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Abstract 

Single-center light upconversion corresponds to the pilling up of low-energy photons via successive 

linear absorptions: a phenomenon commonly observed in lanthanide-doped low-phonon ionic solids 

or nanoparticles. Its ultimate miniaturization in molecular complexes opens challenging perspectives 

in term of improved reproducibility, chemical control and optical programming. However, high-

energy vibrations inherent to coordination complexes severely limit the efficiency of successive 

excited-state absorptions (ESA) responsible for the gain in photon energy. By carefully wrapping 

three polyaromatic ligand strands around trivalent erbium, we managed to induce low-power room 

temperature near infrared (exc = 801 nm or 966 nm) to visible green (em = 522 nm and 545 nm) light 

upconversion within mononuclear coordination complexes [Er(Lk)3]3+ operating either in the solid 

state or in non-deuterated solution. The calculated upconversion quantum yields set the zero-level of 

an elemental erbium-centered molecular ESA mechanism, a values which favorably compares with 

cooperative upconversion (CU) previously implemented in sophisticated multisite Yb2Tb 

supramolecular assemblies. The various dependences of the upconverted emission on the incident 

excitation power imply different mechanisms, which can be tuned by molecular design.  
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Introduction. 

In optics, the common degradation of energy considers the conversion of high-energy photons into 

photons of lower energy (downshifting) together with heat dissipation. The reverse situation, in which 

low-energy photons are transformed into higher energy ones (up-conversion) was early envisioned as 

a consequence of the non-linear dependence of the refractive index on the applied electric field,1 and 

theoretically predicted by Goeppert-Mayer in 1931.2 However, the so-called non-linear optical (NLO) 

response of matter is so inefficient that its experimental illustration for second-harmonic generation 

(in quartz)3 and for two-photon excitation fluorescence (in Eu2+-doped materials)4 was delayed until 

the first ruby laser providing strong and coherent incident beam became available in 1960.5 Beyond 

symmetry rules, there is no specific limitation for implementing NLO responses in matter and both 

macroscopic solids or (bio)molecules are prone to work as non-linear optical activators as long as 

huge incident power intensities in the 105-1010 Wcm-2 range are used.6 In parallel with NLO 

investigations, Bloembergen,7 rapidly followed by Auzel8 realized that open-shell centers possessing 

ladder-like series of intermediate excited states with small radiative rate constants (kr), as found for 

trivalent lanthanides, Ln3+, could be used as relays for successive linear excitations. When such ions 

are dispersed into low-phonon solids, the non-radiative relaxation pathways (knr) are also minimized 

to such an extent that linear excitation (kexc) becomes competitive with relaxation (krelax = kr + knr) and 

intermediate excited states can absorb efficiently additional photons to reach higher-energy excited 

levels. The latter sequential pilling up of several photons on a single activator (Excited-State 

Absorption = ESA) exploits linear optics and results in the conversion of low energy infra-red into 

visible photons, a phenomenon referred to as upconversion (Scheme 1).9 The use of more efficient 

linear optics combined with the sequential, rather than simultaneous (in NLO), nature of the 

excitation, negates the need for excessively high incident intensities and upconversion can be 

achieved using excitation powers that are 5-10 orders of magnitude lower than those required for 

NLO. A further gain in efficiency of up to two orders of magnitude9a can be generated by the use of 

optimized peripheral sensitizers for absorbing photons prior to the stepwise transfer of the 
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accumulated energy onto the activator (energy transfer upconversion = ETU). In these conditions, 

upconversion quantum yields as large as 4-12% have been implemented in multi-centered mixed 

lanthanide-doped oxides or fluorides.10 These encouraging achievements make a multitude of 

challenging applications possible which intend at (i) reducing the spectral mismatch for solar cell 

technology,9 (ii) designing near-infrared addressable luminescent bioprobes where the biological 

tissues are transparent11 and (iii) optimizing wave guides,12 security inks13 lasers and display 

devices,14 and this despite the weak absorption cross sections of f-f transitions in lanthanides (on the 

order of   10-20 cm2)15 or of d-d transitions in transition metals (on the order of   10-19 cm2).16 

 

Scheme 1  (a) Kinetic scheme for the modeling of the linear single-ion ESA process occurring upon 

off-resonance irradiation into the activator-centered absorption band and (b) associated first-order 

kinetic equations. exc
i jk  , r

i jk  , nr
i jk   are the first-order rate constants for excitation, radiative decay 

and non-radiative decay, respectively and relax r nr
i j i j i jk k k    . 

Attempts to reduce the size of upconverting solids toward the nanometric scale for being compatible 

with high-technology hybrid materials and with their incorporation into biological organisms 

drastically suffer from surface quenching and difficult reproducibilities.11,17 Maximum upconversion 

quantum yields within the 0.1-0.5% range have been obtained for optimized nanoparticles after 
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surface passivation18 and/or coupling to a surface plasmon for increasing both absorption cross 

sections and radiative decays.19 Because the intensity of the upconverted light 
22 0

upconversion rI k N  

reflects the population density of the second excited state 2N , its magnitude drastically depends on 

the lifetime of the intermediate excited state  1 1 0 1 0
r nr1 k k    . Solving the matrix equation 

depicted in Scheme 1b for trivalent erbium incorporated into long-lived doped solids (for instance 

1  = 3.7 ms in Gd2O2S) under steady-state excitation using reasonable incident pump power (1-10 

Wcm-2) predicts mole fractions of 210-3 ≤ 2N  ≤ 510-3 for the double excited state A**.20 Similar 

calculations performed for typical short-lived molecular erbium-based complexes possessing high-

energy C-H, C-C and C-N oscillators (for instance 1  = 2.8 s in a [GaErL3] helix) do not exceed 

2N  ≤ 10-11.20 It is thus no so surprising that single-centered linear upconversion was originally 

thought to be undetectable in molecular lanthanide complexes,21 and huge incident power intensities 

around 109 Wcm-2 produced by modern pulsed femto-lasers were required to induce faint 

upconverted signals for [Ln(2,6-dipicolinate)3]3-, [Ln(EDTA)]- (Ln = Nd, Tm, Er),22 and 

[Tm(DMSO)x]3+ in solution.23 These discouraging results, combined with the approximate 0.1 Wcm-

2 power density of the terrestrial solar irradiance,9c,d paved the way for the exclusive consideration of 

non-coherent upconversion based on triplet-triplet annihilation (TTA) as the only viable route for 

performing reliable and workable linear upconversion in molecules.24 However, if the latter 

annihilation process occurs between two discrete triplet-state entities, their formation requires energy 

diffusion through multiple chromophores and cannot be really considered as a (uni)molecular 

process.25 Let’s therefore return to the challenge of implementing single-centered upconversion in a 

molecule where (i) the strong coupling with undesirable high-energy oscillators (mainly O-H, C-H 

vibrations) limits intermediate excited-state lifetimes and (ii) the small lanthanide absorption cross 

section i j   provide minor excitation rate constants exc
i jk   (eq. 1; P is the pump wavelength, P is the 

incident pump intensity, h is the Planck constant and c is the speed of light in vacuum).26 
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p
exc
i j i jk P

hc


   (1) 

 

Fig. 1  Erbium-based coordination complexes exhibiting linear upconversion processes following the 

ETU mechanism. The X-ray crystal structure is shown for a) [CrErCr(L)3](CF3SO3)9 28a and chemical 

structures deduced from spectroscopic data recorded in solution are depicted for b) [IR-

806][Er(L)4],29 c) [(LEr)F(LEr)]+ 30 and d),e) [Tb(YbL)2].31  

The decorrelation between light absorption, performed by specific sensitizers, and light-upconversion 

occurring on an optimized lanthanide activator in multicenter molecular aggregates using the ETU 
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mechanism proved to be less challenging and some protected Er(III)-activators combined with 

optimized peripheral Yb(III)-sensitizers in multi-doped metal-organic frameworks or coordination 

polymers displayed weak upconverted green (Er(4S3/24I15/2) and red (Er(4F9/24I15/2) signals upon 

intense Yb(2F5/22F5/2) excitation.27 Encouraged by these preliminary data collected on infinite 

macroscopic solids, an Er(III) activator was flanked by a couple of Cr(III) sensitizers in the molecular 

triple helix [CrErCrL3]9+ to give the first molecular-based green upconversion process induced by 

reasonable power pump intensities (Fig. 1a).28 This success was rapidly confirmed for two other 

molecular sensitizer/activator pairs obtained by host-guest associations in organic solvents ([IR-

806][Er(L)4] in Fig. 1b)29 or in water ([(LEr)F(LEr)]+ in Fig. 1c).30 None of these ETU processes 

were characterized by quantum yield measurements because of the very faint upconverted signals. In 

two recent publications,31 Charbonnière and coworkers reported on two novel aqueous-phase 

assemblies made of a central Tb(III) activator surrounded by two or more Yb(III) sensitizers 

([Tb(YbL)2] in Figs 1d-e). Surprisingly, these (supra)molecular entities exhibit detectable near-

infrared to green upconversion, for which only cooperative energy transfers may explain the feeding 

of the high-energy Tb(5D4) level (Figs 1d-e). Though some aspects of the theoretical modeling of the 

latter cooperative upconversion mechanism (CU) are rather analogous to ETU, its efficiency is 

usually much weaker because it involves quasi-virtual pairs levels between which transitions have to 

be described by higher-order perturbations.9a Despite this limitation, Charbonnière and coworkers 

were able to estimate a quantum yield of up= 1.410-8 for the complex depicted in Fig. 2e (deuterated 

water, room temperature).31b Boosted by these remarkable results, we reasoned that ultimate 

miniaturization using single-site excited state mechanism (ESA) implemented in a trivalent erbium 

complex should become an obvious target for setting a zero-level for the quantification of molecular 

upconversion. Taking advantage of the rare dual visible (Er(4S3/24I15/2) at 542 nm, green) and near-

infrared (Er(4I13/24I15/2) at 1520 nm) downshifted emissions observed upon UV excitation of the 

triple-helical [Er(L1)3]3+ complex (Fig. 2a), a chromophore which closely mirrors the activator unit 

in the triple helix [CrErCrL3]9+ (Fig. 1a),32 we recently discovered that some weak upconverted green 
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signals could be generated upon direct near-infrared excitation of the erbium center in this system.33 

Building on these preliminary data, we report here on the quantification and detailed mechanism 

rationalizing the rare single-site upconversion occurring in [Er(L1)3]3+. Comparison with related 

optical processes implemented in analogous, but stepwise deprotected [Er(Lk)3]3+ (Lk =2-4) 

mononuclear triple helices offers an opportunity for establishing some preliminary rules for 

implementing single-center erbium upconversion in molecular complexes (Fig. 2). 

 

Fig. 2  Erbium-based coordination complexes exhibiting linear upconversion processes following the 

ESA mechanism discussed in this work. The X-ray crystal structures are shown for 

[Er(L1)3](ClO4)31.5CH3CN, [Er(L2)3](ClO4)3, [Er(L3)3](ClO4)3 and [Er(L4)3](ClO4)31.5CH3CN. 

The counter-anions, solvent molecules and H atoms are omitted for clarity. Color code: C = grey, 

blue = N, green = Er.32  
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Results and Discussions 

Preparation and structural characteristics of the triple-helical complexes. The four tridentate 

ligands L1-L4 (Fig. 2) have been shown to react with Er(ClO4)3 in acetonitrile to give highly stable 

triple helical complexes [Er(Lk)3]3+ (<0.1% dissociated at 10 mM total concentration), which can be 

crystallized by slow evaporation.32 In the crystal structures of [Er(Lk)3](ClO4)3 (Fig. 2), the Er cations 

are well-protected from external metallic perturbations (i.e. no cross-relaxation process) since the 

shortest intermolecular ErEr distances amount to 1.03-1.21 nm. Furthermore, the closest 

intramolecular ErH contact distance (C-H oscillators) reaches 3.86 Ǟ for [Er(L1)3]3+ (L1 is a 2,6-

bis(benzimidazol-2-yl)pyridine ligand), but slightly shrinks to 3.42-3.46 Ǟ for [Er(Lk)3]3+ (Lk = L2-

L4, terpyridine-based ligands). Compared with ErH contact distances of 2.85 Å found for the aquo 

ion [Er(H2O)9](CH3CH2SO3)3 (O-H oscillators),34 the situation of trivalent erbium in the [Er(Lk)3]3+ 

complexes is compatible with limited multiphonon relaxation due to coupling with remote high-

energy oscillators35 as ascertained by the 2-6 s characteristic room-temperature lifetimes reported 

for the emissive Er(4I13/2) levels.32 Whereas intramolecular ErH distances are not significantly 

modified in solution for these rigid triple-stranded helicates,36 the average intermolecular ErEr 

distance extends to approximately 6.8 nm at 10 mM concentration, which makes these metallic 

centers completely isolated in solution. 

Light-downshifting operating in the mononuclear triple-helical complexes. With these structural 

characteristics in mind, it is not so surprising that ligand-centered excitation at 401 nm of these 

trivalent erbium complexes [Er(Lk)3]3+ in the solid state and in solution systematically showed dual 

downshifted visible Er(4S3/24I15/2) and near-infrared Er(4I13/24I15/2) luminescence at 542 nm and 

1515 nm, respectively (Fig. 3).32 The log-log plots of the intensity of the emitted light with respect to 

the incident power return slopes around 1.0 (Fig. 3),26 which are the signatures of single-photon 

ligand-centered excitation processes followed by energy migration according to the antenna effect 

(Fig. 4a).32 Please notice in Fig. 3a the superimposition of the visible Er(2H11/24I15/2) and 
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Er(4S3/24I15/2) emission bands with the tails of the residual broad ligand-centered 1*1 bands, 

which is typical for an incomplete metal sensitization via the antenna mechanism.  

 

Fig. 3  Downshifted a) visible and b) near-infrared emissions and corresponding log-log plots of 

downshifted intensities I as a function of incident pump intensities P (in mW/cm
2
) observed for 

[Er(L1)3](ClO4)3 (solid state, 298 K) upon ligand-centered laser excitation at 401 nm (24938 cm-1) 

and for different incident pump intensities focused on a spot size of ≈ 0.05 cm2. 

Alternatively, the low-energy downshifted near-infrared Er(4I13/24I15/2) luminescence at 1515 nm 

can be sensitized via direct Er-centered excitation at exc = 801 nm into the Er(4I9/24I15/2) transition 

(molar absorption coefficients 0.20 ≤ 801 ≤ 0.24 M-1cm-1, Table S1) of the [Er(Lk)3]3+ complexes in 

acetonitrile solution (Fig. 5a) or in the solid state (Figs S1-S3 in the ESI). The slopes of log(I)-log(P) 

plots are systematically close to 1.0 (Fig. 5b), a trend in line with single-photon excitations according 

to the standard mechanism depicted in Fig. 4b (left).  
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Fig. 4  Jablonski diagram summarizing the downshifting processes following a) ligand-centered or 

b) erbium-centered excitation (dashed upward arrows), energy transfers (dotted horizontal arrows), 

non-radiative multiphonon relaxation (undulating arrows) and radiative emission processes (straight 

downward arrows) operating in the complexes [Er(Lk)3]3+ (Lk = 1-4).  

Interestingly, the dependence of the emitted downshifted intensity exc:801
downI  on the temperature T is 

completely different for the terpyridine derivatives [Er(Lk)3]3+ (Lk = L2-L4) and for the extended 

2,6-bis(benzimidazol-2-yl)pyridine analogue [Er(L1)3]3+ (Fig. 5c and Fig. S4). A reasonable 

explanation considers that the non-radiative Er(4I9/2)  Er(4I13/2) relaxation pathway (E  5900 cm-

1, Fig. 4b), requested for feeding the emissive Er(4I13/2) level following 801 nm excitation, is strongly 

phonon-activated (harmonics and/or combination bands) with terpyridine ligands. This mechanism 

disappears at low temperature, which overcomes the expected increase in intensity due to the 

minimizing of the non-radiative quenching of the Er(4I13/24I15/2) luminescence at 1515 nm. For the 

extended 2,6-bis(benzimidazol-2-yl)pyridine binding units in [Er(L1)3]3+, the larger density of 

available vibrations detected in the fingerprint region of the IR spectrum (Fig. S5) provides some 

better adapted combination of vibration modes for filling the pertinent energy gap E = E(Er(4I9/2))-

E(Er(4I13/2)  5900 cm-1 and the downshifted luminescence is retained at low temperature (Fig. 5c). 
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Fig. 5  a) Near-infrared downshifted Er(4I13/24I15/2) emission observed for [Er(L1)3](ClO4)3 in 

acetonitrile (10 mM, 298 K) upon laser excitation of the Er(4I9/24I15/2) transition at exc = 801 nm (

 = 12284 cm-1) and for different incident pump intensities focused on a spot size of ≈ 0.07 cm2  

and b) corresponding log-log plots of downshifted intensities I as a function of incident pump 

intensities P (in Wcm-2) for [Er(Lk)3]3+ in acetonitrile (The straight lines correspond to extrapolated 

linear fits) and c) dependences of downshifted intensities I as a function of temperature (solid state, 

P = 10 Wꞏcm-2, the dashed lines are only guides for the eyes). 

Excitation at exc = 966 nm into the Er(4I11/24I15/2) transition (molar absorption coefficients 0.54 ≤ 

966 ≤ 0.66 M-1cm-1, Table S1) surprisingly gives log(I)-log(P) plots with slopes larger than 2.0 for 

all complexes (Figs S6-S8), which suggests the sequential absorption of at least two photons prior to 

relaxation into the Er(4I13/2) level followed by ultimate Er(4I13/24I15/2) emission. These unexpected 
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non-linear dependences, modeled with the mechanism depicted in the right part of Fig. 4b (and 

completed in Fig. 7b, vide infra), imply that the non-radiative Er(4I11/2)  Er(4I13/2) relaxation 

processes (E  3700 cm-1, Fig. 4b) are poorly efficient in all complexes and prevent direct feeding 

of the emitting Er(4I13/2) level after excitation at 966 nm. 

 

Fig. 6  a) Upconverted visible Er(2H11/24I15/2) and Er(4S3/24I15/2) emissions observed for 

[Er(L1)3](ClO4)3 (solid state, 298 K) recorded upon laser excitation of the Er(4I9/24I15/2) transition 

at exc = 801 nm (  = 12284 cm-1) and using increasing incident pump intensities focused on a spot 

size of ≈ 0.07 cm2 (the blank (= red curve) was recorded upon irradiation of the copper plate support 

covered with silver glue at maximum intensity P = 29 Wꞏcm-2) and b) corresponding log-log plots of 

upconverted intensities I as a function of incident pump intensities P (in Wcm-2), the straight lines 

correspond to extrapolated linear fits. c) Dependences of upconverted intensities I as a function of 

temperature (solid state, P = 29 Wꞏcm-2, the dashed lines are only guides for the eyes) and d) 

upconverted emissions for [Er(Lk)3]3+ (Lk = L1-L4) complexes recorded using incident pump 

intensity P = 21 Wꞏcm-2 in acetonitrile solution (c ~ 10 mM). The blank (red curve) was recorded 

from pure acetonitrile solvent using incident pump intensity P = 21 Wꞏcm-2. 
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Light-upconversion operating in the mononuclear triple-helical complexes. Upon Er-centered 

excitation at 801 nm into the Er(4I9/24I15/2) transition of the triple helical complexes [Er(Lk)3]3+ (Lk 

= L1-L4) in the solid state (Fig. 6a and Figs S9-S10) and in solution (Fig. 6d), the previously 

discussed downshifted Er(4I13/24I15/2) luminescence at 1515 nm is accompanied by two much 

weaker, but upconverted signals at 542 nm (Er(4S3/24I15/2), green) and 522 nm (Er(2H11/24I15/2), 

blue). The limited 1-30 Wcm-2 excitation power intensities, combined with the lack of residual 

ligand-centered 1*1 emission bands exclude the contribution of competitive non-linear optical 

(NLO) processes involving the ligands. The slopes of log(I)-log(P) plots span the 1.5-2.0 range (Fig. 

6c) and support the successive linear absorption of two photons by the Er(III) metallic centers 

according to the standard ESA mechanism summarized in Fig. 7a.26 

 

Fig. 7  Jablonski diagram summarizing the mechanisms of the Er-centered upconversion processes 

operating in the complexes [Er(Lk)3]3+ (Lk = 1-4) upon excitation of a) the Er(4I9/24I15/2) transition 

at 801 nm and b) the Er(4I11/24I15/2) transition at 966 nm. Excitation (dashed upward arrows), non-

radiative multiphonon relaxation (downward undulating arrows), thermal equilibria (upward 

undulating arrows) and radiative emission processes (straight downward arrows).  
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The opposite thermal dependences of the intensities of the upconverted Er(4S3/24I15/2) signals Iup 

observed for the terpyridine-derivatives [Er(Lk)3]3+ (Lk = L2-L4, Iup increases with T, Figs 6c and 

S11) and [Er(L1)3]3+ (Iup decreases with T) mirror those found for the downshifted near-infrared 

Er(4I13/24I15/2) emission (Fig. 5c). This implies that the phonon-activated non-radiative Er(4I9/2)  

Er(4I13/2) relaxation pathway is crucial for both downshifting and upconversion. One can thus safely 

conclude that the intermediate excited Er(4I13/2) levels act as relays for the ESA mechanism 

controlling the linear upconversion processes following 801 nm excitations in these complexes (Fig. 

7a). As previously reported for Er(III)-doped solids, the close proximity of the thermally coupled 

2H11/2 and 4S3/2 levels produce dual blue (522 nm) and green (542 nm) upconverted emissions, the 

relative intensity ratios of which may be exploited for thermometry applications (Fig. S11f).37  

Table 1. Upconversion luminescence quantum yields ( up ) calculated for single-centered 

mononuclear erbium complexes [Er(Lk)3]3+ (Lk = L1-L4) upon laser excitation of the 

Er(4I9/24I15/2) transition at exc = 801 nm (  = 12284 cm-1) and using incident pump 

intensity P = 21 Wꞏcm-2 in acetonitrile solution (c ~ 10 mM) at 298 K. 

Compound A801 nm
a Eb up c 

[Er(L1)3](ClO4)3 7.010-3 365(18) 1.6(3)10-8 

[Er(L2)3](ClO4)3 5.910-3 78(4) 4.1(5)10-9 

[Er(L3)3](ClO4)3 5.310-3 78(4) 4.6(5)10-9 

[Er(L4)3](ClO4)3 4.410-3 55(3) 3.9(4)10-9 

a Optical density at 801 nm. b Integrated emission spectrum. c Calculated with respect to 

indocyanine green (ICG, exc = 801 nm, r = 0.132 in ethanol at 298 K).38 

Although weak, the latter Er(4S3/24I15/2) and (Er(2H11/24I15/2) upconverted signals can be 

unambiguously recorded in solution for [Er(Lk)3]3+ at 10 mM concentration in non-deuterated 

acetonitrile at room temperature (Fig. 6d). Since all [Er(Lk)3]3+ complexes possess similar absorbance 

for their Er(4I9/24I15/2) transition at 801 nm (column 2 in Table 1, Table S1 and Fig. S12), the 

stronger emission intensity observed for the 2,6-bis(benzimidazol-2-yl)pyridine derivative 

[Er(L1)3]3+ at a given incident pump intensity is reminiscent to an improved quantum yield for the 


exc
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latter complex compared to less-protected complexes built with terpyridine derivatives (Fig. 6d). 

Quantitative data for the upconversion process (up) collected in Table 1 were obtained by using 

indocyanine green (ref) as a reference (exc = 801 nm,  = 0.132 in ethanol at 298 K, Fig. S12)38 and 

eqn (2) where  is the quantum yield, E is the integrated emission spectrum, A is the absorbance at 

the excitation wavelength λ, n is the refractive index (nCH3CN = 1.344 and nC2H5OH = 1.361), Pexc is the 

power intensity of the excitation source at the excitation wavelength and hexc is the energy of the 

incident photon at frequency exc = (c/exc) so that exc exc excI P h  is the spectral radiant power 

measuring the incident excitation intensity.31b,39 The introduction of a multiplicative factor of 2 takes 

into account the maximum 50% efficiency of upconversion.40 

2
up up exc,upexc,refref ref

2
ref ref up up exc,up exc,ref

2
E hνPA n

E A n P hν




       (2) 

The magnitude of the upconverted quantum yields 310-9 < up < 210-8 calculated for the ESA 

mechanisms operating in [Er(Lk)3]3+ in acetonitrile are comparable with up  2 x 1.410-8 = 2.810-

8 reported for cooperative upconversion achieved by Charbonnière and coworkers in the trinuclear 

complex [Tb(YbL)2] dissolved in deuterated water (Fig. 1e).31b Despite the advantage of optimizing 

sensitization in [Tb(YbL)2] with the help of peripheral Yb(III) complexes and the operation of an 

ETU-type mechanism, the lack of real intermediate excited state working as relay on the Tb(III) 

activator is a severe limitation for final upconversion, a drawback duly mentioned by Auzel in his 

seminal review when discussing cooperative upconversion.9a However, the quantum yields collected 

in Table 1 demonstrate that the extended ligand L1, which moves away the high-energy C-H 

oscillators from the Er(III) center by circa 10%, simultaneously improves Er(4I13/2) intermediate 

lifetime (5.57(6) s, solid state 298 K)32 and upconversion quantum yields in [Er(L1)3]3+ (1.6(3)10-

8) compared with terpyridine ligands in [Er(Lk)3]3+ (Lk  = L2-L4; 1.88 s ≤ (Er(4I13/2)) ≤ 2.18 s 

and 3.9(4)10-9 ≤ (Er(4I13/2)) ≤ 4.6(5)10-9). 
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Fig. 8  Upconverted visible Er(2H11/24I15/2) and Er(4S3/24I15/2) emissions observed for [Er(Lk)3]3+ 

(Lk = L1-L4) complexes recorded upon laser excitation of the Er(4I11/24I15/2) transition at exc = 966 

nm (  = 10350 cm-1) and using incident pump intensity P = 78 Wꞏcm-2 in acetonitrile solution (c 

~ 10 mM, Table S1) at 298 K. The blank (red curve) was recorded from pure acetonitrile solvent 

using incident pump intensity P = 78 Wꞏcm-2. 

Related linear upconverted visible signals at 542 nm (Er(4S3/24I15/2)) and 522 nm (Er(2H11/24I15/2)) 

can be induced in solution (Fig. 8) or in the solid state (Figs S13-S14) via Er-centered excitation into 

the Er(4I11/24I15/2) transition at 966 nm and using power intensities in the 1-78 Wcm-2 range. Again, 

the upconversion process is more efficient in [Er(L1)3]3+, when extended 2,6-bis-(benzimadol-2-

yl)pyridine ligands are wrapped around Er(III) instead of terpyridines in [Er(Lk)3]3+ (Lk = 2-4; Fig. 

8). In absence of easily accessible organic dyes with well-established quantum yields following 

excitation at 966 nm, we did not monitor absolute quantum yields at this excitation wavelength. As 

previously discussed when analyzing downshifting processes (see mechanism in Fig. 4b), excitation 

into the Er(4I11/24I15/2) transition at 966 nm results in multiple successive linear excitation prior to 

reach the intermediate Er(4I13/2) relay, thus leading to slopes within the 3.0-4.0 range for the linear 

log(I)-log(P) plots characterizing the ultimate upconversion processes (Figs S13-S14). The minimum 

slopes of 2.6-2.7 are still compatible with two- and three-photon processes which avoid the use of the 

Er(4I13/2) intermediate excited state as relay (Fig. 7b, left). However, the most frequent slopes reach 

3.0-4.0 and imply at least one additional successive linear excitation and a 4-phonon mechanism, 
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which is a logical consequence of the involvement of the intermediate Er(4I13/2) level as relay (Fig. 

7b right). The lack of efficient non-radiative Er(4I11/2)  Er(4I13/2) relaxation (E  3700 cm-1), 

previously responsible for the unusual 2-phonon downshifting mechanism observed in these 

complexes following 966 nm excitation (Fig. 4b), appears to be a severe handicap for exploiting the 

‘long-lived’ (2-6 s at 298 K)32 intermediate Er(4I13/2) excited level as a relay for promoting visible 

upconversion (Fig. 7b). Finally, excitations at 966 nm into the Er(4I11/24I15/2) transition exhibit some 

standard decrease of the upconverted intensities with increasing temperatures (Fig. S15). 

Conclusions 

Upon ligand-centered or erbium-centered optical excitations, the series of nine-coordinate 

mononuclear triple-helical erbium(III) complexes [Er(Lk)3]3+ (Lk = L1-L4) all exhibit the expected 

downshifted near-infrared emission at 1515 nm, which originates from the lowest-energy Er(4I13/2) 

excited level (solid state and solution, 10-298 K). While single photon mechanisms characterize 

sensitization via ligand-centered * light absorption at 401 nm or erbium-centered Er(4I9/24I15/2) 

absorption at 801 nm, the lack of efficient non-radiative Er(4I11/2)  Er(4I13/2) relaxation in these 

complexes result in unusual two-photon downshifting mechanisms upon Er(4I11/24I15/2) excitation 

at 966 nm. Because of vibrational quenching of the near-infrared Er(4I13/24I15/2) transition with high-

energy oscillators, the Er(4I13/2) lifetimes is reduced by an approximate factor of three when terminal 

benzimidazoles in [Er(L1)3]3+ (closest intramolecular ErH distances = 3.86 Å) are replaced with 

pyridines in [Er(Lk)3]3+ (Lk = L2-L4; closest intramolecular ErH distances = 3.42 Å). With these 

photophysical characteristics in mind, the induction of blue-green visible upconverted signals upon 

erbium-centered excitations of molecular Er(Lk)3]3+ (Lk = L1-L4) complexes using reasonable 

power intensities (1-50 Wcm-2) is logically more efficient in [Er(L1)3]3+ and corresponds to a two-

photon mechanism for erbium-centered Er(4I9/24I15/2) excitation at 801 nm and to multiple-photon 

processes (3-4 photons) for Er(4I11/24I15/2) excitation at 966 nm. Although weak, the associated 

quantum yields recorded in acetonitrile (0.410-8 ≤ up ≤ 1.610-8 for exc = 801 nm) favorably 
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compare with quantitative data reported for molecular upconversion using multi-center cooperative 

upconversion in deuterated water.31b Taking the ESA mechanism operating in these [Er(Lk)3]3+ 

complexes as the ‘zero-level’ of efficiency of molecular upconversion, Auzel taught us that optimized 

sensitization followed by energy transfer according to the ETU mechanism with the resort of adapted 

sensitizers in SA diads (S = sensitizer, A = lanthanide activator) may improve the upconversion output 

by two orders of magnitudes.8,9 Additionally, the moving from molecular SA diads to SAS triads, 

where S are long-lived sensitizers (i.e. millisecond lifetimes as found in Cr(III) complexes) may 

theoretically further improve upconversion by more than three orders of magnitude.20 Altogether, the 

connection of two adapted long-lived sensitizers on each side of a central Er(III) activators to give a 

structure similar to that shown in Fig. 1a, is expected to increase the quantum yield by roughly five 

orders of magnitudes compared to the ESA mechanism, thus reaching 0.1% efficiency as an upper 

limit for molecular upconversion using the ETU mechanism. Further optimization exploiting standard 

perdeuteration41 or perfluorination42 could be used as wildcards for final tuning. Interestingly, Er(III) 

protection from high-energy oscillators is helpful, but not sufficient to design coordination complexes 

programmed for molecular upconversion. For instance, closely related 1:2 complexes 

[Er(L5)2(CF3SO3)2](CF3SO3)2CH3CN (L5 is identical to L1, except for the removal of the peripheral 

ethyl groups; closest ErH contact distance = 3.70 Å, see Fig. S16) and 

[Er(L4)2(CF3SO3)2](CF3SO3)1.5C2H5CN (closest ErH contact distance = 3.40 Å) did not exhibit 

upconverted signals.32 In this context, it is worth reminding here that solid films of Na3[Er(2,6 

dipicolinate)3]xH2O (x = 13-15), i.e. the most simple triple helical Er(III) complex with rather long 

intramolecular ErH distances of 5.37 Å, also failed in providing either downshifting or 

upconversion processes in the solid state.21 A careful look at the crystal structures of the latter 

complexes43 shows that interstitial water molecules accumulate along the threefold axis of the [Ln(2,6 

dipicolinate)3]3- activators, thus leading to shorter intermolecular ErH distances around 3.56 Å, an 

organization which appears to be incompatible with the detection of any radiative signals following 

excitation. 
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