stress profile. With this assumption, we obtain the following tension and
moment tensors:

=t t g (14)
ij ija a

ϵ=m m (15)
ij ija a

with ζ=t h(0)a a the resultant active tension across the shell and ζ= ∂
=

m h
z

z
a 12 a

0

3

the resultant

moment. Active tensions are, therefore, associated with average active stresses in the shell,
while active moments are associated with variations of active stress across the height of the
shell. With the earlier simplification, the active tension and moment tensors take a remarkably
simple form, with the tension tensor being proportional to the metric and the moment tensor
proportional to the Levi-Civita tensor, with m

ija antisymmetric.
With the specification of boundary conditions, the equations for the shape of an elastic

shell subjected to active tensions and moments can be obtained from the set of equations (4)–(7)
and (11)–(14).

2.2. Axisymmetric active shell

2.2.1. General equations. We now turn to the case of an axisymmetric active shell. The shape
of the surface is set by specifying the generating curve r s z s( ( ), ( )), such that a point on the
surface ϕsX( , ) has the expression in the Cartesian basis e e e( , , )x y z :

ϕ ϕ ϕ= + +s r s r s z sX e e e( , ) ( ) cos ( ) sin ( ) (16)x y z

so that the surface shape is generated by rotation of the angle ϕ around the axis ez. The vectors
tangential to the shape are given by = ∂e Xs s and = ∂ϕ ϕe X, and the vector normal to the shape

pointing inward is given by = | |
×
×

ϕ

ϕ
n

e e

e e
s

s
. The arc length s is chosen to be an Euclidean coordinate

so that | | =e 1s . The angle formed by es with the plane normal to the z axis is denoted ψ s( )
(figure 2) and is related to r and z through ψ∂ =r scos ( ( ))s and ψ∂ =z ssin ( ( ))s . With these
definitions, the metric and curvature tensors are given by

ψ
ψ= =

∂
⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟( )g

r
C

r

1 0
0

,

0

0
sin . (17)

ij i
j

s

2

The deformation vector u has projections tangential and normal to the initial surface so that
= +u s u su e n( ) ( )s

s
n . The variations after deformation of the metric and curvature tensor read
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ψ
ψ ψ=

∂ − ∂
−
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2 2

Following equation (11), the tangential elastic tensions and moments are given by

ν

ν
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+

+
ϕ
ϕ

ϕ
ϕ

⎛
⎝
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⎞
⎠
⎟⎟t S

u u

u u
2
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0
(20)i

j s
s

s
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ν

ν
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+
ϕ
ϕ

ϕ
ϕ

⎛

⎝
⎜⎜
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c c

c c
2

0

0
(21)i

j s
s

s
se

and the active tensions and moments are given by

= ( )t t 1 0
0 1

(22)i
j

a a

= −( )m m r 0 1
1 0

. (23)aij a

In the previous expression, ma has the dimension of a torque per unit length; the

components of m ija , however (as well as the components of m i
j

a and m ij
a ), do not necessarily

have dimension of a torque per unit length because cylindrical coordinates are not Euclidean.

2.2.2. Deformations away from an undeformed state under homogeneous active tension. We
assume that the shell has a reference state with no elastic stress, but is subjected to an uniform
active tension ta. Such a state would be reached in the long time limit for a viscoelastic fluid
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Figure 2. Geometrical quantities associated with the axisymmetric surface, with
rotational symmetry around the axis z. s is a curvilinear coordinate, r(s) is the distance
of the shell from the z axis, and ψ s( ) is the angle between the local tangent vector es and
the vertical axis.



subjected to active stress. We also assume that the shell is in contact with a fluid exerting a
uniform pressure Pin and Pout, respectively, inside and outside the shell. The shell equilibrium
equation in the undeformed state then reads:

ψ ψ Δ∂ + =⎜ ⎟⎛
⎝

⎞
⎠r

t P
sin

(24)s a

which is the law of Laplace for an axisymmetric surface, with ψ∂ + ψ( )s r

1

2

sin the mean curvature

of the axisymmetric surface. The shapes satisfying this equation are, therefore, Delaunay
surfaces, i.e., surfaces of revolutions with constant mean curvature [8].

A perturbation of this initial shape, whether from a change in boundary conditions, a
change in the pressure of the surrounding fluid Δ Δ δ= +′P P P, a small isotropic change in the
active tension δ= +t t ts

s
a a a, δ= +ϕ

ϕt t ta a a, or in the active moment δ= +ϕm r m m( )sa a a and

δ= − +ϕm r m m( )sa a a , can all lead to a deformation of the surface. A local modification of the

active stress could be caused, for instance, by a change in the concentration of molecular motors
giving rise to active stresses [7, 9]. The force balance in equations (4)–(6) can then be rewritten
for the total stress = +t t te a (ignoring the normal moment balance equation, which is
automatically satisfied for the axisymmetric shell):

 − = −′ ′ ′t C t t (25)i
ij

i
j

n
i

i
ij

e a

 Δ+ = −′ ′ ′ ′t C t P C t (26)i n
i

ij
ij

ij
ij

e a

 − = −′ ′m t m (27)i
ij

n
j

i
ij

e a

where the metric ′g , curvature tensor ′C and covariant derivatives  ′ are now taken on the
deformed surface and are, therefore, functions of the initial surface shape defined by r(s), z(s),
as well as the deformation u. We only consider here small deformations, and equations
(25)–(27) can, therefore, be expanded to linear order in the deformation. For the axisymmetric
case, these equations read

ψ ψ δ∂ + − − ∂ = −∂ϕ
ϕ⎜ ⎟

⎛
⎝

⎞
⎠t

r
t t t t

cos
(28)s s

s
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s
s n

s
se e a

ψ ψ ψ δ ψ ψ δ∂ + + ∂ + = − + − ∂ +ϕ
ϕ

ϕ
ϕ ⎜ ⎟⎛

⎝
⎞
⎠( )t

r
t t

r
t P t c c

r
t

cos sin sin
(29)s n

s
n
s

s s
s

s
s

se e a a

ψ δ
∂ + + − = −

∂ϕ ϕ
ϕ⎛

⎝⎜
⎞
⎠⎟m

r
m

m

r r
t

m

r

cos
2

1
(30)s n

s s
es es

es
2

a

and equation (7) identically vanishes. This system can be reduced to a system of two equations
by eliminating tn

s between equation (29) and (30). Expliciting the elastic tensions and moments
from equations (20) and (21) then gives rise to a differential equation of the form

δ ψδ+ ∂ + ∂ + + ∂ + ∂ + ∂ = −∂ + ∂a u a u a u b u b u b u b u t m (31)s s s s s n s n s n s n s s0 1 2
2

0 1 2
2

3
3

a a
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Figure 3. (A) Stability diagram of an infinite elastic cylinder with surface tension ta for

the Poisson ratio ν = 1

2
. For large positive tension >ta

S3

2
, the cylinder undergoes a

Plateau–Rayleigh instability, while for large negative tension, a buckling instability at
finite wavelength occurs. (B) The Green functions Gts, ϕGt and Gms give the radial

deformation un induced by a localized increase in active tension ϕta , t s
a or active moment

m s
a . With the conventions used in this paper, a positive deformation un corresponds to a

deformation oriented inside the cylinder. The colored curves correspond to different
values of t

S
a (blue: = −0.8t

S
a , red: = 0t

S
a , yellow: = 0.8t

S
a ). (C) 3D representation of the

cylinder deformation induced by a localized increase of active tension or moments.

Shapes are obtained for = 0.05B

R S2 and, respectively, =
ϕ

0.5T

RS
a , = 0.5T

RS
a
s

, = 0.5M

B
a
s

. The

cylinder is represented for − < <4 4s

R
.



δ ψ ψ δ ψ δ

+ ∂ + ∂ + ∂ + + ∂ + ∂ + ∂ + ∂

= − + − ∂ + − ∂ + ∂ϕ
ϕ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( )

c u c u c u c u d u d u d u d u d u

P t c c
r

t
r

m
sin cos

(32)

s s s s s s s n s n s n s n s n

s
s

s s s

0 1 2
2

3
3

0 1 2
2

3
3

4
4

a a
2

a

where the coefficients ai, bi, ci and di are given in appendix E. One can verify that equations (31)
and (32) have total order 6 and their resolution, therefore, requires us to specify six
integration constants. By specifying the moments and forces on the shell boundary,
six additional conditions can, in principle, be obtained; the requirement that the total force
acting on the shell be zero removes one of these boundary conditions, leaving us effectively
with five boundary conditions. Eliminating deformations corresponding to a pure translation of
the shape removes one additional integration constant, allowing us to solve for the deformed
shape.

2.3. Green function for the deformation of a cylinder

To gain physical insight into equations (28)–(30), we now consider the stability and response to
a perturbation of an infinite elastic cylindrical shell. An undeformed infinite cylindrical shell is
under equilibrium for a uniform distribution of active tension ta and active moment ma, but the
equilibrium can be unstable. The stability phase diagram of the shell is plotted in figure 3. The
shell stability depends on the active tension ta, but not on the active moment ma. For large

positive active tension ν> −t S2(1 )a
2 , an instability occurs at large wavelengths, for →q 0.

This instability is related to the Plateau–Rayleigh instability caused by surface tension in fluids
[10], and its threshold does not depend on the bending modulus B, so that an infinitely
long stable cylinder with positive active tension ta is stable only for a large enough elastic
modulus of the shell. For a sufficiently large negative tension, on the other hand ( <t 0a ), a
buckling instability occurs at the critical compressive threshold for buckling of a cylindrical
elastic shell; for small bending modulus, the instability occurs for an active tension

< −t 2 BS

Ra
3

2
. Therefore, the cylindrical shape is stable only for intermediate values of the

active tension ta. The diagram we obtain has similarities with the stability diagram of [11],
where the elasticity of a substrate surrounding the shell plays the role of the shell-stretching
elastic modulus introduced here.

We now consider the deformation of an infinite cylindrical shell triggered by a
perturbation in active tension or active moment in the stable region of the diagram. Because the
equations for the deformations are linear, this procedure allows us to compute the Green
function, giving the shell deformation induced by a local point force. Considering a perturbation
occurring either in the directions s or ϕ:

δ
δ

δ
δ

=
+

+
=

−ϕ ϕ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟t

t t

t t
m R

m

m

0

0

0

0
, (33)j

s

ij

s

ai
a a

a a
a

a

a
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we wish to obtain the radial and tangential deformations in the form

∫ δ δ

δ δ

= − + −

+ − + −

′ ′ ′ ′ ′

′ ′ ′ ′

ϕ
ϕ

ϕ
ϕ

−∞

+∞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤⎦( ) ( ) ( ) ( )

( )u s ds G s s t s G s s t s

G s s m s G s s m s . (34)

n ts
s

t

ms
s

m

a a

a a

Using equations (31)–(32), one can compute the four corresponding Green functions (see
appendix D). One finds that =ϕG 0m : perturbations in the moment acting perpendicularly to the

cylinder do not induce deformations because of the cylindrical symmetry. The other Green
functions are decreasing exponentially with | |− ′s s for all types of perturbations over a
characteristic length, which depends on ta, S, and B. For small tension ta, the deformation decays

with a length scaling as hR , whereas for large tension, it decays with a length proportional to

ν− −
R t

S t2(1 )
a
2

a

, which diverges when the shell becomes unstable to a Plateau–Rayleigh

instability (appendix D).
The magnitude of the perturbation depends on the nature of the perturbation applied. As

one might expect, an increase in the azimuthal tension ϕta induces a radial constriction of the
cylinder. An increased tension along the axis of the cylinder t s

a , however, induces a compression
in the plane and a radial expansion of the shape (figure 3). In the limit of small bending modulus

≪B S R2 and small active tension ≪t Sa , both deformations are of order δ∼u w R h t Sn a ,
with w the width on which the perturbation is applied and δta its magnitude.

A local increase in active moment induces a deformation in the cylinder oriented toward
the outside of the cylinder when >m 0s

a ( <u 0n ); as pointed out earlier, such a moment can be
generated by an asymmetric distribution of stress across the shell, with higher stresses toward

the inside of the shell. The maximum amplitude of the deformation scales as ∼ δu Rn
h

R

m w

B
a ,

with δma the magnitude of the perturbation.
To compare perturbations induced by changes in active tension and active moments, one

can consider the deformation induced by a perturbation of the active stress profile δζ z( )a , with
mean across the shell δζ〈 〉a and variation across the shell Δδζ∼ a. Such a perturbation results in a

variation of active tension δ δζ= 〈 〉t ha a and active moment δ Δδζ=m ha a
2. The deformation

arising from the mean active stress scales like ∼ δζu Rhn
w

S
a , while the deformation arising from

the variation of active stress scales like ∼ Δδζu Rhn
w

S
a . Therefore, the ratio of deformations

scales like Δδζ δζa a and active moments have to be taken into account when the variation of
active stress across the shell becomes comparable to the mean active stress.

3. Active shell theory applied to cell shape changes upon cell–cell contact disruption

In this section, the theory of active axisymmetric shells is applied to the analysis of experiments
performed on zebrafish germ-layer progenitors [13]. Progenitors of the three distinct germ
layers—ectoderm, mesoderm, and endoderm—form during gastrulation, a developmental
process that is conserved among most animals. The formation of distinct layers is thought to
rely on the ability of cells to form cell–cell contacts, which depend on cellsʼ contractile and
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adhesive properties [12, 14]. Using a dual micropipette aspiration assay [15, 16], we have
previously studied the adhesive properties of zebrafish germ-layer progenitors [13]. We use here
a similar experimental setup and investigate cell shape changes during the mechanical
separation of a cell-cell contact. In a cell-triplet assay, three ectoderm progenitors are brought
into contact to form a linear aggregate (figure 5(A) and appendix G). Within five minutes of
contact time, the cell shapes and the contact regions reach a stationary size. The two cells on the
outside of the cell triplets (side cells) are aspirated into two micropipettes, which are positioned
such that the cell triplet is kept under tension (figure 4(A)). One of the two micropipettes is then
pulled away with a velocity of 20 μ −m s 1, such that one of the side cells is detached from the
cell triplet. Within 10 s after detachment, the former contact zone of the middle cell forms a
bulge reaching a steady-state configuration for about one minute (figure 4(B)). The bulge results
from the decrease in cortical tension in the adhesion zone following contact formation:
consistent with this, cortical actin and myosin concentrations are reduced at the contact [1]. To
study the mechanical properties of zebrafish progenitor cells, we decided to apply our
theoretical model to describe the cell shape reached after detachment. We show here that the
active shell theory accounts well for the middle cell deformation following detachment of the
side cell. Comparison of theory with measurements of the cell shape further allows us to extract
key cellular mechanical parameters characterizing the active tension and cell elasticity.

Precise analysis of overall cell shape is difficult in these experiments because isolated
zebrafish progenitors display continuous blebbing at their surface (figure 5(A)). Instead, a few
key geometrical parameters characterizing the shape of cell doublets and cell triplets were
extracted from experiments (figure 4). Two frames per experiment are used for geometrical
measurements: the first one just before the pipette is pulled is used to characterize the shape of
the three adhering cells, and the second frame, after cell detachment and once the bulge has
reached its maximum size, is used to characterize the shape of the bulging cell. Table 1 reports
the mean and standard deviation from measurements on N = 10 experiments.

More specifically, we analyzed the cell shape before and after detachment as follows:

1. Before cell detachment, the cell triplet is considered to be symmetric with respect to the
vertical plane going through the center of the middle cell, and the initial shapes of the three
cells are characterized by the angles formed by the cell interfaces at their junction θs, θi, and
ψ π ψ= −s s( ) ( )i f ; the radii of the cell contact ri; and the volume V of the central cell

(table 1). The mean volume V is determined by measuring the volume of spherical cells
before they are brought into contact.

To describe cell shape before detachment, we assume that all cortical elastic stresses
vanish, since the cell shape is allowed to relax on a timescale longer than the typical actin cortex
viscoelastic timescale, which is expected to be smaller than a minute [1]. The cell interfaces are,
therefore, assumed to be under active homogeneous tension γ

s
, γ

i
and ta (figure 4(A)). Because

the side cells are aspirated in micropipettes, we assume that their surface tension γ
s
can differ

from the surface tension of the central cell ta. Under these assumptions, the interfaces of the side
cells are portions of a sphere, while the middle cell surface is a surface of constant mean
curvature whose shape satisfies equation (24). Using experimental measurements of the cell
volume V, contact angle ψ s( )i , and side contact radius ri (table 1) and solving the shape of
equation (24) for the middle cell, we find a cell shape in good agreement with experimental
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observations for an end-to-end contour length μ= ±L 22.4 1 m and a mean curvature

μ= ± −C 0.089 0.001 m 1. By then writing the force balance equations at the boundaries
between the middle cell and the side cell, we obtain two additional equations:

γ θ ψ γ θ ψ− + + + =t s scos ( ( )) cos ( ( )) 0 (35)
i i i s s ia

γ θ ψ γ θ ψ− + + + =s ssin ( ( )) sin ( ( )) 0. (36)
s s i i i i

By solving the4se two equations for known angles θi, θs and ψ s( )i , a value for the tensions γ /ts a

and γ /ti a can be obtained (table 2). We find that both γ
s
and γ

i
have values larger than the middle

cell cortical tension ta. Micropipette aspirations of the two side cells may indeed result in an
increase in their surface tension, possibly due to the corresponding increase in cell surface area.

2. After detachment of one of the side cells, the bulge grows and reaches a maximum size,
which is stationary for about one minute, after which the bulge retracts and the middle cell
adopts a spherical shape. The geometry of the middle cell cortex is quantified for the
maximum bulge size. The updated angles θ′s , ψ ′ s( )i , θ′i and ψ ′ s( )f , were measured, as well
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Figure 4. Schematic of the cell detachment experiment and hypothesis of the physical
description. In the experiment, three cells are put together with micropipette
manipulation and left to adhere. The cell on the right is detached from the cell triplet
using a micropipette, leading the former contact zone to bulge out of the cell. (A) Before
deformation, all interfaces are considered to have a surface tension arising from active
processes in the cortex. (B) After deformation, the cortex in the body of the middle cell
(blue thick line) is described as an active elastic shell, while the bulge region and
remaining interface, having a less dense actin cortex, are considered surfaces with
homogeneous tension. Red arrows: forces exerted on the actin cortex of the middle cell
body by the surrounding interfaces. Black arrows: forces exerted by the middle cell
body cortical shell on the surrounding interfaces.



as the radial deformation of the point joining the body of the middle cell with the contact
regions Δrb and Δri (table 1). The volume variation in the middle cell body ΔV was
measured from the volume enclosed in the bulge minus the volume of the spherical cap
interface. These values are reported in table 1.

Because the region of the bulge has a reduced cortex and takes a spherical shape after
bulging, we neglect elastic stresses in this region and describe the bulge as surfaces under a
homogeneous tension. We assume that such a description also applies to the aspirated side cell
and its interface with the middle cell, with the same surface tensions as before detachment. With
these assumptions, the cell pressure ′P and surface tension in the bulge γ

b
can be readily

obtained from the cell shapesʼ measurements. For simplicity, we set here the pressure of the
fluid outside the cell P0 to be a pressure of reference, and other pressures are expressed relative
to P0. The pressure in the side cell is equal to γ=′ /P R2s s s and by applying the law of Laplace to
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Figure 5. Experimental and theoretical cell deformation before and after cell
detachment. The theoretical cell shape is calculated using parameters obtained from a
fit to experimental measurements of cell deformation. (A) Cell triplet visualized with
transmission microscopy before and after cell detachment. (B) Initial and final shapes of
the cell triplet obtained using active elastic shell theory. The initial shape of the middle
cell body is obtained by solving equation (24). The two side cells have spherical cap
shapes. The interfaces are flat. The final shape of the middle cell body is obtained by
solving equations (28)–(30) with boundary conditions given in equations (38)–(45). The
side cell, interface, and bulge have a spherical cap shape. The values of geometrical
parameters used to determine these shapes are given in tables 1 and 2.

Table 1. Measurement for the cell shape before (upper table) and after (lower table)
deformation (see figure 4 for the parameters, definitions). Uncertainties are standard
deviation.

V (μm3 ) θs θi ψ π ψ= −s s( ) ( )i f ri (μm)

3316± 360 0.60 ± 0.07 ≃ 0 1.14 ± 0.15 5.1 ± 0.58

θ′s θ′i ψ ′ s( )i ψ ′ s( )f Δrb (μm) Δri (μm) θb

0.65 ± 0.10 0.21 ± 0.11 1.07 ± 0.19 1.90 ± 0.31 −0.18 ± 0.67 −0.05 ± 0.18 1.44 ± 0.16



the interface in between the two remaining cells, the pressure after detachment in the middle cell
is γ= −′ ′ /P P R2s i i. Assuming that the pressure is balanced between the body of the middle cell

and the bulge, one obtains the pressure in the middle cell γ=′ /P R2
b b from the law of Laplace

applied to the bulge. From these two relations, one obtains the pressure balance relation

γ γ γ
= −

R R R

2 2 2
. (37)b

b

s

s

i

i

By measuring Ri, Rb and Rs and using the values of γ /ts a and γ /ti a previously estimated, an
evaluation of the ratio of tension of the bulge to the active tension in the cell can be obtained:
γ = ±/t 0.59 0.92

b a , indicating that the cortical tension in the contact zone is reduced.
The region of the middle cell outside of the bulge and the remaining contact zone, called

thereafter the middle cell body, is described by an active shell theory with vanishing active
moments. A membrane theory alone could not account for the observed cell shape, as the shape
at the transition between the middle cell body and the bulge is not continuous. It is, therefore,
necessary to take into account bending moments and to introduce a normal stress tn

s acting
across the shell to balance the external forces. We assume that the cell shape before detachment
has no elastic stress and is, therefore, the reference shape of the middle cell cortex.

To reproduce the shape observed experimentally, equations (28)–(30) are solved with a
multiple shooting method [18]. Boundary conditions are specified by assuming that no external
torque is applied on the middle cell body, and that forces are balanced between the middle cell
and the contacting areas:

γ θ ψ γ θ ψ+ − + + + =′ ′t s t s s( ) cos ( ( )) cos ( ( )) 0 (38)s
i i i i s s ies a

γ θ ψ γ θ ψ− + + + =′ ′t s s s( ) sin ( ( )) sin ( ( )) 0 (39)n
s

i s s i i i i

=ϕm s( ) 0 (40)s i

γ ψ θ+ − =′t s s( ) sin ( ( ) ) 0 (41)n
s

f b f b

=ϕm s( ) 0 (42)s f

where the three first equations apply on the side of the remaining cell and the two last equations
on the bulge side. Note that the tangential force balance on the bulge

γ ψ θ+ − − =′t s t s( ) cos ( ( ) ) 0 (43)s
f b f bes a

is not included, as it is automatically implied from equation (38) and conservation of the total
force acting on a plane perpendicular to the symmetry axis. Because the solution is invariant by
translation, one can further impose without loss of generality that the shell point in contact with
the remaining cell does not move along the z direction:
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Table 2. Parameter values extracted by fitting the theoretical deformations obtained
from the active shell theory to the experimental measurements. Uncertainties are
standard deviations.

L (μm) C (μ −m 1) γ /ts a γ /ti a γ /tb a /S ta /B ta (μm2)

22.4 ± 1 0.089 ± 0.003 1.61 ± 0.28 1.74± 0.43 0.59± 0.92 27.1 ± 3.5 7.7 ± 1.1



ψ ψ+ =u s s u s s( ) cos ( ) ( ) sin ( ) 0. (44)n
i i

s
i i

Finally, cell volume conservation imposes that the variation of the volume δV enclosed by the
shell,

∫δ π ψ ψ= −′ ′
⎛
⎝⎜

⎞
⎠⎟V ds r rsin sin (45)

s

s
2 2

i

f

∫π ψ ψ ψ ψ ψ ψ ψ= − + ∂ − ∂ + ∂ + ∂
⎛
⎝⎜

⎞
⎠⎟dsr

u

r

u

r
u u u usin 2 cos 2 sin cot cot (46)

s

s s n

s
s

s
n

s
n

s
s2

i

f

obeys δ Δ= −V V , with ΔV the sum of two contributions to volume change: one from the
volume enclosed by the bulge, and the other from the volume change due to the shape change of
the undetached contact area.

From the boundary conditions and the shape before deformation, a solution for the cell
shape can then be obtained by setting γ γ/ / / /S t B t t t, , ,

s ia a a a, γ /tb a and the cell volume V, and

introducing values of θ θ θ′ ′, ,s i b in the boundary conditions (38)–(42). As previously described,
the ratio γ /ts a, γ /ti a, and γ /tb a, the angles θ θ θ′ ′( , , )s i b , and the cell volume V are extracted from the
analysis of the shape before and after deformation. There are, therefore, two free parameters
S t B t( / , / )a a that can be adjusted to fit the remaining experimental measurements. To perform this
fitting procedure, we define an objective function :

Δ Δ δ Δ Δ δ

Δ ψ Δ ψ δ

Δ ψ Δ ψ δ

δ

= − + −

+ −

+ −

+ −

′ ′

′ ′

′ ′

Δ

Δ ψ

Δ ψ

Δ

′

′

⎛
⎝⎜

⎞
⎠⎟

( )
( )
( )

( ) ( )

( )

S

t

B

t
r r r r

s s

s s

P P

, ( )/ ( )/

( cos ( ) cos ( ))/

( cos ( ) cos ( ))/

/ (47)

b
n

b
e

rb i
n

i
e

ri

n
i

e
i s

n
f

e
f s

n e
P

a a

2 2

cos ( )

2

cos ( )

2

2

i

i

evaluating the distance between geometrical quantities characterizing the shape obtained
numerically and the shape observed experimentally, as well as the cellular pressure after
deformation. The parameters with the e superscript correspond to measured data, the variables
with the n superscript are numerical results and depend on S t B t( / , / )a a . The difference between
the experimental value and the numerical result −X X( )n e is weighted by the experimental
standard deviation of X, δX . The normalized intracellular pressure difference ′ /P te

a between the
initial and final shape is obtained as follows: in the initial configuration, the law of Laplace
imposes =′P t C/ 2i

e
a , where C is the mean curvature of the middle cell surface. In the final

configuration, the intracellular pressure is assumed to be balanced in the cell, and the pressure
Pf

e in the middle cell is taken to be equal to the pressure in the bulge γ=′ /P t t R/ 2f
e

b ba a . Numerical

minimization of the objective function  yields = ±/S t 27.1 1.1a and = ±/B t 7.7 0.34a μm2

(uncertainties are standard error of the mean with N = 10 cells; see appendix F for details). To
compare the outcome of the fitting procedure with experiments, we plot in figure 5(B) the
theoretical cell shape obtained for =/S t 27.1a and μ=/B t 7.7 ma

2. The deformation field

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

16



u u( , )n s and tensions and moments corresponding to the final shape of the middle cell body are
given in figure 6.

4. Discussion

The mechanics and deformations of thin elastic plates and shells have been extensively studied
[3, 4, 19–21]. Recently, elastic shell theories have been used to describe the shape of biological
objects, such as the faceting of viruses [22] or the folding of pollen grains [23]. Within the
classical theory of shells, the elastic surface minimizes energy dependent on the magnitude of
the deformations. Motivated by the description of the shape of biological systems that are
working out of equilibrium by using the energy provided by ATP hydrolysis, we are interested
here in describing active shells, taking into account the passive energetic cost of deformations,
but also internal active processes, such that the equilibrium shell configurations do not
necessarily minimize an energy. We have shown in this paper that active tensions and moments
arise in the shell as a consequence of the distribution of active internal stress inside the shell.
When the gradient of active stress across the shell becomes comparable to the mean value of the
active stress, active moments in the shell have to be taken into account.

At the cell surface, the actomyosin cortex is subjected to stresses arising from myosin
activity and other active processes. Precise regulation of these active stresses in space and time
drives most shape changes [24]. For fast deformations, elastic stresses arise within the actin
network [1]. The active elastic shell theory presented here therefore provides a valuable
framework to describe short-timescale, cortex-driven cell deformations. The formation of cell
membrane blebs following laser ablation of the actomyosin cortex in a rounded cell has been
described by representing the cell surface as an elastic shell with active tension [25]. We show
in this paper that the cell deformation following separation of adhering zebrafish embryo cells
can also be understood within the framework of the active shell theory. From the analysis of the
deformation, we have obtained values for the stretching and bending moduli of the cortex,
normalized to the active tension of the cortex. From the ratio of bending to elastic moduli, we
find a prediction for the cortex thickness of around 1.8 μm. This value is within the order of
magnitude of reported values for cortex thickness, although larger values were reported for Hela
and L929 cells [1, 26]. From measurements by atomic force microscopy (AFM) indentation of
the surface tension of zebrafish embryonic cells ( μ= ± −t 66 21 pN ma

1 [27]) we can also obtain

a corresponding 3D elastic bulk modulus ν− = ±E /(1 ) 1900 600 Pa2 whose order of

magnitude is in agreement with previous measurements [25, 28]. Besides, the length B S/
gives an estimate of the range of the deformation induced by a local force, which we find to be
of the order of μ0.53 m. Note that for the sake of simplicity, we have assumed here that active
moments within the cortex can be neglected. It is unclear, however, whether such active
moments are significant in the actomyosin cell cortex. Possibly, an inhomogeneous distribution
of myosin concentration across the thickness of the actin cortex generates active moments.
So far, current imaging resolution has not allowed us to resolve such a profile across the cortex
thickness. Future experiments will have to investigate the consequences of active moments on
cell mechanics.

A proper control of cellular mechanics is essential for cell and tissue morphogenesis
[24, 29]. An important bottleneck in the quantitative investigation of cell mechanics is the
scarcity of experimental methods for measuring cellular physical properties. Properties like
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cortex tension and elasticity are typically assessed by micropipette aspiration, atomic force
microscopy indentation or laser ablation; all of these techniques require direct cell manipulation
and are thus difficult to perform in vivo. The theory presented here provides a less pertubative
way to measure the mechanical properties of the cortex of adhering cells, based on a precise
analysis of cell shape changes upon detachment. The measurement relies on image analysis
alone. The theory presented here can thus serve as a starting point for the development of new
imaging-based approaches to investigate the mechanics of cells during cortex-driven rapid cell
shape changes in vivo, including bleb formation [30] and epithelial contractions [31].

The formalism introduced here could also help understand the deformations of epithelia
during development. In epithelial cells, an actomyosin cytoskeleton is present at the apical and
basal surfaces of the cell, generating active stresses [32, 33]. Apicobasal polarity could give rise to
differences in actomyosin concentration across the cell height, leading to an inhomogeneous

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

18

Figure 6. Deformation field, elastic tensions and moments along the middle cell body. (A)
Tangential and normal contributions of the deformation field as functions of the arc length
s. The functions u s u s( ( ), ( ))n s are obtained by solving equations (28)–(30) with boundary
conditions given in equations (38)–(45). (B) Rescaled elastic tensions as functions of the
arc length s. The functions t s( )s

s and ϕ
ϕt s( ) are obtained from the deformation field using

equation (20). (C) Rescaled elastic moments as functions of the arc length s. The functions
= ϕm s r s m s( ) ( ) ( )s s and = −ϕ ϕ /m m s r s( ) ( )s are obtained from the deformation field using

equation (21). The results are obtained for μ= =/ /S t B t( 27.1, 7.7 m )a a
2 and using the

geometrical parameters given in tables 1 and 2.



distribution of active stresses and, therefore, to active moments acting across the tissue. Apical
constriction, i.e., overactivation of myosin contractility solely on the apical side of epithelial cells,
has, for instance, been associated with tissue bending in Drosophila gastrulation, groove formation
at segment boundaries, or formation of the morphogenetic furrow in eye disc development
[34–37]. In these examples, patterning by genes results in protein activation modifying the cellular
generation of stress in specific regions of the tissue. In physical terms, regions of increased internal
tensions and moments drive deformations of the epithelial surface. As detailed in section 2.3, the
resulting amplitude and length scale of the deformation will depend on the inherent mechanical
properties of the tissue as well as on the magnitude of the perturbation.

More generally, cells and tissue can establish a given shape by regulating the spatial
distribution of active tensions and moments. The Green functions introduced in section 2.3
connect the shape of a thin layer of material to the distribution of stresses generated within it.
Inversion of these Green functions could be used to recover the pattern of stress generated in a
biological shell from its shape, provided that the mechanical parameters of the shell are known.
Furthermore, our calculation of the Green functions predicts the range and shape of the
deformation profile induced by a local increase of active tension or moment. This prediction
could be tested through experiments, allowing us to rapidly increase myosin activity at specific
locations on the cell surface. We have here limited our calculation to deformations of shells
perturbed axisymmetrically; it would be interesting to obtain the response to any spatial
distribution of local perturbation of the active stress and torque.

In this work, active effects have been included by adding an active stress contribution to
the elastic stress (equation (1)). An alternative choice could be to impose an active strain. A
decomposition of the deformation gradient into a growth-induced part and an elastic part has
been proposed in [38–40] to model growth of 2D elastic tissues. It has been shown within this
framework that anisotropic growth can induce structures like curling and crumpling that are
observed in plants.

Finally, although the equations in this paper have been written for an elastic material, it
would be interesting to express similar equations for a material with fluid properties within the
surface. This requires us to keep track of the flow field within the plane, as well as the surface
deformation out of the plane. Constitutive equations can be obtained by replacing the material
deformation u with a velocity vector v and the elastic modulus E with a viscosity η. The surface
shape then evolves according to the equation =d dtX v/ . The expression of force balance,
however, will depend not only on velocities, but also on the out-of-plane surface deformation
un. Such a fluid description would be suited to describe the long-time behavior of the shape of
the cell surface. Performing detachment experiments at different speeds could allow us to
explore the transition between viscous and elastic behaviour of the cortex. Such a complete
description could then be applied to analyze shape changes in processes involving deformations
on multiple timescales, such as cell division and cell motility. It will be interesting to investigate
the effect of active moments in this limit.

Appendix A. Notations of differential geometry and force balance

In this appendix, we give definitions of differential geometries used in the text. We consider a
two-dimensional surface parameterized by two coordinates s sX( , )1 2 . Two tangent vectors and a
normal vector are associated with every point on the surface, according to
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The metric g
ij
and curvature tensor Ci

j associated with X are defined by

= ∂ = −g Ce e n e. , (A.2)
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j

and the derivatives of the basis vectors are given by
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k
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The Levi-Civita antisymmetric tensor has the following definition:

ϵ ϵ= − = −( ) ( )g
g

0 1
1 0

,
1 0 1

1 0
(A.5)ij

ij

and it satisfies the identity

ϵ ϵ δ= − . (A.6)ij
jk

i
k

The Levi-Civita tensor is useful to express vectorial products of the basis vectors:

ϵ× =n e e (A.7)i i
j

j

ϵ× =e e n. (A.8)i j ij

We denote ∂i partial derivatives and i covariant derivative, defined for a vector vi or a

tensor t ,ij by

 Γ= ∂ +v v v (A.9)i
j

i
j

ik
j k

 Γ Γ= ∂ + +t t t t . (A.10)i
jk

i
jk

il
j lk

il
k jl

The projection of a 3D tensor αβT on the surface X defines a surface tensor Tij, such that:

= αβ
α βT T e e (A.11)ij i j

where the contraction with coordinates α and β is performed with the metric of the 3D space.
Finally, force balance of tensions and moments on the surface takes the form [5]

 σ σ= −t (A.12)i
i n n

out in

 = ×tm e (A.13)i
i i

i

where the stress in the surrounding medium inside the surface σin induces a stress σ σ= α
αnn

in in on
the surface and the stress outside the surface σout induces a stress σ σ= α

αnn
out out on the surface,

with the convention that n is pointing inside the surface. We consider here furthermore that no
external torque acts on the surface. Using the decomposition of the external stress
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σ σ σ= +e n (A.14)n ni
i

nn
out out out

σ σ σ= +e n (A.15)n ni
i

nn
in in in

together with the definitions of the tangential tensions and moments in the surface (equation (3))
yield the force balance equation (4–7).

Appendix B. Calculation of tensions and moments acting on the shell

We derive next the constitutive equations for tensions and moments in a thin shell subjected to

an arbitrary stress distribution in the surface σ σ+αβ αβz( ) ( )0 1 (the higher order of the expansion of the

stress in z is neglected). Using the definition in equation (A.11), we consider the result on a shell

cross-section of the projection of the stress on the surface σ σ+ z( ) ( )
ij ij

0 1 . Other transverse

components of the stress are assumed to be negligible. We consider a curve drawn on the
surface sX( ) with local tangent vector τ = ∂ sX( )s and normal vector ν τ= ×n (figure B1).
Considering a cross-section element of the shell spanned by a curvilinear coordinate
− < <Δ Δdss s

2 2
, calculations are done to the lowest order in the length Δs and in the shell

thickness h. One can then derive the metric associated with the surface defined by this cross-
section element. Denoting O the center of the cross-section, a point M on the cross section is

denoted by its coordinates − < <Δ Δdss s

2 2
and − < <zh h

2 2
, according to

τ= + = + +ds z ds ds zOM n e e n (B.1)1
1

2
2

with τ=/ds dsi i. The two tangent vectors and normal vector to the cross-section element in M
are then given by:

τ τ τ= ∂ = −z z COM e( ) (B.2)s
i

i
j

j

∂ =OM n (B.3)z

ν τ ν ντ ϵ ϵ ν ϵ= × = − = +z z z C z Cn e e( ) ( ) . (B.4)i
i
j

j
k

k l
i l

i
j

j
k

k

Using these relations, one can obtain force and torques acting on the cross-section arising
from the stress σ and relate them to the tension and bending moments acting on the shell. The
force on the segment is given by

∫Δ ν Δ ν σ= =
−

s t s dzf e e (B.5)i
i
j

j
h

h
i

i
j

j
/2

/2

where the first equality arises from the definition of the tension tensor (equation (2)) and the
second equality is obtained by a direct calculation of the force to the lowest order in h.
Identification then yields the expression for the tension tensor.

∫ σ σ= ≃
−

t dz h . (B.6)( )
ij

h

h

ij ij
/2

/2
0
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The torque acting on the segment is

∫

∫

∫ ∫

Δ ν Δ ν σ σ

Δ ν ϵ ν ϵ σ σ ϵ

ν Δ σ ϵ ϵ σ ϵ

Γ = = × +

= + +

≃ +

−

−

− −

⎛
⎝⎜

⎛
⎝⎜

⎞
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⎞
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⎛
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⎞
⎠⎟

⎛
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⎞
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⎡
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⎤
⎦⎥

( )s m s dzz z z

s dzz z C z

s dzz dzz C

e n e

e

e (B.7)

( ) ( )

( ) ( )

( ) ( )

i
i
j

j
h

h
i

i
j

i
j

j

h

h
i

k
l k

l
m

m
i

i
j

i
j

j
l

l

i

h

h

i
k

h

h

i
p

p
m

m
l

l
k

k
j

j

/2

/2
0 1

/2

/2
0 1

/2

/2
2 1

/2

/2
2 0

where the first equality arises from the definition of the moment tensor (equation (2)) and the
second equality is obtained by evaluating the torque on the cross-section and further expanding
in lower order in z and h. Identification then yields the expression for the moment tensor

σ ϵ ϵ σ ϵ= +⎡⎣ ⎤⎦m
h

C
12

. (B.8)( ) ( )
ij ik i

m
m
l

l
p

pk j
k

3
1 0

The second term in equation (B.7) can be neglected in the force balance equation compared to
higher-order terms arising from the tension tensor. Therefore, we ignore it in the expressions
given in the text. From the expression for the tensions and moment tensor in equations (B.6)
and (B.7) and the expression for the elastic and active stresses in equations (1) and (13), one
obtains the values for the tensions and bending moments due to elastic stress and active internal
stresses given in equations (11), (12) and (14).

Appendix C. Deformation tensor in Love–Kirchoff theory

In this appendix, we justify the expression for the symmetric deformation tensor within the
Love–Kirchoff approximation, = −a u zcij ij ij. Following deformation of the shell and within

the Love–Kirchoff approximation, a point initially located within the shell on ˜ =s s zX( , , )1 2

+s s zX n( , )1 2 ends up in the new shell on location ˜ = +′ ′ ′s s z s s zX X n( , , ) ( , )1 2 1 2 , with ′n the
normal to the deformed surface ′X . Two points infinitesimally close within the shell are then
separated by a vector, before and after deformation, respectively:
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Figure B1. Notations for the calculations of forces and torques on a segment of the
shell. Tensions and moments are obtained by integrating forces and torques on a shell
cross-section.



= − +ds zds C dzdx e n( ) (C.1)i j
j
i

i

= − +′ ′ ′ ′ds zds C dzdx e n( ) (C.2)i j
j

i
i

with = ∂ = + ∂′ ′e X e ui i i i and = −∂′ ′C n e.i
j

i j. Eliminating the infinitesimal displacements ds dz,i

between equations (C.1) and (C.2), expanding to lower order in z, and neglecting the transverse
deformations ∂ ·u ni allows us to write the deformed vector ′dx as a function of the original
vector dx:

δ≃ · − − + ∂ · + ·′ ′⎡⎣ ⎤⎦z C Cdx dx e u e e dx n n( ) ( ) ( ) . (C.3)i
i
j

i
j

i
j

i
j

j

Thus, within the approximations shown here the tangential part of the material deformation
tensor F defined by =′dx F dxj

i
j i has the expression

δ= − + ∂ ·F zc u e( ) (C.4)i
j

i
j

i
j

i
j

and the symmetric deformation gradient tensor = + −a F F g( )ij ij ji ij

1

2
is given by = −a u zcij ij ij.

Appendix D. Green functions for the deformation of a cylinder

In this appendix, we derive expressions for the Green functions introduced in equation (34),
giving the deformation of a cylinder as a function of a perturbation in active tension or active
moment. We consider a cylinder of radius R, subjected to uniform active tension ta, in
equilibrium with a fluid with pressure in the cylinder Pin and pressure outside the cylinder Pout,
such that the law of Laplace imposes − = /P P t Rin out a . A perturbation of active stresses and
torques applied to the cylinder results in a deformation that we now compute. For a cylinder,

=r s R( ) , =z s s( ) and ψ = πs( )
2
, and the force balance equations (28)–(30) can be combined

with the expression for the tensions and moments (20), (21) and (33) to yield the following
equation for the normal deformation

ν ν
νδ δ δ− ∂ + − ∂ +

+ −
= − − ∂ϕ

⎛
⎝⎜

⎞
⎠⎟BR u Rt

B

R
u

t S

R
u t t R m2

2 2 ( 1)
(D.1)s n a s n n

s
s

s4 2 a
2

a a
2

a

where it was assumed that the pressure difference across the shell does not vary, so that δ =P 0,
and the external tension acting on the shell boundaries is also constant. A change of active
moment δ ϕma does not induce deformations in the cylinder. Introducing the Fourier transform

∫˜ = −u u e dsn n
iqs , ∫δ δ˜ = −t t e dss s iqs

a a , ∫δ δ˜ =ϕ ϕ −t t e dsiqs
a a , ∫δ δ˜ = −m m e dss s iqs

a a and the reduced

variables =g t

S
a and =b B

SR2 ( =b h

12

2

from the definitions of B and S in the main text), the

equation for the radial deformation un takes the form in Fourier space:

δ νδ δ˜
=

˜ − ˜
+

˜ϕu

R
G q

t t

S
G q

R m

B
( ) ( ) (D.2)n

s s

1
a a

2
a
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with

ν ν
=

+ − + − −( )( )( ) ( )( )
G q

b Rq g b Rq g
( )

1

2 2 2 1
(D.3)1 4 2 2

ν ν
=

−

+ − + − −( ( ) )
( )

( ) ( )( )
G q

b Rq

b Rq g b Rq g
( )

2 2 2 1
. (D.4)2

2

4 2 2

When the denominator of G q( )1 and G q( )2 is negative for a range of positive values of q,
the cylindrical shape is unstable. This occurs in two different regions:

• For large positive active tension ν> −g 2(1 ),2 an instability occurs for →q 0. This
instability is related to the Plateau–Rayleigh instability caused by surface tension in fluids
[10].

• For negative active tension <g 0 and ν ν− − − − >g b b g( 2 ) 8 (2 2 ) 0,2 2 a buckling
instability occurs at the critical compressive threshold for buckling of a cylindrical elastic

shell [4]. For →b 0, the instability threshold occurs for ν< − −g b4 1 2

( ν< − − /t BS R4 (1 )a
2 2 ) and at the finite wavelength λ π ν= −/R B S2 ( (1 ))2 1

4 .

We now consider the deformation induced by a localized increase in active tensions and
moments in the stable region of the diagram. We write δ δ=t T s( )s s

a a , δ δ=ϕ ϕt T s( )a a and
δ δ=m M s( )s s

a a , with T s
a and ϕTa two line tensions and M s

a has the dimension of a torque. The
corresponding deformations can be obtained by inverse Fourier transform of the functions G q( )1

and G q( )2 :

ν
=

−
+

ϕu

R
G s

T T

RS
G s

M

B
( ) ( ) (D.5)n

s s

1
a a

2
a

with G s( )1 and G s( )2 given by the following expressions:

• For ν ν− − − − <( )( )g b b g2 8 2 2 0
2 2
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The coefficients α1 and α2 have lengthy expressions. In the limit →g 0 and →b 0, they are
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given by α ≃ −ν

ν

−

−b

g

b
1

(1 )

2 8 2 (1 )
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4
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4

2 1
4

3
4
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4
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3
4
. As the threshold for buckling

is reached, α → 02 and the length scale on which a deformation is induced diverges.

• For ν ν− − − − >( )g b b g( 2 ) 8 2 2 02 2 , the deformation is decaying as a double
exponential:

α α α α
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The coefficients α3 and α4 have lengthy expressions with α α>3 4, which in the limit →b 0

reduce to α ≃ g

b3 2
and α ≃ ν− − g

g4
2(1 )2

, corresponding to decay lengths B

t

2

a

and

ν− −
R t

S t

2

2(1 )
a
2

a

. As the unstable region ν→ −g 2(1 )2 is approached, α → 04 and the length

scale on which a deformation is induced diverge as ν− −/R g2(1 )2 .

Overall, for small tension ta the functions G1 and G2 decrease exponentially with a decay

length λ π π∼ ∼Rb hR2 2
1
4 , whereas for a large enough tension ta they decrease as double

exponentials, with the largest decay length λ ∼
ν− −

R t S

t S

/

2(1 ) /
a

2
a

(figure D1(B)). Therefore,

different regions of tension t S/a display different responses to perturbation.
The maximum values of the functions G1 and G2 are plotted in figure D1(A). They are

given in the limit →b 0, →g 0 by ≃ −
ν ν− −

G (0)
b

g

b
1

1

4 2 (1 ) 32 2 (1 )2 3
4

1
4

3
4

2 5
4

and

= − −
ν ν− −

⎡
⎣⎢

⎤
⎦⎥G (0) b g

b
2

4 2 (1 ) 32 2 (1 )

1
4

2 1
4

1
4

2 3
4

. As one might expect,for small tension, higher internal

tension g leads to a smaller magnitude of the response (negative sign in front of g); this is not
always the case, however, as for high tension, an increase in active tension ta leads to a larger

response to a perturbation in t s
a or ϕta (figure D1).

The Green functions introduced in equation (34) are then related to G1 and G2 by

ν
= −G s

G s

S
( )

( )
(D.10)ts

1

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

25



=ϕG s
G s

S
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(D.11)t

1

=G s
R

B
G s( ) ( ) (D.12)ms 2

=ϕG s( ) 0. (D.13)m

It is straightforward to generalize this calculation to the case of a cylinder subjected to an
anisotropic active tension ta

s and ϕta . In that case, the functions G1 and G2 are modified to

ν ν
=

+ − + − − ϕG q
b Rq g b Rq g

( )
1

2 ( ) ( 2 )( ) (2(1 ) )
(D.14)

s1 4 2 2

ν ν
= −

+ − + − − ϕG q
b Rq

b Rq g b Rq g
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( )

2 ( ) ( 2 )( ) (2(1 ) )
(D.15)

s2

2

4 2 2

with =gs t

S
a
s

and =ϕ ϕ

g t

S
a .

Finally, we note that this calculation can also be applied to obtain the Green functions for a
passive cylinder subjected to an external pressure, deforming it away from its reference state.
Indeed, the calculation of the Green function performed here only assumes that the cylinder is
initially in a state of prestress. It is then easy to find the Green function of a uniformly deformed
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Figure D1. (A) Maximum values of the functionsG1 and G2 introduced in appendix D as

a function of =g t

S
a for ν = 1

2
and different values of =b B

R S2 . The function =G s( 0)1

diverges when the cylindrical shell becomes unstable (see figure 3), whereas =G s( 0)2

diverges only near the buckling instability. (B) Maximum decay length of the functions
G1 and G2 as a function of t

S
a and for ν = 1

2
. Dotted line: asymptotic value

λ π=
ν− −

R2 g

g2 (1 )2 for →b 0 and large g.



elastic cylinder without active tension by replacing ta
s and ϕta with elastic tensions generated by

the deformation of the cylinder.

Appendix E. Coefficients of the shape differential equation for a shell of revolution

In this appendix, we give the expressions for the coefficients ai, bi, ci and di introduced in
equations (31)–(32).
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Appendix F. Sensitivity analysis

In this appendix, we detail our error estimation method and perform a sensitivity analysis of the
method we use to extract the model parameters.

The mean value and standard error of the geometric parameters used to characterize cell
shape are given in table 1. We start by detailing how the length L and mean curvature C of the
shell in its initial resting state, before detachment, can be obtained from the measurements of the
contact radius ri and the middle cell contact angle ψ

i
. We define the function

∫ψ ψ π ψ= = −  r C L L r ds V( , , , ) ( , ) (cos ( ( /2)), sin )i i

L

1 2 0

2 , where r(s) and ψ s( ) are

the solutions of the shape equation (24) ψ ψ+ ∂ = = ∂ψ( )C r, cos
r s s

sin , for initial radius
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=r r(0) i and angle ψ ψ=(0)
i
. The integral ∫ π ψr s s ds( ) sin ( )

L

0

2 is the volume enclosed in this

surface, and V is the mean volume of ectoderm cells. Solving for = 0 for a given ψr( , )i i

allows to find the length and mean curvature of the shell. To estimate the error on this
evaluation, we write that a small perturbation on the input parameters ψdr d( , )i i

modifies the

value of the output values by dC and dL such that ψ ψ+ + + + = r dr d C dC L dL( , , , ) 0i i i i
.

The variation on output values can then be expressed as follows:

ψ
ψ

≃

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟



dC

C
dL

L

dr

r

d
M , (F.1)

i

i

i

i

with = − −
  M A B.1 ,

ψ
ψ

ψ
ψ

=

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

 

 

  
L

L
C

C

L
L

C
C

r
r

r
r

A Band .
i

i
i

i

i
i

i
i

1 1

2 2

1 1

2 2

Numerical evaluation of these matrices for C and L satisfying = 0 yields

= − −
−

⎜ ⎟
⎛
⎝

⎞
⎠M 0.38 0.05

0.11 0.07
. (F.2)

Assuming that the input variables are independent and normally distributed, the covariance

matrix of output variables is then given by =   Co M V M. . t , with V =

σ

σ

ψ
ψ

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
0

0

r

ri

i

i

i

2

2

2

2

the

covariance matrix for the measurements of ri and ψ
i
. In addition, the matrix M gives an

estimate of the sensitivity of output parameters to the intput parameters: we find here that the
curvature estimate is more sensitive to experimental errors than the length of the shell.

We now evaluate the variance on the stretching and bending modulus obtained by the
minimization of the objective function ψ θ θ θ θ Δ Δ′ r r r S B( , , , , , , , , , )

i i s s b i b i defined in equation

(47). Denoting the input variables of  are ψ θ θ θ θ Δ Δ ψ ψ= ′ ′ ′αx r r r s s( , , , , , , , , ( ), ( ))
i i s s b i b i i f and

the output variables are =αy S B( , ). The optimal output variables *y are found by minimizing

the objective function, such that ∂ | == * 0y y y . Following the approach previously introduced,

we define the second-order derivative matrices = ∂ ∂ ∂*
α β β β α y S y yA /

,

2 and = ∂ ∂
α β β β α x S x yB /

,

2 .

The uncertainty in output parameters can then be evaluated from
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θ
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Δ Δ ψ
ψ

ψ
ψ

≃
′

′
′

′
′

′

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

dS

S
dB

B

d dr

r

d d d d d r

r

d r

r

d s

s

d s

s
M

( )

( )
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s

b
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i
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b

b

i

i

i

i

f

f

t

with = − −
  M A B.1 . We find for the matrix M :

= − −
− − − − − − −

⎜ ⎟
⎛
⎝

⎞
⎠

M

0.26 0.95 0.08 0.09 0.01 0.01 0.004 0.003 0.01 0.04
0.71 0.25 0.18 0.01 0.03 0.02 0.002 0.004 0.08 0.04

. (F.4)

The variances of S and B are the square roots of the diagonal elements of the 2 × 2 matrix
Co = · ·   M V Mt , with V the covariance matrix of input parameters, estimated from the
standard deviation of experimental measurements (table 1). Furthermore, the matrix M gives
an estimate of the sensitivity of output parameters S and B to the input parameters. It appears
that the outcome is essentially sensitive to measurement of the deformation near the remaining
contact cell (angle ψ

i
and deformation dri ).

Appendix G. Experimental methods

The cell-triplet assay (figure 5(A)) is performed as follows. Ectoderm progenitors are obtained
from three to six mechanically dissociated zebrafish embryos, which were micro-injected with
100 pg lefty1 mRNA at the one cell stage, placing them into DMEM/F12 culture medium. Glass
micropipettes are pulled from glass capillaries and forged to μ∼3.5 m radius and bent to ∼ °45
angle before being passivated with heat-inactivated fetal bovine serum for seven minutes at
room temperature. The micropipettes are then connected to a microfluidic flow control system,
with negative pressure ranging from 7–750 Pa, a pressure accuracy of 7 Pa, and change rate of
200 Pa −s 1 on two independent channels. Micropipette movement and pressure are controlled via
a custom-programmed interface.

References

[1] Salbreux G, Charras G and Paluch E 2012 Actin cortex mechanics and cellular morphogenesis Trends Cell
Biol 22 536–45

[2] Kruse K, Joanny J F, Jülicher F, Prost J and Sekimoto K 2005 Generic theory of active polar gels: a paradigm
for cytoskeletal dynamics Eur. Phys. J. E Soft Matter 16 5–16

[3] Love A E 1927 Treatise on the Mathematical Theory of Elasticity (Cambridge: Cambridge University Press)
[4] Timoshenko S, Woinowsky-Krieger S and Woinowsky S 1959 Theory of Plates and Shells (New York:

McGraw-Hill)
[5] Guven J 2006 Laplace pressure as a surface stress in fluid vesicles J. Phys. A: Math. Gen 39 3771
[6] Landau L D and Lifshitz E M 1986 Theory of Elasticity (Oxford: Butterworth-Heinemann)
[7] Salbreux G, Prost J and Joanny J F 2009 Hydrodynamics of cellular cortical flows and the formation of

contractile rings Phys. Rev. Lett. 103 058102
[8] Delaunay C H 1841 Sur la surface de révolution dont la courbure moyenne est constante J. Math. Pures Appl.

309–14

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

30

http://dx.doi.org/10.1016/j.tcb.2012.07.001
http://dx.doi.org/10.1140/epje/e2005-00002-5
http://dx.doi.org/10.1088/0305-4470/39/14/019
http://dx.doi.org/10.1103/PhysRevLett.103.058102


[9] Mayer M, Depken M, Bois J S, Jülicher F and Grill S W 2010 Anisotropies in cortical tension reveal the
physical basis of polarizing cortical flows Nature 467 617–21

[10] Eggers J 1997 Nonlinear dynamics and breakup of free-surface flows Rev. Mod. Phys. 69 865–930
[11] Hannezo E, Prost J and Joanny J-F 2012 Mechanical instabilities of biological tubes Phys Rev Lett 109

018101
[12] Borghi N and Nelson W J 2009 Intercellular adhesion in morphogenesis: molecular and biophysical

considerations Curr. Top. Devel. Biol. 89 1–32
[13] Maître J-L, Berthoumieux H, Krens S F G, Salbreux G, Jülicher F, Paluch E and Heisenberg C-P 2012

Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells Science 338
253–6

[14] Maîre J-L and Heisenberg C-P 2011 The role of adhesion energy in controlling cell-cell contacts Curr.
Opinion Cell Biol. 23 508–14

[15] Daoudi M, Lavergne E, Garin A, Tarantino N, Debré P, Pincet F, Combadière C and Deterre P 2004
Enhanced adhesive capacities of the naturally occurring Ile249–Met280 variant of the chemokine receptor
CX3CR1 J. Biol. Chem. 279 19649–57

[16] Chu Y-S, Thomas W A, Eder O, Pincet F, Perez E, Thiery J P and Dufour S 2004 Force measurements in e-
cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling
through rac and cdc42 J. Cell. Biol. 167 1183–94

[17] Stoer J and Bulirsch R 2002 Introduction to Numerical Analysis vol 12 (Berlin: Springer)
[18] Timoshenko S and Gere J M 2012 Theory of Elastic Stability (New York: Dover)
[19] Ventsel E and Krauthammer T 2001 Thin Plates and Shells: Theory, Analysis, and Applications (Boca Raton,

FL: CRC Press)
[20] Audoly B and Pomeau Y 2010 Elasticity and Geometry: from Hair Curls to the Non-Linear Response of

Shells (Oxford: Oxford University Press)
[21] Lidmar J, Mirny L and Nelson D R 2003 Virus shapes and buckling transitions in spherical shells Phys. Rev.

E 68 051910
[22] Katifori E, Alben S, Cerda E, Nelson D R and Dumais J 2010 Foldable structures and the natural design of

pollen grains Proc. Natl Acad. Sci. 107 7635–9
[23] Levayer R and Lecuit T 2012 Biomechanical regulation of contractility: spatial control and dynamics Trends

Cell. Biol. 22 61–81
[24] Tinevez J-Y, Schulze U, Salbreux G, Roensch J, Joanny J-F and Paluch E 2009 Role of cortical tension in

bleb growth Proc. Natl Acad. Sci. USA 106 18581–6
[25] Clark A G, Dierkes K and Paluch E K 2013 Monitoring actin cortex thickness in live cells Biophys. J. 105

570–80
[26] Krieg M, Arboleda-Estudillo Y, Puech P-H, Käfer J, Graner F, Müller D J and Heisenberg C-P 2008 Tensile

forces govern germ-layer organization in zebrafish Nature Cell Biol. 10 429–36
[27] Wu H W, Kuhn T and Moy V T 1998 Mechanical properties of l929 cells measured by atomic force

microscopy: effects of anticytoskeletal drugs and membrane crosslinking Scanning 20 389–97
[28] Paluch E and Heisenberg C-P 2009 Biology and physics of cell shape changes in development Curr. Biol. 19

R790–9
[29] Charras G T, Coughlin M, Mitchison T J and Mahadevan L 2008 Life and times of a cellular bleb Biophys. J

94 1836–53
[30] Solon J, Kaya-Copur A, Colombelli J and Brunner D 2009 Pulsed forces timed by a ratchet-like mechanism

drive directed tissue movement during dorsal closure Cell 137 1331–42
[31] Lecuit T and Lenne P-F 2007 Cell surface mechanics and the control of cell shape, tissue patterns and

morphogenesis Nat. Rev. Mol. Cell. Biol. 8 633–44
[32] Farhadifar R, Röper J-C, Aigouy B, Eaton S and Jülicher F 2007 The influence of cell mechanics, cell–cell

interactions, and proliferation on epithelial packing Curr. Biol. 17 2095–104

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

31

http://dx.doi.org/10.1038/nature09376
http://dx.doi.org/10.1103/RevModPhys.69.865
http://dx.doi.org/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1016/S0070-2153(09)89001-7
http://dx.doi.org/10.1126/science.1225399
http://dx.doi.org/10.1126/science.1225399
http://dx.doi.org/10.1016/j.ceb.2011.07.004
http://dx.doi.org/10.1074/jbc.M313457200
http://dx.doi.org/10.1083/jcb.200403043
http://dx.doi.org/10.1103/PhysRevE.68.051910
http://dx.doi.org/10.1073/pnas.0911223107
http://dx.doi.org/10.1016/j.tcb.2011.10.001
http://dx.doi.org/10.1073/pnas.0903353106
http://dx.doi.org/10.1016/j.bpj.2013.05.057
http://dx.doi.org/10.1016/j.bpj.2013.05.057
http://dx.doi.org/10.1038/ncb1705
http://dx.doi.org/10.1002/sca.1998.4950200504
http://dx.doi.org/10.1016/j.cub.2009.07.029
http://dx.doi.org/10.1016/j.cub.2009.07.029
http://dx.doi.org/10.1529/biophysj.107.113605
http://dx.doi.org/10.1016/j.cell.2009.03.050
http://dx.doi.org/10.1038/nrm2222
http://dx.doi.org/10.1016/j.cub.2007.11.049


[33] Kölsch V, Seher T, Fernandez-Ballester G J, Serrano L and Leptin M 2007 Control of drosophila gastrulation
by apical localization of adherens junctions and rhogef2 Science 315 384–6

[34] Schlichting K and Dahmann C 2008 Hedgehog and dpp signaling induce cadherin cad86c expression in the
morphogenetic furrow during drosophila eye development Mechanisms Devel. 125 712–28

[35] Larsen C W, Hirst E, Alexandre C and Vincent J-P 2003 Segment boundary formation in drosophila embryos
Development 130 5625–35

[36] Sawyer J M, Harrell J R, Shemer G, Sullivan-Brown J, Roh-Johnson M and Goldstein B 2010 Apical
constriction: a cell shape change that can drive morphogenesis Devel. Biol. 341 5–19

[37] Rodriguez E K, Hoger A and McCulloch A D 1994 Stress-dependent finite growth in soft elastic tissues J.
Biomech. 27 455–67

[38] Goriely A and Amar M B 2005 Differential growth and instability in elastic shells Phys. Rev. Lett. 94 198103
[39] Amar M B and Goriely A 2005 Growth and instability in elastic tissues J. Mech. Phys. Solids 53 2284–319
[40] Dervaux J and Amar M B 2008 Morphogenesis of growing soft tissues Phys. Rev. Lett. 101 068101

New J. Phys. 16 (2014) 065005 H Berthoumieux et al

32

http://dx.doi.org/10.1126/science.1134833
http://dx.doi.org/10.1016/j.mod.2008.04.005
http://dx.doi.org/10.1242/dev.00867
http://dx.doi.org/10.1016/j.ydbio.2009.09.009
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1103/PhysRevLett.94.198103
http://dx.doi.org/10.1016/j.jmps.2005.04.008
http://dx.doi.org/10.1103/PhysRevLett.101.068101

	1. Introduction
	2. Derivation of shell theory with active tensions and moments
	2.1. Tensions, moments, and force and torque balance
	2.2. Axisymmetric active shell
	2.2.1. General equations
	2.2.2. Deformations away from an undeformed state under homogeneous active tension

	2.3. Green function for the deformation of a cylinder

	3. Active shell theory applied to cell shape changes upon cell&#x02013;cell contact disruption
	4. Discussion
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	Appendix G.
	References

