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Genetic associations at 53 loci highlight cell types
and biological pathways relevant for kidney
function
Cristian Pattaro et al.#

Reduced glomerular filtration rate defines chronic kidney disease and is associated with

cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide

association studies for estimated glomerular filtration rate (eGFR), combining data across

133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and

confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among indi-

viduals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are

enriched for expression in kidney tissues and in pathways relevant for kidney development

and transmembrane transporter activity, kidney structure, and regulation of glucose

metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult

tissues demonstrate preferential mapping of associated variants to regulatory regions in

kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR

are mediated largely through direct effects within the kidney and highlight important cell

types and biological pathways.
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C
hronic kidney disease (CKD) is a global public health
problem1–3, and is associated with an increased risk for
cardiovascular disease, all-cause mortality and end-stage

renal disease4,5. Few new therapies have been developed to prevent
or treat CKD over the past two decades1,6, underscoring the need to
identify and understand the underlying mechanisms of CKD.

Prior genome-wide association studies (GWAS) have identified
multiple genetic loci associated with CKD and estimated
glomerular filtration rate (eGFR), a measure of the kidney’s
filtration ability that is used to diagnose and stage CKD7–15.
Subsequent functional investigations point towards clinically
relevant novel mechanisms in CKD that were derived from initial
GWAS findings16, providing proof of principle that locus
discovery through large-scale GWAS efforts can translate to
new insights into CKD pathogenesis.

To identify additional genetic variants associated with eGFR
and guide future experimental studies of CKD-related mechan-
isms, we have now performed GWAS meta-analyses in up to
133,413 individuals, more than double the sample size of previous
studies. Here we describe multiple novel genomic loci associated
with kidney function traits and provide extensive locus
characterization and bioinformatics analyses, further delineating
the physiologic basis of kidney function.

Results
Stage 1 discovery analysis. We analysed associations of eGFR
based on serum creatinine (eGFRcrea), cystatin C (eGFRcys, an
additional, complementary biomarker of renal function) and
CKD (defined as eGFRcrea o60 ml min� 1 per 1.73 m2) with
B2.5 million autosomal single-nucleotide polymorphisms (SNPs)
in up to 133,413 individuals of European ancestry from 49 pre-
dominantly population-based studies (Supplementary Table 1).
Results from discovery GWAS meta-analysis are publicly avail-
able at http://fox.nhlbi.nih.gov/CKDGen/. We performed ana-
lyses in each study sample in the overall population and stratified
by diabetes status, since genetic susceptibility to CKD may differ
in the presence of this strong clinical CKD risk factor. Population
stratification did not impact our results as evidenced by low
genomic inflation factors in our meta-analyses, which ranged
from 1.00 to 1.04 across all our analyses (Supplementary Fig. 1).

In addition to confirming 29 previously identified loci7–9

(Fig. 1a; Supplementary Table 2), we identified 48 independent
novel loci (Supplementary Table 3) where the index SNP, defined
as the variant with the lowest P value in the region, had an
association P value o1.0� 10� 6. Of these 48 novel SNPs, 21
were genome-wide significant with P values o5.0� 10� 8.
Overall, 43 SNPs were identified in association with eGFRcrea
(nine in the non-diabetes sample), one with eGFRcys and four
with CKD, as reported in Supplementary Table 3. Manhattan
plots for CKD, eGFRcys and eGFRcrea in diabetes are shown in
Fig. 1b,c and Supplementary Fig. 2, respectively.

Stage-2 replication. Novel loci were tested for replication in up to
42,166 additional European ancestry individuals from 15 studies
(Supplementary Table 1). Of the 48 novel candidate SNPs sub-
mitted to replication, 24 SNPs demonstrated a genome-wide
significant combined stage 1 and 2 P value o5.0� 10� 8

(Table 1). Of these, 23 fulfilled additional replication criteria
(q-value o0.05 in stage 2). Only rs6795744 at the WNT7A locus
demonstrated suggestive replication (P value o5.0� 10� 8,
q-value 40.05). Because serum creatinine is used to estimate
eGFRcrea, associated genetic loci may be relevant to creatinine
production or metabolism rather than kidney function per se.
For this reason, we contrasted associations of eGFRcrea
versus eGFRcys, the latter estimated from an alternative and

creatinine-independent biomarker of GFR (Supplementary Fig. 3;
Supplementary Table 4). The majority of loci (22/24)
demonstrated consistent effect directions of their association with
both eGFRcrea and eGFRcys.

Association plots of the 24 newly identified genomic regions
that contain a replicated or suggestive index SNP appear in
Supplementary Fig. 4. The odds ratio for CKD for each of the
novel loci ranged from 0.93 to 1.06 (Supplementary Table 4). As
evidenced by the relatively small effect sizes, the proportion of
phenotypic variance of eGFRcrea explained by all new and known
loci was 3.22%: 0.81% for the newly uncovered loci and 2.41% for
the already known loci.

Associations stratified by diabetes and hypertension status. The
effects of the 53 known and novel loci in individuals with
(stage 1þ stage 2 n¼ 16,477) and without (stage 1þ stage 2
n¼ 154,881) diabetes were highly correlated (correlation coeffi-
cient: 0.80; 95% confidence interval: 0.67, 0.88; Supplementary
Fig. 5) and of similar magnitude (Fig. 2; Supplementary Table 5),
suggesting that identification of genetic loci in the overall popu-
lation may also provide insights into loci with potential impor-
tance among individuals with diabetes. The previously identified
UMOD locus showed genome-wide significant association with
eGFRcrea among those with diabetes (Supplementary Fig. 2;
rs12917707, P value¼ 2.5� 10� 8), and six loci (NFKB1, UNCX,
TSPAN9, AP5B1, SIPA1L3 and PTPRO) had nominally significant
associations with eGFRcrea among those with diabetes. Of the
previously identified loci, 13 demonstrated nominal associations
among those with diabetes, for a total of 19 loci associated with
eGFRcrea in diabetes.

Exploratory comparison of the association effect sizes in
subjects with and without hypertension based on our previous
work7 showed that novel and known loci are also similarly
associated with eGFRcrea among individuals with and without
hypertension (Supplementary Fig. 6).

Tests for SNP associations with related phenotypes. We tested
for overlap with traits that are known to be associated with kidney
function in the epidemiologic literature by investigating SNP
associations with systolic and diastolic blood pressure17, myocardial
infarction18, left ventricular mass19, heart failure20, fasting
glucose21 and urinary albumin excretion (CKDGen Consortium,
personal communication). We observed little association of the 24
novel SNPs with other kidney function-related traits, with only 2
out of 165 tests reaching the Bonferroni significance level of 0.0003
(see Methods and Supplementary Table 6).

To investigate whether additional traits are associated with the
24 new eGFR loci, we queried the NHGRI GWAS catalog
(www.genome.gov). Overall, nine loci were previously identified
in association with other traits at a P value of 5.0� 10� 8 or lower
(Supplementary Table 7), including body mass index (ETV5) and
serum urate (INHBC, A1CF and AP5B1).

Trans-ethnic analyses. To assess the generalizability of our
findings across ethnicities, we evaluated the association of the
24 newly identified loci with eGFRcrea in 16,840 participants of
12 African ancestry population studies (Supplementary Table 8)
and in up to 42,296 Asians from the AGEN consortium11

(Supplementary Table 9). Seven SNPs achieved nominal
direction-consistent significance (Po0.05) in AGEN, and one
SNP was significant in the African ancestry meta-analysis
(Supplementary Table 9). Random-effect meta-analysis showed
that 12 loci (SDCCAG8, LRP2, IGFBP5, SKIL, UNCX, KBTBD2,
A1CF, KCNQ1, AP5B1, PTPRO, TP53INP2 and BCAS1) had fully
consistent effect direction across the three ethnic groups
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Figure 1 | Discovery stage genome-wide association analysis. Manhattan plots for eGFRcrea, CKD and eGFRcys. Previously reported loci are highlighted

in light blue (grey labels). (a) Novel loci uncovered for eGFRcrea in the overall and in the non-diabetes groups are highlighted in blue and green,

respectively. (b) Results from CKD analysis with highlighted known and novel loci for eGFRcrea. (c) Results from eGFRcys with highlighted known and novel

loci for eGFRcrea and known eGFRcys loci.
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(Supplementary Fig. 7), suggesting that our findings can likely be
generalized beyond the European ancestry group.

To identify additional potentially associated variants and more
formally evaluate trans-ethnic heterogeneity of the loci identified
through meta-analysis in European ancestry populations, we
performed a trans-ethnic meta-analysis22, combining the 12
African ancestry studies with the 48 European Ancestry studies
used in the discovery analysis of eGFRcrea. Of the 24 new loci
uncovered for eGFRcrea, 15 were also genome-wide significant in
the trans-ethnic meta-analysis (defined as log10 Bayes Factor 46,
Supplementary Table 10), indicating that for most of these loci,
there is little to no allelic effect heterogeneity across the two
ethnic groups. No additional loci were significantly associated
with log10 Bayes Factor 46.

Bioinformatic and functional characterization of new loci. We
used several techniques to prioritize and characterize genes
underlying the identified associations, uncover connections between
associated regions, detect relevant tissues and assign functional
annotations to associated variants. These included expression
quantitative trait loci (eQTL) analyses, pathway analyses, DNAse I
hypersensitivity site (DHS) mapping, chromatin mapping, manual
curation of genes in each region and zebrafish knockdown.

eQTL analysis. We performed eQTL analysis using publically
available eQTL databases (see Methods). These analyses

connected novel SNPs to transcript abundance of SYPL2,
SDCCAG8, MANBA, KBTBD2, PTPRO and SPATA33
(C16orf55), thereby supporting these as potential candidate
genes in the respective associated regions (Supplementary
Table 11).

Pathway analyses. We used a novel method, Data-driven
Expression Prioritized Integration for Complex Traits (DEPICT)23,
to prioritize genes at associated loci, to test whether genes at
associated loci are highly expressed in specific tissues or cell types
and to test whether specific biological pathways and gene sets are
enriched for genes in associated loci. On the basis of all SNPs with
eGFRcrea association P values o10� 5 in the discovery meta-
analysis, representing 124 independent regions, we identified at
least one significantly prioritized gene in 49 regions, including in 9
of the 24 novel genome-wide significant regions (Supplementary
Table 12). Five tissue and cell type annotations were enriched for
expression of genes from the associated regions, including the
kidney and urinary tract, as well as hepatocytes and adrenal glands
and cortex (Fig. 3a; Supplementary Table 13). Nineteen
reconstituted gene sets showed enrichment of genes mapping
into the associated regions at a permutation P value o10� 5

(Supplementary Table 14; Fig. 4), highlighting processes related to
renal development, kidney transmembrane transporter activity,
kidney and urogenital system morphology, regulation of glucose
metabolism, as well as specific protein complexes important in
renal development.

Table 1 | The 24 novel SNPs associated with eGFRcrea in European ancestry individuals.

SNP ID* Chr. Position (bp)w Locus
namez

Effect/Non
effect allele

(EAF)

SNP
functiony

Stage 1
(discovery)||

Stage 2
(replication)

Combined analysisz

Beta P value Beta q-value Beta P value# I2 %**

The eight loci whose smallest P value was observed in the ‘no diabetes’ group

rs3850625 1 201,016,296 CACNA1S A/G (0.12) Exonic,
nonsyn. SNV

0.0080 2.55E�09 0.0071 5.46E�03 0.0083 6.82E� 11 0

rs2712184 2 217,682,779 IGFBP5 A/C (0.58) Intergenic �0.0049 1.65E�08 �0.0055 2.06E�03 �0.0053 1.33E� 10 0
rs9682041 3 170,091,902 SKIL T/C (0.87) Intronic �0.0067 1.36E�07 �0.0046 2.33E�02 �0.0068 2.58E�08 2
rs10513801 3 185,822,353 ETV5 T/G (0.87) Intronic 0.0070 3.80E�09 0.0046 1.79E�02 0.0072 1.03E�09 0
rs10994860 10 52,645,424 A1CF T/C (0.19) UTR5 0.0075 1.00E� 11 0.0061 5.46E�03 0.0077 1.07E� 12 2
rs163160 11 2,789,955 KCNQ1 A/G (0.82) Intronic 0.0067 9.02E�09 0.0050 9.89E�03 0.0065 2.26E�09 14
rs164748 16 89,708,292 DPEP1 C/G (0.53) Intergenic 0.0047 9.92E�09 0.0019 4.19E�02 0.0046 1.95E�08 17
rs8091180 18 77,164,243 NFATC1 A/G (0.56) Intronic �0.0054 1.43E�08 �0.0052 5.46E�03 �0.0060 1.28E�09 0

The 16 loci whose smallest P value was observed in the ‘overall’ group

rs12136063 1 110,014,170 SYPL2 A/G (0.70) Intronic 0.0049 2.33E�07 0.0028 2.31E�02 0.0045 4.71E�08 0
rs2802729 1 243,501,763 SDCCAG8 A/C (0.43) Intronic �0.0050 7.37E�08 �0.0029 2.05E�02 �0.0046 2.20E�08 9
rs4667594 2 170,008,506 LRP2 A/T (0.53) Intronic �0.0045 2.37E�07 �0.0043 5.62E�03 �0.0044 3.52E�08 4
rs6795744ww 3 13,906,850 WNT7A A/G (0.15) Intronic 0.0071 9.60E�09 0.0019 5.15E�02 0.0060 3.33E�08 18
rs228611 4 103,561,709 NFKB1 A/G (0.47) Intronic �0.0055 4.66E� 10 �0.0060 8.91E�04 �0.0056 3.58E� 12 3
rs7759001 6 27,341,409 ZNF204 A/G (0.76) ncRNA

intronic
�0.0053 2.64E�07 �0.0045 9.10E�03 �0.0051 1.75E�08 0

rs10277115 7 1,285,195 UNCX A/T (0.23) Intergenic 0.0095 1.05E� 10 0.0079 9.03E�04 0.0090 8.72E� 14 0
rs3750082 7 32,919,927 KBTBD2 A/T (0.33) Intronic 0.0049 2.52E�07 0.0031 1.96E�02 0.0045 3.22E�08 2
rs6459680 7 156,258,568 RNF32 T/G (0.74) Intergenic �0.0065 1.96E� 10 �0.0019 4.62E�02 �0.0055 1.07E�09 0
rs4014195 11 65,506,822 AP5B1 C/G (0.64) Intergenic 0.0061 2.19E� 11 0.0034 1.42E�02 0.0055 1.10E� 11 0
rs10491967 12 3,368,093 TSPAN9 A/G (0.10) Intronic �0.0092 3.03E� 10 �0.0106 3.93E�04 �0.0095 5.18E� 14 0
rs7956634 12 15,321,194 PTPRO T/C (0.81) Intronic �0.0068 2.46E�09 �0.0069 1.51E�03 �0.0068 7.17E� 12 0
rs1106766 12 57,809,456 INHBC T/C (0.22) Intergenic 0.0062 4.67E�08 0.0058 8.79E�03 0.0061 2.41E�09 9
rs11666497 19 38,464,262 SIPA1L3 T/C (0.18) Intronic �0.0064 8.58E�08 �0.0041 1.53E�02 �0.0058 4.25E�08 24
rs6088580 20 33,285,053 TP53INP2 C/G (0.47) Intergenic �0.0055 7.17E� 10 �0.0027 2.31E�02 �0.0049 1.79E�09 0
rs17216707 20 52,732,362 BCAS1 T/C (0.79) Intergenic �0.0084 5.96E� 13 �0.0051 6.69E�03 �0.0077 8.83E� 15 1

bp, basepairs; Chr, chromosome; EAF, effect allele frequency; eGFRcrea, eGFR based on serum creatinine; GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism;
UTR, untranslated region.
*SNPs are grouped by the stratum where the smallest P value in the discovery and combined analysis was observed. In the ‘no diabetes’ group, sample size/number of studies were equal to 118,448/45,
36,433/13 and 154,881/58, in the discovery, replication and combined analyses, respectively. In the ‘overall’ group, the numbers for the three analyses were equal to 133,413/48, 42,116/14 and
175,579/62, respectively.
wOn the basis of RefSeq genes (build 37).
zConventional locus name based on relevant genes in the region as identified by bioinformatic investigation (Supplementary Table 12) or closest gene. A complete overview of the genes in each locus is
given in the regional association plots (Supplementary Fig. 4).
ySNP function is derived from NCBI RefSeq genes and may not correspond to the named gene.
||Twice genomic-control (GC) corrected P value from discovery GWAS meta-analysis: at the individual study level and after the meta-analysis.
zFor random-effect estimate, see Supplementary Table 4.
#P value of the meta-analysis of the twice GC-corrected discovery meta-analysis results and replication studies.
**Between-study heterogeneity, as assessed by the I2. Q statistic P value 40.05 for all SNPs, except rs11666497 (SIPA1L3, P value¼0.04).
wwFor this SNP, the conditions for replication were not all met (q-value 40.05 in the replication stage).
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DNase I hypersensitivity and H3K4m3 chromatin mark analyses.
To evaluate whether eGFRcrea-associated SNPs map into gene
regulatory regions and to thereby gain insight into their potential
function, we evaluated the overlap of independent eGFRcrea-
associated SNPs with P values o10� 4 (or their proxies) with
DHSs using publicly available data from the Epigenomics Road-
map Project and ENCODE for 123 cell types (see Methods).
DHSs mark accessible chromatin regions where transcription
may occur. Compared with a set of control SNPs (see Methods),
eGFRcrea-associated SNPs were significantly more likely to map
to DHS in six specific tissues or cell types (Fig. 3b), including
adult human renal cortical epithelial cells, adult renal proximal
tubule epithelial cells, H7 embryonic stem cells (differentiated 2
days), adult human renal epithelial cells, adult small airway epi-
thelial cells and amniotic epithelial cells. No significant enrich-
ment was observed for adult renal glomerular endothelial cells,
the only other kidney tissue evaluated.

Next, we analysed the overlap of the same set of SNPs with
H3K4me3 chromatin marks, promoter-specific histone modifica-
tions associated with active transcription24, in order to gather
more information about cell-type specific regulatory potential of
eGFRcrea-associated SNPs. Comparing 33 available adult-derived
cell types, we found that eGFRcrea-associated SNPs showed the
most significant overlap with H3K4me3 peaks in adult kidney (P
value¼ 0.0029), followed by liver (P value¼ 0.0117), and rectal
mucosa (P value¼ 0.0445). Taken together, these findings are
suggestive of cell-type-specific regulatory roles for eGFR loci, with
greatest specificity for the kidney.

Chromatin annotation maps. In addition to assessing individual
regulatory marks separately, we annotated the known and repli-
cated novel SNPs, as well as their perfect proxies in a com-
plementary approach. Chromatin annotation maps were
generated integrating 410 epigenetic marks from cells derived
from adult human kidney tissue and a variety of non-renal tissues
from the ENCODE project (see Methods). The proportion of
variants to which a function could be assigned was significantly
higher when using chromatin annotation maps from renal tissue
compared with using maps that investigated the same epigenetic
marks in other non-renal tissues (Fig. 3c), again indicating that
eGFRcrea associated SNPs are, or tag, kidney-specific regulatory
variants. The difference between kidney and non-renal tissues
was particularly evident for marks that define enhancers: the
proportion of SNPs mapping to weak and strong enhancer
regions in the kidney tissue was higher than in all non-kidney
tissues (Fishers’ exact test P values from 3.1� 10� 3 to
7.9� 10� 6, multiple testing threshold a¼ 5.6� 10� 3).

Functional characterization of new loci. To prioritize genes for
functional studies, we applied gene prioritization algorithms
including GRAIL25, DEPICT and manual curation of selected
genes in each region (Supplementary Table 12). For each region,
gene selection criteria were as follows: (1) either GRAIL P value
o0.05 or DEPICT false discovery rate (FDR) o0.05; (2) the
effect of a given allele on eGFRcrea and on eGFRcys was
direction-consistent and their ratio was between 0.2 and 5

rs10491967 (A) -TSPAN9 rs491567 (A) -WDR72 No diabetes
Diabetes

rs10794720 (T) -WDR37
rs7422339 (A) -CPS1
rs267734 (T) -LASS2

rs3925584 (T) -MPPED2
rs1394125 (A) -UBE2Q2
rs7805747 (A) -PRKAG2
rs2453533 (A) -GATM

rs11959928 (A) -DAB2
rs13538 (A) -ALMS1

rs17319721 (A) -SHROOM3
rs626277 (A) -DACH1

rs6431731 (T) -DDX1
rs10109414 (T) -STC1

rs881858 (A) -SLC34A1
rs12460876 (T) -SLC7A9

rs4744712 (A) -PIP5K1B
rs2453580 (T) -SLC47A1

rs10774021 (T) -SLC6A13
rs7208487 (T) -CDK12
rs347685 (A) -TFDP2

rs9895661 (T) -BCAS3
rs2928148 (A) - INO80
rs848490 (C) -TMEM60

rs12124078 (A) -CASP9
rs2279463 (A) -VEGFA
rs6465825 (T) -SLC22A2
rs1260326 (T) -GCKR

rs12917707 (T) -UMOD

rs11666497 (T) -SIPA1L3

rs228611 (A) -NFKB1

rs7956634 (T) -PTPRO

rs17216707 (T) -BCAS1

rs2802729 (A) -SDCCAG8

rs6459680 (T) -RNF32

rs2712184 (A) - IGFBP5

rs4667594 (A) -LRP2

rs6088580 (C) -TP53INP2

rs7759001 (A) -ZNF204

rs9682041 (T) -SKIL

rs12136063 (A) -SYPL2
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Figure 2 | Association eGFRcrea loci in subjects with and without diabetes. Novel (a) and known (b) loci were considered. Displayed are effects and their

95% confidence intervals on ln(eGFRcrea). Results are sorted by increasing effects in the diabetes group. The majority of loci demonstrated similar effect

sizes in the diabetes as compared with non-diabetes strata. SNP-specific information and detailed sample sizes are reported in Supplementary Table 5.
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(to ensure relative homogeneity of the beta coefficients); (3)
nearest gene if the signal was located in a region containing a
single gene. Using this approach, NFKB1, DPEP1, TSPAN9,
NFATC1, WNT7A, PTPRO, SYPL2, UNCX, KBTBD2, SKIL and
A1CF were prioritized as likely genes underlying effects at the
new loci (Supplementary Table 12).

We investigated the role of these genes during vertebrate
kidney development by examining the functional consequences of
gene knockdown in zebrafish embryos utilizing antisense
morpholino oligonucleotide (MO) technology. After knockdown,
we assessed the expression of established renal markers pax2a
(global kidney), nephrin (podocytes) and slc20a1a (proximal
tubule) at 48 hours post fertilization by in situ hybridization12. In
all cases, morphant embryos did not display significant gene
expression defects compared with controls (Supplementary
Table 15).

Discussion
We identified 24 new loci in association with eGFR and
confirmed 29 previously identified loci. A variety of

complementary analytic, bioinformatic and functional
approaches indicate enrichment of implicated gene products in
kidney and urinary tract tissues. A greater proportion of the lead
SNPs or their perfect proxies map into gene regulatory regions,
specifically enhancers, in adult renal tissues compared with non-
renal tissues. In addition to the importance in the adult kidney,
our results indicate a role for kidney function variants during
development.

We extend our previous findings, as well as those from other
groups7–13 by identifying 450 genomic loci for kidney function,
many of which were not previously known to be connected to
kidney function and disease. Using a discovery data set that is
nearly double in size to our prior effort7, we are now able to
robustly link associated SNPs to kidney-specific gene regulatory
function. Our work further exemplifies the continued value of
increasing the sample size of GWAS meta-analyses to uncover
additional loci and gain novel insights into the mechanisms
underlying common phenotypes26.

There are several messages from our work. First, many of the
genetic variants associated with eGFR appear to affect processes
specifically within the kidney. The kidney is a highly vascular and
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particular tissues, including kidney and urinary tract. Shown are permutation test P values (see Methods). (b) Enrichment of eGFRcrea-associated SNPs in

DHS according to discovery P value threshold. SNPs from the eGFR discovery genome-wide scan meeting a series of P value thresholds in the range 10�4–
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enrichment of variants mapping to enhancer regions specifically in kidney but not other non-renal tissues.
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metabolically active organ that receives 20% of all cardiac output,
contains an extensive endothelium-lined capillary network, and is
sensitive to ischaemic and toxic injury. As a result, hypertension,
cardiovascular diseases and diabetes each affect renal hemody-
namics and contribute to kidney injury. However, many of the
eGFR-associated SNPs in our GWAS could be assigned gene
regulatory function specifically in the kidney and its epithelial
cells, but not in human glomerular endothelial cells or the general
vasculature. In addition, variants associated with eGFR were not
associated with vascular traits, such as blood pressure or
myocardial infarction. Taken together, these findings suggest
that genetic determinants of eGFR may be mediated largely
through direct effects within the kidney.

Second, despite the specificity related to renal processes, we
also identified several SNPs that are associated with eGFR in
diabetes, and our pathway analyses uncovered gene sets
associated with glucose transporter activity and abnormal glucose
homeostasis. Uncovering bona fide genetic loci for diabetic CKD
has been difficult. We have now identified a total of 19 SNPs that
demonstrate at least nominal association with eGFR in diabetes.
The diabetes population is at particularly high risk of CKD, and
identifying kidney injury pathways may help develop new
treatments for diabetic CKD.

Finally, even though CKD is primarily a disease of the elderly,
our pathway enrichment analyses highlight developmental
processes relevant to the kidney and the urogenital tract. Kidney
disease has been long thought to have developmental origins, in
part related to early programming (Barker hypothesis)27, low
birth weight, nephron endowment and early growth and early-life
nutrition28. Our pathway enrichment analyses suggest that
developmental pathways such as placental morphology, kidney
weight and embryo size, as well as protein complexes of
importance in renal development may in part contribute to the
developmental origins of CKD.

A limitation of our work is that causal variants and precise
molecular mechanisms underlying the observed associations were
not identified and will require additional experimental follow-up
projects. Our attempt to gain insights into potentially causal
genes through knockdown in zebrafish did not yield any clear
CKD candidate gene, although the absence of a zebrafish

phenotype upon gene knockdown does not mean that the gene
cannot be the one underlying the observed association signal in
humans. Finally, our conclusions that eGFRcrea-associated SNPs
regulate the expression of nearby genes specifically in kidney
epithelial cells are based on DHSs, H3K4me3 chromatin marks
and chromatin annotation maps. Since these analyses rely mostly
on variant positions, additional functional investigation such as
luciferase assay that assess transcriptional activity more directly
are likely to gain additional insights into the variants’ mechanism
of action.

The kidney specificity for loci we identified may have
important translational implications, particularly since our DHS
and chromatin annotation analyses suggest that at least a set of
gene regulatory mechanisms is important in the adult kidney.
Kidney-specific pathways are important for the development of
novel therapies to prevent and treat CKD and its progression with
minimal risk of toxicity to other organs. Finally, the biologic
insights provided by these new loci may help elucidate novel
mechanisms and pathways implicated not only in CKD but also
of kidney function in the physiological range.

In conclusion, we have confirmed 29 genomic loci and
identified 24 new loci in association with kidney function that
together highlight target organ-specific regulatory mechanisms
related to kidney function.

Methods
Overview. This was a collaborative meta-analysis with a distributive data model.
Briefly, an analysis plan was created and circulated to all participating studies. Studies
then uploaded study-specific data centrally; files were cleaned, and a specific
meta-analysis for each trait was performed. Details regarding each step are
provided below. All participants in all discovery and replication studies provided
informed consent. Each study had its research protocol approved by the local
ethics committee.

Phenotype definitions. Serum creatinine was measured in each discovery and
replication study as described in Supplementary Tables 16 and 17, and statistically
calibrated to the US nationally representative National Health and Nutrition
Examination Study data in all studies to account for between-laboratory varia-
tion9,29,30. eGFRcrea was estimated using the four-variable Modification of Diet in
Renal Disease Study Equation. Cystatin C, an alternative biomarker for kidney
function, was measured in a sub-set of participating studies. eGFRcys was estimated
as 76.7� (serum cystatin C)� 1.19 (ref. 31). eGFRcrea and eGFRcys values
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o15 ml min per 1.73 m2 were set to 15, and those 4200 were set to 200 ml min� 1

per 1.73 m2. CKD was defined as eGFRcrea o60 ml min� 1 per 1.73 m2.
Diabetes was defined as fasting glucose Z126 mg dl� 1, pharmacologic

treatment for diabetes or by self-report. In all studies, diabetes and kidney function
were assessed at the same point in time.

Genotypes. Genotyping was conducted in each study as specified in
Supplementary Tables 18 and 19. After applying appropriate quality filters, 45
studies used markers of highest quality to impute B2.5 million SNPs, based on
European-ancestry haplotype reference samples (HapMap II CEU). Four studies
based their imputation on the 1000 Genomes Project data. Imputed genotypes were
coded as the estimated number of copies of a specified allele (allelic dosage).

Genome-wide association analysis. By following a centralized analysis plan, each
study regressed sex- and age-adjusted residuals of the logarithm of eGFRcrea or
eGFRcys on SNP dosage levels. Logistic regression of CKD status was performed
on SNP dosage levels adjusting for sex and age. For all traits, adjustment for
appropriate study-specific features, including study site and genetic principal
components was included in the regression and family-based studies appropriately
accounted for relatedness.

Stage 1 discovery meta-analysis. GWAS of eGFRcrea were contributed by 48
studies (total sample size, N¼ 133,413); 45 studies contributed GWAS data for the
non-diabetes subgroup (N¼ 118,448) and 39 for the diabetes group (N¼ 11,522).
GWAS of CKD were comprised by 43 studies, for a total sample size of 117,165,
including 12,385 CKD cases. GWAS of eGFRcys were comprised by 16 studies for a
total sample size of 32,834. All GWAS files underwent quality control using the
GWAtoolbox package32 in R, before including them into the meta-analysis.
Genome-wide meta-analysis was performed with the software METAL33, assuming
fixed effects and using inverse-variance weighting. The genomic inflation factor l
was estimated for each study as the ratio between the median of all observed test
statistics (b/s.e.)2 and the expected median of a w2 with 1 degree of freedom, with b
and s.e. representing the effect of each SNP on the phenotype and its standard
error, respectively34. Genomic-control (GC) correction was applied to P values and
s.e.’s in case of l41 (first GC correction). SNPs with an average minor allele
frequency (MAF) of Z0.01 were used for the meta-analysis. To limit the possibility
of false positives, after the meta-analysis, a second GC correction on the aggregated
results was applied. Between-study heterogeneity was assessed through the I2

statistic.
After removing SNPs with MAF of o0.05 and which were available in o50%

of the studies, SNPs with a P value of r10� 6 were selected and clustered into
independent loci through LD pruning based on an r2 of r0.2 within a window of
±1 MB to each side of the index SNP. After removing loci containing variants that
have been previously replicated at a P value of 5.0� 10� 8 (refs 7,8), the SNP with
the lowest P value within each locus was selected for replication (‘index SNP’). If a
SNP had an association P value of r10� 6 with more than one trait, the trait where
the SNP had the lowest P value was selected as discovery trait/stratum. Altogether,
this resulted in 48 SNPs: 34 from eGFRcrea, 9 from eGFRcrea among those without
diabetes, 4 from CKD and 1 from eGFRcys.

Stage 2 replication analysis. In silico replication analysis for any of the studied
traits was carried out using eight independent studies whose genotyping platforms
are provided in Supplementary Table 19. De novo genotyping was performed in
seven additional studies (N¼ 22,850 individuals) of European ancestry
(Supplementary Table 20), including the Bus Santé, ESTHER, KORA-F3 (subset of
F3 without GWAS), KORA-F4 (subset of F4 without GWAS), Ogliastra Genetic
Park (OGP, without Talana whose GWAS was included in the discovery analysis),
SAPHIR and SKIPOGH studies (Supplementary Table 20). Summarizing all in
silico and de novo replication studies (Supplementary Table 1), replication data for
eGFRcrea were contributed by 14 studies (total sample size¼ 42,166), which also
contributed eGFRcrea results from non-diabetes (13 studies, N¼ 36,433) and
diabetes samples (13 studies, N¼ 4,955). Thirteen studies contributed replication
data on CKD (N¼ 33,972; 4,245 CKD cases; studies with o50 CKD cases were
excluded) and five on eGFRcys (N¼ 14,930).

Association between eGFRcrea, CKD and eGFRcys and each of the 48 SNPs in
the replication studies was assessed using the same analysis protocol detailed for
the discovery studies above. Quality control of the replication files was performed
with the same software as described above.

We performed a combined fixed-effect meta-analysis of the double-GC
corrected results from the discovery meta-analysis and the replication studies,
based on inverse-variance weighting. The total sample size in the combined
analysis of eGFRcrea was 175,579 subjects (154,881 in the non-diabetes stratum
and 16,477 in the diabetes stratum; the sum of these two sample sizes is smaller
than the sample size of the overall analysis because some studies did not contribute
both strata), 151,137 samples for CKD (16,630 CKD cases) and 47,764 for
eGFRcys. Three criteria were used to ensure validity of novel loci declared as
significant: (1) P value from the combined meta-analysis r5.0� 10� 8 in
accordance with previously published guidelines35; (2) direction-consistent
associations of the beta coefficients in stage 1 and stage 2 (one-sided P values were

estimated to test for consistent effect direction with the discovery stage); (3) q-value
o0.05 in the replication stage. Q-values were estimated using the package
QVALUE36 in R. The tuning parameter lambda for the estimation of the overall
proportion of true null hypotheses, p0, was estimated using the bootstrap
method37. When the third criterion was not satisfied, the locus was declared
‘suggestive’.

Power analysis. With the sample size achieved in the combined analysis of stage 1
and stage 2 data, the power to assess replication at the canonical genome-wide
significance level of 5.0� 10� 8 was estimated with the software QUANTO38

version 1.2.4, assuming the same MAF and effect size observed in the discovery
sample. Power to replicate associations ranged from 87 to 100% for eGFRcrea
associated SNPs (median¼ 98%), from 72 to 96% for the CKD-associated SNPs,
and was equal to 59% for the eGFRcys-associated SNP (Supplementary Table 3).

Associations stratified by diabetes and hypertension status. For all the 24
novel and 29 known SNPs, the difference between the SNP effect on eGFRcrea in
the diabetes versus the non-diabetes groups was assessed by means of a two-sample
t-test for correlated data at a significance level of 0.05. We used the following two-
sample t-test for correlated data:

t ¼ bDM � bnonDMð Þ
s:e: bDMð Þ2 þ s:e: bnonDMð Þ2 � 2�r bDM; bnonDMð Þ�s:e: bDMð Þ�s:e: bnonDMð Þ
� �0:5 ;

where bDM and bnonDM represent the SNP effects on log(eGFRcrea) in the two
groups, s.e. is the standard error of the estimate and r(.) indicates the correlation
between effects in the two groups, which was estimated as 0.044 by sampling
100,000 independent SNPs from our DM and nonDM GWAS, after removing
known and novel loci associated with eGFRcrea. For a large sample size, as in our
case, t follows a standard normal distribution.

A similar analysis was performed to compare results in subjects with and
without hypertension, based on results from our previous work7. The correlation
between the two strata was of 0.01.

Proportion of phenotypic variance explained. The percent of phenotypic

variance explained by novel and known loci was estimated as
P53

i¼1
R2

i , where

R2
i ¼ b2

i varðSNPiÞ=varðyÞ is the coefficient of determination for each of the 53
individual SNPs associated with eGFRcrea uncovered to date (24 novel and 29
known ones), bi is the estimated effect of the ith SNP on y, y corresponds to the sex-
and age-adjusted residuals of the logarithm of eGFRcrea and var(SNPi)¼ 2�
MAFSNPi� (1�MAFSNPi)39. Var(y) was estimated in the ARIC study and all loci
were assumed to have independent effects on the phenotype.

Test for SNP associations with related traits. We performed evaluations of SNP
association with results generated from consortia investigating other traits. Speci-
fically, we evaluated systolic and diastolic blood pressure in ICBP17, myocardial
infarction in CARDiOGRAM18, left ventricular mass19, heart failure20, the urinary
albumin to creatinine ratio (CKDGen consortium, personal communication) and
fasting plasma glucose in MAGIC21. In total, we performed 165 tests,
corresponding to 7 traits tested for association against each of the 24 novel SNP,
with the exception of myocardial infarction for which results from 3 SNPs were not
available (Supplementary Table 6). Significance was evaluated at the Bonferroni
corrected level of 0.05/165¼ 0.0003.

Lookup of replicated loci in the NHGRI GWAS catalog. All replicated SNPs, as
well as SNPs in LD (r240.2) within ±1 MB distance were checked for their
association with other traits according to the NHGRI GWAS catalog40 (accessed
April 14, 2014).

SNP assessments in other ethnic groups. We performed cross-ethnicity SNP
evaluations in participants of African ancestry from a meta-analysis of African
ancestry individuals and from participants of Asian descent from the AGEN
consortium11.

African ancestry meta-analysis. We performed fixed-effect meta-analysis of the
genome-wide association data from 12 African ancestry studies (Supplementary
Table 8) with imputation to HapMap reference panel, based on inverse-variance
weighting using METAL. Only SNPs with MAF Z0.01 and imputation quality
r2
Z0.3 were considered for the meta-analysis. After meta-analysis, we removed

SNPs with MAF o0.05 and which were available in o50% of the studies. Sta-
tistical significance was assessed at the standard threshold of 5.0� 10� 8. Genomic
control correction was applied at both the individual study level before meta-
analysis and after the meta-analysis.

Transethnic meta-analysis. We performed a trans-ethnic meta-analysis of GWAS
data from cohorts of different ethnic backgrounds using MANTRA (Meta-Analysis
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of Trans-ethnic Association studies) software22. We combined the 48 European
ancestry studies that contributed eGFRcrea, which were included in stage 1
discovery meta-analysis, and the 12 African ancestry studies mentioned above for a
total sample size of 150,253 samples. We limited our analysis to biallelic SNPs with
MAF Z0.01 and imputation quality r2

Z0.3. Relatedness between the 60 studies
was estimated using default settings from up to 5.9 million SNPs. Only SNPs that
were present in more than 25 European ancestry studies and 6 African ancestry
studies (total sample size Z120,000) were considered after meta-analysis. Genome-
wide significance was defined as a log10 Bayes’ Factor (log10BF) Z6 (ref. 41).

Gene Relationships Across Implicated Loci (GRAIL). To prioritize the gene(s)
most likely to give rise to association signals in a given region, the software GRAIL
was used25. The index SNP of all previously known kidney function associated
regions, as well as the novel SNPs identified here was used as input, using the CEU
HapMap (hg18 assembly) and the functional datasource text_2009_03, established
before the publication of kidney function-related GWAS. Results from GRAIL were
used to prioritize genes for follow-up functional work.

Expression quantitative trait loci analysis. We identified alias rsIDs and proxies
(r240.8) for our index SNPs using SNAP software across 4 HapMap builds. SNP
rsIDs and aliases were searched for primary SNPs and LD proxies against a
collected database of expression SNP (eSNP) results. The collected eSNP results
met criteria for statistical thresholds for association with gene transcript levels in
their respective original analyses (for references see Supplementary Table 11).
Correlation of selected eSNPs to the best eSNPs per transcript per expression
quantitative trait loci (eQTL) data set were assessed by pairwise LD. All results
are reported in Supplementary Table 11.

DEPICT analysis. In this work, we first used PLINK42 to identify independently
associated SNPs using all SNPs with eGFRcrea association P values o10� 5

(HapMap release 27 CEU data43; LD r2 threshold¼ 0.01; physical kb threshold
¼ 1,000). We then used the DEPICT method23 to construct associated regions by
mapping genes to independently associated SNPs if they overlapped or resided
within LD (r240.5) distance of a given associated SNP. After merging overlapping
regions and discarding regions that mapped within the major histocompatibility
complex locus (chromosome 6, base pairs 20,000,000–40,000,000), 124 non-
overlapping regions remained that covered a total of 320 genes. Finally, we ran the
DEPICT software program on the 124 regions to prioritize genes that may
represent promising candidates for experimental follow up studies, identify
reconstituted gene sets that are enriched in genes from associated regions and
therefore may provide insight into general kidney function biology, and identify
tissue and cell-type annotations in which genes from associated regions are highly
expressed. Specifically, for each tissue, the DEPICT method performs a t-test
comparing the tissue-specific expression of eGFRcrea-associated genes and all
other genes. Next, for each tissue, empirical enrichment P values are computed by
repeatedly sampling random sets of loci (matched to the actual eGFRcrea loci by
gene density) from the entire genome to estimate the empirical mean and s.d. of the
enrichment statistic’s null distribution. To visualize the nineteen reconstituted gene
sets with P value o1e� 5 (Fig. 4), we estimated their overlap by computing the
pairwise Pearson correlation coefficient r between each pair of gene sets followed
by discretization into one of three bins; 0.3rro0.5, low overlap; 0.5rro0.7,
medium overlap; rZ0.7, high overlap.

DNase I hypersensitivity analysis. The overlap of SNPs associated with eGFR-
crea at Po10� 4 with DHSs was examined using publically available data from the
Epigenomics Roadmap Project and ENCODE. In all, DHS mappings were
available for 123 mostly adult cells and tissues44 (downloaded from http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/).
The analysis here pertains to DHS’s defined as ‘broad’ peaks, which were available
as experimental replicates (typically duplicates) for the majority of cells and tissues.

SNPs from our stage 1 eGFRcrea GWAS meta-analysis were first clumped in
PLINK42 in windows of 100 kb and maximum r2 of 0.1 using LD relationships
from the 1,000 Genomes EUR panel (phase I, v3, 3/14/2012 haplotypes) using a
series of P value thresholds (10� 4, 10� 6, 10� 8, ... and 10� 16). LD proxies of the
index SNPs from the clumping procedure were then identified by LD tagging in
PLINK with r2¼ 0.8 in windows of 100 kb, again using LD relationships in the
1000G EUR panel, restricted to SNPs with MAF 41% and also present in the
HapMap2 CEU population. A reference set of control SNPs was constructed using
the same clumping and tagging procedures applied to NHGRI GWAS catalog SNPs
(available at http://www.genome.gov/gwastudies/, accessed 13 March 2013) with
discovery P values o5.0� 10� 8 in European populations. In total, there were
1,204 such reference SNPs after LD pruning. A small number of reference SNPs or
their proxies overlapping with the eGFRcrea SNPs or their proxies were excluded.
For each cell-type and P value threshold, the enrichment of eGFR SNPs (or their
LD proxies) mapping to DHSs relative to the GWAS catalog reference SNPs (or
their LD proxies) was expressed as an odds ratio from logistic mixed effect models
that treated the replicate peak determinations as random effects (lme4 package
in R). Significance for enrichment odds ratio was derived from the significance of
beta coefficients for the main effects in the mixed models.

Interrogation of human kidney chromatin annotation maps. Different chro-
matin modification patterns can be used to generate tissue-specific chromatin-state
annotation maps. These can serve as a valuable resource to discover regulatory
regions and study their cell-type-specific distributions and activities, which may
help with the interpretation especially of intergenic variants identified in associa-
tion studies45. We therefore investigated the genomic mapping of the known and
replicated novel index SNPs, as well as their perfect LD proxies (n¼ 173, r2¼ 1 for
proxies) using a variety of resources, including chromatin maps generated from
human kidney tissue cells (HKC-E cells). Chromatin immune-precipitation
sequencing (ChIP-seq) data from human kidney samples were generated by NIH
Roadmap Epigenomics Mapping Consortium46. Briefly, proximal tubule cells
derived from an adult human kidney were collected and cross-linked with 1%
formaldehyde. Subsequently, ChIP-seq was conducted using whole-cell extract
from adult kidney tissue as the input (GSM621638) and assessing the following
chromatin marks: H3K36me3 (GSM621634), H3K4me1 (GSM670025), H3K4me3
(GSM621648), H3K9ac (GSM772811) and H3K9me3 (GSM621651). The MACS
version 1.4.1 (model-based analysis of ChIP-Seq) peak-finding algorithm was used
to identify regions of ChIP-Seq enrichment47. A FDR threshold of enrichment of
0.01 was used for all data sets. The resulting genomic coordinates in bed format
were further used in ChromHMM v1.06 for chromatin annotation45. For
comparison, the same genomic coordinates were investigated in chromatin
annotation maps of renal tissue, as well as across nine different cell lines from the
ENCODE Project: umbilical vein endothelial cells (HUVEC), mammary epithelial
cells (HMEC), normal epidermal keratinocytes (NHEK), B-lymphoblastoid cells
(GM12878), erythrocytic leukemia cells (K562), normal lung fibroblasts (NHLF),
skeletal muscle myoblasts (HSMM), embryonic stem cells (H1 ES) and
hepatocellular carcinoma cells (HepG2). We tested whether the proportion of SNPs
pointing to either strong or weak enhancers in the human kidney tissue cells was
different from that of the other nine tissues by means of a Fishers’ exact test for
2� 2 tables, contrasting each of the nine cell lines listed above against the reference
kidney cell line, at a Bonferroni-corrected significance level of 0.05/9¼ 5.6� 10� 3.

Functional characterization of new loci. Replicated gene regions were prioritized
for functional studies using the following criteria: (1) GRAIL identification of a
gene in each region of P valueo0.05 or DEPICT, FDR o0.05); (2) an eGFRcrea to
eGFRcys ratio between 0.2 and 5 with direction consistency between the beta
coefficients; (3) nearest gene if the signal was located in a gene-poor region. The list
of genes selected for functional work can be found in Supplementary Table 12. This
same prioritization scheme was also used to assign locus names. Morpholino
knockdowns were performed in zebrafish.

Zebrafish (strain Tübingen, TU) were maintained according to established
Harvard Medical School Institutional Animal Care and Use Committee protocols
(protocol # 04626). Male and female fish were mated (age 6–12 months) for
embryo production. Embryos were injected at the one-cell stage with MOs
(GeneTools) designed to block either the ATG start site or an exon–intron splice
site of the target gene (Supplementary Table 21). In cases where human loci are
duplicated in zebrafish, both orthologues were knocked down simultaneously by
combination MO injection. MOs were injected in escalating doses at
concentrations up to 250 mM. Embryos were fixed in 4% paraformaldehyde at 48 h
post fertilization for in situ hybridization using published methods (http://zfin.org/
ZFIN/Methods/ThisseProtocol.html). Gene expression was visualized using
established renal markers pax2a (global kidney), nephrin (podocytes) and slc20a1a
(proximal tubule). The number of morphant embryos displaying abnormal gene
expression was compared with control embryos by means of a Fisher’s exact test.
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P Mitchell, I Guessous, JM Gaspoz, N Bouatia-Naji, P Froguel, A Metspalu, T Esko,
BA Oostra, CM van Duijn, V Emilsson, H Brenner, I Borecki, CS Fox, Q Yang,
BK Krämer, PS Wild, BI Freedman, J Ding, Y Liu, AB Zonderman, MK Evans,
A Adeyemo, CN Rotimi, D Cusi, P Gasparini, M Ciullo, D Toniolo, C Gieger,
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Thor Aspelund35,36, Tiit Nikopensius40,41, Tonu Esko15,40,41, Toshiko Tanaka124, Ulf Gyllensten44, Uwe Völker2,90,

Valur Emilsson35,158, Veronique Vitart31, Ville Aalto159, Vilmundur Gudnason35,36, Vincent Chouraki105,

Wei-Min Chen134, Wilmar Igl44, Winfried März160, Wolfgang Koenig161, Wolfgang Lieb83, Ruth J.F. Loos61,162,

Yongmei Liu46, Harold Snieder30, Peter P. Pramstaller1,163,164, Afshin Parsa165, Jeffrey R. O’Connell32,

Katalin Susztak18, Pavel Hamet166, Johanne Tremblay166, Ian H. de Boer154, Carsten A. Böger5,**,
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Mainz, Universitätsmedizin, 55122 Mainz, Germany. 346INSERM UMRS 937, Pierre and Marie Curie University (UPMC, Paris 6) and Medical School, 75005
Paris, France. 347Boston University, School of Public Health, Boston, 02118 Massachusetts, USA. 348University of Minnesota School of Public Health, Division
of Epidemiology and Community Health, School of Public Health (A.R.F.), Minneapolis, 55454 Minnesota, USA. 349University of Washington, Department of
Internal Medicine, Seattle, 98195-6420 Washington, USA. 350University of Texas, School of Public Health, Houston, 77030 Texas, USA. 351Department of
Medicine, Landspitali University Hospital, Reykjavik 101, Iceland. 352Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for
Environmental Health, 85764 Neuherberg, Germany. 353Division of Endocrinology and Diabetes, Graduate School of Molecular Endocrinology and Diabetes,
University of Ulm, 89069 Ulm, Germany. 354Division of Endocrinology, Department of Medicine, Medical University of Graz, 8010 Graz, Austria. 355Synlab
Center of Laboratory Diagnostics Heidelberg, 69037 Heidelberg, Germany. 356Division of Clinical Chemistry, Department of Medicine, Albert Ludwigs
University, 79085 Freiburg, Germany. 357Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, 8010 Graz, Austria.
358Cardiology Group Frankfurt-Sachsenhausen, 60594 Frankfurt, Germany. 359The Center for Applied Genomics, Children’s Hospital of Philadelphia, 19104
Philadelphia, Pennsylvania, USA. 360Cardiovascular Research Institute, Medstar Health Research Institute, Washington Hospital Center, Washington, DC
20010, USA. 361Genetics Division and Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA. 362The Institute for Translational
Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, 19104-5158 Pennsylvania, USA. 363Department of Cardiovascular
Surgery, University of Leicester, Leicester LE1 7RH, UK. 364Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research
Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. 365LIGHT Research Institute, Faculty of Medicine and
Health, University of Leeds, Leeds LS2 9JT, UK.

CHARGe-Heart Failure Group

Laura R. Loehr366,367,368, Wayne D. Rosamond367, Emelia Benjamin247, Talin Haritunians220, David Couper369,

Joanne Murabito247, Ying A. Wang13, Bruno H. Stricker24, Patricia P. Chang366, James T. Willerson370,371

366Department of Medicine, University of North Carolina at Chapel Hill, North Carolina 27516, USA. 367Department of Epidemiology, University of North
Carolina at Chapel Hill, North Carolina 27599-7435, USA. 368National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
27709, USA. 369Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina 27514, USA. 370University of Texas, Houston Health
Science Center, Houston, Texas 77030, USA. 371Texas Heart Institute, Houston, Texas 77225-0345, USA.

ECHOGen Consortium

Stephan B. Felix202, Norbert Watzinger372, Jayashri Aragam247, Robert Zweiker372, Lars Lind373, Richard J.

Rodeheffer374, Karin Halina Greiser375, Jaap W. Deckers376, Jan Stritzke377, Erik Ingelsson378, Iftikhar Kullo374,

Johannes Haerting375, Thorsten Reffelmann202, Margaret M. Redfield374, Karl Werdan379, Gary F. Mitchell247,

Donna K. Arnett380, John S. Gottdiener381, Maria Blettner382, Nele Friedrich383

372Department of Internal Medicine, Division of Cardiology, Medical University Graz, Graz 8036, Austria. 373Department of Medical Sciences, Uppsala
University, Uppsala 75185, Sweden. 374Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA. 375Institute of Medical
Epidemiology, Biostatistics and Informatics, Martin Luther University of Halle-Wittenberg, Halle-Wittenberg, Halle (Saale) 06097, Germany. 376Department
of Cardiology, Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands. 377Medical Clinic 2, University of Lübeck, Lübeck 23538, Germany.
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