
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2013                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

A fast GIS-based risk assessment for tephra fallout: the example of 

Cotopaxi volcano, Ecuador. Part II: vulnerability and risk assessment

Biasse, Sébastien; Frischknecht, Corine; Bonadonna, Costanza

How to cite

BIASSE, Sébastien, FRISCHKNECHT, Corine, BONADONNA, Costanza. A fast GIS-based risk 

assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Part II: vulnerability and risk 

assessment. In: Natural Hazards, 2013, vol. 65, n° 1, p. 497–521. doi: 10.1007/s11069-012-0457-1

This publication URL: https://archive-ouverte.unige.ch/unige:114860

Publication DOI: 10.1007/s11069-012-0457-1

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:114860
https://doi.org/10.1007/s11069-012-0457-1


ORI GIN AL PA PER

A fast GIS-based risk assessment for tephra fallout:
the example of Cotopaxi volcano, Ecuador

Part II: vulnerability and risk assessment

Sebastien Biass • Corine Frischknecht • Costanza Bonadonna

Received: 15 February 2012 / Accepted: 18 June 2012 / Published online: 7 November 2012
� Springer Science+Business Media Dordrecht 2012

Abstract In order to develop efficient strategies for risk mitigation and emergency man-

agement, planners require the assessment of both the expected hazard (frequency and mag-

nitude) and the vulnerability of exposed elements. This paper presents a GIS-based

methodology to produce qualitative to semi-qualitative thematic risk assessments for tephra

fallout around explosive volcanoes, designed to operate with datasets of variable precision

and resolution depending on data availability. Due to the constant increase in population

density around volcanoes and to the wide dispersal of tephra from volcanic plumes, a large

range of threats, such as roof collapses, damage to crops, blockage of vital lifelines and health

problems, concern even remote communities. To address these issues, we have assessed the

vulnerability and the risk levels for five themes relevant to tephra fallout: (1) social, (2)

economic, (3) environmental, (4) physical and (5) territorial. Risk and vulnerability indices

for each theme are averaged to the fourth level of administrative unit (parroquia, parish). In a

companion paper, Biass and Bonadonna (this volume) present a probabilistic hazard

assessment for tephra fallout at Cotopaxi volcano (Ecuador) using the advection-diffusion

model TEPHRA2, which is based on field investigations and a global eruption database

(Global Volcanism Program, GVP). The scope of this paper is to present a new approach to

risk assessment specifically designed for tephra fallout, based on a comprehensive hazard

assessment of Cotopaxi volcano. Our results show that an eruption of moderate magnitude

(i.e. VEI 4) would result in the possible collapse of*9,000 houses in the two parishes located

close to the volcano. Our study also reveals a high risk on agriculture, closely linked to the

economic sector, and a possible accessibility problem in case of an eruption of any size, as

tephra is likely to affect the only major road running from Quito to Latacunga (Panamerican
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Highway). As a result, this method fits into the ongoing effort to better characterize and

evaluate volcanic risk, and more specifically the risk associated with tephra fallout. Although

this methodology relies on some assumptions, it can serve as a rapid and efficient starting

point for further investigations of the risk level around explosive volcanoes.

Keywords Volcanic hazard � Volcanic risk � Vulnerability � Tephra dispersion � GIS �
Cotopaxi � Ecuador

1 Introduction

This study combines probabilistic modelling of tephra dispersal with a thematic vulnera-

bility assessment using free and global data in order to achieve a qualitative to semi-

qualitative risk assessment for tephra fallout. In a companion paper (Biass and Bonadonna,

this volume), we have detailed each step of the process of compiling probabilistic hazard

maps, including (1) the identification of the most likely eruptive scenarios, (2) the

assessment of the probability of recurrence of eruptions of classes defined by the volcanic

explosivity index (Newhall and Self 1982, VEI), (3) the statistical analysis of wind patterns

over the region of interest and (4) the production of several outputs (i.e. probability maps,

isomass maps, hazard curves) designed to help planners and decision-makers. The present

paper focuses on two aspects. First, a vulnerability assessment for tephra fallout based on

free and easily accessible data was achieved, for which several vulnerability themes have

been developed along with specific indicators for each theme. Second, a risk assessment

was compiled in which new ways of combining probabilistic hazard assessments and

thematic vulnerability assessments have been explored, including an attempt to define

common hazardous thresholds of tephra accumulation for all vulnerability themes con-

sidered. As a result, this study proposes new strategies for the risk assessment related to

tephra fallout able to combine geological and geographical datasets of varying precision

and scales. Where the method is not able to quantify the expected losses, it still provides

qualitative indications of the potential impact of tephra fallout. As an example, this

strategy was applied to the area located around Cotopaxi volcano, Ecuador (Fig. 1).

1.1 Summary of the hazard assessment

The hazard assessment for tephra fallout was performed using the advection-diffusion model

TEPHRA2 (Bonadonna et al. 2005) and probabilistic methods developed by Bonadonna

(2006). The evaluation of the past eruptive behaviour was based on both field data (Barberi et al.

1995; Biass and Bonadonna 2011) and a thorough study of the Global Volcanism Program of

the Smithsonian institution (Siebert and Simkin 2002, GVP), based on which we have decided

to focus on eruptions of VEI of 3–5 (bulk volumes between 0.01 and 10 km3; Newhall and Self

1982). The probability of an eruption of a given magnitude occurring within a hypothetical time

period (i.e. 10 and 100 years) was calculated for each VEI class, based on a Poisson process (De

la Cruz-Reyna 1993; Borradaile, 2003; Mendoza-Rosas and la Cruz-Reyna 2008; Dzierma and

Wehrmann, 2010). Probabilities of an eruption in the next 100 years are 0.781, 0.202 and 0.006

for VEIs 3, 4 and 5, respectively (Biass and Bonadonna, this volume).

A statistical analysis of wind patterns was achieved using the NOAA NCEP/NCAR

Reanalysis 1 dataset (Kalnay et al. 1996). After an assessment of the variability of Monte

Carlo simulations, it was decided to use a dataset of 12 years of wind (1997–2008) pro-

viding 4 daily measurements.
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The modelling framework consists of two probabilistic approaches described in Bona-

donna (2006). First, the One Eruption Scenario (OES) compiles the probability of reaching a

given ground tephra accumulation with a varying wind and eruptive parameters determin-

istically defined. Two large eruptions have been considered, namely Layer 3 and Layer 5 (of

VEIs 5 and 4, respectively; Barberi et al. 1995; of VEIs 5 and 4, respectively; Biass and

Bonadonna 2011). Second, the Eruption Range Scenario (ERS) assesses the probability of

reaching a given tephra accumulation based on the statistical distribution of both wind

profiles and eruptive parameters. In particular, eruptive parameters were stochastically

sampled within mass and plume heights defined for each VEI 3, 4 and 5 classes (Newhall and

Self 1982). Using the resulting data from ERS modelling, a long-term ERS assessment for

different time lengths was produced by summing the products of each separate VEI with their

respective probabilities of occurrence. Each scenario was run 1,000 times.

Finally, the hazard assessment was produced in the form of three complementary outputs.

First, probability maps contour the probability of reaching a given hazardous threshold of

tephra accumulation and are important to evaluate the variation of probability for a specific

hazardous threshold (e.g. damage to crops, roof collapse). Second, probability maps were

transformed into isomass maps for a given probability, from which we can infer the

acceptable risk when combined with vulnerability data. This approach was chosen when

combining hazard data with vulnerability data, as it provides a geographical variability of the

Fig. 1 Overview map around Cotopaxi volcano, showing exposed elements (human settlements, roads,
airports), the hazard scenario used throughout this study (isomass map for an ERS of VEI 4–50 %
probability of occurrence; Biass and Bonadonna, this volume) and the topographic context. The population
density is inferred from the LandScan 2005 dataset. This area of Ecuador is divided into three regions: (i) La
Sierra (central, orange), (ii) La Costa (west, purple) and (iii) La Amazonia (east, green)
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hazardous phenomenon for a fixed probability of occurrence. Third, hazard curves are an

efficient way of displaying the exceeding probability of tephra accumulation for a key

location and allow different eruptive scenarios to be effortlessly compared. For further

details, the reader is referred to Biass and Bonadonna (this volume).

This method was developed using the software ESRI ArcMap 9.3�, but the simple nature of

most of the arithmetic operators used during the analysis makes this methodology usable with

most GIS platforms without major discrepancy. In order to present the method in a concise way,

this paper illustrates two vulnerability themes (i.e. economic and physical) with one medium

intensity eruptive scenario. The eruptive scenario chosen as an example is an ERS for VEI 4,

with plume heights and erupted masses varying between 15 and 30 km and 1 - 10 9 1011 kg,

respectively (Fig. 1). Hazard maps for all eruption scenarios can be found in Online Resource 1

of Biass and Bonadonna (this volume). Vulnerability and risk maps for all eruption scenarios

and vulnerability themes are available in Online Resource 1 and 2 of this paper.

2 Vulnerability assessment

The concept of vulnerability is the cornerstone of the process of evaluating the risk of an

element exposed to a hazardous event, which differentiates an isolated physical phe-

nomenon from a natural disaster (O’Keefe et al. 1976). Early definitions of vulnerability

focused mainly on the intrinsic susceptibility of structures to be damaged by natural

phenomena (UNDRO 1991) and lacked to address the effect felt by individuals and

communities (Dibben and Chester 1999). More recent definitions describe vulnerability as

‘‘a combination of factors that determine the extent to which a person’s life, livelihood

or general well-being is threatened by an extreme event of nature’’ (Blaikie et al. 1994),’’

or as ‘‘the conditions determined by physical, social, economic and environmental factors

or processes which increase the susceptibility of a community to the impact of hazards’’

(UN/ISDR 2004). Vulnerability is a dynamic process, which varies geographically, over

time, and amongst different social groups (Cutter et al. 2003).

Three observations should be made regarding the use of vulnerability in this study.

First, rather than considering vulnerability as an intrinsic property of a system or element (UN/

ISDR 2004), this paper considers it as being conditional on a specific hazard, that is, tephra

fallout (UNDRO 1991). It has been argued by Blaikie et al. (1994) that vulnerability analysis is

of limited values in areas of volcanic hazards due to the high destructive power of volcanic

phenomena (e.g. pyroclastic flows, lahars). This statement ignores hazards related to the fallout

of tephra, which are likely to disrupt a wide range of aspects of human activities and economic

sectors even far from the erupting vent, though responsible for only 2 % of recorded volcano

fatalities (Simkin et al. 2001). Second, vulnerability assessments should be regarded as a two-

level process: a first qualitative analysis emphasizes the fragility (i.e. economy, environment,

accessibility) of a community facing a threatening event, and a second more detailed quanti-

tative analysis that can assess the potential direct impacts of a phenomenon on a community and

its environment (Stieltjes and Mirgon 1998; Aceves-Quesada et al. 2007). This work presents a

qualitative vulnerability assessment for a given study area, aimed at providing tools for

developing an appropriate response (emergency planning) and risk mitigation measures

through land use planning.

Third, while early works tended to focus on vulnerability of populations, it has been admitted

that these populations have intrinsic ways to cope and overcome natural disasters, giving rise to

factors able to increase or decrease the state of vulnerability (Cardona 2003). As a result, recent

works have widened the concept of vulnerability to incorporate resilience or coping capacity as
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one of the dominant components of the analysis (Wisner et al. 2004; Birkmann 2007; Fris-

chknecht et al. 2010). Large-scale studies, as the one presented here, are based on global data and

are therefore not able to capture cultural aspects. As an example, census surveys such as the one

used here are not specifically designed for risk analysis and thus neglect important information

about hazard perception and mitigation parameters (Ebert et al. 2009). The analysis presented

here only focuses on factors increasing vulnerability, leaving the assessment of factors

decreasing vulnerability (i.e. resilience) for a separate study. Nonetheless, this method aims at

providing a solid basis for a more detailed analysis incorporating precise in situ social surveys.

2.1 Material

Vulnerability and risk assessments are complex tasks, involving a wide variety of processes

that require large amounts of spacial (i.e. land use, road network, settlements, elevation) and

temporal (wind patterns, variation of population density) data coming from disparate sources

(El Morjani et al. 2007). However, the main limitations in the application of geo-informatics

remain the following: (1) the high data demand and cost, (2) the need for an integrated

analysis of multi-type/format data, (3) the need of frequent updates of such data and (4)

datasets of parameters that are difficult to map directly, such as those relevant to the

assessment of social vulnerability (Ebert et al. 2009). The concern of this study is to propose a

method that combines global, easily accessible and free datasets, but which could be equally

applied to more detailed and precise datasets if available.

The vulnerability and risk assessments were achieved using GIS tools and their abilities

to input, manage, manipulate, analyse and process georeferenced data (Aronoff 1989). The

first step of the creation of a GIS database is to collect relevant thematic data, which can be

problematic depending on the study area and budget restrictions. This section describes

free and global datasets used in this study.

2.1.1 Social census

The main source of socio-economical data has been the 2001 Censo de poblacion y
vivienda from the Instituto Nacional de Estadisticas y Cencos de Ecuador (INEC 2001),

from which vulnerability indicators explained in Sect. 5 have been defined. Additionally, it

provided a precise census of building types as well as shapefiles for administrative units.

The INEC dataset has been converted to a GIS database using Matlab � routines.

2.1.2 Roads and place names

Roads and place names have been inferred from the OpenStreetMap database (Open-

StreetMap 2010). Although complete datasets are only available for few places around the

world, we believe it will soon become a valuable tool for risk assessment thanks to the

increasing number of contributions from users. Moreover, the OpenStreetMap project is

aiming at mapping not only roads, but also a whole range of features such as hospitals,

schools, airports, administrative boundaries or natural parks.

2.1.3 Protected areas and intact forests

Shapefiles on protected areas are freely available from the website of World Database on

Protected Areas (WDPA 2011). On the basis of a compilation of data from multiple actors,
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this database provides up-to-date datasets on worldwide marine and terrestrial protected

areas. In a similar way, the Intact Forest Landscape database from Greenpeace (Potapov

et al. 2008) maps the unbroken expanse of natural ecosystems within the zone of current

forest extent, showing no signs of significant human activity.

2.1.4 Land cover

Land use was inferred using the ESA Ionia GlobCover dataset (ESA 2006). This dataset

was produced between 2004 and 2006 using ENVISAT’s Medium Resolution Imaging

Spectrometer (MERIS) Level 1B, with a resolution of 300 m. It is based on the UN Land

Cover Classification System (LCCS).

2.2 Delineation of proxy variables for vulnerability assessment

Vulnerability assessments are typically achieved by (1) defining vulnerability ‘‘themes’’, (2)

defining vulnerability indicators for each theme and (3) weighting each parameter to compile

final global vulnerability maps (D’Ercole 1996; Stieltjes and Mirgon 1998; Torrieri 2002;

Aceves-Quesada et al. 2007; El Morjani et al. 2007). Since the main limitation of this study

was the availability and the precision of the wide variety of data required by our analysis, we

had to define vulnerability indicators based on the free and global datasets described above.

We considered five themes for the region around Cotopaxi volcano: (1) social vul-

nerability, (2) economic vulnerability, (3) environmental vulnerability, (4) physical vul-

nerability and (5) territorial vulnerability, which are described in detail in the next section.

Each vulnerability theme was averaged to the fourth level of administrative unit, namely

parroquias or parrish, and classified in 5 classes (very low, low, medium, high and very
high) using Jenks Optimization methods implemented in most GIS softwares (Table 1).

In most vulnerability assessments (Aceves-Quesada et al. 2007; Stieltjes and Mirgon

1998; D’Ercole 1996), experts are required to weigh each vulnerability indicator within each

theme, and to then weigh each theme to produce global vulnerability maps. We have chosen

to give the same weight to all indicators and to produce thematic vulnerability maps instead of

global vulnerability maps for several reasons. First, the georeferenced datasets we were able

to gather for each theme come from a wide range of sources. Therefore, a lack of consistency

amongst datasets was often found, making comparison difficult. Second, weighting of vul-

nerability indicators is typically achieved using Multi-Criteria Evaluation (Saaty 1980, 2008;

Malczewski 2006; Aceves-Quesada et al. 2007), which is based on an extended knowledge

of the concerned geographical area. Remote studies like ours do not allow such assessments

related to precise socio-economic contexts, and we chose not to rank vulnerability param-

eters. Modern GIS tools make Multi-Criteria Evaluations relatively easy and rapid, and such

process could therefore be easily added to the resulting thematic vulnerability maps obtained

with our method. Finally, since the aim of the present paper is to develop a method to assess

the vulnerability (and the risk) related to tephra fallout, thematic vulnerability maps might be

more efficient than global vulnerability maps to reveal the strengths and weaknesses of

different administrative units towards this hazard.

2.2.1 Social vulnerability

Rapid progresses on the topic of physical vulnerability (vulnerability of the built envi-

ronment) have often shadowed the assessment of social vulnerability (Cutter et al. 2003).
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Physical vulnerability being the topic of engineers, social aspects of vulnerability were

largely ignored for a long time, mainly due to the difficulty of quantifying the complex web

of indicators required for such analysis (Cutter et al. 2003). Wisner et al. (2004) define

social vulnerability as ‘‘the characteristics of a person or group and their situation that

influence their capacity to anticipate, cope with, resist and recover from the impact of a

natural hazard’’. As argued above, recent studies tend to separate the concepts of coping

capacity and vulnerability (Frischknecht et al. 2010); as a result, we have chosen to focus

on elements that increase vulnerability.

The simplified assessment of social vulnerability presented here is based on three

indicators (for each administrative unit): (1) total population, (2) education level and (3)

proportion of more vulnerable people, namely children, seniors and invalids, inferred from

the 2001 Censo de poblacion y vivienda from the Instituto Nacional de Estadisticas y
Cencos de Ecuador (INEC 2001). These factors were adopted based on Wisner et al.

(2004), Cutter et al. (2003) and Aceves-Quesada et al. (2007). The education level indi-

cator was defined as the ratio of people without a basic level of education on the total

population of the administrative unit. In the absence of any precise age threshold for

children, we have followed the most commonly used age threshold of 15 years old, which

conveniently fits with the INEC database. Following definitions from the World Health

Organisation (WHO 2011), the age limit for seniors was set at 65. A detailed list of

vulnerability indicators for all administrative unit can be found in Online Resource 3.

Table 1 shows classification levels for each vulnerability indicator, defined from Jenks
Optimization Methods (Jenks 1967) on the whole datasets of administrative units. The

resulting social vulnerability map can be found in Online Resource 1, showing that La
Costa region is the most vulnerable due to a lower education level, followed by La Sierra
and La Amazonı̀a regions. Administrative units comprising main cities are usually a

combination of high population levels versus high education levels, resulting in most cases

in low to medium vulnerabilities.

2.2.2 Economic vulnerability

Initial studies of vulnerability tended to combine together economic and environmental

vulnerabilities, although it rapidly became obvious that these two aspects were to be

analysed separately (Guillaumont 2000). This study illustrates how the same element (i.e.

natural environment, but here more specifically vegetation) can be described in both

economic vulnerability and environmental vulnerability indicators with different

implications.

In the context of natural disasters, Guillaumont (2000) defines the concept of economic

vulnerability as the relative susceptibility to damage caused by natural disasters. In this

study, due to the absence of economic data, we have assumed that the main source of

income for most of the study area was related to agriculture. As a result, the economic

vulnerability indicator used here is given by the ratio between the areas of crop land over

the total area of each administrative unit. Since agriculture is the main source of income in

rural regions around Cotopaxi volcano and little amounts of tephra fallout can already

disrupt its production (Blong 1984), our qualitative vulnerability assessment is able to

provide insights into the most vulnerable administrative units, as a first step towards a

better land use management. Nonetheless, a more detailed analysis of all economic sectors

should be carried out for a comprehensive vulnerability assessment.

Reviews of impacts of tephra fallout on vegetation can be found in Blong (1984); Inbar

et al. (1995); Wisner et al. (2004); Martin et al. (2009); and Wilson et al. (2011a, b).
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Following the study of Blong (1984) on the impacted vegetation after the 1943–1952

eruption of Paricutin volcano (Mexico), four zones depending on the tephra thickness were

defined: 2nd zone of partial survival (150–500 mm), 1st zone of partial survival

(500–1,500 mm), nearly total kill zone (*1,500 mm) and total kill zone (C1,500 mm).

The assessment of the economic vulnerability presented here does not consider values of

tephra accumulation reaching a ‘‘kill’’ zone, as a disruption of one season of harvest

already bears economic consequences. Although the sensitivity to tephra fallout of indi-

vidual species strongly varies and goes beyond a linear relationship between tephra

thickness and impact (Wilson et al. (2011a), we have generalized the impact on harvests to

accumulations ranging from 10 to 150 mm (Blong 1984).

Table 1 shows how classes for economic vulnerability were defined. Figure 2a and

Online Resource 2 show the resulting economic vulnerability maps, displaying a high

vulnerability for the region of La Costa. The second most vulnerable area is the bottom of

the Interandean valley, due to a more suitable land for agriculture than in the surrounding

steep valley flanks.

2.2.3 Environmental vulnerability

The natural environment is vulnerable to natural hazards. Williams and Kapustka (2000)

define the concept of environmental vulnerability as an estimate of the inability of an

ecosystem to tolerate stressors over time and space. Such a general definition makes it

difficult to decompose the concept of vulnerability into a set of indicators (Villa and

McLeod 2002), especially in the context of volcanic eruptions, which have the power of

disrupting the environment at all scales. Proximal areas are under the direct influence of

pyroclastic flows, lahars, lava flows and volcanic bombs, all characterized by a very high

destructive power (Annen and Wagner 2003); distal areas ([10s km) are dominated by

tephra fallouts and their ability to impact vegetation and contaminate water (Inbar et al.

1995; Martin et al. 2009; Wilson et al. 2011a, b, c); localized ozone holes can occur at

continental scale due to halogen emissions (Millard et al. 2006), and the truly global scale

can also be impacted with climatic effects of sulphuric acid aerosols (Robock, 2000). The

present environmental vulnerability analysis focuses on the susceptibility of the vegetation

to be affected by tephra accumulations reaching the near total kill zone, as described in the

previous section (Blong 1984).

As a result, we have described here the environmental vulnerability of administrative

units using two indicators, mainly focusing on aspects of vegetation: (1) the area covered

by intact forests (Potapov et al. 2008) and (2) the area covered by protected areas (WDPA

2011). Both values were normalized on the total area of each administrative unit. Although

these indicators cover only a small part of the general definition of Williams and Kapustka

(2000), they provide key insights into fundamental environmental aspects of Amazonian

countries. Due to the extent of the Amazonian forest, La Amazonı̀a region as well as the

easternmost part of La Sierra region display the highest degrees of vulnerability. Protected

areas are mainly concentrated in the flanks of the Interandean valley in La Sierra, making

this region the second most vulnerable. The environmental vulnerability map can be found

in Online Resource 2.

2.2.4 Physical vulnerability

Physical vulnerability describes the susceptibility of infrastructures to be damaged by

natural hazards (Ebert et al. 2009). In the context of tephra fallout, the most observed
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Fig. 2 Thematic vulnerability maps per parroquia for a economic vulnerability and b physical
vulnerability. N/A refers to gaps in the census survey. Vulnerability classes are defined using values in
Table 1. Vulnerability maps for all themes can be found in Online Resource 1
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impact is the collapse of roofs under tephra load. Even though this threat is responsible for

only 2 % of recorded volcano fatalities since AD 1, it has been cited as a cause of death in

21 % of volcanic eruptions, making it the most frequently occurring cause of death

(Simkin et al. 2001; Spence et al. 2005).

It has been pointed that the vulnerability of roofs to tephra fallout depends on the type,

the height, the age, the load-bearing structures, the type of roof, the dimension and the

general layout of the building (Blong 1984, 2003; Pomonis et al. 1999; Spence et al.

2005), making this type of assessments geographically dependent and requiring extensive

in situ surveys. Vulnerability curves have been developed after the 1991 eruption of

Pinatubo (Spence et al. 1996) and the 1994 eruption of Rabaul (Blong 2003), which can be

in some cases extended to other situations. In Europe, the most complete surveys were

performed on the island of Sao Miguel, Azores (Pomonis et al. 1999), for the areas around

Vesuvius (Zuccaro et al. 2008), around Mt. Etna (Barsotti et al. 2010) and for Icod de los

Vinos, Tenerife (Marti et al. 2008). The range of impact of tephra load on roofs found in

the literature usually shows minor damage from 100 kg/m2 to major damage at 700 kg/m2

(Blong 1984; Bonadonna 2006). However, in the case of Ecuador and based on data in

Metzger et al. (1999) and Hugo Yepes (personal communication), we have adopted a range

from 100 to 300 kg/m2 with a vulnerability linearly increasing from 0 to 1 between those

values (Table 1).

Our physical vulnerability assessment is based on the 2001 Censo de poblacion y
vivienda from the Instituto Nacional de Estadı̀sticas y Cencos de Ecuado (INEC 2001),

which provides a building census for each administrative unit divided into 7 building types,

ranging in increasing quality: choza, covacha, rancho, mediagua, cuarto, casa o villa and

departamento. After a survey of pictures available on Google Earth, we classified these

types of buildings into 3 classes, from high to low vulnerability: (1) choza, covacha and

rancho as being potentially damaged from a tephra accumulation of 100 kg/m2; (2) me-
diagua, potentially damaged from 200 kg/m2 and (3) cuarto, casa o villa and departa-
mento being potentially impacted from an accumulation of 300 kg/m2. Figure 2b and

Online Resource 2 show the ratio of buildings of type 1 on the total amount of buildings in

each administrative unit.

2.2.5 Territorial vulnerability

The domain of territorial vulnerability embraces the study of the vulnerability of critical

infrastructures as well as their interconnectivity within a given system (Hellström 2007).

Critical infrastructures are defined (1) by Moteff et al. (2003) as ‘‘those structures whose

prolonged disruption could cause significant military and economic dislocation’’ and (2) by

the German authority Bundesamt für Sicherheit in der Informationstechnik (BSI 2004) as

‘‘organizations or facilities of key importance to public interest whose failure or impair-

ment could result in detrimental supply shortages, substantial disturbance to public order or

similar dramatic impact’’ (Hellström 2007). The aim of such an assessment is not only

the evaluation of the vulnerability of all critical facilities, but also the evaluation of the

vulnerability that arises from the fact they are interconnected. Since tephra fallout has the

power of disrupting the functioning of interconnected systems (e.g. road network, elec-

tricity lines), this study provides a first attempt to evaluate dynamically possible conse-

quences of such a threat on a large-scale system.

A complete global analysis of such systems has never been achieved and would require

an enormous amount of precise georeferenced data. In our study, we considered (1) the

road network, (2) the geographical position of airports, (3) the number of military bases
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and hospitals averaged for each administrative unit and (4) digital elevation models

(DEM). Blong (1984) reports the disruptions of the road network following the Mount St

Helens tephra fall of May 18, 1980, including poor visibility, slippery roads, altered traffic

volumes and speed reduction. Additionally, severe damage to vehicles was reported due to

the strong abrasive power of tephra. As a result, a maximum value of 100 kg/m2 was

defined in this study as enough to paralyse the road network. Airports and air traffic, as

previously mentioned, are highly sensitive to tephra. Considering that thickness in the

order of a few millimetres can already be problematic, this study considers that all airports

located within the 1 kg/m2 area (*1 mm, using a density of 1,000 kg/m3) as non-opera-

tional. Finally, we assumed that critical facilities such as military bases and hospitals were

designed to resist the highest values of tephra load before collapsing (i.e. 300 kg/m2).

Our territorial vulnerability assessment was based on two indicators: i) the number of

military bases and hospitals per administrative unit ii) and the cost distance to the closest

airport via the road network, including a topography effect. Cost-distance mapping is a

useful GIS tool which aims at mapping the ease of access between two points, where a low

cost represents an easier access. Here, we have created a raster from the road network,

assigning a higher travel cost to small roads than to primary roads and highways. In order

to constrain the model to calculate access routes via the road network, a very high travel

cost was assigned to any land other land that is not a road. The process consists in

calculating the cost distance from any point of our calculation grid to reach the closest

airport, adding topographical effects obtained from a digital elevation model. Results were

then averaged for each administrative level and combined with the number of military

bases and hospitals. The final value gives an approximation of the travel cost, where a high

value means difficulty to travel.

The resulting map for territorial vulnerability can be found in Online Resource 1.

Administrative units comprising important urban centres (Quito, Santo Domingo de los
Colorados, Ambato) show the lowest levels of territorial vulnerability. Such a result

requires some considerations. First, the OpenStreetMap dataset has major discrepancies in

the accuracy of data in urban versus rural areas. As an example, some administrative units

in La Amazonı̀a region are without roads, making a significant comparison of the resulting

vulnerability score impossible amongst administrative units within the same study area.

Second, the method adopted for the present systems mainly aims at assessing the redun-

dancy of roads and critical infrastructures. The territorial vulnerability is inherited from (1)

the ubiquity of critical infrastructures and (2) the high population density depending on

these main infrastructures. The number of people dependant on a critical infrastructure was

not included in our calculation and could potentially increase vulnerability indices in major

urban centres.

3 Risk assessment

The objective of risk assessment and risk mapping is to depict the spatial intensity variation

of both hazard and vulnerability. Thematic risk maps are necessary tools for policy

managers and administrators to develop the most suitable land use, planning for risk

reduction and appropriate actions to adopt in case of an emergency phase (Lirer and Vitelli

1998; Torrieri 2002). According to the United Nations Disaster Relief Office, risk can be

defined as ‘‘the expected number of lives lost, persons injured, property damaged and

economic activity disrupted due to a particular natural phenomenon’’ (UNDRO 1991). The
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quantification of risk may be determined using the following relationship (UNESCO 1972;

Fournier d’Albe 1979):

R ¼ E � V � H ð1Þ

where R is the risk, E is the element at risk (a value describing the number of human lives,

a capital value or a productive capacity), V is the vulnerability level as defined in Table 1,

and H is the volcanic hazard, or the probability of any particular area being affected by a

destructive volcanic manifestation within a given period of time. The establishment of such

a relationship marked the change from early risk assessments, which usually considered the

vulnerability aspect as solely a matter of structural resistance of infrastructures reduced to a

simple exposure value, generally adopting a Boolean approach of 0 (no exposed element)

or 1 (exposed elements) (Barberi et al. 1990).

Due to the wide range of possible impacts of tephra on all different facets of vulner-

ability (Table 2), Eq. 1 is not suitable for all aspects of vulnerability considered here. In

this study, a more general relationship adapted for case-by-case risk analysis was used:

R ¼ f ðE;V;HÞ ð2Þ

The following sections accurately describe how hazard and vulnerability assessments were

combined for each theme to compile thematic qualitative risk maps. Vulnerability, hazard

and risk indices for all administrative units are summarized in Online Resources 3, 4 and 5,

respectively.

3.1 Social risk

Impacts of tephra fallout on human populations range from acute and chronic health effects

(Blong 1984; Sigurdsson et al. 2000; Horwell and Baxter 2006; Hincks et al. 2006) to

pollution of water supply (Blong 1984; Stewart et al. 2006) and disruption of the economy

(Blong 1984). Precise studies after major eruptions have shown the complex and nonlinear

response of these aspects to tephra fallout (Johnston et al. 2000). Therefore, uncertain and

wide ranges of individual exposures, natural variation in individual response, change in

eruptive behaviour with time and meteorological conditions at the time of the eruption

increase the difficulty of producing risk assessment for social aspects (Hincks et al. 2006).

As an example, our social vulnerability maps are very simplified and only consider the

aspects of (1) total population, (2) education level and (3) age classes, on which the effects

of tephra fallout are mainly unclear and indirect. As a result, we did not compile any social

risk maps.

Table 2 Summary of hazardous
thresholds of tephra used for each
vulnerability theme

The range of hazardous
accumulation describes the range
in which hazard index linearly
increases from 0 to 1

Vulnerability theme Hazard thresholds
(kg/m2)

Elements at risk

Social – Population

Economic 5–150 Crops

Environmental 5–1500 Intact forests,
natural areas

Physical 100–300 Buildings, roofs

Territorial 0–100 Roads, critical facilities
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3.2 Economic risk

As described in Sect. 2.2.2, the qualitative economic analysis presented here is based solely

on the agricultural production, which is the dominant source of income for the majority of

rural areas around Cotopaxi volcano. Literature abounds with reports on both positive and

negative effects of tephra deposition on crops (Inbar et al. 1995; Wisner et al. 2004; Martin

et al. 2009), with the most comprehensive database of damage on different types of crops

found in Blong (1984) presenting a survey of the impacted vegetation following the

1943–1952 eruption of Paricutin volcano (Mexico).

Considering a density of the deposit of 1,000 kg/m3 and following the approach of

Blong (1984) described in Sect. 2.2.2, we have defined here the hazardous range of tephra

fallout for the risk assessment on crop as ranging from 5 to 150 kg/m2. For each hazard

scenario, the output hazard raster was reclassified in order to assign a hazard index linearly

increasing from 0 to 1 between tephra accumulations of 5–150 kg/m2, with a constant

value of 1 above 150 kg/m2. The hazard index was then averaged on the area of each

individual administrative unit, including two standard deviations in the final hazard index

to take into account the variability related to the irregular shapes of administrative units.

The risk index was calculated as the multiplication of this hazard index by the economic

vulnerability index defined in Sect. 2.2.2, resulting in values comprised between 0 and 1.

Five risk classes were defined: Very low (0–\0.2), Low (0.2–\0.4), Medium (0.4–\0.6),

High (0.6–\0.8), Very high (C0.8). The entire process was applied to all eruption

scenarios.

Online Resource 2 contains all the final economic risk analysis for all scenarios con-

sidered in the hazard assessment, and Fig. 3a shows the economic risk considering an

eruptive scenario of the type ERS of VEI 4. As expected, the risk decreases with distance

from the volcano and with decreasing size of eruptive events. The areas of Archidona,
Mulalo, Machachi, San Juan de Pastocalle, Tanicuchi and Aloasi are the most affected

parishes in all scenarios.

3.3 Environmental risk

The analysis of the environmental risk was carried out based on the vulnerability approach

described in Sect. 2.2.3. The hazardous thresholds used range from 5 kg/m2 (minor

damages to vegetation) up to 1,500 kg/m2 (near total kill zone) in agreement with Blong

(1984). The resulting risk indices were calculated as the product of hazard and vulnera-

bility, for each eruption scenario. Similarly to the economic risk, resulting risk indices are

comprised between 0 and 1, and the same risk classes were applied to the environmental

risk.

3.4 Physical risk

The risk for infrastructures was based on the classification described in the Sect. 2.2.4, and

with hazardous tephra thresholds ranging from 100 to 300 kg/m2. Using a simple logic

script, we have defined that:

• Buildings of type 1 collapse with a tephra accumulation of 100 kg/m2,

• Buildings of type 2 collapse with a tephra accumulation of 200 kg/m2,

• Buildings of type 3 collapse with a tephra accumulation of 300 kg/m2,
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Fig. 3 Thematic risk maps per parroquia based on an eruptive scenario of type ERS of VEI 4 showing
a economic risk with qualitative subdivisions of the risk level and b physical risk showing the number of
buildings expected to collapse in each administrative unit. N/A refers to gaps in the census survey. Risk
maps for all themes and all eruptive scenarios can be found in Online Resource 2
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which allows for a quantitative estimation of the number of buildings likely to be affected

by a given eruptive scenario within each administrative unit. The risk maps show both

qualitative and quantitative classifications. First, the colour scheme based on risk classes is

defined as the proportion of collapsed buildings for a given eruption scenario, classified as

Very low (0–\20 %), Low (20–\40 %), Medium (40–\60 %), High (60–\80 %), Very
high (C 80 %). Second, the number of building collapsing for each eruption scenario is

also indicated for each administrative unit.

The resulting risk maps show a higher risk in administrative units located in the

proximal and downwind areas and decreases away from the vent (Fig. 3b), which do not

contain high densities of population (Fig. 1). Figure 3b is the resulting physical risk map

considering an ERS of VEI 4 where the two closest parishes (Mulalo and Machachi) have

values of building collapse of 2246 and 6221, respectively, corresponding to a loss of

100 % of the buildings in both cases. Physical risk maps for all eruptive scenarios are

shown in the Online Resource 2.

3.5 Territorial risk

The risk component of the assessment of the inter-dependency of systems was assessed

using the only geographical features available, namely roads and airports. Hospital and

military bases considered in the vulnerability assessment were inferred from the 2001

Censo de poblacion y vivienda from the Instituto Nacional de Estadı́sticas y Cencos de
Ecuador (INEC) and therefore averaged to administrative units.

A cost-distance mapping to the closest airport via the road network was achieved by

assigning weights to the different road classes. Our territorial risk assessment included a

second weighting of the road network depending on the tephra accumulation on the

ground, and performing a second cost-distance mapping excluding airports comprised

within the 1 kg/m2 area (see Sect. 2.2.5). In the absence of reports of relationship between

ground-deposited tephra and blockage of the road transportation, sensible tephra thresholds

for the road network were defined from ranging between 0 and 100 kg/m2, with blockage

of the roads occurring at this highest level. Relative weighting of the road network was

performed by increasing the weight of roads depending on the amount of tephra, reaching

an equal weight as ’’free land’’ when impacted with 100 kg/m2 or more of tephra. An

arbitrary risk classification was defined using Jenks (1967) methods on the final cost-

distance values related to a moderate eruption (i.e. ERS for VEI 4), which was then applied

to all eruption scenarios.

Although high territorial risk values occur biased towards administrative units that do

not have complete information of road network, these maps can be viewed as a first attempt

to describe the disruption within an interconnected system. Territorial risk maps can be

found in Online Resource 2.

4 Discussion

We have developed a method for a fast and remote qualitative assessment of the vulner-

ability and the risk related to tephra fallout. The methodology was applied to Cotopaxi

volcano, for which a thorough hazard assessment is described in Biass and Bonadonna (this

volume). In this paper, we propose the use of isomass maps for a given probability (e.g.

Fig. 1) when combining probabilistic hazard modelling and vulnerability assessments. In

fact, isomass maps for given probability levels (e.g. 50 %) make the evaluation of the
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exposure clearer to decision-makers and the identification of the potential losses faster for

governments. The acceptable levels of risk required to compile isomass maps are of

complex identification (Marzocchi and Woo 2009; Villagrán de León 2006).

4.1 New strategy for risk assessment

The methodology used here to assess the risk is based on global and free georeferenced

datasets. The final product is a thematic risk assessment, where the definition of the

different themes is strongly related to the hazard considered and the availability of

georeferenced data. Here, and in agreement with the work of UN/ISDR (2004), five vul-

nerability themes relevant to tephra fallout were identified, ranging from strictly physical

and structural vulnerability to socio-economic and territorial aspects. The hazard related to

tephra fallout is characterized as a long-lasting low-intensity phenomenon, as it does not

directly kill but it is able to affect human activities for days, weeks or months, and often

requires heavy cleaning operations (Blong 1984; Johnston et al. 2000; Wilson et al.

2011c). As a result, a study of the physical domain is important as whole buildings can

collapse under tephra blanketing; an evaluation of the territorial aspect helps to understand

the complex large-scale disruptions of different networks; socio-economic aspects help to

assess government costs of such a large-scale hazard. On the contrary, hazards associated

with phenomena such as lahars or lava flows are mainly likely to disrupt the physical

domain (i.e. burrial and burning processes) and would require a smaller number of themes

to be relevant. Specifically to Cotopaxi volcano, this approach differs from previous risk

assessments (D’Ercole 1996; D’Ercole and Demoraes 2003), which considered the risk

based on social vulnerability only, and proposes similar approaches towards all volcanic

hazards.

Our method strongly relies on the national Ecuadorian census (INEC 2001), which

provides socio-economic indicators and a building census averaged at the fourth level of

administrative unit (Admin 4, Parroquia). The end product of this method is a vulnera-

bility/risk ranking per parroquia displayed on a map, similarly to the work of Aceves-

Quesada et al. (2007). Considering the limitations of the use of maps as a communication

tool listed by Handmer and Milne (1981), Newhall (2000) and Haynes et al (2007), a few

observations can be made. First, most people find difficult to locate themselves on a map,

to interpret topography or to estimate the extent of a contoured zone (Haynes et al. 2007).

Contour-based maps are thus often an ineffective method to communicate hazard and risk

information (Handmer and Milne. 1981), and some authors adopt risk ranking without any

map display (Magill and Blong 2005a, b). Ranking per administrative units allows for an

easy localization process by administrative unit, as well as for a comprehensive geo-

graphical comparison of the vulnerability and risk levels over a region of interest. Although

a contour is still inherent, it does not involve an equally sharp boundary and provides the

reader with an easier concept of a gradual variation of the risk levels. Second, Newhall

(2000) argues that ‘‘although maps are everyday tool for volcanologists, they are too
abstract and difficult for many users of volcano warning’’. As previously mentioned, the

aim of the maps produced by our method is to give an overview of the vulnerability and

risk levels over a large scale, and these maps do not aim at assisting emergency man-

agement at a local scale. For this purpose, this method might provide a more efficient

communication tool than contour-based (i.e. Lirer and Vitelli 1998; i.e. Thierry et al. 2008)

or pixel-based maps (i.e. Alberico et al. 2008; i.e. Lirer et al. 2010).

This approach aims at producing fast remote vulnerability and risk assessments, which

do not require a strong knowledge of the area and do not rely on precise (and thus often
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expensive) georeferenced datasets. As a result, both vulnerability and risk assessments

consider an equal importance of indicators within a given theme, and an equal importance

of all themes. This simplified approach is clearly not entirely valid in practice, as socio-

economic and cultural contexts vary amongst countries. As an example, D’Ercole and

Demoraes (2003) produced a large-scale multi-hazard risk assessment in Ecuador using the

knowledge of NGOs to weight the relevant indicators. In this regard, the use of Multi-

Criteria Evaluation (MCE) techniques within GIS platforms to assist decision-making has

received an increasing attention during the past decade (Joerin et al. 2001; Torrieri 2002;

Malczewski, 2006; Aceves-Quesada et al. 2007). MCE allows for a number of factors to be

integrated, for decision rules and hierarchies to be applied (Aceves-Quesada et al. 2007)

and is integrated in most of current GIS platforms. As a result, our method provides

vulnerability and risk assessments in which all indicators and themes have a weight of 1.

MCE techniques could help to redefine these weights based on a wider knowledge of social

and economic aspects of a region.

Assessing the risk of tephra fallout requires the identification of critical thresholds of

tephra accumulation for each theme. The definition of hazardous thresholds usually relies

either on thorough field investigations after an eruption (Blong 1984; Inbar et al. 1995;

Spence et al. 1996; Johnston et al. 2000; Blong 2003; Martin et al. 2009; Wilson et al.

2011a, b, c) or on a combination of theoretical and laboratory experiments (Spence et al.

2005; Stewart et al. 2006), and they are often geographically constrained due to several

factors (i.e. variability of the type/composition of volcanic products, climate, quality of

exposed elements). Here, we have defined simplified hazardous thresholds based on a lit-

erature study for all themes except for social aspects, where the relationship between exposed

populations and tephra fallouts require further investigations. In the case of economic and

environmental themes, we have assumed a linear increase in the impact levels between

general impact boundaries. A refinement of these boundary values as well as the impact

response considering the vegetation species present in the area is necessary. In the case of the

economic theme, the identification of the main types of crops as well as the definition of their

monetary value would result in an efficient impact assessment. The physical assessment,

helped by a local knowledge of the area (Hugo Yepes, personal communication), results in a

quantitative assessment of the number of buildings likely to collapse, which could be

expressed as cost if a monetary value was defined for each building class identified in Sect.

2.2.4. The territorial assessment was carried out to evaluate the interconnectivity of critical

infrastructures and consisted in the investigation of the theoretical accessibility of airports

based on the road network. While the thresholds for airports closure are commonly agreed to

be around a few millimetres (Bonadonna 2006; Guffanti et al. 2009), a large variability of

tephra accumulation is reported to affect and paralyse the road network, depending on the

distance from the vent (e.g. deposit grain size) and on the climate (e.g. dry/rainy conditions)

(Blong 1984; Wilson et al. 2011c). Here, a progressive linear blockage of the road network

was assumed to occur between 0 and 100 kg/m2, as the elaboration of more precise response

curves would require to incorporate a large number of independent factors. As a result, the

definition of hazardous thresholds of tephra fallouts on exposed elements is often the main

difficulty to compilation of risk assessments. Recent studies show important advances in the

topic of agriculture (Wilson et al. 2011a, b), buildings (Spence et al. 2005; Marti et al. 2008)

and critical infrastructures (Stewart et al. 2006; Bebbington et al. 2008; Wilson et al. 2011c),

allowing for new methods for risk assessment to be developed.

Finally, although the risk assessment carried out here is restricted to some specific

aspects, the methodology can be used as a basis to develop a more complete approach to

volcanic risk assessment. In particular, our social and economic vulnerability assessments

514 Nat Hazards (2013) 65:497–521

123



use global indicators that fail to capture complex socio-economic patterns. The social vul-

nerability relies on three indicators (age, education level, proportion of children/seniors/

invalids), whereas more comprehensive definitions relate social vulnerability to complex

issues such as levels of well-being of individuals, gender, health, literacy, education, the

existence of peace and security, access to human rights, social equity, traditional values,

beliefs and organizational systems (Villagrán de León 2006). Additionally, many indigenous

communities live in and around the province of Cotopaxi (INEC 2001), which are known to

add complexity to patterns of social vulnerability and resilience, and require the use of

specific indicators (Ellemor 2005; Gaillard 2007; Cashman and Cronin 2008). Similarly,

economic vulnerability, defined here as depending only on agriculture, comprises factors

such as levels of individual, community and national economic reserves, levels of debts,

degrees of access to credits, loans and insurance and economic diversity (Villagrán de León

2006). As a result, detailed datasets are required to define more precise indicators, which

would result in a more accurate risk assessment. Also, this methodology relies on the tech-

nique of Jenks (1967) to define vulnerability classes, which considers the observed popu-

lation as uniform. In the case of the presence of different communities with distinct socio-

economic contexts, this assumption can lead to a misinterpretation of the vulnerability of

minorities.

4.2 Caveats

• Our method can mainly be used to compare vulnerability levels of some themes

amongst administrative units. Due to the dependence on the nature of the datasets used

to evaluate the vulnerability, this method cannot be used to compare the vulnerability

of two different geographical and cultural regions.

• Our method depends on the availability and completeness of free and global data. As an

example, the OpenStreetMap dataset is a very promising source of georeferenced data,

but currently lacks of homogeneity in the precision between different parts of the

world, and between urban and rural areas.

• Our method is based on statistical strategies to divide the whole datasets of resulting

vulnerability indices into a global vulnerability value, which implies that the definition

of the classes is related to the nature and the statistical distribution of the data (Jenks

1967). Vulnerability classes presented here are strongly related to the datasets used in

this study and do not rely on previously defined thresholds.

• Major assumptions are made in the definition of our vulnerability indicators (e.g.

economic aspects described solely with the proportion of agricultural lands).

• No aspect of coping capacity or resilience was included in our social vulnerability

assessment.

• Sharp boundaries between vulnerability classes fail to describe the gradual transition

between different geographical features.

4.3 Risk assessment of Cotopaxi volcano

Our field and literature analysis has shown the capacity of Cotopaxi volcano to produce

large explosive eruptions, always followed by tephra fallout and lahars (Barberi et al.

1995; Hall and Mothes 2008; Biass and Bonadonna 2011). Combining our hazard

assessment (Biass and Bonadonna, this volume) with the vulnerability analysis presented

in this paper, we conclude that:
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• Between *18,000 (ERS VEI 3) and *820,000 (ERS VEI 5), people could be affected

by tephra fallout of * 1 kg/m2, with consequences on public health (respiratory

problems, eye irritation) and rapid abrasion of household facilities (cars, air

conditioning systems). This amount of tephra covers areas between * 2,000 and

*80,000 km2 (ERS for VEI’s 3 and 5 respectively; Biass and Bonadonna, this

volume), with significant economic consequences related to the closure of the Mariscal

Sucre Airport of Quito.

• Areas between * 300 and * 18,000 km2 (ERS for VEIs 3 and 5, respectively) could

be affected by an accumulation of tephra of 10 kg/m2 (about 1 cm). As shown in

Fig. 1, the area most likely to be impacted is located west of the volcano, along the

direction of prevailing winds, with consequences on (1) the important Panamerican

Highway, which connects the Southern towns and cities of the Interandean valley to

Quito and (2) the rural areas located around the town of Latacunga. The tephra

threshold of 10 kg/m2 can therefore seen as critical in this area, bearing impacts on

both accessibility and communication networks as well as on the local economy (i.e.

damage to crops).

• Finally, the area threatened by collapse of the weakest roofs varies from *30 to

*2,400 km2 (ERS for VEI 3 and 5, respectively, threshold of 100 kg/m2), west of the

volcano.

As a result, the combination of a highly explosive behaviour of Cotopaxi volcano

coupled with the close presence of both multiple human settlements and critical facilities

could result in acute situations in the context of a volcanic crisis, even with the scenario

with the lowest intensity considered in this study (ERS for VEI 3). High risk arises from (1)

the proximity of the Mariscal Sucre airport of Quito, acting as a main communication hub,

(2) the importance of agriculture on the local economy and (3) the structural situation of

the Panamerican Highway coupled with a lack of redundancy of main roads. Furthermore,

the risk situation in the Interandean valley is even more complex, as the volcanic threat

does not come solely from Cotopaxi volcano, but from a whole range of active and

potentially dangerous volcanoes (Guagua Pichincha, Reventador, Tunguraghua). The

development of a comprehensive land use planning, an eduction programme dedicated to

raise the awareness of local communities to volcanic threat as well as the elaboration of

proper evacuation schemes incorporating eruptive scenarios might help to reduce the level

of risk around Cotopaxi volcano.

Placing back this methodology in the context of an ongoing effort to assess volcanic

risk, we have developed a method specifically designed for the risk associated with tephra

fallout. Looking at the available literature on risk assessment of volcanic areas, important

points can be highlighted:

• Due to the precision of the available georeferenced datasets and the scale of the study

area, our vulnerability and risk assessments have been averaged to the smallest level of

administrative unit available. This approach, similar to the method of Aceves-Quesada

et al. (2007) for vulnerability assessments, differs from the approach of risk zonation

used, for example, by Lirer and Vitelli (1998) and Thierry et al. (2008). This is due to

the nature of the population census, which provides indicators averaged per

administrative unit. The resulting maps present the geographical distribution of

vulnerability and risk levels of the administrative units across the study area, which

allows for a rapid comparison amongst the three different regions of the country, in

contrast with detailed zonations able to describe the risk at smaller scales.
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• Rather than assessing the global vulnerability or risk to one or several threats and

provide global maps (Aceves-Quesada et al. 2007; Thierry et al. 2008), this method

aims to draw thematic vulnerability and risk maps in order to underline the

characteristics of each administrative unit and to enhance the geographical comparison

previously discussed.

• The final aim of such a method is to provide a robust quantitative estimate of the risk to

decision-makers, which requires the definition of a unit of risk. Currently, the most

commonly used unit is monetary value, which requires precise data and a proper

knowledge of the study area. Our methodology cannot yet provide a quantitative risk

assessment based on monetary values, but it provides a fast and comprehensive strategy

that can easily be applied remotely at regional levels and can be implemented once

more detailed information is made available.

5 Conclusion

This study is a first step towards a fast comprehensive risk assessment for tephra fallout of

areas located in the vicinity of active volcanoes. The methodology presented here is an

alternative to the use of expensive and scarce high-resolution georeferenced dataset and is

based on open-source and free global data. It is relatively fast and flexible and could be

used even remotely as a fast tool for short-, mid- and long-term analysis in the context of

contingency planning, land use planning and decision-making.

Main outcomes of this method are:

• A qualitative thematic vulnerability assessment (i.e. social, economic, environmental,

physical and territorial), with indicators for each theme designed to specifically

describe the vulnerability towards tephra-related hazards.

• A costless assessment based on free datasets such as OpenStreetMap (roads, place

names, airports), GlobCover (land cover), WDPA (protected areas), Greenpeace (intact

forest landscape) and SRTM (digital elevation model).

• A new way of using a probabilistic hazard assessment of tephra dispersion in

combination with a vulnerability assessment, based on the compilation of isomass maps

for a given probability threshold.

• A thematic risk assessment, including a quantitative estimate of building losses caused

by extreme tephra load, and a first attempt to dynamically describe the impact of tephra

fallout on the interconnectivity of communication network using GIS tools based on

critical values of tephra for airport closure and disruption of the road network. It also

compiles estimates of the economic and environmental risk levels. Due to the complex

impact range of tephra fallout on social aspects of vulnerability, the compilation of risk

maps was not yet possible.

Regarding Cotopaxi volcano:

• The risk being defined as a function of hazard and vulnerability, the proximity of an

active volcano to a high population density confined in a valley makes the surrounding

populations exposed to high levels of risk.

• The importance of agriculture as a source of income in this area would lead to socio-

economical impacts in case of tephra fall, and the occurrence of an eruption of medium

intensity similar to the one used in this paper would have a 50 % probability of

affecting agricultural activities in an area of about 6,000 km2.
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• The combined exposure and structural confinement of the Panamerican Highway on the

bottom of a valley would induce strong communication problems in the case of a

blockage of the road network due to tephra fallout.

• In most of our eruption scenarios, Quito is exposed to light tephra deposition (e.g. 50 %

probability of an accumulation of tephra C 1 kg/m2 for an eruption of VEI 4), exposing

the international airport to a possible closure. Similarly, the airport of Latacunga is

likely to close even during small eruptions, and the airport of Ambato suffers similar

probabilities of closure as the airport of Quito. Even though these airports are of

smaller importance compared to the international hub of Quito, their closure could be

problematic if rapid transportation during a volcanic crisis is required.

At a parish level:

• The economic risk is the highest in the eastern part of the Cotopaxi province (parishes

of Guaitacama, Joseguando Bajo, Poalo, San Juan de Pastocalle, Tanicuchi, Toacaso,

Saquisili, Chanchagua and Chantilin) and the southern part of the Pinchincha province

(Machachi, Aloasi, El Chaupi).

• The environmental risk is high in the province of Cotopaxi due to the presence of

natural reserves, and in the province of Napo due to the Amazonian forest.

• The physical risk is high for parishes close to the volcano, with the two most affected

parishes of Mulalo and Machachi having a 50 % probability of having a collapse of

100 % of the buildings (i.e. *2,200 and *6,200 buildings, respectively) in the case of

an eruption of VEI 4.
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une menace volcanique. Application à la région du volcan Cotopaxi (Equateur). Bull Inst Frétudes
Andines 25(3):479–507

D’Ercole R, Demoraes F (2003) Risques et réponses institutionnelles en Equateur–Cartes et méthodes.
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