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tion, due to non-perturbative effects associated to complex instantons. We also analyze the

resummation of the genus expansion for topological string theory on local P1×P1, which is

closely related to ABJM theory. In this case, the non-perturbative answer involves mem-

brane instantons computed by the refined topological string, which are crucial to produce

a well-defined result. We give evidence that the Borel resummation of the perturbative

series requires such a non-perturbative sector.
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1 Introduction

Most of the perturbative series appearing in quantum theory are asymptotic rather than

convergent. Therefore, the question arises of how to make sense of the information that they

encode in order to reconstruct the underlying physical quantities. A powerful technique to

handle this problem is the theory of Borel transforms and Borel resummation (see [1, 2] for

reviews). In favorable situations, this procedure makes sense of the original perturbative

series and leads to a well-defined result, at least for some values of the coupling constant.

In practice, it can be often combined with the theory of Padé approximants into what we

will call the Borel-Padé resummation method. Using this method, one can in principle

obtain precise numerical values from the asymptotic series, and increase the accuracy of

the calculation by incorporating more and more terms, exactly as one would do with a

convergent series.

The procedure of Borel resummation has been applied successfully in many problems

in Quantum Mechanics and in Quantum Field Theory. For example, the perturbative series

for the energy levels of the quartic anharmonic oscillator is known to be divergent for all

values of the coupling [3, 4], yet its Borel resummation can be performed and it agrees with

the exact values obtained from the Schrödinger equation [5] (see [1] for a review). In this

case, the series has the property of being Borel summable, which means roughly that no

singularities are encountered in the process of Borel resummation. However, in many cases

of interest, the divergent series is not Borel summable: singularities are encountered, and

they lead to ambiguities in the Borel resummation. These ambiguities are exponentially

small and invisible in perturbation theory, and they signal the existence of non-perturbative

effects. In order to cure these ambiguities, one needs to include instanton sectors (or other

type of non-perturbative information) to reconstruct the exact answer. The canonical

example of this situation is the double-well potential in Quantum Mechanics [6–9], although

there are simpler examples in the theory of Painlevé equations [2, 10].
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The perturbative series appearing in the 1/N expansion and in string theory have been

comparatively less studied than their counterparts in Quantum Mechanics and Quantum

Field Theory. One reason for this is the additional complexity of the problem, which

involves an additional parameter: in the 1/N expansion, the coefficients are themselves

functions of the ’t Hooft coupling, while in the genus expansion of string theory, they

are functions of α′. In both cases the series are known to be asymptotic and to diverge

factorially, like (2g)! [11], but not much more is known about them. In some examples,

like the bosonic string, it has been argued that the genus expansion is in general not Borel

summable [12]. Limiting values of some scattering amplitudes of the bosonic string can

be however resummed using the techniques of Borel resummation [13]. In some models of

non-critical superstrings, the genus expansion is not Borel summable but there is a known

non-perturbative completion [14], and the structure one finds is similar to that of the

double-well potential in Quantum Mechanics [10]. A recent attempt to resum the string

perturbation series, by exploiting strong-weak coupling dualities, can be found in [15].

Large N dualities make it possible to relate the genus expansion of a string theory

to the ’t Hooft expansion of a gauge theory, and more importantly, they provide the non-

perturbative objects behind these expansions. A particularly interesting example is the

free energy of ABJM theory [16] on a three-sphere, which depends on the rank N of the

gauge group and on the coupling constant k. It can be computed by localization [17] and

reduced to a matrix model which provides a concrete and relatively simple non-perturbative

definition. The 1/N expansion of this matrix model is known in complete detail [18] and

can be generated in a recursive way. This gives us a unique opportunity to compare the

asymptotic 1/N expansion of the gauge theory, as well as its Borel resummation, to the

exact answer. By the AdS/CFT correspondence, the resulting 1/N series can be also

regarded as the string perturbation series for the free energy of the type IIA superstring

on AdS4 ×CP3 [16], and therefore we can address longstanding questions on the nature of

the string perturbation series by looking at this example.

In this paper we initiate a systematic investigation of these issues by using the tech-

niques of Borel-Padé resummation. As pointed out in [19], and in contrast to many previous

examples, the perturbative genus expansion of the free energy of ABJM theory seems to

be Borel summable. Hence, one can obtain accurate numerical values for the Borel-Padé

resummation of the series. However, we find strong evidence that the Borel resummation

is not equal to the exact non-perturbative answer. This mismatch is controlled by complex

instantons, which are known to exist in this theory and have been interpreted in terms of

D2-brane instantons. This means that, in order to recover the exact answer, one should

explicitly add to the Borel resummation of the perturbative series, the contributions due

to these instantons.

This result is somewhat surprising. On the one hand, there is no guarantee that the

Borel resummation of a Borel summable series reconstructs the non-perturbative answer.

There are sufficient conditions for this to be the case, like Watson’s theorem and its re-

finements (see [1]), which typically require strong analyticity conditions on the underlying

non-perturbative function. On the other hand, in most of the examples of Borel summable

series in quantum theories, Borel resummation does reconstruct the correct answer, as
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in [5]. As we will explain in this paper, the theory of resurgence suggests that this mis-

match between the Borel resummation and the non-perturbative answer can be expected

to happen in situations involving complex instantons. Indeed, an example of such a situ-

ation is the WKB series for the energies of the pure quartic oscillator, studied in [20, 21].

This series is asymptotic and oscillatory, and the leading singularity in the Borel plane is

a complex instanton associated to complex trajectories in phase space. As already pointed

out in [20, 21] (albeit in the context of a simpler resummation scheme known as optimal

truncation), the contribution of this complex instanton has to be added explicitly, as in

our string theory models. In this paper, in order to clarify the rôle of complex instantons,

we revisit the quartic oscillator of [20, 21] in the context of Borel-Padé resummation. We

verify that, indeed, the difference between the Borel-Padé resummation of the perturbative

series and the exact answer is controlled by the complex instanton identified in [20, 21].

Our results lead to an important qualification concerning the non-perturbative struc-

ture of string theory. The standard lore is that string perturbation theory is not Borel

summable, and therefore important non-perturbative effects have to be included [12]. Our

results suggest that, even when string perturbation theory is Borel summable, additional

non-perturbative corrections due to complex instantons might be required.

In this paper we also study a different, but closely related string perturbation series.

The free energy of ABJM theory turns out to be related to the free energy of topological

string theory on a toric Calabi-Yau manifold called local P1 × P1 [18, 22, 23]. In [24] this

relationship was used to find a natural non-perturbative completion of the topological string

free energy: the perturbative series of the topological string can be partially resummed by

using the Gopakumar-Vafa representation [25], which has poles for an infinite number of

values of the string coupling constant. In the non-perturbative completion of [24], one adds

to the Gopakumar-Vafa result non-perturbative corrections due to membrane instantons.

It turns out that these corrections have poles which cancel precisely the divergences in the

Gopakumar-Vafa resummation, and the final answer is finite (this is a consequence of the

HMO cancellation mechanism of [26]).

One could then ask at which extent the standard perturbative series of the topological

string “knows” about the non-perturbative completion proposed in [24]. It turns out that

the Borel-Padé resummation of the perturbative series does not reproduce the full non-

perturbative answer, and the difference is due again to the presence of complex instantons

in the theory. However, the Borel-Padé resummation is smooth and does not display the

singular behavior at the poles of the Gopakumar-Vafa representation. This indicates that

the pole cancellation mechanism found in [26] and built in the proposal of [24] should be

present in a non-perturbative completion of topological string theory.

This paper is organized as follows. In section 2 we review the basic ideas and tech-

niques of Borel resummation and the theory of resurgence used in this paper. We explain

why complex instantons, although they do not obstruct Borel summability, might lead to

relevant non-perturbative effects. We then show that this is exactly what happens in the

example of the quantum-mechanical quartic oscillator studied in [20, 21, 27]. In section 3,

we consider the resummation of the 1/N expansion in ABJM theory, and we compare in

detail the results obtained in this way to the exact results. In section 4, we do a similar

– 3 –
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analysis for the genus expansion of a simple topological string model. Finally, in section 5

we list some conclusions and prospects for future explorations of this problem.

2 Borel resummation,non-perturbative effects, and the quartic oscillator

2.1 Borel resummation

Our starting point is a formal power series of the form,

ϕ(z) =

∞∑
n=0

anz
n. (2.1)

We will assume that the coefficients of this series diverge factorially, as

an ∼ A−nn!. (2.2)

In this case, the Borel transform of ϕ, which we will denote by ϕ̂(ζ), is defined as the series

ϕ̂(ζ) =
∞∑
n=0

an
n!
ζn, (2.3)

and it has a finite radius of convergence |A| at ζ = 0. We will sometimes refer to the complex

plane of the variable ζ as the Borel plane. In some situations, we can analytically extend

ϕ̂(ζ) to a function on the complex ζ-plane. The resulting function will have singularities

and branch cuts, but if it is analytic in a neighborhood of the positive real axis, and if it

grows sufficiently slowly at infinity, we can define its Laplace transform

s(ϕ)(z) =

∫ ∞
0

e−ζϕ̂(zζ) dζ = z−1

∫ ∞
0

e−ζ/zϕ̂(ζ) dζ, (2.4)

which will exist in some region of the complex z-plane. In this case, we say that the series

ϕ(z) is Borel summable and s(ϕ)(z) is called the Borel sum or Borel resummation of ϕ(z).

In practice one only knows a few coefficients in the expansion of ϕ(z), and this makes it

very difficult to analytically continue the Borel transform to a neighbourhood of the positive

real axis. A practical way to find accurate approximations to the resulting function is to

use Padé approximants. Given a series

g(z) =

∞∑
k=0

akz
k (2.5)

its Padé approximant [l/m]g, where l,m are positive integers, is the rational function

[l/m]g(z) =
p0 + p1z + · · ·+ plz

l

q0 + q1z + · · ·+ qmzm
, (2.6)

where q0 is fixed to 1, and one requires that

g(z)− [l/m]g(z) = O(zl+m+1). (2.7)

This fixes the coefficients involved in (2.6).
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C+

C−

Figure 1. The paths C± avoiding the singularities of the Borel transform from above (respec-

tively, below).

The method of Padé approximants can be combined with the theory of Borel transforms

in the so-called Borel-Padé method, which gives a very powerful tool to resum series. First,

we use Padé approximants to reconstruct the analytic continuation of the Borel transform

ϕ̂(z). There are various methods to do this, but one simple approach is to use the following

Padé approximant,

Pϕn (ζ) =
[
[n/2]/[(n+ 1)/2]

]
ϕ̂
(ζ) (2.8)

which requires knowledge of the first n+ 1 coefficients of the original series. The integral

s(ϕ)n(z) = z−1

∫ ∞
0

dζ e−ζ/zPϕn (ζ) (2.9)

gives an approximation to the Borel resummation of the series (2.4), which can be system-

atically improved by increasing n.

Usually, the original asymptotic series is only the first term in what is called a trans-

series, which takes into account all the non-perturbative sectors (see [2, 28] for reviews, [10,

29, 30] for developments of the general theory with applications to differential equa-

tions, [31, 32] for recent applications in Quantum Field Theory, and [33, 34] for recent

applications in string theory and matrix models). In its simplest incarnation, trans-series

involve both the small parameter z as well as the small exponentials

e−Sα/z, α ∈ A. (2.10)

Here α ∈ A labels the different non-perturbative sectors of the theory. The trans-series is

a formal infinite sum over all these sectors, of the form,

Σ(z) = ϕ(z) +
∑
α∈A

Cαe−Sα/zϕα(z), (2.11)

where the ϕα(z) are themselves formal power series in z, and Cα (in general complex

numbers) are the weights of the instanton sectors. When the non-perturbative effects are

associated to instantons, the quantities Sα are interpreted as instanton actions, and they

usually appear as singularities in the complex plane of the Borel transform of ϕ(z) (in simple

cases, these actions are integer multiples of a single instanton action A). In principle, the

non-perturbative answer for the problem at hand can be obtained by performing a Borel

– 5 –
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Figure 2. Two different situations for Borel summability: in the case depicted on the left, the

singularity occurs in the negative real axis of the Borel plane, but the corresponding instanton can

not contribute to the final answer, since it would lead to an exponentially enhanced correction for

z > 0. However, in the case depicted on the right, we have two complex conjugate instantons whose

actions have a real positive part. Although they do not obstruct Borel summability, they might

lead to explicit non-perturbative corrections.

resummation of the series ϕ(z), ϕα(z), and then plugging in the result in (2.11) with an

appropriate choice of the Cα. The resulting sum of trans-series is usually well-defined if z

is small enough. Since the Borel transforms of the formal power series appearing in (2.11)

might in general have singularities along the positive real axis, one has to consider as well

lateral Borel resummations,

s±(ϕ)(z) = z−1

∫
C±

e−ζ/zϕ̂(ζ) dζ, (2.12)

where the contours C± avoid the singularities and branch cuts by following paths slightly

above or below the positive real axis, as in figure 1.

Let us suppose that we want to make sense of the formal trans-series for positive values

of the argument z > 0. It is clear that the terms in the trans-series where Re(Sα) < 0

can not contribute to the final answer, since they are not exponentially suppressed when

z is small and positive, but rather exponentially enhanced. Thus, for example, if all

the singularities in the Borel plane are real and negative, i.e. Sα < 0, we expect that

the non-perturbative answer to the problem is simply given by the Borel resummation

of the original perturbative series ϕ(z). This is what happens for the energies of the

quartic anharmonic oscillator: the only singularities of the Borel transform occur along

the real negative axis [35], and the Borel resummation of the original perturbative series

reconstructs the full answer [5]. When some of the actions occur along the positive real

axis, i.e. Sα > 0, they lead to obstructions to the Borel summability of the perturbative

series ϕ(z). One should then perform lateral Borel resummations and include explicitly

the corresponding trans-series in (2.11) in order to obtain the final answer. This is what

happens in the case of the Hastings-McLeod solution to Painlevé II [10] and in the double-

well potential in Quantum Mechanics [8, 9].

This discussion might lead to think that the only non-perturbative sectors that have to

be included in (2.11) are the ones associated to the obstruction of Borel summability, but

this is not the case. Indeed, let us assume that, for some α ∈ A, the corresponding action

Sα is complex, but Re(Sα) > 0. Clearly, the singularity at Sα does not obstruct Borel

– 6 –
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summability. However, since the corresponding term in (2.11) is still exponentially small

for small z, there is no a priori reason to exclude it from the final answer. We illustrate

these considerations in figure 2.

Therefore, complex instantons whose actions have a real positive part play a subtle rôle

in the theory of Borel resummation. It has been known for a long time that they lead to

an oscillatory behavior in the large order asymptotics of the coefficients of the perturbative

series [19–21, 36, 37]. What we would like to point out here is that, although they do not

obstruct Borel summability, they might lead nonetheless to non-perturbative corrections,

of order

O
(

e−Re(Sα)
)
. (2.13)

This was already observed in [20, 21], albeit in a different language and in the context of

optimal truncation. In addition, [20, 21] proposed a quantum-mechanical example which

displays this behavior in a non-trivial way: the quartic oscillator. We will now revisit this

example in some detail, in order to exhibit the importance of complex instantons.

2.2 The pure quartic oscillator

The pure quartic oscillator is defined by the Hamiltonian (we follow the normalizations

of [20, 21])

H(q, p) = p2 + V (q), V (q) = q4. (2.14)

Since this is a confining potential, with V (q)→∞ as q →∞, the quantum Hamiltonian has

a discrete spectrum of eigenvalues Ek. In this problem one can not use perturbation theory

around the harmonic oscillator, and there are no parameters to play with (by elementary

scaling, we have that Ek(~) = ~4/3Ek(1)). This suggests using the WKB expansion to

find the energy levels, which is an asymptotic expansion for large quantum numbers. The

starting point for this method is the well-known Bohr-Sommerfeld quantization condition,

vol0(E) = 2π~
(
k +

1

2

)
, k ≥ 0. (2.15)

In this equation,

vol0(E) =

∮
γ
λ(q), (2.16)

where γ is a contour around the two real turning points defined by V (q) = E, and

λ(q) = p(q, E)dq, p(q, E) =
√
E − q4 (2.17)

is a differential on the curve of constant energy defined by

H(q, p) = E. (2.18)

The notation (2.16) is due to the fact that the above integral computes the volume of phase

space enclosed inside the curve (2.18).

– 7 –
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As it is well-known, the Bohr-Sommerfeld condition is just the leading term in a

systematic ~ expansion. The quantum-corrected quantization condition, due to Dun-

ham [38], can be formulated in a more geometric language as follows. We can solve the

Schrödinger equation (
−~2 d2

dq2
+ q4 − E

)
ψ(q) = 0 (2.19)

in terms of a function p(q, E; ~) as

ψ(q) =
1√

p(q, E; ~)
exp

(
i

~

∫ q

p(q′, E; ~)dq′
)
. (2.20)

We then define the “quantum” differential by

λ(q; ~) = p(q, E; ~)dq. (2.21)

This has an expansion in powers of ~ whose first term is the “classical” differential λ(q).

In terms of the “quantum” differential λ(q; ~) we define a quantum-corrected volume as

volp(E) =

∮
γ
λ(q; ~), (2.22)

which reduces to vol0(E) as ~→ 0. The Dunham quantization condition reads now,

volp(E) = 2π~
(
k +

1

2

)
, k ≥ 0. (2.23)

In the case of the pure quartic oscillator, one can write

volp(E) =

∞∑
n=0

~2n

∮
γ
u2n(q)dq, (2.24)

where u0(q) = p(q, E) and the higher order terms are given by the following recursion

relation:
u2n = (−1)nv2n, n ≥ 0,

vn =
1

2p

(
v′n−1 −

n−1∑
k=1

vkvn−k

)
.

(2.25)

This implies that all the u2n(q) are sums of rational functions of the form qn/pm, and the

contour integrals can be explicitly evaluated. By using the variable

σ =
Γ(1/4)2

3~

√
2

π
E3/4, (2.26)

one finds that
1

~
volp(E) =

∑
n≥0

bnσ
1−2n, (2.27)

where the coefficients bn can be computed in closed form, and b0 = 1.

The series appearing in (2.27) has zero radius of convergence, therefore we should

expect a rich non-perturbative structure in the theory. Such a structure has been studied

– 8 –
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in detail in [20, 21, 27]. The first step in understanding non-perturbative aspects of this

model is to look for all possible saddle-points of the path integral. Since the quartic

potential has a single minimum, one could think that the only saddle-point is the classical

trajectory of energy E between the turning points ±E1/4, which corresponds to the cycle γ

in (2.16). However, one should look for general, complex saddle-points.1 The curve (2.18),

once it is complexified, describes a Riemann surface of genus one with a lattice of one-cycles.

The perturbative quantization condition (2.23) involves the cycle going around the two real

turning points, but there are other one-cycles related to non-trivial, complex saddle-points.

The existence of these cycles can be seen very explicitly by looking at complexified classical

trajectories. The classical solution to the EOM with energy E is given by the trajectory

q(t) = E1/4cn

(
2
√

2E1/4t,
1√
2

)
, (2.28)

where we have fixed one integration constant due to time translation invariance. Here,

cn(u, k) is a Jacobi elliptic function. As noticed in [20, 21], this function has a complex

lattice Λ of periods in the t plane, generated by

T1 =
T + iT

2
, T2 = −T − iT

2
, (2.29)

where

T =
√

2E−1/4K
(

1/
√

2
)

(2.30)

is the real period of the classical trajectory (2.28), and K(k) is the elliptic integral of the

first kind. Any period in Λ leads to a complex, periodic trajectory. The trajectories with

periods T1, T2 go around the real turning point −E1/4 and the complex turning points

±iE1/4, respectively. They have actions σS1,2, where

S1 =
1 + i

2
, S2 = −1− i

2
. (2.31)

Therefore, the actions of the complex trajectories associated to the periods in Λ are given

by σ, times

nS1 +mS2, n,m ∈ Z. (2.32)

The cycle γ appearing in (2.16) corresponds to the real trajectory (2.28) with period T ,

and it is associated to the point S1 − S2 = 1, with action σ. The lattice of points (2.32)

gives the possible singularities of the Borel transform of the series (2.27), which we define

as follows: we write the perturbative series (2.27) as

1

~
volp(E) = σ +

1

σ
ϕ(σ), ϕ(σ) =

∑
n≥0

bn+1σ
−2n. (2.33)

The Borel transform is then defined by

ϕ̂(ζ) =
∑
n≥0

bn+1

(2n)!
ζ2n. (2.34)

1Strictly speaking, instantons are just a particular class of such saddle-points, describing a trajectory

in real space but in imaginary or Euclidean time. However, we will refer to a general saddle-point of the

complexified theory also as an instanton configuration.

– 9 –
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Figure 3. The poles of the Padé approximant (2.8) in the ζ plane, with n = 320, for the series (2.34).

This definition is slightly different from the one used in [27], but leads to the same structure

of singularities in the Borel plane. However, not all the instanton actions in (2.32) lead to

actual singularities in the Borel transform. These have been determined in [27], and they

are given by the points nS1 and nS2, where n ∈ Z\{0}, as well as by the points

n(S1 − S2), n ∈ Z\{0}. (2.35)

The singularities which are closest to the origin are ±S1 and ±S2, and they correspond to

complex saddles with actions
±1± i

2
σ. (2.36)

Through the standard connection to the large order behavior of the perturbative series,

they lead to an oscillatory behavior for the coefficients bn [20, 21]. Note as well that

there is an infinite number of singularities along the positive real axis, and the closest

one to the origin occurs at S1 − S2 = 1. This clearly leads to an obstruction to Borel

summability. However, this obstruction comes from a sub-dominant singularity, and it is

only seen in exponentially small, subleading corrections to the large order behavior of the

coefficients bn [27].

We would like to compare the results for the energy spectrum obtained by Borel-

Padé resummation of the series (2.27), to the values obtained by solving the Schrödinger

equation, as in [39, 40]. Since there is a singularity in the positive real axis of the Borel

plane, we have to consider lateral Borel-Padé resummations. In order to do this, we have

first generated a large number of terms in the series (2.27), and then computed Padé

approximants (2.8) of the Borel transform (2.34), for different values of n.

The first piece of information that can be extracted from the Padé approximants is the

structure of singularities in the Borel plane. The Padé approximants are by construction

rational functions, therefore their only singularities are poles. However, the accumulation

of their poles along segments signals the presence of branch cut singularities in the Borel
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transform. The pole structure of the Padé approximant, for n = 320, is shown in figure 3.

The accumulation of the poles gives a good approximation to the analytic structure of the

Borel transform found by Voros (compare our figure 3 with figure 24 in [27]). The four

lines at angles kπ/4, with k = ±1,±3, start at the points ±S1, ±S2 and signal the presence

of the complex instantons.

As we can see in figure 3, there is also an accumulation of poles of the Padé approximant

in the positive real axis, starting at ζ = 1, which signals the subleading, real instanton at

S1 − S2. The lateral Borel resummation is performed along the path

γε = L[0, iε] + L[iε,∞+ iε) (2.37)

where L[a, b] denotes a straight line in the complex plane from a to b (in practice, we take

ε ≈ 10−2). This path, which is also shown in figure 3, avoids the poles in the positive real

axis, and it is homotopic to the path C+ shown in figure 1. After lateral resummation, we

produce a function

FBP
n (σ) = σ +

1

σ
s(ϕ)n,γε(σ), (2.38)

where

s(ϕ)n,γε(z) = z−1

∫
γε

dζ e−ζ/zPϕn (ζ) (2.39)

and n is the order of the Padé approximant. The functions (2.38), for n = 1, 2, · · · , provide

approximations to the Borel resummation of the series (2.27). They are however complex,

due to the complex integration path (2.37). One can verify that

Im
(
FBP
n (σ)

)
∼ exp (−σ) , (2.40)

for sufficiently large n (we verified it explicitly for n = 95). This reflects the ambiguity

associated to the real instanton obstructing Borel summability.

We can now find a numerical approximation to the energy levels by using the quanti-

zation condition based on the Borel resummation of (2.27), i.e. we use

Re
(
FBP
n (σ)

)
= 2π

(
k +

1

2

)
, k ≥ 0. (2.41)

We will denote by E
(0)
n (k) the energy levels obtained from this quantization condition (the

superscript (0) indicates that we are not considering instanton contributions explicitly).

Some of the results of our calculation are displayed in table 1.

Since we are not including the effects of the real instanton, we know that the energy

levels obtained with the above procedure will have an accuracy not better than e−σ, where

σ is given by (2.26).2 However, by comparing the real part of the Borel-Padé resummation

to the energy levels calculated numerically, one notices that the disagreement is not of

order e−σ, but rather of order e−σ/2. This was already pointed out in [20, 21], in the

context of optimal truncation. In that paper, Balian, Parisi and Voros argued that one

should correct the perturbative WKB quantization condition (2.23) by adding explicit,

2Since we are imposing the quantization condition (2.23), σ is, for large k, of order 2πk.

– 11 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
8

k E(k) E
(0)
320(k)

6 26.528 471 183 682 518 191 8 26.528 471 181 399 704 803

3 11.644 745 511 378 11.644 768 005 3

0 1.060 0.96

Table 1. Energies of the levels k = 0, 3, 6 of the quartic oscillator with ~ = 1. The first column

shows the value obtained numerically in [39] for k = 0, 6 and [40] for k = 3, while the second column

shows the value of the energy obtained by using the quantization condition (2.41) with n = 320.

All the given digits are stable.

non-perturbative contributions to the volume of phase space, which incorporate the effect

of complex instantons. These corrections are due to the complex instantons associated to

the points S1, −S2, whose action has a real part given by σ/2. The leading term of their

contribution was determined in [20, 21], and it is given by

volnp(E) = ∓2 arctan

[
exp

(
i

2~

∮
γ′
λ(q; ~)

)]
+ · · · , (2.42)

where the ∓ sign corresponds to wavefunctions with even (respectively, odd) parity, and

γ′ is a contour in the complex q-plane around the two imaginary turning points iE1/4,

−iE1/4. Note that (2.42) is just the leading non-perturbative correction to the volume of

phase space. There should be additional non-perturbative corrections coming from higher

instantons, which are exponentially suppressed as compared to (2.42).

We can now incorporate the above non-perturbative correction to the quantization

condition

vol(E) = volp(E) + volnp(E) = 2π~
(
k +

1

2

)
. (2.43)

This correction involves an additional asymptotic series, coming from the integration along

the cycle γ′. It turns out that this series can be expressed in terms of the same coefficients

bn [20, 21], namely,
i

2~

∮
γ′
λ(q; ~) = −1

2

∑
n≥0

(−1)nbnσ
1−2n, (2.44)

and it can be also analyzed with the Borel-Padé resummation method. In this case there

are no singularities in the positive real axis [27], and we can do a standard Borel-Padé

resummation. If we proceed exactly as we did for (2.27), we obtain, from the formal

series (2.44), a function GBP
n (σ), where n is again the order of the Padé approximant as

defined in (2.8).

We can now improve the calculation of the energies by studying the quantization

condition

Re
(
FBP
n (σ)

)
− 2(−1)k arctan

(
GBP
n (σ)

)
= 2π

(
k +

1

2

)
, k ≥ 0. (2.45)

We will denote by E
(1)
n (k) the energy levels obtained from this quantization condition. Once

we add this correction, the resulting energies are much closer to the numerical values, see
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k E(k) E
(1)
320(k)

6 26.528 471 183 682 518 191 813 828 183 26.528 471 183 682 518 191 813 828 183

3 11.644 745 511 378 11.644 745 511 378

0 1.060 4 1.060 4

Table 2. Energies of the levels k = 0, 3, 6 of the quartic oscillator with ~ = 1. The first column

shows the value obtained numerically in [39] for k = 0, 6 and [40] for k = 3, while the second column

shows the value of the energy obtained by using the quantization condition (2.45) with n = 320.

Only the stable digits are given.

for example the results in table 2. Of course, the values E
(1)
n (k) still differ from the exact

ones by higher instanton corrections. It should be noted that our calculation of the energies,

by using the Borel-Padé method, improves the results of [20, 21], which were obtained by

doing optimal truncation in both asymptotic series, (2.27) and (2.44).

It has been proposed in [41] that, when there are complex poles in the Padé approx-

imant, one should add to the Borel-Padé resummation the residues of these poles. This

indeed adds exponentially small corrections with the required magnitude (in this case, of

order exp(−σ/2)). We have verified that including these residues leads to an increased

accuracy in the numerical values of the energy levels, similar to the one obtained by con-

sidering the one-instanton correction (2.42). It would be interesting to analyze this in more

detail, but in any case the prescription of [41] does not seem to be universally valid, and

it does not lead to an improvement of the approximation for the string perturbation series

which we will analyze in subsequent sections.

The main conclusion of our analysis of the pure quartic oscillator is that Borel summa-

bility is not enough to reconstruct a non-perturbative answer from the resummed pertur-

bative series: complex instantons, which are not an obstruction to the Borel resumma-

tion, have to be nevertheless included explicitly in the full answer. Of course, the quartic

oscillator is, technically speaking, not Borel summable, but this is a not crucial issue,

since the instantons which are responsible for the breakdown of Borel summability lead to

sub-dominant non-perturbative effects. The dominant non-perturbative effects are due to

complex instantons. As we will see, in the case of the string perturbation series of ABJM

theory, the situation is even more transparent: the series seems to be Borel summable (no

poles accumulate in the positive real axis), yet there are non-perturbative effects associated

to complex instantons which should be included explicitly.

3 Resumming the 1/N expansion in ABJM theory

In this section we will combine the AdS/CFT correspondence for ABJM theory [16, 42]

with the results on the 1/N expansion of the matrix model computing its free energy on

the the three-sphere [17], to obtain quantitative results on the resummation of the string

perturbation series. We should note that the matrix model of [17] was used in [43] to analyze

the perturbative series in 1/k for the free energy, at fixed N . This is a one-parameter

problem. Here, in contrast, we study the 1/N expansion, in which each coefficient is itself

a non-trivial function of the ’t Hooft parameter.
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ABJM theory [16, 44] is a conformally invariant, Chern-Simons-matter theory in three

dimensions with gauge group U(N)k × U(N)−k and N = 6 supersymmetry. The Chern-

Simons actions for the gauge groups have couplings k and −k, respectively. The theory

contains as well four hypermultiplets in the bifundamental representation of the gauge

group. The ’t Hooft parameter of this theory is defined as

λ =
N

k
. (3.1)

In [17] it was shown, through a beautiful application of localization techniques, that the

partition function of ABJM theory on the three-sphere can be computed by a matrix model

(see [45] for a pedagogical review). This matrix model is given by

Z(N, k) =
1

N !2

∫ N∏
i=1

dµidνj
(2π)2

∏
i<j sinh2

(
µi−µj

2

)
sinh2

(
νi−νj

2

)
∏
i,j cosh2

(
µi−νj

2

) e
ik
4π (

∑
i µ

2
i−

∑
j ν

2
j ). (3.2)

The free energy, defined as F (N, k) = logZ(N, k), has a 1/N expansion of the form

F (λ, k) =

∞∑
g=0

(
2π

k

)2g−2

Fg(λ). (3.3)

ABJM theory has been conjectured to be dual to type IIA superstring theory on AdS4×CP3.

This theory has two parameters, the string coupling constant gst and the radius L of the

AdS space, and they are related to the parameters λ, k of ABJM theory by

k2 = g−2
st

(
L

`s

)2

,

λ− 1

24
=

1

32π2

(
L

`s

)4
(

1− 4π2g2
st

3

(
`s
L

)6
)
,

(3.4)

where `s is the string length. Here, we have used the corrected dictionary proposed

in [46, 47], although our results will not depend on its details. According to the AdS/CFT

correspondence, the free energy (3.3) is the free energy of type IIA superstring theory on

the AdS background, and its 1/N expansion (3.3) corresponds to the genus expansion of

the superstring.

The genus g free energies appearing in (3.3) were determined in [18] by using various

techniques. The strong coupling regime of the free energies at genus zero and one reproduces

the expected answer from supergravity [18, 48]. We will now review the structure of these

free energies. Their natural variable is the parameter κ, which is related to the ’t Hooft

coupling by [18, 22]

λ(κ) =
κ

8π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2

16

)
. (3.5)

The genus zero free energy is determined by the equation,

− ∂λF0 =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣−κ2

16

)
+
π2iκ

2
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2

16

)
, (3.6)
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where G2,3
3,3 is a Meijer function.3 The integration constant can be fixed by looking at the

weak coupling limit [18, 49]. For g ≥ 1, the free energies are quasi-modular forms with

modular parameter

τ = i
K ′
(

iκ
4

)
K
(

iκ
4

) . (3.7)

For g = 1, one has

F1 = − log η(τ) + 2ζ ′(−1) +
1

6
log

(
iπ

2k

)
, (3.8)

where η is the usual Dedekind eta function. For g ≥ 2, the Fgs can be written in terms of

E2(τ) (the standard Eisenstein series), b(τ) and d(τ), where

b(τ) = ϑ4
2(τ), d(τ) = ϑ4

4(τ), (3.9)

are standard Jacobi theta functions. More precisely, they have the general structure

Fg(λ) =
1

(b(τ)d2(τ))g−1

3g−3∑
k=0

Ek2 (τ)p
(g)
k (b(τ), d(τ)) , g ≥ 2, (3.10)

where p
(g)
k (b(τ), d(τ)) are polynomials in b(τ), d(τ) of modular weight 6g−6−2k. The genus

g free energies Fg(λ) obtained in this way are exact functions of the ’t Hooft parameter, and

they provide interpolating functions between the weak and the strong coupling regimes.

The nature of the series (3.3) was investigated in [19]. As usual in string theory and

in the 1/N expansion, at fixed λ, the genus g free energies diverge factorially [11],

Fg(λ) ∼ (A(λ))−2g(2g)!. (3.11)

A first question one can ask is: what are the possible instanton actions appearing in the

non-perturbative sector, and how do they manifest themselves in the large order behavior of

the free energies? In [19], based on previous work on instantons in matrix models (reviewed

in for example [2]), a proposal was made for the instanton actions. The large N limit of

the matrix model (3.2) is controlled by a spectral curve of genus one, and there is a lattice

of periods, just as in the case of the quartic oscillator analyzed in the previous section. In

addition, there is a constant period. The conjecture of [19] is that the instanton actions

are linear integer combinations of the two independent periods of the spectral curve, and

of the constant period. This proposal is very much along the lines of [20, 21], since they

both involve the periods of a complexified curve.

The proposal of [19] can be checked by looking at the large order behavior of the

series (3.3). At large λ, the leading behavior of Fg is dominated by the so-called constant

map contribution,

Fg(λ) = cg +O
(
λ3/2−2g

)
, g ≥ 2, (3.12)

where

cg =
4g−1(−1)g|B2gB2g−2|
g(2g − 2)(2g − 2)!

, (3.13)

3The free energies used in this paper have an overall factor (−1)g−1 w.r.t. the ones used in [18, 19].
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and B2g are Bernoulli numbers. The large order behavior of these coefficients is controlled

by the constant period [2, 50]

A = 2π2i, (3.14)

together with its complex conjugate. They lead to a pair of complex conjugate singularities

in the Borel plane. However, this gives the “trivial” part of the asymptotic behavior. Much

more interesting is the subleading singularity, which can be obtained from the study of the

large order behavior of the sequence Fg(λ)−cg at sufficiently large λ (in practice, λ & 0.75).

It is controlled by the action

As(λ) = − 1

π
∂λF0 + iπ2, (3.15)

which is one of the periods of the spectral curve. Since this action is complex, it can be

written as

As(λ) = |As(λ)| eiθs(λ), (3.16)

and it leads to an oscillatory behavior in the sequence Fg(λ)− cg:

Fg(λ)− cg ∼ |As(λ)|−2g cos (2gθs(λ) + δs(λ)) (2g)!, (3.17)

where δs(λ) is an unknown function of λ. The behavior (3.17) was tested numerically in [19].

As explained in [19], for smaller values of λ, the dominant action is no longer (3.15), but

Aw(λ) = 4iπ2λ. (3.18)

In addition, a study of the lattice of the periods in [19] led to the conclusion that there are

no singularities on the positive real axis of the Borel plane. As we will see in a moment,

our numerical results for the Borel-Padé transform seem to confirm the Borel summability

of the asymptotic series (3.3).

The results of [19] open the window to an analysis of the Borel-Padé resummation

of (3.3). Using the techniques of [18], we can generate the free energies in (3.3) up to

genus 30. As we will see, this gives already good numerical results. On the other hand,

since (3.3) is the 1/N expansion of the matrix model (3.2), we know what is the non-

perturbative object that we should compare to this resummation: the free energy of the

matrix model F (N, k) for finite values of N and k.4 It turns out that the partition function

Z(N, k) has been computed analytically with the TBA equations of [51, 52] in [26, 53, 54],

for various integer values of N and k. In particular, [26] gives results for k = 1, 2, 3, 4, 6

and N = 1, 2, . . . , Nmax,k where Nmax,(1,2,3,4,6) = (44, 20, 18, 16, 14).

To proceed with the Borel-Padé resummation, we write (3.3) as

F (λ, z) = z−2F0(λ) + F1(λ) +
∑
g≥2

z2g−2Fg(λ), (3.19)

4In [10], a similar study was performed, in which the 1/N expansion of the Gross-Witten-Wadia model

was resummed and compared to the exact non-perturbative answer. In this model, the genus expansion is

not Borel summable and the instanton sectors which should be included are well understood.
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Figure 4. The red dots signal the location of the poles of the Padé approximant (2.8), for the

series (3.22) with λ ≈ 2.61. In the figure on the left we have included the full Fg(λ), while in

the figure on the right we have subtracted the contribution of constant maps. The blue circle

corresponds to the numerical value of the complex instanton action As(λ). The degree of the Padé

approximant is n = 54 (left) and n = 60 (right).

where

z =
2π

k
. (3.20)

Then we consider the Borel transform of

ϕ(z) =
∑
g≥2

Fg(λ)z2g−2, (3.21)

which is given by

ϕ̂(ζ) =
∑
g≥2

Fg(λ)

(2g − 2)!
ζ2g−2, (3.22)

and we fix the value of λ to obtain a numerical series. We consider Padé approximants of

order n for the Borel transform, as in (2.8).

As we explained in the example of the quartic oscillator, the first information we can

obtain from the Borel-Padé transform is the singularity structure in the Borel plane of the

ζ variable. This can be studied by looking at the poles of the Padé approximants. We

show the location of these poles in figure 4 for λ ≈ 2.61, where we consider both the Padé

approximant of the series (3.22) associated to Fg(λ), on the left, and of the series where

we removed the constant map contribution Fg(λ) − cg, on the right. When the constant

map contribution is included, the leading singularity in the Borel plane takes place in the

imaginary axis, near ±2π2i, as expected from (3.14). The subleading singularity, which

we have indicated by a blue circle, corresponds precisely to the value of the instanton

action (3.15),

As(λ ≈ 2.61) ≈ 44.73 + 9.87i. (3.23)

When the constant map contribution is removed, this becomes the leading singularity. Fi-

nally, the singularities display a periodicity of 2π2 in the imaginary direction, corresponding
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Figure 5. The red dots signal the location of the poles of the Padé approximant (2.8), for the

series Fg(λ) − cg and λ ≈ 0.128. The blue circle corresponds to the numerical value of the purely

imaginary instanton action Aw(λ) in (3.18). The degree of the Padé approximant is n = 54.

to multiples of the constant period. Note as well that all singularities come in groups of

four, A, −A, A∗ and −A∗. This is due to the fact that the perturbative series only has

even powers (hence the parity symmetry A → −A) and it is real (hence the conjugation

symmetry A → A∗). In overall, these numerical results are in good agreement with the

analytic results conjectured in [19].

The above analysis can be repeated for smaller values of λ. According to [19], if λ

is sufficiently small, the closest pole to the origin should be located at (3.18), and this is

precisely what is found from the analysis of the Padé approximants. As an example, we

show in figure 5 the poles of the Padé approximant of the series Fg(λ)− cg, for λ = 0.128.

The blue circle corresponds precisely to the value of Aw(λ), and gives the location of the

leading singularity. We conclude that the structure of the poles in the Borel plane agrees

with the analysis in [19]: when λ is small (weak coupling regime), the leading singularity

in the Borel plane for the sequence Fg(λ)− cg is given by the instanton action (3.18). As

we increase the ’t Hooft coupling and we enter the strong coupling regime, the singularities

move in the plane and the one corresponding to As(λ) becomes dominant (i.e. smaller in

absolute value).

One important aspect of the numerical structure of the poles of the Padé approximants

is that no singularities appear along the positive real axis.5 This is again consistent with

the analysis in [19]. It indicates that the series is likely to be Borel summable, and therefore

we can perform a standard Borel-Padé resummation (2.4): we do the integral (2.9) for the

Padé approximant of (3.22), and we add at the end the terms of genus zero and one. We

will denote by

FBP
n (N, k) (3.24)

5One might find poles in the positive real axis for some of the Padé approximants, but they are not

stable and they should be regarded as artifacts of the numerical approximation. When these accidental

poles are present, we perform the Borel resummation by deforming the contour slightly above the real axis.
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k N FBP50 (N, k) difference error estimate

3 3 -12.855 641 0 1.7 ·10−6 10−8

3 4 -19.875 288 9 3 ·10−7 10−8

3 5 -27.873 671 3 <error 10−8

3 6 -36.745 088 489 1.4 ·10−8 10−10

3 7 -46.411 925 432 3.6 ·10−9 10−11

4 3 -14.661 864 163 -2.48 ·10−7 10−10

4 4 -22.739 393 064 7 -3.63 ·10−8 10−11

4 5 -31.951 567 722 7 -6.3 ·10−9 10−11

4 6 -42.174 874 324 1 -1.2 ·10−9 10−11

4 7 -53.318 854 310 15 -2.8 ·10−10 10−12

6 3 -17.465 291 856 437 5.35 ·10−9 10−13

6 4 -27.259 498 892 850 8 4.860 ·10−10 10−14

6 5 -38.456 656 039 963 9 5.48 ·10−11 10−14

6 6 -50.901 544 876 270 6 7.3 ·10−12 10−14

6 7 -64.481 001 864 961 13 1.11 ·10−12 10−15

Table 3. The first column shows the numerical value of the resummed free energy (3.24) for n = 50,

FBP
50 (N, k), and for various values of N , k. The second column shows the difference (3.25) between

the exact free energy F (N, k) and the Borel-Padé resummation. The last column gives an estimate

of the error in the computation of the Borel-Padé resummation.

the final result, where the subindex n refers to the degree of the Padé approximant in (2.8).

In table 3 we present some of our numerical results, for various values of N and k (this

also fixes the value of λ), and for n = 50. The first column shows the numerical value of

FBP
n (N, k). The second column shows the difference between the exact results for the free

energy listed in [26] and the Borel-Padé resummation, i.e

F (N, k)− FBP
n (N, k). (3.25)

The third column gives an estimate of the error incurred in the Borel-Padé resummation

(since the values of F (N, k) for the chosen N , k are known analytically, the error in

their numerical value can be made arbitrarily small.) We see that the difference (3.25) is

systematically bigger than the error estimate. One is forced to conclude that the Borel

resummation of the 1/N expansion does not reproduce the expected exact value. We are

lacking non-perturbative information, and Borel summability is not enough to reconstruct

the answer.
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What kind of non-perturbative information are we lacking? It is easy to see that,

for fixed λ, the difference (3.25) decreases exponentially with k, so it could be due to a

non-perturbative effect in 1/k (which is essentially the string coupling constant). As we

have pointed out in the previous section, and as we have seen in the example of the quartic

oscillator, this effect might be due to complex instantons: the action (3.15) is complex

and does not obstruct Borel summability, but its real part is positive and might lead to

non-perturbative effects which should be added explicitly to the Borel-Padé resummation.

Indeed, it is easy to see qualitatively (i.e. at the level of orders of magnitude) that, for n

large enough,

F (N, k)− FBP
n (N, k) ∼ cos

(
Im (As(λ))

2π
k + φ

)
exp

[
− k

2π
Re (As(λ))

]
, (3.26)

where φ is a phase.

A more quantitative check of (3.26) goes as follows: since we are working in the genus

expansion, we should compare F (N, k) and FBP
n (N, k) at fixed ’t Hooft parameter λ but

varying the string coupling constant k. Unfortunately, since the calculation of F (N, k) is

made for a limited range of integer values of N and k, there are not that many data points

with fixed λ. We have however four data points with λ = 1 and k = 2, 3, 4, 6. Once n is

fixed, we can then fit the values of the l.h.s. of (3.26), as we vary k, to a function of the form

shown in the r.h.s. of (3.26). This gives numerical estimates for the real and imaginary

values of the action As(λ), for a fixed degree of the Padé approximant n. We then vary

n to extract a stable approximation, which can then be compared to the predicted values.

In figure 6 we show the fit of

log
∣∣F (N, k)− FBP

46 (N, k)
∣∣ (3.27)

to a function of the form

a+ bk + log |cos (φ+ wk)| . (3.28)

Doing this for various values of the degree n of the Padé approximant, and keeping only

the stable digits in the approximation, we get an estimate

Afit
s (λ = 1) ≈ 27 + 9.87i, (3.29)

which should be compared to the expected value

As(λ = 1) ≈ 27.33 + 9.87i. (3.30)

This represents an error of 1 percent, approximately, in the real part, and an even smaller

one in the imaginary part of the action, which is quite good if we take into account that

we only have four data points (also, in the fit we have assumed that the phase φ and

proportionality coefficients in (3.26) are constant, while they are expected to be slowly

varying functions of k). Since Im(As(λ)) = π2, the cosine function in (3.26) is of the form

cos

(
πk

2
+ φ

)
, (3.31)
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Figure 6. This figures shows the four data points of log |F (N, k) − FBP
46 (N, k)| against k, when

λ = 1, together with its optimal fit to a function of the form (3.28), which turns out to be 0.13 −
4.27k + log |cos (0.58− 1.57k)|.

and the sign alternation in the differences (3.25), for fixed λ, is exactly as expected

from (3.31).

We conclude that, although the string perturbation series in this example is Borel

summable, it lacks crucial non-perturbative information to reproduce the exact answer.

The general theory of non-perturbative effects tells us that we should consider a general

trans-series incorporating the complex instantons with action (3.15). These instantons were

interpreted in [19] as due to D2 brane instantons (or membrane instantons in M-theory),

so our conclusions are compatible with the analysis of the grand potential of ABJM theory

in the M-theory expansion [23, 24, 26, 55–57], where it has been shown that membrane

instantons are essential to make sense of the theory.

4 Resumming the genus expansion in topological string theory

In this section we will consider a different, but related string perturbation series: the genus

expansion of topological string theory on a particular local Calabi-Yau manifold, known

as local P1 × P1. This topological string theory has been studied in much detail, due to

its relationship to Seiberg-Witten theory [58], to Chern-Simons theory on lens spaces [59],

and to ABJM theory [18, 22]. In this section we will focus on the genus g free energies

Fg in the so-called large radius frame. In this frame, the Fgs count holomorphic curves of

genus g in the Calabi-Yau target and they depend on two Kähler parameters, T1 and T2,

which correspond to the (complexified) sizes of the P1s. They have the structure

Fg(T1, T2) =
∑
d1,d2

Ng
d1,d2

e−d1T1−d2T2 , (4.1)

where Ng
d1,d2

are the Gromov-Witten invariants of local P1 × P1 at genus g and for the

degrees d1, d2. For g ≥ 2 there is also a contribution due to constant maps, as in (3.12),

but this is much simpler to analyze and not relevant for our analysis. In the cases g = 0 and

g = 1 there are also some additional contributions (which are cubic and linear polynomials

in T1,2, respectively), but these are also inessential to our purposes and will not be included

in our definition of the Fgs.
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The free energies Fg(T1, T2) can be computed in closed form by using the holomorphic

anomaly equations of [60], adapted to the local case as in for example [61]. However, their

explicit calculation becomes difficult at higher genus. Therefore, we will consider them in

the “slice” of moduli space where

T1 = T2 = T. (4.2)

In that case, the functions Fg(T ) have the structure

Fg(T ) =
∑
d≥1

Ng
dQ

d, (4.3)

where

Ng
d =

∑
d1+d2=d

Ng
d1,d2

, Q = e−T , (4.4)

and they can be computed in a much simpler way.6 They are in fact modular transforma-

tions of the functions Fg(λ) which we considered in the previous section [18]. It will then

be useful to use a parametrization related to the one we used there. Namely, we will use

the mirror map

T = −4z 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16z

)
− log(z), (4.5)

where z is related to the parameter κ appearing in (3.5) by [18, 22]

z = − 1

κ2
. (4.6)

We will often parametrize the Kähler moduli space by

q = eiπτlr , (4.7)

where

τlr = i
K ′
(

4
iκ

)
K
(

4
iκ

) . (4.8)

This large radius τlr is related to the τ in (3.7) through

τlr − 1 = − 1

τ − 1
. (4.9)

The parametrization in terms of (4.7) is more convenient since the Fgs are quasi-modular

forms in the variable τ . Of course, a given value of q corresponds to a value of the Kähler

parameter through the equations (4.5), (4.6), (4.8) and (4.7).

We would like to study the total topological string free energy

F (T, gs) =
∑
g≥0

g2g−2
s Fg(T ), (4.10)

6The Fgs we will use have an additional factor of 4g−1 as compared to the standard ones in the topological

string literature. This is equivalent to a rescaling gs → 2gs of the string coupling constant.
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where gs is the topological string coupling constant. This is again an asymptotic series, for

fixed T , and it behaves as

Fg(T ) ∼ |Alr(T )|−2g cos (2gθlr(T ) + δlr(T )) (2g)!, (4.11)

where

Alr(T ) = πT + 2π2i, (4.12)

and we have written it as

Alr(T ) = |Alr(T )| eiθlr(T ). (4.13)

It turns out that the total string free energy has a very different representation due to

Gopakumar and Vafa [25]. In this representation, one fixes the order of e−T and resums

the genus expansion. It has the structure

FGV(T, gs) =
∑
g≥0

∑
w,d≥1

ndg (2 sin (gsw))2g−2 1

w
Qdw, (4.14)

where ndg are integers called Gopakumar-Vafa invariants. It is crucial to notice that the

two series (4.10) and (4.14) are very different. The first series should be understood as an

asymptotic series in gs at fixed T . The series (4.14) should be understood as a series in

Q = e−T , with coefficients depending on gs. Of course, when one expands the Fgs appearing

in (4.10) in power series in Q, and when one expands the trigonometric functions in (4.14)

in powers of gs, one obtains the same formal, double power series∑
g,d

Ng
dQ

dg2g−2
s . (4.15)

One crucial question is then: what is the nature of the series appearing in the Gopakumar-

Vafa representation? In [24], numerical evidence was given that, surprisingly, if gs is real,

the series (4.14) has a finite radius of convergence in Q. However, the price to pay for this

is the presence of an infinite number of poles in the real line: in fact, if we write

gs =
2π

k
, (4.16)

then the series (4.14) has double poles for any rational value of k. Since this is a dense set

in R, the Gopakumar-Vafa representation does not seem to be very useful in the way of

providing a non-perturbative definition of the theory, at least for real gs.

In the context of ABJM theory, one can relate the topological string free energy to the

grand potential of the theory J(µ, k), which is defined by regarding Z(N, k) as a canonical

partition function, i.e.

J(µ, k) = log

(
1 +

∑
N≥1

zNZ(N, k)

)
. (4.17)

As usual in Statistical Mechanics, the grand potential is a function of the chemical potential

µ, and we have also introduced the fugacity,

z = eµ. (4.18)

– 23 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
8

The function FGV(T, gs) can be interpreted as the contribution from worldsheet instan-

tons to the grand potential J(µ, k) [26], where the relationship between gs and k is given

in (4.16), and

T =
4µ

k
− iπ. (4.19)

In [26] it was pointed out that, since Z(N, k) is well-defined for any value of k, there must be

some additional contributions to J(µ, k) which cancel the divergences at rational k. These

contributions are due to membrane instantons and they can be partially computed by using

the Fermi gas approach of [23]. They were determined in the series of works [24, 26, 55–

57]. In particular, in [24] it was conjectured that they can be obtained from the refined

topological string partition function [62], in the Nekrasov-Shatashvili limit [63]. In [57]

some aspects of this conjecture were derived from an analysis of the spectral problem

appearing in the Fermi gas formulation.

In order to set up the result for the non-perturbative completion of FGV(T, gs), we

introduce the quantum-corrected Kähler parameter,

Teff = T + 2π2
∑
`≥1

a`(k) exp

(
−k`

2
(T + iπ)

)
. (4.20)

In this equation, the a`(k) are closely related to the coefficients of the quantum A-period

of the local Calabi-Yau, which was introduced in [64, 65] (see [66] for recent extensions).

More details on these coefficients, as well as detailed values for the very first orders, can

be found in for example [24]. We also introduce the membrane partition function,

FM2(T, gs) =
∑
`≥1

(
a`(k)µ2 + b`(k)µ+ c`(k)

)
e−2`µ. (4.21)

Here, the relationship between T, gs and µ, k is the one expressed in (4.16) and (4.19). The

coefficients b`(k) are closely related to the quantum B-periods of the local Calabi-Yau, and

the coefficients c`(k) can be obtained from the coefficients a`(k), b`(k) [55, 57]. We then

define the non-perturbative topological string free energy as

FNP(T, gs) = FGV(Teff , gs) + FM2(T, gs). (4.22)

The second term in (4.22) is the membrane partition function. The first term, as compared

to (4.14), has additional contributions due to the promotion of T to Teff . We will call

these additional terms the contributions of bound states (of worldsheet instantons and

membrane instantons). Note that the difference between (4.22) and (4.14) is purely non-

perturbative in gs, since the corrections to T in (4.20), as well as the formal power series

in FM2(T, gs), are of the form exp(−1/gs). Therefore, the perturbative expansion of (4.22)

around gs = 0 agrees with (4.10). The non-perturbative free energy (4.22) is in principle

defined as a formal power series in the two small parameters e−T and e−kT/2, with gs
dependent coefficients. As we explained above, FGV(T, gs) has poles at all rational values

of k. However, all these poles cancel in the function (4.22), which as a formal power series

is well-defined for all gs [24, 26, 55]. Moreover, from the analysis in [24] it seems that this
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Figure 7. The red dots signal the location of the poles of the Padé approximant (2.8) with n = 58,

for the series (4.23) and a fixed value of T specified by q = −10−3 (where q is defined in (4.7)). The

blue circle indicates the numerical value of the complex instanton action Alr.

series is convergent if T is large enough. Therefore, at least for T large, (4.22) provides a

well-defined non-perturbative completion of (4.14).

In the context of ABJM theory, the function (4.22) has been argued to provide the exact

grand potential J(µ, k) associated to the matrix model of ABJM theory. It contains non-

perturbative effects which correct the perturbative answer given by FGV(T, gs). Although

a complete derivation is still lacking, this proposal has passed many checks [23, 24, 26, 54–

57]. The non-perturbative completion (4.22) is motivated by its connection to the ABJM

matrix model.

We would like to understand the relationship between the asymptotic series (4.10) and

the proposed non-perturbative answer (4.22). More concretely, we would like to compare

the Borel-Padé resummation of (4.10), to the non-perturbative answer (4.22). We will work

in the slice of moduli space which corresponds to ABJM theory, namely k and µ real. This

in turn means that gs is real and that the imaginary part of T is −iπ. On this slice, the large

order behavior of (4.10) is controlled by the complex instanton action (4.12). Since the

leading singularity in the Borel plane is complex, we might have a Borel summable series.

We then proceed as in the previous section: we define the Borel-Padé transform as

ϕ̂(ζ) =
∑
g≥2

ζ2g−2 Fg(T )

(2g − 2)!
, (4.23)

and we consider its Padé approximants. The first thing we can do is to examine their poles

in the Borel plane. The results are shown in figure 7, for the point in the moduli space

with q = −10−3 and for an approximant (2.8) with n = 58. We notice that indeed, the

pole which is closest to the origin agrees with the analytic value

Alr ≈ 21.69 + 9.87i. (4.24)
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k FBP
54 (T, gs) error FNP(T, gs) error difference

2 0.0037 10−5 0.0056228650 10−11 0.0019

4 0.000996873 10−10 0.000993519297616245561182089 10−28 - 3.354 ·10−6

6 0.0013366713318 10−14 0.0013366762433924625954836366 10−29 4.9116 ·10−9

8 0.00200549863390460 10−18 0.0020054986273950134496944117 10−29 -6.50958 ·10−12

10 0.00290255648876704552 10−21 0.002902556488775177021081745 10−28 8.13151 ·10−15

12 0.00401133227863213883147 10−24 0.00401133227863212905949245 10−27 -9.77197 ·10−18

14 0.0053270579960529530912943 10−26 0.00532705799605295310272304 10−27 1.14287 ·10−20

16 0.0068479115274744906938481552 10−29 0.00684791152747449069383505 10−27 -1.310 ·10−23

Table 4. In this table we show the values for the Borel-Padé resummation of the series (4.10),

for different integers k and q = −10−3, as well as the values of FNP up to order Q10. In both

cases we give an estimate of the numerical error. The last column shows the numerical value of the

difference (4.25).

There are no stable poles on the positive real axis, so the series seems to be Borel summable,

and we can perform a Borel-Padé resummation of the series (4.10). Like before, we will

denote by FBP
n (T, gs) the result of the resummation by using a Padé approximant of order n.

We can also compute the proposed non-perturbative answer (4.22) for different values

of T , gs. In this case, this answer is only known in the form of a conjecturally conver-

gent series, therefore there is a numerical error associated to the truncation of this series.

We estimate the error in FNP(T, gs) as follows: we first consider the series (4.22), where

the Gopakumar-Vafa series is truncated at order Q10, and the series involving the non-

perturbative effects is truncated at order ` =
[

20
k

]
. Then we consider the sames series with

truncation at Q12 and ` =
[

24
k

]
. The difference between these two results will be taken as

a reliable error estimate.7

We can now compare both results, the Borel-Padé resummation and the non-

perturbative result (4.22). Our numerical results show conclusively that they are different.

This is shown in table 4, where we consider a value of the Kähler parameter corresponding

to q = −10−3. As in the situation of the previous section, and in the case of the quartic

oscillator, we interpret this difference as due to non-perturbative effects associated to com-

plex instantons. The leading complex instanton has action given by (4.12), and we expect,

for n large enough,

FNP(T, gs)− FBP
n (T, gs) ∼ cos

(
Im (Alr(T ))

k

2π
+ φ

)
exp

[
− k

2π
Re (Alr(T ))

]
. (4.25)

where φ is a phase. In order to test this expectation, we can fix T , produce a sequence

with the values of the l.h.s. of (4.25) as a function of k, and fit it to a function of the form

shown in the r.h.s. In figure 8 we show the fit of

log
∣∣FNP(T, gs)− FBP

54 (T, gs)
∣∣ (4.26)

7For k = 2 we estimated the error by truncating the series at Q6 and at Q4.
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Figure 8. The red dots show the values of (4.26), with q = −10−3, and for 150 values of k. The

blue line shows a fit of type (3.28) by using 75 points with 10 ≤ k ≤ 20.

to a function of the form (3.28). Doing this we get an estimate

Afit
lr ≈ 21.27 + 9.87i, (4.27)

which is to be compared to the expected value in (4.24). As we see, the difference is of

about 2 percent for the real part, and even smaller for the imaginary part. The error in

the real part can be further reduced by using Richardson extrapolation. This procedure

gives an estimate

Re
(
Afit

lr

)
≈ 21.61. (4.28)

Notice that the oscillation in the sign of the differences listed in table 4 is in precise

agreement with the argument of the cosine, which is of the form

cos

(
πk

2
+ φ

)
, (4.29)

since, for our choice of values of T , Im(Alr(T )) = π2.

We conclude that, even if the genus expansion of the topological string free energy

is Borel summable, its Borel-Padé resummation differs from the non-perturbative answer

proposed in (4.22) due to the presence of complex instantons, which should be incorporated

directly, in the form of a trans-series. This is of course the same type of phenomenon

which we observed in the case of the quartic oscillator and in the resummation of the 1/N

expansion of ABJM theory.

There is an important point we would like to make concerning the Borel-Padé resum-

mation: although, when expanded in double power series of gs and e−T , the perturbative

expansion (4.10) has the same information as the Gopakumar-Vafa representation, its re-

summation is perfectly smooth as a function of gs. This seems to indicate that the HMO

cancellation mechanism of [54] is already incorporated in the result of the resummation,

and that the Gopakumar-Vafa representation of the topological string free energy (4.14)
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has to be supplemented by some contribution which removes its poles. The contribution

of membrane instantons and bound states in (4.22) seems to be such that, after adding

it to the contribution of worldsheet instantons, one obtains a quantity which is finite and

equal to the Borel-Padé resummation, up to exponentially small corrections given by the

complex instantons.

This can be seen in a very instructive way when we approach a pole at a small integer

value of k, like for example k = 4. In this case, the divergence in the Gopakumar-Vafa

representation is seen already at order Q2. Of course, the full Gopakumar-Vafa series

diverges for any rational value of k, but we can truncate it to an appropriate order so that

near k = 4 only the divergence at this point is visible. For instance by truncating the

Gopakumar-Vafa serie at order Q10, divergences occur at every k of the form

k =
w

n
, n ∈ N, w ≤ 10, (4.30)

where w is the parameter appearing in (4.14). In particular there is no divergence for

4 < k < 4.5. At the same time, if T is big enough, a truncation at order Q10 leads to a

very small error. Therefore, we can consider that the truncated Gopakumar-Vafa series

gives a very good approximation to the exact answer, except that we have removed the

non-perturbative contribution which regulates the pole at k = 4. Indeed, this is what we

observe in figure 9, where we show separately the contribution of worldsheet instantons, the

non-perturbative contributions, the sum of both, and the Borel-Padé resummation. First

of all, we see that away from the pole, the non-perturbative corrections are very small;

the worldsheet instanton contribution is the most important one and, up to exponentially

small corrections, agrees with the Borel-Padé resummation of the series. However, near the

pole, the contribution of worldsheet instantons becomes very different from the value of the

Borel-Padé resummation. At the same time, the non-perturbative contributions become

important and they have the right magnitude to give a total value of FNP(T, gs) close again

to the Borel-Padé resummation.

5 Conclusions and prospects

In this paper, by combining the AdS/CFT correspondence with results on the localization

of ABJM theory and its 1/N expansion, we have been able to study the resummation of

the string perturbation series in some examples, and compare it with the non-perturbative

answer. Our main result is that, although the series seems to be Borel summable, it lacks

explicit non-perturbative information due to the presence of complex instantons. This

type of behavior appears in a much simpler model, first studied from this point of view by

Balian, Parisi and Voros [20, 21], namely the WKB series for the pure quartic oscillator in

Quantum Mechanics. Although this WKB series is technically non-Borel summable, the

leading, exponentially small error obtained in performing lateral Borel resummations is not

due to the poles in the positive real axis, but to the poles associated to complex instantons.

The results of this paper confirm that Borel summability is not a crucial property

of asymptotic series. The key issue when faced with a perturbative scheme is whether

we can extract the exact answer from just the perturbative series, or we have to include
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Figure 9. In this figure we show various relevant quantities for q = −10−3, as a function of k, and

near k = 4. The orange line shows the non-perturbative contribution of membrane instantons and

bound states. The green line shows the contribution of worldsheet instantons, following from the

Gopakumar-Vafa representations. The red line shows the Borel-Padé resummation of the topological

string series. The blue dots correspond to values of FNP, where we add worldsheet instantons and

non-perturbative effects. The Gopakumar-Vafa series is truncated at Q10 while the non perturbative

series is truncated at ` =
[
20
k

]
.

additional information. It is well-known that Borel summability is a necessary condition

for this extraction, since when the series is not Borel summable one is forced to add non-

perturbative sectors. However, being Borel summable is not a sufficient condition, since

additional requirements are needed in order to reconstruct the original exact answer (like

those appearing in Watson’s theorem and its extensions). As we have argued in section 2,

the mismatch between the Borel resummation of a Borel summable series and the exact

answer is made possible by the presence of complex instantons. For this reason, this mis-

match is not found in examples where complex instantons are absent, like the anharmonic

quartic oscillator, where the Borel resummation agrees with the non-perturbative result [5].

It would be interesting to see in which cases the presence of complex instantons in

a Borel-summable theory leads to a mismatch between Borel resummation and the non-

perturbative result. Complex instantons seem to be necessary for this mismatch to occur,

but they are not sufficient, and we know of an explicit example where this can be seen: in

the N vector model studied in [67], we have verified that the Borel-Padé resummation of

the 1/N expansion of the free energy agrees with the exact result, in spite of the presence of

complex instantons. A rich set of examples to study could come from non-unitary 2d CFTs

coupled to 2d gravity. For example, the Yang-Lee singularity coupled to two-dimensional

gravity leads to a Borel summable series for the specific heat, yet it contains complex

instantons, and a non-perturbative definition has been proposed (see for example [68] for

a review and relevant references). To our knowledge, the Borel resummation of the series

has not been compared in detail to the non-perturbative answer. Of course, beyond a list

of examples and counter-examples, we would like to know if there is a simple criterium

to determine in advance what is the relationship between the Borel resummation of the

perturbative series and the exact answer.

– 29 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
8

The next step in our research program would be to incorporate the complex instantons

in an explicit way, through a trans-series ansatz. By the general theory of non-perturbative

effects, we expect the exact answer to be given by the Borel resummation of a formal

power series of the form (2.11). This is given by the Borel resummation of the perturbative

series, plus the Borel resummation of multi-instanton series, with certain weights which

have to be determined. In the case of ABJM theory and topological strings, the most

promising avenue for computing this formal trans-series is the formalism of [34], based

on the holomorphic anomaly equations of [60], suitably extended to the non-perturbative

sector. This would provide, in the context of the genus expansion, a detailed understanding

of the non-perturbative effects in these theories. It would also make it possible to test some

aspects of the proposal of [24] in models with no known large N dual, like local P2. We

hope to report on these and related problems in the near future.
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[51] A.B. Zamolodchikov, Painlevé III and 2D polymers, Nucl. Phys. B 432 (1994) 427

[hep-th/9409108] [INSPIRE].

[52] C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe

ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].

[53] P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A

27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].

[54] Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP

10 (2012) 020 [arXiv:1207.4283] [INSPIRE].

[55] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory, JHEP

05 (2013) 054 [arXiv:1301.5184] [INSPIRE].

[56] F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013)

006 [arXiv:1212.5118] [INSPIRE].

[57] J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, arXiv:1308.6485

[INSPIRE].

[58] S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl.

Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

[59] M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of

Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].

[60] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and

exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311

[hep-th/9309140] [INSPIRE].

[61] B. Haghighat, A. Klemm and M. Rauch, Integrability of the holomorphic anomaly equations,

JHEP 10 (2008) 097 [arXiv:0809.1674] [INSPIRE].

[62] A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069

[hep-th/0701156] [INSPIRE].

[63] N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional

gauge theories, arXiv:0908.4052 [INSPIRE].

[64] A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals,

JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

[65] M. Aganagic et al., Quantum geometry of refined topological strings, JHEP 11 (2012) 019

[arXiv:1105.0630] [INSPIRE].

– 33 –

http://dx.doi.org/10.1007/JHEP01(2010)072
http://arxiv.org/abs/0906.2390
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2390
http://dx.doi.org/10.1088/0264-9381/31/1/015012
http://arxiv.org/abs/1210.6057
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6057
http://dx.doi.org/10.1007/JHEP05(2012)121
http://arxiv.org/abs/1202.5300
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5300
http://dx.doi.org/10.1007/s00023-010-0044-5
http://arxiv.org/abs/0907.4082
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4082
http://dx.doi.org/10.1016/0550-3213(94)90029-9
http://arxiv.org/abs/hep-th/9409108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9409108
http://dx.doi.org/10.1007/BF02100102
http://arxiv.org/abs/solv-int/9509003
http://inspirehep.net/search?p=find+EPRINT+solv-int/9509003
http://dx.doi.org/10.1142/S0217732312502008
http://dx.doi.org/10.1142/S0217732312502008
http://arxiv.org/abs/1207.5066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5066
http://dx.doi.org/10.1007/JHEP10(2012)020
http://dx.doi.org/10.1007/JHEP10(2012)020
http://arxiv.org/abs/1207.4283
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4283
http://dx.doi.org/10.1007/JHEP05(2013)054
http://dx.doi.org/10.1007/JHEP05(2013)054
http://arxiv.org/abs/1301.5184
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5184
http://dx.doi.org/10.1007/JHEP05(2013)006
http://dx.doi.org/10.1007/JHEP05(2013)006
http://arxiv.org/abs/1212.5118
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5118
http://arxiv.org/abs/1308.6485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6485
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://arxiv.org/abs/hep-th/9609239
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609239
http://dx.doi.org/10.1088/1126-6708/2004/02/010
http://arxiv.org/abs/hep-th/0211098
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211098
http://dx.doi.org/10.1007/BF02099774
http://arxiv.org/abs/hep-th/9309140
http://inspirehep.net/search?p=find+EPRINT+hep-th/9309140
http://dx.doi.org/10.1088/1126-6708/2008/10/097
http://arxiv.org/abs/0809.1674
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1674
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://arxiv.org/abs/hep-th/0701156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701156
http://arxiv.org/abs/0908.4052
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
http://dx.doi.org/10.1007/JHEP04(2010)040
http://arxiv.org/abs/0910.5670
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5670
http://dx.doi.org/10.1007/JHEP11(2012)019
http://arxiv.org/abs/1105.0630
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0630


J
H
E
P
0
5
(
2
0
1
5
)
0
3
8

[66] M.-x. Huang, A. Klemm, J. Reuter and M. Schiereck, Quantum geometry of del Pezzo

surfaces in the Nekrasov-Shatashvili limit, JHEP 02 (2015) 031 [arXiv:1401.4723]

[INSPIRE].
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