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Abstract. Indexing exploits assumptions on the inner structures of a
dataset to make the nearest neighbor queries cheaper to resolve. Datasets
are generally indexed at once into a unique index for similarity search.
By indexing a given dataset as a whole, one faces the parameters of its
global structure, which may be adverse. A typical well-studied example is
a high global dimensionality of the dataset, making any indexing strategy
inefficient due to the curse of dimensionality.
We conjecture that a dataset may be partitioned into subsets of variable
indexability. The strategy is, therefore, to define a procedure to extract
parts of the dataset with predictable indexability and to adapt the index
structure to this parameter.
In this paper, we define and discuss indexability related to the curse of
dimensionality and propose a related heuristic to partition the dataset
into low-dimensional parts. Each data object is ranked according to its
degree centrality, under a connected sparse graph, the Half-Space Proxi-
mal Graph (HSP). We postulate centrality measures are good predictors
of dimensionality and indexability.
In view of validation, we conducted an experiment using the degree cen-
trality of the HSP graph as unique dimensionality/indexability measure.
We ranked the data objects by their respective centrality degree under
the HSP graph, then extracted the lower dimensional subsets, recom-
puted the HSP and repeated. Subsets were then indexed with an exact
method in increasing, decreasing and random order. We measured the
complexity of a fixed set of queries for each of the three arrangements.
For each set we used a fixed dataset with 250 queries.
The above single experiment demonstrated that the heuristic can extract
low dimensional subsets, and also that those subsets are easier to index.
This initial results demonstrate the validity of our conjecture and moti-
vate the need for exploring further the notion of indexability and related
dataset partitioning strategies.

Keywords: Indexability · Dataset partitioning · Spanning graph · Cen-
trality measure · Curse of dimensionality



2 A. Hoyos et al

1 Introduction

The nearest neighbor search in a dataset is at the core of data analysis because
it is via neighborhoods that the data makes sense, as opposed to being a set of
arbitrary unrelated items. Resolving effectively range queries or the k-nearest
neighbor problem has countless applications in machine learning, data mining
and many other fields of data processing. It is therefore critical to make this step
both effective and accurate. It is well-known that the effectiveness of indexing
structures is reduced as a function of the dimensionality of the dataset. In this
paper we present a study that takes an alternative approach to the general index
structure improvement proposed in most of the literature. Under the assumption
that effective index structures exist for “well-behaved” datasets, we propose to
attack the dataset rather than the index structure and make it suitable to be
indexed by state-of-the-art structures (eg [14]).

In section 2, we briefly review related work and introduce the notion dataset
indexability, that will be our criterion for adapting the dataset to index struc-
tures. In section 3, we present our strategy to boost indexability, resulting into
our main conjecture that is initially tested in section 4 and discussed in section 5.

2 Indexability

Measuring the performance of an index structure generally means evaluating the
performance of an indexing strategy over standard benchmarks (datasets, queries
and measures). Measuring the indexability of a dataset takes the problem upside
down and looks at whether or not a given dataset can benefit from an index
structure to answer nearest neighbor queries. Intuitively, a dataset is said to be
indexable if one can build an exact index able to answer reasonably selective
queries in time that is not proportional to the size of the dataset. A trivial
example of an indexable dataset is a set of points on a line, the plane or with
“small” dimension in general. In this example case, a classical data structure
like the kd-tree [3], can handle the indexing task.

There are several dimensions to index fitness. Any index computes an index
distance that approximates the true metric while being cheaper to compute.
The effectiveness of the index measures how good the index distance bounds
the original distance. The efficiency measures how fast the index distance can
be computed for the entire dataset. These two measures are complemented with
the memory usage and the speed at which the index can be constructed. It is
usually the case that the effectiveness of an index can be boosted at the expense
of its efficiency and memory usage or construction speed.

2.1 The importance of local dimensionality

Indexability is therefore related to the deep foundations of distance-based in-
dexing, essentially related to distance computation. From this perspective, in-
dexability has been studied in relation to the curse of dimensionality and much
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has been discussed around this concept. Essentially, the main result of [4] and
subsequent papers (eg, [13, 17, 19]) is that, as defined in [20] (definition 2.2), a
workload W = (S, F, n, d) consisting of a dataset S of n objects drawn iid from
a distribution F and measured via distance function d(., .) can be made into a
series Wi which will be said to have vanishing variance if there exists α > 0 such
that

lim
m→∞

var

(
Dα
m

E[Dα
m]

)
= 0,

where Dm is the distance distribution of Wm (ie the distribution of distances
between points in Sm). In that case, ([4], Theorem 1), for every ε > 0

lim
m→∞

P [Dmax
m ≤ (1 + ε)Dmin

m ] = 1.

Simply said, all distance values become indistinguishable as m increases. This
is even more true in a fixed precision environment. A typical example of such a
workload is a dataset with coordinates iid distributed in all m dimensions. As a
result, the use of sum-based distance functions (such as Minkowski metrics) for
high-dimensional datasets impedes their indexability.

Directly considering the global dimensionality of the dataset therefore ap-
pears as a crude approximation for indexability. Rather, provided one knows
how to exploit local structures from within the data, the effective indexability
should be boosted. The workload may have high representational dimension but
an intrinsic low dimension, and be indexable using a classic metric indexing
method like the BK-tree [6]. For other cases of intrinsic high dimension, the
dataset would not be indexable, even in the approximate sense, as stated in a
recent theoretical result on the conditional hardness of nearest neighbor search
using polynomial preprocessing time [19]. In that paper the authors prove that
computing a (1 + ε)-approximation to the nearest neighbor requires Ω(N − δ)
time, with N the size of the dataset.

It is therefore critical to obtain a proper understanding of what dimensional-
ity means locally. There are several proposals to measure local intrinsic dimen-
sion. An excellent review is provided by Michael Houle [10], who also proposed
the expansion dimension for that purpose. The idea is to measure locally how
many points are contained in a ball as its radius increases. Since in Euclidean
spaces the volume of a ball of radius r is about rm with m the number of dimen-
sions, fitting the increase of the number of points contained in a ball of increasing
radius allows for the estimation of the local intrinsic dimension. In this line of
work, authors [11, 2] advocate for feature selection for removing “spurious” di-
mensions while preserving original distances. The aim is to provide an equivalent
but better indexable dataset. Alternatively, ranks may also be used as a robust
replacement to distance values [12, 7].

2.2 Dataset shattering

An interesting alternative avenue for investigation is that of the VC dimension
[22]. The relationship between the VC dimension and indexing has already been
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put forward by Pestov in [18]. Although the VC dimension is related to mea-
suring the complexity of a class of functions, the notion of shattering is easily
related to that of indexing. If a dataset is shattered, any of its elements can be
particularized as a result of such shattering. Indexing has a similar objective.
For example, the capabilities of permutation-based indexing schemes to shatter
a dataset are explored in [15, 1].

3 Boosting dataset indexability

In this exploratory work, we propose an alternative approach to combat the curse
of dimensionality. Rather than considering the dataset as an integral entity, we
seek a decomposition that will extract parts with higher indexability than the
whole. Indexes can then be built over these parts individually and a query sent
to the multiple index structures and recomposed globally.

3.1 Dataset layering

We assume we are given a non-indexable dataset. Our aim is to decompose it
into easily indexable parts. From the above discussion, non-indexability allows
us to model the dataset as a blob of high dimension, which we will partition into
fragments of low dimension.

Hence, we construct a partition by iteratively peeling the dataset (blob) into
layers corresponding to surfaces of points equidistant from the blob center. We
therefore inherit from the notion of centrality measures to define the layers which
will be indexable. Centrality is classically defined in relation to a spanning graph.
Various definitions of centrality exist [5, 9], from the simplest based on node de-
gree, to those exploiting a spectral decomposition of the graph (such as PageRank
and others [21]).

We initially base our study on a degree-based centrality measure applied over
the Half Space Proximal (HSP) graph constructed over the dataset, as detailed
next.

3.2 The Half Space Proximal graph

The Half Space Proximal is a local test for building a directed graph, which
is a bounded dilation spanner over a set of objects in a metric space. Without
needing synchronization, each node can compute its neighbors using the simple
rule described below.

Let S a finite subset of a metric space. Let u ∈ S, we take its nearest element
v ∈ S and add an edge from u to v. We remove all the elements that are closer
to v than to u. The region of objects closer to v than to u is called the forbidden
region from the point u with respect to v. From the remaining points we take
the nearest point to u and repeat until we have removed all points in S. We
do this process for every point in S. In the end, we will have a directed graph
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with vertex set S and the edges found with the previous mechanism. The HSP,
presented in [8], has maximum out-degree of six for points in the plane.

We conjecture that the out-degree of each node in the HSP depends only on
the local intrinsic dimension of the node. Hence, in particular, it can be used
as an estimator of the indexability of a point collection. The rationale behind
this conjecture is related to the test conducted at each step of the construction.
Every edge from the node is associated to an hyperplane, and the out-degree
will be related to the number of hyperplanes needed to isolate the node.

Please notice that the HSP test in each node requires searching for the nearest
neighbor of the node, then splitting the set into two parts and repeat until the set
is empty. A careful implementation will require a quadratic number of distance
computations. This imposes a severe limitation in practice, because interesting
datasets are quite large.

4 Layered Indexing with the HSP

As an empirical validation of the above stated conjecture, we conducted an
experiment using a set of 100’000 deep feature vectors of 4’096 real values. For
this set we computed the HSP and ranked the nodes according to their degree.
After this, we removed the 1’000 nodes with the smallest degree in the graph,
recomputed the HSP in the remaining objects, and repeated. Note that the nodes
linked to the removed objects are the most likely to have its out-degree modified.
We only recomputed the edges of those nodes in the next iteration. Figure 1
shows the evolution of the average degree centrality when adding different layers
in the dataset.
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Fig. 1. Average degree centrality of different layers of dataset objects.



6 A. Hoyos et al

In this experiment, we noted that the number of changes in the out-degree
of the touched nodes was slowly decreasing, and after some 40% of the dataset,
stopped changing. This supports the existence of a hard kernel in the dataset.
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Fig. 2. Layered indexing of a dataset of 100,000 deep feature vectors of dimension 4096
with two exact indices, with the SAT (top) and with the VP-tree (bottom). Note the
large difference for the low and large degree nodes. See text for more details.

The result of this layered indexing experiment is summarized in figure 2. In
the plot, chunks of increasing size (horizontal axis) are indexed independently
with an exact indexing method (SAT [16] and VP-Tree [23] respectively). In-
creasing the size of the dataset from 10’000 to 90’000 objects was first done by
adding nodes of decreasing degree. According to our conjecture, this corresponds
to going from least to most indexable subsets (least favorable indexing setup).
We compare to the case of increasing degree, again varying the size from 10’000
to 90’000 objects, hoping to create the most favorable setup. We also included a
control plot with a random selection of the dataset of the same size. For the rest,
we kept the same index and the same set of 250 queries not included at indexing
time. The results plotted correspond to the average over 250 queries in the index.
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The differences become apparent, in some places it was almost twice the number
of distance computations (indicated by the percentage of the dataset visited on
vertical axis). This difference becomes smaller when the subset is almost the
entire dataset.

Notice that the difference in indexability persists across different indexes.
The SAT is more sensitive the centrality of the collection, while the VP-tree is
almost not affected when the dataset excludes its 10% least indexable part.

5 Discussion

The preliminary experimental results discussed in this communication are en-
couraging. They are an empirical corroboration of the intuition that indexability,
local intrinsic dimensionality and centrality are related. This paper certainly does
not propose a new indexing method, mainly because of the large cost of com-
puting the degree centrality of the HSP graph. It rather motivates the quest for
a faster-to-compute latent graph of the dataset and gives some hope in dealing
with the curse of dimensionality.

Some open questions remain. What type of guarantees is it possible to give
in a layered index? In other words, assume each part, from the most to least
indexable, is indexed independently using a mixture of exact and approximate
methods, and then queried at once, there will be an answer from each one of the
indexes, some from the exact and some from the approximate methods. Even if
the nearest neighbor belongs to an exact index, it is not sure that it is the true
global nearest neighbor. What is then a good heuristic to assign a probability
to the global answer?

It is also interesting to explore additional properties of the most or least
indexable parts of the dataset. In the case of such deep features of images, what
are the most representative objects of a class? Is it the most central, i.e. the least
indexable? Or is it the opposite? Is it possible to build a classifier based only on
the centrality of the objects in a class?
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