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SUMMARIES 

 

1. English summary of the thesis 

 

The control of lipid homeostasis is a fundamental process that allows cells to maintain the 

unique lipid composition of their membrane compartments and to deal with the energetic fluxes 

from metabolism. This control is done at several levels and involves lipid sensors, signaling 

systems, regulators as well as a robust machinery of lipid distribution across membranes. If most 

of enzymes involved in lipid metabolism are characterized, the question of the genetic control of 

lipid homeostasis is still outstanding. 

In order to find genes that control the homeostasis of membrane lipids, we combined a large-

scale RNAi screen with the techniques of targeted lipidomic analysis by mass spectrometry to 

monitor lipid changes in HeLa cells. For the first time, it was possible to observe the effects of 

genetic perturbations at the level of hundreds of membrane lipids with different combinations of 

head groups and fatty acyl chains simultaneously in HeLa cells. 

First, I performed a pilot screen with siRNA targeting genes involved in lipid metabolism in 

order to validate the method. The results showed that siRNA-induced knockdown was sufficient 

to induce significant lipid changes but it also highlighted the capacity of cells to use 

compensatory mechanisms to adapt their lipid metabolism in case of direct silencing in lipid 

metabolic pathways. Moreover, it also showed that lipid changes can differ depending on cell 

confluence. 

Second, a large-scale RNAi screen targeting the human kinome was performed. After 

validation of the primary screen through the analysis of quality control, 152 kinases were selected 

as candidate genes involved in the control of membrane lipid homeostasis. Among them, one 

third was linked to the regulation of central carbon metabolism and energy sensing. The detailed 

analysis also allowed validation of some hits based on scientific literature.   
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Finally, in parallel to this project, in the context of the Swiss National Center of Competence 

in Research (NCCR) Chemical Biology, we also developed and performed a robotically-assisted 

siRNA transfection assay in HeLa cells stably expressing GPI-eGFP and screened a library of 

chemicals in order to find compounds able to transfect siRNA in Human cells at least as 

efficiently than commercially available compounds. The robotic assistance allowed screening six 

different concentrations of siRNA/amphiphiles complexes from a chemical library comprising 

more than 200 compounds. These amphiphiles, synthesized in Matile lab (Geneva, Switzerland), 

resulted from the dynamic and covalent assembly of hydrophobic tails (aldehyde/ketones, thiols) 

with positively charged heads (hydrazones, oximes or disulfides bridges) (Montenegro et al, 

2012). The screen revealed a dozen of active compounds able to carry siRNA into HeLa cells 

with a knockdown efficiency greater than 50% and little or no toxicity.  After confirmation, 

siRNA transfection with active amphiphiles was optimized in HeLa cells expressing GPI-eGFP in 

order to reach a knockdown efficiency as good as Lipofectamine™ RNAiMax. A time-course 

assay revealed that GFP knockdown was faster with dynamic amphiphiles than Lipofectamine™, 

suggesting a different manner of crossing cell membranes for siRNA/amphiphiles complexes. 

siRNA Transfection capacity of active amphiphiles was also performed in challenging cell types, 

such as Human Primary Skin Fibroblasts (courtesy of Dr Charna Dibner, HUG), with siRNA 

targeting GAPDH mRNA. The transfection was more efficient with the most active dynamic 

amphiphiles than with Lipofectamine RNAiMax. Then, the characterization of 

siRNA/amphiphiles particles was monitored using Density Light Scattering (DLS). The last step, 

in collaboration with Pr. Shiroh Futaki (Japan) consisted in determining which cellular 

mechanisms, such as endocytosis, were involved in the delivery of siRNA by the best amphiphile 

candidate into HeLa cells.   
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2. Résumé de la thèse en français 

 

Le contrôle de l'homéostasie lipidique est un processus fondamental qui permet aux cellules à 

la fois de maintenir une composition lipidique unique dans chacun de ses compartiments 

membranaires et de gérer les  flux énergétiques. Ce contrôle s’effectue à divers niveaux et 

comprend des capteurs de la composition lipidique membranaire, un système de signalisation et 

de régulation qui permet à la cellule d’adapter son métabolisme lipidique en fonction des besoins 

ainsi qu’un robuste système de transport assurant la distribution correcte des lipides dans leurs 

compartiments cellulaires spécifiques. Si la plupart des enzymes impliquées dans le métabolisme 

des lipides sont connues, la question du contrôle de l'homéostasie lipidique n’est pas résolue. 

Afin de trouver les gènes qui contrôlent l'homéostasie des lipides membranaires, nous avons 

combiné un crible génétique par ARN interférent (ARNi) aux techniques d'analyse lipidomique 

ciblée par spectrométrie de masse dans les cellules HeLa. Pour la première fois, il est possible 

d'observer les effets de perturbations génétiques simultanément  au niveau de centaines de lipides 

membranaires résultant de la combinaison entre différents groupes fonctionnels et chaines 

d’acides gras. 

Dans un premier temps, une expérience pilote de crible génétique a été mise au point pour 

valider l’utilisation d’ARNi  pour étudier la fonction des gènes dans le métabolisme des lipides. 

Dans ce but, j'ai ciblé des gènes en relation avec le métabolisme des lipides. Les résultats de ce 

test ont montré que la réduction d’expression des gènes par ARNi était suffisante pour induire des 

changements lipidiques significatifs. Cependant, ils ont également mis en évidence la capacité 

des cellules à utiliser des mécanismes compensatoires pour adapter leur métabolisme lipidique en 

réponse aux déficiences de certaines voies de synthèse. Enfin, ces résultats ont montré que les 

changements lipidiques pouvaient être différents en fonction de la confluence des cellules au 

moment de la transfection des ARNi. 

Une fois l’expérience pilote validée, un crible ARNi à grande échelle ciblant le kinome 

humaine a été réalisé.  Après filtration des résultats incongrus et validation du set de données par 

l'analyse des contrôles de la qualité, 152 kinases ont été choisies comme ayant un rôle possible 

dans le contrôle de l'homéostasie lipidique membranaire. Parmi ces kinases, environ un tiers était 
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déjà connues pour leur rôle dans le contrôle du métabolisme central du carbone. L'analyse 

détaillée des gènes candidats a permis de valider certains résultats selon les données de la 

littérature mais les étapes de confirmation sont toujours en cours. 

Enfin, parallèlement à ce projet, dans le cadre du Pôle de recherche national suisse de (PRN) 

Biologie chimique, nous avons également développé et réalisé une expérience de répression 

génétique dans les cellules HeLa exprimant de façon stable la protéine GPI -eGFP par  une 

banque de composés chimiques, appelés amphiphiles dynamiques et potentiellement capables de 

transfecter des ARNi dans des cellules humaines.  Une assistance robotisée nous a permis de 

tester les composés d’une banque comptant plus de 200 amphiphiles et six ratios différents 

d’assemblage entre les ARNi et amphiphiles. Ces amphiphiles synthétisés dans le laboratoire du 

Pr. Stefan Matile (Genève, Suisse), résultent de l'assemblage dynamique et covalent entre des 

chaines carbonées hydrophobes (aldéhyde / cétones,  thiols) avec des groupes fonctionnels 

positivement chargés (hydrazones, oximes ou ponts disulfures).  Les résultats du criblage ont 

identifié une douzaine de composés actifs pouvant transporter les ARNi dans les cellules HeLa 

avec un rendement de plus de 50 %  de répression d’expression des GPI-EGFP et peu ou pas de 

toxicité. Après confirmation, la transfection des complexes ARNi/ amphiphiles actifs a été 

optimisée dans les cellules HeLa exprimant GPI -eGFP afin d'atteindre une efficacité de 

répression au moins aussi bonne que l’agent de transfection commercial  Lipofectamine ™ 

RNAiMax. Un test d’activité a également révélé que la répression d’expression de la GFP était 

plus rapide avec les amphiphiles dynamiques que la Lipofectamine ™ , ce qui suggère une autre 

manière de traverser les membranes cellulaires pour les complexes ARNi/ amphiphiles. 

L’efficacité de transfection de l’ARNi par les amphiphiles actifs a également été effectuée dans 

des types cellulaires différents et réputés difficiles à transfecter comme les fibroblastes de peau 

humaine primaires (remerciements au Dr Charna Dibner, HUG ), avec des ARNi ciblant l'ARNm 

de GAPDH . La transfection était plus efficace avec les amphiphiles dynamiques les plus actifs 

qu'avec la Lipofectamine RNAiMax. Finalement, la caractérisation des particules ARNi/ 

amphiphiles a été mesurée par diffusion dynamique de la lumière (DLS). La dernière étape, en 

collaboration avec le Pr. Shiroh Futaki (Japon) a consisté à déterminer les mécanismes cellulaires 

impliqués dans le transfert cellulaire des ARNi par les meilleurs candidats amphiphiles dans des 

cellules HeLa. 
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INTRODUCTION 

 

1. Biology of membrane lipids  

 

1.1. Lipids are essential components of life 

 

Lipids are organic molecules essential to life in the same way as amino acids, nucleic acids 

and sugars. Lipids have always been part of the human diet but their chemical characterization 

and their link with life has been a long process. Lipid properties such as hydrophobicity and 

highly calorific matter have been known since the first human populations were making butter or 

lamps from animal fats and produce vegetable oil. However, the link between lipid chemistry and 

physiology only started in the 19
th

 century with the chemical characterization of cholesterol from 

gallstones, glycerolipids from fats and some fatty acids by Michel-Eugène Chevreul (1786-1889) 

(McNamara et al, 2006). Since these first discoveries, with the evolution of extraction and 

analytical methods, tens of thousands of lipids from many organisms have been characterized but 

several other organisms remain to be analyzed and techniques are constantly improving  (Wenk, 

2005).  In 2005, the International Classification and Nomenclature Committee have defined lipids 

on the basis of their hydrophobicity (Fahy et al, 2009). However, this is not the common point to 

all lipids. Indeed, some of them like phosphoinositides or lipids with large hydrophilic domains 

such as complex sugars are rather soluble in water-based solvents. Therefore, a consensus 

definition of lipids could be “fatty acids, their naturally-occurring derivatives (esters or amides), 

and substances related biosynthetically or functionally to these compounds”, as suggested by 

Christie, the author of the Lipid Library (http://lipidlibrary.aocs.org/) 

The main biological function of lipids as structural components of cell membranes was 

discovered at the turn of the 20th century. First, Charles Overton suggested in 1889 that cell 

boundaries could be made of lipids since nonpolar and lipid molecules could cross them.  Then in 

1925, Gortner and Grender calculated the surface area of cell boundaries occupied by lipids using 

a Langmuir trough and hypothesized that the outer cell membranes were composed of a lipid 

bilayer, what was confirmed later by electronic microscopy (Adams, 2010). While the 

fundamental frontier between the inert and life remains an enigmatic question for science, the 
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lipid bilayer of cell membranes creates a physical border between the cell medium and its outer 

environment in all living organisms. Cells are the basic units of life and there is no cell without 

lipid membranes. 

How cell membranes appeared during evolution is far from being understood. Instead, the 

evolution of membrane lipid biosynthetic pathways could be investigated thanks to comparative 

genomics. The molecular phylogenetic analysis of genes coding for enzymes of lipid biosynthesis 

pathways in archea, bacteria and eukaryotes, suggest that phospholipids were already synthesized 

in the most recent common ancestor of the three domains of life. Phospholipids are the major 

components of cell membranes. Even if the nature of phospholipids differs between archea, 

bacteria and eukaryotes, all species share homologous enzymes acting in common steps of their 

phospholipid synthetic pathways. Indeed, while both eukaryotic and bacterial PLs result from the 

esterification of fatty acyl chains on a glycerol-3-phosphate backbone chains and PLs from 

archea are made of a glycerol-1-phosphate backbone linked to methyl-branched isoprenoids 

through ether bonds, genes coding for the synthesis of glycerol backbones, isoprenoids and fatty 

acids probably come from a common ancestor (Lombard et al, 2012).   

Lipids are components of cell membranes but also signaling or energy storage molecules and 

the precursor of bioactive compounds such as hormones and mediator molecules in immunology. 

The chemical properties of lipids influence the biophysics of cell membranes as well as their 

protein composition and the function of these proteins. Stored in droplets, neutral lipids such as 

triacylglycerols and steryl esters become highly caloric reservoirs of energy. On the contrary, 

many lipids are synthesized in tiny quantities and their presence is tightly regulated in space and 

time because of their signaling properties. For instance, the concentration of some sphingolipids 

can be interpreted as a signal of proliferation or apoptosis for cells, the flip of phosphatidylserine 

to the outer leaflet of plasma membrane is a sign of apoptosis for neighboring cells (Fadok et al, 

1992), the presence of phosphoinositides in specific cell compartments determines the association 

of proteins with specific organelles (Balla, 2013), protein-lipid associations in the nucleus 

influence gene expression (Shah et al, 2013), etc. Finally, proteins can be modified with lipids 

through posttranslational modifications such as acylation  (Salaun et al, 2010) or attachment to a 

glycosylphosphatidylinositol anchor (GPI-anchor) (Kinoshita et al, 2008).     
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1.2. Membrane lipid composition in mammalian cells 

 

In mammalian cells, membrane lipids comprise thousands of molecules that can be classified 

into three major categories: glycerophospholipids (GPLs), sphingolipids (SLs) and sterols. Each 

lipid class represents many combinations of molecules with specific subcellular distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure and localization of major membrane lipids in mammalian cells. Major membrane lipids  

(blue) are found in all cell membranes but organelles and specific leaflets  are particularly enriched in certain lipid, as 

indicated on the figure representing subcellular compartments. CE: cholesteryl ester; EE, early endosomes; ER: 

endoplasmic reticulum; LBPA (brown):lysobiphosphatidic acid;   LE: late endosome;  MVBs: multivesicular bodies; 

PM: plasma membranes. Adapted from  (Balla, 2013; Loizides-Mangold, 2013; van Meer & de Kroon, 2011). 
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The lipid composition of membranes differs between organelles as well as between the two 

layers of the bilayer. These particularities confer specific physical and biochemical properties to 

the different membranes. Indeed, alone or packed in lipid bilayers, membrane lipids influence the 

structural and geometrical plasticity of membranes and their capacity to interact with proteins.   

Membrane lipids are mostly amphiphilic. Therefore, membrane bilayers are made of a 

hydrophobic core of fatty acids attached to hydrophilic head groups at the interface with the 

aqueous phase. These head groups can be anionic (PI, PS, PA, CL) or neutral (PC, PE) and 

contribute to electrostatic interactions between proteins and the membrane. The ionic 

composition of the solvent around the bilayer also plays an important role in physical properties 

of membranes as it influences phase transitions by modifying the size of anionic head groups 

such as PA and CL at the cell surface. (Dowhan, 2008)  

The geometry of individual lipids is influenced by their chemical and structural anatomy. 

Depending on their head group and their composition in fatty acids, they are either cylindrical or 

conical. Together, cylinder-shaped lipids have the propensity to form membrane bilayers whereas 

cone-shaped and inverted cone-shaped lipids such lysophospholipids, PE or DAG are considered 

as nonbilayer lipids and tend to deform the membrane and increase surface tension. The mixture 

of bilayer- and nonbilayer-forming lipids affects the asymmetry of membrane bilayers and 

impacts the movement of proteins, membrane curvature and fusion/fission of vesicles. The 

fluidity of membranes is greatly influenced by both the shape of lipids and their fatty acyl 

composition. Lipid bilayers oscillate between ordered (Lβ or Lo) and disordered (Lα or Ld) phases. 

The presence of unsaturated and branched fatty acids tends to increase membrane fluidity. On the 

contrary, the insertion of cholesterol reorders the lipid bilayer and controls its lateral organization 

leading to more specific associations with proteins (Dowhan, 2008). For instance, in the concept 

of lipid rafts, the association between SLs, cholesterol and specific proteins results in detergent-

resistant membrane nanodomains that are associated with several biological processes (Lingwood 

& Simons, 2010) even if they have never been directly observed in vivo due to the lack of good 

fluorescent lipid markers.  
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Figure 2. Polymorphic phases and molecular shapes exhibited by lipids. Inverted cone-shaped molecules form 

micelles. Polar lipids with two long alkyl chains adopt a bilayer or a non-blayer (HII) structure depending on the 

geometry of the molecule (cylinder- or cone-shaped respectively) and environmental conditions. The Lβ (ordered 

gel) and Lα (liquid crystalline) bilayer phases differ in the order within the hydrophobic domain and in mobility of 

the individual molecules. Reprinted from (Dowhan, 2008)  

 

How does the cell control its membrane lipid composition in order to organize this 

compartmentalization and maintain the biophysical properties proper to each organelle? Where 

and how does the cell synthesize membrane lipids and how do they maintain their levels? The 

goal of the next sections is to answer this question on the basis of our current knowledge. 
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1.2.1. Glycerophospholipids (GPLs) 

 

Glycerophospholipids are the most abundant membrane lipids in mammalian cells. GPLs are 

glycerol-based phospholipids (PLs), They are amphipathic compounds made of a glycerol-3-

phosphate (G3P) backbone, linked to a head group via a phosphodiester bond and to fatty acyl 

chains through ester, ether or vinyl ether bonds on sn-1 and sn-2 (Hermansson et al, 2011). GPLs 

are subdivided into different classes according to the nature of their head group (Fig. 1). In 

mammalian cells, major GPLs are phosphatidylcholine (PC) that constitute around 50 mol% of 

PLs, followed by phosphatidylethanolamine (PE), around 20 mol%, phosphatidylinositol (PI), 

phosphatidylserine (PS) less than 10 mol% each and phosphatidic acid (PA) and 

phosphatidylglycerol (PG) in very low amount  (van Meer, 2005). PA is the precursor of all 

GPLs and PG, is an intermediate in the synthesis of cardiolipins (CL), a GPL specific for the 

inner membrane of mitochondria (IMM).  

The synthesis of GPLs starts either in the membrane of the endoplasmic reticulum (ER) or at 

the outer membrane of mitochondria (OMM). The first step of GPLs synthesis is the formation of 

PA that results from the successive acylations of G3P on sn-1 by acyl-CoA: glycerol-3-phosphate 

acyltransferase (GPAT), then on sn-2 by lysophosphatidic acid acyltransferase (LPPAT). GPAT 

and LPAAT are found both in the ER and mitochondria. From there, PA can be either 

dephosphorylated into diacylglycerol (DAG), the precursor of PC, PE and PS by PA phosphatase 

1 or 2 (PAP1 or 2) or converted into CDP-diacylglycerol (CDP-DG), the precursor of the anionic 

PI, PG and CL by CDP-diacylglycerol synthase (CDS). CDS exists in different isoforms that 

localize in the ER to make PI and in mitochondria where PG and CL are synthesized 

(Hermansson et al, 2011). CDP-DG is converted into PI by phosphatidylinositol synthase (PIS) in 

the ER (Kim et al, 2011) and PG is made in mitochondria where it is used as substrate in the 

synthesis of CL by the cardiolipin synthase CLS in the IMM. The structure of CL is unique 

among GPLs with its four fatty acyl chains and two phosphatidyl moieties linked to glycerol 

(Houtkooper & Vaz, 2008) (Fig. 3).   
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Figure 2. Overview of the glycerophospholipid (GPL) biosynthesis pathway in mammalian cells. The key 

metabolites (in black), the enzymes catalyzing the respective reactions (in red) and their subcellular localization 

(arrows) are indicated. Lipids analyzed in this thesis project are surrounded in red. Most of abbreviations are as 

indicated in the text proper. Supplementary abbreviations are indicated here: DGAK (diacylglycerol kinase), EK 

(ethanolamine kinase); EPT (ethanolamine phosphotransferase); ET (phosphoethanolamine citidyltransferase); PGPP 

(phosphatidylglycerol phosphate phosphatase); PGPS (phosphatidylglycerol phosphate synthase).  Adapted from 

various sources cited in the text. 

 

The synthesis of PC and PE starts with the dephosphorylation of PA into DAG at the 

membrane of the ER by PAP. The PAPs consists in two families: the cytosolic PAP1 or lipins, 

and the membrane proteins PAP2 or lipid phosphate phosphatase (LPP) that can compensate the 

activity of lipins in some conditions (Carman & Han, 2006). In mammalian cells, PC is 

predominantly synthesized through the Kennedy pathway, i.e. de novo synthesis in the ER. 
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converted into CDP-choline by a CTP: phosphocholine ctidylyltransferase (CT). This latest 

reaction is considered as the rate-limiting step of de novo PC synthesis in mammalian cells. 

Finally, the CDP-choline head group is transferred on DAG by CDP-choline: 1, 2-diacylglycerol 

cholinephosphotransferase (CPT) to make PC. PC can also be synthesized through sequential 

methylation of PE by phosphatidylethanolamine N-methyltransferase (PEMT) in the ER and in 

ER mitochondrial-associated membranes (MAMs), to a lower extent. However, this reaction is 

restricted to hepatocytes in mammals (Hermansson et al, 2011). Contrary to PC, in mammalian 

cells de novo synthesis of PE results from both the Kennedy pathway in the ER and the 

decarboxylation of PS by phosphatidylserine decarboxylase (PSD) in IMM.  However, the 

importance of each pathway for cell viability depends on the tissue and the pathways cannot 

compensate for each other. For instance, many cells in culture prefer to make PE by 

decarboxylation of PS whereas PE made through the Kennedy pathway is indispensable to the 

function of hepatocytes in mice. Finally, PS is made by base exchange of head groups from PC or 

PE with L-serine via phosphatidylserine synthase 1 or 2 (PSS1 or 2), respectively in ER-MAM 

(Hermansson et al, 2011) (Fig. 3).   

Other classes of GPLs exist. These compounds can be present in tiny quantities in cells while 

they play important roles in signaling, structure and metabolism. They can be derived from 

existing GPLs (phosphoinositides, Lysophospholipids) or result from a different biosynthetic 

pathway (ether-phospholipids) 

 

 Phosphoinositides (PIPs) 

Phosphoinositides are lipid signaling molecules that represent less than 1 mol% of total PLs. 

They are made from PI by successive phosphorylations and dephosphorylations of the inositol 

ring by a system of PI- and PIP-kinases and phosphatases (Fig. 3). While the PI synthase (PIS) 

associates with both the ER and specific ER-derived highly mobile organelles, the synthesis of 

PIPs takes place in various membrane compartments of the cell. However, the distribution of 

PIPs is characteristic of specific organelles. For instance,  the plasma membrane (PM) is enriched 

in PI(4.5)P2, PI(4)P and PI(3,4,5)P3, early endosomes (EE) are enriched in PI(3)P, late 

endosomes (LE) in PI(3,5)P2 and the Golgi in PI(4)P (Fig. 1). The functions of phosphoinositides 

cover a wide range of biological processes that were reviewed by Tamas Balla in 2013. To 
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summarize, “PIPs control organelle biology by regulating vesicular trafficking, but they also 

modulate lipid distribution and metabolism via their close relationship with lipid transfer 

proteins. PIPs regulate ion channels, pumps, and transporters and control both endocytic and 

exocytic processes”.  (Balla, 2013). Their presence in the nucleus also affects gene expression, 

DNA repair and the export of mRNA (Monserrate & York, 2010).  

 

 Lysophospholipids (lysoPLs) 

Lysophospholipids are monoacylated phospholipids where one of the fatty acyl chains is 

replaced by a hydroxyl group on sn-1 or sn-2 of their glycerol backbone. They are synthesized 

either by de novo synthesis from glycerol-3-phosphate or by hydrolysis of PLs via the action of 

phospholipase and acyltransferase. LysoPLs of each PL exist but LysoPCs are the most abundant 

ones. LysoPLs are important bioactive molecules secreted by cells and found in the plasma of 

mammals.  They are often used as biomarkers of various diseases, such as cancer and 

inflammation.  In cells, they play both structural and signaling roles. With their conical shape, 

they induce membrane deformation and can modulate the activity or the oligomerization of 

membrane proteins with which they interact, such as ion channels and G-protein coupled 

receptors (GPCRs) by modifying their membrane environment (Fig.4) (Grzelczyk & 

Gendaszewska-Darmach, 2013). 

 

 

 

 

 

Figure 4. Structures of cylindrical (phosphatidylcholine 18:0) phospholipid (A) and cone shaped 

(lysophosphatidylcholine 18:0) lysophospholipid (B). Adapted from (Grzelczyk & Gendaszewska-Darmach, 2013) 
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 Ether-phospholipids (Ether-PLs) 

In mammalian cells, ether-phospholipids represent an important class of GPLs in which the 

fatty acyl at the sn-1 position is linked to the glycerol-3-phosphate backbone by an ether bond. 

Two types of ether bonds are possible: the ether bond itself in platelet activator factors (PAF) and 

the vinyl-ether bond in plasmalogens (Fig. 5).  

 

 

 

 

 

 

 

Figure 5. Structure of ether-phospholipids: (A) plasmanyl- and (B) plasmenylphospholipids are characterized 

by the presence of an ether or a vinyl-ether bond at the sn-1 position of their glycerol backbone, respectively. 

 

The biosynthesis of ether-phospholipids starts in peroxisomes where the precursor glycerol-3-

phosphate is first dehydrogenated by a G3P dehydrogenase into dihydroxyacetone phosphate 

(DHAP). DHAP is then acylated with a long-chain fatty acyl by the glycerone phosphate O-

acyltransferase (GNPAT) before that the enzyme alkyl-glycerone phosphate synthase (AGPS) 

replaces the acyl-chain by a fatty alcohol.  Next, 1-alkyl-DHAP is exported from peroxisomes to 

the ER where it is reduced into 1-alkyl-G3P on which a fatty acyl is esterified by a specific 

alkyl/acyl-glycerol-3-phosphate acyltransferase (AAG3P-AT). Next steps of the process follow 

the same pathway than other GPLs (Fig. 3) Major plasmalogens are choline and ethanolamine-

based (Brites et al, 2004).  Plasmalogens are abundant membrane component. For instance, ether-

PE represents around 30-50 mol% of total PE in the brain. They play important functions in 

membrane structure and dynamics as they tend to reduce surface tension and viscosity. They are 

also a reservoir of polyunsaturated fatty acids (PUFA) and antioxidants thanks to the scavenger 

property of their vinyl-ether bond (Wallner & Schmitz, 2011).  

  

A B

Plasmanyl-phospholipids Plasmenyl-phospholipids (plasmalogens)
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 Lysobisphosphatidic acid (LBPA)/ Bis(monoglycero)phosphate (BMP) 

Lysobiphosphatidic acid is a special type of negatively charged GPL present in low amounts 

in cells (less than 1%) and concentrated in the inner membrane of late endosomes (≈17mol% of 

PLs from the LE) and lysosomes. Its structure is unique in the sense that it consists of two 

monoacyl glycerol backbones linked together by a phosphate group in sn-1 (sn-1’). Both the 

composition and the position of fatty acyl chains on glycerol determine the conformation of 

LBPA isomers.  In vivo, the most abundant ones are acylated with oleic acid in 2, 2’ (Goursot et 

al, 2010) (Fig. 6). The biosynthesis pathway of LBPA is still poorly understood and its precursor 

might be PG.  LBPA functions are closely related to its structure. For instance, only the 2,2’-

dioleolyl LBPA isomer was shown to be active in the regulation of cholesterol endosomal levels 

(Matsuo et al, 2004). LBPA can induce membrane invagination and participate to the formation 

of vesicles in multivesicular bodies (MVBs) and contrary to other GPLs, it is also resistant to 

hydrolysis by lipases and phospholipases (Gallala & Sandhoff, 2011) 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of LBPA with stereospecific numbering (sn) of the glycerol backbone (A) 

and examples of LBPA conformation based on calculated structures of the most stable 2, 2’LBPA isomers (B).   

Adapted from (Goursot et al, 2010) . 
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1.2.2. Sphingolipids (SLs) 

 

Information about SL synthesis except hydroxylated and dihydrosphingolipids comes from the 

review co-written with Dr. Maria-Auxiliadora Romero in 2013(Aguilera-Romero et al, 2013) and 

included further in the introduction. The section about SL synthesis, recycling and breakdown is 

repeated here in order to keep the logics of the manuscript. 

Sphingolipids (SLs) are essential structural components of membranes (Fig. 1) and critical 

signaling molecules. De novo SL synthesis begins in the endoplasmic reticulum (ER) with the 

condensation of serine and palmitoyl CoA into 3-ketodihydrosphingosine by serine 

palmitoyltransferase (SPT) (Fig. 7). This product is reduced to generate sphinganine, the 

precursor of long-chain bases (LCBs). LCBs vary in chain length, degree of unsaturation and 

hydroxylation. Combinations of these three parameters define the specific species of LCBs for 

each organism (Hannich et al, 2011). At the ER, LCBs can be phosphorylated by a kinase or 

condensed by a ceramide synthase with fatty acyl-CoA, giving dihydroceramides. The number of 

atoms of the amide-linked fatty acid usually ranges from 14 to 26 and can extend to 36 carbons. 

The very long chain fatty acids (VLCFA) are produced by specific enzymatic complexes called 

elongases. In many species the dihydroceramide can be desaturated to form ceramide. The 

ceramides can then be modified in the ER to produce ceramide phosphoethanolamine or 

galactosylceramides, or travel to the Golgi through vesicular and non-vesicular transport routes. 

The mode of transport seems to determine the subsequent fate of the ceramide; conversion to 

glucosylceramide or sphingomyelin (Hanada et al, 2009). Once in the Golgi, diverse head groups 

are attached to the C-1 hydroxyl group of the ceramide backbone. The head group donor can be a 

glycerophospholipid (GPL) or nucleotide sugars to generate either phosphosphingolipids, with 

simultaneous release of diacylglycerol (DG), or glycosylsphingolipids with release of a 

nucleotide. The initial sugar of glycosphingolipids, usually glucose, can be extended to more 

complex glycan structures. Finally, complex SLs travel through the secretory pathway to the 

plasma membrane, endosomes and lysosomal/vacuole system where their concentration is sensed 

and regulated. Many declinations of SLs exist. They result from the combination of sphingoid 

bases with different fatty acid chain length, saturation degrees, hydroxylation, head groups, sugar 

and phosphate adducts. Here are presented only the ones that were detected by mass spectrometry 

in this thesis project. 
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Many reactions of sphingolipid metabolism can be reversed allowing for the rapid 

interconversion of different metabolic intermediates (Fig. 7). Nonetheless, some steps are 

irreversible: the initial step catalyzed by SPT and the degradation of long chain base phosphates 

(LCB-P) by an ER-localized lyase to acyl aldehydes and phosphoethanolamine (EtnP). 

Deficiencies in both steps have severe consequences in SLmetabolism (Bektas et al, 2010). Apart 

from these two reactions, there are several possible interconversions between SLs along their 

metabolic route. For instance, ceramidases regenerate LCBs from ceramides but they can also 

make ceramides through acylation of LCBs when ceramide synthase activity is compromised 

(Mao et al, 2000; Okino et al, 2003; Pata et al, 2010). The activity of glycohydrolases or 

sphingomyelinases produces ceramides from complex SLs that can be recycled again into the 

sphingolipid pathway (Hannun & Obeid, 2008). As in the anabolic pathway, enzymes responsible 

for SL turnover have an organelle-specific distribution in cells. In mammals, members of 

ceramidase and sphingomyelinase families localize in different cell compartments, such as 

mitochondria, ER, Golgi, lysosome/vacuole and plasma membrane (Hannun & Obeid, 2008). 

Localization is thought to allow the production of local pools of bioactive SLs, such as 

ceramides, LCBs and their phospho-derivatives. Several interesting reviews highlight the 

importance of these degradative pathways in the production of bioactive lipids (Hannun & Obeid, 

2008; Kitatani et al, 2008). Sphingolipid turnover, named the salvage route, is also used to feed 

the sphingolipid synthesis pathway. In mammals, the salvage pathway can be responsible for 

10% to 90% of sphingolipid synthesis (Tettamanti et al, 2003). How cells coordinate de novo and 

salvage pathways to generate the proper amounts of bioactive or structural SLs is an interesting 

field of research. The complexity of the sphingolipidome might differentiate between these two 

functions. Growing evidence supports the importance of substrate specificity of enzymes 

belonging to the degradation pathway in production of bioactive SLs. In mammals, bioactive 

sphingosine is mainly produced by ceramidase activity (Kitatani et al, 2008).  Most of the 

enzymes of SL metabolism show specific subcellular localization. Therefore, spatial organization 

of the salvage pathway could be another discriminatory mechanism to differentiate between fates 

of products and to distinguish between structural and bioactive SLs.   
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 Dihydrosphingolipids 

Dihydrosphingolipids are bioactive compounds. Dihydroceramides (dhCer) are intermediates 

during de novo ceramide synthesis in the ER and can be converted into dihydrosphingomyelin 

(dhSM) and dihydroglycosylceramides (dhGlcCer) in the Golgi as well as other SLs depending 

on the cell line (Kok et al, 1997) (Fig. 7). Dihydroceramide accumulation due to the ablation or 

the knockdown of dihydroceramide desaturases that desaturate dihydroceramides into ceramides 

leads to a global change in the membrane lipid profile (Ruangsiriluk et al, 2012), to autophagy as 

well as antiapoptotic processes (Siddique et al, 2013) but consequences of dhSLs levels changes 

depends on the cell type  (Fabrias et al, 2012). Finally, it was recently shown that dhCer and 

dhSM accumulate in the human lens after the age of 65 and impact the biophysical properties of 

the lens (Deeley et al, 2010). 

 

 Hydroxysphingolipids  

In mammalian cells, 2-hydroxysphingolipids are a subset of sphingolipids containing one 

hydroxylated fatty acid that represent few SLs in most of cell lines and up to 50 mol% of total 

SLs in skin keratinocytes (Uchida et al, 2007) and in epithelial intestine cells (Dahiya & Brasitus, 

1986). 2-hydroxy fatty acids are catalyzed in the ER by fatty acid-2-hydroxylase (FA2H) before 

condensation with sphinganine by a ceramide synthase during the de novo ceramide synthesis 

(Alderson et al, 2004) (Fig. 7). It was shown that all ceramide synthases can utilize 2-hydroxy 

fatty acids with the same efficiency as the non-hydroxylated ones, both in vitro and in vivo 

(Mizutani et al, 2008). The following steps are identical to the synthesis of non-hydroxylated 

SLs. Hydroxylated SLs play an important role in the differentiation of several cell lines and in the 

function of the nervous system in which hydroxylated galactosylceramides are essential to the 

formation of the myelin sheath. Mutations of FA2H in humans and mice cause leukodystrophy 

and neurodegeneration (Potter et al, 2011). Inside cells, the decrease of hydroxylated SLs 

associated with FA2H deficiency impacts the organization of cell membranes. For instance, the 

siRNA knockdown of FA2H is associated with a decrease of glucose and insulin receptors at the 

plasma membrane of adipocytes (Guo et al, 2010).  
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Figure 7. Overview of the sphingolipid (GPL) biosynthesis pathway in mammalian cells. The key metabolites 

(in black), the enzymes catalyzing the respective reactions (in red) and their subcellular localization (arrows) are 

indicated. Lipids analyzed in this thesis project are surrounded in red. Most of abbreviations are as indicated in the 

text proper. Supplementary abbreviations are indicated here: CERK (ceramide kinase); C1P-PPase (ceramide-1-

phosphate phosphatase); Gb3 (globotriaosyl); Gg3 (gangliotriaosylceramide); GM3 (ganglioside); iGb3 

(Isoglobotrihexosylceramide); Lc3 (lactotriaosylceramides).  Infography adapted from the various sources cited in 

the text. 

 

 

1.2.3. Sterols 

 

Sterols are a subfamily of steroids, a group of non-hydrolysable lipids that also comprise bile 

acids and steroid hormones. The structure of sterols is made of a sterane nucleus with four rings 

and one hydroxylation on carbon 3 (Fig. 1). In mammalian cells, the sterols mainly consist of free 

cholesterol and cholesteryl esters.  Cholesterol plays important roles in the fluidity of the plasma 

membrane as well as the formation of microdomains called "lipid rafts", in interaction with 

sphingolipids (Simons & Sampaio, 2011). The biosynthesis of cholesterol occurs in the ER with 

the synthesis of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) from Acetyl-CoA that is 

irreversibly reduced into melanovate by the HMG-CoA reductase (HMGCR). Then, mevalonate 

is converted into 3-isopentenyl pyrophosphate, and six molecules of isopentenyl pyrophosphate 

are needed to synthesize squalene, the common precursor of all sterols that is also a major 

component of the skin barrier. Finally squalene is cyclized to form cholesterol (Stryer L. , 2012) 

SMaseCeramidase

Palmitoyl-CoA LCB Ceramide

serine

SM

GalCer

Sulfatide

GlcCer

GM3 Gb3 iGb3, Gg3, Lc3

Complex 
gangliosides

Globosides Other complex 
GSLs

SPT

Acyl-CoA/ 2-hydroxyAcyl-CoA

LCB-P

EtnP + FA

CerS SMS

LCB-P Lyase

LCB kinase glycohydrolase glycohydrolase

Ceramide-1-P

CERKC1P-PPase

ER
GOLGI
LYSOSOMES

PM

glycosyltransferase glycosyltransferase



Introduction 

 

 

21 

 

(Fig. 8). Cholesterol is often considered as “bad” fat in the collective unconsciousness. This 

terrible fame comes from the fact that this lipid is associated with atherosclerosis that leads to 

cardiovascular diseases, the principal cause of death in the world (WHO, 2013). In mammals, 

cholesterol from diet is absorbed in the intestine and traffics in blood vessels on low-density 

lipoprotein particles (LDL) that attach to LDL-receptors (LDLR) at the cell surface. Once 

activated, these receptors are engulfed by cells via clathrin-mediated endocytosis and cholesteryl 

esters are hydrolyzed in lysosomes before being sent to the ER and the LDLR recycled at the cell 

surface (Schekman, 2013). From there, free cholesterol is either re-distributed in cell membranes 

or if in excess, the lipid is re-esterified by acylCoA: cholesterol acyltransferases (ACATs) in the 

ER and stored in lipid droplets (Brown et al, 1979). The synthesis of LDLR at the cell surface is 

regulated by the intracellular level of free cholesterol. A deficiency of LDLR leads to 

hypercholesterolemia and/or atherosclerosis where LDL cannot be internalized by cells, 

accumulate on the wall of blood vessels and form atheroma plaques (Goldstein & Brown, 1987).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Overview of the sterol biosynthesis pathway in mammalian cells. The key metabolites (in black), the 

enzymes catalyzing the respective reactions (in red) and their subcellular localization (arrows) are indicated. Lipids 

analyzed in this thesis project are surrounded in red. Most of abbreviations are as indicated in the text proper..  

Adapted from the various sources cited in the text. 
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1.3. Insights into the canvas of membrane lipid metabolism 

 

In order to understand how cells regulate their lipid levels, it is necessary to consider not only 

de novo lipid biosynthetic pathways but also how these pathways communicate between each 

other, how they are integrated to the global metabolic network and what the proportion of 

metabolites coming from food intake is.  

Therefore, the purpose of this section is to understand where the metabolites necessary for 

lipid synthesis come from and how their metabolism may affect lipid levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Overview of metabolic crosstalk entering the process of lipid biosynthesis in mammalian cells. 

Adapted from the various sources cited in the text. 
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In mammalian cells, most of metabolites needed for lipid synthesis are made by cells 

themselves but others are only found in diet. This is the case of choline and ethanolamine, the 

head group components of the most abundant glycerophospholipid species. Cells cannot 

synthesize them. Therefore, they get them either from food uptake or from the recycling of other 

lipids. For instance, PC can be produced either from the reuse of phosphocholine resulting from 

the hydrolysis of SM by sphingomyelinase or from the methylation of PE.  In the case of 

ethanolamine, it can either be released during the decarboxylation of PE into PS or from the 

degradation of sphingosine-1-phosphate (S1P) by S1P-lyase (Gibellini & Smith, 2010).  

However, in most cell lines, these represent minor pathways. Myo-inositol that is needed for 

phosphatidylinositol biosynthesis is derived from glucose-6-phosphate, an intermediate product 

of glycolysis. However, its synthesis is also limited in animal cells and most of myo-inositol also 

comes from food, especially fruits (Balla, 2013). On the contrary, serine, the precursor of 

sphingolipids and the head group component of PS, is an amino acid that can be synthesized by 

cells and whose the synthesis is highly regulated because of its role in the homeostasis of 

membrane lipids. Other amino acids can enter in the composition of sphingolipids such as glycine 

and alanine in order to form alternative sphingoid bases, among which is 1-deoxysphinganine 

(Zitomer et al, 2009).  

Other essential metabolites for lipids are fatty acids, the common component of GPLs, SLs 

and cholesteryl esters. They are fundamental structural components of membrane bilayers and a 

major form of energy storage. Fatty acids are synthesized from acetyl-CoA that is carboxylated 

into malonyl-CoA by the acetyl-CoA carboxylase (ACC) in the cytosol, mainly. Then, acetyl-

CoA reacts again with several molecules of malonyl-CoA in a cyclic process in order to produce 

free fatty acids of different chain length (Wang et al, 2012). Mammalian cells principally 

synthesize palmitic (C16) and stearic (C18) fatty acids that can be successively elongated and/or 

desaturated by desaturases and elongase in the cytosol. However, mammalian cells cannot 

introduce double bonds beyond the Δ9 position and need to import fatty acid precursors from 

plants to synthesize other polyunsaturated fatty acids (PUFA). These essential fatty acids are α- 

linolenic and linoleic acids: 18-carbon, polyunsaturated FAs with three and two double bonds 

respectively that have double bonds at the ω3 and ω6 positions (Cook, 2008).  

Acetyl-CoA doesn’t only serve as precursor in the de novo synthesis of fatty acids but also of 

cholesterol and it can be synthesized from different sources in the mitochondrion: beta-oxidation, 
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oxidative decarboxylation of pyruvate and the catabolism of ketogenic amino acids in a lesser 

extent (Stryer L. , 2012). This makes of acetyl-CoA a hub in the central carbon metabolism. 

Finally, the common precursor of phospholipid, glycerol-3-phosphate (G3P) also connects lipids 

to the metabolism of carbohydrates since it results from the reduction of dihydroxyacetone 

phosphate coming from the breakdown of fructose 1,6-bisphosphate, a intermediate of glycolysis.  

Alternatively, G3P also results from the phosphorylation of glycerol from the diet by glycerol 

kinase (Stryer L. , 2012).  

The connections between lipid, sugar and amino acid biosynthetic pathways are highly 

coordinated. Depending on their state, cells can shift the metabolic fluxes and promote some 

pathways to the detriment of others. For instance, proliferating or non-proliferating cells show 

different metabolic profiles. In proliferating or cancer cells, in order to duplicate their mass 

before dividing, some enzymes are overexpressed and promote ATP generation through aerobic 

glycolysis instead of respiration in non-proliferating cells. This process is part of the Warburg 

effect in cancer cells and it results in more glucose consumption, a lower yield in energy (only 2 

ATP per glycolysis compared to 30 ATP during respiration) but more glycolysis intermediates 

that supplies cells in carbon and nitrogen in order to produce macromolecules to sustain cell 

division (Ye et al, 2012b).  Indeed, the production of DHAP and acetyl-CoA that can be used to 

synthesize the building blocks of membrane is upregulated. In proliferative cells, many enzymes 

involved in de novo lipid biosynthesis are also activated (Fig. 10) (Natter & Kohlwein, 2013). 

For instance, enzymes needed for de novo PC (Arsenault et al, 2013) and fatty acids synthesis are 

upregulated. In the case of fatty acids, this leads to higher ratios of saturated and 

monounsaturated versus polyunsaturated fatty acids since the part of essential fatty acids uptake 

from nutrients is reduced (Rysman et al, 2010). On the contrary, cells in senescence exhibit 

almost a contrary metabolic shift with more PC catabolism (Gey & Seeger, 2013) and less 

synthesis of saturated fatty acids (Ford, 2010).  

Before any lipidomics experiment, it is important to know in which metabolic condition we 

are in order to take in account how they can affect observed lipid changes. Many culture cell lines 

are derived from cancer. For instance, the HeLa cells are epithelial cells derived from the cervical 

adenocarcinoma of a patient called Henrietta Lacks, in 1951(Scherer et al, 1953). With time, 

divisions, selections and maintenance conditions, they diverged from the original cell line and 

their genome is unstable (Landry et al, 2013). However, these are still proliferating cells and this 
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is a factor to take in account when interpreting lipid changes notably in their response to stress 

events. For instance, cancer cells can adapt to hypoxia (Santos & Schulze, 2012). A recent 

lipidomic analysis of HeLa cells showed that hypoxia caused significant changes in their lipid 

profile, especially a decrease of PI and the increase of unsaturated fatty acyl chains (Yu et al, 

2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Metabolic pathways for the synthesis of glycerolipids in cancer cells. Due to their increased demand 

for membrane lipids, most cancers show a lipogenic phenotype. Most prominent are the upregulation of acetyl-CoA 

carboxylase and fatty acid synthase. Additionally, increased remodeling of phosphatidylcholine is observed in many 

malignous tissues. Pathways for the synthesis of CTP, the energy donor for phospholipid synthesis, of glycerol-3-

phosphate, the FA acceptor in PA synthesis, of unsaturated FA and of phosphocholine are activated in some tumors. 

The storage formof lipids, triacylglycerol, is also involved in the remodeling ofmembrane lipids in proliferating cells, 

as suggested by altered regulation of lipases in cancer tissues. Red arrows indicate pathways that were found to play 

a role in cancer cells. CDP-Cho — CDP-phosphocholine, CDP-Etn — CDP-ethanolamine, Cho — choline, CL — 

cardiolipin, CTP — cytidine triphosphate, DAG — diacylglycerol, Etn — ethanolamine, FFA — free fatty acids, 

DHAP — dihydroxyacetone phosphate, G3P — glycerol-3-phosphate, GP-Cho — glycerophosphocholine, PC — 

phosphatidylcholine, P-Cho — phosphocholine, PE — phosphatidylethanolamine, P-Etn — phosphoethanolamine, 

PI — phosphatidylinositol, PS — phosphatidylserine, UTP — uridine triphosphate. Reprinted from (Natter & 

Kohlwein, 2013)   
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2. Control of membrane lipid homeostasis 

 

2.1. Importance of membrane lipid homeostasis 

 

The metabolism of membrane lipids is controlled at several levels: synthesis, transport, 

recycling and degradation. While the enzymes involved in the synthesis and breakdown of the 

most abundant membrane lipids are pretty well characterized, many questions about their 

regulation remain to be elucidated. Many questions remain also elusive about the regulation of 

lipid transport and the way cells sense the lipid composition of membranes and adapt their 

metabolism consequently.  

Yet, the control of membrane lipid homeostasis is an essential process that allows cells to 

maintain both their energetic balance and the structural integrity of the different membranes 

while keeping a very dynamic trafficking of these membranes. The disruption of membrane lipid 

homeostasis is associated with several diseases. Some of them are described here with their 

specific lipid changes and the mechanisms involved when it is known (Table 1). 

These few examples of diseases are sufficient to show that:  

1) Many disorders are associated with a lipid phenotype.  

2)  Disorders are not associated with the variation of a single lipid but the combination of several 

ones and reveal interdependency between metabolic pathways.  

3) Most of the lipid changes remain uninterpreted, yet. 

4) There is not yet a complete picture available of the whole modifications of lipids and the 

hierarchy of events for these diseases. 

5) Mass spectrometry-based lipidomics coupled to genetic studies greatly improves the 

knowledge of diseases. 

 

 



Introduction 

 

 

27 

 

 

 

 

 

 

 

 

 

 

 

  

T
a

b
le

 1
. 

E
x

a
m

p
le

s 
o

f 
d

is
ea

se
s 

re
su

lt
in

g
 f

ro
m

 t
h

e 
d

is
r
u

p
ti

o
n

 o
f 

m
em

b
ra

n
e 

li
p

id
 h

o
m

eo
st

a
si

s.
 1

(C
ar

o
b

b
io

 e
t 

al
, 

2
0

1
1

),
 2

(M
ar

te
l 

et
 a

l,
 2

0
1
2

),
 3

(M
ei

k
le

 &
 

C
h

ri
st

o
p

h
er

, 
2

0
1
1

),
 4

(L
lo

y
d

-E
v

an
s 

et
 a

l,
 2

0
0

8
),

 5
(C

h
an

 e
t 

al
, 

2
0

1
2

),
 6

(B
en

n
et

t 
et

 a
l,

 2
0

1
3

),
 7

(H
an

 e
t 

al
, 

2
0

1
1

),
 8

(C
h

en
g

 e
t 

al
, 

2
0

1
3

),
 
9
(C

h
en

g
 e

t 
al

, 
2

0
1

1
),

 

1
0
(B

jo
rk

h
em

 e
t 

al
, 

2
0

1
3

),
 1

1
(W

u
 e

t 
al

, 
2

0
1

2
),

 1
2
(V

al
en

za
 e

t 
al

, 
2

0
0

5
),

  
1
3
(S

an
to

s 
&

 S
ch

u
lz

e,
 2

0
1

2
) 

,1
4
(L

o
iz

id
es

-M
an

g
o

ld
, 
2
0

1
3

),
 1

5
(Y

u
 e

t 
al

, 
2
0

1
4

) 



Introduction 

 

 

28 

 

2.2. Overview of mechanisms that control membrane lipid homeostasis 

 

Lipids are not directly encoded by genes. Therefore, their regulation doesn’t rely on their 

synthesis only, but on the coordinated expression and activity of all the proteins involved in both 

their metabolism and their transport. How cells decide about the synthesis and the specific 

distribution of each membrane lipid is an open question. Cells must be able to sense their 

membrane lipid composition and to adjust both lipid synthesis and distribution depending on their 

need and of the energy intake. Therefore, the control of membrane lipid homeostasis relies on 

sensing mechanisms and feedback loops in coordination with the central carbon metabolism. 

Here, I present an overview of two of these mechanisms in the current state of knowledge as well 

as the outstanding issues associated with them. 

   

2.2.1 Energy sensors and regulatory mechanisms 

 

 mTOR connects energy sensing to lipid metabolism 

 

The mammalian target of rapamycin also known as mTOR is a serine/threonine kinase that 

plays a pivotal role in the regulation of cell metabolism. It is part of two multiprotein complexes, 

named mTORC1 or mTORC2 that phosphorylate different sets of substrates. Both complexes are 

activated by nutrients and growth factors, are inhibited by stress and regulate cell growth but their 

composition, their mechanism of regulation, their impact on lipid metabolism and their 

subcellular localization are different. 

The complex mTORC1 is composed of mTOR, raptor and mLST8. It is recruited and 

activated at the surface of lysosomes but may be also recruited in stress granules by DYRK3 

kinase, at the PM by PI(3,5)P2 or in the cytoplasm in order to promote translation initiation. The 

complete activation of mTORC1 by the effector proteins GTP-bound Rheb and Rag has been 

recently reviewed by Charles Betz and Michael N. Hall in the Journal of Cell Biology and is 

summarized on Figure 11. mTORC1 is known to regulate protein synthesis, mitochondrial 

biogenesis, glycolysis, lipogenesis, lysosome biogenesis and autophagy. In turn, the complex 
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mTORC2 that comprises mTOR, rictor, SIN1 and mLST8 and that mainly localizes at 

mitochondria-associated ER membranes (MAMs) (Betz & Hall, 2013) plays a limited role in 

lipid metabolism in mammals (Laplante & Sabatini, 2009) contrary to yeast where the homolog 

TORC2 is involved in the regulation of sphingolipids (Aguilera-Romero et al, 2013). 

mTORC1 is an energy sensor directly involved in the regulation of lipid homeostasis (Fig.11). 

In the presence of nutrients or signal transduction mediated by growth factors, mTORC1 is 

activated and induces the expression of genes involved in lipid biosynthesis and lipogenesis 

through the regulation of transcription factors such as sterol-regulatory element-binding proteins 

(SREBPs), PPARγ and lipins (Laplante & Sabatini, 2009; Laplante & Sabatini, 2013). 

1) For instance, upon binding of insulin at the cell surface, the activation of the PI3K-Akt 

signaling pathway leads mTORC1 to induce the positive regulation of SREBPs.  SREBPs are 

transcription factors required for the expression of genes involved in the synthesis of cholesterol, 

fatty acids, triglycerides and phospholipids. SREBPs are localized in the ER and need to be 

transported and cleaved in order to translocate into the nucleus. The Akt-mTORC1 pathway 

induces the cleavage of SREBPs. However, all the effectors of this processing are still unknown 

(Laplante & Sabatini, 2009; Laplante & Sabatini, 2013). Moreover, the mTORC1 regulation of 

SREBP occurs through several mechanisms that are not fully understood too. JL Owen and 

colleagues showed that the processing of SREBP-1 requires the mTORC1 target S6K1 in rat 

hepatocytes (Owen et al, 2012) but S6K1 was not necessary for this purpose in mouse embryonic 

fibroblasts (Lewis et al, 2011). In mice, it was also demonstrated that mTORC1 could control the 

abundance and the localization of nuclear SREBP-1 via the regulation of lipin 1, a phosphatidic 

phosphatase that is also a transcriptional coactivator (Skelhorne-Gross et al, 2012). mTOR can 

also phosphorylate lipin 1 to control its localization and its association with phosphatidic acid 

(PA), which has a direct effect on the synthesis of DAG from PA and a direct impact on 

glycerophospholipid synthesis  (Eaton et al, 2013). Finally, it was recently shown that the kinase 

MAP4K4 could regulate the adipose lipogenesis by inhibiting the cleavage of SREBP-1 through 

an AMPK-mTORC1-dependent mechanism (Danai et al, 2013). 

 

2) In addition to SREBP-1 and lipin 1, mTORC1 controls fatty acid metabolism through the 

regulation of PPARγ that activates genes required in the oxidation of fatty acid and triglycerides. 

However, as for SREBP-1, the regulation of this protein is not fully understood.   In the liver, 
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another peroxisome proliferator-activated receptor called PPARα regulates ketogenesis and lipid 

oxidation in response to fasting is regulated by mTORC1 (Laplante & Sabatini, 2009; Laplante & 

Sabatini, 2013).  

 

3) Finally, mTORC1 indirectly controls lipid homeostasis through the regulation of 

lysosome biogenesis and autophagy since these processes lead to the degradation of membrane 

lipids and contribute to regulate the intracellular levels of metabolites (Laplante & Sabatini, 2009; 

Laplante & Sabatini, 2013).   

 

mTORC1 doesn’t only control the metabolism of lipids in response to nutrient uptake or to the 

binding of growth factors but can also be regulated itself by the level of intracellular lipids 

(Foster, 2013). 

1) Phosphatidic acid (PA), which is a central player in glycerophospholipid synthesis binds 

to mTOR, and is required to ensure the stability of the mTOR complexes (Toschi et al, 2009). 

Most of the mTOR-associated PAs come from the hydrolysis of phospholipids by phospholipase 

C (PLC) but could also originate from another pathway such as the de novo synthesis of PA 

because PLC deficiency doesn’t prevent the binding of PA with mTOR (Foster, 2013). For 

instance, it has recently been demonstrated that mTOR signaling induced by mechanical stimuli 

in skeletal muscles is regulated by PA synthesized from the phosphorylation of diacylglycerol by 

diacylglycerol kinase ξ (DGKξ) (You et al, 2014). Moreover, it was suggested that PA could 

serve as an indicator of phospholipid level in the regulation of lipid metabolism by mTORC1 and 

2: first, PA is essential for the activity of mTOR and secondly, it was shown that PA with 

different fatty acyl chains could differently regulate mTORC1 and 2. Many questions about the 

regulation of mTOR by PA are outstanding but they raise new possibilities on the control of 

phospholipid homeostasis. 

 

2) A sphingolipid rheostat system regulates mTOR signaling in autophagy. Ceramides and 

sphingosine-1-phosphate (S1P) are bioactive lipids that tend to promote cell death and survival, 

respectively. Under amino acid depletion AA(-), acid SMSase is activated and generates 

ceramide, a suppressor of Akt that leads to the inactivation of mTOR and the induction of 

autophagy. On the contrary, S1P is a ligand of five G-protein coupled receptors S1P1-S1P5 that 
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are associated to the activation of various signaling pathway including Akt-mTOR. In AA(-) 

condition, S1P bound to  S1P3- counteracts autophagy induction  by activating mTOR (Taniguchi 

et al, 2012; Young et al, 2013).  

 

 

 AMPK, an essential bioenergetic sensor and its crosstalk with mTOR 

 

The AMP-activated protein kinase (AMPK) is a cellular nutrient and energy sensor that 

monitors the ratio of AMP/ATP and regulates many metabolic pathways, consequently (Fig. 11). 

The kinase is conserved in all eukaryotes and comprises the catalytic subunit AMPKα and the 

regulatory subunits AMPKβ and γ. AMPK γ contains four nucleotide-binding sites also known as 

CBS motifs and AMPKβ functions as a hinge that links the three subunits together. Each subunit 

exists in 2-3 isoforms in mammals. To be active, the AMPKα subunit needs to be 

phosphorylated. The major upstream kinases phosphorylating Thr 172 of AMPKα is a complex 

composed of LKB1 (STK11), STRAD and MO25. The binding of AMP or ADP on AMPK 

promotes its activation either by inducing the phosphorylation of Thr 172 or by preventing its 

dephosphorylation (Hardie et al, 2012). In some cells, such as HeLa cells that don’t express 

LKB1, AMPKα can still be phosphorylated at Thr 172 by CAMKKβ, a Ca2+/calmodulin-

dependent protein kinases (CAMKKs). This phosphorylation is triggered by a rise in cytosolic 

Ca
2+

.  Whatever the upstream kinase, the phosphorylation of AMPK is independent of the levels 

of AMP (Fogarty et al, 2010). Alternatively, the TRAIL-induced transforming growth factor-

beta-activating kinase 1 (TAK-1) can also phosphorylate AMPKα  (Herrero-Martin et al, 2009). 

AMPK can be activated by metabolic stress and hormones. The metabolic stress induces the 

increase of the ratio of AMP or ADP/ATP either by inhibiting the catabolic generation of ATP or 

by accelerating its consumption. In response to these signals, AMPK switches on the catabolic 

processes that produce ATP and restricts anabolic pathways that consume this ATP through the 

phosphorylation of many substrates. Among them, some are directly linked to lipid metabolism 

such as acetyl-CoA carboxylase 1 and 2 (ACC1 and 2) in fatty acid synthesis, 3-hydroxy-3-

methylglutaryl-CoA reductase (HMGCR) that acts on cholesterol biosynthesis,  SREBP-1c that 

controls the expression of lipogenesis enzymes, and enzymes that regulate the synthesis of 

triglycerides or the uptake of fatty acids (Hardie et al, 2012). To maintain energy homeostasis, 
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AMPK can also act on the regulation of mTOR (Fig. 11). Indeed, AMPK inhibits the activity of 

mTORC1 through the phosphorylation of its components such as raptor or the regulatory 

tuberous sclerosis complex 1/2 (TSC1-TSC2) that prevents the assembly of mTORC1. By 

inhibiting mTOR, which negatively regulates autophagy, AMPK promotes it (Inoki et al, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Crosstalks between AMPK and mTOR in the control of energy and lipid homeostasis in mammals. 

The activation of mTORC1 in response to growth factors induces many anabolic processes that favor cell growth and 

proliferation including de novo lipid synthesis by activating several transcription factors and by preventing 

autophagy. In turn, AMPK also regulates lipid homeostais but in response to metabolic stress by blocking ATP-

consuming pathways, while activating the catabolic ones. Adapted from the various sources cited in the text.  
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2.2.2 Control of lipid trafficking by the lipid-transfer proteins (LTPs) 

 

The control of lipid homeostasis doesn’t only involve lipid sensors and regulators but also a 

robust system of distribution to ensure the correct localization of lipids in space and time, the 

unique composition of organelles as well as the regulation of many signaling pathways.  

Along the secretory pathway, from the ER where lipid synthesis starts to the PM, the lipid 

composition of membranes changes and becomes very asymmetric. Lipids move between 

organelles by vesicular or non-vesicular mechanisms such as the spontaneous desorption and 

more likely the active transport by transfer proteins. Between the two leaflets of organelles, the 

asymmetry depends on the side where lipids are synthesized, their spontaneous flip-flop and the 

action of flippases and translocases. Many but not all lipid transfer proteins have already been 

described and the mechanisms that control their function gives rise to growing interest. 

Interestingly, they already reveal the interdependency between signaling pathways and lipid 

metabolism, as well as between lipids themselves. Here, I propose to describe one of these 

mechanisms as well as the questions they raise in the control of membrane lipid homeostasis.  

Typically, lipid-transfer proteins (LTPs) are soluble factors with hydrophobic lipid-binding 

pockets covered by a lid that transport lipids in aqueous phase. LTPs are subdivided in different 

families according to their similarities and the lipids they transport. They are: oxysterol-related 

proteins (ORPs), SEC14, PI-transfer proteins (PITPs), steroidogenic acute regulatory protein-

related lipid transfer (START) domain family proteins (STARDs), glycolipid transfer proteins 

(GLTPs) and SCP-2 (unspecified LTPs). LTPs can be specific for one or more lipids. For 

instance, the START protein CERT is specific for ceramides whereas SCP-2 can transfer 

phospholipids, glycolipids and sterols. The functions and lipid affinities of each LTPs have 

already been described in very interesting reviews (D'Angelo et al, 2008; Drin, 2014; Lev, 2010). 

The membrane association, lipid absorption and the flux direction of lipid transport by LTPs 

mostly depend on the membrane composition. Lipids are transported from concentrated donor 

places toward less concentrated acceptor membranes. However, lipid-protein specificity and lipid 

concentration are not the only parameters that control the transfer of lipids. Indeed, most of LTPs 

don’t only comprise a lipid-binding domain but also other domains that condition their 

association with lipids according to the membrane environment.  
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This is the case of CERT. The mechanism regulating the specific transfer of ceramides from 

ER to Golgi by CERT illustrates the link between membrane lipid homeostasis and the regulation 

of lipid transfer proteins. CERT is 68kDa cytoplasmic protein that comprises a N-terminal 

pleckstrin homology domain (PH) that is recognized by the phosphoinositide PI(4)P enriched at 

the Golgi membrane,  a START domain that catalyzes the inter-membrane transfer of ceramide, a 

short peptide motif named two phenylalanines in an acidic tract (FFAT) that can bind to the ER-

membrane resident VAMP-associated protein (VAP) and a serine-repeated motif (SRM) that can 

be phosphorylated to repress both the functions of PH and START domains. The presence of the 

START domain alone is not sufficient to ensure the ER-to-Golgi ceramide transport in vivo. The 

activity of CERT is regulated by its other domains and is coordinated to sterol homeostasis 

through the activity of the oxysterol binding protein (OSBP), another LTP very similar to CERT 

that can be either cytosolic or bound to VAP at the surface of the ER by a FFAT domain, too 

(Hanada et al, 2007).  

CERT exists in two conformations:  inactive when phosphorylated on its SRM domain by the 

protein kinase D (PKD) or by casein kinase gamma 2 (CKIγ2) (Tomishige et al, 2009) and active 

upon dephosphorylation by the protein phosphatase 2Cξ (PP2Cξ).  

PKD has a dual role in the regulation of CERT. The transfer of ceramides from ER-to-Golgi 

by CERT induces the synthesis of SM and the release of DAG at the Golgi membrane. DAG is a 

cone-shaped lipid and a second messenger that induces membrane curvature and the recruitment 

of PKD that phosphorylates CERT and represses its localization to the Golgi (Fugmann et al, 

2007). Another substrate of PKD is PI4KIIIβ. Upon phosphorylation PI4KIIIβ induces the 

synthesis of PI(4)P in the Golgi which in turn promotes the recruitment of PI4P-binding proteins 

at the Golgi membrane (Nhek et al, 2010). With its PH domain, CERT is a PI(4)P binding protein 

but it’s not the only LTP in this case: the VAP-bound OSBP, too. As CERT, OSBP is recruited to 

the Golgi by PI(4)P and its Golgi-localization is also repressed PKD-mediated phosphorylation 

(Nhek et al, 2010).  Moreover, SM and cholesterol are co-regulated. Upon excess of free 

cholesterol in cells or in the presence of 25-hydroxycholesterol, OSBP translocates to the Golgi 

where it specifically stimulates the translocation of CERT (Perry & Ridgway, 2006). This 

coordinated translocation of CERT to the Golgi seems associated with the specific recruitment of 

rPI4KIIα, a PI(4)P kinase, around OSBP at the Golgi membrane (Banerji et al, 2010). Since the 

structural association between SM and cholesterol at the PM is essential to ensure many 
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biological processes and the biophysical properties of the PM, Guillaume Drin suggests that 

OSBP could bridge the ER with the Golgi membrane in membrane contact sites (MCSs) to 

facilitate the recruitment of CERT and regulate both SM and cholesterol in a concerted way to 

favor the formation of SM/cholesterol domains at the PM (Fig 12) (Drin, 2014). However, some 

questions remain to be solved such as the precise mechanism of association between CERT and 

the Golgi. Indeed, It was demonstrated that the PH domain of CERT is required for its activity 

(Hanada et al, 2003) but nuclear magnetic resonance (NMR) studies show that the affinity of 

CERT PH domain for PI(4)P is weak compared to PH domains of other proteins, probably 

because of a conformational flexibility in the ligand-binding pocket  (Prashek et al, 2013). The 

presence of a basic groove near the PI(4)P recognition site in the PH domain is required for 

CERT activity and might stabilize this recognition (Sugiki et al, 2012). However, the precise 

mechanism by which CERT binds to the Golgi remains elusive and doesn’t exclude the 

intervention of still unknown effectors at the Golgi membrane. 

Other mechanisms seem to regulate CERT. For instance, in response to pro-apoptotic stress, 

the disassembly of the Golgi coupled to the caspase-mediated cleavage of CERT leads to the 

decrease of ceramide trafficking (Chandran & Machamer, 2012). A recent article from F.G. 

Tafesse and colleagues also suggests that CERT could be the first line of defense against 

apoptosis by preventing the routing of ER-resident ceramides to mitochondria (Tafesse et al, 

2014). On the other side, the interaction between CERT and VAP seems also to be affected by 

the phosphorylation of a serine adjacent to the FFAT motif. The phosphorylation of S315 in the 

SRM motif also down-regulates the activity of CERT (Chandran & Machamer, 2012; Kumagai et 

al, 2014). Finally, little is known about the transcriptional regulation of this protein essential in 

sphingolipid metabolism whereas its expression greatly influences the resistance of cancer cells 

to chemotherapeutic drugs (Swanton et al, 2007). 
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Figure 12. Mechasnism of CERT-mediated transfer or ceramide from ER-to-Golgi in mammals.. (a) 

Oxysterol-binding protein (OSBP) interacts via its PH domain with PI(4)P and Arf1–GTP and through its FFAT 

motif with ER-resident VAP receptors. As such, OSBP could bridge the ER and the trans-Golgi membrane and 

facilitate the recruitment of ceramide transfer protein (CERT) by PI(4)P and VAP receptors. CERT delivers ceramide 

into the trans-Golgi, thereby promoting sphingomyelin (SM) synthesis. (b) The completion of sterol transport; the 

consumption of PI(4)P; and the diacylglycerol (DAG)- and Arf1-dependent recruitment of protein kinase D (PKD), 

which negatively regulates via phosphorylation the Golgi localization of OSBP and CERT, trigger the disassembly of 

the membrane contact site (MCS) and stop lipid trafficking. Abbreviations: PC, phosphatidycholine; PI, 

phosphatidylinositol; VAP, VAMP-associated protein. Reprinted from (Drin, 2014). 
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2.2.3 Control of  sphingolipid homeostasis: review 

 

This review was co-written with Dr. Maria-Auxiliadora Aguilera Romero and published in 

2013 in BBA – Molecular and Cellular Biology of Lipids. It proposes an overview of the 

mechanisms that control sphingolipid homeostasis in eukaryotes and the issues they raise. 

Aguilera-Romero A, Gehin C, Riezman H (2013) Sphingolipid homeostasis in the web of 

metabolic routes. Biochimica et biophysica acta 1841(5):647-56. doi: 

10.1016/j.bbalip.2013.10.014 
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3. Aim of the studies 

 

The control of lipid homeostasis is a fundamental process that allows cells to maintain the 

unique lipid composition of their membrane compartments and to deal with the energetic fluxes 

from metabolism. This control is done at several levels and involves lipid sensors, signaling 

systems, regulators as well as a robust machinery of lipid distribution across membranes. If most 

enzymes involved in lipid metabolism are now characterized, the question of the genetic control 

of lipid homeostasis is still outstanding. 

In order to find genes that control the homeostasis of membrane lipids, we combined a large-

scale RNAi screen with the techniques of targeted lipidomic analysis by mass spectrometry to 

monitor lipid changes in HeLa cells. After validation of the method through a pilot screen with 

siRNA targeting genes with a connection to lipid metabolism, a large-scale RNAi screen 

targeting the human kinome was performed. For the first time, it was possible to observe the 

effects of genetic perturbations on the level of hundreds of membrane lipids with different 

combinations of head groups and fatty acyl chains simultaneously in HeLa cells. This thesis 

particularly deals with the development of the method as well as the results from the primary 

screen.  

In parallel to this project, in the context of the Swiss National Center of Competence in 

Research (NCCR) Chemical Biology, we also developed and performed a robotically-assisted 

screen of a novel class of chemicals in order to find compounds able to transfect siRNA into 

human cells with some advantages over as commercially available compounds. 
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MATERIAL AND METHODS 

 

1. Experimental procedures 

siRNA screen  

Cell culture and siRNA transfection. HeLa MZ (Marino Zerial, MPI-Dresden) cells were 

maintained in DMEM, high glucose, GlutaMAX™, supplement pyruvate (Life technologies) with 

10% FCS without antibiotics. The same batch of FCS was used all along the kinome-wide siRNA 

screen. All cells were grown at 37°C and 5% CO2. 72pmol siRNA was delivered by forward 

transfection. HeLa cells were transiently transfected with siRNA in 6cm dishes using 

Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's instructions.   

Pilot, primary and confirmation screens. The sequences of all custom siRNA libraries used for 

this study are listed in Appendix (127). The pilot screen was run using a custom library of 

siRNAs from Qiagen, in three independent experiments performed on separate days. For the pilot 

screen, each gene was targeted by two different siRNAs in individual wells. The kinome-wide 

primary screen was run using the MISSION® siRNA Human Kinase Library (Sigma-Aldrich) 

consisting of 719 pools of three different siRNA oligos targeting the same gene transcript. The 

screen also comprised controls: siControl, a negative control consisting in a non-targeting 

sequence of siRNA sharing homology with the human genome (AllStars Negative Control siRNA 

from Qiagen) and the CERT ON-TARGETplus Smartpool siRNAs from Dharmacon (positive 

control). The screen was run in duplicate in independent experiments on separate days. For the 

confirmation screen, unpooled Silencer® Select siRNAs for 59 of the top hits were purchased as 

a custom library from Ambion (Life Technologies), with each gene transcript being targeted by 

three different siRNAs in individual wells. These siRNAs were forward transfected individually 

into HeLa MZ cells and their lipid composition was assessed by mass spectrometry.  

 

RNA extraction and quantitative reverse transcriptase PCR (qRT-PCR). HeLa MZ in 6cm 

dishes were forward transfected as described in the previous paragraph. 72h later, one tenth of 

cells were extracted with the RNeasy kit (Qiagen), reverse transcribed with Superscript II 
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(Invitrogen), and analyzed in triplicate by qRT-PCR using a single color real-time PCR detection 

system and specific DNA primers (Microsynth) designed with NCBI Primer-BLAST. The results 

were normalized to TATA box-binding protein (TBP) expression. The sequences of all 

oligonucleotides used for this study are listed in Appendix (127).  

 

Lipid extraction protocols 

Chemicals and lipid standards. DLPC 12:0/12:0 (850335), PE 17:0/14:1 (PE31:1, LM-1104), PI 

17:0/14:1 (PI31:1, LM-1504), PS 17:0/14:1 (PS31:1, LM-1304), C17:0 ceramide (860517), 

C12:0 SM (860583) and Glucosyl C8:0 Cer (860540) were used as internal lipid standards and 

were purchased from Avanti Polar Lipids Inc. (Alabaster, AL). Ergosterol was used as sterol 

standard and was purchased from Fluka (Buchs, Switzerland). 

Methyl tert-butyl ether (MTBE) was from Fluka (Buchs). Methyl amine (33% in absolute 

ethanol) was from Sigma Aldrich (Steinheim, Germany). HPLC-grade chloroform was purchased 

from Acros (Geel, Belgium), LC-MS grade methanol and LC-MS grade ammonium acetate were 

from Fluka. LC-MS grade water was purchased from Biosolve (Valkenswaard, The Netherlands). 

Lipid analysis. Lipid extracts were prepared using the MTBE protocol (Matyash et al, 2008). 

Briefly, after 72h of siRNA transfection, HeLa MZ cells from 6cm dishes were harvested and 

resuspended in 100 μl H2O. The suspension was transferred into a 2 ml Eppendorf tube. 360 μl 

methanol and a mix of internal standards were added (400 pmol DLPC, 1000 pmol PE31:1, 1000 

pmol PI31:1, 3300 pmol PS31:1, 2500 pmol C12SM, 500 pmol C17Cer and 100 pmol C8GC). 

Samples were vortexed and 1.2 ml of MTBE was added. Samples were placed for 10 min on a 

multitube vortexer at 4°C (Lab-tek International, Christchurch, New Zealand) followed by an 

incubation for 1 hr at room temperature (RT) on a shaker. Phase separation was induced by 

addition of 200 μl MS-grade water. After 10 min of incubation at RT samples were centrifuged at 

1000 g for 10 min. The upper (organic) phase was transferred into a 13 mm glass tube with a 

Teflon-lined cap and the lower phase was reextracted with 400 μl artificial upper phase (MTBE / 

methanol / H2O 10:3:1.5). In total 1500 μl of organic phase was recovered from each sample, 

split into three parts and dried in a CentriVap Vacuum Concentrator (Labconco, MO, USA). One 
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part was treated by alkaline hydrolysis to enrich for sphingolipids and the other two aliquots were 

used for glycerophospholipid/phosphorus assay and sterol analysis, respectively. 

Alkaline hydrolysis was used to deacylate glycerophospholipids according to the method by 

Clarke (Clarke & Dawson, 1981). Briefly, 1 ml freshly prepared monomethylamine reagent 

(methylamine/H2O/n-butanol/methanol at 5:3:1:4 (vol/vol)) was added to the dried lipid extract 

and then incubated at 53°C for 1 hr in a water bath. Lipids were cooled to RT and then dried. For 

desalting, the dried lipid extract was resuspended in 300 μl water-saturated n-butanol and then 

extracted with 150 μl H2O. The organic phase was collected, and the aqueous phase was 

reextracted twice with 300 μl water-saturated n-butanol. The organic phases were pooled and 

dried in a CentriVap Vacuum Concentrator. 

 

Sterols analysis by Gas-liquid mass spectrometry (GC/MS) 

One third of total lipid extract was resuspended in 500μL of MS-grade chloroform/methanol (1:1) 

solution and injected into a VARIAN CP-3800 gas chromatograph equipped with a Factor Four 

Capillary Column VF-5ms 15m x 0.32 mm i.d. DF =100. Identification and quantification of 

sterol species were performed using a VARIAN 320MS as described in (Guan et al, 2010)    

 

Phospholipids and sphingolipids analysis by electrospray ionization mass spectrometry (ESI-MS) 

Identification and quantification of phospholipid and sphingolipid molecular species were 

performed using multiple reaction monitoring with a TSQ Vantage Triple Stage Quadrupole 

Mass Spectrometer (Thermo Scientific) equipped with a robotic nanoflow ion source, Nanomate 

HD (Advion Biosciences, Ithaca, NY). Each individual ion dissociation pathway was optimized 

with regard to collision energy. Lipid concentrations were calculated relative to the relevant 

internal standards as described in (Epstein et al, 2012) and then normalized to the total 

phosphorus content of each total lipid extract to adjust for difference in cell size, membrane 

content, and extraction efficiency. 
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Determination of total phosphorus content. 

The dried total lipid extract was resuspended in 250 μl chloroform/methanol (1:1) and 50 μl were 

placed into a 13 mm disposable pyrex tube. The solvent was completely evaporated and 0, 2, 5, 

10, 20 μl of a 3 mM KH2PO4 standard solution were placed into separate pyrex tubes. To each 

tube 20 μl of water and 140 μl of 70% perchloric acid were added. Samples were heated at 180°C 

for 1 hr in a hood. Tubes were then removed from the block and kept at RT for 5 min. Then 800 

μl of freshly prepared H2O / 1.25% NH4Molybdate (100 mg / 8 ml H2O) / 10% ascorbic acid (100 

mg / 6 ml H2O) in the ratio of 5:2:1 were added. Tubes were heated at 100°C for 5 min with a 

marble on each tube to prevent evaporation. Tubes were cooled at RT for 5 min. 100 μl of each 

sample was then transferred into a 96-well microplate and the absorbance at 820 nm was 

measured (Rouser et al, 1970). 

 

Determination of Glycosphingolipid species 

Sphingolipids were extracted using the MTBE/methylamine protocol. Samples were resolved on 

HPTLC silica gel 60 F254 (Merck). To distinguish GalCer and GlcCer the HPTLC plates were 

impregnated with borate as described previously (Gupta et al, 2010). After dipping the plates into 

a 1% aqueous sodium tetraborate solution, the HPTLC plates were activated at 120°C for 30 min. 

Sphingolipids were resolved with the solvent system of chloroform/methanol/water (100:30:4). 

Glycosylated sphingolipids were visualized by putting the whole plate quickly in a sulfuric 

acid/Orcinol solution (0.1% Orcinol, 5% H2SO4) and heating the plate at 110°C for 3min. 

 

2. Statistical analysis of the Kinome-wide RNAi screen 

Data formatting and normalization. In all screening experiments, lipid quantities were first log2 

transformed. Then, sample-based normalization was performed using the z-score according to the 

following formula: Z            , where     is the lipid level of the gene i,    is average of 

lipid levels of all samples from the same series, and    is the standard deviation of lipid quantities 

of all samples from the same series (Birmingham et al, 2009).  
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Filter on toxic conditions and technical issues. Images of cells 72h post siRNA transfection 

were analyzed with the open-source image analysis software CellProfiler (Carpenter et al, 2006). 

Samples with less than 80% of occupied area covered by objects (=cells) were considered as 

representative of samples with too few cells for objective interpretation of results. siRNA 

conditions resulting in few cells, cytotoxicity, incomplete lipid profiles due to mass spectrometry 

technical issues and unpaired correlation between biological replicates were discarded from the 

global analysis. Discarded conditions are listed in the appendix (127) 

Selection of primary hits. Two different statistical methods were used for hit selection. First, 

threshold determination was performed for each phenotypic score using the ranking method. 

Specifically, this corresponds to cutoff phenotypic scores of     >= k, where k is a preset constant 

that represents the mean of the dataset ± kSD, where SD is the standard deviation. Genes with one 

or more phenotypic scores above the cutoff values were selected as hits. (Zhang, 2011a). 

In addition, functional genetic interaction was predicted for genes with directed hierarchical 

relationships between pairwise variables using the hierarchical interaction score (HIS) method as 

described (Snijder et al, 2013). For each gene, a HIS was calculated and predicted gene 

interactions were visualized with the open source software http://www.his2graph.net/ and 

Cytoscape (Shannon et al, 2003). Genes with top-scoring hierarchical interactions were selected 

as hits.       

Graphical representation. Graphical representations and statistical analysis of RNAi datasets 

were performed using Excel and Partek Genomics Suite 6.6.   

Omics and reference datasets. Gene-enrichment annotation of hit kinases was performed using 

the websites DAVID (Huang da et al, 2009), STRING (Jensen et al, 2009) and WEBGESTALT 

(Wang et al, 2013), as well as datasets published in literature or unpublished from other lab 

projects (yeast data from Aline Santos) and collaborators (endocytome data Prisca Liberali, 

Pelkmans lab, Zurich). Published levels of gene expression in HeLa cells were retrieved from the 

web database Genevestigator. Yeast homologs were retrieved using Ensembl Biomart 

http://www.ensembl.org/biomart/martview/d1111d7a07f83994b3c68c2d2a08db73 . 

    

http://www.his2graph.net/
http://www.ensembl.org/biomart/martview/d1111d7a07f83994b3c68c2d2a08db73
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RESULTS 

1. Investigating the genetic control of membrane lipid homeostasis with RNA interference 

1.1.  Choice of siRNA as a tool for genetic perturbation screen in human cells. 

In order to assess the function of kinases in membrane lipid homeostasis, a genetic 

perturbation screen based on RNA interference (RNAi) was performed in HeLa cell lines because 

their genes can be efficiently silenced with short interference RNA (siRNA) (Elbashir et al, 

2001). 

RNAi is a post-transcriptional regulatory mechanism that consists in transiently silencing the 

expression of a target gene through the repression or the cleavage of its mRNA by the RNA-

induced silencing complex (RISC). RISC is made of proteins and a short ssRNA sequence 

complementary to the target mRNA that results from the unwinding of an endogenous 

(microRNAs) or an exogenous (siRNA) dsRNA by the Ago2 protein (Hammond et al, 2001). Fire 

and Mello who first observed that the introduction of exogenous dsRNA in C.elegans could 

induce RNAi (Fire et al, 1998) opened the way to siRNA-induced gene knockdown screens in 

higher eucaryotes. Current techniques lead to transient or long-term RNAi using siRNAs or short-

hairpin RNA (shRNA), respectively. For this project, I chose siRNAs in order to stay in 

conditions comparable to other genetic screens performed by collaborating groups from 

SystemsX.ch, the Swiss Research Initiative in Systems Biology, such as the teams of Lucas 

Pelkmans (Zurich) and Jean Gruenberg (Geneva). Moreover, I obtained the siRNA library from 

the Pelkmans lab. 

In mammalian cells, loss-of-function genetic screens are largely based on RNAi induced gene 

knockdown. Contrary to yeast, knockout gene libraries are not available. At least, it was not the 

case when this project started in 2009. Since, libraries of mutant mammalian cell lines have been 

created thanks to recent nuclease-based genome editing technologies (Shalem et al, 2014). 

Moreover, contrary to gene knockout experiments, siRNA-induced gene silencing offers the 

advantage to assess the function of essential genes, since it transiently decreases their mRNA 

levels without completely suppressing them from the genome.  
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1.2.  Mass spectrometry targeted-lipidomics to quantify membrane lipid changes. 

In order to quantify membrane lipid changes induced by siRNA gene knockdown in 

mammalian cells, a targeted-lipidomics approach developed in our group by Dr. Ursula Loizides-

Mangold and Isabelle Riezman (Guan et al, 2010) (Loizides-Mangold et al, 2012). First, the 

detection of most abundant PLs and SLs species present in different mammalian cell lines was 

performed by shotgun lipidomics using the LTQ-Orbitrap mass spectrometer. Then, lipid species 

were identified using the lipid mass references described in literature and online ressources such 

as LIPID MAPS structure Databases (Sud et al, 2007) and KEGG (Kanehisa et al, 2014; Wixon 

& Kell, 2000). However, current databases of chemicals are incomplete. Thus, several lipid 

species with different combinations of head groups, acyl chains and additional chemical groups, 

such as hydroxylations or phosphate, were found manually by Dr. Ursula Loizides-Mangold.  

Next, a multiple reaction monitoring assay was developed to selectively quantify PLs and SLs 

species described previously using a triple stage quadrupole mass spectrometer coupled to an 

electron spray ionization source (Fig. 1.). The masses of parent and fragment ions used for this 

study are listed in the appendix (p127). This list allowed to detect and quantify more than 800 

molecules if present in the sample. However, the mass of several sphingolipids was overlapping 

because of dehydration and others were not detected in all samples. Thus, this list was reduced 

for analysis (see p127). In order to quantify lipids, internal lipid standards representative of each 

different lipid classes were added to cells before lipid extraction allowing the semi-absolute 

quantification of lipid molecules thanks to pre-established standard curves. Absolute 

quantification was not possible for PLs and SLs because it supposes the presence of specific 

internal standards for each lipid species. For the analysis of SLs, a mild alkaline hydrolysis step 

was added to the lipid extraction process in order to reduce ion suppression during MS analysis 

caused by GPLs. Finally, cholesterol and sterol esters were quantified separately by GC-MS 

using the ergosterol internal standard (Fig. 1). 
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Figure 1. General Overview of the screening procedure. 72h after siRNA transfection, Human cells were 

harvested and their lipid extracted to be analyzed either by GC- or ESI-MS depending on the lipid species. A fraction 

of the cell pellet was reserved for validation of the gene knockdown by qRT-PCR. A fraction of the lipid extract 

before base treatment (methylamine) was used for the determination of total phosphorus. 

 

 

1.3.  A pilot siRNA screen on lipid-related proteins identifies gene-specific lipid changes 

When this project started in 2009, studies combining genetics and quantitative lipid analysis 

by mass spectrometry were emerging. In 2009, Guan XL and colleagues had just described 

functional interactions between SLs and sterol metabolism with this approach. By determining 

the lipid profile of yeast mutants in sterol metabolism using mass spectrometry, they observed 

yeast cells specifically adjust their SLs composition according to the presence of different sterol 

structures in their membrane (Guan et al, 2009). With this study, they demonstrated the validity 

of the method for yeast. However, for higher eucaryotes such as human cell lines, where genetic 

perturbation screens are generally based on RNAi, no such study had been published yet. In 2008, 

Grimard V. and colleagues reported lipidomic observations from a kinome-wide siRNA screen 

performed in HeLa cells. However, they used thin-layer chromatography (TLC) to monitor lipid 

changes instead of mass spectrometry (Grimard et al, 2008).  TLC is a method of lipid analysis 

much less sensitive than mass spectrometry and they could not distinguish lipid species inside 

each lipid class, leading to a loss of information important for the comprehension of membrane 
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lipid homeostasis, such as acyl chain distribution, phosphorylation or the unsaturation degree of 

SLs and GPLs. Later, in 2011, Ursula Loizides-Mangold reported that siRNA knockdown of 

genes coding for enzymes from the GPI-anchored protein synthesis pathway and their 

corresponding mutant cell lines share similar lipid profiles (Loizides-Mangold et al, 2012). 

Meanwhile, I was performing a pilot screen on lipid-related proteins to assess the validity of the 

RNAi approach to identify gene specific lipid changes in HeLa cells. Several studies have 

combined siRNA-induced gene knockdown with lipid studies. However, no one combined a 

genetic screen to the lipidomics approach.  

1.3.1. Choice of target genes for the pilot screen 

In order to assess the ability of siRNAs to induce significant and reproducible membrane lipid 

changes, I chose a set of target genes coding for proteins acting in lipid homeostasis (Table 1) 

and for which the knockout or gene silencing experiments affecting the membrane lipid 

composition of mammalian cells had been previously described. I privileged the ones known to 

be expressed in my cell system, the HeLa cell line, based on the web database Genevestigator 

(Hruz et al, 2011). The expression of target genes in the HeLa cell line from the lab was then 

confirmed using qRT-PCR (Fig. 2). Planning to further screen the kinome, I also privileged gene 

targets among kinases. 

1.3.2. Efficacy of siRNA-induced gene knockdown 

In order to study the roles of selected target genes (Table 1) in regulating membrane lipid levels 

in HeLa cells and assess the off-target effects, each target gene was knocked down independently 

using two different siRNAs. Each experiment was repeated two to three times independently. 72h 

post siRNA transfection, the efficacy of siRNA-induced gene knockdown on the transcript levels 

of each target gene was monitored using qRT-PCR. Ten percent of the cell pellet used for 

quantitative lipid analysis was reserved for this purpose in a spare tube before lipid extraction 

(Fig. 1.). Oligonucleotide primers were designed using the open-source software NCBI Primer-

Blast (Ye et al, 2012a). The sequences of all oligonucleotides used for this experiment are listed 

in the appendix (p29). mRNA levels were measured using Real-Time PCR and normalized to 

TBP mRNA  (Fig. 2.). Most siRNA experiments induced more than 70% of gene knockdown 

compared to non-transfected HeLa cells. Only the silencing of CERS2 and CERS3 genes could 

not be quantified due to a loss of samples.  



Results 

 

 

48 

 

Target gene Encoded protein and functions in lipid metabolism 
Expression 

level 

CHKA 

choline kinase 

alpha 

 CK-alpha (Choline kinase alpha) 

 Catalyzes the first step in PC biosynthesis and contributes to PE biosynthesis.  

Phosphorylates Cho and EthN. 
 CHKA siRNA in breast cancer cells and decreases PC level (Glunde et al, 2005) 

 CHKA siRNA in HeLa cells decreases PCho and slightly decreases the pool of PC (Yalcin et al, 2010) 

 Homozygous mutant mice (Chka(-/-))are embryonic lethal  (Wu & Vance, 2010) 
 Heterozygous mutant mice (Chka(+/-)) are viable and show no reduction in PC (Wu et al, 2008) 

12.12 

 

CHKB 

choline kinase beta 

 CKB (Choline/Ethanolamine kinase) 

 Catalyzes the first step in PE biosynthesis. Phosphorylates ethanolamine, and can also act on choline 
(in vitro). May not significantly contribute to in vivo PC biosynthesis 

 Overexpression of CHKB in HEK293 and MDCK increases PE levels 

 Homozygous mutant mice (Chkb(-/-)) survive to adulthood but show muscular dystrophy and 
impairment on PC biosynthesis.(Wu & Vance, 2010) 

12.69 

 

ETNK1 

ethanolamine 

kinase 1 

 EK1 (Ethanolamine kinase 1) 

 Highly specific for EthN phosphorylation. May be a rate-controlling step in PE biosynthesis 
 Overexpression of a mammalian ETNK1 accelerates the CDP-ethanolamine pathway (Lykidis et al, 

2001)  

9.89 

 

FA2H 

fatty acid 2-

hydroxylase 

 FA2H/FAAH  

 Required for alpha-hydroxylation of free FA and the formation of alpha-hydroxylated SLs 
 Decreased FA2H activity changes the SM profile in fibroblasts (Dan et al, 2011) 

8.75 

HMGCR 

3-hydroxy-3-

methylglutaryl-

CoA 

 HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase) 

 Rate-limiting enzyme for cholesterol synthesis. Normally in mammalian cells this enzyme is 

suppressed by cholesterol derived from the internalization and degradation of low density lipoprotein 

(LDL) via the LDL receptor. 

 HMGCR siRNA leads to a significant increase in binding and internalization of LDL particles in vitro 

in mouse and human cells (Hibbitt et al, 2012) 

12.98 

CERS1-5 

Ceramide synthase 

1-5 

 CerS1-5 (Ceramide synthase 1-5) 
 ceramide synthase (CerS) enzymes catalyze the formation of (dihydro) ceramide 

 Overexpression, knockout and knockdown experiments show that individual CerS isoforms produce 

ceramides with characteristic acyl-chain distributions (Mullen et al, 2012) 

1 (9.71); 2 
(15.23);           3 

(8.06); 4 (9.73);            

5 (13.30) 

LDLR 

low-density 

lipoprotein 
receptor 

 LDL receptor (Low-density lipoprotein receptor) 
 Binds LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by 

endocytosis 

13.48 

NPC1 

Niemann-Pick 

disease,   type C1 

 NPC1(Niemann-Pick C1 protein) 

 Intracellular cholesterol transporter which acts in concert with NPC2 and plays an important role in 

the egress of cholesterol from the endosomal/lysosomal compartment 
 NPC1 siRNA in HeLa cells leads to cholesterol accumulation in late endosomes (Ganley & Pfeffer, 

2006) 

 NPC1 and NPC2 deficient cells are characterized by an increased storage of lipids (Lloyd-Evans & 
Platt, 2010) 

13.25 

NPC2 

Niemann-Pick 

disease,    type C2 

 NPC2 (Niemann-Pick C1 protein) 

 Intracellular cholesterol transporter which acts in concert with NPC1 and plays an important role in 

the egress of cholesterol from the endosomal/lysosomal compartment 
 NPC1 and NPC2 deficient cells are characterized by an increased storage of lipids (Lloyd-Evans & 

Platt, 2010)  

15.20 

PISD 

phosphatidylserine 

decarboxylase 

 PISD (Phosphatidylserine decarboxylase proenzyme) 

 catalyze the formation of PE  by decarboxylation of  PS 
 Homozygous mutant mice (pisd(-/-))are embryonic lethal  (Steenbergen et al, 2005) 

 Heterozygous mutant mice (pisd(+/-)) are viable and show no lipid change (Steenbergen et al, 2005) 

12.22 
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Target gene Encoded protein and functions in lipid metabolism 
Expression 

level 

PRKAA1 

protein kinase,              

AMP-activated,  

alpha 1 catalytic 

subunit 

 AMPK subunit alpha-1(5'-AMP-activated protein kinase catalytic subunit alpha-1) 
 Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays 

a key role in regulating cellular energy metabolism. (Faubert et al, 2013) 

11.60 

PRKAA2 

protein kinase,             

AMP-activated, 

alpha 2 catalytic 

subunit 

 AMPK subunit alpha-1(5'-AMP-activated protein kinase catalytic subunit alpha-2) 
 Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays 

a key role in regulating cellular energy metabolism. (Faubert et al, 2013) 

11.36 

SPHK1 

Sphingosine 

kinase 1 

 SPK1 

 Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate 

 SPHK1 siRNA in MCF-2 breast cancer cells increases ceramides (Taha et al, 2006) 
 SPHK1 siRNA in HEK293 cells increases de novo synthesis of ceramides (Maceyka et al, 2005) 

13.79 

SPHK2 

Sphingosine 

kinase 2 

 SPK2 

 Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate 

 SPHK2 siRNA in HEK293 cells decreases de novo synthesis of ceramides (Maceyka et al, 2005) 

11.39 

COL4A3BP 

collagen, type IV, 

alpha 3 

(Goodpasture 
antigen) binding 

protein 

 hCERT (Ceramide transfer protein)/ StARD11 (START domain-containing protein 11)   

 Shelters Cer inside its START domain and mediates the intracellular trafficking of ceramides in a non-

vesicular manner from ER to Golgi. 

 CERT mutant CHO cells are defective in SM synthesis (Hanada et al, 2009) 

 Homozygous CERT mutant mice are embryonic lethal with a decrease of SM (Hanada et al, 2009) 

12.63 

 

Table 1.   Pilot siRNA screen of gene-related lipids. Name(s), function(s) and theoretical level of expression in 

HeLa cells of candidate genes based on the web databases Uniprot and Genevestigator (median signal intensity on 

Human Genome 47k array expressed in Log2 scale).  Expression level: low (<10), medium (10-12) and high (>12). 
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Figure 2. Gene downregulation by targeted siRNA. HeLa cells were transfected with 14.4nM siRNA against 

target genes for 72 h. Cells were harvested, and RNA was extracted for q-PCR analysis of expression of genes. q-

PCR data are normalized to TBP mRNA expression, and data are means ± standard errors of the mean (SEM) for 

three independent experiments. Green bars represent siRNA-induced knockdown >70% compared to non-transfected 

HeLa cells. 

 

1.3.3. siRNA gene knockdown is sufficient to detect significant lipid changes 

In order to determine the effects of gene knockdown on the steady-state lipid levels in HeLa 

cells, I analyzed their lipid composition using mass spectrometry. Following siRNA treatment, 

lipids were extracted and analyzed using ESI/MS. Then, lipid quantities were normalized to the 

amount of total phosphorus in order to adjust for difference in cell size, membrane content, and 

extraction efficiency. Then, data were compiled into heat map showing log2-fold change of each 

lipid species in siRNA-treated cells over siControl-treated cells (Fig. 3A and   Fig. 4). To screen 

for significant changes in lipids, I used unpaired, two-tailed Student's t-tests to compare each 

siRNA to siControl (Fig. 3B and Fig. 5). The whole dataset of the pilot screen is available in the 

appendix (p127) 

Most of siRNAs induced slight changes in membrane lipid composition (Fig 3B and 5) but 

these changes were reproducible for the two different siRNAs targeting the same gene (A and B), 

in most of lipid classes: more for sphingolipids than phospholipids (Table 2, Fig. 3A and 4). 

Except for the siRNA-induced knockdown of PISD and CHKA that decreased PC and ether PC, 

respectively (Fig. 3A and 4.), the siRNA-induced knockdown of genes involved in PLs 

homeostasis (CHKA, CHKB, ETNK1 and PISD) didn’t have significant effect on the total pool of 
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PC, PE, PI and PS. No significant and reproducible effect on SLs and sterols were observed, 

either.  

Among the genes involved in the synthesis, trafficking and regulation of cholesterol levels 

(HMGCR, LDLR, NPC1, NPC2, PRKAA1 and PRKAA2), only PRKAA1 silencing showed a 

significant and reproducible increase of cholesterol and a decrease of PI (Fig. 3B.). Finally, 

siHMGCR led to a decrease of GlcCer (Fig. 3B.) 

 

Table 2. Correlation between 

lipid profiles obtained with two 

different siRNAs per gene. 

Similarities of lipid changes 

between gene knockdown 

experiments performed with two 

different siRNAs     (A or B) 

targeting the same gene were 

evaluated by calculating the 

Pearson correlation coefficient 

between the two series of log2 fold 

change. For each target gene, lipid 

profiles were considered as 

reproducible (green boxes) between 

the two experiments with different 

siRNAs for Pearson correlation     

coef. ≥0.5. Negative coefficient 

represent opposite lipid profiles 

(red boxes). 

 

  

target genes SM Cer GlcCer PC PE PI PS all lipids 

CHKA 0.6 0.5 0.5 0.8 0.3 0.4 0.3 0.5 

CHKB 0.6 0.7 0.6 0.7 0.4 0.3 0.9 0.5 

ETNK1 0.5 0.7 0.6 0.7 -0.1 0.6 0.9 0.7 

FA2H 0.6 0.4 0.5 0.1 -0.1 0.1 0.1 0.4 

HMGCR 0.8 0.7 0.2 0.3 0.5 0.7 0.8 0.6 

CERS1 0.4 0.6 0.7 0.3 0.1 0.6 0.7 0.4 

CERS2 0.9 0.8 0.5 0.1 0.6 0.6 0.9 0.7 

CERS3 0.8 0.7 0.7 0.6 0.7 0.6 0.8 0.7 

CERS4 0.8 0.8 0.5 0.0 0.4 0.1 0.0 0.3 

CERS5 1.0 0.8 0.8 0.4 0.3 0.5 0.7 0.6 

LDLR 0.8 0.7 0.7 0.4 0.2 0.1 -0.1 0.3 

NPC1 0.5 0.6 0.5 -0.1 -0.2 -0.2 0.7 0.2 

NPC2 0.6 0.8 0.5 0.9 0.1 0.4 0.9 0.6 

PISD 0.6 0.4 0.6 0.3 0.5 0.5 0.6 0.4 

PRKAA1 0.2 0.8 0.3 0.1 0.0 0.5 0.7 0.4 

PRKAA2 0.3 0.9 0.3 0.5 0.5 0.3 0.7 0.5 

SPHK1 0.7 0.8 0.3 0.5 0.3 0.2 0.8 0.7 

SPHK2 0.5 0.5 0.6 0.5 0.5 0.2 -0.6 0.4 
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Figure 3. A pilot siRNA screen on lipid-related proteins induce changes in multiple lipid species. HeLa cells 

were transfected with 14nM siRNA targeted against genes involved in the regulation of lipid homeostasis and lipid 

masses were determined by ESI/MS. A) Lipid levels were normalized to the amount of total lipid phosphate. Lipid 

changes are displayed as a heat map of the log2 of the mean fold change versus siControl (negative control siRNA). 

Blue and yellow boxes indicate a decrease and an increase of lipid level, respectively. B) Heatmap of statistically 

significant changes in lipids following siRNA knockdown. Lipid level changes are displayed as a heatmap of the -

log10 of the p value calculated from Student’s t test of siRNA vs. siControl. Yellow boxes indicate a significant 

increase and blue boxes indicate a significant decrease. Black indicates no significant change.  Data represent three to 

five independent experiments SM: sphingomyelin;  Cer: ceramides;  GlcCer: glycosylceramide; PC: 

phosphatidylcholine; PE: phosphatidylethanolamine; PI: phosphatidylinositol PS: phosphatidylserine and chol: 

cholesterol. 

A B 
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Figure 4. A pilot siRNA screen on lipid-related proteins induces changes in multiple lipid species. HeLa cells 

were transfected with 14nM siRNA targeted against genes involved in the regulation of PLs, SLs and sterol 

homeostasis lipid masses were determined by ESI/MS. Lipid levels were normalized to the amount of total lipid 

phosphate. Lipid changes are displayed as a heat map of the log2 of the mean fold change versus siControl. Blue and 

yellow boxes indicate a decrease and an increase of lipid, respectively. Data represent one to three independent 

experiments.  
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Figure 5. Heatmap of statistically significant changes in lipids following siRNA knockdown. Lipid level changes 

are displayed as a heatmap of the -log10 of the p value calcuted from Student’s t test of siRNA vs. siControl. Yellow 

boxes indicate a significant increase and blue boxes indicate a significant decrease. Black indicates no significant 

change and white boxes indicate no biological replicate.  Data represent one to three independent experiments  
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The siRNA-induced knockdown of genes involved in SL homeostasis showed the strongest 

phenotypes. The knockdown of siFA2H induced a strong decrease of hydroxylated SM and 

GlcCer (Fig 5.) and the silencing of sphingosine kinases tended to increase PI and GlcCer (Fig. 3. 

and 4.). The siRNA against SPHK1 also induced a decrease of S1P compared to the mean 

amount of S1P of the whole dataset (data not shown) but since this bioactive sphingolipid species 

was not detectable in most of samples, this change cannot be considered as statistically 

significant. Even if the siRNA experiments were performed only once for ceramide synthases the 

effects CERS1-5 gene silencing on SLs were reproducible for the two different siRNAs, A and B 

(Fig 5. and Table 2.). Moreover, the individual silencing of these five ceramide synthases 

induced a chain-length specific phenotype in SLs (Fig. 6.). As shown by Mullen, T.D. and 

coworkers with MCF-7 cells (Mullen et al, 2011), the knockdown of CERS2 and CERS5 led to a 

specific increase of C14-18 and C18-26 sphingolipids, respectively. Moreover, in most of HeLa 

cells treated with siRNAs against ceramide synthases, SM levels were not much affected, except 

for siCERS2 that also induced a decrease of C18 to C26 sphingomyelin. Finally, GlcCer was 

particularly increased in cells treated with siCERS5 (Fig. 6.). 

In summary, this pilot screen showed that siRNA-mediated knockdown of lipid-related genes 

could induce reproducible changes in the lipid composition of HeLa cells, often in agreement 

with previous published studies. Moreover, our lipidomics approach allowed the observation of 

multiple changes in different lipid classes simultaneously. 
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Figure 6. SiRNA knockdown 

of CERS1-5 induces changes 

in multiple sphingolipid 

species. HeLa cells were 

transfected with two different 

siRNA (A and B) targeted 

against CERS1-5, and 

sphingolipid masses were 

determined by ESI/MS. 

Sphingolipid levels were 

normalized to the amount of 

total phosphorus. Sphingolipid 

mass changes are displayed as 

a heat map of the log2 of the 

mean fold change versus 

siControl. Data represent one 

to three independent 

experiments. 

 

 

 

 

 

 

1.3.1. Cell-population context and gene knockdown effect: example of CERT 

In this pilot screen experiment, the siRNA-induced knockdown of COL3A4BP was also tested.  

COL3A4BP (standing for collagen, type IV, alpha 3-binding protein) is a gene with multiple 

mRNA splicing variants: GPBP, CERTL and CERT/GPBPΔ26. GPBP and CERTL, as well as 

GPBPΔ26 and CERT are identical but encode for different proteins. In 2003, Hanada K. and co-

workers identified CERT as the factor impaired in LY-A cells, a mammalian mutant cell line 

defective in SM synthesis. CERT (standing for ceramide transfer protein) is responsible for the in 

vivo non-vesicular trafficking of ceramides between the ER and Golgi for conversion to SM 

(Hanada et al, 2003). In 2009, Wang X. and colleagues demonstrated that mice deficient in CERT 

were embryonic lethal and showed a ~60% decrease in SM, accompanied with an increase of 

ceramides (Wang et al, 2009). In parallel, it was shown that the downregulation of CERT by 

siRNA in C6 glioma cells significantly affects the levels of SM, too (Giussani et al, 2008). As 
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previously reported, the siRNA-induced knockdown of CERT performed in the lab with HeLa 

cells also led to a significant decrease of SM. This decrease was coupled to significant increase of 

GlcCer and sterol esters. However, by comparing data in the lab with Dr. Ursula Loizides-

Mangold, different results were observed concerning the increase of sterol esters. The only 

difference between our two experiments was cell confluence at the time of siRNA transfection. 

Can cell confluence impact on the effects of CERT knockdown on membrane lipid composition? 

The influence of cell-density in response to siRNA-induced knockdown has already been studied 

in image-based RNAi screen. For instance, it was shown that siRNA transfection of adherent 

mammalian cells induced different responses in cell islets edges compared to cells at the middle 

of the islets (Snijder et al, 2012). Moreover, cell density is also known to influence the lipid 

composition of cells. In 1997, Cansell M. and colleagues analyzed the lipid composition of 

human endothelial cells in exponential growth phase and at confluence. Cells growth-arrested by 

contact inhibition at confluence accumulate more cholesterol than cells in division and their fatty 

acid distribution in PLs is different as well, while total amounts of PLs and FA are not changed  

(Cansell et al, 1997).  

In order to assess the importance of confluence on the effects of CERT knockdown, I seeded 

2.10
5
 cells per 6cm dish and transfected them with siRNA against COL3A4BP after 24h (sparse 

cells), 48h (50% confluence) or 72h (dense) of cell culture, respectively (Fig 8. and Fig. 9.). 

Following siRNA treatment, membrane lipid levels were analyzed using ESI/MS and normalized 

to the amount of total phosphorus. I measured the efficacy of siRNA-induced knockdown on 

CERT mRNA specifically by qRT-PCR (Fig. 8B and Fig. 9B). Ten percent of the cell pellet used 

for quantitative lipid analysis was reserved for this purpose in a spare tube before lipid extraction. 

In order to determine if the effect was cell type or CERT-specific, I performed the experiment in 

two Human cell lines:  HeLa and HeLa MZ from Marino Zerial (MPI-CBG, Dresden). Despite 

having the same origin, the two cell lines differ in the fatty acid composition in their SLs.  The 

major SM in HeLa MZ cells is SM42:2 instead of SM34:1 in HeLa (Fig. 7A). Moreover, their 

profile of glycosphingolipids is also different: GlcCer are detectable by TLC in both cell lines 

while GalCer seems present in HeLa, only (Fig. 7B).  
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Figure 7. Sphingolipid composition of HeLa and HeLa MZ cell lines. A. Distribution of fatty acyl chains of sphingolipids in 

HeLa and HeLa MZ cell lines. B. Determination of glycosphingolipid species in HeLa and HeLa MZ. 50µL of sphingolipid 

extracts from HeLa (column 2) and HeLa MZ (column 3) were analyzed by TLC. To distinguish GalCer and GlcCer the HPTLC 

plates were impregnated with borate. Glycosylated lipids were visualized with Orcinol and determined by comparison with 

standards (columns 1 and 4).    

 

Whatever the cell line and the confluence, the downregulation of CERT induced specific 

changes in sphingolipids and sterol esters while the amounts of phospholipids and cholesterol 

remained unchanged. In average, the quantity of SM was reduced by 20-60% in CERT-silenced 

cells, while the levels of Cer and GlcCer tended to increase and the amount of steryl esters was 

sometimes doubled compared to siControl (Fig 8. and Fig. 9.) However, these changes differed 

specifically depending on the cell line and their density at the time of siRNA transfection. 

Maximal changes occurred for cells transfected at 50% confluence (after 48h culture), whatever 

the cell line. While the gene silencing of CERT was higher than 70% in every condition 
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compared to non-transfected cells, the effects of the siRNA-induced knockdown of CERT in 

dense cells (after 72h of cell culture) were less important for SM and steryl esters than in 50% 

confluent cells (48h), whatever the cell line, contrary to Cer and GlcCer, which continued to 

accumulate in dense cells (72h) in HeLa MZ. After 72h of cell culture, the gene silencing of 

CERT in HeLa MZ (Fig. 8B) induced around 80% increase of both Cer and GlcCer, against 40-

50% increase when cells were transfected after 48h culture (Fig. 8A and C). This result was 

opposite in HeLa where Cer and GlcCer quantities also decrease when cells are transfected with 

CERT siRNA after 72h of cell culture (Fig. 9A and C).  

This experiment shows that cell confluence is an important factor to control when observing 

lipid changes after siRNA transfection of adherent cells. Ideally, as in imaging experiments, it is 

important to distinguish the results according to cell proliferation phases (Snijder et al, 2012) and 

avoid false negative hits. In lipidomics experiments, this discrimination is not possible but we 

could perform every siRNA experiment at multiple cell confluences, or at least take care to work 

with the same initial cell number to ensure certain reproducibility between biological replicates.  

1.4. Lessons from the pilot screen experiment. 

This pilot screen confirms some data from literature and unexpected results that could be 

interpreted with further analysis. The knockdown of target genes directly involved in the 

synthesis of lipids such as choline, ethanolamine kinases or HMGCR, didn’t affect specifically 

the lipids they synthesize. This confirms the necessity of large-scale screen studies in lipidomics 

in order to find regulators of membrane lipid homeostasis.  Moreover, the silencing of CERT 

highlights the probability to find false negative hits depending on the cell confluence at the time 

of cell transfection. Data obtained with two different siRNAs per gene also show that off-target 

effects can strongly influence the lipid profile and that hits retrieved from large-scale RNAi 

screen need to be confirmed with different siRNAs per gene. Finally, this “small” dataset 

highlights the complexity of analyzing hundreds of phenotypic readouts, here lipid quantities, 

obtained with three different machines and the necessity to use adapted bioinformatics tools 
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Figure 8. Knockdown of CERT in HeLa MZ cells at different confluences induces gradual changes both in SL 

and steryl esters. A. HeLa MZ cells were seeded at 2. 10
5
 cells per 6cm dish and transfected with 14.4 nM of siRNA 

targeted against COL3A4BP at different cell confluence (after 24h, 48h or 72h of cell culture) and lipid masses were 

determined by ESI/MS and GC/MS (sterols). Lipid levels were normalized to the amount of total lipid phosphate and 

compared to siControl. B. CERT mRNA downregulation. 72h after siRNA transfection, cells were harvested, and 

RNA was extracted for q-PCR analysis of gene expression. q-PCR data are normalized to TBP mRNA expression 

and compared to non-transfected HeLa cells. C. Percentage of lipids in cells transfected with siRNA against 

COL3A4BP at different confluences and compared to siControl. Data and data are means ± standard errors of the 

mean (SEM) and .represent three independent experiments.  *, P <0.05; **, P <0.01; ***, P <0.005 versus siControl.  
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Figure 9. Knockdown of CERT in HeLa cells at different confluences induces gradual changes both in SL and 

steryl esters. A. HeLa cells were seeded at 2. 10
5
 cells per 6cm dish and transfected with 14.4 nM of siRNA targeted 

against COL3A4BP at different cell confluence (after 24h, 48h or 72h of cell culture) and lipid masses were 

determined by ESI/MS and GC/MS (sterols). Lipid levels were normalized to the amount of total lipid phosphate and 

compared to siControl. B. CERT mRNA downregulation. 72h after siRNA transfection, cells were harvested, and 

RNA was extracted for q-PCR analysis of gene expression. q-PCR data are normalized to TBP mRNA expression 

and compared to non-transfected HeLa cells. C. Percentage of lipids in cells transfected with siRNA against 

COL3A4BP at different confluences and compared to siControl. Data are means ± standard errors of the mean (SEM) 

and .represent three independent experiments.  *, P <0.05; **, P <0.01; ***, P <0.005 versus siControl.   
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2. Kinome-wide RNAi based screen in HeLa MZ cells  

2.1. Experimental conditions 

Regulators of membrane lipid homeostasis in mammalian cells are still far from being fully 

identified. Good candidates could come from the kinase family that comprises more than 500 

genes (Manning et al, 2002) which regulate several cell mechanisms, including lipid-related 

genes. In order to explore the function of kinases in membrane lipid homeostasis, a kinome-wide 

siRNA screen was performed in human cells. After development of the technique at the scale of a 

pilot screen targeting about 20 genes, the siRNA-induced knockdown of 715 kinase transcripts, 

including protein, lipid and sugar kinases was processed, in duplicate. This primary screen was 

run using pools of three siRNAs per gene from MISSION® siRNA Human Kinase Library 

(Sigma-Aldrich) in order to decrease the probability of off-target effects (Jackson & Linsley, 

2010). HeLa MZ from Marino Zerial (MPI Dresden) were used in order to be in the experimental 

conditions similar to other RNAi screens performed in the groups of Lucas Pelkmans (Zurich) 

and Jean Gruenberg (Geneva) and enable the comparison of our datasets. Finally, the whole 

screen was run using complete cell medium with fetal calf serum coming from the same batch 

series.   

As for the pilot screen, after 72h siRNA transfection, cells were harvested, lipids extracted and 

analyzed by ESI/MS (PLs and SLs) and GC/MS (sterols) (Fig. 1.). Changes in lipid profiles and 

hits determination were then estimated using statistical tools. 

 

2.2. Membrane lipid composition of HeLa MZ 

 First, the lipid profile of untreated HeLa MZ samples from the screen was characterized.  In 

the absence of treatment, cells were cultivated in the same conditions than cells treated with 

siRNA or transfection reagents alone, i.e. the same medium, number of cells at day 0 and 

harvested after four days of culture.  For each membrane lipid class, the major lipids as well as 

the distributions of fatty acyl chains of different length or degrees of saturation, the proportions of 
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hydroxylated sphingolipids, ether phospholipids and the profile of lysophospholipids are 

described (Fig. 10-17).   

 Sphingolipids: 

Whatever the SL class, hydroxysphingolipids (SL-OH) represent around 20 mol% of total SL. 

The distribution of fatty acyl chains differ between SL classes as well as between SL and their 

dihydro or hydroxylated form inside each SL class. In sphingomyelin (SM) and ceramides (Cer), 

the major species are SM/Cer 42:2 and SM/Cer 34:1 whereas the second major SM/Cer-OH is 

40:1. SM-OH are also more unsaturated suggesting that the activity of ceramide synthases 

involved in SL and SL-OH synthesis are different in HeLa MZ. On the contrary, the distribution 

of fatty acyl chains is identical between GlcCer and GlcCer-OH. Major GlcCer species are 42:2 

and 40:1. In Cer and GlcCer, the fatty acyl distribution of dihydro- forms are completely different 

with enrichment in shorter chains, especially C16 dihydroceramides.  

 Phospholipids: 

Quantified phospholipids (PL) include LysoPLs and ether species (etherPL). EtherPLs represent 

between 4 and 19 mol% of total PLs. LysoPLs, less than 1 mol%. Whatever the category, PLs 

comprise between 0 and 6 double bonds but the major species are the most saturated ones and 

ether lipids are also more saturated. This is particularly true for phosphatidylserine (PS) where 

most of PS have one unsaturation whereas etherPS are saturated. The distribution of fatty acyl 

chain length differs between PL and ether PL, except for phosphatidylcholine (PC) and ether PC. 

The major PCs are PC34:1, PC32:1 and PC36, which corresponds to the pattern of LysoPCs that 

results from the hydrolysis of PC by phospholipases and for which the major species comprise 

either C16:0 or C18:1fatty acyl chains on sn-1 of glycerol-3-phosphate. This correspondence is 

also found in other PLs. Indeed, the major PE species are PE36:2, PE36:1, PE34:1 and PE34:2 

and LysoPE18:1, 18:0 and 16:0. The major PI species are PI36:1, PI36:2, PI34:1 or the 

polyunsaturated PI38:4, and the major LysoPI are LysoPI18:0 and 18:1. Finally, major PS species 

are PE36:1 and 34:1 and LysoPS18:0, 18:1 and 16:0. 
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2.3. Data processing 

 

In order to optimize the running time of samples by mass spectrometry, which was the most 

time-consuming part of the experiment, cells were transfected and lipids analyzed by series of 90 

conditions since the robotic nanoflow ion source (Nanomate) could infuse up to 96 lipid extracts 

per MS run. All series were repeated in two independent experiments (Fig. 18)   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. General overview of the analysis procedure. 1. Cell transfection, lipid extraction and analysis by mass 

spectrometry were performed by series of 90 samples in order to optimize the performance of mass spectrometry 

using the robotic nanoflow ion source (Nanomate). 2.  Lipidomic analysis of the screen was performed after 

discarding unreliable samples, log transformation and sample-based normalization of data (=lipid quantities) with z-

score 

 

First, siRNAs with incomplete lipid profiles due to technical issues were filtered from the 

dataset analysis. Next, in order to adjust for difference in cell size, membrane content, and 

extraction efficiency, the quantity of each lipid species was normalized to the sum of PLs (PC, 

PE, PI, PS, CL) in every sample. For practical reasons, the phosphorus assay of the 1,702 total 
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lipid extracts was not performed but the total content of PLs in lipid extracts should be 

proportional to phosphorus levels measured (Rouser et al, 1970). 

Then, phospholipid-corrected lipid quantities were log2-transformed. As shown in Figure 11, 

lipid quantities from the kinome-wide screen rather follow a Poisson than a normal distribution. 

Log-transformation of raw data makes the distribution more symmetric and approximately 

normal in most lipid categories (Fig. 19). This transformation is usually necessary in siRNA 

screen experiments to formally conduct statistical analysis for quality control and hit selection 

(Zhang, 2011b).   

Finally, log2-transformed data were normalized in order to correct systematic errors from the 

data and allow comparison of data from different experimental series (Fig. 19). Many 

normalization methods exist in RNA interference screens. They can be control or sample-based. 

Control-based normalizations require a statistically significant number of controls. However, only 

two Allstars negative controls were used per experimental series in this screen and as reported in 

the following sections, all negative controls (Allstars, Lipofectamine RNAiMax and untreated 

HeLa MZ) showed lower levels of SLs compared to the mean of all samples. Therefore, a 

sampled-based normalization was more suitable in order to analyze this primary RNAi screen 

(Birmingham et al, 2009). Among possible techniques: the z-score, strictly standardized mean 

difference (SSMD), B score and their respective robust version (z-score*, SSMD*, B score*). 

Knowing that at least three replicates per siRNA are necessary to observe statistically significant 

SSMD (Zhang, 2011a) and that B scores is made for datasets with within-plate systematic effects, 

log2-transformed data were normalized per plate with the z-score (Fig. 19 and 20). 

  Z-score was calculated using the following formula: Z            , where     is the lipid 

quantity of the gene i,    is the average of lipid quantities of all samples, and    is the standard 

deviation of lipid quantities of all samples. Z-score is a measure of standard deviation. According 

to its sign, positive or negative, it represents data above or below the mean of all samples, 

respectively. The z-score was calculated either for every lipid quantity or for the sum of lipid 

quantities per lipid class or per chemical feature inside lipid class (chain-length, unsaturation 

degree, functional groups such as hydroxylation, ether, phosphate, etc.). Z-score data are 

normally distributed and sample-based normalization per experimental series prevented the batch 

effect (Fig. 20).   
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Figure 19. Kinome-wide siRNA screen data transformation and normalization. After filtering of conditions with 

incomplete lipid profiles, lipid quantities of 1,325 conditions were 1) normalized to the sum of PLs, 2) log2-

transformed and 3) sample-based normalized by calculating their z-score. The resulting dataset is normal and can be 

statistically analyzed for hit selection. 
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Figure 20. Distribution of z-score values for all lipids (Y axis) per sample (X axis) . A.sample-based 

normalization over the whole screen (1,325 samples) or B. per experimental series. Colors represent samples from 

the same experimental series, also named “plate ID” in the legend. 
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In order to avoid analyzing siRNA conditions associated with apoptosis or cell necrosis due to 

siRNA-induced toxicity, genes with a significant effect on cell numbers were discarded from the 

z-score log2 transformed dataset. This toxicity is due to several factors, including cell confluence 

at the time of transfection (Snijder et al, 2012), the decrease of an essential targeted protein, such 

as Polo-Like kinase 1 (PLK1) (Liu & Erikson, 2003), or the off-target effect (Jackson & Linsley, 

2010). Cytotoxicity leads to a reduced number of cells, which results in turn in a characteristic 

lipid profile showing a decrease of quantities for all lipids. In order to automatically discriminate 

samples with few cells from the others, images of cells 72h post siRNA transfection were 

analyzed with the open-source image analysis software CellProfiler (Carpenter et al, 2006) and 

samples where the pictures of cells showed less than 70% of surface area occupied were 

discarded from the final analysis (Fig. 21). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Image analysis pipeline using the open-source software CellProfiler. Samples with less than 70% of 

occupied area covered by objects (=cells) were considered as representative of samples with too few cells for 

objective interpretation of results. Their lipid profiles correlated with their cell phenotype and were discarded from 

the analysis. 

 

• PLK1 (apoptosis)

Toxic or few cells (<70% Area covered by cells)Healthy conditions
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In addition, siRNA conditions with only one biological replicate or for which, two biological 

replicates showed opposite lipid changes (Pearson correlation null or <0 between the z-score log2 

transformed profiles of two biological replicates) were discarded from the dataset, as well.  

The raw dataset, calculations and discarded conditions with their justification are listed in the 

appendix (127).  

 

2.4. Quality controls 

In order to assess the quality of the screening experiment, several control conditions were 

added in each series of samples: either non-treated cells (HeLa MZ), cells treated with the 

transfection reagent alone (Lipofectamine RNAiMAx) or transfected with 14.4nM of non-

targeting siRNA (siControl), or of siRNA against PLK1 and CERT (Fig. 18). Then, lipid levels in 

each sample were quantified using mass spectrometry, normalized to the total sum of PLs, log2-

transformed and sample-based normalized with z-score, as described previously.  

 In order to validate the pertinence of the normalization, the level of lipids in control 

conditions was compared between all steps of the normalization process (Fig. 24-20). First, lipid 

quantities were normalized to the sum of PLs in every sample. A priori, it is not correct to sum 

the quantity of every individual lipid species because mass spectrometry method doesn’t allow 

the absolute quantification of every lipid. However, when comparing the average sum of PLs to 

the average number of cells estimated from microscopy pictures using the open-source software 

CellProfiler, it appears that these two measurements are well correlated since the Pearson 

correlation coefficient is higher than 0.5 in most of experimental series (Fig. 22A). Moreover, the 

sum of PLs is strongly correlated to the sum of all lipids and PC in the whole screening dataset.  

The sum of PLs is also correlated to SL and sterols but to a lower extent (Fig. 22B-E). The 

correlation coefficient between PLs and SLs depends on the experimental series. 

The comparison of average sums of total lipids before and after normalization to the sum of 

PLs shows that this normalization is able to correct the general variation of lipid levels in quality 

controls (Fig. 23).  
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Figure 22. Correlation between lipid quantities and cell number. A. The Pearson correlation coefficient between the sum of PLs 

for each sample and its corresponding cell number estimated with CellProfiler (Carpenter et al, 2006) was calculated for every 

experimental series The Pearson correlation between the sum of PLs and the sum of all  B. lipids, C. PC, D. SLs and E. cholesterol 

was calculated for the 1,325 samples before filtering.   

 

 

 

 

 

 

 

 

Figure 23. Correlation between lipid quantity and cell number in quality controls and normalization. HeLa MZ cells were 

seeded at 4. 105 cells per 6cm dish and either treated with the transfection reagent alone (Lipofectamine RNAiMAx) or transfected 

with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. Average lipid levels are expressed in fmol. A. 

Average number of objects (=cells) per area calculated from microscopy pictures with CellProfiler B. Average sum of all lipid 

quantities per siRNA condition before and C. after normalization to the sum of total PLs.  Data are means ± standard errors of the 

mean (SEM) and represent between 20 and 80 independent experiments.  *, P <0.05; **, P <0.01; ***, P <0.005 versus siControl. 
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2.1.1 Effects of transfection reagent and non-targeting siRNA controls 

The transfection reagent used for the kinome-wide screen experiment was Lipofectamine™ 

RNAiMax from Life Technology. As most of siRNA transfection reagents, this is a proprietary 

liposome-based formulation made of cationic lipids that could eventually interfere with the lipid 

composition of treated cells. In order to assess the effects of this liposome-based transfection 

reagent on the lipid profile of HeLa MZ, the lipid composition of HeLa MZ was compared to the 

one from HeLa MZ treated with Lipofectamine RNAiMax, at the same concentration as for 

siRNA transfection. In addition, these conditions were compared to the lipid profiles of HeLa MZ 

transfected with a non-targeting siRNA, the AllStars siRNA negative control from Qiagen 

(siControl).  Each series of samples from the kinome-wide RNAi screen comprised two replicates 

of each of these three negative controls (Fig. 10.). As expected, none of these negative controls 

had significant effects on the lipid profile of HeLa MZ (Fig. 24-28). However, it is worth noting 

that after sample-based normalization in z-score, these three negative controls show significantly 

less ceramides and glucosylceramides compared to the mean of all siRNA conditions from the 

screen. Moreover, Cer and GlcCer levels in non-treated HeLa MZ are significantly lower 

compared to siControl, suggesting that siRNA transfection in HeLa MZ naturally induces an 

increase of these sphingolipids that could be the expression of a cellular stress (Fig.  25D,  27C 

and 28C). 

 

2.1.2 PLK1 siRNA induces an apoptotic lipid profile 

 

If negative controls chosen for this screen are classical in large-scale RNAi screens, positive 

controls were more difficult to find. Indeed, none is used routinely in the recent field of 

lipidomics. A good positive control should induce a specific effect for every phenotypic readout 

in order to allow statistically significant hit selection. In our case, it means finding either a target 

gene whose the silencing or drug inhibition induces a significant change in different lipid classes 

simultaneously or several target genes which has combined effects on all lipid classes. Since the 

kinome-wide RNAi screen was performed with the purpose to find such a target genes, no 

positive control could be used in the screen. Moreover, for practical and economic reasons, the 

efficacy of gene knockdown could not be controlled for all siRNA experiments from the screen 
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by qRT-PCR. However, in order to control the efficacy of the siRNA transfection reagents and 

conditions throughout the screen, siRNAs against PLK1 and CERT were used as additional 

quality controls. The silencing of PLK1 is a control of transfection, classically used in large-scale 

RNAi screening experiments that induces apoptosis. Five siRNA transfections against PLK1 

were randomly performed in each series of samples. As expected, most of them induced cell 

death, meaning a sharp reduction in the number of cells (Fig. 23A) correlated with a global 

decrease of lipids (Fig. 23B). Lipids play an important role in apoptosis through their function in 

the cascade of signaling events and in membrane remodeling. Moreover, the lipid composition of  

apoptotic membranes is modified: ceramides are up-regulated and contribute to signaling events 

in mitochondria, PS molecules are exposed at the outer leaflet of plasma membrane, many of PLs 

are peroxidized under the oxidative stress that accompanies apoptosis and the level of CLs, the 

major mitochondrial lipids decrease leading to the release of cytochrome c with which it interacts 

(Crimi & Esposti, 2011; McMillin & Dowhan, 2002). In PLK1 silenced-cells, beyond the general 

reduction of lipids, significant changes in the ratio between the levels of lipid classes could 

indeed be observed: SL increased, sterol esters and CL decreased while PLs and sterols remained 

unchanged relative to other lipid classes and compared to siControl (Fig. 24-25). In addition, the 

fatty acid distribution of sphingolipids was also modified, with a more important increase of 

shorter chains in general, and of C16 ceramides in particular (Fig. 26-28). All together, these 

modifications show that siRNA-induced knockdown of PLK1 specifically induced a programmed 

cell death, as expected. These effects were observed all along the screen, showing there was no 

problem of transfection conditions. Moreover, as the silencing of ceramide synthases in the pilot 

screen, the   PLK1 siRNA quality control emphasizes the importance of not only analyzing the 

levels of lipid classes but also the distribution of fatty acids inside lipid classes in order to well 

characterize phenomena. 

 

2.1.1 CERT siRNA induces SL, PI and sterol changes 

 

Two transfections of siRNA targeting CERT were performed per series, as an additional 

quality control of the kinome-wide screening experiment. As previously described in the pilot 

screen, the siRNA knockdown of CERT induced a significant decrease of SM, coupled to an 
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increase of sterol esters and C22-24 ceramides compared to siControl. Moreover, compared to the 

pilot screen experiment, an additional increase of PI was observed. (Fig. 24-28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Phospholipids levels in quality controls and comparison of PL changes across the normalization process. HeLa 

MZ cells were seeded at 4. 105 cells per 6cm dish and either treated with the transfection reagent alone (Lipofectamine 

RNAiMAx) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. HeLa MZ represent 

non-transfected cells. Lipid masses were determined by ESI/MS. Average sum of lipid species per lipid class: A) before 

normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after log2 transformation and D) 

sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-tailed Student's t-tests to 

compare each siRNA to siControl    *, P<0.1; **, P<0.05; ***, P<0.01. Data are means ± standard errors of the mean (SEM) and 

represent between 20 and 80 independent experiments.    
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Figure 25. Sterols and sphingolipid levels in quality controls and comparison of lipid changes across the normalization 

process. HeLa MZ cells were seeded at 4. 105 cells per 6cm dish and either treated with the transfection reagent alone 

(Lipofectamine RNAiMAx) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. HeLa 

MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid species 

per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after 

log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-

tailed Student's t-tests to compare each siRNA to siControl    *, P<0.1; **, P<0.05; ***, P<0.01. Data are means ± standard errors 

of the mean (SEM) and represent between 20 and 80 independent experiments. 
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Figure 26. Chain length distribution of SM in quality controls and comparison of lipid changes across the normalization 

process. HeLa MZ cells were seeded at 4. 105 cells per 6cm dish and either treated with the transfection reagent alone 

(Lipofectamine RNAiMAx) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. HeLa 

MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid species 

per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after 

log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-

tailed Student's t-tests to compare each siRNA to siControl    *, P<0.1; **, P<0.05; ***, P<0.01. Data are means ± standard errors 

of the mean (SEM) and represent between 20 and 80 independent experiments. 
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Figure 27. Chain length distribution of Cer in quality controls and comparison of lipid changes across the normalization 

process. HeLa MZ cells were seeded at 4. 105 cells per 6cm dish and either treated with the transfection reagent alone 

(Lipofectamine RNAiMAx) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. HeLa 

MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid species 

per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after 

log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-

tailed Student's t-tests to compare each siRNA to siControl    *, P<0.1; **, P<0.05; ***, P<0.01. Data are means ± standard errors 

of the mean (SEM) and represent between 20 and 80 independent experiments. 
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Figure 28. Chain length distribution of GlcCer in quality controls and comparison of lipid changes across the 

normalization process. HeLa MZ cells were seeded at 4. 105 cells per 6cm dish and either treated with the transfection reagent 

alone (Lipofectamine RNAiMAx) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. 

HeLa MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid 

species per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) 

after log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, 

two-tailed Student's t-tests to compare each siRNA to siControl    *, P<0.1; **, P<0.05; ***, P<0.01. Data are means ± standard 

errors of the mean (SEM) and represent between 20 and 80 independent experiments. 
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2.5. Kinome-wide RNAi screen results 

2.2.4 Observation of lipid behavior. 

 

 

 

 

 

 

 

Figure 29. Correlation between lipid quantities and their variability. Scatter plot representing mean lipid quantities versus the 

inverse of the coefficient of variation (1/CV) for each A. lipid class or B. individual lipid species quantified by mass spectrometry 

over 1,472 samples.  

 

More than 800 lipid molecules were quantified by mass spectrometry for each siRNA 

conditions. In order to be able to determine significant lipid changes during the process of hit 

selection, the variability of the different lipid categories was investigated. First, it is noteworthy 

that the coefficient of variation (CV) of lipid levels is inversely proportional to their abundance, 

in a general manner. PLs, the most abundant lipids in mammalian cells have a lower CV than SLs 

and sterols. Moreover, the CV of PLs is <1, which corresponds to low variance distribution, 

contrary to SL and sterols (Fig. 29A). The correlation between CV and lipid quantities is strong 

(Pearson correlation coef >0.8) when considering the sum of lipids of each class that is mostly 

influenced by the quantity of major lipid species (Fig. 29A).  However, when plotting every 

individual lipid versus its corresponding 1/CV value, such correlation is less obvious (Fig. 29B). 

Indeed, most of molecules quantified by mass spectrometry are very low abundant lipids and their 

variability may not only depend on their abundance but also on their function in cells, 

degradation, recycling processes, food intake or on the efficacy of lipid extraction. Knowing this, 

1
/C

V

Mean lipid quantity

PEARSON 0.82

1
/C

V
Mean lipid quantity

A B
PEARSON 0.35



Results 

 

 

87 

 

all individual lipid species were kept in the screen analysis because whatever the variability of 

considered lipids, I assumed that it didn’t prevent to observe significant changes However, in 

order to overcome difficulties of hit selection and biases in hierarchical clustering due to the 

weight of variability of individual lipid species, lipids quantities were summed according to their 

categories: lipid class, chemical characteristics (i.e. hydroxylation, ether, etc.), chain length or 

unsaturation degree.  

 

2.2.5 The puzzle of hit identification 

After normalization and filtering of the dataset, the lipid profiles of 368 kinase siRNA-induced 

knockdowns were compared for hit identification. Every lipid change was expressed as the mean 

of z-score log2-transformed lipid quantities of two biological replicates. The whole dataset is 

available in the Appendix (50). Several methods for hit selection exist in large-scale RNAi 

screening experiments. They depend on the format of the screen: its scale, the number of 

replicates, the presence and the strength of controls, the normality of the dataset, the variability of 

phenotypic readouts and more importantly: the objective of the analysis. (Birmingham et al, 

2009). The purpose of this kinome-wide RNAi screen was multiple:  exploratory and hypothesis-

driven. While the hypothesis-driven analyzes often complement previous studies to confirm or 

infirm hypotheses concerning specific genes, the exploratory analysis of the screen is based on 

statistical tools able to recognize sets of genes with potentially interesting lipid profiles and 

doesn’t require upstream hypotheses. The combination of both approaches is necessary to retrieve 

a maximum of benefits from the screening analysis.  This chapter is mainly devoted to the 

exploratory approach and to the comparison of different statistical tools for hit identification with 

their interests and limitations.  
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a) Hit identification using threshold determination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Normal distribution and probability equivalence. A. In a normal distribution, the distance from the mean is 

equivalent to different probabilities. B and C. Z-score distribution per lipid category over 1,325 samples with corresponding 

probabilities (Y axis). A and B are histograms of the same dataset represented in two different views (bars or lines)  
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In order to identify hits in every individual lipid categories, threshold determination was 

performed for each phenotypic score using the ranking method. This classical method of hit 

identification consists in considering: “Mean + or – k standard deviation (SD)” where k is a preset 

constant, which correlates the interval between the mean and   k SD to the probability for 

selected hits to be significant. In z-score data sets, the value of z is equivalent to ±k SD.   In a 

normal distribution, data are usually considered as significant for mean   k SD with k>= 2 or 3 

(Fig. 30A). However, in my conditions, whatever the lipid category, ≈90% of samples had a z-

score     < 1. I could choose a more stringent cutoff value. However, knowing that I’m interested 

in several lipids at the same time, I preferred selecting more candidates to compare in order to 

increase the probability to find genes with the same pattern of lipid changes and sharing maybe 

the same function in lipid homeostasis.  Thus, genes with phenotypic scores above the cutoff 

values     >= 1 were selected as hits (Birmingham et al, 2009). With this method, genes 

significantly affecting each individual lipid category, chain length and unsaturation degree could 

be identified.  

The list of hit genes per lipid category could be studied independently. However, as shown in 

Table 3, most of hits affect different lipid classes, simultaneously.  Among them, several are part 

of MAPK, AMPK and PI3K-MTOR signaling pathways, which are known to be key regulators in 

the energy balance in cells.  

In order to better understand how these genes affect lipid homeostasis, it is necessary to group 

them according to their combinations of lipid changes. Different tools exist with their advantages 

and limitations. No method is bad. They simply present the results in different ways and all can 

help to build hypotheses. In the following sections, some of them are described. 
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Table 3. Major hits per 

lipid class. For each 

lipid class, list of genes 

with phenotypic scores 

above the cutoff values 

|z| >= 1 were selected as 

hits. Genes inducing an 

increase or a decrease of 

lipid levels are grouped 

in columns (+) or  (-), 

respectively. Genes in 

blue induce a change in 

only one lipid category. 

Genes that induce a 

change in several lipid 

categories are in black.    
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b) Principal Component analysis (PCA) 

Then, to determine whether certain genes induced specific combinations of lipid changes, a 

Principal Component Analysis (PCA) of the dataset was performed. PCA is a linear 

transformation that converts n original variables, here lipid categories, into 2 or 3 dimensions, 

allowing to visualize more clearly how the variables are correlated.   PCAs were performed using 

Partek Genomics Suite. All variables are represented in bi-plots by vectors (Fig. 31 and 32), and 

the direction and length of the vector indicate how much each variable contributes to the two 

principal components in the plot. Here, 2-dimensions representations were chosen because the 

first two principal coordinates explained enough of the variance in my data (between 42 and 90% 

depending on the variables, cf. Fig. 30-32). For instance, in Fig. 30A, the first principal 

component, on the horizontal axis, has positive coefficients for the different variables (PI, PS, 

cholesterol, steryl esters, CL and sphingolipids). That is why the eight vectors are directed into 

the right half of the plot. The largest coefficient in the first principal component is cholesterol. 

The second principal component, on the vertical axis, has positive coefficients for the variables 

cholesterol, steryl esters, PI, PS, CL, PE and negative coefficients for PC and sphingolipids. This 

indicates that the second component distinguishes these two clusters of variables that tend to have 

opposite variations. These 2-D bi-plots also include a point for each of the 368 genes, with 

coordinates indicating the score of each observation for the two principal components in the plot. 

For example, points near the left edge of this plot have the lowest scores for the first principal 

component. The points are scaled with respect to the maximum score value and maximum 

coefficient length, so only their relative locations can be determined from the plot. 

The analysis of the 2-D bi-plots representing PCAs with different combinations of lipid classes 

that allows to select genes that vary the most according to individual or combinations of lipid 

categories. I performed a PCA for major lipid classes but also for chain length and unsaturations 

inside each lipid class in order to find genes that showed changes specific of chain length, for 

instance.  We can observe that whatever the bi-plot, most of genes cluster in a cloud in the middle 

of variables and represent genes with few changes of lipid levels.  

The first PCA, on major lipid classes (Fig. 30) shows the general tendency of lipid changes in 

the screen. Some clusters of lipid changes can be observed. In general, sphingolipids tend to 

change together. Idem for PI, PS and cholesterol. On the contrary, PC and PE tend to show 
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opposite directions. As a proof of concept, Fig. 30A was performed with the normalized 1,325 

samples before filtering on toxic conditions and includes both duplicates per gene, including the 

controls. As observed previously, negative controls C100N, C100M and C100S standing for 

HeLa MZ, Lipofectamine RNAiMax and siControl, respectively, all cluster in the middle of the 

plot because of their lack of effect. On the contrary, samples treated with siRNA against CERT 

are a bit eccentric with more positive coefficient on the Y axis toward steryl esters and samples 

treated with siPLK1 (Control) are completely dispersed from the centre with a phenotype in 

sphingolipids.  

Then, the same PCA was performed with the final dataset grouping averaged z-scores of 

duplicates showing correlated lipid profiles and no toxicity. From this PCA, some genes with 

extreme changes for some lipids could be selected. PRKA1R1A for instance, that codes for a 

genes involved in the control of autophagy, is localized at the upper right edge, in the opposite 

direction of PC and PE. When coming back to the z-score values, it corresponds to an increase of 

all lipids except PC and PE. The other PCAs were performed in order to dissect lipid changes 

observed inside each lipid categories and select genes with specific changes. I could describe the 

hits observed for each PCA but the hit analysis is still ongoing and involves projects in 

collaboration with other groups. Instead, I will rather describe how lipids change inside each lipid 

class according to the composition in fatty acyl chains (Fig. 31 and 32). Indeed, each lipid class 

comprises itself hundreds of lipids that differ in their fatty acyl composition. In mammalian cells, 

fatty acyl chains of membrane lipids usually range from 12 to 26 carbons and comprise between 0 

to 6 double bonds (Cook, 2008). The combinations of fatty acyl chains differ between SLs and 

PLs. For instance, shorter and more polyunsaturated FAs are found in PLs. Moreover, while for 

PLs several combinations of FA are possible and not distinguishable using the TSQ mass 

spectrometer, SLs are made of a fixed 18 carbons-long sphingoid base acylated with a FA 

ranging from 14 to 26 carbons depending on the specific ceramide synthases (Aguilera-Romero et 

al, 2013). FA present in membrane lipids come either from de novo synthesis, diet, such as 

essential FAs or from the combination of both through sequential pathways of fatty acid 

desaturation and chain elongation (Cook, 2008). Moreover, as described in the introduction, fatty 

acyl chains can be hydroxylated in sphingolipids, bound the glycerol backbone through ether 

linkage in phospholipids, or lipids can also comprise only one hydrophobic chain, as in 

lysophospholipids and dihydroceramides.  
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Figure 30. Principal Component Analysis (PCA) of lipid classes. The z-score data from the kinome-wide RNAi screen were 

analyzed by PCA using Partek Genomics Suite A. before (1,325 samples) and B. after filtering and averaging the two duplicates 

(368 genes). % (percentage of PCA mapping expressed in the title of each graph) of the variation in samples was revealed in the 

first two components. The first principal component named PC#1 is represented by the X axis and the second principal component 

by the Y axis (PC#2). Lipid categories appeared to be a source of variation and are indicated by the different vectors.  

 

 

PRKAR1A
Z-score sterol,SM,Cer, GlcCer,PI, PS, CL >0
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 First, for phospholipids (Fig. 31), it is noteworthy that genes show different changes between 

the different classes of PLs but that globally vectors representing variables Lyso- and ether 

species point in the same direction as their diacylester counterparts. When comparing changes in 

unsaturation degree, we can notice that whatever the PL category, variations in very unsaturated 

PLs (>2 unsaturations) differ from variations observed for saturated or monounsaturated lipids. 

Finally, whatever the PL category, variations according to fatty acyl chain lengths can generally 

be clustered in two groups:  short chains versus long chains, even if the precise composition of 

these two groups differs between PL categories.  

Concerning sphingolipids (Fig. 32), variations depend more on the lipid class (SM, Cer or 

GlcCer) than the unsaturation degree of the fatty acyl chain, its number or its nature (SL, 

hydroxySL or dihydro-).  However, when comparing variations depending on the fatty acyl chain, 

it is noteworthy that depending on the SL class, variations affect differently different cluster of 

fatty acyl chains. For instance, in SM, variations observed for C14 and C16 differ from longer 

chains and from C10-C12. For ceramides, four groups can be distinguished: group 1 with C16, 

group2 with C22-24, group 3 with C18, C20 and C26 and group 4 with C10-14. Knowing that 

ceramide synthases are specific from fatty acyl chain length, it is possible from this PCA to select 

genes that affect specifically these different groups and maybe find regulators of ceramide 

synthesis. Finally, in glucosylceramides there is only a division in variations between the major 

GlcCer (C22, C24, C16) and the others.  

In conclusion, from this analysis with PCA, we learn that major changes observed in lipid 

profiles can be first attributed to general changes between lipid classes and inside each lipid class 

mainly from the unsaturation degree in phospholipids and from the fatty acyl chain length in 

sphingolipids.  
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Figure 31. Principal Component Analysis (PCA) of lipid classes. The z-score data from the kinome-wide RNAi screen were 

analyzed by PCA using Partek Genomics Suite after filtering and averaging the two duplicates (368 genes). % (percentage of PCA 

mapping expressed in the title of each graph) of the variation in samples was revealed in the first two components. The first 

principal component, named PC#1, is represented by the X axis and the second principal component by the Y axis (PC#2). Lipid 

categories appeared to be a source of variation and are indicated by the different vectors. Changes according to  A. main PL 

classes. B. degree of unsaturations in PLs and chain length in C. PC, D. PE, E. PI and F. PS 
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Figure 31. Principal Component Analysis (PCA) of lipid classes. The z-score data from the kinome-wide RNAi screen were 

analyzed by PCA using Partek Genomics Suite after filtering and averaging the two duplicates (368 genes). % (percentage of PCA 

mapping expressed in the title of each graph) of the variation in samples was revealed in the first two components. The first 

principal component, named PC#1, is represented by the X axis and the second principal component by the Y axis (PC#2). Lipid 

categories appeared to be a source of variation and are indicated by the different vectors. Changes according to  A. main SL 

classes. B. degree of unsaturations in SLs and chain length in C. SM, D. Cer, E. GlcCer. 
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c) Genes with patterns of lipid changes: correlation- vs HIS-based selection 

In parallel to hit selection per individual lipid categories or per specific combinations of lipid 

changes, techniques based on correlation were used in order to identify groups of genes with 

similar patterns of lipid changes. First, a similarity matrix was performed in order to identify 

genes whose the change was correlating for most of lipids, whatever the strength of these 

changes. Lipid changes, expressed as the mean z-score of two biological replicates, of 368 

kinases were compared over 778 lipids; the correlation between genes was calculated using 

Pearson and ranges between -1 (blue) and 1 (yellow) in the similarity matrix (Fig. 33). Among 

the 368 input kinases, 35 show a particularly correlated phenotype. (Fig. 33A, red box). The heat 

map representation of lipid changes for selected kinases shows that they are not 100% correlating 

over the whole lipidome and that subsets of genes are even more correlated (i.e. TRIM24 ad 

TRIM33) (Fig. 33B)   
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Figure 33. Similarity matrix and heat map representation of lipid changes for selected kinases with correlated 

lipid profiles. A. Similarity matrix of 368 kinases. The color scale represents the Pearson correlation between the 

lipidomic profiles (z-score) of 368 kinases. Negative and positive correlations are represented in blue and yellow, 

respectively.  B. The profile of lipid changes for selected kinases with correlating lipid profiles from the similarity 

matrix was represented by a heat map. Decrease or increase of lipid levels is represented in blue or yellow, 

respectively.   
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Other sets of genes with correlated or anti-correlated profiles of lipid changes can be found 

with this method but this is a slow process and it doesn’t inform directly about which lipid levels 

are affected nor the strength of these changes.  

A more intuitive technique to find genes with lipid patterns is hierarchical clustering. As the 

similarity matrix, hierarchical clustering is based on correlation. This is an iterative process that 

finds and joins the pairs of genes with the most similar profiles of phenotypic changes. Pairs of 

genes are considered as similar if their profiles of phenotypic changes are correlated. The 

hierarchical clustering represented as heat maps allows to visualize simultaneously genes with 

correlated lipid profiles and the strength of this correlation that is proportional to the length of the 

dendrogram root, the direction of phenotypic changes per variable (increase and decrease are 

expressed color-coded) and their strength (intensity of the color is proportional to the value of the 

z-score). However, as shown in Figure 34, the hierarchical clustering of lipids changes from the 

368 kinases over either the 778 individual lipid species or the major lipid classes is represented as 

a heat map is not easily interpretable (Fig. 34). Indeed, correlation is found only for pairs of 

genes with similar patterns over the whole phenotypic profile. As represented for genes A, B and 

F in Figure 28. On the contrary, genes with strong similarities for only a part of the phenotypic 

readouts, such as genes C and E (Fig. 35.) are not correlating with gene A. Thus A, C and E are 

not considered as linked together while we can imagine that different genes have the same 

function in the regulation of some observed phenomena but not all of them. Therefore, depending 

on the screen, correlation-based statistical methods can produce a lot of false negative hits and 

being hardly interpretable. 

 In order to overcome this limitation, Berend Snijder and Prisca Liberali from the group of 

Lucas Pelkmans (ETH Zurich, Switzerland) conceived a novel tool of statistical analysis of 

genetic perturbation screens named hierarchical interaction score (HIS). The HIS was originally 

conceived in order to find functionally interacting genes across RNAi screens with different 

readouts. A HIS is calculated for every pair of genes and top-scoring gene interactions are 

attributed to genes that present similar strong changes either for a subset or all the phenotypic 

readouts (Fig. 35.). While correlation considers all the dataset and shows non-directional links 

between genes that have the same pattern in all condition even if the strength of phenotypic 
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changes is very different, HIS considers nested effects. Two genes are linked when they have the 

same phenotypes in subset of lipids. Moreover, genes with a good correlation have a good HIS. 

Whatever the context, it allows to find hit genes and to prioritize their relationships 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Heat map of lipid changes resulting from the kinome-wide siRNA knockdown in HeLa MZ cells. A. 

Individual lipid and B. lipid class level changes are displayed as a heat map of the z-score log2-transformed lipid 

quantities. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes represent no 

change and white boxes indicate missing values. Data represent the mean of two independent experiments.  
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Figure 35. Comparison between correlation- and HIS-based clustering of genes with several phenotypic readouts. (from 

Prisca Liberali) 

Therefore, in order to find genes probably linked in the regulation of all or a subset of the 10 

analyzed lipid classes (PC, PE, PI, PS, CL, SM, Cer, GlcCer, cholesterol and steryl esters), the 

hierarchical interaction scores (HIS) of 368 kinases genes was calculated and the genes with top-

scoring hierarchical interactions were selected as hits. Over 368 candidate kinases, the 1,000 

strongest interactions were visualized using the open source software http://www.his2graph.net/ 

(Fig. 36).  

Gene interactions are graphically represented as a network of genes that cluster into sub 

networks of different colors corresponding to specific patterns of lipid changes. Individual 

examination of lipid profiles from selected hits expressed as heat maps of z-score per lipid class 

confirmed that the genes induce specific patterns of lipid changes. Moreover, most of genes 

retrieved from the HIS analysis correspond to hit genes identified after threshold determination in 

individual lipid classes (Table 3) meaning that HIS analysis is able to select the strongest 

phenotypes and to sort them hierarchically.  Now, their phenotype is more readable. Moreover, 

the HIS is also able to find less strong phenotypes and associate them to the analysis since as 

indicated with red arrows on Figure 37, the network also comprise additional hits that were not 

identified with the threshold method since their z-score was below the cutoff value.  The letters 

(A-G) associated with individual heat maps correspond to the sub networks observed on the HIS 

http://www.his2graph.net/
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graphical representation (Fig. 36 and 37.). Thanks to normalization with total PLs, no gene with 

a significant decrease or increase in all lipids that could be due to a modification of the cell 

number was selected as hits.  Instead, some sub networks reveal clusters of genes showing similar 

patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Graph visualization of the resulting HIS network for the 1,000 strongest interactions as inferred on 

the kinome dataset. Visualization is as on http://www.his2graph.net/ . Edge colors represent specific patterns of 

lipid changes; edge thickness, the strength of the interaction and arrows, the directionality of the interaction. On 

following pages selected interacting gene networks (A-G) are represented with their corresponding phenotypes 

displayed as heat maps representing the z-score of each gene for each lipid class. 
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Out of the 368 input genes, the HIS retrieved 150 candidate genes with significant phenotype 

in one or several classes of lipids. The subnetworks of genes were selected by eye according to 

the colors of the HIS network. Some genes found in one subnetwork could be part of another one, 

actually. Overall, it is noteworthy that all genes cluster in subnetworks showing similar patterns 

of lipid changes with a dominant phenotype for some lipids. The subnetworks A and G, for 

instance present opposite phenotypes with opposite changes for PC and PE. Subnetwork B rather 

shows specific changes in anionic phospholipids. C is specific of changes in CL level; D presents 

a decrease in sphingolipids. Finally, subnetworks E and F show more specific changes in sterols.   

If we look closer at the phenotype of each subnetwork, we can see that it can even be more 

subtle. Indeed, changes in the level of major lipid class can be associated with different changes 

in their composition in fatty acyl chains.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Details of phospholipid changes from the HIS interacting gene subnetworks A Changes in the level of lipid 

classes are displayed as a heat map of the z-score log2-transformed lipid quantities. Human kinases and their yeast 

homolog are indicated. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes 

represent no change and white boxes indicate missing values. Data represent the mean of two independent 

experiments. Colored boxes between the dendrogram and the heat maps represent the experimental series 
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For instance, we can see that in the subnetwork A (Fig. 38), where PC are increased and PE 

decreased, these changes are chain length specific. ULK1, GRK6, PDK3, ALDH18A1, SRC, 

DGKI, KALRN and DCAMKL rather increase in short chain PC whereas the other hits increase 

PC with long chain FA. Moreover, the heatmap also shows that for YES1, PXK, ACVR2B, TJP1 

and TNK1, the decrease in PE doesn’t concern PE with long chain FA (PE>40) that increase as 

long chain PC. Finally, it is noteworthy that LysoPC don’t necessarily follow the modifications in 

PC contrary to most of genes showing a decrease in PE, except TJP1, TNK1 and KALRN. 

Details of subnetworks B, C, E and F are even more complex and show several sub clusters 

with specific combinations of FA changes in PLs (data not shown). In subnetwork D that present 

a decrease in sphingolipids, we can see that some changes are FA specific such as for GlcCer 

with genes STK17B, PIK3CG and PKM2 and we can distinguish three subclusters in Figure 39: 

the upper one that decreases Cer and GlcCer with a FA chain specific decrease of SM; a second 

subcluster in the middle where complex SLs are particularly decreased and a last group of genes 

below with the opposite phenotype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Details of sphingolipid changes from the HIS interacting gene subnetworks D. Changes in the level of lipid 

classes are displayed as a heat map of the z-score log2-transformed lipid quantities. Human kinases and their yeast 

homolog are indicated. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes 

represent no change and white boxes indicate missing values. Data represent the mean of two independent 

experiments. Colored boxes between the dendrogram and the heat maps represent the experimental series 
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Finally, in the subnetwork G where everything seems to increase except PC that decreases, the 

phenotypes are also more subtle (Fig. 40A). PC decrease is mostly coupled to an increase of 

LysoPC, certainly resulting from the action of phospholipase A1 and phospholipids (Fig. 40B) as 

well as ceramide changes are often FA chain length-specific for SRPK1, PFKFB3, PRKAG1 and 

NTRK1 (Fig. 40C). 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Details of lipid changes from the HIS interacting gene subnetworks G (both pages). A. lipid classes, B. 

phospholipids, C. sphingolipids. Lipid class level changes are displayed as a heat map of the z-score log2-

transformed lipid quantities. Human kinases and their yeast homolog are indicated. Yellow boxes indicate an 

increase and blue boxes a decrease of lipid levels. Black boxes represent no change and white boxes indicate missing 

values. Data represent the mean of two independent experiments. Colored boxes between the dendrogram and the 

heat maps represent the experimental series. The arrows indicate increasing FA chain length and unsaturation degree. 
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2.2.6 Validation of candidate genes based on literature 

 

  In order to assess if the candidate genes with top-ranking interactions from the HIS analysis 

were directly linked to the regulation of lipid metabolism and validate some of the hits according 

to literature, I looked at their function, both individually, based on literature and through a gene 

annotation enrichment analysis for each subnetwork of genes with similar lipid profile changes 

using internet databases. The automatic annotation of the genes was performed using the internet 

software GeneALaCart (http://www.genecards.org/ ) and a gene annotation enrichment analysis 

was performed using the WebGestalt, standing for “WEB-based GEne SeT AnaLysis Toolkit" 

(Wang et al, 2013). Both GeneALaCart and WebGestalt integrate information from different 

public resources. Selected kinases were tested for their enrichment in pathways using KEGG and 

Pathway Commons and diseases. The enrichment analysis of genes in GO terms was not 

pertinent for further analysis and data are not shown. An analysis of gene interactions for each 

subnetwork was also performed using the STRING database and interesting interactions could be 

found but the lists of interacting genes were similar to those of pathway enrichment. Therefore, 

STRING data are not shown. The gene annotation enrichment was performed for each individual 

sub network of genes with different patterns of lipid changes using the Human genome as 

reference set and can be found in appendix (p127). Finally, in order to know if candidate genes 

were already candidate genes in the regulation of lipid metabolism, they were compared to hits 

from other siRNA screens through the website Genome RNAi (Schmidt et al, 2013). All 

annotations of the hits are listed in appendix (p127). 

The results from the gene annotation enrichment analysis show that several genes strongly 

disturbing the lipidome are already known as component of growth factors signaling pathways 

and regulators of energy metabolism. For instance, subnetworks A, C and D are particularly 

enriched in genes from signal transduction and metabolism pathways: LKB1 (18 genes), PI3K-

mTOR signaling pathways (8 genes), Ephrin A and B pathway (3 genes), ErbB receptor signaling 

(21 genes), etc. Furthermore, subnetwork G, which presents the strongest phenotype for steryl 

esters is particularly enriched in mitogen-activated protein kinases (MAPKs). However, this 

analysis did not make appear all the genes acting in the same biological processes. This link was 

possible only through the manual analysis of gene annotations performed automatically using 

GeneALaCart and through the complement of literature.  Finally, out of 151 genes, one third (50 
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genes) is directly linked to the regulation of energy metabolism, and more particularly to the 

regulation of growth factor receptors, mTOR complexes, AMPK and glycolysis (Fig. 41). Among 

them, some are also known to directly regulate lipid metabolism and lipogenesis. The lipid 

profiles resulting from their silencing contribute to the validation of the screen. Out of the 151 

candidate kinases, 52 were also previously described as important regulators of endocytosis 

(Liberali et al, 2008; Pelkmans et al, 2005) and Golgi integrity (Chia et al, 2012) in siRNA 

screens performed in HeLa cells. The list of all hits, their annotation and their comparison with 

other screens is available in appendixthe appendix (p127). 

  



Results 

 

 

111 

 

 

  

F
ig

u
re

 4
1

. 
N

o
n

-e
x

h
a

u
st

iv
e 

fu
n

ct
io

n
a
l 

m
a

p
 o

f 
ca

n
d

id
a

te
 k

in
a

se
 i

n
v

o
lv

ed
 i

n
 t

h
e 

re
g

u
la

ti
o

n
 o

f 
en

er
g

y
 m

et
a

b
o
li

sm
. 

A
ll

 s
o

u
rc

es
 c

an
 b

e 
fo

u
n
d

 i
n

 t
h

e 
ap

p
en

d
ix

. 

 

C
R

E-
de

pe
nd

en
tg

en
es

PG
K1

PP
A

R
γ

H
IF

1α
S6

K1

m
TO

R
C

1

m
TO

R

ra
p

to
r

m
LS

T8TS
C

1-
TS

C
2

R
he

b-
G

TP

PI
(3

,4
,5

)P

G
ro

w
th

 f
ac

to
rs

P
I3

K

PI
M

-1

PD
K3

PD
H

A
1

A
U

TO
P

H
A

G
Y

AT
G

13
FI

P2
00

U
LK

1
V

PS
34

PI
(4

,5
)P

PT
EN

PI
(4

,5
)P

M
A

G
I2

A
kt

 (2
)

G
LU

C
O

SE
  T

R
A

N
SP

O
R

T

m
TO

R
C

2 Si
n

1

ri
ct

o
r

m
LS

T8

m
TO

R
P

A

PI
(4

)P
PI

PI
4K

A

FL
T3 ER

K
M

EK
R

af
R

as

PD
K1

PK
C
α

SG
K1

M
EK

1

PP
A

R
γ

SP
H

K
2

R
P

S6
K

A
4

C
R

EB
1

ER
B

B
3

LK
B

1

ST
R

A
D

B

ST
R

A
D

A

M
O

25

PI
P5

K3
EA

AT
2/

3/
4

TR
IM

24
TR

IM
33

PF
KF

B
1

ER
 S

TR
ES

S

PK
C
θ

PI
K3

C
2G

G
C

K

PK
M

2

B
R

SK
2

B
R

SK
2

ap
o

p
to

si
s

K
H

K

FG
FR

1

SI
K2

C
la

ss
 II

 H
D

A
C

IR
S1

Tr
an

sc
ri

pt
io

n 
of

 li
pi

n
-1

W
N

K PK
LR

PI
P4

K2
B

PI
(5

)P

PF
KF

B
3

B
R

A
F

IN
SR

PR
KA

A
1

P
R

K
A

G
1

PI
P5

K1
C

ER
B

B
4

A
M

P
K

C
A

M
K2

B

+ 
  C

R
EB

D
C

A
M

KL
2

C
R

TC
2

C
A

M
K1

D

LR
R

K2

C
al

ci
um

 r
el

ea
se

 f
ro

m
en

do
so

m
es

 v
ia

 T
PC

PL
C

m
TO

R
C

2

PK
C
α

C
yt

os
ke

le
ta

l d
yn

am
ic

s

PI
(4

,5
)P

D
A

G

PA
PC

PL
D

PK
C
α

A
R

F
R

ho R
ac

PI
(4

,5
)P

PI
P5

K3

PI
(4

)P

+IP
3

IP
3

 se
n

si
ti

ve
 C

a2
+ 

ch
an

ne
l

C
a2

+

PA
P-

1
Li

pi
n

-1
D

G
K

PP
2A

4E
-B

P1

Sy
nd

ec
an

-4

PR
KA

A
1

PR
KA

G
1

A
M

P
K

sp
h

in
go

si
n

e

Sp
hi

ng
os

in
e

-1
-P

S1
P1

c

PE +

he
xa

de
ca

na
l

G
PL

s
H

D
A

C

PA

C
A

M
KI

/I
V

G
LY

C
O

LY
SI

S

Sr
c

V
EG

FR

Li
p

o
ge

n
e

si
s,

 li
p

id
 s

yn
th

e
si

s,
 l

ip
id

 u
p

ta
ke

C
h

o
le

st
e

ro
l, 

TA
G

, 
FA

 s
yn

th
e

si
s

FA
 o

xi
d

at
io

n

SR
EB

Ps

C
R

TC
2

PR
KA

PP
A

R
γ



Results 

 

 

112 

 

2.2.7 Hypothesis-driven analysis of lipid profiles 

 

The analysis of the screen can be either completely exploratory, based on statistical methods to 

select candidate genes with potentially interesting phenotypes, or hypothesis-driven. Among the 

large number of hypotheses to test, one can already look at kinase families to see if their 

knockdown leads to similar lipid profiles. In this way, I compared the lipid profiles of homolog 

kinases from the final dataset (368 genes) by hierarchical clustering. As an example, I chose the 

large family of mitogen-activated protein kinases (MAPKs), the phosphoinositide kinases and the 

members of the tripartite motif (TRIM) family because some of them appear in the list of 

candidate genes retrieved from the HIS analysis.  

MAPKs represent a large class of signaling molecules involved in several biological processes 

but they often interact in the same pathways (Fig. 42) and some of them such as the four p38-

MAPKs comprising MAPK11-14, can be particularly implicated in specific cell responses like 

apoptosis, cell proliferation and autophagy. When analyzing the dataset, it appears that the 

silencing of the different MAPKs leads to different profiles (Fig. 42) but also that some MAPKs 

cluster together and lead to similar phenotypes like the two p38-MAPKs: MAPK11 and 

MAPK12 that induce a decrease of ceramide levels in concomitance with the increase of PI, PS 

and GlcCer. 

 

 

 

 

 

 

 

Figure 42. Lipid changes in MAPK. A. Lipid class level changes are displayed as a heat map of the z-score log2-

transformed lipid quantities. Human kinases and their yeast homolog are indicated. Yellow boxes indicate an 

increase and blue boxes a decrease of lipid levels. Black boxes represent no change and white boxes indicate missing 

values. Data represent the mean of two independent experiments. Colored boxes between the dendrogram and the 

A B
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FA chain length FA unsaturation degree
B

A C

heat maps represent the experimental series. B. Map of predicted interactions between MAP kinases identified from a 

STRING analysis. Connecting lines are color coded by the type of evidence used to build the cluster. 

Phosphoinositide kinases are a family of lipid kinases able to phosphorylate the inositol ring of 

PI (PIK) and phosphoinositides (PIPK). They play a role in signal transduction, lipid metabolism, 

energy homeostasis as well as in the integrity of organelles and some can physically interact (Fig. 

43)(Balla, 2013). Several kinases can phosphorylate the same phosphoinositide and their 

silencing could induce similar lipid profiles but not necessarily because they can be organelle-

specific and not necessarily regulate the same pool of lipids and. The hierarchical clustering of 

their lipid profile shows that certain share the same lipid profiles (Fig. 43). However, these 

clusters can differ between sphingolipids (Fig. 43A) and phospholipids (Fig. 43B). 

 

 

 

 

 

 

 

Figure 43. Lipid changes in 

phosphoinositide kinases. A. Changes in 

the level of lipid class are displayed as a 

heat map of the z-score log2-transformed 

lipid quantities. Yellow boxes indicate an 

increase and blue boxes a decrease of 

lipid levels. Black boxes represent no 

change and white boxes indicate missing 

values. Data represent the mean of two 

independent experiments. Colored boxes 

between the dendrogram and the heat 

maps represent the experimental series. 

The arrows indicate increasing FA chain 

length and unsaturation degree B. Map 

of predicted interactions between 

phosphoinositides kinases. 
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Finally, concerning genes from the TRIM family, the HIS analysis had already highlighted the 

similarity of TRIM24 and TRIM33 lipid profiles. TRIM kinases are transcriptional cofactors that 

interact with distinct transcription factors but that associate in complexes: TRIM24-TRIM33 in 

majority or TRIM24-TRIM28-TRIM33, in interaction with chromatin (Herquel et al, 2011b).  

When comparing the lipid profiles of HeLa MZ silenced for these three cofactors, it appears that 

they all lead to similar lipid profiles but that the phenotype of TRIM28 is weaker and induces 

opposite changes in PE (Fig.43). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Lipid changes in different families of kinases. A. MAPK and B. TRIM family. Lipid class level changes are 

displayed as a heat map of the z-score log2-transformed lipid quantities. Human kinases and their yeast homolog are 

indicated. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes represent no 

change and white boxes indicate missing values. Data represent the mean of two independent experiments. Colored 

boxes between the dendrogram and the heat maps represent the experimental series. The arrows indicate increasing 

FA chain length and unsaturation degree 
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2.2.8 Ongoing research 

 

The analysis of the kinome-wide siRNA screen dataset is still ongoing. If the primary screen is 

done and candidate genes are identified in different lipid classes, the confirmation of potentially 

interesting hits by control of gene silencing and repetition with individual siRNAs is ongoing and 

their role remains to be defined through a validation process. The comparison of lipidomic results 

between the kinome-wide siRNA screen in Human cells and data obtained from a library of 

mutant yeast for kinases and phosphatases performed in parallel in our lab by Dr. Aline Xavier 

Da Silveira Dos Santos makes already appear some common candidate genes whose function in 

lipid homeostasis could be conserved in eukaryotes. Moreover, lipidomic data are currently 

analyzed in comparison with endocytosis results obtained from a kinome-wide siRNA screen 

performed in similar conditions (same siRNA library, same cell line) by D. Prisca Liberali (ETH, 

Zurich) in order to determine which genes affecting cell trafficking affect lipid homeostasis. 

Finally, some parts of the dataset are currently part of ongoing collaboration projects with other 

research groups. 

In parallel to this explorative siRNA screen, two hypothesis-driven projects in lipidomics were 

performed in collaboration with Dr. Mathieu Frechin and Dr. Prisca Liberali from the group of 

Lucas Pelkmans (ETH, Zurich) but data cannot be described here since they are not published, 

yet. 
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3. Screening of Dynamic Amphiphiles as siRNA Delivery System in Mammalian Cells 

In 2010, in parallel of the project of kinome-wide RNAi screen, I tested a potential 

transfection reagent synthesized in the group of Pr. Stefan Matile (University of Geneva) that 

could be an alternative to the expensive Lipofectamine™ RNAiMax. From a simple test, this 

small project that underlined new concepts about the cell entry of lipoplexes became a real 

screen. 

 

3.1. Summary of the research 

While targeted knockdown of gene-causing disease in Humans by RNA interference is 

promising, delivery of small RNAs in vivo is still difficult. Most transfection reagents are 

liposome-based and cross plasma membrane through active mechanisms such as endocytosis. 

Because of problems in uptake and toxicity, efficient delivery by such nanocarriers often depends 

on the cell type and most molecules working in vitro, fail in vivo (Davis et al, 2010; Lv et al, 

2006; Peer & Lieberman, 2011). Solutions to this limitation could come from a novel class of 

dynamic amphiphiles developed in the team of Stefan Matile at the University of Geneva (NCCR 

Chemical Biology). Easy to prepare, these molecules can carry nucleic acids inside artificial 

vesicles, suggesting an ability to passively diffuse across phospholipid bilayers in conjugation 

with DNA (Montenegro et al, 2011). In order to test if they can also carry nucleic acids in living 

cells, I performed  a robotically assisted siRNA transfection assay in HeLa cells stably expressing 

GPI-eGFP (Biomolecular Screening Facility, EPFL). This assay was comparable to the one 

described in (Akinc et al, 2008). Instead of luciferase, the siRNA target was eGFP. The 

knockdown efficacy was monitored with a plate reader. Manual experiments had already 

demonstrated that siRNA transfected with some of these dynamic amphiphiles show an eGFP 

knockdown at least equivalent to transfection with commercial transfection reagent, which is 

based on the liposome technology (Lipofectamine™ RNAiMax from Life Technology).  

 Assistance of the robot allowed screening six different concentrations of siRNA/amphiphiles 

complexes from a chemical library comprising more than 200 compounds. These amphiphiles, 

synthesized in Matile lab, resulted from the dynamic and covalent assembly of hydrophobic tails 
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(aldehyde/ketones, thiols) with positively charged heads (hydrazones, oximes or disulfides 

bridges) (Montenegro et al, 2012). The screen revealed a dozen of active compounds able to carry 

siRNA into HeLa cells with a knockdown efficiency greater than 50% and few or no toxicity.  

After confirmation, siRNA transfection with active amphiphiles was optimized in HeLa cells 

expressing GPI-eGFP in order to reach a knockdown efficiency as good as Lipofectamine™ 

RNAiMax. A time-course assay revealed that GFP knockdown was faster with dynamic 

amphiphiles than Lipofectamine™, suggesting a different manner of crossing cell membranes for 

siRNA/amphiphiles complexes. siRNA Transfection capacity of active amphiphiles was also 

performed in challenging cell types, such as Human Primary Skin Fibroblasts (courtesy from Dr 

Charna Dibner, HUG), with siRNA targeting GAPDH mRNA. The transfection was more 

efficient with the most active dynamic amphiphiles than with Lipofectamine RNAiMax. Then, 

the characterization of siRNA/amphiphiles particles was monitored using Density Light 

Scattering (DLS). The last step, in collaboration with Pr. Shiroh Futaki (Japan) consisted in 

determining which cellular mechanisms, such as endocytosis, were involved in the delivery of 

siRNA by the best amphiphile candidate into HeLa cells.  

 

3.2. Articles 

These two articles summarize the project. The first paper is an introduction to the concepts and 

chemical studies that led to the screen. The second article is the publication that resulted from the 

screen of the library of dynamic amphiphiles used as siRNA transfection reagents in mammalian 

cells.   

 Montenegro J, Gehin C, Bang EK, Fin A, Doval DA, Riezman H, Sakai N, Matile S. 

(2012) Conceptually new entries into cells. Chimia (Aarau). 65(11):853-8. doi: 

10.2533/chimia.2011.853. 

 Gehin C, Montenegro J, Bang EK, Cajaraville A, Takayama S, Hirose H, Futaki S, Matile 

S, Riezman H. (2013) Dynamic amphiphile libraries to screen for the "fragrant" delivery 

of siRNA into HeLa cells and human primary fibroblasts. J Am Chem Soc. 135(25):9295-

8. doi: 10.1021/ja404153m   

 

http://www.ncbi.nlm.nih.gov/pubmed/23767803
http://www.ncbi.nlm.nih.gov/pubmed/23767803
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DISCUSSION 

 

1. Analysis of candidate genes from the siRNA kinome-wide screen 

 

During this thesis, I developed a genetic perturbation screen in Human cells in combination 

with techniques of targeted lipidomics using MS in order to find candidate genes that control 

membrane lipid homeostasis. For the first time, it was possible to observe simultaneously and 

precisely the function of many genes on a large range of membrane lipid species. Most of 

research projects focus only on the lipid classes that could be potentially affected by specific 

signaling pathways/genes. This is particularly true for research in Cancer or in metabolic 

syndromes that focus on markers of tumorigenesis such as sphingolipids or on lipogenesis, 

respectively, without taking in account the rest of the lipidome whereas it could help to 

understand the whole phenomena. However, recent studies showed that metabolic and signaling 

pathways involved in the regulation of lipid metabolism are relatively coordinated. For instance 

in 2013, Chen P.W. and colleagues described the dynamics and coordination of metabolic 

pathways during heat stress response in yeast by measuring gene expression, enzyme activity and 

the amount of metabolites involved in the regulation of sphingolipid synthesis  (Chen et al, 2013).  

In the field of Parasitology, the team of Michael Barrett in Glasgow demonstrated the importance 

of metabolomics (the large-scale study of metabolites, including lipids from an organism) to 

understand the dynamics of metabolic pathways implicated during the infection of human by 

parasites and how this allows optimizing the drug treatment depending on the phase of infection 

(Creek et al, 2012). Finally in 2014, Yu Y and colleagues observed for the first time how hypoxia 

modifies the lipidome of HeLa cells using MS and showed that in their conditions, hypoxia 

induces a decrease of PI coupled to rise of LysoPC and LysoPE (Yu et al, 2014) but they didn’t 

analyzed changes in sphingolipids. 

After validation of the experimental method through a pilot screen and quality controls, 

filtering of samples with non-analyzable lipid profiles or non-correlated duplicates, the lipid 

profiles of 368 genes were statistically analyzed according to different methods. Out of the 368 

kinases, my results show that 151 candidate genes can induce significant changes in the level of 

one or several lipid classes. Candidate genes from the primary screen could be clustered into 

seven groups sharing similar patterns of lipid changes. Among them, some candidates are 
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certainly false-positive hits resulting from the sum of factors accumulated during the experiment, 

such as: off-target effects (Jackson & Linsley, 2010), cellular stress, risks of lipid hydrolysis by 

lipase when harvesting cells or fatty acid oxidation during the extraction, extraction efficiency, 

mass spectrometer accuracy, normalization, etc. However, the analysis of quality controls 

dispersed all along the screening experiment suggests that these are specific lipid changes. 

Moreover, no series/plate effect was observed after normalization. Indeed, as indicated by the 

color code on Figure 32, genes clustering together are not particularly enriched in specific series 

of experiments. Finally, the large number of putative candidates is not really surprising. First, 

because the number of phenotypic readouts is quite important (10 when analyzing changes per 

lipid class, more than 700 when analyzing changes in individual lipid species). Therefore, several 

combinations of phenotypes are possible. Second, as reported in previous publications, results 

from siRNA screens in HeLa cell lines showed that many kinases are necessary to ensure 

clathrin- and caveolae-dependent  endocytosis (208 out of 590 kinases) (Pelkmans et al, 2005) or 

the integrity of the Golgi (around 20% of 948 kinases and phosphatases) (Chia et al, 2012). 

Knowing that endocytosis is essential to nutrient intake and signaling and that the integrity of the 

Golgi is required for the synthesis and trafficking of many membrane lipids, it is not surprising 

that many genes influence lipid homeostasis, too.     

In my results, I rarely observe significant modifications in only one lipid class. Yet, metabolic 

pathways are highly connected together and many compensation pathways exist. This certainly 

explains why most of lipid changes are not significant. For instance, ceramides can be either de 

novo synthesized or result from the salvage pathway though sphingomyelin hydrolysis (ref 

salvage pathway), de novo PC or ceramide synthesis involves different isoforms per enzyme such 

as choline kinase or ceramide synthases, respectively (Gibellini & Smith, 2010), PI results either 

from de novo pathway or from the dephosphorylation of phosphoinositides (Balla, 2013), fatty 

acid can come from diet or being de novo synthesized (Cook, 2008), sterols can be provided by 

lipoproteins contained in the serum-containing medium, etc. Moreover, as observed in the pilot 

screen, silencing genes directly involved in lipid synthesis, such as choline kinase, ethanolamine 

kinases or HMGCR, doesn’t necessarily induce specific changes in PC, PE or sterols. Instead, 

many candidate genes from the kinome-wide screen play important role in the regulation of 

metabolism and in the proper functioning of organelles. Indeed, as indicated in figure 41, out of 

151 candidate kinases, around one third is involved in glycolysis, PI3K/Akt/mTOR signaling 
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pathway and in the regulation of AMPK. Interestingly, it was recently shown that the 

transcriptome of an adherent HeLa cell line (Kyoto) is reduced compared to the Illumina Human 

Bodymap 2.0,  particularly  in genes coding for proteins involved in lipid catabolic processes and 

its transcriptome is also enriched in transcripts preferentially linked to cell proliferation, 

transcription and DNA repair (Landry et al, 2013).  Therefore, it is not surprising that the 

silencing of genes linked to these processes leads to strong disturbances in cells, including in lipid 

metabolism. Moreover, cancer cells are known to present a specific lipid metabolism: they 

increase nutrient uptake, channeling of the glycolytic product pyruvate into Acetyl CoA, increase 

biosynthetic genes for fatty acids, cholesterol and other phospholipids, including 

phosphatidylcholine (Arsenault et al, 2013), through the control PI3K/Akt/mTOR signaling 

(Santos & Schulze, 2012; Ward & Thompson, 2012). They also express PKM2, a specific 

isoform of pyruvate kinase with lower activity that induces the accumulation of glycolytic 

products that can be transformed into glycerol and serine and provide building blocks for lipid de 

novo synthesis. Several kinases involved in the control of these metabolic alterations, including 

PKM2 were represented among genes that disturbed the most the lipidome (Fig. 41), showing 

that the screen identified the expected genes. Moreover, out of the 151 candidate kinases, 52 were 

also previously described as regulators of different steps of endocytosis (Liberali et al, 2008; 

Pelkmans et al, 2005) and of Golgi integrity (Chia et al, 2012) (cf appendix). The proper 

functioning of endocytosis is necessary for the activation of mTORC1 (Flinn et al, 2010). 

Endocytosis is also required to regulate cholesterol homeostasis (Goldstein & Brown, 2009). On 

the other hand the integrity of the Golgi is indispensable to the synthesis of complex 

sphingolipids as well as several signaling pathways involved in the regulation of lipid 

homeostasis (Lev, 2006). Therefore, finding several kinases involved both in lipid homeostasis, 

in membrane compartmentalization and/or in PI3K/Akt/mTOR signaling pathway seems logical, 

too. 

If the representation of many kinases in the control of lipid homeostasis can be explained by 

their function in the regulation of energy metabolism or of membrane compartments, the function 

of several candidate genes in lipid homeostasis is still unknown. Among them, kinases from the 

tripartite motif (TRIM) family, namely TRIM24 and TRIM33, for instance, present a particularly 

strong phenotype with a decrease in the ceramides and GlcCer, coupled to an increase of etherPC 

and LysoPE (Fig.44). TRIM24 (TIF1α) and TRIM33 (TIF1γ) are cofactors of transcription. They 
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are part of a subgroup of the TRIM family that also comprises TRIM28 (TIFβ).   TRIM24, 

TRIM33 and TRIM28 interact with different transcription factors but interact also together and 

form multiprotein complexes together (TRIM24-TRIM33 and TRIM24-28-33) with other 

chromatin components that modulate signaling pathways and tumor progression (Herquel et al, 

2011a; Herquel et al, 2011b).  However, their precise role in cancer is controversial, especially 

for TRIM24 that can be tumor suppressor or enhancer depending on conditions (Herquel et al, 

2011a). TRIM24 can be activated through the PI3K/Akt/mTOR/S6K1 signaling pathway to 

activate the transcription of rRNA in response to nutrient availability (Mayer et al, 2004) and 

activate itself the PI3K/Akt/mTOR pathway by activating the transcription of PIK3CA (Zhang et 

al, 2014). On the other side, depletion of TRIM33 is lethal for mice suggesting that its role in 

development is not redundant (Kim & Kaartinen, 2008). It also regulates cell proliferation and 

TGF-beta signaling but the list of its partners is still unknown (Herquel et al, 2011a). Since the 

complex TRIM24-TRIM33 seems to have synergistic effects in the regulation of B-myc, for 

instance, (Herquel et al, 2011b) and since their individual knockdown in HeLa cells induces 

exactly the same lipid modifications, I think that this complex plays a role in the regulation of 

lipid homeostasis. 

Other potentially interesting candidate kinases could be associated with different functions that 

previously described in literature. For example, LYK5 (STRADA) and ALS2CR2 (STRADB), 

two genes that activate LKB1, an activator of AMPK, disturb the lipidome of HeLa cells (Hawley 

et al, 2003). Yet, in HeLa cells, the expression of LKB1 is extremely low and instead, AMPK is 

activated by CAMKKβ in a calcium-dependent manner (Fogarty et al, 2010). In my results, 

LKB1 doesn’t induce significant lipid changes, which is consistent with its absence of 

expression. Both LYK5 and ALS2CR2 induce a decrease of SLs coupled to the increase of PC, 

suggesting that, even dissociated from the regulation of LKB1, these kinases still function 

together in processes with an impact on lipid metabolism.  

Several genes seem to play interesting roles in lipid homeostasis and this screen clusters together 

genes that have not previously been associated with similar functions. In order to understand the 

pertinence of these associations, the validation and mechanism of changes they induce in lipid 

needs to be investigated.  
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2. How to interpret observed modifications of lipid profiles? 

 

The HIS analysis identified 7 major patterns of lipid changes. However, one can wonder what 

could induce such combinations of changes. Here, I draw some hypotheses about the major ones.   

 

 Simultaneous changes in the blocks PC-PE, PI-PS-CL or SM-Cer-GlcCer 

During the screen, I analyzed the quantity of lipids using different methods of mass 

spectrometry. For instance, PC and PE were quantified together in positive mode, SM-Cer-

GlcCer in positive mode too but with another method adapted to SL and PI-PS were analyzed in 

negative mode. Despite tight controls, a frequent update and high maintenance of the machines as 

well as discarding of bad MS cycles after the run, it is not impossible that similar changes in all 

lipids from one of these three blocks come from machine vagaries. One way to discriminate 

technical problems from biological observations is to analyze in details the lipid profile and not 

only the total amount of lipid class. If observed lipid changes vary with fatty acyl composition 

(monoacylated, hydroxylation, chain length, unsaturation), it is reasonable to think that it doesn’t 

come from the machine.  

 

 Ratio PC/PE 

One of the strongest observed phenotypes is the increase of PC/PE ratio in subnetwork A. PC 

and PE are the major phospholipids in mammalian cells and they mostly result from de novo 

synthesis via the Kennedy pathway in the ER. However, these pathways are connected and PC 

can also result from the sequential methylation of PE by phosphatidylethanolamine N-

methyltransferase (PEMT) in the MAM (Gibellini & Smith, 2010). The ratio between PC and PE 

levels is tightly regulated in cells because the quantity of conic-shaped PE tends to deform 

membrane structures (Dowhan, 2008).  Increased PC/PE ratio can be associated with an 

upregulation of PEMT in the liver of obese mice and leads to ER stress (Watanabe et al, 2014). In 

HeLa cells, an increase of PC/PE ratio could be linked to the deficiency of the PC synthesis via 

the Kennedy pathway, which is compensated by PEMT in order to prevent a raise of PE leading 
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to membrane deformation as well as to supply ceramides with phosphocholine to make SM. The 

transcription of PEMT is negatively regulated by the transcription factor Sp1, which is at the 

same time a positive regulator of the cytidylyltransferase, the rate limiting enzyme of de novo PC 

synthesis by the Kennedy pathway (Vance, 2013). Moreover, Sp1 transcriptional activity is 

modulated by phosphorylation through many kinases whose some are directly linked to the 

regulation of glucose and insulin via PI3K signaling (Chu, 2012). One of them, PRKCA enhances 

Sp1 DNA binding and is also a candidate gene from subnetwork A (Fig. 37). Silencing PRKCA 

induces an increase of both PC and etherPC, more particularly PC32-36 with 0 or one 

unsaturation. This increase is coupled to the decrease of PE and etherPE with rather short FAs, 

too (Fig. 38). This observation suggests that PRKCA could be a positive regulator of the 

Kennedy pathway through the control of CCT and PEMT transcription by Sp1. In order to 

validate this hypothesis, it would be interesting to know if the PRKCA-dependent DNA binding 

of Sp1 is directly linked to the transcription of CCT and PEMT, through a chromatin 

immunoprecipitation (CHIP) experiment, for instance.  

As suggested by analyzing the phenotype of PRKCA silencing, the simultaneous observation 

of LysoPL, etherPL and their FA composition can give precious indications about the precise 

pathways involved in the observed lipid changes. In the case of PC, for instance, its regulation 

can also come from its hydrolysis by different phospholipase that induce different signaling 

pathways. For instance, a decrease of PC coupled to the increase of LysoPC is certainly linked to 

the action of phospholipase A1 (PLA1) that plays important roles in many signaling pathways by 

releasing LysoPC and FA, as in subnetwork G. On the other side, PC hydrolysis by 

phospholipase D (PLD) will produce PA and choline (Hermansson et al, 2011). PLD1 is also 

activated by phosphorylation via PRKCA (Kim et al, 1999). Therefore, the silencing of PRKCA 

should also prevent the hydrolysis of PC in this manner and block the consecutive regulation of 

cytoskeleton resulting from the activation of PIKVE by PA. 

 

 Anionic phospholipids  

In subnetwork B and C, we observe specific changes in phospholipids PI, PS and CL, 

sometimes coupled to the increase of PC. As described in the chapter Introduction (p11), the 

synthesis pathway of PS differs completely from PI and CL. Moreover, in order to maintain a 
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negative charge of membrane constant, mammalian cells seem to adapt the quantity of 

negatively-charged phospholipids according to still unknown mechanisms (Hermansson et al, 

2011). This is apparently what happens for ULK1 in subnetwork A, SRPK2, EPHA3, MATK, 

FLT3, ADRBK1 and MAP2K1 in subnetwork B (Fig. 37), for which the strongest phenotypes 

include opposite regulations of PI and PS, suggesting a defect in the regulation of one of these 

lipids resulting in the automatic compensation by the unknown homeostatic mechanism. 

However, several other candidate genes present the same phenotype for both anionic lipids and 

might be involved in the regulation of negatively-charged phospholipid homeostasis. 

 

 Sphingolipids 

The regulation of sphingolipid homeostasis and its crosstalk with other metabolic pathways 

has been reviewed in the paper “sphingolipids homeostasis in the web of metabolic routes” that 

we published in 2013 together with Dr. Maria-Auxiliadora Aguilera Romero. With the kinome-

wide siRNA screen in mammalian cells, it is now possible to confront theory to reality by 

analyzing how changes in the amount of sphingolipids can be coupled to other lipids.  Except for 

subnetwork D and F that group candidate genes presenting a specific decrease or increase of SLs, 

respectively (Fig. 37, 39), changes in SLs are often coupled to other lipid changes and 

phenotypes are still under analysis. On the other hand, subnetwork D present candidate genes that 

seem specifically involved in the regulation of SL homeostasis. Three phenotypes can be 

highlighted: 1) decrease of Cer and GlcCer, 2) decrease of SM and GlcCer coupled to the 

increase of Cer and 3) the increase of complex SLs coupled to the decrease of Cer. Opposite 

phenotypes between Cer and complex SLs can result from defects in the transport of ceramides to 

the Golgi for phenotype 2 or from the accumulation of complex SLs as described for the third 

phenotype. The specific accumulation of complex SLs could be due to lysosomal/endosomal 

accumulation as in Niemann-Pick type C disease. However, this accumulation was not coupled to 

an increase of cholesterol.  

Among candidate genes, TRIM24 and TRIM33 associate with the first phenotype, a strong 

decrease of Cer and GlcCer coupled to the increase of PC. Knowing that all target genes of this 

complex are not known, it could be involved in the regulation of sphingolipids. Among 
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candidates, there are also some genes involved in energy metabolism such as PKM2 and PFKFB1 

that present an opposite phenotype. I still don’t have any good hypothesis to explain these results.   

 

 Modulation of sterol quantities 

The subnetworks E and F presented both strong phenotypes in sterols. In subnetwork E, both 

cholesterol and cholesteryl esters present the same phenotype indicating that de novo cholesterol 

synthesis was affected whereas in subnetwork F, only the amount of cholesterol esters is 

deregulated. The regulation of intracellular levels of cholesterol esters is very important for the 

comprehension of atherosclerosis. Indeed, during this disease, cholesterol esters accumulate in 

macrophages and induce their transformation in foam cells.  This accumulation is due to the 

inhibition of autophagy by p38-MAPK in macrophages (Mei et al, 2012). Indeed, inhibition of 

autophagy regulates intracellular lipid stores (Singh et al, 2009). Therefore, it is possible that 

modulation of cholesterol esters in the screen results from the modulation of autophagy and 

lysosomal fusion.  However, results from the screen are contrasted. Some candidates such as 

PIK3CG or the p38 MAPK12, which are involved in the inhibition of autophagy, show a 

decrease of sterols when silenced. On the contrary, the knockdown of PRKAA1 induces the 

accumulation steryl esters. On the other hand, incoherently, the silencing of FRAP1 (MTOR) that 

inhibits autophagy induces a specific accumulation of steryl esters whereas its downregulation 

should induce autophagy. However, this screen was not performed in starvation conditions and 

maybe MTOR deficiency has other effects when cells have enough nutrients. In this sense, an 

siRNA screen for kinases that suppress macroautophagy in optimal growth conditions showed 

that some kinases regulate the formation of autophagosomes in MTOR-independent way. Finally, 

sterol regulation can also result from the modulation of cholesterol efflux by ATP-binding 

cassette transporters (Li et al, 2013).  
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3. Lessons from the screening “experience” and perspectives 

 

Primary results from the kinome-wide siRNA screen in HeLa cells could be discussed for 

hours. In this thesis manuscript, I presented the main results per lipid classes but a more detailed 

analysis of fatty acyl composition of lipids represents an even richer dataset with the possibility to 

elaborate more precise hypotheses about the interconnection between the different lipid classes 

and better establish the biological processes involved. However, the exploratory analysis of such 

a dataset is an ant’s work because, if statistical methods allow selecting hits for some phenotypic 

readout, correlating similar phenotypes with specific FA distribution across several lipid classes 

is much more challenging. Thus, it is easier to start with a precise question but to come back to 

the whole lipid profile in order to understand the answer.  

My screen results also show a predominant role of the control of central carbon metabolism in 

the regulation of membrane lipid homeostasis, more than other biological processes, linking 

directly nutrient sensing to energy storage and the plasticity of membrane structure. If this link 

seems logical, its coordination is still not understood. Lipidomics can help to understand this 

coordination through the explanation of combined lipid changes that can give an idea about 

pathways directly involved in these changes. However, given the difficulty I had to make the link 

between several genes from the screen that were involved in the regulation of common processes 

I think that one challenge in future is to improve protein interactions and pathway databases and 

to -omics data to these pathways in order to better visualize functional gene interactions and 

elaborate more precise hypothesis about the coordination of biological processes in response to 

genetic perturbations.   
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APPENDIX 

 

Content description of the excel file “Appendix” (please contact howard.riezman@unige.ch) 

 

1. siRNAs 

Sheet 1. List of siRNAs sequences used in the pilot screen (Qiagen) 

Sheet 2. MISSION siRNA Kinome library (Sigma-Aldrich)  

 

2. Oligonucleotide sequences of primers  

Sheet 3. List of DNA sequences used for confirmation of gene knockdown by qRT-PCR  

 

3. Discarded conditions 

Sheet 4. CellProfiler analysis 

Sheet 5. List of discarded conditions based on cytotoxicity, technical issues and pairwise correlation between 

biological replicates.   

 

4. Multiple reaction monitoring assay 

Sheet 6. List of  lipid ions masses and charges used for multiple reaction monitoring. 

 

5. Data 

Sheet 7. Pilot screen results: lipid quantities corrected to phosphate and z-scores 

Sheet 8. Primary screen results per lipid category. 

Sheet 9. Gene annotation enrichment of subnetworks from the HIS analysis 
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ABBREVIATIONS 

 

AMPK : AMP-activated protein kinase 

CE: cholesteryl esters 

Cer: ceramides 

Cho: choline 

CHO: Chinese hamster ovary 

CL: cardiolipin 

CV: coefficient of variation 

DAG: diacylglycerol 

DLS: density light scattering 

DsRNA: double-stranded RNA 

EE: early endosome 

ER: endoplasmic reticulum 

EthN: ethanolamine 

FA: fatty acid 

GC-MS: gas chromatography mass spectrometer 

GFP: green fluorescent protein 

GalCer: galactosylceramide 

GlcCer: glucosylceramide 

GPI: glycosylphosphatidylinositol 

GPL: glycerophospholipid 

GSL: glycosphingolipid 

HIS: hierarchical interaction score 

IMM: inner membrane of mitochondria 

LBPA: lysobisphosphatidic acid 

LCB : long chain base 

LE: late endosome 

LTP : lipid-transfer protein 

LysoPL : lysophospholipid 

KD: knockdown 

KO: knockout 

MAM: mitochondria-associated membrane 

MRM: multiple reaction monitoring 

MS: mass spectrometry 

MUFA: monounsaturated fatty acid 

MVBs: multivesicular bodies 

mTOR: mammalian target of rapamycin 

OMM: outer membrane of mitochondria 

PA: phosphatidic acid 

PC: phosphatidylcholine 

PC# : principal component 

PCA: Principal Component Analysis 

PCho: phosphocholine 

PCR: polymerase chain reaction 

PE: phosphatidylethanolamine 

PG: phosphatidylglycerol 

PI: phosphatidylinositol 

PIP: phosphoinositide 

PL: phospholipid 

PM: plasma membrane 

PS: phosphatidylserine 

PUFA: polyunsaturated fatty acid 

RNAi: RNA interference 

qRT-PCR: quantitative real time PCR 

S1P : sphingosine-1-phosphate 

SiRNA: small-interfering RNA 

SD: standard deviation 

SL: sphingolipid 

SM: sphingomyelin 

SiRNA: small interfering RNA 

SPT: serine palmitoyl transferase 

SREBP: Sterol regulatory element-binding protein 

SsRNA: single-stranded RNA 

TAG: triacylglycerol 

TLC: thin layer chromatography 

TSQ: triple stage quadrupole 
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