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Summaries

SUMMARIES

1. English summary of the thesis

The control of lipid homeostasis is a fundamental process that allows cells to maintain the
unique lipid composition of their membrane compartments and to deal with the energetic fluxes
from metabolism. This control is done at several levels and involves lipid sensors, signaling
systems, regulators as well as a robust machinery of lipid distribution across membranes. If most
of enzymes involved in lipid metabolism are characterized, the question of the genetic control of

lipid homeostasis is still outstanding.

In order to find genes that control the homeostasis of membrane lipids, we combined a large-
scale RNAI screen with the techniques of targeted lipidomic analysis by mass spectrometry to
monitor lipid changes in HeLa cells. For the first time, it was possible to observe the effects of
genetic perturbations at the level of hundreds of membrane lipids with different combinations of
head groups and fatty acyl chains simultaneously in HeLa cells.

First, | performed a pilot screen with sSiRNA targeting genes involved in lipid metabolism in
order to validate the method. The results showed that siRNA-induced knockdown was sufficient
to induce significant lipid changes but it also highlighted the capacity of cells to use
compensatory mechanisms to adapt their lipid metabolism in case of direct silencing in lipid
metabolic pathways. Moreover, it also showed that lipid changes can differ depending on cell

confluence.

Second, a large-scale RNAI screen targeting the human kinome was performed. After
validation of the primary screen through the analysis of quality control, 152 kinases were selected
as candidate genes involved in the control of membrane lipid homeostasis. Among them, one
third was linked to the regulation of central carbon metabolism and energy sensing. The detailed

analysis also allowed validation of some hits based on scientific literature.
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Finally, in parallel to this project, in the context of the Swiss National Center of Competence
in Research (NCCR) Chemical Biology, we also developed and performed a robotically-assisted
SiRNA transfection assay in HeLa cells stably expressing GPI-eGFP and screened a library of
chemicals in order to find compounds able to transfect SiRNA in Human cells at least as
efficiently than commercially available compounds. The robotic assistance allowed screening six
different concentrations of siRNA/amphiphiles complexes from a chemical library comprising
more than 200 compounds. These amphiphiles, synthesized in Matile lab (Geneva, Switzerland),
resulted from the dynamic and covalent assembly of hydrophobic tails (aldehyde/ketones, thiols)
with positively charged heads (hydrazones, oximes or disulfides bridges) (Montenegro et al,
2012). The screen revealed a dozen of active compounds able to carry siRNA into HelLa cells
with a knockdown efficiency greater than 50% and little or no toxicity. After confirmation,
SiRNA transfection with active amphiphiles was optimized in HeLa cells expressing GP1-eGFP in
order to reach a knockdown efficiency as good as Lipofectamine™ RNAiMax. A time-course
assay revealed that GFP knockdown was faster with dynamic amphiphiles than Lipofectamine ™,
suggesting a different manner of crossing cell membranes for siRNA/amphiphiles complexes.
SiRNA Transfection capacity of active amphiphiles was also performed in challenging cell types,
such as Human Primary Skin Fibroblasts (courtesy of Dr Charna Dibner, HUG), with siRNA
targeting GAPDH mRNA. The transfection was more efficient with the most active dynamic
amphiphiles than with Lipofectamine RNAiMax. Then, the characterization of
siRNA/amphiphiles particles was monitored using Density Light Scattering (DLS). The last step,
in collaboration with Pr. Shiroh Futaki (Japan) consisted in determining which cellular
mechanisms, such as endocytosis, were involved in the delivery of SiRNA by the best amphiphile

candidate into HelLa cells.
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2. Résumé de la thése en frangais

Le contrble de I'noméostasie lipidique est un processus fondamental qui permet aux cellules a
la fois de maintenir une composition lipidique unique dans chacun de ses compartiments
membranaires et de gérer les flux énergétiques. Ce contrble s’effectue a divers niveaux et
comprend des capteurs de la composition lipidiqgue membranaire, un systeme de signalisation et
de régulation qui permet a la cellule d’adapter son métabolisme lipidique en fonction des besoins
ainsi qu’un robuste systéme de transport assurant la distribution correcte des lipides dans leurs
compartiments cellulaires spécifiques. Si la plupart des enzymes impliquées dans le métabolisme

des lipides sont connues, la question du contréle de I'noméostasie lipidique n’est pas résolue.

Afin de trouver les genes qui contrdlent I'noméostasie des lipides membranaires, nous avons
combiné un crible génétique par ARN interférent (ARNI) aux techniques d'analyse lipidomique
ciblée par spectrométrie de masse dans les cellules HeLa. Pour la premiére fois, il est possible
d'observer les effets de perturbations génétiques simultanément au niveau de centaines de lipides
membranaires résultant de la combinaison entre différents groupes fonctionnels et chaines

d’acides gras.

Dans un premier temps, une expérience pilote de crible génétique a été mise au point pour
valider ’utilisation d’ARNi pour étudier la fonction des génes dans le métabolisme des lipides.
Dans ce but, j'ai ciblé des génes en relation avec le métabolisme des lipides. Les résultats de ce
test ont montré que la réduction d’expression des génes par ARNi était suffisante pour induire des
changements lipidiques significatifs. Cependant, ils ont également mis en évidence la capacité
des cellules a utiliser des mécanismes compensatoires pour adapter leur métabolisme lipidique en
réponse aux déficiences de certaines voies de synthese. Enfin, ces résultats ont montré que les
changements lipidiques pouvaient étre différents en fonction de la confluence des cellules au

moment de la transfection des ARNi.

Une fois I’expérience pilote validée, un crible ARNi & grande échelle ciblant le kinome
humaine a été réalisé. Apres filtration des résultats incongrus et validation du set de données par
I'analyse des controles de la qualité, 152 kinases ont été choisies comme ayant un role possible

dans le contréle de I'hnoméostasie lipidiqgue membranaire. Parmi ces kinases, environ un tiers était

4
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déja connues pour leur role dans le contréle du métabolisme central du carbone. L'analyse
détaillée des genes candidats a permis de valider certains résultats selon les données de la

littérature mais les étapes de confirmation sont toujours en cours.

Enfin, parallelement a ce projet, dans le cadre du Pdle de recherche national suisse de (PRN)
Biologie chimique, nous avons également développé et réalisé une expérience de répression
génétique dans les cellules HeLa exprimant de facon stable la protéine GPI -eGFP par une
banque de composés chimiques, appelés amphiphiles dynamiques et potentiellement capables de
transfecter des ARNi dans des cellules humaines. Une assistance robotisée nous a permis de
tester les composés d’une banque comptant plus de 200 amphiphiles et six ratios différents
d’assemblage entre les ARNi et amphiphiles. Ces amphiphiles synthétisés dans le laboratoire du
Pr. Stefan Matile (Geneve, Suisse), résultent de I'assemblage dynamique et covalent entre des
chaines carbonées hydrophobes (aldéhyde / cétones, thiols) avec des groupes fonctionnels
positivement chargés (hydrazones, oximes ou ponts disulfures). Les résultats du criblage ont
identifié une douzaine de composeés actifs pouvant transporter les ARNi dans les cellules HeLa
avec un rendement de plus de 50 % de répression d’expression des GPI-EGFP et peu ou pas de
toxicité. Apres confirmation, la transfection des complexes ARNi/ amphiphiles actifs a été
optimisée dans les cellules HelLa exprimant GPl -eGFP afin d'atteindre une efficacité de
répression au moins aussi bonne que I’agent de transfection commercial Lipofectamine ™
RNAiMax. Un test d’activité a également révélé que la répression d’expression de la GFP était
plus rapide avec les amphiphiles dynamiques que la Lipofectamine ™ , ce qui suggére une autre
maniere de traverser les membranes cellulaires pour les complexes ARNiI/ amphiphiles.
L’efficacité de transfection de I’ARNi par les amphiphiles actifs a également été effectuée dans
des types cellulaires différents et réputés difficiles a transfecter comme les fibroblastes de peau
humaine primaires (remerciements au Dr Charna Dibner, HUG ), avec des ARNIi ciblant 'TARNmM
de GAPDH . La transfection était plus efficace avec les amphiphiles dynamiques les plus actifs
quavec la Lipofectamine RNAiMax. Finalement, la caractérisation des particules ARNi/
amphiphiles a été mesurée par diffusion dynamique de la lumiere (DLS). La derniére étape, en
collaboration avec le Pr. Shiroh Futaki (Japon) a consisté a déterminer les mécanismes cellulaires
impliqués dans le transfert cellulaire des ARNi par les meilleurs candidats amphiphiles dans des

cellules Hela.



Introduction

INTRODUCTION

1. Biology of membrane lipids

1.1. Lipids are essential components of life

Lipids are organic molecules essential to life in the same way as amino acids, nucleic acids
and sugars. Lipids have always been part of the human diet but their chemical characterization
and their link with life has been a long process. Lipid properties such as hydrophobicity and
highly calorific matter have been known since the first human populations were making butter or
lamps from animal fats and produce vegetable oil. However, the link between lipid chemistry and
physiology only started in the 19" century with the chemical characterization of cholesterol from
gallstones, glycerolipids from fats and some fatty acids by Michel-Eugene Chevreul (1786-1889)
(McNamara et al, 2006). Since these first discoveries, with the evolution of extraction and
analytical methods, tens of thousands of lipids from many organisms have been characterized but
several other organisms remain to be analyzed and techniques are constantly improving (Wenk,
2005). In 2005, the International Classification and Nomenclature Committee have defined lipids
on the basis of their hydrophobicity (Fahy et al, 2009). However, this is not the common point to
all lipids. Indeed, some of them like phosphoinositides or lipids with large hydrophilic domains
such as complex sugars are rather soluble in water-based solvents. Therefore, a consensus
definition of lipids could be “fatty acids, their naturally-occurring derivatives (esters or amides),
and substances related biosynthetically or functionally to these compounds”, as suggested by
Christie, the author of the Lipid Library (http://lipidlibrary.aocs.org/)

The main biological function of lipids as structural components of cell membranes was
discovered at the turn of the 20th century. First, Charles Overton suggested in 1889 that cell
boundaries could be made of lipids since nonpolar and lipid molecules could cross them. Then in
1925, Gortner and Grender calculated the surface area of cell boundaries occupied by lipids using
a Langmuir trough and hypothesized that the outer cell membranes were composed of a lipid
bilayer, what was confirmed later by electronic microscopy (Adams, 2010). While the
fundamental frontier between the inert and life remains an enigmatic question for science, the

6
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lipid bilayer of cell membranes creates a physical border between the cell medium and its outer
environment in all living organisms. Cells are the basic units of life and there is no cell without

lipid membranes.

How cell membranes appeared during evolution is far from being understood. Instead, the
evolution of membrane lipid biosynthetic pathways could be investigated thanks to comparative
genomics. The molecular phylogenetic analysis of genes coding for enzymes of lipid biosynthesis
pathways in archea, bacteria and eukaryotes, suggest that phospholipids were already synthesized
in the most recent common ancestor of the three domains of life. Phospholipids are the major
components of cell membranes. Even if the nature of phospholipids differs between archea,
bacteria and eukaryotes, all species share homologous enzymes acting in common steps of their
phospholipid synthetic pathways. Indeed, while both eukaryotic and bacterial PLs result from the
esterification of fatty acyl chains on a glycerol-3-phosphate backbone chains and PLs from
archea are made of a glycerol-1-phosphate backbone linked to methyl-branched isoprenoids
through ether bonds, genes coding for the synthesis of glycerol backbones, isoprenoids and fatty

acids probably come from a common ancestor (Lombard et al, 2012).

Lipids are components of cell membranes but also signaling or energy storage molecules and
the precursor of bioactive compounds such as hormones and mediator molecules in immunology.
The chemical properties of lipids influence the biophysics of cell membranes as well as their
protein composition and the function of these proteins. Stored in droplets, neutral lipids such as
triacylglycerols and steryl esters become highly caloric reservoirs of energy. On the contrary,
many lipids are synthesized in tiny quantities and their presence is tightly regulated in space and
time because of their signaling properties. For instance, the concentration of some sphingolipids
can be interpreted as a signal of proliferation or apoptosis for cells, the flip of phosphatidylserine
to the outer leaflet of plasma membrane is a sign of apoptosis for neighboring cells (Fadok et al,
1992), the presence of phosphoinositides in specific cell compartments determines the association
of proteins with specific organelles (Balla, 2013), protein-lipid associations in the nucleus
influence gene expression (Shah et al, 2013), etc. Finally, proteins can be modified with lipids
through posttranslational modifications such as acylation (Salaun et al, 2010) or attachment to a

glycosylphosphatidylinositol anchor (GPI-anchor) (Kinoshita et al, 2008).
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1.2. Membrane lipid composition in mammalian cells

In mammalian cells, membrane lipids comprise thousands of molecules that can be classified
into three major categories: glycerophospholipids (GPLs), sphingolipids (SLs) and sterols. Each
lipid class represents many combinations of molecules with specific subcellular distribution.

* Glycerophospholipids (GPLs)

R=Head group moiety

o H (PA)
I choline (PC)

Q,.»',P\ R ethanolamine (PE)

w2 inositol (PI)
inositol-phosphate (PIP)
serine (PS)
glycerol (PG)

fatty acyl chains ester, ether or vinyl-ether bond ¢ PG (CL)
HC
CHy
* Sphingolipids (SLs) * Sterols
sphingoid base H oH R= Head group moiety
- H (Cer)

phosphocholine (SM)

glucose (GlcCer) R = sterol variant

galactose (GalCer) H (cholesterol)

fatty acyl chain amide bond CH, complex sugars (GSLs) rR—0 fatty acyl chain (cholesteryl ester/ CE)
cholesterol o
PCSLS ToeesPe S e e
PM .~ — N34 55—
N VA PUS )~
Lipid droplets PC, PE AN 2l § S

LBPA

MVBs

P LBPA y
P/(3 5)P2

Cospn )
P I4)P / lysosomes

mitochondria

nucleus

Figure 1. Structure and localization of major membrane lipids in mammalian cells. Major membrane lipids
(blue) are found in all cell membranes but organelles and specific leaflets are particularly enriched in certain lipid, as
indicated on the figure representing subcellular compartments. CE: cholesteryl ester; EE, early endosomes; ER:
endoplasmic reticulum; LBPA (brown):lysobiphosphatidic acid; LE: late endosome; MVBs: multivesicular bodies;
PM: plasma membranes. Adapted from (Balla, 2013; Loizides-Mangold, 2013; van Meer & de Kroon, 2011).
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The lipid composition of membranes differs between organelles as well as between the two
layers of the bilayer. These particularities confer specific physical and biochemical properties to
the different membranes. Indeed, alone or packed in lipid bilayers, membrane lipids influence the

structural and geometrical plasticity of membranes and their capacity to interact with proteins.

Membrane lipids are mostly amphiphilic. Therefore, membrane bilayers are made of a
hydrophobic core of fatty acids attached to hydrophilic head groups at the interface with the
aqueous phase. These head groups can be anionic (PI, PS, PA, CL) or neutral (PC, PE) and
contribute to electrostatic interactions between proteins and the membrane. The ionic
composition of the solvent around the bilayer also plays an important role in physical properties
of membranes as it influences phase transitions by modifying the size of anionic head groups
such as PA and CL at the cell surface. (Dowhan, 2008)

The geometry of individual lipids is influenced by their chemical and structural anatomy.
Depending on their head group and their composition in fatty acids, they are either cylindrical or
conical. Together, cylinder-shaped lipids have the propensity to form membrane bilayers whereas
cone-shaped and inverted cone-shaped lipids such lysophospholipids, PE or DAG are considered
as nonbilayer lipids and tend to deform the membrane and increase surface tension. The mixture
of bilayer- and nonbilayer-forming lipids affects the asymmetry of membrane bilayers and
impacts the movement of proteins, membrane curvature and fusion/fission of vesicles. The
fluidity of membranes is greatly influenced by both the shape of lipids and their fatty acyl
composition. Lipid bilayers oscillate between ordered (Lg or L) and disordered (L, or Lq) phases.
The presence of unsaturated and branched fatty acids tends to increase membrane fluidity. On the
contrary, the insertion of cholesterol reorders the lipid bilayer and controls its lateral organization
leading to more specific associations with proteins (Dowhan, 2008). For instance, in the concept
of lipid rafts, the association between SLs, cholesterol and specific proteins results in detergent-
resistant membrane nanodomains that are associated with several biological processes (Lingwood
& Simons, 2010) even if they have never been directly observed in vivo due to the lack of good

fluorescent lipid markers.
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LIPIDS PHASE MOLECULAR
Ly SHAPE

Lysophospholipids
Detergents

Phosphatidylcholine
Sphingomyelin
Phosphatidylserine
Phosphatidylinositol
Phosphatidylglycerol
Phosphatidic Acid
Cardiolipin
Digalactosyl diacylglycerol
Diglucosyl diacylglycerol

Bilayer Cylindrical

Phosphatidylethanolamine
Cardiolipin - Ca?*
Phosphatidic Acid - Ca®*
Phosphatidic Acid (pH<3.0)
Phosphatidylserine (pH<4.0)
Monogalactosyl diacylglycerol
Monoglucosyl diacylglycerol

Hexagonal (H))

Figure 2. Polymorphic phases and molecular shapes exhibited by lipids. Inverted cone-shaped molecules form
micelles. Polar lipids with two long alkyl chains adopt a bilayer or a non-blayer (HII) structure depending on the
geometry of the molecule (cylinder- or cone-shaped respectively) and environmental conditions. The L (ordered
gel) and La (liquid crystalline) bilayer phases differ in the order within the hydrophobic domain and in mobility of
the individual molecules. Reprinted from (Dowhan, 2008)

How does the cell control its membrane lipid composition in order to organize this
compartmentalization and maintain the biophysical properties proper to each organelle? Where
and how does the cell synthesize membrane lipids and how do they maintain their levels? The

goal of the next sections is to answer this question on the basis of our current knowledge.
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1.2.1.  Glycerophospholipids (GPLs)

Glycerophospholipids are the most abundant membrane lipids in mammalian cells. GPLs are
glycerol-based phospholipids (PLs), They are amphipathic compounds made of a glycerol-3-
phosphate (G3P) backbone, linked to a head group via a phosphodiester bond and to fatty acyl
chains through ester, ether or vinyl ether bonds on sn-1 and sn-2 (Hermansson et al, 2011). GPLs
are subdivided into different classes according to the nature of their head group (Fig. 1). In
mammalian cells, major GPLs are phosphatidylcholine (PC) that constitute around 50 mol% of
PLs, followed by phosphatidylethanolamine (PE), around 20 mol%, phosphatidylinositol (P1),
phosphatidylserine (PS) less than 10 mol% each and phosphatidic acid (PA) and
phosphatidylglycerol (PG) in very low amount (van Meer, 2005). PA is the precursor of all
GPLs and PG, is an intermediate in the synthesis of cardiolipins (CL), a GPL specific for the
inner membrane of mitochondria (IMM).

The synthesis of GPLs starts either in the membrane of the endoplasmic reticulum (ER) or at
the outer membrane of mitochondria (OMM). The first step of GPLs synthesis is the formation of
PA that results from the successive acylations of G3P on sn-1 by acyl-CoA: glycerol-3-phosphate
acyltransferase (GPAT), then on sn-2 by lysophosphatidic acid acyltransferase (LPPAT). GPAT
and LPAAT are found both in the ER and mitochondria. From there, PA can be either
dephosphorylated into diacylglycerol (DAG), the precursor of PC, PE and PS by PA phosphatase
1 or 2 (PAP1 or 2) or converted into CDP-diacylglycerol (CDP-DG), the precursor of the anionic
Pl, PG and CL by CDP-diacylglycerol synthase (CDS). CDS exists in different isoforms that
localize in the ER to make Pl and in mitochondria where PG and CL are synthesized
(Hermansson et al, 2011). CDP-DG is converted into PI by phosphatidylinositol synthase (PIS) in
the ER (Kim et al, 2011) and PG is made in mitochondria where it is used as substrate in the
synthesis of CL by the cardiolipin synthase CLS in the IMM. The structure of CL is unique
among GPLs with its four fatty acyl chains and two phosphatidyl moieties linked to glycerol
(Houtkooper & Vaz, 2008) (Fig. 3).
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Figure 2. Overview of the glycerophospholipid (GPL) biosynthesis pathway in mammalian cells. The key
metabolites (in black), the enzymes catalyzing the respective reactions (in red) and their subcellular localization
(arrows) are indicated. Lipids analyzed in this thesis project are surrounded in red. Most of abbreviations are as
indicated in the text proper. Supplementary abbreviations are indicated here: DGAK (diacylglycerol kinase), EK
(ethanolamine kinase); EPT (ethanolamine phosphotransferase); ET (phosphoethanolamine citidyltransferase); PGPP
(phosphatidylglycerol phosphate phosphatase); PGPS (phosphatidylglycerol phosphate synthase). Adapted from
various sources cited in the text.

The synthesis of PC and PE starts with the dephosphorylation of PA into DAG at the
membrane of the ER by PAP. The PAPs consists in two families: the cytosolic PAP1 or lipins,
and the membrane proteins PAP2 or lipid phosphate phosphatase (LPP) that can compensate the
activity of lipins in some conditions (Carman & Han, 2006). In mammalian cells, PC is
predominantly synthesized through the Kennedy pathway, i.e. de novo synthesis in the ER.

Choline is first phosphorylated by a choline kinase (CK) into phosphocholine that is then

12



Introduction

converted into CDP-choline by a CTP: phosphocholine ctidylyltransferase (CT). This latest
reaction is considered as the rate-limiting step of de novo PC synthesis in mammalian cells.
Finally, the CDP-choline head group is transferred on DAG by CDP-choline: 1, 2-diacylglycerol
cholinephosphotransferase (CPT) to make PC. PC can also be synthesized through sequential
methylation of PE by phosphatidylethanolamine N-methyltransferase (PEMT) in the ER and in
ER mitochondrial-associated membranes (MAMS), to a lower extent. However, this reaction is
restricted to hepatocytes in mammals (Hermansson et al, 2011). Contrary to PC, in mammalian
cells de novo synthesis of PE results from both the Kennedy pathway in the ER and the
decarboxylation of PS by phosphatidylserine decarboxylase (PSD) in IMM. However, the
importance of each pathway for cell viability depends on the tissue and the pathways cannot
compensate for each other. For instance, many cells in culture prefer to make PE by
decarboxylation of PS whereas PE made through the Kennedy pathway is indispensable to the
function of hepatocytes in mice. Finally, PS is made by base exchange of head groups from PC or
PE with L-serine via phosphatidylserine synthase 1 or 2 (PSS1 or 2), respectively in ER-MAM
(Hermansson et al, 2011) (Fig. 3).

Other classes of GPLs exist. These compounds can be present in tiny quantities in cells while
they play important roles in signaling, structure and metabolism. They can be derived from
existing GPLs (phosphoinositides, Lysophospholipids) or result from a different biosynthetic
pathway (ether-phospholipids)

e Phosphoinositides (PIPs)

Phosphoinositides are lipid signaling molecules that represent less than 1 mol% of total PLs.
They are made from PI by successive phosphorylations and dephosphorylations of the inositol
ring by a system of PI- and PIP-kinases and phosphatases (Fig. 3). While the Pl synthase (PIS)
associates with both the ER and specific ER-derived highly mobile organelles, the synthesis of
PIPs takes place in various membrane compartments of the cell. However, the distribution of
PIPs is characteristic of specific organelles. For instance, the plasma membrane (PM) is enriched
in PI(4.5)P2, PI(4)P and PI(3,4,5)P3, early endosomes (EE) are enriched in PI(3)P, late
endosomes (LE) in PI(3,5)P2 and the Golgi in PI(4)P (Fig. 1). The functions of phosphoinositides
cover a wide range of biological processes that were reviewed by Tamas Balla in 2013. To
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summarize, “PIPs control organelle biology by regulating vesicular trafficking, but they also
modulate lipid distribution and metabolism via their close relationship with lipid transfer
proteins. PIPs regulate ion channels, pumps, and transporters and control both endocytic and
exocytic processes”. (Balla, 2013). Their presence in the nucleus also affects gene expression,
DNA repair and the export of mMRNA (Monserrate & York, 2010).

e Lysophospholipids (lysoPLs)

Lysophospholipids are monoacylated phospholipids where one of the fatty acyl chains is
replaced by a hydroxyl group on sn-1 or sn-2 of their glycerol backbone. They are synthesized
either by de novo synthesis from glycerol-3-phosphate or by hydrolysis of PLs via the action of
phospholipase and acyltransferase. LysoPLs of each PL exist but LysoPCs are the most abundant
ones. LysoPLs are important bioactive molecules secreted by cells and found in the plasma of
mammals. They are often used as biomarkers of various diseases, such as cancer and
inflammation. In cells, they play both structural and signaling roles. With their conical shape,
they induce membrane deformation and can modulate the activity or the oligomerization of
membrane proteins with which they interact, such as ion channels and G-protein coupled
receptors (GPCRs) by modifying their membrane environment (Fig.4) (Grzelczyk &

Gendaszewska-Darmach, 2013).
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Figure 4. Structures of cylindrical (phosphatidylcholine 18:0) phospholipid (A) and cone shaped
(lysophosphatidylcholine 18:0) lysophospholipid (B). Adapted from (Grzelczyk & Gendaszewska-Darmach, 2013)
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e Ether-phospholipids (Ether-PLs)

In mammalian cells, ether-phospholipids represent an important class of GPLs in which the
fatty acyl at the sn-1 position is linked to the glycerol-3-phosphate backbone by an ether bond.
Two types of ether bonds are possible: the ether bond itself in platelet activator factors (PAF) and

the vinyl-ether bond in plasmalogens (Fig. 5).

A B
O CH,-0 O CH,-0
l | |-

R2—C—0—(|:H ﬁ' RZ-C—O—lC.H ﬁ
CH2-0-I?-O-Head group CH2—O—|P—0—Head group
o o-
Plasmanyl-phospholipids Plasmenyl-phospholipids (plasmalogens)

Figure 5. Structure of ether-phospholipids: (A) plasmanyl- and (B) plasmenylphospholipids are characterized
by the presence of an ether or a vinyl-ether bond at the sn-1 position of their glycerol backbone, respectively.

The biosynthesis of ether-phospholipids starts in peroxisomes where the precursor glycerol-3-
phosphate is first dehydrogenated by a G3P dehydrogenase into dihydroxyacetone phosphate
(DHAP). DHAP is then acylated with a long-chain fatty acyl by the glycerone phosphate O-
acyltransferase (GNPAT) before that the enzyme alkyl-glycerone phosphate synthase (AGPS)
replaces the acyl-chain by a fatty alcohol. Next, 1-alkyl-DHAP is exported from peroxisomes to
the ER where it is reduced into 1-alkyl-G3P on which a fatty acyl is esterified by a specific
alkyl/acyl-glycerol-3-phosphate acyltransferase (AAG3P-AT). Next steps of the process follow
the same pathway than other GPLs (Fig. 3) Major plasmalogens are choline and ethanolamine-
based (Brites et al, 2004). Plasmalogens are abundant membrane component. For instance, ether-
PE represents around 30-50 mol% of total PE in the brain. They play important functions in
membrane structure and dynamics as they tend to reduce surface tension and viscosity. They are
also a reservoir of polyunsaturated fatty acids (PUFA) and antioxidants thanks to the scavenger

property of their vinyl-ether bond (Wallner & Schmitz, 2011).
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e Lysobisphosphatidic acid (LBPA)/ Bis(monoglycero)phosphate (BMP)

Lysobiphosphatidic acid is a special type of negatively charged GPL present in low amounts
in cells (less than 1%) and concentrated in the inner membrane of late endosomes (=17mol% of
PLs from the LE) and lysosomes. Its structure is unique in the sense that it consists of two
monoacyl glycerol backbones linked together by a phosphate group in sn-1 (sn-1’). Both the
composition and the position of fatty acyl chains on glycerol determine the conformation of
LBPA isomers. In vivo, the most abundant ones are acylated with oleic acid in 2, 2’ (Goursot et
al, 2010) (Fig. 6). The biosynthesis pathway of LBPA is still poorly understood and its precursor
might be PG. LBPA functions are closely related to its structure. For instance, only the 2,2’-
dioleolyl LBPA isomer was shown to be active in the regulation of cholesterol endosomal levels
(Matsuo et al, 2004). LBPA can induce membrane invagination and participate to the formation
of vesicles in multivesicular bodies (MVBs) and contrary to other GPLs, it is also resistant to

hydrolysis by lipases and phospholipases (Gallala & Sandhoff, 2011)

2,2' glyB — glyC — C1 2,2' glyB — glyB — C1

Figure 6. Schematic representation of LBPA with stereospecific numbering (sn) of the glycerol backbone (A)
and examples of LBPA conformation based on calculated structures of the most stable 2, 2’LBPA isomers (B).
Adapted from (Goursot et al, 2010) .
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1.2.2.  Sphingolipids (SLs)

Information about SL synthesis except hydroxylated and dihydrosphingolipids comes from the
review co-written with Dr. Maria-Auxiliadora Romero in 2013(Aguilera-Romero et al, 2013) and
included further in the introduction. The section about SL synthesis, recycling and breakdown is

repeated here in order to keep the logics of the manuscript.

Sphingolipids (SLs) are essential structural components of membranes (Fig. 1) and critical
signaling molecules. De novo SL synthesis begins in the endoplasmic reticulum (ER) with the
condensation of serine and palmitoyl CoA into 3-ketodihydrosphingosine by serine
palmitoyltransferase (SPT) (Fig. 7). This product is reduced to generate sphinganine, the
precursor of long-chain bases (LCBs). LCBs vary in chain length, degree of unsaturation and
hydroxylation. Combinations of these three parameters define the specific species of LCBs for
each organism (Hannich et al, 2011). At the ER, LCBs can be phosphorylated by a kinase or
condensed by a ceramide synthase with fatty acyl-CoA, giving dihydroceramides. The number of
atoms of the amide-linked fatty acid usually ranges from 14 to 26 and can extend to 36 carbons.
The very long chain fatty acids (VLCFA) are produced by specific enzymatic complexes called
elongases. In many species the dihydroceramide can be desaturated to form ceramide. The
ceramides can then be modified in the ER to produce ceramide phosphoethanolamine or
galactosylceramides, or travel to the Golgi through vesicular and non-vesicular transport routes.
The mode of transport seems to determine the subsequent fate of the ceramide; conversion to
glucosylceramide or sphingomyelin (Hanada et al, 2009). Once in the Golgi, diverse head groups
are attached to the C-1 hydroxyl group of the ceramide backbone. The head group donor can be a
glycerophospholipid (GPL) or nucleotide sugars to generate either phosphosphingolipids, with
simultaneous release of diacylglycerol (DG), or glycosylsphingolipids with release of a
nucleotide. The initial sugar of glycosphingolipids, usually glucose, can be extended to more
complex glycan structures. Finally, complex SLs travel through the secretory pathway to the
plasma membrane, endosomes and lysosomal/vacuole system where their concentration is sensed
and regulated. Many declinations of SLs exist. They result from the combination of sphingoid
bases with different fatty acid chain length, saturation degrees, hydroxylation, head groups, sugar
and phosphate adducts. Here are presented only the ones that were detected by mass spectrometry
in this thesis project.
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Many reactions of sphingolipid metabolism can be reversed allowing for the rapid
interconversion of different metabolic intermediates (Fig. 7). Nonetheless, some steps are
irreversible: the initial step catalyzed by SPT and the degradation of long chain base phosphates
(LCB-P) by an ER-localized lyase to acyl aldehydes and phosphoethanolamine (EtnP).
Deficiencies in both steps have severe consequences in SLmetabolism (Bektas et al, 2010). Apart
from these two reactions, there are several possible interconversions between SLs along their
metabolic route. For instance, ceramidases regenerate LCBs from ceramides but they can also
make ceramides through acylation of LCBs when ceramide synthase activity is compromised
(Mao et al, 2000; Okino et al, 2003; Pata et al, 2010). The activity of glycohydrolases or
sphingomyelinases produces ceramides from complex SLs that can be recycled again into the
sphingolipid pathway (Hannun & Obeid, 2008). As in the anabolic pathway, enzymes responsible
for SL turnover have an organelle-specific distribution in cells. In mammals, members of
ceramidase and sphingomyelinase families localize in different cell compartments, such as
mitochondria, ER, Golgi, lysosome/vacuole and plasma membrane (Hannun & Obeid, 2008).
Localization is thought to allow the production of local pools of bioactive SLs, such as
ceramides, LCBs and their phospho-derivatives. Several interesting reviews highlight the
importance of these degradative pathways in the production of bioactive lipids (Hannun & Obeid,
2008; Kitatani et al, 2008). Sphingolipid turnover, named the salvage route, is also used to feed
the sphingolipid synthesis pathway. In mammals, the salvage pathway can be responsible for
10% to 90% of sphingolipid synthesis (Tettamanti et al, 2003). How cells coordinate de novo and
salvage pathways to generate the proper amounts of bioactive or structural SLs is an interesting
field of research. The complexity of the sphingolipidome might differentiate between these two
functions. Growing evidence supports the importance of substrate specificity of enzymes
belonging to the degradation pathway in production of bioactive SLs. In mammals, bioactive
sphingosine is mainly produced by ceramidase activity (Kitatani et al, 2008). Most of the
enzymes of SL metabolism show specific subcellular localization. Therefore, spatial organization
of the salvage pathway could be another discriminatory mechanism to differentiate between fates

of products and to distinguish between structural and bioactive SLs.
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e Dihydrosphingolipids

Dihydrosphingolipids are bioactive compounds. Dihydroceramides (dhCer) are intermediates
during de novo ceramide synthesis in the ER and can be converted into dihydrosphingomyelin
(dhSM) and dihydroglycosylceramides (dhGlcCer) in the Golgi as well as other SLs depending
on the cell line (Kok et al, 1997) (Fig. 7). Dihydroceramide accumulation due to the ablation or
the knockdown of dihydroceramide desaturases that desaturate dihydroceramides into ceramides
leads to a global change in the membrane lipid profile (Ruangsiriluk et al, 2012), to autophagy as
well as antiapoptotic processes (Siddique et al, 2013) but consequences of dhSLs levels changes
depends on the cell type (Fabrias et al, 2012). Finally, it was recently shown that dhCer and
dhSM accumulate in the human lens after the age of 65 and impact the biophysical properties of
the lens (Deeley et al, 2010).

e Hydroxysphingolipids

In mammalian cells, 2-hydroxysphingolipids are a subset of sphingolipids containing one
hydroxylated fatty acid that represent few SLs in most of cell lines and up to 50 mol% of total
SLs in skin keratinocytes (Uchida et al, 2007) and in epithelial intestine cells (Dahiya & Brasitus,
1986). 2-hydroxy fatty acids are catalyzed in the ER by fatty acid-2-hydroxylase (FA2H) before
condensation with sphinganine by a ceramide synthase during the de novo ceramide synthesis
(Alderson et al, 2004) (Fig. 7). It was shown that all ceramide synthases can utilize 2-hydroxy
fatty acids with the same efficiency as the non-hydroxylated ones, both in vitro and in vivo
(Mizutani et al, 2008). The following steps are identical to the synthesis of non-hydroxylated
SLs. Hydroxylated SLs play an important role in the differentiation of several cell lines and in the
function of the nervous system in which hydroxylated galactosylceramides are essential to the
formation of the myelin sheath. Mutations of FA2H in humans and mice cause leukodystrophy
and neurodegeneration (Potter et al, 2011). Inside cells, the decrease of hydroxylated SLs
associated with FA2H deficiency impacts the organization of cell membranes. For instance, the
siRNA knockdown of FA2H is associated with a decrease of glucose and insulin receptors at the
plasma membrane of adipocytes (Guo et al, 2010).
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Figure 7. Overview of the sphingolipid (GPL) biosynthesis pathway in mammalian cells. The key metabolites
(in black), the enzymes catalyzing the respective reactions (in red) and their subcellular localization (arrows) are
indicated. Lipids analyzed in this thesis project are surrounded in red. Most of abbreviations are as indicated in the
text proper. Supplementary abbreviations are indicated here: CERK (ceramide Kinase); C1P-PPase (ceramide-1-
phosphate phosphatase); Gb3 (globotriaosyl); Gg3 (gangliotriaosylceramide); GM3 (ganglioside); iGb3
(Isoglobotrihexosylceramide); Lc3 (lactotriaosylceramides). Infography adapted from the various sources cited in
the text.

1.2.3. Sterols

Sterols are a subfamily of steroids, a group of non-hydrolysable lipids that also comprise bile
acids and steroid hormones. The structure of sterols is made of a sterane nucleus with four rings
and one hydroxylation on carbon 3 (Fig. 1). In mammalian cells, the sterols mainly consist of free
cholesterol and cholesteryl esters. Cholesterol plays important roles in the fluidity of the plasma
membrane as well as the formation of microdomains called "lipid rafts", in interaction with
sphingolipids (Simons & Sampaio, 2011). The biosynthesis of cholesterol occurs in the ER with
the synthesis of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) from Acetyl-CoA that is
irreversibly reduced into melanovate by the HMG-CoA reductase (HMGCR). Then, mevalonate
is converted into 3-isopentenyl pyrophosphate, and six molecules of isopentenyl pyrophosphate
are needed to synthesize squalene, the common precursor of all sterols that is also a major

component of the skin barrier. Finally squalene is cyclized to form cholesterol (Stryer L. , 2012)
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(Fig. 8). Cholesterol is often considered as “bad” fat in the collective unconsciousness. This
terrible fame comes from the fact that this lipid is associated with atherosclerosis that leads to
cardiovascular diseases, the principal cause of death in the world (WHO, 2013). In mammals,
cholesterol from diet is absorbed in the intestine and traffics in blood vessels on low-density
lipoprotein particles (LDL) that attach to LDL-receptors (LDLR) at the cell surface. Once
activated, these receptors are engulfed by cells via clathrin-mediated endocytosis and cholesteryl
esters are hydrolyzed in lysosomes before being sent to the ER and the LDLR recycled at the cell
surface (Schekman, 2013). From there, free cholesterol is either re-distributed in cell membranes
or if in excess, the lipid is re-esterified by acylCoA: cholesterol acyltransferases (ACATS) in the
ER and stored in lipid droplets (Brown et al, 1979). The synthesis of LDLR at the cell surface is
regulated by the intracellular level of free cholesterol. A deficiency of LDLR leads to
hypercholesterolemia and/or atherosclerosis where LDL cannot be internalized by cells,

accumulate on the wall of blood vessels and form atheroma plaques (Goldstein & Brown, 1987).
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Figure 8. Overview of the sterol biosynthesis pathway in mammalian cells. The key metabolites (in black), the
enzymes catalyzing the respective reactions (in red) and their subcellular localization (arrows) are indicated. Lipids
analyzed in this thesis project are surrounded in red. Most of abbreviations are as indicated in the text proper..
Adapted from the various sources cited in the text.
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1.3. Insights into the canvas of membrane lipid metabolism

In order to understand how cells regulate their lipid levels, it is necessary to consider not only
de novo lipid biosynthetic pathways but also how these pathways communicate between each
other, how they are integrated to the global metabolic network and what the proportion of
metabolites coming from food intake is.

Therefore, the purpose of this section is to understand where the metabolites necessary for
lipid synthesis come from and how their metabolism may affect lipid levels.
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Figure 9. Overview of metabolic crosstalk entering the process of lipid biosynthesis in mammalian cells.
Adapted from the various sources cited in the text.
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In mammalian cells, most of metabolites needed for lipid synthesis are made by cells
themselves but others are only found in diet. This is the case of choline and ethanolamine, the
head group components of the most abundant glycerophospholipid species. Cells cannot
synthesize them. Therefore, they get them either from food uptake or from the recycling of other
lipids. For instance, PC can be produced either from the reuse of phosphocholine resulting from
the hydrolysis of SM by sphingomyelinase or from the methylation of PE. In the case of
ethanolamine, it can either be released during the decarboxylation of PE into PS or from the
degradation of sphingosine-1-phosphate (S1P) by S1P-lyase (Gibellini & Smith, 2010).
However, in most cell lines, these represent minor pathways. Myo-inositol that is needed for
phosphatidylinositol biosynthesis is derived from glucose-6-phosphate, an intermediate product
of glycolysis. However, its synthesis is also limited in animal cells and most of myo-inositol also
comes from food, especially fruits (Balla, 2013). On the contrary, serine, the precursor of
sphingolipids and the head group component of PS, is an amino acid that can be synthesized by
cells and whose the synthesis is highly regulated because of its role in the homeostasis of
membrane lipids. Other amino acids can enter in the composition of sphingolipids such as glycine
and alanine in order to form alternative sphingoid bases, among which is 1-deoxysphinganine
(Zitomer et al, 2009).

Other essential metabolites for lipids are fatty acids, the common component of GPLs, SLs
and cholesteryl esters. They are fundamental structural components of membrane bilayers and a
major form of energy storage. Fatty acids are synthesized from acetyl-CoA that is carboxylated
into malonyl-CoA by the acetyl-CoA carboxylase (ACC) in the cytosol, mainly. Then, acetyl-
CoA reacts again with several molecules of malonyl-CoA in a cyclic process in order to produce
free fatty acids of different chain length (Wang et al, 2012). Mammalian cells principally
synthesize palmitic (C16) and stearic (C18) fatty acids that can be successively elongated and/or
desaturated by desaturases and elongase in the cytosol. However, mammalian cells cannot
introduce double bonds beyond the A9 position and need to import fatty acid precursors from
plants to synthesize other polyunsaturated fatty acids (PUFA). These essential fatty acids are a-
linolenic and linoleic acids: 18-carbon, polyunsaturated FAs with three and two double bonds
respectively that have double bonds at the 3 and w6 positions (Cook, 2008).

Acetyl-CoA doesn’t only serve as precursor in the de novo synthesis of fatty acids but also of

cholesterol and it can be synthesized from different sources in the mitochondrion: beta-oxidation,
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oxidative decarboxylation of pyruvate and the catabolism of ketogenic amino acids in a lesser
extent (Stryer L., 2012). This makes of acetyl-CoA a hub in the central carbon metabolism.
Finally, the common precursor of phospholipid, glycerol-3-phosphate (G3P) also connects lipids
to the metabolism of carbohydrates since it results from the reduction of dihydroxyacetone
phosphate coming from the breakdown of fructose 1,6-bisphosphate, a intermediate of glycolysis.
Alternatively, G3P also results from the phosphorylation of glycerol from the diet by glycerol
kinase (Stryer L., 2012).

The connections between lipid, sugar and amino acid biosynthetic pathways are highly
coordinated. Depending on their state, cells can shift the metabolic fluxes and promote some
pathways to the detriment of others. For instance, proliferating or non-proliferating cells show
different metabolic profiles. In proliferating or cancer cells, in order to duplicate their mass
before dividing, some enzymes are overexpressed and promote ATP generation through aerobic
glycolysis instead of respiration in non-proliferating cells. This process is part of the Warburg
effect in cancer cells and it results in more glucose consumption, a lower yield in energy (only 2
ATP per glycolysis compared to 30 ATP during respiration) but more glycolysis intermediates
that supplies cells in carbon and nitrogen in order to produce macromolecules to sustain cell
division (Ye et al, 2012b). Indeed, the production of DHAP and acetyl-CoA that can be used to
synthesize the building blocks of membrane is upregulated. In proliferative cells, many enzymes
involved in de novo lipid biosynthesis are also activated (Fig. 10) (Natter & Kohlwein, 2013).
For instance, enzymes needed for de novo PC (Arsenault et al, 2013) and fatty acids synthesis are
upregulated. In the case of fatty acids, this leads to higher ratios of saturated and
monounsaturated versus polyunsaturated fatty acids since the part of essential fatty acids uptake
from nutrients is reduced (Rysman et al, 2010). On the contrary, cells in senescence exhibit
almost a contrary metabolic shift with more PC catabolism (Gey & Seeger, 2013) and less
synthesis of saturated fatty acids (Ford, 2010).

Before any lipidomics experiment, it is important to know in which metabolic condition we
are in order to take in account how they can affect observed lipid changes. Many culture cell lines
are derived from cancer. For instance, the HeLa cells are epithelial cells derived from the cervical
adenocarcinoma of a patient called Henrietta Lacks, in 1951(Scherer et al, 1953). With time,
divisions, selections and maintenance conditions, they diverged from the original cell line and
their genome is unstable (Landry et al, 2013). However, these are still proliferating cells and this
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is a factor to take in account when interpreting lipid changes notably in their response to stress
events. For instance, cancer cells can adapt to hypoxia (Santos & Schulze, 2012). A recent
lipidomic analysis of HeLa cells showed that hypoxia caused significant changes in their lipid
profile, especially a decrease of Pl and the increase of unsaturated fatty acyl chains (Yu et al,
2014).
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Figure 10. Metabolic pathways for the synthesis of glycerolipids in cancer cells. Due to their increased demand
for membrane lipids, most cancers show a lipogenic phenotype. Most prominent are the upregulation of acetyl-CoA
carboxylase and fatty acid synthase. Additionally, increased remodeling of phosphatidylcholine is observed in many
malignous tissues. Pathways for the synthesis of CTP, the energy donor for phospholipid synthesis, of glycerol-3-
phosphate, the FA acceptor in PA synthesis, of unsaturated FA and of phosphocholine are activated in some tumors.
The storage formof lipids, triacylglycerol, is also involved in the remodeling ofmembrane lipids in proliferating cells,
as suggested by altered regulation of lipases in cancer tissues. Red arrows indicate pathways that were found to play
a role in cancer cells. CDP-Cho — CDP-phosphocholine, CDP-Etn — CDP-ethanolamine, Cho — choline, CL —
cardiolipin, CTP — cytidine triphosphate, DAG — diacylglycerol, Etn — ethanolamine, FFA — free fatty acids,
DHAP — dihydroxyacetone phosphate, G3P — glycerol-3-phosphate, GP-Cho — glycerophosphocholine, PC —
phosphatidylcholine, P-Cho — phosphocholine, PE — phosphatidylethanolamine, P-Etn — phosphoethanolamine,
Pl — phosphatidylinositol, PS — phosphatidylserine, UTP — uridine triphosphate. Reprinted from (Natter &
Kohlwein, 2013)
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2. Control of membrane lipid homeostasis

2.1. Importance of membrane lipid homeostasis

The metabolism of membrane lipids is controlled at several levels: synthesis, transport,
recycling and degradation. While the enzymes involved in the synthesis and breakdown of the
most abundant membrane lipids are pretty well characterized, many questions about their
regulation remain to be elucidated. Many questions remain also elusive about the regulation of
lipid transport and the way cells sense the lipid composition of membranes and adapt their

metabolism consequently.

Yet, the control of membrane lipid homeostasis is an essential process that allows cells to
maintain both their energetic balance and the structural integrity of the different membranes
while keeping a very dynamic trafficking of these membranes. The disruption of membrane lipid
homeostasis is associated with several diseases. Some of them are described here with their
specific lipid changes and the mechanisms involved when it is known (Table 1).

These few examples of diseases are sufficient to show that:
1) Many disorders are associated with a lipid phenotype.

2) Disorders are not associated with the variation of a single lipid but the combination of several
ones and reveal interdependency between metabolic pathways.

3) Most of the lipid changes remain uninterpreted, yet.

4) There is not yet a complete picture available of the whole modifications of lipids and the

hierarchy of events for these diseases.

5) Mass spectrometry-based lipidomics coupled to genetic studies greatly improves the

knowledge of diseases.
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2.2. Overview of mechanisms that control membrane lipid homeostasis

Lipids are not directly encoded by genes. Therefore, their regulation doesn’t rely on their
synthesis only, but on the coordinated expression and activity of all the proteins involved in both
their metabolism and their transport. How cells decide about the synthesis and the specific
distribution of each membrane lipid is an open question. Cells must be able to sense their
membrane lipid composition and to adjust both lipid synthesis and distribution depending on their
need and of the energy intake. Therefore, the control of membrane lipid homeostasis relies on
sensing mechanisms and feedback loops in coordination with the central carbon metabolism.
Here, | present an overview of two of these mechanisms in the current state of knowledge as well

as the outstanding issues associated with them.

2.2.1  Energy sensors and regulatory mechanisms

e mTOR connects energy sensing to lipid metabolism

The mammalian target of rapamycin also known as mTOR is a serine/threonine kinase that
plays a pivotal role in the regulation of cell metabolism. It is part of two multiprotein complexes,
named mTORC1 or mTORC2 that phosphorylate different sets of substrates. Both complexes are
activated by nutrients and growth factors, are inhibited by stress and regulate cell growth but their
composition, their mechanism of regulation, their impact on lipid metabolism and their

subcellular localization are different.

The complex mMTORC1 is composed of mTOR, raptor and mLST8. It is recruited and
activated at the surface of lysosomes but may be also recruited in stress granules by DYRKS3
kinase, at the PM by PI(3,5)P2 or in the cytoplasm in order to promote translation initiation. The
complete activation of mMTORCL1 by the effector proteins GTP-bound Rheb and Rag has been
recently reviewed by Charles Betz and Michael N. Hall in the Journal of Cell Biology and is
summarized on Figure 11. mTORCL1 is known to regulate protein synthesis, mitochondrial

biogenesis, glycolysis, lipogenesis, lysosome biogenesis and autophagy. In turn, the complex
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MTORC2 that comprises mTOR, rictor, SIN1 and mLST8 and that mainly localizes at
mitochondria-associated ER membranes (MAMs) (Betz & Hall, 2013) plays a limited role in
lipid metabolism in mammals (Laplante & Sabatini, 2009) contrary to yeast where the homolog

TORC?2 is involved in the regulation of sphingolipids (Aguilera-Romero et al, 2013).

mTORC1 is an energy sensor directly involved in the regulation of lipid homeostasis (Fig.11).
In the presence of nutrients or signal transduction mediated by growth factors, mTORC1 is
activated and induces the expression of genes involved in lipid biosynthesis and lipogenesis
through the regulation of transcription factors such as sterol-regulatory element-binding proteins
(SREBPs), PPARY and lipins (Laplante & Sabatini, 2009; Laplante & Sabatini, 2013).

1) For instance, upon binding of insulin at the cell surface, the activation of the PI3K-Akt
signaling pathway leads mTORCL1 to induce the positive regulation of SREBPs. SREBPs are
transcription factors required for the expression of genes involved in the synthesis of cholesterol,
fatty acids, triglycerides and phospholipids. SREBPs are localized in the ER and need to be
transported and cleaved in order to translocate into the nucleus. The Akt-mTORC1 pathway
induces the cleavage of SREBPs. However, all the effectors of this processing are still unknown
(Laplante & Sabatini, 2009; Laplante & Sabatini, 2013). Moreover, the mTORCL1 regulation of
SREBP occurs through several mechanisms that are not fully understood too. JL Owen and
colleagues showed that the processing of SREBP-1 requires the mTORC1 target S6K1 in rat
hepatocytes (Owen et al, 2012) but S6K1 was not necessary for this purpose in mouse embryonic
fibroblasts (Lewis et al, 2011). In mice, it was also demonstrated that mTORC1 could control the
abundance and the localization of nuclear SREBP-1 via the regulation of lipin 1, a phosphatidic
phosphatase that is also a transcriptional coactivator (Skelhorne-Gross et al, 2012). mTOR can
also phosphorylate lipin 1 to control its localization and its association with phosphatidic acid
(PA), which has a direct effect on the synthesis of DAG from PA and a direct impact on
glycerophospholipid synthesis (Eaton et al, 2013). Finally, it was recently shown that the kinase
MAP4K4 could regulate the adipose lipogenesis by inhibiting the cleavage of SREBP-1 through
an AMPK-mTORC1-dependent mechanism (Danai et al, 2013).

2) In addition to SREBP-1 and lipin 1, mTORCL1 controls fatty acid metabolism through the
regulation of PPARY that activates genes required in the oxidation of fatty acid and triglycerides.

However, as for SREBP-1, the regulation of this protein is not fully understood. In the liver,
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another peroxisome proliferator-activated receptor called PPARa regulates ketogenesis and lipid
oxidation in response to fasting is regulated by mTORCL1 (Laplante & Sabatini, 2009; Laplante &
Sabatini, 2013).

3) Finally, mTORC1 indirectly controls lipid homeostasis through the regulation of
lysosome biogenesis and autophagy since these processes lead to the degradation of membrane
lipids and contribute to regulate the intracellular levels of metabolites (Laplante & Sabatini, 2009;
Laplante & Sabatini, 2013).

mTORCI1 doesn’t only control the metabolism of lipids in response to nutrient uptake or to the
binding of growth factors but can also be regulated itself by the level of intracellular lipids
(Foster, 2013).

1) Phosphatidic acid (PA), which is a central player in glycerophospholipid synthesis binds
to mTOR, and is required to ensure the stability of the mTOR complexes (Toschi et al, 2009).
Most of the mTOR-associated PAs come from the hydrolysis of phospholipids by phospholipase
C (PLC) but could also originate from another pathway such as the de novo synthesis of PA
because PLC deficiency doesn’t prevent the binding of PA with mTOR (Foster, 2013). For
instance, it has recently been demonstrated that mTOR signaling induced by mechanical stimuli
in skeletal muscles is regulated by PA synthesized from the phosphorylation of diacylglycerol by
diacylglycerol kinase & (DGKE) (You et al, 2014). Moreover, it was suggested that PA could
serve as an indicator of phospholipid level in the regulation of lipid metabolism by mTORC1 and
2: first, PA is essential for the activity of mTOR and secondly, it was shown that PA with
different fatty acyl chains could differently regulate mTORC1 and 2. Many questions about the
regulation of mMTOR by PA are outstanding but they raise new possibilities on the control of

phospholipid homeostasis.

2) A sphingolipid rheostat system regulates mTOR signaling in autophagy. Ceramides and
sphingosine-1-phosphate (S1P) are bioactive lipids that tend to promote cell death and survival,
respectively. Under amino acid depletion AA(-), acid SMSase is activated and generates
ceramide, a suppressor of Akt that leads to the inactivation of mTOR and the induction of
autophagy. On the contrary, S1P is a ligand of five G-protein coupled receptors S1P;-S1Ps that
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are associated to the activation of various signaling pathway including Akt-mTOR. In AA(-)
condition, S1P bound to S1Ps- counteracts autophagy induction by activating mTOR (Taniguchi
etal, 2012; Young et al, 2013).

e AMPK, an essential bioenergetic sensor and its crosstalk with mTOR

The AMP-activated protein kinase (AMPK) is a cellular nutrient and energy sensor that
monitors the ratio of AMP/ATP and regulates many metabolic pathways, consequently (Fig. 11).
The kinase is conserved in all eukaryotes and comprises the catalytic subunit AMPKa and the
regulatory subunits AMPKS and y. AMPK v contains four nucleotide-binding sites also known as
CBS motifs and AMPKJ functions as a hinge that links the three subunits together. Each subunit
exists in 2-3 isoforms in mammals. To be active, the AMPKa subunit needs to be
phosphorylated. The major upstream kinases phosphorylating Thr 172 of AMPKa is a complex
composed of LKB1 (STK11), STRAD and MO25. The binding of AMP or ADP on AMPK
promotes its activation either by inducing the phosphorylation of Thr 172 or by preventing its
dephosphorylation (Hardie et al, 2012). In some cells, such as HelLa cells that don’t express
LKB1, AMPKa can still be phosphorylated at Thr 172 by CAMKKp, a Ca2+/calmodulin-
dependent protein kinases (CAMKKS). This phosphorylation is triggered by a rise in cytosolic
Ca®*. Whatever the upstream kinase, the phosphorylation of AMPK is independent of the levels
of AMP (Fogarty et al, 2010). Alternatively, the TRAIL-induced transforming growth factor-
beta-activating kinase 1 (TAK-1) can also phosphorylate AMPKa (Herrero-Martin et al, 2009).

AMPK can be activated by metabolic stress and hormones. The metabolic stress induces the
increase of the ratio of AMP or ADP/ATP either by inhibiting the catabolic generation of ATP or
by accelerating its consumption. In response to these signals, AMPK switches on the catabolic
processes that produce ATP and restricts anabolic pathways that consume this ATP through the
phosphorylation of many substrates. Among them, some are directly linked to lipid metabolism
such as acetyl-CoA carboxylase 1 and 2 (ACC1 and 2) in fatty acid synthesis, 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR) that acts on cholesterol biosynthesis, SREBP-1c that
controls the expression of lipogenesis enzymes, and enzymes that regulate the synthesis of
triglycerides or the uptake of fatty acids (Hardie et al, 2012). To maintain energy homeostasis,
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AMPK can also act on the regulation of mTOR (Fig. 11). Indeed, AMPK inhibits the activity of
mTORC1 through the phosphorylation of its components such as raptor or the regulatory
tuberous sclerosis complex 1/2 (TSC1-TSC2) that prevents the assembly of mTORC1. By
inhibiting mTOR, which negatively regulates autophagy, AMPK promotes it (Inoki et al, 2012).
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Figure 11. Crosstalks between AMPK and mTOR in the control of energy and lipid homeostasis in mammals.
The activation of mMTORC1 in response to growth factors induces many anabolic processes that favor cell growth and
proliferation including de novo lipid synthesis by activating several transcription factors and by preventing
autophagy. In turn, AMPK also regulates lipid homeostais but in response to metabolic stress by blocking ATP-
consuming pathways, while activating the catabolic ones. Adapted from the various sources cited in the text.
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2.2.2  Control of lipid trafficking by the lipid-transfer proteins (LTPs)

The control of lipid homeostasis doesn’t only involve lipid sensors and regulators but also a
robust system of distribution to ensure the correct localization of lipids in space and time, the
unique composition of organelles as well as the regulation of many signaling pathways.

Along the secretory pathway, from the ER where lipid synthesis starts to the PM, the lipid
composition of membranes changes and becomes very asymmetric. Lipids move between
organelles by vesicular or non-vesicular mechanisms such as the spontaneous desorption and
more likely the active transport by transfer proteins. Between the two leaflets of organelles, the
asymmetry depends on the side where lipids are synthesized, their spontaneous flip-flop and the
action of flippases and translocases. Many but not all lipid transfer proteins have already been
described and the mechanisms that control their function gives rise to growing interest.
Interestingly, they already reveal the interdependency between signaling pathways and lipid
metabolism, as well as between lipids themselves. Here, | propose to describe one of these
mechanisms as well as the questions they raise in the control of membrane lipid homeostasis.

Typically, lipid-transfer proteins (LTPs) are soluble factors with hydrophobic lipid-binding
pockets covered by a lid that transport lipids in aqueous phase. LTPs are subdivided in different
families according to their similarities and the lipids they transport. They are: oxysterol-related
proteins (ORPs), SEC14, Pl-transfer proteins (PITPs), steroidogenic acute regulatory protein-
related lipid transfer (START) domain family proteins (STARDs), glycolipid transfer proteins
(GLTPs) and SCP-2 (unspecified LTPs). LTPs can be specific for one or more lipids. For
instance, the START protein CERT is specific for ceramides whereas SCP-2 can transfer
phospholipids, glycolipids and sterols. The functions and lipid affinities of each LTPs have
already been described in very interesting reviews (D'Angelo et al, 2008; Drin, 2014; Lev, 2010).
The membrane association, lipid absorption and the flux direction of lipid transport by LTPs
mostly depend on the membrane composition. Lipids are transported from concentrated donor
places toward less concentrated acceptor membranes. However, lipid-protein specificity and lipid
concentration are not the only parameters that control the transfer of lipids. Indeed, most of LTPs
don’t only comprise a lipid-binding domain but also other domains that condition their

association with lipids according to the membrane environment.
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This is the case of CERT. The mechanism regulating the specific transfer of ceramides from
ER to Golgi by CERT illustrates the link between membrane lipid homeostasis and the regulation
of lipid transfer proteins. CERT is 68kDa cytoplasmic protein that comprises a N-terminal
pleckstrin homology domain (PH) that is recognized by the phosphoinositide PI1(4)P enriched at
the Golgi membrane, a START domain that catalyzes the inter-membrane transfer of ceramide, a
short peptide motif named two phenylalanines in an acidic tract (FFAT) that can bind to the ER-
membrane resident VAMP-associated protein (VAP) and a serine-repeated motif (SRM) that can
be phosphorylated to repress both the functions of PH and START domains. The presence of the
START domain alone is not sufficient to ensure the ER-to-Golgi ceramide transport in vivo. The
activity of CERT is regulated by its other domains and is coordinated to sterol homeostasis
through the activity of the oxysterol binding protein (OSBP), another LTP very similar to CERT
that can be either cytosolic or bound to VAP at the surface of the ER by a FFAT domain, too
(Hanada et al, 2007).

CERT exists in two conformations: inactive when phosphorylated on its SRM domain by the
protein kinase D (PKD) or by casein kinase gamma 2 (CKIy2) (Tomishige et al, 2009) and active
upon dephosphorylation by the protein phosphatase 2C¢ (PP2C¢).

PKD has a dual role in the regulation of CERT. The transfer of ceramides from ER-to-Golgi
by CERT induces the synthesis of SM and the release of DAG at the Golgi membrane. DAG is a
cone-shaped lipid and a second messenger that induces membrane curvature and the recruitment
of PKD that phosphorylates CERT and represses its localization to the Golgi (Fugmann et al,
2007). Another substrate of PKD is PI4KIIIB. Upon phosphorylation PI4KIIIB induces the
synthesis of PI1(4)P in the Golgi which in turn promotes the recruitment of P14P-binding proteins
at the Golgi membrane (Nhek et al, 2010). With its PH domain, CERT is a PI(4)P binding protein
but it’s not the only LTP in this case: the VAP-bound OSBP, too. As CERT, OSBP is recruited to
the Golgi by PI(4)P and its Golgi-localization is also repressed PKD-mediated phosphorylation
(Nhek et al, 2010). Moreover, SM and cholesterol are co-regulated. Upon excess of free
cholesterol in cells or in the presence of 25-hydroxycholesterol, OSBP translocates to the Golgi
where it specifically stimulates the translocation of CERT (Perry & Ridgway, 2006). This
coordinated translocation of CERT to the Golgi seems associated with the specific recruitment of
rP14KIla, a PI(4)P kinase, around OSBP at the Golgi membrane (Banerji et al, 2010). Since the

structural association between SM and cholesterol at the PM is essential to ensure many
34



Introduction

biological processes and the biophysical properties of the PM, Guillaume Drin suggests that
OSBP could bridge the ER with the Golgi membrane in membrane contact sites (MCSs) to
facilitate the recruitment of CERT and regulate both SM and cholesterol in a concerted way to
favor the formation of SM/cholesterol domains at the PM (Fig 12) (Drin, 2014). However, some
questions remain to be solved such as the precise mechanism of association between CERT and
the Golgi. Indeed, It was demonstrated that the PH domain of CERT is required for its activity
(Hanada et al, 2003) but nuclear magnetic resonance (NMR) studies show that the affinity of
CERT PH domain for PI(4)P is weak compared to PH domains of other proteins, probably
because of a conformational flexibility in the ligand-binding pocket (Prashek et al, 2013). The
presence of a basic groove near the PI(4)P recognition site in the PH domain is required for
CERT activity and might stabilize this recognition (Sugiki et al, 2012). However, the precise
mechanism by which CERT binds to the Golgi remains elusive and doesn’t exclude the

intervention of still unknown effectors at the Golgi membrane.

Other mechanisms seem to regulate CERT. For instance, in response to pro-apoptotic stress,
the disassembly of the Golgi coupled to the caspase-mediated cleavage of CERT leads to the
decrease of ceramide trafficking (Chandran & Machamer, 2012). A recent article from F.G.
Tafesse and colleagues also suggests that CERT could be the first line of defense against
apoptosis by preventing the routing of ER-resident ceramides to mitochondria (Tafesse et al,
2014). On the other side, the interaction between CERT and VAP seems also to be affected by
the phosphorylation of a serine adjacent to the FFAT motif. The phosphorylation of S315 in the
SRM motif also down-regulates the activity of CERT (Chandran & Machamer, 2012; Kumagai et
al, 2014). Finally, little is known about the transcriptional regulation of this protein essential in
sphingolipid metabolism whereas its expression greatly influences the resistance of cancer cells

to chemotherapeutic drugs (Swanton et al, 2007).
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Figure 12. Mechasnism of CERT-mediated transfer or ceramide from ER-to-Golgi in mammals.. (a)
Oxysterol-binding protein (OSBP) interacts via its PH domain with PI(4)P and Arfl-GTP and through its FFAT
motif with ER-resident VAP receptors. As such, OSBP could bridge the ER and the trans-Golgi membrane and
facilitate the recruitment of ceramide transfer protein (CERT) by PI(4)P and VAP receptors. CERT delivers ceramide
into the trans-Golgi, thereby promoting sphingomyelin (SM) synthesis. (b) The completion of sterol transport; the
consumption of PI(4)P; and the diacylglycerol (DAG)- and Arfl-dependent recruitment of protein kinase D (PKD),
which negatively regulates via phosphorylation the Golgi localization of OSBP and CERT, trigger the disassembly of
the membrane contact site (MCS) and stop lipid trafficking. Abbreviations: PC, phosphatidycholine; PI,
phosphatidylinositol; VAP, VAMP-associated protein. Reprinted from (Drin, 2014).
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2.2.3  Control of sphingolipid homeostasis: review

This review was co-written with Dr. Maria-Auxiliadora Aguilera Romero and published in
2013 in BBA — Molecular and Cellular Biology of Lipids. It proposes an overview of the
mechanisms that control sphingolipid homeostasis in eukaryotes and the issues they raise.

Aguilera-Romero A, Gehin C, Riezman H (2013) Sphingolipid homeostasis in the web of
metabolic routes. Biochimica et biophysica acta 1841(5):647-56. doi:
10.1016/j.bbalip.2013.10.014
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3. Aim of the studies

The control of lipid homeostasis is a fundamental process that allows cells to maintain the
unique lipid composition of their membrane compartments and to deal with the energetic fluxes
from metabolism. This control is done at several levels and involves lipid sensors, signaling
systems, regulators as well as a robust machinery of lipid distribution across membranes. If most
enzymes involved in lipid metabolism are now characterized, the question of the genetic control

of lipid homeostasis is still outstanding.

In order to find genes that control the homeostasis of membrane lipids, we combined a large-
scale RNAI screen with the techniques of targeted lipidomic analysis by mass spectrometry to
monitor lipid changes in HelLa cells. After validation of the method through a pilot screen with
siRNA targeting genes with a connection to lipid metabolism, a large-scale RNAI screen
targeting the human kinome was performed. For the first time, it was possible to observe the
effects of genetic perturbations on the level of hundreds of membrane lipids with different
combinations of head groups and fatty acyl chains simultaneously in HelLa cells. This thesis
particularly deals with the development of the method as well as the results from the primary

screen.

In parallel to this project, in the context of the Swiss National Center of Competence in
Research (NCCR) Chemical Biology, we also developed and performed a robotically-assisted
screen of a novel class of chemicals in order to find compounds able to transfect siRNA into

human cells with some advantages over as commercially available compounds.
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MATERIAL AND METHODS

1. Experimental procedures
SIRNA screen

Cell culture and siRNA transfection. HeLa MZ (Marino Zerial, MPI-Dresden) cells were
maintained in DMEM, high glucose, GlutaMAX™, supplement pyruvate (Life technologies) with
10% FCS without antibiotics. The same batch of FCS was used all along the kinome-wide SiRNA
screen. All cells were grown at 37°C and 5% CO2. 72pmol siRNA was delivered by forward
transfection. HelLa cells were transiently transfected with SiRNA in 6cm dishes using

Lipofectamine RNAIMAX (Invitrogen) according to the manufacturer's instructions.

Pilot, primary and confirmation screens. The sequences of all custom siRNA libraries used for
this study are listed in Appendix (127). The pilot screen was run using a custom library of
siRNAs from Qiagen, in three independent experiments performed on separate days. For the pilot
screen, each gene was targeted by two different siRNAs in individual wells. The kinome-wide
primary screen was run using the MISSION® siRNA Human Kinase Library (Sigma-Aldrich)
consisting of 719 pools of three different sSiRNA oligos targeting the same gene transcript. The
screen also comprised controls: siControl, a negative control consisting in a non-targeting
sequence of siRNA sharing homology with the human genome (AllStars Negative Control sSiRNA
from Qiagen) and the CERT ON-TARGETplus Smartpool siRNAs from Dharmacon (positive
control). The screen was run in duplicate in independent experiments on separate days. For the
confirmation screen, unpooled Silencer® Select siRNAs for 59 of the top hits were purchased as
a custom library from Ambion (Life Technologies), with each gene transcript being targeted by
three different siRNAs in individual wells. These siRNAs were forward transfected individually

into HeLa MZ cells and their lipid composition was assessed by mass spectrometry.

RNA extraction and quantitative reverse transcriptase PCR (qQRT-PCR). HeLa MZ in 6cm
dishes were forward transfected as described in the previous paragraph. 72h later, one tenth of

cells were extracted with the RNeasy kit (Qiagen), reverse transcribed with Superscript 1l
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(Invitrogen), and analyzed in triplicate by gRT-PCR using a single color real-time PCR detection
system and specific DNA primers (Microsynth) designed with NCBI Primer-BLAST. The results
were normalized to TATA box-binding protein (TBP) expression. The sequences of all

oligonucleotides used for this study are listed in Appendix (127).

Lipid extraction protocols

Chemicals and lipid standards. DLPC 12:0/12:0 (850335), PE 17:0/14:1 (PE31:1, LM-1104), PI
17:0/14:1 (PI31:1, LM-1504), PS 17:0/14:1 (PS31:1, LM-1304), C17:0 ceramide (860517),
C12:0 SM (860583) and Glucosyl C8:0 Cer (860540) were used as internal lipid standards and
were purchased from Avanti Polar Lipids Inc. (Alabaster, AL). Ergosterol was used as sterol

standard and was purchased from Fluka (Buchs, Switzerland).

Methyl tert-butyl ether (MTBE) was from Fluka (Buchs). Methyl amine (33% in absolute
ethanol) was from Sigma Aldrich (Steinheim, Germany). HPLC-grade chloroform was purchased
from Acros (Geel, Belgium), LC-MS grade methanol and LC-MS grade ammonium acetate were
from Fluka. LC-MS grade water was purchased from Biosolve (Valkenswaard, The Netherlands).

Lipid analysis. Lipid extracts were prepared using the MTBE protocol (Matyash et al, 2008).
Briefly, after 72h of siRNA transfection, HeLa MZ cells from 6cm dishes were harvested and
resuspended in 100 pl HO. The suspension was transferred into a 2 ml Eppendorf tube. 360 pl
methanol and a mix of internal standards were added (400 pmol DLPC, 1000 pmol PE31:1, 1000
pmol P131:1, 3300 pmol PS31:1, 2500 pmol C12SM, 500 pmol C17Cer and 100 pmol C8GC).
Samples were vortexed and 1.2 ml of MTBE was added. Samples were placed for 10 min on a
multitube vortexer at 4°C (Lab-tek International, Christchurch, New Zealand) followed by an
incubation for 1 hr at room temperature (RT) on a shaker. Phase separation was induced by
addition of 200 ul MS-grade water. After 10 min of incubation at RT samples were centrifuged at
1000 g for 10 min. The upper (organic) phase was transferred into a 13 mm glass tube with a
Teflon-lined cap and the lower phase was reextracted with 400 pl artificial upper phase (MTBE /
methanol / H20 10:3:1.5). In total 1500 pl of organic phase was recovered from each sample,
split into three parts and dried in a CentriVap Vacuum Concentrator (Labconco, MO, USA). One
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part was treated by alkaline hydrolysis to enrich for sphingolipids and the other two aliquots were

used for glycerophospholipid/phosphorus assay and sterol analysis, respectively.

Alkaline hydrolysis was used to deacylate glycerophospholipids according to the method by
Clarke (Clarke & Dawson, 1981). Briefly, 1 ml freshly prepared monomethylamine reagent
(methylamine/H,O/n-butanol/methanol at 5:3:1:4 (vol/vol)) was added to the dried lipid extract
and then incubated at 53°C for 1 hr in a water bath. Lipids were cooled to RT and then dried. For
desalting, the dried lipid extract was resuspended in 300 pl water-saturated n-butanol and then
extracted with 150 ul H,O. The organic phase was collected, and the aqueous phase was
reextracted twice with 300 ul water-saturated n-butanol. The organic phases were pooled and

dried in a CentriVap Vacuum Concentrator.

Sterols analysis by Gas-liquid mass spectrometry (GC/MS)

One third of total lipid extract was resuspended in 500uL of MS-grade chloroform/methanol (1:1)
solution and injected into a VARIAN CP-3800 gas chromatograph equipped with a Factor Four
Capillary Column VF-5ms 15m x 0.32 mm i.d. DF =100. Identification and quantification of
sterol species were performed using a VARIAN 320MS as described in (Guan et al, 2010)

Phospholipids and sphingolipids analysis by electrospray ionization mass spectrometry (ESI-MS)

Identification and quantification of phospholipid and sphingolipid molecular species were
performed using multiple reaction monitoring with a TSQ Vantage Triple Stage Quadrupole
Mass Spectrometer (Thermo Scientific) equipped with a robotic nanoflow ion source, Nanomate
HD (Advion Biosciences, Ithaca, NY). Each individual ion dissociation pathway was optimized
with regard to collision energy. Lipid concentrations were calculated relative to the relevant
internal standards as described in (Epstein et al, 2012) and then normalized to the total
phosphorus content of each total lipid extract to adjust for difference in cell size, membrane

content, and extraction efficiency.
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Determination of total phosphorus content.

The dried total lipid extract was resuspended in 250 pl chloroform/methanol (1:1) and 50 pl were
placed into a 13 mm disposable pyrex tube. The solvent was completely evaporated and 0, 2, 5,
10, 20 pl of a 3 mM KH2PO4 standard solution were placed into separate pyrex tubes. To each
tube 20 pl of water and 140 pl of 70% perchloric acid were added. Samples were heated at 180°C
for 1 hr in a hood. Tubes were then removed from the block and kept at RT for 5 min. Then 800
ul of freshly prepared H,O / 1.25% NH;Molybdate (100 mg / 8 ml H,0) / 10% ascorbic acid (100
mg / 6 ml H,0) in the ratio of 5:2:1 were added. Tubes were heated at 100°C for 5 min with a
marble on each tube to prevent evaporation. Tubes were cooled at RT for 5 min. 100 ul of each
sample was then transferred into a 96-well microplate and the absorbance at 820 nm was
measured (Rouser et al, 1970).

Determination of Glycosphingolipid species

Sphingolipids were extracted using the MTBE/methylamine protocol. Samples were resolved on
HPTLC silica gel 60 Fzs54 (Merck). To distinguish GalCer and GlcCer the HPTLC plates were
impregnated with borate as described previously (Gupta et al, 2010). After dipping the plates into
a 1% aqueous sodium tetraborate solution, the HPTLC plates were activated at 120°C for 30 min.
Sphingolipids were resolved with the solvent system of chloroform/methanol/water (100:30:4).
Glycosylated sphingolipids were visualized by putting the whole plate quickly in a sulfuric
acid/Orcinol solution (0.1% Orcinol, 5% H,S0O,) and heating the plate at 110°C for 3min.

2. Statistical analysis of the Kinome-wide RNAI screen

Data formatting and normalization. In all screening experiments, lipid quantities were first log,
transformed. Then, sample-based normalization was performed using the z-score according to the
following formula: Z= (x; — x)/o, , where x; is the lipid level of the gene i, x is average of
lipid levels of all samples from the same series, and o, is the standard deviation of lipid quantities

of all samples from the same series (Birmingham et al, 2009).
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Filter on toxic conditions and technical issues. Images of cells 72h post siRNA transfection
were analyzed with the open-source image analysis software CellProfiler (Carpenter et al, 2006).
Samples with less than 80% of occupied area covered by objects (=cells) were considered as
representative of samples with too few cells for objective interpretation of results. sSiRNA
conditions resulting in few cells, cytotoxicity, incomplete lipid profiles due to mass spectrometry
technical issues and unpaired correlation between biological replicates were discarded from the

global analysis. Discarded conditions are listed in the appendix (127)

Selection of primary hits. Two different statistical methods were used for hit selection. First,
threshold determination was performed for each phenotypic score using the ranking method.
Specifically, this corresponds to cutoff phenotypic scores of |z| >=k, where Kk is a preset constant
that represents the mean of the dataset + kSD, where SD is the standard deviation. Genes with one

or more phenotypic scores above the cutoff values were selected as hits. (Zhang, 2011a).

In addition, functional genetic interaction was predicted for genes with directed hierarchical
relationships between pairwise variables using the hierarchical interaction score (HIS) method as

described (Snijder et al, 2013). For each gene, a HIS was calculated and predicted gene

interactions were visualized with the open source software http://www.his2graph.net/ and
Cytoscape (Shannon et al, 2003). Genes with top-scoring hierarchical interactions were selected
as hits.

Graphical representation. Graphical representations and statistical analysis of RNAI datasets

were performed using Excel and Partek Genomics Suite 6.6.

Omics and reference datasets. Gene-enrichment annotation of hit kinases was performed using
the websites DAVID (Huang da et al, 2009), STRING (Jensen et al, 2009) and WEBGESTALT
(Wang et al, 2013), as well as datasets published in literature or unpublished from other lab
projects (yeast data from Aline Santos) and collaborators (endocytome data Prisca Liberali,
Pelkmans lab, Zurich). Published levels of gene expression in HeLa cells were retrieved from the
web database Genevestigator. Yeast homologs were retrieved using Ensembl Biomart
http://www.ensembl.org/biomart/martview/d1111d7a07f83994b3c68c2d2a08db73 .

43


http://www.his2graph.net/
http://www.ensembl.org/biomart/martview/d1111d7a07f83994b3c68c2d2a08db73

Results

RESULTS

1. Investigating the genetic control of membrane lipid homeostasis with RNA interference

1.1. Choice of siRNA as a tool for genetic perturbation screen in human cells.

In order to assess the function of kinases in membrane lipid homeostasis, a genetic
perturbation screen based on RNA interference (RNAI) was performed in HeLa cell lines because
their genes can be efficiently silenced with short interference RNA (siRNA) (Elbashir et al,
2001).

RNAI is a post-transcriptional regulatory mechanism that consists in transiently silencing the
expression of a target gene through the repression or the cleavage of its mMRNA by the RNA-
induced silencing complex (RISC). RISC is made of proteins and a short ssSRNA sequence
complementary to the target mRNA that results from the unwinding of an endogenous
(microRNAS) or an exogenous (siRNA) dsRNA by the Ago2 protein (Hammond et al, 2001). Fire
and Mello who first observed that the introduction of exogenous dsRNA in C.elegans could
induce RNAI (Fire et al, 1998) opened the way to siRNA-induced gene knockdown screens in
higher eucaryotes. Current techniques lead to transient or long-term RNAI using siRNAs or short-
hairpin RNA (shRNA), respectively. For this project, | chose SiRNAs in order to stay in
conditions comparable to other genetic screens performed by collaborating groups from
SystemsX.ch, the Swiss Research Initiative in Systems Biology, such as the teams of Lucas
Pelkmans (Zurich) and Jean Gruenberg (Geneva). Moreover, | obtained the siRNA library from

the Pelkmans lab.

In mammalian cells, loss-of-function genetic screens are largely based on RNAI induced gene
knockdown. Contrary to yeast, knockout gene libraries are not available. At least, it was not the
case when this project started in 2009. Since, libraries of mutant mammalian cell lines have been
created thanks to recent nuclease-based genome editing technologies (Shalem et al, 2014).
Moreover, contrary to gene knockout experiments, siRNA-induced gene silencing offers the
advantage to assess the function of essential genes, since it transiently decreases their mRNA

levels without completely suppressing them from the genome.
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1.2. Mass spectrometry targeted-lipidomics to quantify membrane lipid changes.

In order to quantify membrane lipid changes induced by SiRNA gene knockdown in
mammalian cells, a targeted-lipidomics approach developed in our group by Dr. Ursula Loizides-
Mangold and Isabelle Riezman (Guan et al, 2010) (Loizides-Mangold et al, 2012). First, the
detection of most abundant PLs and SLs species present in different mammalian cell lines was
performed by shotgun lipidomics using the LTQ-Orbitrap mass spectrometer. Then, lipid species
were identified using the lipid mass references described in literature and online ressources such
as LIPID MAPS structure Databases (Sud et al, 2007) and KEGG (Kanehisa et al, 2014; Wixon
& Kell, 2000). However, current databases of chemicals are incomplete. Thus, several lipid
species with different combinations of head groups, acyl chains and additional chemical groups,

such as hydroxylations or phosphate, were found manually by Dr. Ursula Loizides-Mangold.

Next, a multiple reaction monitoring assay was developed to selectively quantify PLs and SLs
species described previously using a triple stage quadrupole mass spectrometer coupled to an
electron spray ionization source (Fig. 1.). The masses of parent and fragment ions used for this
study are listed in the appendix (p127). This list allowed to detect and quantify more than 800
molecules if present in the sample. However, the mass of several sphingolipids was overlapping
because of dehydration and others were not detected in all samples. Thus, this list was reduced
for analysis (see p127). In order to quantify lipids, internal lipid standards representative of each
different lipid classes were added to cells before lipid extraction allowing the semi-absolute
quantification of lipid molecules thanks to pre-established standard curves. Absolute
quantification was not possible for PLs and SLs because it supposes the presence of specific
internal standards for each lipid species. For the analysis of SLs, a mild alkaline hydrolysis step
was added to the lipid extraction process in order to reduce ion suppression during MS analysis
caused by GPLs. Finally, cholesterol and sterol esters were quantified separately by GC-MS

using the ergosterol internal standard (Fig. 1).
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Figure 1. General Overview of the screening procedure. 72h after siRNA transfection, Human cells were
harvested and their lipid extracted to be analyzed either by GC- or ESI-MS depending on the lipid species. A fraction
of the cell pellet was reserved for validation of the gene knockdown by qRT-PCR. A fraction of the lipid extract
before base treatment (methylamine) was used for the determination of total phosphorus.

1.3.  Anpilot siRNA screen on lipid-related proteins identifies gene-specific lipid changes

When this project started in 2009, studies combining genetics and quantitative lipid analysis
by mass spectrometry were emerging. In 2009, Guan XL and colleagues had just described
functional interactions between SLs and sterol metabolism with this approach. By determining
the lipid profile of yeast mutants in sterol metabolism using mass spectrometry, they observed
yeast cells specifically adjust their SLs composition according to the presence of different sterol
structures in their membrane (Guan et al, 2009). With this study, they demonstrated the validity
of the method for yeast. However, for higher eucaryotes such as human cell lines, where genetic
perturbation screens are generally based on RNAI, no such study had been published yet. In 2008,
Grimard V. and colleagues reported lipidomic observations from a kinome-wide siRNA screen
performed in HelLa cells. However, they used thin-layer chromatography (TLC) to monitor lipid
changes instead of mass spectrometry (Grimard et al, 2008). TLC is a method of lipid analysis
much less sensitive than mass spectrometry and they could not distinguish lipid species inside

each lipid class, leading to a loss of information important for the comprehension of membrane
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lipid homeostasis, such as acyl chain distribution, phosphorylation or the unsaturation degree of
SLs and GPLs. Later, in 2011, Ursula Loizides-Mangold reported that siRNA knockdown of
genes coding for enzymes from the GPIl-anchored protein synthesis pathway and their
corresponding mutant cell lines share similar lipid profiles (Loizides-Mangold et al, 2012).
Meanwhile, | was performing a pilot screen on lipid-related proteins to assess the validity of the
RNAI approach to identify gene specific lipid changes in HelLa cells. Several studies have
combined siRNA-induced gene knockdown with lipid studies. However, no one combined a

genetic screen to the lipidomics approach.
1.3.1.  Choice of target genes for the pilot screen

In order to assess the ability of siRNAs to induce significant and reproducible membrane lipid
changes, | chose a set of target genes coding for proteins acting in lipid homeostasis (Table 1)
and for which the knockout or gene silencing experiments affecting the membrane lipid
composition of mammalian cells had been previously described. | privileged the ones known to
be expressed in my cell system, the HeLa cell line, based on the web database Genevestigator
(Hruz et al, 2011). The expression of target genes in the HelLa cell line from the lab was then
confirmed using gRT-PCR (Fig. 2). Planning to further screen the kinome, I also privileged gene

targets among kinases.

1.32.  Efficacy of siRNA-induced gene knockdown

In order to study the roles of selected target genes (Table 1) in regulating membrane lipid levels
in HeLa cells and assess the off-target effects, each target gene was knocked down independently
using two different sSiRNAs. Each experiment was repeated two to three times independently. 72h
post siRNA transfection, the efficacy of siRNA-induced gene knockdown on the transcript levels
of each target gene was monitored using qRT-PCR. Ten percent of the cell pellet used for
quantitative lipid analysis was reserved for this purpose in a spare tube before lipid extraction
(Fig. 1.). Oligonucleotide primers were designed using the open-source software NCBI Primer-
Blast (Ye et al, 2012a). The sequences of all oligonucleotides used for this experiment are listed
in the appendix (p29). MRNA levels were measured using Real-Time PCR and normalized to
TBP mRNA (Fig. 2.). Most siRNA experiments induced more than 70% of gene knockdown
compared to non-transfected HelLa cells. Only the silencing of CERS2 and CERS3 genes could

not be quantified due to a loss of samples.
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Target gene Encoded protein and functions in lipid metabolism E)\(/glressmn
=  CK-alpha (Choline kinase alpha)
. Catalyzes the first step in PC biosynthesis and contributes to PE biosynthesis.
CHKA Phosphorylates Cho and EthN. 12.12
aralfine [Kinkee =  CHKASIRNA in breast cancer cells and decreases PC level (Glunde et al, 2005)
alpha . CHKA siRNA in HeLa cells decreases PCho and slightly decreases the pool of PC (Yalcin et al, 2010)
L] Homozygous mutant mice (Chka(-/-))are embryonic lethal (Wu & Vance, 2010)
L] Heterozygous mutant mice (Chka(+/-)) are viable and show no reduction in PC (Wu et al, 2008)
. CKB (Choline/Ethanolamine kinase)
CHKB = Catalyzes the first step in PE biosynthesis. Phosphorylates ethanolamine, and can also act on choline
(in vitro). May not significantly contribute to in vivo PC biosynthesis 12.69
choline kinase beta | ® Overexpression of CHKB_ in HEK293 and MD_CK increases PE levels
L] Homozygous mutant mice (Chkb(-/-)) survive to adulthood but show muscular dystrophy and
impairment on PC biosynthesis.(Wu & Vance, 2010)
ETNK1 =  EKI1 (Ethanolamine kinase 1)
_ L] Highly specific for EthN phosphorylation. May be a rate-controlling step in PE biosynthesis 9.89
ethanolamine = Overexpression of a mammalian ETNK1 accelerates the CDP-ethanolamine pathway (Lykidis et al,
kinase 1 2001)
FAZH . FA2H/FAAH
fatty acid 2- . Required for alpha-hyd_roxylation of free FA ar)d t_he formation of alpha-hydroxylated SLs 8.75
hydroxylase . Decreased FA2H activity changes the SM profile in fibroblasts (Dan et al, 2011)
L] HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase)
HMGCR R : h . . .
. Rate-limiting enzyme for cholesterol synthesis. Normally in mammalian cells this enzyme is
3-hydroxy-3- suppressed by cholesterol derived from the internalization and degradation of low density lipoprotein 12.98
methylglutaryl- (LDL) via the LDL receptor. :
CoA . HMGCR siRNA leads to a significant increase in binding and internalization of LDL particles in vitro
in mouse and human cells (Hibbitt et al, 2012)
CERS1-5 = CerS1-5 (Ceramide synthase 1-5) 1(9.71); 2
. . ceramide synthase (CerS) enzymes catalyze the formation of (dihydro) ceramide (15.23); 3
Ceramide synthase | a Overexpression, knockout and knockdown experiments show that individual CerS isoforms produce |(8.06); 4 (9.73);
1-5 ceramides with characteristic acyl-chain distributions (Mullen et al, 2012) 5 (13.30)
LDLR
. . LDL receptor (Low-density lipoprotein receptor)
Ipw—dens!ty . Binds LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by 13.48
lipoprotein endocytosis
receptor
L] NPC1(Niemann-Pick C1 protein)
. Intracellular cholesterol transporter which acts in concert with NPC2 and plays an important role in
NPC1
the egress of cholesterol from the endosomal/lysosomal compartment
Niemann-Pick . ’2\1(;30% siRNA in HeLa cells leads to cholesterol accumulation in late endosomes (Ganley & Pfeffer, 13.25
i 1
disease, - type C . NPC1 and NPC2 deficient cells are characterized by an increased storage of lipids (Lloyd-Evans &
Platt, 2010)
NPC2 L] NPC2 (Niemann-Pick C1 protein)
L] Intracellular cholesterol transporter which acts in concert with NPC1 and plays an important role in
Niemann-Pick the egress of cholesterol from the endosomal/lysosomal compartment 15.20
disease, type C2 L] NPC1 and NPC2 deficient cells are characterized by an increased storage of lipids (Lloyd-Evans &
Platt, 2010)
PISD . PISD (Phosphatidylserine decarboxylase proenzyme)
. . . catalyze the formation of PE by decarboxylation of PS 1292
phosphatidylserine |« Homozygous mutant mice (pisd(-/-))are embryonic lethal (Steenbergen et al, 2005) '
decarboxylase .

Heterozygous mutant mice (pisd(+/-)) are viable and show no lipid change (Steenbergen et al, 2005)
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Target gene Encoded protein and functions in lipid metabolism E)\(/glressmn
PRKAA1
protein kinase, =  AMPK subunit alpha-1(5'-AMP-activated protein kinase catalytic subunit alpha-1)
AMP-activated, =  Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein Kinase that plays 11.60
alpha 1 catalytic a key role in regulating cellular energy metabolism. (Faubert et al, 2013)
subunit
PRKAA2
protein kinase, =  AMPK subunit alpha-1(5'-AMP-activated protein kinase catalytic subunit alpha-2)
AMP-activated, = Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein Kinase that plays 11.36
alpha 2 catalytic a key role in regulating cellular energy metabolism. (Faubert et al, 2013)
subunit
SPHK1 = SPK1

_ _ = Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate 13.79
Sphingosine =  SPHK1 siRNA in MCF-2 breast cancer cells increases ceramides (Taha et al, 2006) :
kinase 1 =  SPHK1 siRNA in HEK293 cells increases de novo synthesis of ceramides (Maceyka et al, 2005)
SPHK2 . SPK2
Sphingosine = Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate 11.39
Kinase 2 . SPHK2 siRNA in HEK?293 cells decreases de novo synthesis of ceramides (Maceyka et al, 2005)
COL4A3BP

. hCERT (Ceramide transfer protein)/ StARD11 (START domain-containing protein 11)

collagen, type IV, | = Shelters Cer inside its START domain and mediates the intracellular trafficking of ceramides in a non-
alpha 3 vesicular manner from ER to Golgi. 12.63
(Goodpasture =  CERT mutant CHO cells are defective in SM synthesis (Hanada et al, 2009)
antlggn) binding L] Homozygous CERT mutant mice are embryonic lethal with a decrease of SM (Hanada et al, 2009)
protein

Table 1. Pilot siRNA screen of gene-related lipids. Name(s), function(s) and theoretical level of expression in
HeLa cells of candidate genes based on the web databases Uniprot and Genevestigator (median signal intensity on
Human Genome 47k array expressed in Log2 scale). Expression level: low (<10), medium (10-12) and high (>12).
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Figure 2. Gene downregulation by targeted siRNA. HelLa cells were transfected with 14.4nM siRNA against
target genes for 72 h. Cells were harvested, and RNA was extracted for g-PCR analysis of expression of genes. g-
PCR data are normalized to TBP mRNA expression, and data are means * standard errors of the mean (SEM) for
three independent experiments. Green bars represent siRNA-induced knockdown >70% compared to non-transfected
Hela cells.

1.3.3.  siRNA gene knockdown is sufficient to detect significant lipid changes

In order to determine the effects of gene knockdown on the steady-state lipid levels in HelLa
cells, I analyzed their lipid composition using mass spectrometry. Following siRNA treatment,
lipids were extracted and analyzed using ESI/MS. Then, lipid quantities were normalized to the
amount of total phosphorus in order to adjust for difference in cell size, membrane content, and
extraction efficiency. Then, data were compiled into heat map showing log2-fold change of each
lipid species in siRNA-treated cells over siControl-treated cells (Fig. 3A and Fig. 4). To screen
for significant changes in lipids, | used unpaired, two-tailed Student's t-tests to compare each
siRNA to siControl (Fig. 3B and Fig. 5). The whole dataset of the pilot screen is available in the
appendix (p127)

Most of siRNAs induced slight changes in membrane lipid composition (Fig 3B and 5) but
these changes were reproducible for the two different sSiRNAs targeting the same gene (A and B),
in most of lipid classes: more for sphingolipids than phospholipids (Table 2, Fig. 3A and 4).
Except for the siRNA-induced knockdown of PISD and CHKA that decreased PC and ether PC,
respectively (Fig. 3A and 4.), the siRNA-induced knockdown of genes involved in PLs

homeostasis (CHKA, CHKB, ETNK1 and PISD) didn’t have significant effect on the total pool of
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PC, PE, Pl and PS. No significant and reproducible effect on SLs and sterols were observed,
either.

Among the genes involved in the synthesis, trafficking and regulation of cholesterol levels
(HMGCR, LDLR, NPC1, NPC2, PRKAAL and PRKAA2), only PRKAAL silencing showed a
significant and reproducible increase of cholesterol and a decrease of Pl (Fig. 3B.). Finally,
SIHMGCR led to a decrease of GlcCer (Fig. 3B.)

target genes all lipids Table 2. Correlation between

CHKA . . . . ) . lipid profiles obtained with two
different siRNAs per gene.
Similarities of lipid changes

between gene knockdown
experiments performed with two
different siRNAs (A or B)

targeting the same gene were
evaluated by calculating the
Pearson  correlation  coefficient
between the two series of log2 fold
change. For each target gene, lipid
profiles were considered as
reproducible (green boxes) between
the two experiments with different
siRNAs for Pearson correlation
coef. >0.5. Negative coefficient
represent opposite lipid profiles
(red boxes).
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A Lipid classes B Lipid classes
SM  Cer GlcCer PC PE Pl PS  Chol SM  Cer GlcCer PC PE Pl PS  Chol
CHKA_A CHKA_A
CHKA_B CHICA_E
CHKE_A CHKB_A
CHKB_B CHKB_B
ETNKL_A ETNKL_A
ETNKL_E ETNKL_E
FA2H_A FAZH_A
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Figure 3. A pilot siRNA screen on lipid-related proteins induce changes in multiple lipid species. HeLa cells
were transfected with 14nM siRNA targeted against genes involved in the regulation of lipid homeostasis and lipid
masses were determined by ESI/MS. A) Lipid levels were normalized to the amount of total lipid phosphate. Lipid
changes are displayed as a heat map of the log2 of the mean fold change versus siControl (negative control sSiRNA).
Blue and yellow boxes indicate a decrease and an increase of lipid level, respectively. B) Heatmap of statistically
significant changes in lipids following siRNA knockdown. Lipid level changes are displayed as a heatmap of the -
log10 of the p value calculated from Student’s t test of siRNA vs. siControl. Yellow boxes indicate a significant
increase and blue boxes indicate a significant decrease. Black indicates no significant change. Data represent three to
five independent experiments SM: sphingomyelin; Cer: ceramides; GlcCer: glycosylceramide; PC:
phosphatidylcholine; PE: phosphatidylethanolamine; Pl: phosphatidylinositol PS: phosphatidylserine and chol:
cholesterol.
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Figure 4. A pilot siRNA screen on lipid-related proteins induces changes in multiple lipid species. HelLa cells
were transfected with 14nM siRNA targeted against genes involved in the regulation of PLs, SLs and sterol
homeostasis lipid masses were determined by ESI/MS. Lipid levels were normalized to the amount of total lipid
phosphate. Lipid changes are displayed as a heat map of the log2 of the mean fold change versus siControl. Blue and
yellow boxes indicate a decrease and an increase of lipid, respectively. Data represent one to three independent
experiments.
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Figure 5. Heatmap of statistically significant changes in lipids following siRNA knockdown. Lipid level changes
are displayed as a heatmap of the -log10 of the p value calcuted from Student’s t test of siRNA vs. siControl. Yellow
boxes indicate a significant increase and blue boxes indicate a significant decrease. Black indicates no significant
change and white boxes indicate no biological replicate. Data represent one to three independent experiments
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The siRNA-induced knockdown of genes involved in SL homeostasis showed the strongest
phenotypes. The knockdown of siFA2H induced a strong decrease of hydroxylated SM and
GlcCer (Fig 5.) and the silencing of sphingosine kinases tended to increase P1 and GlcCer (Fig. 3.
and 4.). The siRNA against SPHK1 also induced a decrease of S1P compared to the mean
amount of S1P of the whole dataset (data not shown) but since this bioactive sphingolipid species
was not detectable in most of samples, this change cannot be considered as statistically
significant. Even if the sSiRNA experiments were performed only once for ceramide synthases the
effects CERS1-5 gene silencing on SLs were reproducible for the two different sSiRNAs, A and B
(Fig 5. and Table 2.). Moreover, the individual silencing of these five ceramide synthases
induced a chain-length specific phenotype in SLs (Fig. 6.). As shown by Mullen, T.D. and
coworkers with MCF-7 cells (Mullen et al, 2011), the knockdown of CERS2 and CERS5 led to a
specific increase of C14-18 and C18-26 sphingolipids, respectively. Moreover, in most of HeLa
cells treated with siRNAs against ceramide synthases, SM levels were not much affected, except
for sSiCERS2 that also induced a decrease of C18 to C26 sphingomyelin. Finally, GlcCer was
particularly increased in cells treated with siCERS5 (Fig. 6.).

In summary, this pilot screen showed that sSiRNA-mediated knockdown of lipid-related genes
could induce reproducible changes in the lipid composition of HeLa cells, often in agreement
with previous published studies. Moreover, our lipidomics approach allowed the observation of
multiple changes in different lipid classes simultaneously.
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In this pilot screen experiment, the sSiRNA-induced knockdown of COL3A4BP was also tested.
COL3A4BP (standing for collagen, type IV, alpha 3-binding protein) is a gene with multiple
mMRNA splicing variants: GPBP, CERT_ and CERT/GPBPA26. GPBP and CERT,, as well as
GPBPA26 and CERT are identical but encode for different proteins. In 2003, Hanada K. and co-
workers identified CERT as the factor impaired in LY-A cells, a mammalian mutant cell line
defective in SM synthesis. CERT (standing for ceramide transfer protein) is responsible for the in
vivo non-vesicular trafficking of ceramides between the ER and Golgi for conversion to SM
(Hanada et al, 2003). In 2009, Wang X. and colleagues demonstrated that mice deficient in CERT
were embryonic lethal and showed a ~60% decrease in SM, accompanied with an increase of
ceramides (Wang et al, 2009). In parallel, it was shown that the downregulation of CERT by
SiRNA in C6 glioma cells significantly affects the levels of SM, too (Giussani et al, 2008). As
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previously reported, the siRNA-induced knockdown of CERT performed in the lab with HelLa
cells also led to a significant decrease of SM. This decrease was coupled to significant increase of
GlcCer and sterol esters. However, by comparing data in the lab with Dr. Ursula Loizides-
Mangold, different results were observed concerning the increase of sterol esters. The only
difference between our two experiments was cell confluence at the time of siRNA transfection.
Can cell confluence impact on the effects of CERT knockdown on membrane lipid composition?
The influence of cell-density in response to siRNA-induced knockdown has already been studied
in image-based RNAI screen. For instance, it was shown that siRNA transfection of adherent
mammalian cells induced different responses in cell islets edges compared to cells at the middle
of the islets (Snijder et al, 2012). Moreover, cell density is also known to influence the lipid
composition of cells. In 1997, Cansell M. and colleagues analyzed the lipid composition of
human endothelial cells in exponential growth phase and at confluence. Cells growth-arrested by
contact inhibition at confluence accumulate more cholesterol than cells in division and their fatty
acid distribution in PLs is different as well, while total amounts of PLs and FA are not changed
(Cansell et al, 1997).

In order to assess the importance of confluence on the effects of CERT knockdown, | seeded
2.10° cells per 6cm dish and transfected them with siRNA against COL3A4BP after 24h (sparse
cells), 48h (50% confluence) or 72h (dense) of cell culture, respectively (Fig 8. and Fig. 9.).
Following siRNA treatment, membrane lipid levels were analyzed using ESI/MS and normalized
to the amount of total phosphorus. I measured the efficacy of siRNA-induced knockdown on
CERT mRNA specifically by qRT-PCR (Fig. 8B and Fig. 9B). Ten percent of the cell pellet used
for quantitative lipid analysis was reserved for this purpose in a spare tube before lipid extraction.
In order to determine if the effect was cell type or CERT-specific, | performed the experiment in
two Human cell lines: HelLa and HeLa MZ from Marino Zerial (MPI-CBG, Dresden). Despite
having the same origin, the two cell lines differ in the fatty acid composition in their SLs. The
major SM in HeLa MZ cells is SM42:2 instead of SM34:1 in HeLa (Fig. 7A). Moreover, their
profile of glycosphingolipids is also different: GlcCer are detectable by TLC in both cell lines
while GalCer seems present in HelLa, only (Fig. 7B).
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Figure 7. Sphingolipid composition of HeLa and HeLa MZ cell lines. A. Distribution of fatty acyl chains of sphingolipids in
HeLa and HeLa MZ cell lines. B. Determination of glycosphingolipid species in HeLa and HeLa MZ. 50uL of sphingolipid
extracts from HeLa (column 2) and HeLa MZ (column 3) were analyzed by TLC. To distinguish GalCer and GlcCer the HPTLC
plates were impregnated with borate. Glycosylated lipids were visualized with Orcinol and determined by comparison with
standards (columns 1 and 4).

Whatever the cell line and the confluence, the downregulation of CERT induced specific
changes in sphingolipids and sterol esters while the amounts of phospholipids and cholesterol
remained unchanged. In average, the quantity of SM was reduced by 20-60% in CERT-silenced
cells, while the levels of Cer and GlcCer tended to increase and the amount of steryl esters was
sometimes doubled compared to siControl (Fig 8. and Fig. 9.) However, these changes differed
specifically depending on the cell line and their density at the time of siRNA transfection.
Maximal changes occurred for cells transfected at 50% confluence (after 48h culture), whatever

the cell line. While the gene silencing of CERT was higher than 70% in every condition
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compared to non-transfected cells, the effects of the siRNA-induced knockdown of CERT in
dense cells (after 72h of cell culture) were less important for SM and steryl esters than in 50%
confluent cells (48h), whatever the cell line, contrary to Cer and GlcCer, which continued to
accumulate in dense cells (72h) in HeLa MZ. After 72h of cell culture, the gene silencing of
CERT in HeLa MZ (Fig. 8B) induced around 80% increase of both Cer and GlcCer, against 40-
50% increase when cells were transfected after 48h culture (Fig. 8A and C). This result was
opposite in HeLa where Cer and GlcCer quantities also decrease when cells are transfected with
CERT siRNA after 72h of cell culture (Fig. 9A and C).

This experiment shows that cell confluence is an important factor to control when observing
lipid changes after siRNA transfection of adherent cells. Ideally, as in imaging experiments, it is
important to distinguish the results according to cell proliferation phases (Snijder et al, 2012) and
avoid false negative hits. In lipidomics experiments, this discrimination is not possible but we
could perform every siRNA experiment at multiple cell confluences, or at least take care to work

with the same initial cell number to ensure certain reproducibility between biological replicates.

1.4. Lessons from the pilot screen experiment.

This pilot screen confirms some data from literature and unexpected results that could be
interpreted with further analysis. The knockdown of target genes directly involved in the
synthesis of lipids such as choline, ethanolamine kinases or HMGCR, didn’t affect specifically
the lipids they synthesize. This confirms the necessity of large-scale screen studies in lipidomics
in order to find regulators of membrane lipid homeostasis. Moreover, the silencing of CERT
highlights the probability to find false negative hits depending on the cell confluence at the time
of cell transfection. Data obtained with two different siRNAs per gene also show that off-target
effects can strongly influence the lipid profile and that hits retrieved from large-scale RNAI
screen need to be confirmed with different siRNAs per gene. Finally, this “small” dataset
highlights the complexity of analyzing hundreds of phenotypic readouts, here lipid quantities,

obtained with three different machines and the necessity to use adapted bioinformatics tools
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targeted against COL3A4BP at different cell confluence (after 24h, 48h or 72h of cell culture) and lipid masses were
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and compared to non-transfected HelLa cells. C. Percentage of lipids in cells transfected with siRNA against
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Figure 9. Knockdown of CERT in HeLa cells at different confluences induces gradual changes both in SL and
steryl esters. A. HeLa cells were seeded at 2. 10° cells per 6cm dish and transfected with 14.4 nM of siRNA targeted
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2. Kinome-wide RNAI based screen in HeLa MZ cells

2.1. Experimental conditions

Regulators of membrane lipid homeostasis in mammalian cells are still far from being fully
identified. Good candidates could come from the kinase family that comprises more than 500
genes (Manning et al, 2002) which regulate several cell mechanisms, including lipid-related
genes. In order to explore the function of kinases in membrane lipid homeostasis, a kinome-wide
SiRNA screen was performed in human cells. After development of the technique at the scale of a
pilot screen targeting about 20 genes, the siRNA-induced knockdown of 715 kinase transcripts,
including protein, lipid and sugar kinases was processed, in duplicate. This primary screen was
run using pools of three siRNAs per gene from MISSION® siRNA Human Kinase Library
(Sigma-Aldrich) in order to decrease the probability of off-target effects (Jackson & Linsley,
2010). HeLa MZ from Marino Zerial (MPI Dresden) were used in order to be in the experimental
conditions similar to other RNAI screens performed in the groups of Lucas Pelkmans (Zurich)
and Jean Gruenberg (Geneva) and enable the comparison of our datasets. Finally, the whole
screen was run using complete cell medium with fetal calf serum coming from the same batch

series.

As for the pilot screen, after 72h siRNA transfection, cells were harvested, lipids extracted and
analyzed by ESI/MS (PLs and SLs) and GC/MS (sterols) (Fig. 1.). Changes in lipid profiles and

hits determination were then estimated using statistical tools.

2.2. Membrane lipid composition of HeLa MZ

First, the lipid profile of untreated HeLa MZ samples from the screen was characterized. In
the absence of treatment, cells were cultivated in the same conditions than cells treated with
SiRNA or transfection reagents alone, i.e. the same medium, number of cells at day 0 and
harvested after four days of culture. For each membrane lipid class, the major lipids as well as

the distributions of fatty acyl chains of different length or degrees of saturation, the proportions of
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hydroxylated sphingolipids, ether phospholipids and the profile of lysophospholipids are
described (Fig. 10-17).

e Sphingolipids:

Whatever the SL class, hydroxysphingolipids (SL-OH) represent around 20 mol% of total SL.
The distribution of fatty acyl chains differ between SL classes as well as between SL and their
dihydro or hydroxylated form inside each SL class. In sphingomyelin (SM) and ceramides (Cer),
the major species are SM/Cer 42:2 and SM/Cer 34:1 whereas the second major SM/Cer-OH is
40:1. SM-OH are also more unsaturated suggesting that the activity of ceramide synthases
involved in SL and SL-OH synthesis are different in HeLa MZ. On the contrary, the distribution
of fatty acyl chains is identical between GlcCer and GlcCer-OH. Major GlcCer species are 42:2
and 40:1. In Cer and GlcCer, the fatty acyl distribution of dihydro- forms are completely different

with enrichment in shorter chains, especially C16 dihydroceramides.
e Phospholipids:

Quantified phospholipids (PL) include LysoPLs and ether species (etherPL). EtherPLs represent
between 4 and 19 mol% of total PLs. LysoPLs, less than 1 mol%. Whatever the category, PLs
comprise between 0 and 6 double bonds but the major species are the most saturated ones and
ether lipids are also more saturated. This is particularly true for phosphatidylserine (PS) where
most of PS have one unsaturation whereas etherPS are saturated. The distribution of fatty acyl
chain length differs between PL and ether PL, except for phosphatidylcholine (PC) and ether PC.
The major PCs are PC34:1, PC32:1 and PC36, which corresponds to the pattern of LysoPCs that
results from the hydrolysis of PC by phospholipases and for which the major species comprise
either C16:0 or C18:1fatty acyl chains on sn-1 of glycerol-3-phosphate. This correspondence is
also found in other PLs. Indeed, the major PE species are PE36:2, PE36:1, PE34:1 and PE34:2
and LysoPE18:1, 18:0 and 16:0. The major Pl species are PI36:1, PI136:2, PI34:1 or the
polyunsaturated P138:4, and the major LysoPI are LysoP118:0 and 18:1. Finally, major PS species
are PE36:1 and 34:1 and LysoPS18:0, 18:1 and 16:0.
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phosphatidicholine (CS)
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phosphatidylethanolamine (PE)
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2.3. Data processing

In order to optimize the running time of samples by mass spectrometry, which was the most
time-consuming part of the experiment, cells were transfected and lipids analyzed by series of 90
conditions since the robotic nanoflow ion source (Nanomate) could infuse up to 96 lipid extracts

per MS run. All series were repeated in two independent experiments (Fig. 18)

A. Plate layout of sample series

1

2 3 4 5 6 7 8 9 10 11 12
JW”””&*d&*&
000000 OO0

HelaMz

Lipofectamine RNAiMax

AllStars Negative Control

w
<
=z

IR KRR :
CERT siRNA 2
<
ERRRRRRE R RS :
() °
R R R S R R Pt
******‘**** 76 kinase siRNAs
(9 seriesof 76 + 1 of 30 = 714 kinases)
Empty wells
(9 series of 90 samples and 1 series of 42) x 2 = 1,704 samples
B. Sample analysis
LIPID QUANTITIES |—>| LOG TRANSFORMATION I—) SAMPLE-BASED
NORMALIZATION _|> LIPIDOME ANALYSIS
1 o o
1,704 lipid profiles 1 1,325 lipid profiles L 1 895 lipid profiles
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1 ! +157 quality controls
1
1 |
Y Fi L':: 2
FILTER 1 ILTER

* Toxic conditions
¢ Uncorrelated duplicates

¢ Technicalissues

Figure 18. General overview of the analysis procedure. 1. Cell transfection, lipid extraction and analysis by mass
spectrometry were performed by series of 90 samples in order to optimize the performance of mass spectrometry
using the robotic nanoflow ion source (Nanomate). 2. Lipidomic analysis of the screen was performed after
discarding unreliable samples, log transformation and sample-based normalization of data (=lipid quantities) with z-
score

First, sSiRNAs with incomplete lipid profiles due to technical issues were filtered from the
dataset analysis. Next, in order to adjust for difference in cell size, membrane content, and
extraction efficiency, the quantity of each lipid species was normalized to the sum of PLs (PC,

PE, PI, PS, CL) in every sample. For practical reasons, the phosphorus assay of the 1,702 total
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lipid extracts was not performed but the total content of PLs in lipid extracts should be

proportional to phosphorus levels measured (Rouser et al, 1970).

Then, phospholipid-corrected lipid quantities were log,-transformed. As shown in Figure 11,
lipid quantities from the kinome-wide screen rather follow a Poisson than a normal distribution.
Log-transformation of raw data makes the distribution more symmetric and approximately
normal in most lipid categories (Fig. 19). This transformation is usually necessary in SiRNA
screen experiments to formally conduct statistical analysis for quality control and hit selection
(Zhang, 2011b).

Finally, log,-transformed data were normalized in order to correct systematic errors from the
data and allow comparison of data from different experimental series (Fig. 19). Many
normalization methods exist in RNA interference screens. They can be control or sample-based.
Control-based normalizations require a statistically significant number of controls. However, only
two Allstars negative controls were used per experimental series in this screen and as reported in
the following sections, all negative controls (Allstars, Lipofectamine RNAiMax and untreated
HeLa MZ) showed lower levels of SLs compared to the mean of all samples. Therefore, a
sampled-based normalization was more suitable in order to analyze this primary RNAI screen
(Birmingham et al, 2009). Among possible techniques: the z-score, strictly standardized mean
difference (SSMD), B score and their respective robust version (z-score*, SSMD*, B score*).
Knowing that at least three replicates per sSiRNA are necessary to observe statistically significant
SSMD (Zhang, 2011a) and that B scores is made for datasets with within-plate systematic effects,

log2-transformed data were normalized per plate with the z-score (Fig. 19 and 20).

Z-score was calculated using the following formula: Z= (x; — X) /oy , Where x; is the lipid
quantity of the gene i, X is the average of lipid quantities of all samples, and o, is the standard
deviation of lipid quantities of all samples. Z-score is a measure of standard deviation. According
to its sign, positive or negative, it represents data above or below the mean of all samples,
respectively. The z-score was calculated either for every lipid quantity or for the sum of lipid
quantities per lipid class or per chemical feature inside lipid class (chain-length, unsaturation
degree, functional groups such as hydroxylation, ether, phosphate, etc.). Z-score data are
normally distributed and sample-based normalization per experimental series prevented the batch
effect (Fig. 20).
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In order to avoid analyzing siRNA conditions associated with apoptosis or cell necrosis due to
siRNA-induced toxicity, genes with a significant effect on cell numbers were discarded from the
z-score log, transformed dataset. This toxicity is due to several factors, including cell confluence
at the time of transfection (Snijder et al, 2012), the decrease of an essential targeted protein, such
as Polo-Like kinase 1 (PLK1) (Liu & Erikson, 2003), or the off-target effect (Jackson & Linsley,
2010). Cytotoxicity leads to a reduced number of cells, which results in turn in a characteristic
lipid profile showing a decrease of quantities for all lipids. In order to automatically discriminate
samples with few cells from the others, images of cells 72h post siRNA transfection were
analyzed with the open-source image analysis software CellProfiler (Carpenter et al, 2006) and
samples where the pictures of cells showed less than 70% of surface area occupied were

discarded from the final analysis (Fig. 21).

Toxic or few cells (<70% Area covered by cells)

*  Hela MZ (without treatment) *  PLK1 (apoptosis)

Original image, cycle #1
R D T,

cells objects Original image, cycle #3 cells objects

e °‘q.‘3' ‘,'
i% e, %Wg’g,l

PR FHY ]
Rt i

200F :
400§
600f
800
- D

1000 1000 2

[0 b ("
0 200 400 600 800 10001200 0 200 400 600 800 10001200 0 200 400 600 80010001200

cells objects outlines cells objects

0
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400 10th pctile diameter 21.9 pixels 10th pctgle d!ameter 36.2 p!xels
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Figure 21. Image analysis pipeline using the open-source software CellProfiler. Samples with less than 70% of
occupied area covered by objects (=cells) were considered as representative of samples with too few cells for
objective interpretation of results. Their lipid profiles correlated with their cell phenotype and were discarded from
the analysis.
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In addition, siRNA conditions with only one biological replicate or for which, two biological
replicates showed opposite lipid changes (Pearson correlation null or <0 between the z-score log;

transformed profiles of two biological replicates) were discarded from the dataset, as well.

The raw dataset, calculations and discarded conditions with their justification are listed in the
appendix (127).

2.4.  Quality controls

In order to assess the quality of the screening experiment, several control conditions were
added in each series of samples: either non-treated cells (HeLa MZ), cells treated with the
transfection reagent alone (Lipofectamine RNAIMAX) or transfected with 14.4nM of non-
targeting siRNA (siControl), or of sSiRNA against PLK1 and CERT (Fig. 18). Then, lipid levels in
each sample were quantified using mass spectrometry, normalized to the total sum of PLs, log2-

transformed and sample-based normalized with z-score, as described previously.

In order to validate the pertinence of the normalization, the level of lipids in control
conditions was compared between all steps of the normalization process (Fig. 24-20). First, lipid
quantities were normalized to the sum of PLs in every sample. A priori, it is not correct to sum
the quantity of every individual lipid species because mass spectrometry method doesn’t allow
the absolute quantification of every lipid. However, when comparing the average sum of PLs to
the average number of cells estimated from microscopy pictures using the open-source software
CellProfiler, it appears that these two measurements are well correlated since the Pearson
correlation coefficient is higher than 0.5 in most of experimental series (Fig. 22A). Moreover, the
sum of PLs is strongly correlated to the sum of all lipids and PC in the whole screening dataset.
The sum of PLs is also correlated to SL and sterols but to a lower extent (Fig. 22B-E). The

correlation coefficient between PLs and SLs depends on the experimental series.

The comparison of average sums of total lipids before and after normalization to the sum of
PLs shows that this normalization is able to correct the general variation of lipid levels in quality
controls (Fig. 23).
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78



Results

2.1.1 Effects of transfection reagent and non-targeting siRNA controls

The transfection reagent used for the kinome-wide screen experiment was Lipofectamine™
RNAiMax from Life Technology. As most of siRNA transfection reagents, this is a proprietary
liposome-based formulation made of cationic lipids that could eventually interfere with the lipid
composition of treated cells. In order to assess the effects of this liposome-based transfection
reagent on the lipid profile of HeLa MZ, the lipid composition of HeLa MZ was compared to the
one from HelLa MZ treated with Lipofectamine RNAiMax, at the same concentration as for
siRNA transfection. In addition, these conditions were compared to the lipid profiles of HeLa MZ
transfected with a non-targeting SiRNA, the AllStars siRNA negative control from Qiagen
(siControl). Each series of samples from the kinome-wide RNAI screen comprised two replicates
of each of these three negative controls (Fig. 10.). As expected, none of these negative controls
had significant effects on the lipid profile of HeLa MZ (Fig. 24-28). However, it is worth noting
that after sample-based normalization in z-score, these three negative controls show significantly
less ceramides and glucosylceramides compared to the mean of all siRNA conditions from the
screen. Moreover, Cer and GlcCer levels in non-treated HeLa MZ are significantly lower
compared to siControl, suggesting that siRNA transfection in HeLa MZ naturally induces an
increase of these sphingolipids that could be the expression of a cellular stress (Fig. 25D, 27C
and 28C).

2.1.2 PLKZ1 siRNA induces an apoptotic lipid profile

If negative controls chosen for this screen are classical in large-scale RNAI screens, positive
controls were more difficult to find. Indeed, none is used routinely in the recent field of
lipidomics. A good positive control should induce a specific effect for every phenotypic readout
in order to allow statistically significant hit selection. In our case, it means finding either a target
gene whose the silencing or drug inhibition induces a significant change in different lipid classes
simultaneously or several target genes which has combined effects on all lipid classes. Since the
kinome-wide RNAI screen was performed with the purpose to find such a target genes, no
positive control could be used in the screen. Moreover, for practical and economic reasons, the

efficacy of gene knockdown could not be controlled for all sSiRNA experiments from the screen
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by gRT-PCR. However, in order to control the efficacy of the siRNA transfection reagents and
conditions throughout the screen, siRNAs against PLK1 and CERT were used as additional
quality controls. The silencing of PLK1 is a control of transfection, classically used in large-scale
RNAI screening experiments that induces apoptosis. Five SiRNA transfections against PLK1
were randomly performed in each series of samples. As expected, most of them induced cell
death, meaning a sharp reduction in the number of cells (Fig. 23A) correlated with a global
decrease of lipids (Fig. 23B). Lipids play an important role in apoptosis through their function in
the cascade of signaling events and in membrane remodeling. Moreover, the lipid composition of
apoptotic membranes is modified: ceramides are up-regulated and contribute to signaling events
in mitochondria, PS molecules are exposed at the outer leaflet of plasma membrane, many of PLs
are peroxidized under the oxidative stress that accompanies apoptosis and the level of CLs, the
major mitochondrial lipids decrease leading to the release of cytochrome ¢ with which it interacts
(Crimi & Esposti, 2011; McMillin & Dowhan, 2002). In PLK1 silenced-cells, beyond the general
reduction of lipids, significant changes in the ratio between the levels of lipid classes could
indeed be observed: SL increased, sterol esters and CL decreased while PLs and sterols remained
unchanged relative to other lipid classes and compared to siControl (Fig. 24-25). In addition, the
fatty acid distribution of sphingolipids was also modified, with a more important increase of
shorter chains in general, and of C16 ceramides in particular (Fig. 26-28). All together, these
modifications show that siRNA-induced knockdown of PLK1 specifically induced a programmed
cell death, as expected. These effects were observed all along the screen, showing there was no
problem of transfection conditions. Moreover, as the silencing of ceramide synthases in the pilot
screen, the PLK1 siRNA quality control emphasizes the importance of not only analyzing the
levels of lipid classes but also the distribution of fatty acids inside lipid classes in order to well

characterize phenomena.

2.1.1 CERT siRNA induces SL, Pl and sterol changes

Two transfections of siRNA targeting CERT were performed per series, as an additional
quality control of the kinome-wide screening experiment. As previously described in the pilot

screen, the siRNA knockdown of CERT induced a significant decrease of SM, coupled to an
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increase of sterol esters and C22-24 ceramides compared to siControl. Moreover, compared to the
pilot screen experiment, an additional increase of Pl was observed. (Fig. 24-28).
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Figure 24. Phospholipids levels in quality controls and comparison of PL changes across the normalization process. HelLa
MZ cells were seeded at 4. 10° cells per 6cm dish and either treated with the transfection reagent alone (Lipofectamine
RNAIMAX) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. HeLa MZ represent
non-transfected cells. Lipid masses were determined by ESI/MS. Average sum of lipid species per lipid class: A) before
normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after log2 transformation and D)
sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-tailed Student's t-tests to
compare each siRNA to siControl  *, P<0.1; **, P<0.05; ***, P<0.01. Data are means + standard errors of the mean (SEM) and
represent between 20 and 80 independent experiments.
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Figure 25. Sterols and sphingolipid levels in quality controls and comparison of lipid changes across the normalization
process. HelLa MZ cells were seeded at 4. 10° cells per 6cm dish and either treated with the transfection reagent alone
(Lipofectamine RNAIMAX) or transfected with 14.4nM of non-targeting siRNA (siControl), sSiRNA against PLK1 or CERT. HelLa
MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid species
per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after
log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-
tailed Student's t-tests to compare each siRNA to siControl  *, P<0.1; **, P<0.05; ***, P<0.01. Data are means * standard errors
of the mean (SEM) and represent between 20 and 80 independent experiments.
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Figure 26. Chain length distribution of SM in quality controls and comparison of lipid changes across the normalization
process. HeLa MZ cells were seeded at 4. 10° cells per 6cm dish and either treated with the transfection reagent alone
(Lipofectamine RNAIMAX) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT. HelLa
MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid species
per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after
log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-
tailed Student's t-tests to compare each siRNA to siControl  *, P<0.1; **, P<0.05; ***, P<0.01. Data are means * standard errors
of the mean (SEM) and represent between 20 and 80 independent experiments.

83



Results

B Hela Mz
M Lipofectamine RNAiMax

m siControl
B CERT
B PLK1

fmol/ sum total PLs

C14 Cer C16 Cer C18 Cer C20 Cer C22 Cer C24 Cer C26 Cer

6
B
k4
s
=]
<
§ H Hela Mz
3 M Lipofectamine RNAiMax
€ ’
= |
‘g siControl
c M CERT
[N
by HPLK1
-1
K]
C14 Cer C16 Cer C18 Cer C20Cer C22Cer C24 Cer C26 Cer
C 3
2
1 B HelaMZ
g H Lipofectamine RNAiMax
0
E W siControl
1 W CERT
W PLK1
-2
-3

C14 Cer C16 Cer C18 Cer C20Cer C22 Cer C24 Cer C26 Cer

Figure 27. Chain length distribution of Cer in quality controls and comparison of lipid changes across the normalization
process. HeLa MZ cells were seeded at 4. 10° cells per 6cm dish and either treated with the transfection reagent alone
(Lipofectamine RNAIMAX) or transfected with 14.4nM of non-targeting siRNA (siControl), SiRNA against PLK1 or CERT. HelLa
MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid species
per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C) after
log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired, two-
tailed Student's t-tests to compare each siRNA to siControl  *, P<0.1; **, P<0.05; ***, P<0.01. Data are means * standard errors
of the mean (SEM) and represent between 20 and 80 independent experiments.
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Figure 28. Chain length distribution of GlcCer in quality controls and comparison of lipid changes across the
normalization process. HeLa MZ cells were seeded at 4. 10° cells per 6cm dish and either treated with the transfection reagent
alone (Lipofectamine RNAIMAX) or transfected with 14.4nM of non-targeting siRNA (siControl), siRNA against PLK1 or CERT.
HelLa MZ represent non-transfected cells. Lipid masses were determined by ESI/MS and GC/MS (sterols). Average sum of lipid
species per lipid class: A) before normalization, expressed in fmol, B) after normalization to the sum of total PLs per sample, C)
after log2 transformation and D) sample-based normalization with z-score. Significant changes in lipids were tested with unpaired,

two-tailed Student's t-tests to compare each siRNA to siControl  *, P<0.1; **, P<0.05; ***, P<0.01. Data are means + standard
errors of the mean (SEM) and represent between 20 and 80 independent experiments.
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2.5. Kinome-wide RNAI screen results

2.2.4  Observation of lipid behavior.
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Figure 29. Correlation between lipid quantities and their variability. Scatter plot representing mean lipid quantities versus the
inverse of the coefficient of variation (1/CV) for each A. lipid class or B. individual lipid species quantified by mass spectrometry

over 1,472 samples.

More than 800 lipid molecules were quantified by mass spectrometry for each SiRNA
conditions. In order to be able to determine significant lipid changes during the process of hit
selection, the variability of the different lipid categories was investigated. First, it is noteworthy
that the coefficient of variation (CV) of lipid levels is inversely proportional to their abundance,
in a general manner. PLs, the most abundant lipids in mammalian cells have a lower CV than SLs
and sterols. Moreover, the CV of PLs is <1, which corresponds to low variance distribution,
contrary to SL and sterols (Fig. 29A). The correlation between CV and lipid quantities is strong
(Pearson correlation coef >0.8) when considering the sum of lipids of each class that is mostly
influenced by the quantity of major lipid species (Fig. 29A). However, when plotting every
individual lipid versus its corresponding 1/CV value, such correlation is less obvious (Fig. 29B).
Indeed, most of molecules quantified by mass spectrometry are very low abundant lipids and their
variability may not only depend on their abundance but also on their function in cells,

degradation, recycling processes, food intake or on the efficacy of lipid extraction. Knowing this,
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all individual lipid species were kept in the screen analysis because whatever the variability of
considered lipids, I assumed that it didn’t prevent to observe significant changes However, in
order to overcome difficulties of hit selection and biases in hierarchical clustering due to the
weight of variability of individual lipid species, lipids quantities were summed according to their
categories: lipid class, chemical characteristics (i.e. hydroxylation, ether, etc.), chain length or

unsaturation degree.

2.2.5  The puzzle of hit identification

After normalization and filtering of the dataset, the lipid profiles of 368 kinase siRNA-induced
knockdowns were compared for hit identification. Every lipid change was expressed as the mean
of z-score log2-transformed lipid quantities of two biological replicates. The whole dataset is
available in the Appendix (50). Several methods for hit selection exist in large-scale RNAI
screening experiments. They depend on the format of the screen: its scale, the number of
replicates, the presence and the strength of controls, the normality of the dataset, the variability of
phenotypic readouts and more importantly: the objective of the analysis. (Birmingham et al,
2009). The purpose of this kinome-wide RNAI screen was multiple: exploratory and hypothesis-
driven. While the hypothesis-driven analyzes often complement previous studies to confirm or
infirm hypotheses concerning specific genes, the exploratory analysis of the screen is based on
statistical tools able to recognize sets of genes with potentially interesting lipid profiles and
doesn’t require upstream hypotheses. The combination of both approaches is necessary to retrieve
a maximum of benefits from the screening analysis. This chapter is mainly devoted to the
exploratory approach and to the comparison of different statistical tools for hit identification with

their interests and limitations.
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a) Hit identification using threshold determination
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In order to identify hits in every individual lipid categories, threshold determination was
performed for each phenotypic score using the ranking method. This classical method of hit
identification consists in considering: “Mean + or — k standard deviation (SD)” where Kk is a preset
constant, which correlates the interval between the mean and + k SD to the probability for
selected hits to be significant. In z-score data sets, the value of z is equivalent to £k SD. In a
normal distribution, data are usually considered as significant for mean + k SD with k>=2 or 3
(Fig. 30A). However, in my conditions, whatever the lipid category, ~90% of samples had a z-
score |z| < 1.1 could choose a more stringent cutoff value. However, knowing that I’m interested
in several lipids at the same time, | preferred selecting more candidates to compare in order to
increase the probability to find genes with the same pattern of lipid changes and sharing maybe
the same function in lipid homeostasis. Thus, genes with phenotypic scores above the cutoff
values |z| >= 1 were selected as hits (Birmingham et al, 2009). With this method, genes
significantly affecting each individual lipid category, chain length and unsaturation degree could
be identified.

The list of hit genes per lipid category could be studied independently. However, as shown in
Table 3, most of hits affect different lipid classes, simultaneously. Among them, several are part
of MAPK, AMPK and PI3K-MTOR signaling pathways, which are known to be key regulators in

the energy balance in cells.

In order to better understand how these genes affect lipid homeostasis, it is necessary to group
them according to their combinations of lipid changes. Different tools exist with their advantages
and limitations. No method is bad. They simply present the results in different ways and all can
help to build hypotheses. In the following sections, some of them are described.
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Table 3. Major hits per
lipid class. For each
lipid class, list of genes
with phenotypic scores
above the cutoff values
|z| >= 1 were selected as
hits. Genes inducing an
increase or a decrease of
lipid levels are grouped
in columns (+) or (-),
respectively. Genes in
blue induce a change in
only one lipid category.
Genes that induce a
change in several lipid
categories are in black.
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b) Principal Component analysis (PCA)

Then, to determine whether certain genes induced specific combinations of lipid changes, a
Principal Component Analysis (PCA) of the dataset was performed. PCA is a linear
transformation that converts n original variables, here lipid categories, into 2 or 3 dimensions,
allowing to visualize more clearly how the variables are correlated. PCAs were performed using
Partek Genomics Suite. All variables are represented in bi-plots by vectors (Fig. 31 and 32), and
the direction and length of the vector indicate how much each variable contributes to the two
principal components in the plot. Here, 2-dimensions representations were chosen because the
first two principal coordinates explained enough of the variance in my data (between 42 and 90%
depending on the variables, cf. Fig. 30-32). For instance, in Fig. 30A, the first principal
component, on the horizontal axis, has positive coefficients for the different variables (PI, PS,
cholesterol, steryl esters, CL and sphingolipids). That is why the eight vectors are directed into
the right half of the plot. The largest coefficient in the first principal component is cholesterol.
The second principal component, on the vertical axis, has positive coefficients for the variables
cholesterol, steryl esters, PI, PS, CL, PE and negative coefficients for PC and sphingolipids. This
indicates that the second component distinguishes these two clusters of variables that tend to have
opposite variations. These 2-D bi-plots also include a point for each of the 368 genes, with
coordinates indicating the score of each observation for the two principal components in the plot.
For example, points near the left edge of this plot have the lowest scores for the first principal
component. The points are scaled with respect to the maximum score value and maximum

coefficient length, so only their relative locations can be determined from the plot.

The analysis of the 2-D bi-plots representing PCAs with different combinations of lipid classes
that allows to select genes that vary the most according to individual or combinations of lipid
categories. | performed a PCA for major lipid classes but also for chain length and unsaturations
inside each lipid class in order to find genes that showed changes specific of chain length, for
instance. We can observe that whatever the bi-plot, most of genes cluster in a cloud in the middle

of variables and represent genes with few changes of lipid levels.

The first PCA, on major lipid classes (Fig. 30) shows the general tendency of lipid changes in
the screen. Some clusters of lipid changes can be observed. In general, sphingolipids tend to

change together. Idem for PI, PS and cholesterol. On the contrary, PC and PE tend to show
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opposite directions. As a proof of concept, Fig. 30A was performed with the normalized 1,325
samples before filtering on toxic conditions and includes both duplicates per gene, including the
controls. As observed previously, negative controls C100N, C100M and C100S standing for
HeLa MZ, Lipofectamine RNAiMax and siControl, respectively, all cluster in the middle of the
plot because of their lack of effect. On the contrary, samples treated with sSiRNA against CERT
are a bit eccentric with more positive coefficient on the Y axis toward steryl esters and samples
treated with siPLK1 (Control) are completely dispersed from the centre with a phenotype in

sphingolipids.

Then, the same PCA was performed with the final dataset grouping averaged z-scores of
duplicates showing correlated lipid profiles and no toxicity. From this PCA, some genes with
extreme changes for some lipids could be selected. PRKA1R1A for instance, that codes for a
genes involved in the control of autophagy, is localized at the upper right edge, in the opposite
direction of PC and PE. When coming back to the z-score values, it corresponds to an increase of
all lipids except PC and PE. The other PCAs were performed in order to dissect lipid changes
observed inside each lipid categories and select genes with specific changes. | could describe the
hits observed for each PCA but the hit analysis is still ongoing and involves projects in
collaboration with other groups. Instead, | will rather describe how lipids change inside each lipid
class according to the composition in fatty acyl chains (Fig. 31 and 32). Indeed, each lipid class
comprises itself hundreds of lipids that differ in their fatty acyl composition. In mammalian cells,
fatty acyl chains of membrane lipids usually range from 12 to 26 carbons and comprise between 0
to 6 double bonds (Cook, 2008). The combinations of fatty acyl chains differ between SLs and
PLs. For instance, shorter and more polyunsaturated FAs are found in PLs. Moreover, while for
PLs several combinations of FA are possible and not distinguishable using the TSQ mass
spectrometer, SLs are made of a fixed 18 carbons-long sphingoid base acylated with a FA
ranging from 14 to 26 carbons depending on the specific ceramide synthases (Aguilera-Romero et
al, 2013). FA present in membrane lipids come either from de novo synthesis, diet, such as
essential FAs or from the combination of both through sequential pathways of fatty acid
desaturation and chain elongation (Cook, 2008). Moreover, as described in the introduction, fatty
acyl chains can be hydroxylated in sphingolipids, bound the glycerol backbone through ether
linkage in phospholipids, or lipids can also comprise only one hydrophobic chain, as in
lysophospholipids and dihydroceramides.
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Figure 30. Principal Component Analysis (PCA) of lipid classes. The z-score data from the kinome-wide RNAI screen were
analyzed by PCA using Partek Genomics Suite A. before (1,325 samples) and B. after filtering and averaging the two duplicates
(368 genes). % (percentage of PCA mapping expressed in the title of each graph) of the variation in samples was revealed in the
first two components. The first principal component named PC#1 is represented by the X axis and the second principal component

by the Y axis (PC#2). Lipid categories appeared to be a source of variation and are indicated by the different vectors.
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First, for phospholipids (Fig. 31), it is noteworthy that genes show different changes between
the different classes of PLs but that globally vectors representing variables Lyso- and ether
species point in the same direction as their diacylester counterparts. When comparing changes in
unsaturation degree, we can notice that whatever the PL category, variations in very unsaturated
PLs (>2 unsaturations) differ from variations observed for saturated or monounsaturated lipids.
Finally, whatever the PL category, variations according to fatty acyl chain lengths can generally
be clustered in two groups: short chains versus long chains, even if the precise composition of

these two groups differs between PL categories.

Concerning sphingolipids (Fig. 32), variations depend more on the lipid class (SM, Cer or
GlcCer) than the unsaturation degree of the fatty acyl chain, its number or its nature (SL,
hydroxySL or dihydro-). However, when comparing variations depending on the fatty acyl chain,
it is noteworthy that depending on the SL class, variations affect differently different cluster of
fatty acyl chains. For instance, in SM, variations observed for C14 and C16 differ from longer
chains and from C10-C12. For ceramides, four groups can be distinguished: group 1 with C16,
group2 with C22-24, group 3 with C18, C20 and C26 and group 4 with C10-14. Knowing that
ceramide synthases are specific from fatty acyl chain length, it is possible from this PCA to select
genes that affect specifically these different groups and maybe find regulators of ceramide
synthesis. Finally, in glucosylceramides there is only a division in variations between the major
GlcCer (C22, C24, C16) and the others.

In conclusion, from this analysis with PCA, we learn that major changes observed in lipid
profiles can be first attributed to general changes between lipid classes and inside each lipid class
mainly from the unsaturation degree in phospholipids and from the fatty acyl chain length in

sphingolipids.
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Figure 31. Principal Component Analysis (PCA) of lipid classes. The z-score data from the kinome-wide RNAI screen were
analyzed by PCA using Partek Genomics Suite after filtering and averaging the two duplicates (368 genes). % (percentage of PCA
mapping expressed in the title of each graph) of the variation in samples was revealed in the first two components. The first
principal component, named PC#1, is represented by the X axis and the second principal component by the Y axis (PC#2). Lipid
categories appeared to be a source of variation and are indicated by the different vectors. Changes according to A. main PL
classes. B. degree of unsaturations in PLs and chain length in C. PC, D. PE, E. Pl and F. PS
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Figure 31. Principal Component Analysis (PCA) of lipid classes. The z-score data from the kinome-wide RNAI screen were
analyzed by PCA using Partek Genomics Suite after filtering and averaging the two duplicates (368 genes). % (percentage of PCA
mapping expressed in the title of each graph) of the variation in samples was revealed in the first two components. The first
principal component, named PC#1, is represented by the X axis and the second principal component by the Y axis (PC#2). Lipid
categories appeared to be a source of variation and are indicated by the different vectors. Changes according to A. main SL

classes. B. degree of unsaturations in SLs and chain length in C. SM, D. Cer, E. GlcCer.
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c) Genes with patterns of lipid changes: correlation- vs HIS-based selection

In parallel to hit selection per individual lipid categories or per specific combinations of lipid
changes, techniques based on correlation were used in order to identify groups of genes with
similar patterns of lipid changes. First, a similarity matrix was performed in order to identify
genes whose the change was correlating for most of lipids, whatever the strength of these
changes. Lipid changes, expressed as the mean z-score of two biological replicates, of 368
kinases were compared over 778 lipids; the correlation between genes was calculated using
Pearson and ranges between -1 (blue) and 1 (yellow) in the similarity matrix (Fig. 33). Among
the 368 input kinases, 35 show a particularly correlated phenotype. (Fig. 33A, red box). The heat
map representation of lipid changes for selected kinases shows that they are not 100% correlating
over the whole lipidome and that subsets of genes are even more correlated (i.e. TRIM24 ad
TRIM33) (Fig. 33B)
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Other sets of genes with correlated or anti-correlated profiles of lipid changes can be found
with this method but this is a slow process and it doesn’t inform directly about which lipid levels

are affected nor the strength of these changes.

A more intuitive technique to find genes with lipid patterns is hierarchical clustering. As the
similarity matrix, hierarchical clustering is based on correlation. This is an iterative process that
finds and joins the pairs of genes with the most similar profiles of phenotypic changes. Pairs of
genes are considered as similar if their profiles of phenotypic changes are correlated. The
hierarchical clustering represented as heat maps allows to visualize simultaneously genes with
correlated lipid profiles and the strength of this correlation that is proportional to the length of the
dendrogram root, the direction of phenotypic changes per variable (increase and decrease are
expressed color-coded) and their strength (intensity of the color is proportional to the value of the
z-score). However, as shown in Figure 34, the hierarchical clustering of lipids changes from the
368 kinases over either the 778 individual lipid species or the major lipid classes is represented as
a heat map is not easily interpretable (Fig. 34). Indeed, correlation is found only for pairs of
genes with similar patterns over the whole phenotypic profile. As represented for genes A, B and
F in Figure 28. On the contrary, genes with strong similarities for only a part of the phenotypic
readouts, such as genes C and E (Fig. 35.) are not correlating with gene A. Thus A, C and E are
not considered as linked together while we can imagine that different genes have the same
function in the regulation of some observed phenomena but not all of them. Therefore, depending
on the screen, correlation-based statistical methods can produce a lot of false negative hits and
being hardly interpretable.

In order to overcome this limitation, Berend Snijder and Prisca Liberali from the group of
Lucas Pelkmans (ETH Zurich, Switzerland) conceived a novel tool of statistical analysis of
genetic perturbation screens named hierarchical interaction score (HIS). The HIS was originally
conceived in order to find functionally interacting genes across RNAI screens with different
readouts. A HIS is calculated for every pair of genes and top-scoring gene interactions are
attributed to genes that present similar strong changes either for a subset or all the phenotypic
readouts (Fig. 35.). While correlation considers all the dataset and shows non-directional links

between genes that have the same pattern in all condition even if the strength of phenotypic
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changes is very different, HIS considers nested effects. Two genes are linked when they have the
same phenotypes in subset of lipids. Moreover, genes with a good correlation have a good HIS.

Whatever the context, it allows to find hit genes and to prioritize their relationships
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Figure 34. Heat map of lipid changes resulting from the kinome-wide siRNA knockdown in HeLa MZ cells. A.
Individual lipid and B. lipid class level changes are displayed as a heat map of the z-score log,-transformed lipid
quantities. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes represent no
change and white boxes indicate missing values. Data represent the mean of two independent experiments.
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Figure 35. Comparison between correlation- and HIS-based clustering of genes with several phenotypic readouts. (from

Prisca Liberali)

Therefore, in order to find genes probably linked in the regulation of all or a subset of the 10
analyzed lipid classes (PC, PE, PI, PS, CL, SM, Cer, GlcCer, cholesterol and steryl esters), the
hierarchical interaction scores (HIS) of 368 kinases genes was calculated and the genes with top-
scoring hierarchical interactions were selected as hits. Over 368 candidate kinases, the 1,000
strongest interactions were visualized using the open source software http://www.his2graph.net/
(Fig. 36).

Gene interactions are graphically represented as a network of genes that cluster into sub
networks of different colors corresponding to specific patterns of lipid changes. Individual
examination of lipid profiles from selected hits expressed as heat maps of z-score per lipid class
confirmed that the genes induce specific patterns of lipid changes. Moreover, most of genes
retrieved from the HIS analysis correspond to hit genes identified after threshold determination in
individual lipid classes (Table 3) meaning that HIS analysis is able to select the strongest
phenotypes and to sort them hierarchically. Now, their phenotype is more readable. Moreover,
the HIS is also able to find less strong phenotypes and associate them to the analysis since as
indicated with red arrows on Figure 37, the network also comprise additional hits that were not
identified with the threshold method since their z-score was below the cutoff value. The letters

(A-G) associated with individual heat maps correspond to the sub networks observed on the HIS
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graphical representation (Fig. 36 and 37.). Thanks to normalization with total PLs, no gene with
a significant decrease or increase in all lipids that could be due to a modification of the cell
number was selected as hits. Instead, some sub networks reveal clusters of genes showing similar

patterns.
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Figure 36. Graph visualization of the resulting HIS network for the 1,000 strongest interactions as inferred on
the kinome dataset. Visualization is as on http://www.his2graph.net/ . Edge colors represent specific patterns of
lipid changes; edge thickness, the strength of the interaction and arrows, the directionality of the interaction. On
following pages selected interacting gene networks (A-G) are represented with their corresponding phenotypes
displayed as heat maps representing the z-score of each gene for each lipid class.
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Out of the 368 input genes, the HIS retrieved 150 candidate genes with significant phenotype
in one or several classes of lipids. The subnetworks of genes were selected by eye according to
the colors of the HIS network. Some genes found in one subnetwork could be part of another one,
actually. Overall, it is noteworthy that all genes cluster in subnetworks showing similar patterns
of lipid changes with a dominant phenotype for some lipids. The subnetworks A and G, for
instance present opposite phenotypes with opposite changes for PC and PE. Subnetwork B rather
shows specific changes in anionic phospholipids. C is specific of changes in CL level; D presents

a decrease in sphingolipids. Finally, subnetworks E and F show more specific changes in sterols.

If we look closer at the phenotype of each subnetwork, we can see that it can even be more
subtle. Indeed, changes in the level of major lipid class can be associated with different changes
in their composition in fatty acyl chains.
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Figure 38. Details of phospholipid changes from the HIS interacting gene subnetworks A Changes in the level of lipid
classes are displayed as a heat map of the z-score log,-transformed lipid quantities. Human kinases and their yeast
homolog are indicated. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes
represent no change and white boxes indicate missing values. Data represent the mean of two independent
experiments. Colored boxes between the dendrogram and the heat maps represent the experimental series
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For instance, we can see that in the subnetwork A (Fig. 38), where PC are increased and PE
decreased, these changes are chain length specific. ULK1, GRK6, PDK3, ALDH18A1, SRC,
DGKI, KALRN and DCAMKL rather increase in short chain PC whereas the other hits increase
PC with long chain FA. Moreover, the heatmap also shows that for YES1, PXK, ACVR2B, TJP1
and TNK1, the decrease in PE doesn’t concern PE with long chain FA (PE>40) that increase as
long chain PC. Finally, it is noteworthy that LysoPC don’t necessarily follow the modifications in

PC contrary to most of genes showing a decrease in PE, except TJIP1, TNK1 and KALRN.

Details of subnetworks B, C, E and F are even more complex and show several sub clusters
with specific combinations of FA changes in PLs (data not shown). In subnetwork D that present
a decrease in sphingolipids, we can see that some changes are FA specific such as for GlcCer
with genes STK17B, PIK3CG and PKM2 and we can distinguish three subclusters in Figure 39:
the upper one that decreases Cer and GlcCer with a FA chain specific decrease of SM; a second
subcluster in the middle where complex SLs are particularly decreased and a last group of genes

below with the opposite phenotype.
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Figure 39. Details of sphingolipid changes from the HIS interacting gene subnetworks D. Changes in the level of lipid
classes are displayed as a heat map of the z-score log,-transformed lipid quantities. Human kinases and their yeast
homolog are indicated. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes
represent no change and white boxes indicate missing values. Data represent the mean of two independent
experiments. Colored boxes between the dendrogram and the heat maps represent the experimental series
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Finally, in the subnetwork G where everything seems to increase except PC that decreases, the
phenotypes are also more subtle (Fig. 40A). PC decrease is mostly coupled to an increase of
LysoPC, certainly resulting from the action of phospholipase Al and phospholipids (Fig. 40B) as
well as ceramide changes are often FA chain length-specific for SRPK1, PFKFB3, PRKAGL1 and
NTRK1 (Fig. 40C).
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2.2.6  Validation of candidate genes based on literature

In order to assess if the candidate genes with top-ranking interactions from the HIS analysis
were directly linked to the regulation of lipid metabolism and validate some of the hits according
to literature, | looked at their function, both individually, based on literature and through a gene
annotation enrichment analysis for each subnetwork of genes with similar lipid profile changes
using internet databases. The automatic annotation of the genes was performed using the internet
software GeneALaCart (http://www.genecards.org/ ) and a gene annotation enrichment analysis
was performed using the WebGestalt, standing for “WEB-based GEne SeT AnaLysis Toolkit"
(Wang et al, 2013). Both GeneALaCart and WebGestalt integrate information from different
public resources. Selected kinases were tested for their enrichment in pathways using KEGG and
Pathway Commons and diseases. The enrichment analysis of genes in GO terms was not
pertinent for further analysis and data are not shown. An analysis of gene interactions for each
subnetwork was also performed using the STRING database and interesting interactions could be
found but the lists of interacting genes were similar to those of pathway enrichment. Therefore,
STRING data are not shown. The gene annotation enrichment was performed for each individual
sub network of genes with different patterns of lipid changes using the Human genome as
reference set and can be found in appendix (p127). Finally, in order to know if candidate genes
were already candidate genes in the regulation of lipid metabolism, they were compared to hits
from other siRNA screens through the website Genome RNAIi (Schmidt et al, 2013). All

annotations of the hits are listed in appendix (p127).

The results from the gene annotation enrichment analysis show that several genes strongly
disturbing the lipidome are already known as component of growth factors signaling pathways
and regulators of energy metabolism. For instance, subnetworks A, C and D are particularly
enriched in genes from signal transduction and metabolism pathways: LKB1 (18 genes), PI3K-
mTOR signaling pathways (8 genes), Ephrin A and B pathway (3 genes), ErbB receptor signaling
(21 genes), etc. Furthermore, subnetwork G, which presents the strongest phenotype for steryl
esters is particularly enriched in mitogen-activated protein kinases (MAPKS). However, this
analysis did not make appear all the genes acting in the same biological processes. This link was
possible only through the manual analysis of gene annotations performed automatically using
GeneALaCart and through the complement of literature. Finally, out of 151 genes, one third (50
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genes) is directly linked to the regulation of energy metabolism, and more particularly to the
regulation of growth factor receptors, mTOR complexes, AMPK and glycolysis (Fig. 41). Among
them, some are also known to directly regulate lipid metabolism and lipogenesis. The lipid
profiles resulting from their silencing contribute to the validation of the screen. Out of the 151
candidate kinases, 52 were also previously described as important regulators of endocytosis
(Liberali et al, 2008; Pelkmans et al, 2005) and Golgi integrity (Chia et al, 2012) in siRNA
screens performed in HelLa cells. The list of all hits, their annotation and their comparison with

other screens is available in appendixthe appendix (p127).
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2.2.7  Hypothesis-driven analysis of lipid profiles

The analysis of the screen can be either completely exploratory, based on statistical methods to
select candidate genes with potentially interesting phenotypes, or hypothesis-driven. Among the
large number of hypotheses to test, one can already look at kinase families to see if their
knockdown leads to similar lipid profiles. In this way, | compared the lipid profiles of homolog
kinases from the final dataset (368 genes) by hierarchical clustering. As an example, | chose the
large family of mitogen-activated protein kinases (MAPKS), the phosphoinositide kinases and the
members of the tripartite motif (TRIM) family because some of them appear in the list of

candidate genes retrieved from the HIS analysis.

MAPK:Ss represent a large class of signaling molecules involved in several biological processes
but they often interact in the same pathways (Fig. 42) and some of them such as the four p38-
MAPKSs comprising MAPK11-14, can be particularly implicated in specific cell responses like
apoptosis, cell proliferation and autophagy. When analyzing the dataset, it appears that the
silencing of the different MAPKSs leads to different profiles (Fig. 42) but also that some MAPKSs
cluster together and lead to similar phenotypes like the two p38-MAPKs: MAPK11 and
MAPK12 that induce a decrease of ceramide levels in concomitance with the increase of PI, PS
and GlcCer.
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Figure 42. Lipid changes in MAPK. A. Lipid class level changes are displayed as a heat map of the z-score log,-
transformed lipid quantities. Human kinases and their yeast homolog are indicated. Yellow boxes indicate an
increase and blue boxes a decrease of lipid levels. Black boxes represent no change and white boxes indicate missing
values. Data represent the mean of two independent experiments. Colored boxes between the dendrogram and the
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heat maps represent the experimental series. B. Map of predicted interactions between MAP kinases identified from a
STRING analysis. Connecting lines are color coded by the type of evidence used to build the cluster.

Phosphoinositide kinases are a family of lipid kinases able to phosphorylate the inositol ring of
Pl (PIK) and phosphoinositides (PIPK). They play a role in signal transduction, lipid metabolism,
energy homeostasis as well as in the integrity of organelles and some can physically interact (Fig.
43)(Balla, 2013). Several kinases can phosphorylate the same phosphoinositide and their
silencing could induce similar lipid profiles but not necessarily because they can be organelle-
specific and not necessarily regulate the same pool of lipids and. The hierarchical clustering of
their lipid profile shows that certain share the same lipid profiles (Fig. 43). However, these

clusters can differ between sphingolipids (Fig. 43A) and phospholipids (Fig. 43B).
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Figure 43. Lipid changes in
phosphoinositide kinases. A. Changes in
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Finally, concerning genes from the TRIM family, the HIS analysis had already highlighted the
similarity of TRIM24 and TRIM33 lipid profiles. TRIM kinases are transcriptional cofactors that
interact with distinct transcription factors but that associate in complexes: TRIM24-TRIM33 in
majority or TRIM24-TRIM28-TRIM33, in interaction with chromatin (Herquel et al, 2011b).
When comparing the lipid profiles of HeLa MZ silenced for these three cofactors, it appears that
they all lead to similar lipid profiles but that the phenotype of TRIM28 is weaker and induces
opposite changes in PE (Fig.43).
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Figure 44. Lipid changes in different families of kinases. A. MAPK and B. TRIM family. Lipid class level changes are
displayed as a heat map of the z-score log,-transformed lipid quantities. Human kinases and their yeast homolog are
indicated. Yellow boxes indicate an increase and blue boxes a decrease of lipid levels. Black boxes represent no
change and white boxes indicate missing values. Data represent the mean of two independent experiments. Colored
boxes between the dendrogram and the heat maps represent the experimental series. The arrows indicate increasing
FA chain length and unsaturation degree
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2.2.8  Ongoing research

The analysis of the kinome-wide siRNA screen dataset is still ongoing. If the primary screen is
done and candidate genes are identified in different lipid classes, the confirmation of potentially
interesting hits by control of gene silencing and repetition with individual siRNAs is ongoing and
their role remains to be defined through a validation process. The comparison of lipidomic results
between the kinome-wide siRNA screen in Human cells and data obtained from a library of
mutant yeast for kinases and phosphatases performed in parallel in our lab by Dr. Aline Xavier
Da Silveira Dos Santos makes already appear some common candidate genes whose function in
lipid homeostasis could be conserved in eukaryotes. Moreover, lipidomic data are currently
analyzed in comparison with endocytosis results obtained from a kinome-wide SiRNA screen
performed in similar conditions (same siRNA library, same cell line) by D. Prisca Liberali (ETH,
Zurich) in order to determine which genes affecting cell trafficking affect lipid homeostasis.
Finally, some parts of the dataset are currently part of ongoing collaboration projects with other

research groups.

In parallel to this explorative siRNA screen, two hypothesis-driven projects in lipidomics were
performed in collaboration with Dr. Mathieu Frechin and Dr. Prisca Liberali from the group of
Lucas Pelkmans (ETH, Zurich) but data cannot be described here since they are not published,

yet.
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3. Screening of Dynamic Amphiphiles as siRNA Delivery System in Mammalian Cells

In 2010, in parallel of the project of kinome-wide RNAI screen, | tested a potential
transfection reagent synthesized in the group of Pr. Stefan Matile (University of Geneva) that
could be an alternative to the expensive Lipofectamine™ RNAiMax. From a simple test, this
small project that underlined new concepts about the cell entry of lipoplexes became a real

screen.

3.1. Summary of the research

While targeted knockdown of gene-causing disease in Humans by RNA interference is
promising, delivery of small RNAs in vivo is still difficult. Most transfection reagents are
liposome-based and cross plasma membrane through active mechanisms such as endocytosis.
Because of problems in uptake and toxicity, efficient delivery by such nanocarriers often depends
on the cell type and most molecules working in vitro, fail in vivo (Davis et al, 2010; Lv et al,
2006; Peer & Lieberman, 2011). Solutions to this limitation could come from a novel class of
dynamic amphiphiles developed in the team of Stefan Matile at the University of Geneva (NCCR
Chemical Biology). Easy to prepare, these molecules can carry nucleic acids inside artificial
vesicles, suggesting an ability to passively diffuse across phospholipid bilayers in conjugation
with DNA (Montenegro et al, 2011). In order to test if they can also carry nucleic acids in living
cells, I performed a robotically assisted siRNA transfection assay in HeLa cells stably expressing
GPI-eGFP (Biomolecular Screening Facility, EPFL). This assay was comparable to the one
described in (Akinc et al, 2008). Instead of luciferase, the siRNA target was eGFP. The
knockdown efficacy was monitored with a plate reader. Manual experiments had already
demonstrated that siRNA transfected with some of these dynamic amphiphiles show an eGFP
knockdown at least equivalent to transfection with commercial transfection reagent, which is

based on the liposome technology (Lipofectamine™ RNAiMax from Life Technology).

Assistance of the robot allowed screening six different concentrations of sSiRNA/amphiphiles
complexes from a chemical library comprising more than 200 compounds. These amphiphiles,

synthesized in Matile lab, resulted from the dynamic and covalent assembly of hydrophobic tails

116



Results

(aldehyde/ketones, thiols) with positively charged heads (hydrazones, oximes or disulfides
bridges) (Montenegro et al, 2012). The screen revealed a dozen of active compounds able to carry
siRNA into HeLa cells with a knockdown efficiency greater than 50% and few or no toxicity.
After confirmation, siRNA transfection with active amphiphiles was optimized in HeLa cells
expressing GPI-eGFP in order to reach a knockdown efficiency as good as Lipofectamine™
RNAiIMax. A time-course assay revealed that GFP knockdown was faster with dynamic
amphiphiles than Lipofectamine™, suggesting a different manner of crossing cell membranes for
siRNA/amphiphiles complexes. siRNA Transfection capacity of active amphiphiles was also
performed in challenging cell types, such as Human Primary Skin Fibroblasts (courtesy from Dr
Charna Dibner, HUG), with siRNA targeting GAPDH mRNA. The transfection was more
efficient with the most active dynamic amphiphiles than with Lipofectamine RNAiMax. Then,
the characterization of siRNA/amphiphiles particles was monitored using Density Light
Scattering (DLS). The last step, in collaboration with Pr. Shiroh Futaki (Japan) consisted in
determining which cellular mechanisms, such as endocytosis, were involved in the delivery of

siRNA by the best amphiphile candidate into HeLa cells.

3.2. Articles

These two articles summarize the project. The first paper is an introduction to the concepts and
chemical studies that led to the screen. The second article is the publication that resulted from the
screen of the library of dynamic amphiphiles used as siRNA transfection reagents in mammalian

cells.

e Montenegro J, Gehin C, Bang EK, Fin A, Doval DA, Riezman H, Sakai N, Matile S.
(2012) Conceptually new entries into cells. Chimia (Aarau). 65(11):853-8. doi:
10.2533/chimia.2011.853.

e Gehin C, Montenegro J, Bang EK, Cajaraville A, Takayama S, Hirose H, Futaki S, Matile
S, Riezman H. (2013) Dynamic amphiphile libraries to screen for the "fragrant” delivery
of siRNA into HeLa cells and human primary fibroblasts. J Am Chem Soc. 135(25):9295-
8. doi: 10.1021/ja404153m
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DISCUSSION

1. Analysis of candidate genes from the siRNA kinome-wide screen

During this thesis, | developed a genetic perturbation screen in Human cells in combination
with techniques of targeted lipidomics using MS in order to find candidate genes that control
membrane lipid homeostasis. For the first time, it was possible to observe simultaneously and
precisely the function of many genes on a large range of membrane lipid species. Most of
research projects focus only on the lipid classes that could be potentially affected by specific
signaling pathways/genes. This is particularly true for research in Cancer or in metabolic
syndromes that focus on markers of tumorigenesis such as sphingolipids or on lipogenesis,
respectively, without taking in account the rest of the lipidome whereas it could help to
understand the whole phenomena. However, recent studies showed that metabolic and signaling
pathways involved in the regulation of lipid metabolism are relatively coordinated. For instance
in 2013, Chen P.W. and colleagues described the dynamics and coordination of metabolic
pathways during heat stress response in yeast by measuring gene expression, enzyme activity and
the amount of metabolites involved in the regulation of sphingolipid synthesis (Chen et al, 2013).
In the field of Parasitology, the team of Michael Barrett in Glasgow demonstrated the importance
of metabolomics (the large-scale study of metabolites, including lipids from an organism) to
understand the dynamics of metabolic pathways implicated during the infection of human by
parasites and how this allows optimizing the drug treatment depending on the phase of infection
(Creek et al, 2012). Finally in 2014, Yu Y and colleagues observed for the first time how hypoxia
modifies the lipidome of HelLa cells using MS and showed that in their conditions, hypoxia
induces a decrease of Pl coupled to rise of LysoPC and LysoPE (Yu et al, 2014) but they didn’t
analyzed changes in sphingolipids.

After validation of the experimental method through a pilot screen and quality controls,
filtering of samples with non-analyzable lipid profiles or non-correlated duplicates, the lipid
profiles of 368 genes were statistically analyzed according to different methods. Out of the 368
kinases, my results show that 151 candidate genes can induce significant changes in the level of
one or several lipid classes. Candidate genes from the primary screen could be clustered into

seven groups sharing similar patterns of lipid changes. Among them, some candidates are
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certainly false-positive hits resulting from the sum of factors accumulated during the experiment,
such as: off-target effects (Jackson & Linsley, 2010), cellular stress, risks of lipid hydrolysis by
lipase when harvesting cells or fatty acid oxidation during the extraction, extraction efficiency,
mass spectrometer accuracy, normalization, etc. However, the analysis of quality controls
dispersed all along the screening experiment suggests that these are specific lipid changes.
Moreover, no series/plate effect was observed after normalization. Indeed, as indicated by the
color code on Figure 32, genes clustering together are not particularly enriched in specific series
of experiments. Finally, the large number of putative candidates is not really surprising. First,
because the number of phenotypic readouts is quite important (10 when analyzing changes per
lipid class, more than 700 when analyzing changes in individual lipid species). Therefore, several
combinations of phenotypes are possible. Second, as reported in previous publications, results
from siRNA screens in HelLa cell lines showed that many kinases are necessary to ensure
clathrin- and caveolae-dependent endocytosis (208 out of 590 kinases) (Pelkmans et al, 2005) or
the integrity of the Golgi (around 20% of 948 kinases and phosphatases) (Chia et al, 2012).
Knowing that endocytosis is essential to nutrient intake and signaling and that the integrity of the
Golgi is required for the synthesis and trafficking of many membrane lipids, it is not surprising

that many genes influence lipid homeostasis, too.

In my results, I rarely observe significant modifications in only one lipid class. Yet, metabolic
pathways are highly connected together and many compensation pathways exist. This certainly
explains why most of lipid changes are not significant. For instance, ceramides can be either de
novo synthesized or result from the salvage pathway though sphingomyelin hydrolysis (ref
salvage pathway), de novo PC or ceramide synthesis involves different isoforms per enzyme such
as choline kinase or ceramide synthases, respectively (Gibellini & Smith, 2010), PI results either
from de novo pathway or from the dephosphorylation of phosphoinositides (Balla, 2013), fatty
acid can come from diet or being de novo synthesized (Cook, 2008), sterols can be provided by
lipoproteins contained in the serum-containing medium, etc. Moreover, as observed in the pilot
screen, silencing genes directly involved in lipid synthesis, such as choline kinase, ethanolamine
kinases or HMGCR, doesn’t necessarily induce specific changes in PC, PE or sterols. Instead,
many candidate genes from the kinome-wide screen play important role in the regulation of
metabolism and in the proper functioning of organelles. Indeed, as indicated in figure 41, out of
151 candidate kinases, around one third is involved in glycolysis, PI3BK/Akt/mTOR signaling
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pathway and in the regulation of AMPK. Interestingly, it was recently shown that the
transcriptome of an adherent HeLa cell line (Kyoto) is reduced compared to the Illumina Human
Bodymap 2.0, particularly in genes coding for proteins involved in lipid catabolic processes and
its transcriptome is also enriched in transcripts preferentially linked to cell proliferation,
transcription and DNA repair (Landry et al, 2013). Therefore, it is not surprising that the
silencing of genes linked to these processes leads to strong disturbances in cells, including in lipid
metabolism. Moreover, cancer cells are known to present a specific lipid metabolism: they
increase nutrient uptake, channeling of the glycolytic product pyruvate into Acetyl CoA, increase
biosynthetic genes for fatty acids, cholesterol and other phospholipids, including
phosphatidylcholine (Arsenault et al, 2013), through the control PI3K/Akt/mTOR signaling
(Santos & Schulze, 2012; Ward & Thompson, 2012). They also express PKM2, a specific
isoform of pyruvate kinase with lower activity that induces the accumulation of glycolytic
products that can be transformed into glycerol and serine and provide building blocks for lipid de
novo synthesis. Several kinases involved in the control of these metabolic alterations, including
PKM2 were represented among genes that disturbed the most the lipidome (Fig. 41), showing
that the screen identified the expected genes. Moreover, out of the 151 candidate kinases, 52 were
also previously described as regulators of different steps of endocytosis (Liberali et al, 2008;
Pelkmans et al, 2005) and of Golgi integrity (Chia et al, 2012) (cf appendix). The proper
functioning of endocytosis is necessary for the activation of mTORC1 (Flinn et al, 2010).
Endocytosis is also required to regulate cholesterol homeostasis (Goldstein & Brown, 2009). On
the other hand the integrity of the Golgi is indispensable to the synthesis of complex
sphingolipids as well as several signaling pathways involved in the regulation of lipid
homeostasis (Lev, 2006). Therefore, finding several kinases involved both in lipid homeostasis,
in membrane compartmentalization and/or in PI3BK/Akt/mTOR signaling pathway seems logical,

too.

If the representation of many kinases in the control of lipid homeostasis can be explained by
their function in the regulation of energy metabolism or of membrane compartments, the function
of several candidate genes in lipid homeostasis is still unknown. Among them, kinases from the
tripartite motif (TRIM) family, namely TRIM24 and TRIM33, for instance, present a particularly
strong phenotype with a decrease in the ceramides and GlcCer, coupled to an increase of etherPC
and LysoPE (Fig.44). TRIM24 (TIFla) and TRIM33 (TIF1y) are cofactors of transcription. They
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are part of a subgroup of the TRIM family that also comprises TRIM28 (TIFB). TRIM24,
TRIM33 and TRIM28 interact with different transcription factors but interact also together and
form multiprotein complexes together (TRIM24-TRIM33 and TRIM24-28-33) with other
chromatin components that modulate signaling pathways and tumor progression (Herquel et al,
2011a; Herquel et al, 2011b). However, their precise role in cancer is controversial, especially
for TRIM24 that can be tumor suppressor or enhancer depending on conditions (Herquel et al,
2011a). TRIM24 can be activated through the PI3K/Akt/mTOR/S6K1 signaling pathway to
activate the transcription of rRNA in response to nutrient availability (Mayer et al, 2004) and
activate itself the PI3BK/Akt/mTOR pathway by activating the transcription of PIK3CA (Zhang et
al, 2014). On the other side, depletion of TRIM33 is lethal for mice suggesting that its role in
development is not redundant (Kim & Kaartinen, 2008). It also regulates cell proliferation and
TGF-beta signaling but the list of its partners is still unknown (Herquel et al, 2011a). Since the
complex TRIM24-TRIM33 seems to have synergistic effects in the regulation of B-myc, for
instance, (Herquel et al, 2011b) and since their individual knockdown in HeLa cells induces
exactly the same lipid modifications, | think that this complex plays a role in the regulation of

lipid homeostasis.

Other potentially interesting candidate kinases could be associated with different functions that
previously described in literature. For example, LYK5 (STRADA) and ALS2CR2 (STRADB),
two genes that activate LKB1, an activator of AMPK, disturb the lipidome of HeLa cells (Hawley
et al, 2003). Yet, in HeLa cells, the expression of LKBL1 is extremely low and instead, AMPK is
activated by CAMKKGJ in a calcium-dependent manner (Fogarty et al, 2010). In my results,
LKB1 doesn’t induce significant lipid changes, which is consistent with its absence of
expression. Both LYKS5 and ALS2CR2 induce a decrease of SLs coupled to the increase of PC,
suggesting that, even dissociated from the regulation of LKB1, these kinases still function

together in processes with an impact on lipid metabolism.

Several genes seem to play interesting roles in lipid homeostasis and this screen clusters together
genes that have not previously been associated with similar functions. In order to understand the
pertinence of these associations, the validation and mechanism of changes they induce in lipid
needs to be investigated.
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2. How to interpret observed modifications of lipid profiles?

The HIS analysis identified 7 major patterns of lipid changes. However, one can wonder what
could induce such combinations of changes. Here, | draw some hypotheses about the major ones.

e Simultaneous changes in the blocks PC-PE, PI-PS-CL or SM-Cer-GlcCer

During the screen, | analyzed the quantity of lipids using different methods of mass
spectrometry. For instance, PC and PE were quantified together in positive mode, SM-Cer-
GlcCer in positive mode too but with another method adapted to SL and PI-PS were analyzed in
negative mode. Despite tight controls, a frequent update and high maintenance of the machines as
well as discarding of bad MS cycles after the run, it is not impossible that similar changes in all
lipids from one of these three blocks come from machine vagaries. One way to discriminate
technical problems from biological observations is to analyze in details the lipid profile and not
only the total amount of lipid class. If observed lipid changes vary with fatty acyl composition
(monoacylated, hydroxylation, chain length, unsaturation), it is reasonable to think that it doesn’t

come from the machine.

e Ratio PC/PE

One of the strongest observed phenotypes is the increase of PC/PE ratio in subnetwork A. PC
and PE are the major phospholipids in mammalian cells and they mostly result from de novo
synthesis via the Kennedy pathway in the ER. However, these pathways are connected and PC
can also result from the sequential methylation of PE by phosphatidylethanolamine N-
methyltransferase (PEMT) in the MAM (Gibellini & Smith, 2010). The ratio between PC and PE
levels is tightly regulated in cells because the quantity of conic-shaped PE tends to deform
membrane structures (Dowhan, 2008). Increased PC/PE ratio can be associated with an
upregulation of PEMT in the liver of obese mice and leads to ER stress (Watanabe et al, 2014). In
HeLa cells, an increase of PC/PE ratio could be linked to the deficiency of the PC synthesis via

the Kennedy pathway, which is compensated by PEMT in order to prevent a raise of PE leading
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to membrane deformation as well as to supply ceramides with phosphocholine to make SM. The
transcription of PEMT is negatively regulated by the transcription factor Spl, which is at the
same time a positive regulator of the cytidylyltransferase, the rate limiting enzyme of de novo PC
synthesis by the Kennedy pathway (Vance, 2013). Moreover, Spl transcriptional activity is
modulated by phosphorylation through many kinases whose some are directly linked to the
regulation of glucose and insulin via PI3K signaling (Chu, 2012). One of them, PRKCA enhances
Spl DNA binding and is also a candidate gene from subnetwork A (Fig. 37). Silencing PRKCA
induces an increase of both PC and etherPC, more particularly PC32-36 with O or one
unsaturation. This increase is coupled to the decrease of PE and etherPE with rather short FAs,
too (Fig. 38). This observation suggests that PRKCA could be a positive regulator of the
Kennedy pathway through the control of CCT and PEMT transcription by Spl. In order to
validate this hypothesis, it would be interesting to know if the PRKCA-dependent DNA binding
of Spl is directly linked to the transcription of CCT and PEMT, through a chromatin
immunoprecipitation (CHIP) experiment, for instance.

As suggested by analyzing the phenotype of PRKCA silencing, the simultaneous observation
of LysoPL, etherPL and their FA composition can give precious indications about the precise
pathways involved in the observed lipid changes. In the case of PC, for instance, its regulation
can also come from its hydrolysis by different phospholipase that induce different signaling
pathways. For instance, a decrease of PC coupled to the increase of LysoPC is certainly linked to
the action of phospholipase A1 (PLAL) that plays important roles in many signaling pathways by
releasing LysoPC and FA, as in subnetwork G. On the other side, PC hydrolysis by
phospholipase D (PLD) will produce PA and choline (Hermansson et al, 2011). PLD1 is also
activated by phosphorylation via PRKCA (Kim et al, 1999). Therefore, the silencing of PRKCA
should also prevent the hydrolysis of PC in this manner and block the consecutive regulation of

cytoskeleton resulting from the activation of PIKVE by PA.

e Anionic phospholipids

In subnetwork B and C, we observe specific changes in phospholipids PI, PS and CL,
sometimes coupled to the increase of PC. As described in the chapter Introduction (pl1), the
synthesis pathway of PS differs completely from Pl and CL. Moreover, in order to maintain a
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negative charge of membrane constant, mammalian cells seem to adapt the quantity of
negatively-charged phospholipids according to still unknown mechanisms (Hermansson et al,
2011). This is apparently what happens for ULK1 in subnetwork A, SRPK2, EPHA3, MATK,
FLT3, ADRBK1 and MAP2K1 in subnetwork B (Fig. 37), for which the strongest phenotypes
include opposite regulations of Pl and PS, suggesting a defect in the regulation of one of these
lipids resulting in the automatic compensation by the unknown homeostatic mechanism.
However, several other candidate genes present the same phenotype for both anionic lipids and

might be involved in the regulation of negatively-charged phospholipid homeostasis.

e Sphingolipids

The regulation of sphingolipid homeostasis and its crosstalk with other metabolic pathways
has been reviewed in the paper “sphingolipids homeostasis in the web of metabolic routes” that
we published in 2013 together with Dr. Maria-Auxiliadora Aguilera Romero. With the kinome-
wide siRNA screen in mammalian cells, it is now possible to confront theory to reality by
analyzing how changes in the amount of sphingolipids can be coupled to other lipids. Except for
subnetwork D and F that group candidate genes presenting a specific decrease or increase of SLs,
respectively (Fig. 37, 39), changes in SLs are often coupled to other lipid changes and
phenotypes are still under analysis. On the other hand, subnetwork D present candidate genes that
seem specifically involved in the regulation of SL homeostasis. Three phenotypes can be
highlighted: 1) decrease of Cer and GlcCer, 2) decrease of SM and GlcCer coupled to the
increase of Cer and 3) the increase of complex SLs coupled to the decrease of Cer. Opposite
phenotypes between Cer and complex SLs can result from defects in the transport of ceramides to
the Golgi for phenotype 2 or from the accumulation of complex SLs as described for the third
phenotype. The specific accumulation of complex SLs could be due to lysosomal/endosomal
accumulation as in Niemann-Pick type C disease. However, this accumulation was not coupled to

an increase of cholesterol.

Among candidate genes, TRIM24 and TRIM33 associate with the first phenotype, a strong
decrease of Cer and GlcCer coupled to the increase of PC. Knowing that all target genes of this

complex are not known, it could be involved in the regulation of sphingolipids. Among
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candidates, there are also some genes involved in energy metabolism such as PKM2 and PFKFB1

that present an opposite phenotype. I still don’t have any good hypothesis to explain these results.

e Modulation of sterol quantities

The subnetworks E and F presented both strong phenotypes in sterols. In subnetwork E, both
cholesterol and cholesteryl esters present the same phenotype indicating that de novo cholesterol
synthesis was affected whereas in subnetwork F, only the amount of cholesterol esters is
deregulated. The regulation of intracellular levels of cholesterol esters is very important for the
comprehension of atherosclerosis. Indeed, during this disease, cholesterol esters accumulate in
macrophages and induce their transformation in foam cells. This accumulation is due to the
inhibition of autophagy by p38-MAPK in macrophages (Mei et al, 2012). Indeed, inhibition of
autophagy regulates intracellular lipid stores (Singh et al, 2009). Therefore, it is possible that
modulation of cholesterol esters in the screen results from the modulation of autophagy and
lysosomal fusion. However, results from the screen are contrasted. Some candidates such as
PIK3CG or the p38 MAPK12, which are involved in the inhibition of autophagy, show a
decrease of sterols when silenced. On the contrary, the knockdown of PRKAAL induces the
accumulation steryl esters. On the other hand, incoherently, the silencing of FRAP1 (MTOR) that
inhibits autophagy induces a specific accumulation of steryl esters whereas its downregulation
should induce autophagy. However, this screen was not performed in starvation conditions and
maybe MTOR deficiency has other effects when cells have enough nutrients. In this sense, an
SiRNA screen for kinases that suppress macroautophagy in optimal growth conditions showed
that some kinases regulate the formation of autophagosomes in MTOR-independent way. Finally,
sterol regulation can also result from the modulation of cholesterol efflux by ATP-binding

cassette transporters (Li et al, 2013).
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3. Lessons from the screening “experience” and perspectives

Primary results from the kinome-wide siRNA screen in HeLa cells could be discussed for
hours. In this thesis manuscript, | presented the main results per lipid classes but a more detailed
analysis of fatty acyl composition of lipids represents an even richer dataset with the possibility to
elaborate more precise hypotheses about the interconnection between the different lipid classes
and better establish the biological processes involved. However, the exploratory analysis of such
a dataset is an ant’s work because, if statistical methods allow selecting hits for some phenotypic
readout, correlating similar phenotypes with specific FA distribution across several lipid classes
is much more challenging. Thus, it is easier to start with a precise question but to come back to

the whole lipid profile in order to understand the answer.

My screen results also show a predominant role of the control of central carbon metabolism in
the regulation of membrane lipid homeostasis, more than other biological processes, linking
directly nutrient sensing to energy storage and the plasticity of membrane structure. If this link
seems logical, its coordination is still not understood. Lipidomics can help to understand this
coordination through the explanation of combined lipid changes that can give an idea about
pathways directly involved in these changes. However, given the difficulty | had to make the link
between several genes from the screen that were involved in the regulation of common processes
| think that one challenge in future is to improve protein interactions and pathway databases and
to -omics data to these pathways in order to better visualize functional gene interactions and
elaborate more precise hypothesis about the coordination of biological processes in response to

genetic perturbations.
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APPENDIX

Content description of the excel file “Appendix” (please contact howard.riezman@unige.ch)

1. siRNAs
Sheet 1. List of siRNAs sequences used in the pilot screen (Qiagen)

Sheet 2. MISSION siRNA Kinome library (Sigma-Aldrich)

2. Oligonucleotide sequences of primers

Sheet 3. List of DNA sequences used for confirmation of gene knockdown by gRT-PCR

3. Discarded conditions
Sheet 4. CellProfiler analysis

Sheet 5. List of discarded conditions based on cytotoxicity, technical issues and pairwise correlation between
biological replicates.

4. Multiple reaction monitoring assay

Sheet 6. List of lipid ions masses and charges used for multiple reaction monitoring.

5. Data
Sheet 7. Pilot screen results: lipid quantities corrected to phosphate and z-scores
Sheet 8. Primary screen results per lipid category.

Sheet 9. Gene annotation enrichment of subnetworks from the HIS analysis
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Abbreviations

AMPK : AMP-activated protein kinase
CE: cholesteryl esters

Cer: ceramides

Cho: choline

CHO: Chinese hamster ovary
CL: cardiolipin

CV: coefficient of variation
DAG: diacylglycerol

DLS: density light scattering
DsRNA: double-stranded RNA
EE: early endosome

ER: endoplasmic reticulum
EthN: ethanolamine

FA: fatty acid

ABBREVIATIONS

GC-MS: gas chromatography mass spectrometer

GFP: green fluorescent protein
GalCer: galactosylceramide

GlcCer: glucosylceramide

GPI: glycosylphosphatidylinositol
GPL: glycerophospholipid

GSL.: glycosphingolipid

HIS: hierarchical interaction score
IMM: inner membrane of mitochondria
LBPA: lysobisphosphatidic acid

LCB : long chain base

LE: late endosome

LTP : lipid-transfer protein

LysoPL : lysophospholipid

KD: knockdown

KO: knockout

MAM: mitochondria-associated membrane
MRM: multiple reaction monitoring

MS: mass spectrometry
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MUFA: monounsaturated fatty acid
MVBs: multivesicular bodies

MTOR: mammalian target of rapamycin
OMM: outer membrane of mitochondria
PA: phosphatidic acid

PC: phosphatidylcholine

PCH# : principal component

PCA: Principal Component Analysis
PCho: phosphocholine

PCR: polymerase chain reaction

PE: phosphatidylethanolamine

PG: phosphatidylglycerol

P1: phosphatidylinositol

PIP: phosphoinositide

PL.: phospholipid

PM: plasma membrane

PS: phosphatidylserine

PUFA: polyunsaturated fatty acid
RNAi: RNA interference

gRT-PCR: quantitative real time PCR
S1P : sphingosine-1-phosphate
SiRNA: small-interfering RNA

SD: standard deviation

SL.: sphingolipid

SM: sphingomyelin

SiRNA: small interfering RNA

SPT: serine palmitoyl transferase

SREBP: Sterol regulatory element-binding protein

SsRNA: single-stranded RNA
TAG: triacylglycerol

TLC: thin layer chromatography
TSQ: triple stage quadrupole
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