
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2012 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Heuristics for a project management problem with incompatibility and

assignment costs

Zufferey, Nicolas; Labarthe, Olivier; Schindl, David

How to cite

ZUFFEREY, Nicolas, LABARTHE, Olivier, SCHINDL, David. Heuristics for a project management

problem with incompatibility and assignment costs. In: Computational Optimization and Applications,

2012, vol. 51, p. 1231–1252. doi: 10.1007/s10589-010-9380-0

This publication URL: https://archive-ouverte.unige.ch//unige:26155

Publication DOI: 10.1007/s10589-010-9380-0

© The author(s). This work is licensed under a Backfiles purchase (National Licenses Project)

https://www.unige.ch/biblio/aou/fr/guide/info/references/licences/

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:26155
https://doi.org/10.1007/s10589-010-9380-0
https://www.unige.ch/biblio/aou/fr/guide/info/references/licences/

Comput Optim Appl (2012) 51:1231–1252
DOI 10.1007/s10589-010-9380-0

Heuristics for a project management problem
with incompatibility and assignment costs

Nicolas Zufferey · Olivier Labarthe · David Schindl

Received: 13 January 2009 / Published online: 2 December 2010
© Springer Science+Business Media, LLC 2010

Abstract Consider a project which consists of a set of jobs to be performed, assum-
ing each job has a duration of at most one time period. We assume that the project
manager provides a set of possible durations (in time periods) for the whole project.
When a job is assigned to a specific time period, an assignment cost is encountered.
In addition, for some pairs of jobs, an incompatibility cost is encountered if they are
performed at the same time period. Both types of cost depend on the duration of the
whole project, which also has to be determined. The goal is to assign a time period
to each job while minimizing the costs. We propose a tabu search heuristic, as well
as an adaptive memory algorithm, and compare them with other heuristics on large
instances, and with an exact method on small instances. Variations of the problems
are also discussed

Keywords Project management · Scheduling · Tabu search heuristic · Adaptive
memory algorithm

N. Zufferey (�)
Faculty of Economics and Social Sciences, HEC—University of Geneva, Uni-Mail, 1211 Geneva 4,
Switzerland
e-mail: nicolas.zufferey-hec@unige.ch

O. Labarthe
Faculté des Sciences de l’Administration, Université Laval, Québec, QC, G1K 7P4, Canada
e-mail: olivier.labarthe@fsa.ulaval.ca

D. Schindl
Geneva School of Business Administration (HEG), Geneva, Switzerland
e-mail: david.schindl@hesge.ch

mailto:nicolas.zufferey-hec@unige.ch
mailto:olivier.labarthe@fsa.ulaval.ca
mailto:david.schindl@hesge.ch

1232 N. Zufferey et al.

1 Introduction

In this paper, we consider a specific management problem (P) where a set of jobs
have to be performed within k time periods, where different values for k are given by
the project manager. Each job has a duration of at most one time period. Two types
of costs are considered: assignment costs and incompatibility costs. When a job is
assigned to a specific time period, an assignment cost is encountered. In addition,
for some pairs of jobs, an incompatibility cost is encountered if they are performed
at the same time period. Both costs depend on the duration k of the whole project.
The goal is to assign a time period to each job while minimizing the total costs.
The determination of the duration k of the whole project is also a key issue. Such
a problem is new and there exists no literature on it. We can remark that it can be
viewed as a project management problem as well as a scheduling problem. The reader
interested in a general project management book with applications to planning and
scheduling is referred to [23]. The reader desiring a review on scheduling models and
algorithms is referred to [31]. Finally, the reader interested in project scheduling is
referred to [5, 21, 25], and [26].

The paper is organized as follows. We formally express the considered manage-
ment problem (P) in Sect. 2, we show that it is NP-hard and discuss some variations
of the problem. In Sect. 3, we describe the tabu search method and its adaptation to
problem (P). In Sect. 4, we describe the adaptive memory algorithm and its adapta-
tion to problem (P). Results are reported in Sect. 5, where we compare the proposed
methods with other heuristics as well as with an exact method. We end up the paper
with a conclusion and possible extensions in Sect. 6.

2 Presentation of the problem

In this section, we formulate and illustrate the considered management problem (P),
for which two types of costs are considered, namely assignment costs and incompati-
bility costs. Then, based on the similarities with the k-coloring problem, we show its
NP-completeness, and thus the relevance of the use of heuristics for large instances.
Finally, we end the section with the presentation of some possible variations of the
problem, and with a discussion on the practical relevance of the proposed models.

2.1 Formal description of the problem

Consider a project which consists of a set V of n jobs to be performed. We consider
the situation where the project manager does not only provide a single target number
k̂ of time periods within which the project has to be performed, but he provides a
set K = {k̂ − r, . . . , k̂, . . . , k̂ + r ′}, where k̂ − r is the smallest number of periods to
consider, and k̂ + r ′ is the largest. We can imagine that it is unfeasible to realize the
project in less than k̂ − r periods, and that the penalty cost is too large if the project
has a duration larger than k̂ + r ′. We assume that: (a) each time period has the same
duration, typically a working day; (b) there is no precedence constraint between jobs;
(c) all the jobs can have different durations; (d) each job has a duration of at most one

Heuristics for a project management problem with incompatibility 1233

time period. Let c(k)(j ; j ′) ≥ 0 denote an incompatibility cost between jobs j and j ′,
which is to be paid if both jobs are performed at the same time period, where k ∈ K is
the duration of the whole project (in time periods). Further, for each job j , let N(j)

denote the set of jobs j ′ such that c(j ; j ′) > 0. We assume that c(j ; j ′) = c(j ′; j)

for all j, j ′ ∈ V and all k ∈ K . Hence, j ∈ N(j ′) implies j ′ ∈ N(j) for all j, j ′ ∈ V .
The incompatibility costs c(k)(j ; j ′) represent for example that the same staff has to
perform jobs j and j ′, thus additional human resources must be hired in order to be
able to perform both jobs at the same period. In addition, for each duration k, each
job j and each time period t , we know the cost a(k)(j ; t) to pay if we perform job
j at time period t if the duration of the project is k. Such a cost is referred to as an
assignment cost. The assignment cost a(k)(j ; t) represents for example the cost of
the staff and machines which have to perform job j at period t if the duration of the
project is k time periods. The goal is to assign each job j to a time period t while
minimizing the total costs.

A solution using k periods can be generated by the use of a function per : V −→
{1, . . . , k}. The value per(j) of a job j is the time period assigned to job j . In order
to represent a solution s(k) using k time periods, with each time period t ∈ {1, . . . , k},
we associate a set Ct that contains the set of jobs which are performed at time pe-
riod t . Thus, a solution s(k) can be denoted s(k) = (C1; . . . ;Ck), and the associated
encountered costs are:

f (k)(s(k)) =
k∑

t=1

∑

j∈Ct

a(k)(j ; t) +
n−1∑

j=1

∑

j ′∈{j+1;...;n}∩Cper(j)

c(k)(j ; j ′) (1)

Problem (P (k)) consists in finding a solution with k time periods which mini-
mizes the above costs. An associated optimal solution is s

(k)
opt = arg mins(k) f (k)(s(k)).

Problem (P) consists in finding a solution minimizing the costs when allowing
any duration k ∈ K . Formally, it consists in finding a solution sopt = s

(k∗)
opt , where

k∗ = arg mink f (k)(s
(k)
opt). Note that, based also on non quantitative considerations,

the project manager can choose the most appropriate solution among the |K| pro-

posed ones, namely among solutions in {s(k̂−r)
opt , . . . , s

(k̂+r ′)
opt }, which is not necessarily

solution sopt .
To illustrate the above model (P (k)), we propose the following example. A time

period is one working day (typically 8 hours) and the planning horizon is k = 2 days.
We have to perform jobs j1, j2, j3 and j4 with respective durations 0.75, 1, 0.25
and 0.50 working days. Note that the duration of a single job can not exceed one
working day (assumption of the model). The assignment costs are: a(2)(j1;1) = 1,
a(2)(j1;2) = 2, a(2)(j2;1) = 1, a(2)(j2;2) = 2, a(2)(j3;1) = 3, a(2)(j3;2) = 1,
a(2)(j4;1) = 3, a(2)(j4;2) = 1. In addition, the incompatibility costs which are dif-
ferent from 0 are: c(2)(j1; j2) = 10, c(2)(j3; j4) = 10. According to the assignment
costs, it seems better to perform jobs j1 and j2 in time period 1, and jobs j3 and j4 in
time period 2. But according to the incompatibility costs, it seems better to perform
jobs j1 and j2 in different time periods, and the same holds for jobs j3 and j4. The
optimal solution can be easily found by hand: we should assign jobs j1 and j3 to time
period 1, and jobs j2 and j4 to time period 2.

1234 N. Zufferey et al.

2.2 Difficulty of the problem

Given a graph G = (V ,E) with vertex set V and edge set E, the k-coloring problem
(k-GCP) consists to assign an integer (called color) in {1, . . . , k} to every vertex such
that two adjacent vertices have different colors. The graph coloring problem (GCP)
consists in finding a k-coloring with the smallest possible value of k. Both problems
are NP-hard [14] and many heuristics were proposed to solve them. For a recent
survey, the reader is referred to [11].

We can now obviously remark the similarities between (P (k)) and the k-GCP.
From the input data of problem (P (k)), we can build a graph G = (V ;E) as follows.
We associate a vertex j with each job j , an edge [j ; j ′] each time j ′ ∈ N(j) (but not
more than one edge between two vertices). In addition, we can associate a color t with
each time period t . Coloring G with k colors while trying to minimize the number of
conflicting edges is equivalent to assign a time period t ∈ {1, . . . , k} to each job while
trying to minimize the number of incompatibilities. (P (k)) is actually an extension of
the k-GCP, because the latter is a subcase of the former where a(k)(j ; t) = 0 for all j

and all t , and c(k)(j ; j ′) = 1 for all j and all j ′ ∈ N(j).
Therefore, we can deduce that problem (P (k)) is NP-hard too, and the use of

heuristic algorithms is unavoidable to tackle large instances of (P (k)) and (P). Two
main classes of heuristics are local search methods and population based algorithms.
The most popular local search methods are simulated annealing [24], tabu search
[16], variable neighborhood search [30], guided local search [35], threshold algo-
rithms [3], and GRASP [8], while the most used population based methods are ge-
netic algorithms [4], ant colonies [6], and adaptive memory algorithms [33].

Because of the similarities of problems (P (k)) and k-GCP, an important point
is to check if it is possible to select the best ingredients from the graph coloring
methods and to adapt them for problem (P (k)). Currently, no known exact solution
method is able to solve all instances with up to 100 vertices (e.g. [29] and [17]). For
larger instances, upper bounds on the chromatic number can be obtained by using
heuristic algorithms. State-of-the-art local search heuristics for the k-GCP are the
following: tabu search [1, 19], simulated annealing [2, 22], and variable space search
[20]. Evolutionary heuristics were also successfully applied: genetic algorithms (e.g.
[9, 10]), ant local search [32], and adaptive memory algorithms [12, 28].

All these heuristics are based on two strategies. The first approach consists in
allowing conflicts (a conflict occurs if two adjacent vertices have the same color)
while minimizing the number of conflicts. In such a context, a straightforward move
is to change the color of a conflicting vertex, as proposed in [19]. Instead of relaxing
the constraint that the endpoints of an edge should have different colors, one may
relax the constraint imposing that all vertices should be colored. Thus the goal is
to minimize the number of uncolored vertices. In such a situation, where partial but
legal solutions are involved, a straightforward move consists in assigning a color to
an uncolored vertex and to remove the color of the created conflicting vertices, as
proposed in [1].

As it is difficult to define a partial solution for problem (P (k)), it seems more
appropriate to only consider the first above mentioned approach for further investiga-
tions. In this paper, one could consider the proposed tabu search for problem (P (k))

Heuristics for a project management problem with incompatibility 1235

as an extension of the quick and efficient tabu search coloring method proposed in
[19], and could consider the adaptive memory algorithm for problem (P (k)) as an
extension of the very efficient adaptive memory algorithm for the k-GCP proposed in
[12].

2.3 Variations of the problem

The above model can also cover the following specific situations. Let M be an ar-
bitrarily large number. If the project manager does not want job j to be performed
at time period t , he can set, for all k ∈ K , a(k)(j, t) = M , and then, hopefully, the
solution procedure will not assign j to time period t . More generally, it means that
the proposed model can cover the situation where some forbidden time periods are
associated with some jobs.

The model can also be adapted to cover the situation where the project manager
prefers that job j is performed before job j ′. Let k be the considered number of time
periods. We create k artificial jobs denoted j1, j2, . . . , jk associated with job j , as
well as artificial jobs j ′

1, j
′
2, . . . , j

′
k associated with j ′. We also create an additional

and artificial time period denoted k0. All new assignment and incompatibility costs
should be set to 0, except the following:

(A) a(k)(ji , t) = a(k)(j ′
i , t) = M for i �= t ;

(B) c(k)(jp; jq) = c(k)(j ′
p; j ′

q) = M if p �= q;

(C) a(k)(l, k0) = M for each non artificial job l;
(D) c(k)(j ; ji) = c(k)(j ′; j ′

i) = M for i ∈ {1, . . . , k};
(E) c(k)(jp; j ′

q) = M if p > q .

With such a set of constraints, the solutions such that j is performed after j ′ will
strongly be penalized. In order to better understand it, let us consider the above con-
straints step by step. Constraints (A), considered alone, favor solutions such that ji

and j ′
i are assigned to time period i, for every i ∈ {1, . . . , k}. The impact of con-

straints (B) is the following: at most one of the ji ’s (say jc) and at most one of the
j ′
i ’s (say jd) should be assigned to time period k0. Assigning more than one of the

ji ’s to k0 would be strongly penalized with constraints (B), and the same holds for
the j ′

i ’s. Adding constraints (C) and (D) imply that jobs j and j ′ are assigned to pe-
riods different from k0 (say c and d respectively), and that the corresponding jobs jc

and j ′
d are both assigned to k0. Finally constraints (E) avoid c to be larger than d ,

hence avoid job j to be performed after job j ′. If we want job j to be performed
strictly before job j ′, we only need to set c(k)(j, j ′) = M .

The above technique can of course be generalized if we have to respect several
precedence constraints. Even if each precedence constraint induces the creation of
2k artificial jobs, we believe that the model is still relevant in a practical standpoint,
because the heuristics proposed in this paper are able to tackle instances up to 10,000
vertices in a reasonable amount of time (this was confirmed by preliminary experi-
ments which will not be described here).

2.4 Practical relevance of the problem

As the GCP and the k-GCP can be viewed as roots of problems (P) and (P (k)), all the
application domains of the former problems might be relevant for the latter problems.

1236 N. Zufferey et al.

Relevant practical applications for graph coloring include the creation of timetables,
frequency assignment, scheduling, design and operation of flexible manufacturing
systems, bag rationalization for food manufacturers (e.g. [13, 15, 27, 34, 36]).

In addition, the problem considered in this paper is relevant when we have to
assign jobs to time periods, which are typically working days. At the end of such
a planning phase, for every day, we know the set of jobs that have to be performed
during that day. In a second phase, given a day d and its associated jobs, one can
imagine that we have to assign a resource (a human being or a machine) to each
job. We can also consider the situation where a manager provides a set K = {k̂ − r,

. . . , k̂, . . . , k̂ + r ′} of possible resources available at day d . When k resources are
available at day d , an incompatibility cost c(k)(j ; j ′) between jobs j and j ′ has to be
paid if both jobs are performed by the same resource, because of additional time that
the concerned resource has to work. In addition, for each number k of resources, each
job j and each resource t , we know the assignment cost a(k)(j ; t) to pay if resource t

performs job j , if k resources are available during that day. The goal is to assign each
job j to a resource t while minimizing the total costs. Such a problem is equivalent
to problem (P).

In contrast, another possible type of application associated with problem (P (k)) is
the following. Consider a set of technicians, with different profiles (i.e. qualification
levels and capabilities), divided into k different working teams of various sizes. The
planning horizon is one working day (typically 8 hours). A job represents a request
of a client, with which is associated a set of required qualifications and a duration.
The goal is to dispatch a set of n jobs to the k working teams while considering
the qualifications of the working teams. The duration of each job is supposed to be
much smaller than a working day. For any pair of jobs j and j ′, the incompatibility
cost c(k)(j ; j ′) is proportional to the difficulty encountered by the same team if it
performs both j and j ′ within the same day. If it is impossible for the same team
to perform j and j ′ within the same day, c(k)(j ; j ′) is set to an arbitrarily large
number M . In addition, for any job j and any working team t , the assignment cost
a(k)(j ; t) associated with the assignment of job j to working team t is proportional
to the qualification level of team t to perform job j . If a team t is not qualified for a
job j , a(k)(j ; t) is set to an arbitrarily large number M . For a given solution of such a
problem, if the manager feels that the amount of jobs associated with a team t is too
large, he can create an additional team and tackle problem (P (k+1)). On the contrary,
if the jobs associated with a team t are negligible, the manager can remove such a
team (and dispatch its members in other teams) and consider problem (P (k−1)).

3 Tabu search for (P (k)) and (P)

A basic version of tabu search can be described as follows. Let f be an objective func-
tion which has to be minimized over the solution space S. At each step, a neighbor
solution s′ is generated from the current solution s by performing a specific mod-
ification on s, called a move. All solutions obtained from s by performing a move
are called neighbor solutions of s. The set of all the neighbor solutions of s is de-
noted A(s). First, tabu search needs an initial solution s0 ∈ S as input. Then, the

Heuristics for a project management problem with incompatibility 1237

algorithm generates a sequence of solutions s1, s2, . . . in the search space S such
that sr+1 ∈ A(sr). When a move is performed from sr to sr+1, the inverse of that
move is stored in a tabu list L. For the following t iterations, where t is the tabu
tenure (also called tabu list length), a move stays tabu and cannot be used (with
some exceptions) to generate a neighbor solution. The solution sr+1 is computed as
sr+1 = arg mins∈A′(sr) f (s), where A′(s) is a subset of A(s) containing all solutions
s′ which can be obtained from s either by performing a move that is not in L (i.e. not
tabu) or such that f (s′) < f (s∗), where s∗ is the best solution encountered along the
search so far. The process is stopped for example when an optimal solution is found
(when it is known), or when a fixed number of iterations have been performed. Many
variants and extensions of this basic algorithm can be found for example in [16].

Below, we first propose a tabu search Tabu-(P (k)) for problem (P (k)) and then a
general heuristic for problem (P). In order to design Tabu-(P (k)), we mainly have to
define the search space, the neighborhood structure (i.e. the nature of a move), and
the way to manage the tabu tenures.

Search space The search space is the set of k-partitions of V and the objective
function to minimize is the total cost f (k).

Neighborhood structure A move consists in changing the period assigned to a job.
But in order to avoid testing every possible move at each iteration, we propose the
following. For each job j , its contribution cost(k)(j) to f (k) is:

cost(k)(j) = a(k)(j ;per(j)) + 1

2

∑

j ′∈N(j)∩Cper(j)

c(k)(j ; j ′) (2)

Note that the fraction 1
2 is used to consider that jobs j and j ′ equivalently contribute

to c(k)(j ; j ′). Thus, the other part of c(k)(j ; j ′) is taken into account in cost(k)(j ′).
At each iteration, we propose to only consider to change the period of a job j if
cost(k)(j) is in the q% more costly jobs, where q is a parameter. Preliminary experi-
ments showed that q = 40% is a reasonable value.

Tabu tenures When the period of a job j is modified from t to t ′, period t is declared
tabu for job j for a certain number of iterations, and all solutions where j has period t

are tabu solutions. At each iteration, we determine the best neighbor s′ of the current
solution s (ties are broken randomly) such that either s′ is a non-tabu solution, or
f (k)(s′) < f ∗, where f ∗ is the value of the best solution s∗ encountered so far during
the search. If job j moves from Ct to Ct ′ when going from the current solution s to the
neighbor solution s′, it is forbidden to put j back in Ct during tab(j ;Ct) iterations,
where

tab(j ;Ct) = max

{
1; UNIFORM(u;v) + α · f (k)(s) − f (k)(s′)

f (k)(s)

}
(3)

where u,v and α are parameters such that 0 < u < v and α > 0. The maximum is
used to enforce tab(j ;Ct) to be positive. The last term of (3) represents the improve-
ment of the objective function from s to s′. If s′ is better than s, the improvement

1238 N. Zufferey et al.

is positive and the reverse of the performed move will be forbidden for a larger time
than if the improvement is negative, which is straightforward. Preliminary experi-
ments showed that (u;v;α) = (10;20;15) is a reasonable parameter setting.

Incremental computation To save CPU time at each iteration, a key issue is the use
of incremental computation. Suppose that we move j from Ct to Ct ′ in order to gen-
erate a neighbor solution s′ from the current solution s. Then, instead of computing
f (k)(s′) from scratch by the use of (1), we propose to only compute the variation
�f (k)(s; s′) = f (k)(s′) − f (k)(s) of f (k). It is easy to see that:

�f (k)(s; s′) = a(k)(j ; t ′) +
∑

j ′∈N(j)∩Ct ′
c(k)(j ; j ′) − a(k)(j ; t) −

∑

j ′∈N(j)∩Ct

c(k)(j ; j ′)

(4)
In other words, �f (k)(s; s′) is the difference between the costs induced by the move
and the costs removed by the move. Thus, at each iteration, the performed move s′
is the one minimizing �f (k), which is computed for the non tabu moves and for the
tabu moves leading to an improvement of f ∗.

We have now all the ingredients to formulate Tabu-(P (k)) in Algorithm 1, where
T max is a parameter defining the stopping condition of the method, which is a maxi-
mum CPU time. Note that in order to generate an initial solution, we randomly assign
a time period to each job.

Algorithm 1 Tabu-(P (k))

Input: set of jobs, assignment and incompatibility costs, T max;

Initialization

1. generate an initial solution s (randomly);
2. set s∗ = s and f ∗ = f (k)(s);
3. set Iter = 0;

While T max is not reached, do:

1. update the iteration counter: set Iter = Iter + 1;
2. compute the set C containing the q% most costly jobs;
3. generate the set B of all non tabu candidate neighbor solutions obtained from

s by modifying the current time period associated with a job j ∈ C (exception:
B can contain tabu solutions if such solutions have values smaller than f ∗);

4. set s′ = arg mins′′∈B f (k)(s′′);
assume we generate s′ from s by moving job j from Ct to Ct ′ ;

5. update the best solution: if f (k)(s′) < f ∗, set f ∗ = f (k)(s′) and s∗ = s′;
6. update the tabu status: do not put j in Ct until iteration Iter + tab(j ;Ct);
7. update the current solution: set s = s′;

Output: solution s∗ with value f ∗;

Heuristics for a project management problem with incompatibility 1239

Using Tabu-(P (k)) proposed in Algorithm 1, we propose to tackle problem (P)

with the heuristic proposed in Algorithm 2.

Algorithm 2 Tabu-(P)

Input: set of jobs, assignment and incompatibility costs, T max;

For k = k̂ − r to k̂ + r , do:

apply Tabu-(P (k)) during T max time units;
let s

(k)
best be the provided solution;

Output: set of solutions {s(k̂−r)
best , . . . , s

(k̂)
best, . . . , s

(k̂+r ′)
best };

Advanced tabu tenures We now propose a more refined way of updating the tabu
tenures, based on the following straightforward idea: if the diversity of the visited
solutions is below a predetermined threshold, the tabu durations tab(j,Ct) should
be augmented from that time (for all j and t), and, on the contrary, if the diver-
sity becomes above the threshold, the tabu durations can be reduced from that time.
Therefore, two crucial questions have to be answered: (1) how to determine the di-
versity of the visited solutions, (2) how to determine the threshold associated with the
diversity. Answers to these questions are proposed below.

The diversity of the visited solutions depends on a distance function, which is
discussed now. The similarity sim(s, s′) between two solutions s = (C1,C2, . . . ,Ck)

and s′ = (C′
1,C

′
2, . . . ,C

′
k) can be defined as follows (with the following convention:

if
|Ci∩C′

i |
|Ci∪C′

i | = 0
0 , we set

|Ci∩C′
i |

|Ci∪C′
i | = 1, because in such a case Ci = C′

i = ∅):

sim(s, s′) =
k∑

i=1

|Ci ∩ C′
i |

|Ci ∪ C′
i |

(5)

Thus, the distance d(s, s′) between two solutions s and s′ can be defined as d(s, s′) =
k − sim(s, s′). In addition the distance d(s,Z) between a solution s and a set Z of
solutions can be defined as:

d(s,Z) =
∑

s′∈Z d(s, s′)
|Z| (6)

Finally, the diversity d(Z) of a set Z of solutions can be defined as the average dis-
tance between two solutions of Z:

d(Z) =
∑

s∈Z d(s,Z − {s})
|Z| (7)

Let δ be a threshold associated with the diversity of the visited solutions of tabu
search. We propose to empirically determine δ at the beginning of the search, where

1240 N. Zufferey et al.

the diversity of the visited solutions is likely to be large enough, as follows. Starting
with Z = ∅, from the first time h (parameter) iterations are spent without improve-
ment of the best encountered solution, every h iterations, put in Z the best visited
solution during these h iterations. When |Z| = z (parameter), set δ = d(Z). Then,
during every z · h iterations, a new set Z of solutions is collected the same way and
its diversity d(Z) is calculated. If d(Z) < δ, the tabu duration of every new move is
set to T · (1 + ε) (i.e. augmented because the diversity is not large enough), where
T is the previous tabu duration and ε > 0 is a parameter. If d(Z) ≥ δ, the tabu du-
ration of every new move is set to T

1+ε
(i.e. reduced because the diversity is large

enough). Preliminary experiments showed that h = 50, z = 10 and ε = 4 is a reason-
able parameter setting. When such tabu tenures are used within Tabu-(P (k)), we use
the notation AdvTabu-(P (k)) (for advanced tabu).

Diversification strategy Assume a(k)(j, t) ∈ [amin, amax] and c(k)(j, j ′) ∈ [cmin,

cmax], for all j, j ′, t . If amax and cmax are not in the same range (it will be the case
in our test instances, where amax = 200 and cmax = 1000), the following problem
can occur during the search of our tabu algorithm: a job j might not visit a time
period t ′ because it is better to pay the assignment cost associated with job j in its
current time period t rather than to pay additional incompatibility costs if j is per-
formed during period t ′ (because some jobs of N(j) are currently in Ct ′). In order
to give a better chance for job j to visit Ct ′ , an idea consists in artificially increas-
ing all the assignment costs. As the opposite situation might occur (i.e. assignment
costs dominate incompatibility costs), decreasing the assignment costs could also be
a good idea. Therefore, the following general process is proposed, where T̂ , Tdiv and
ρ are parameters with Tdiv < T̂ . Within the considered tabu search (i.e. Tabu-(P (k))

or AdvTabu-(P (k))), every T̂ seconds, apply Tabu-(P (k)) during Tdiv seconds (diver-
sification phase), starting with the best visited solution during the previous T̂ seconds
of the considered tabu search, but with all the assignment costs multiplied or divided
by ρ (we multiply when the last decision was to divide, and vice-versa). Then we con-
tinue with the considered tabu search, but from the best solution visited during the di-
versification phase. Preliminary experiments showed that (T̂ , Tdiv, ρ) = (300,30,10)

is a reasonable parameter setting. When the above diversification strategy is used
within Tabu-(P (k)), we use the notation DivTabu-(P (k)) (for diversification tabu).
When it is used within AdvTabu-(P (k)), we use the notation DivAdvTabu-(P (k)).

4 Adaptive memory algorithm for (P (k)) and (P)

In this section, we first briefly present the main ingredients of an adaptive memory
algorithm. Then we design an adaptive memory algorithm from the evolutionary col-
oring methods presented in [10] and [12].
A basic version of the adaptive memory algorithm [33] is summarized in Algorithm 3,
where performing steps (1), (2) and (3) is called a generation.

Therefore, in order to design an adaptive memory algorithm for problem (P (k)),
we have to define: the way to initialize the population M of solutions, the recombi-
nation operator, the intensification (or local search) operator, and the memory update
operator.

Heuristics for a project management problem with incompatibility 1241

Algorithm 3 Adaptive memory algorithm

Initialize the central memory M with solutions.

While a stopping condition is not met, do:

1. create an offspring solution s from M by using a recombination operator;
2. apply a local search operator on s and let s′ denote the resulting solution;
3. update M with the use of s′.

Initialization of M We propose to work with a memory M of size 10 as used in
[10, 12, 36]. In order to initialize M, we randomly generate 10 solutions and improve
such solutions by performing Tabu-(P (k)) during 1000 iterations.

Recombination operator It is very similar to the one proposed in [36] for a satel-
lite range scheduling problem, which is derived from the recombination operator
proposed in [10] for the k-GCP. At each generation, an offspring solution s(off) =
{C(off)

1 , . . . ,C
(off)
k } is built time period by time period from M. Suppose that sets

C
(off)
1 , . . . ,C

(off)
t−1 are already built from parent solutions, and that parent solution sr ′

(with r ′ in {1, . . . ,10}) provided the set C
(off)
t−1 . In addition, let A be the set of al-

ready scheduled jobs (i.e. the jobs in C
(off)
1 , . . . ,C

(off)
t−1). At that moment, we choose

the next non considered time period t to deal with. Then, the set C
(off)
t is provided

by the solution sr = {C(r)
1 , . . . ,C

(r)
k } in M (with r �= r ′, i.e. the same solution of M

cannot consecutively provide two sets of the offspring solution) such that |C(r)
t − A|

is maximum (we break ties randomly). Thus we set C
(off)
t = C

(r)
t − A. At the end

of such a process, we successively schedule each non scheduled job (considered in a
random order) in a greedy fashion.

Of course, different recombination operators could be developed and tested for
problem (P (k)). We however decide to only focus on the one proposed in [36] (which
provides the best results for the considered scheduling problem) that was derived
from the best recombination operator for the k-GCP proposed in [10].

Intensification operator It is simply Tabu-(P (k)) described in the previous section.
As we would like to perform a significant number of generations in our adaptive
memory algorithm, at each generation, we have to perform Tabu-(P (k)) for a short
time. Such a strategy will balance the roles associated with the recombination oper-
ator and the intensification operator (tabu search). Let I (parameter) be the number
of iterations performed by Tabu-(P (k)) at each generation of AMA-(P (k)) (which
denotes the adaptive memory algorithm for (P (k))). Preliminary experiments showed
that I = 10,000 is a reasonable choice, which corresponds on most instances to a
few seconds of CPU time on the computer used for the experiments and described in
the next section. For these reasons, it is not relevant to use the diversification phase
within the intensification operator.

1242 N. Zufferey et al.

Memory update operator It is based on the efficient strategy proposed in [36]. Let
s be the solution provided by Tabu-(P (k)) at each generation, let sworst be the worst
solution of M, and let sold be the oldest solution of M. We propose to update M
with s as follows. If s is better or equal to sworst, we replace sworst with s in M and
update sworst. Otherwise, we replace sold with s in M and update sold . In the latter
case, even if s is not able to improve the average quality of M, it is at least able to
bring “new blood” in M.

As proposed in the previous section, we propose to tackle problem (P) with the
heuristic proposed in Algorithm 2, but of course by replacing Tabu-(P (k)) with AMA-
(P (k)). Similarly, AMA-(P (k)) is stopped when a CPU time limit T max is reached.

5 Obtained results

In this section, we first propose other methods to be compared with the above pro-
posed heuristics. Then we describe the way we generated instances. Finally, we
present and discuss the obtained results. Note that all the instances associated with
this paper can be provided by the authors upon request.

5.1 Comparison with other methods

Because no other method exists to tackle problem (P), an important issue is to be able
to compare our heuristics with an appropriate set of other methods. We propose the
following strategy: Tabu-(P) and AMA-(P) will be compared with other heuristics
(a greedy heuristic and a descent algorithm) on large instances, and with an exact
method (using CPLEX 10.0) on small instances.

Below, we propose three methods to tackle problem (P (k)): a greedy heuristic,
a local search heuristic, and an exact method, respectively denoted by Greedy-(P (k)),
Descent-(P (k)) and Exact-(P (k)). Each of these methods can then be used to tackle
problem (P) by applying it for all k ∈ K . The provided solution for (P) is then the
best one among the |K| generated ones. The usefulness of Exact-(P) is to show that
Tabu-(P) is able to find optimal solutions on small instances, whereas the usefulness
of Descent-(P) is to show that all the ingredients added to Descent-(P) to derive
Tabu-(P) are relevant (namely the tabu tenures and the restricted neighborhood which
is examined at each iteration). Greedy-(P) is considered to measure the gap between
local search and constructive algorithms.

5.1.1 A greedy constructive heuristic for (P)

We first propose a greedy method for (P (k)), denoted by Greedy-(P (k)), which builds
a solution step by step as follows. Let J be the set of jobs which are placed in a
time period. We start with an empty solution s(k), i.e. with J = ∅. Then, at each
step: (1) a job j /∈ J is randomly chosen; (2) a time period t ∈ {1, . . . , k} is assigned
to j , such that the augmentation of the costs is as small as possible (ties are broken
randomly); (3) we add j in J . The process stops when J = V , i.e. when a time period
is associated with every job.

Heuristics for a project management problem with incompatibility 1243

5.1.2 A descent local search heuristic for (P)

We first propose a descent method for (P (k)), denoted by Descent-(P (k)), which starts
with a random solution s(k) and tries to improve it iteratively. At each iteration, we
perform the best possible move, where a move consists in changing the time period
associated with a job. In other words, (k − 1) · |V | neighbor solutions are evaluated at
each iteration. The process stops when there is no neighbor solution which is strictly
better than the current solution. In contrast with Tabu-(P (k)), we can remark that in
Descent-(P (k)), at each iteration, all the neighbor solutions of the current solution
are evaluated and there is no forbidden move. In addition, the stopping conditions are
different.

5.1.3 An exact method using CPLEX for (P)

We first propose the following integer program to model problem (P (k)). Let xj,t = 1
if time period t is assigned to job j , and xj,t = 0 otherwise. Then, we can formulate
(P (k)) as follows.

Obj. fct. min
k∑

t=1

n∑

j=1

a(k)(j ; t) · xj,t +
k∑

t=1

n−1∑

j=1

n∑

j ′=j+1

c(k)(j ; j ′) · xj,t · xj ′,t

(8)

Constraints
k∑

t=1

xj,t = 1, ∀j ∈ {1, . . . , n} (9)

xj,t ∈ {0,1}, ∀j ∈ {1, . . . , n}, ∀t ∈ {1, . . . , k} (10)

Equation (9) imposes to assign exactly one time period to each job. In order to
tackle such a problem with the CPLEX MIP Solver, we should formulate it as
an integer linear program. In order to have a linear objective, we propose to set
yj,j ′ = ∑k

t=1 xj,t xj ′,t . Because of constraint (9), we have yj,j ′ = 1 if jobs j and
j ′ are performed at the same time period, and yj,j ′ = 0 otherwise. The former im-
plication is expressed in our formulation by the linking constraint (13). The resulting
linear model is described below. The associated exact method based on the use of the
CPLEX MIP Solver is denoted Exact-(P (k)).

Obj. fct. min
k∑

t=1

n∑

j=1

a(k)(j ; t) · xj,t +
n−1∑

j=1

n∑

j ′=j+1

c(k)(j ; j ′) · yj,j ′ (11)

Constraints
k∑

t=1

xj,t = 1, ∀j ∈ {1, . . . , n} (12)

xj,t + xj ′,t − 1 ≤ yj,j ′ , ∀j < j ′ ∈ {1, . . . , n}, ∀t ∈ {1, . . . , k}
(13)

xj,t , yj,j ′ ∈ {0,1}, ∀j < j ′ ∈ {1, . . . , n}, ∀t ∈ {1, . . . , k} (14)

1244 N. Zufferey et al.

Notice that in an admissible solution of the above formulation, yj,j ′ = 1 may occur
even if

∑k
t=1 xj,t xj ′,t = 0, but as the objective is to be minimized, this cannot hap-

pen in any optimal solution as long as c(k)(j ; j ′) > 0, since setting yj,j ′ to 0 would
provide an admissible solution with lower cost. Hence the optimal solution value of
our formulation is equal to f (k)(s

(k)
opt).

5.2 Generation of the instances

We build instances from 13 graphs from the DIMACS Challenge (see ftp://dimacs.
rutgers.edu/pub/challenge/graph/). We selected those graphs because they are the
most challenging ones in the graph coloring community [1, 12]. This means that
the incompatibility costs are difficult to minimize, and the difficulty is increased
because of the assignment costs. In addition, three types of graphs are considered
and described below. For these reasons, we strongly believe that the proposed set of
benchmark instances is consistent.

• Five DSJCn.d graphs: the DSJC’s are random graphs with n vertices and a density
of d

10 . It means that each pair of vertices has a probability of d
10 to form an edge.

We use the DSJC’s graphs with n ∈ {500,1000} and d ∈ {1,5,9}.
• Four flatn_χ_0 graphs: the flat graphs are constructed graphs with n vertices and

a chromatic number χ . The end number ‘0’ means that all vertices are adjacent to
the same number of vertices.

• Four len_χx graphs: the Leighton graphs have n vertices and a chromatic number
χ equal to the size of the largest clique (i.e., the largest number of pairwise adjacent
vertices). The end letter ‘x’ stands for different graphs with similar settings.

In addition, in order to compare Tabu-(P (k)) with Exact-(P (k)) on smaller instances
(up to 100 vertices), we generated random graphs with a density of 0.5. For these
graphs, we selected n ∈ {10;20;30; . . . ;100} and k ∈ {2;3;4; . . . ;10}. Such graphs
are labeled random(n; k).

5.3 Generation of the costs

Remember that we consider the situation where the project manager does not only
provide a single number k̂ of time periods within which the project has to be per-
formed, but he provides a set K = {k̂ − r, . . . , k̂, . . . , k̂ + r ′} of possible durations.
Without loss of generality, we assume that r = r ′. We propose now a way to gen-

erate instances for problem P (k̂), and a way to adjust such costs for generating

instances of problem (P). We suggest the following methodology for P (k̂). We
randomly generate the costs by the use of the uniform function UNIFORM(u;v),
which returns an integer in the set {u,u + 1, . . . , v − 1, v} (assuming u < v). We set

a(k̂)(j ; t) = UNIFORM(1;200), for all j and t , and c(k̂)(j ; j ′) = UNIFORM(1;1000),
for all j and j ′. A key issue is the way to adjust the costs for other project’s du-
rations. The idea is the following: if the horizon is smaller than k̂ days, the in-
compatibility costs will augment (we will have more conflicts to deal with) but the
assignment costs will be reduced (the staff and the machines will work a smaller

ftp://dimacs.rutgers.edu/pub/challenge/graph/
ftp://dimacs.rutgers.edu/pub/challenge/graph/

Heuristics for a project management problem with incompatibility 1245

number of days). On the contrary, if the horizon is larger than k̂ days, the incom-
patibility costs will be reduced but the assignment costs will augment. We propose

the following. For 1 ≤ i ≤ r , and all j and t , we set: a(k̂+i)(j ; t) = 200 + 50 · i

and a(k̂−i)(j ; t) = max{1; (1 − i
10) · a(k̂)(j ; t)}. In addition, as the number of con-

flicts is naturally decreasing with the length of the horizon, we can simply set

c(k)(j ; j ′) = c(k̂)(j ; j ′), for all k �= k̂, j and j ′.

5.4 Presentation of the results

Our algorithms were implemented in C++ and run on a computer Intel Pentium 4
(4.00 GHz, RAM 1024 Mo DDR2), and the exact method running CPLEX 10.0 was
performed on a computer AMD Opteron (Processor 250 2.4 GHz, 16 GB). The stop-
ping condition for Tabu-(P (k)) and AMA-(P (k)) is a maximum time limit T max. As
Greedy-(P (k)) needs less than one minute to provide a solution, it is restarted as
long as T max minutes are not reached. The provided solution is then the best among
all the restarts occurring within T max minutes. The same holds for Descent-(P (k)).
Preliminary experiments showed that T max = 60 minutes is a reasonable value for
the DIMACS instances. For the random(n; k) instances, we set T max = 15 minutes
because such instances are of relatively small size (n ≤ 100).

First of all, we have to tune the proposed tabu search algorithm with a fixed
value of k. Table 1 reports the average results (over 5 runs) obtained with Tabu-
(P (k)), AdvTabu-(P (k)), DivTabu-(P (k)) and DivAdvTabu-(P (k)) on the DIMACS
instances. Let f ∗ be the best solution encountered by one run of Tabu-(P (k)) within
the considered time limit T max, and f Tabu be the average value of f ∗ (rounded to
the nearest integer) over the considered number of runs. We similarly define f AdvTabu

Table 1 Comparison of Tabu-(P (k)), AdvTabu-(P (k)), DivTabu-(P (k)) and DivAdvTabu-(P (k)) on the
DIMACS instances with a time limit of one hour

Graph G n d χ(G) k	 k̂ f Tab GAdv GDiv GDivAdv

DSJC1000.1 1000 0.1 ? 20 13 241601 −14.07% −12.62% −17.10%

DSJC1000.5 1000 0.5 ? 83 55 250977 −2.56% −3.40% −6.20%

DSJC1000.9 1000 0.9 ? 224 149 166102 −0.59% −1.76% −0.93%

DSJC500.5 500 0.5 ? 48 32 98102 −6.84% −5.34% −8.09%

DSJC500.9 500 0.9 ? 126 84 64224 −10.05% −8.68% −10.75%

flat1000_50_0 1000 0.49 50 50 33 665449 −2.01% −2.06% −2.51%

flat1000_60_0 1000 0.49 60 60 40 462612 −2.48% −1.23% −2.86%

flat1000_76_0 1000 0.49 76 82 55 246157 −3.84% −4.36% −5.87%

flat300_28_0 300 0.48 28 28 19 62862 −0.77% −2.43% −1.54%

le450_15c 450 0.16 15 15 10 149041 −13.36% −7.98% −13.04%

le450_15d 450 0.17 15 15 10 146696 −11.87% −6.20% −12.56%

le450_25c 450 0.17 25 25 17 72974 −11.41% −23.73% −25.09%

le450_25d 450 0.17 25 25 17 70852 −8.97% −21.12% −24.70%

Average 207511 −6.83% −7.76% −10.10%

1246 N. Zufferey et al.

Table 2 Comparison of DivAdvTabu-(P (k)), AMA-(P (k)), Descent-(P (k)) and Greedy-(P (k)) on the
DIMACS instances with a time limit of one hour

Graph G k̂ f DivAdvTabu GGreedy GDescent GAMA

DSJC1000.1 13 200281 57.23% 28.49% 5.42%

DSJC1000.5 55 235409 33.30% 18.43% −0.28%

DSJC1000.9 149 164550 10.30% 11.35% −4.98%

DSJC500.5 32 90163 55.03% 34.76% 3.50%

DSJC500.9 84 57320 43.69% 42.71% 2.69%

flat1000_50_0 33 648770 24.97% 10.82% −0.82%

flat1000_60_0 40 449389 28.63% 14.16% −1.18%

flat1000_76_0 55 231710 32.15% 18.23% −1.92%

flat300_28_0 19 61891 51.20% 29.19% 1.50%

le450_15c 10 129605 40.75% 20.45% 2.86%

le450_15d 10 128273 42.89% 22.49% 5.19%

le450_25c 17 54667 39.99% 27.11% 21.32%

le450_25d 17 53351 43.40% 29.40% 23.28%

Average 38.73% 23.66% 4.35%

(associated with AdvTabu-(P (k))), f DivTabu (associated with DivTabu-(P (k))) and
f DivAdvTabu (associated with DivAdvTabu-(P (k))). From left to right, the columns
indicate: the name of the DIMACS graph G, the number n of vertices of G, the
density d of graph G, the chromatic number χ(G) of G (we put a “?” when it is
not known), the best upper bound k	 on χ(G) ever found by a heuristic, the consid-
ered value k̂ of k with which we performed the heuristics, f Tabu, the percentage gap

GAdv = f AdvTabu−f Tabu

f Tabu between f Tabu and f AdvTabu, the percentage gap GDiv between

f Tabu and f DivTabu, and the percentage gap GDivAdv between f Tabu and f DivAdvTabu.
Average results are indicated in the last line. On the one hand, AdvTabu-(P (k)) is
better than Tabu-(P (k)), which means that the use of the advanced tabu tenures is
relevant. On the other hand, DivTabu-(P (k)) provides better results than Tabu-(P (k)),
which indicates that the proposed diversification strategy is useful. Finally, the joint
use of the advanced tabu tenures and the diversification strategy leads to the best
results. Therefore, only DivAdvTabu-(P (k)) will be considered for farther compar-
isons.

For a fixed value of k, Table 2 reports the average results (over 10 runs) ob-
tained with DivAdvTabu-(P (k)), Greedy-(P (k)), Descent-(P (k)), and AMA-(P (k))

on the DIMACS instances. Let f ∗ be the best solution encountered by one run of
DivAdvTabu-(P (k)) within the considered time limit T max, and f DivAdvTabu be the av-
erage value of f ∗ (rounded to the nearest integer) over the considered number of runs.
We similarly define f AMA, f Descent and f Greedy. From left to right, the columns indi-
cate: the name of the DIMACS graph G, the considered value k̂ of k with which we

performed the heuristics, f DivAdvTabu, the percentage gap GGreedy = f Greedy−f DivAdvTabu

f DivAdvTabu

between f DivAdvTabu and f Greedy, the percentage gap GDescent between f DivAdvTabu

Heuristics for a project management problem with incompatibility 1247

and f Descent, and the percentage gap GAMA between f DivAdvTabu and f AMA. We indi-
cate average gaps in the last line. Note that in order to encounter a relevant number of
incompatibility costs, we have to choose k̂ smaller than kbest. Otherwise, the number
of pairs {j, j ′} of jobs linked with an incompatibility cost and performed within the
same time period will be too small. Thus, we propose to choose k̂ close to 2

3 kbest.

If k̂ is much smaller than kbest, it means that the incompatibility costs will be much
larger.

When comparing DivAdvTabu-(P (k)) with simpler methods, i.e. Descent-(P (k))

and Greedy-(P (k)), we can observe that DivAdvTabu-(P (k)) obtained, by far, the best
results on each instance. In average, DivAdvTabu-(P (k)) is about 24% better than
Descent-(P (k)) and 39% better than Greedy-(P (k)). Note that no general conclusion
can be drawn according to the density variation of the graphs. Such a remark holds
for the whole paper.

When comparing DivAdvTabu-(P (k)) with a more refined method, i.e. AMA-
(P (k)), we can remark that the former is slightly better (in average 4.35%) than the
latter. However, if we have a closer look at Table 2, we can see that AMA-(P (k)) is
better on five instances and worse on 8 instances. Both methods have a similar per-
formance on the DSJC’s graphs, AMA-(P (k)) is slightly better on the flat graphs but
has a bad behavior on the Leighton’s graphs. Note that if we only allow a time limit
of 10 minutes, the gap between DivAdvTabu-(P (k)) and AMA-(P (k)) is in average
8.35% instead of 4.35% in favor of tabu search. This means that if the scheduler has
to react in a few minutes (for example in the case he has to quickly reschedule some
jobs after a non planned event), tabu search is obviously the best option. Therefore,
DivAdvTabu-(P (k)) seems to be the best overall compromise between quality and
simplicity. For this reason, only tabu search will be considered further in this paper.

Table 3 Variation of f Tabu when k ranges from k̂ − 8 to k̂ − 4

Graph G G(k̂ − 8) G(k̂ − 7) G(k̂ − 6) G(k̂ − 5) G(k̂ − 4)

DSJC1000.1 583.27% 400.12% 276.54% 192.86% 130.44%

DSJC1000.5 42.07% 34.77% 29.17% 24.35% 21.79%

DSJC1000.9 8.74% 9.90% 5.87% 4.44% 3.78%

DSJC500.5 97.24% 78.63% 66.60% 52.27% 36.71%

DSJC500.9 27.47% 23.91% 20.57% 15.80% 14.07%

flat1000_50_0 63.34% 53.45% 43.25% 34.80% 25.43%

flat1000_60_0 52.98% 45.46% 36.77% 29.60% 22.00%

flat1000_76_0 41.50% 34.42% 30.99% 21.89% 17.02%

flat300_28_0 222.15% 171.30% 133.54% 99.17% 72.91%

le450_15c 1287.70% 697.92% 422.82% 266.99% 167.89%

le450_15d 1297.13% 704.12% 423.93% 268.33% 171.36%

le450_25c 256.84% 194.47% 142.36% 103.83% 75.22%

le450_25d 263.61% 199.37% 147.40% 107.85% 76.36%

Average 326.46% 203.68% 136.91% 94.01% 64.23%

1248 N. Zufferey et al.

In addition, for any instance, let f Tabu
min (resp. f Tabu

max) be the smallest (resp. largest)
value of f ∗ (rounded to the nearest integer) encountered by DivAdvTabu-(P (k))

among the considered number of runs. We observed that the average gap (over the
13 instances) between f Tabu

min and f Tabu is 1.82%, and the average gap between f Tabu
max

and f Tabu is 1.98%. This means that the proposed tabu search is robust.

Table 4 Variation of f Tabu when k ranges from k̂ − 3 to k̂ + 2 (k̂ non included)

Graph G G(k̂ − 3) G(k̂ − 2) G(k̂ − 1) G(k̂ + 1) G(k̂ + 2)

DSJC1000.1 82.63% 46.71% 21.14% −12.77% −29.51%

DSJC1000.5 16.16% 8.21% 6.69% −2.14% −5.96%

DSJC1000.9 6.00% 0.89% −0.65% −3.01% −2.71%

DSJC500.5 27.94% 19.27% 8.30% −6.39% −14.90%

DSJC500.9 10.26% 5.87% 4.46% −3.01% −4.43%

flat1000_50_0 18.83% 12.03% 5.01% −5.29% −10.86%

flat1000_60_0 16.72% 11.42% 6.00% −4.35% −9.59%

flat1000_76_0 12.67% 8.21% 5.42% −3.85% −6.03%

flat300_28_0 48.92% 30.10% 14.04% −11.86% −22.01%

le450_15c 103.51% 56.84% 25.80% −19.45% −34.08%

le450_15d 105.10% 58.12% 25.60% −17.09% −33.98%

le450_25c 51.31% 30.60% 13.62% −13.00% −24.34%

le450_25d 52.51% 34.12% 12.73% −12.59% −25.98%

Average 42.50% 24.80% 11.40% −8.83% −17.26%

Table 5 Variation of f Tabu when k ranges from k̂ + 3 to k̂ + 8

Graph G G(kt + 3) G(kt + 4) G(kt + 5) G(kt + 6) G(kt + 7) G(kt + 8)

DSJC1000.1 −38.07% −47.45% −53.25% −59.35% −63.83% −68.80%

DSJC1000.5 −9.66% −13.28% −16.24% −18.03% −22.00% −24.83%

DSJC1000.9 −5.25% −6.15% −7.80% −9.26% −11.15% −11.25%

DSJC500.5 −19.97% −26.28% −30.91% −35.53% −40.44% −44.01%

DSJC500.9 −8.23% −10.66% −13.26% −15.30% −17.10% −19.97%

flat1000_50_0 −14.77% −19.73% −24.32% −27.08% −30.95% −34.58%

flat1000_60_0 −14.30% −17.59% −21.15% −24.69% −28.06% −31.28%

flat1000_76_0 −11.45% −13.53% −16.30% −19.84% −20.98% −25.19%

flat300_28_0 −31.07% −37.82% −44.48% −49.56% −54.76% −59.38%

le450_15c −45.88% −54.65% −62.46% −67.62% −71.98% −75.83%

le450_15d −44.37% −54.04% −60.50% −65.80% −70.76% −75.75%

le450_25c −35.69% −42.09% −48.51% −54.26% −59.40% −64.48%

le450_25d −33.04% −41.47% −48.87% −54.12% −59.51% −62.75%

Average −23.98% −29.60% −34.47% −38.50% −42.38% −46.01%

Heuristics for a project management problem with incompatibility 1249

Based on the use of DivAdvTabu-(P (k)), it would be now interesting to search for
a k∗ with lower associated costs than the costs associated with k̂. For different values
of k, in Tables 3, 4 and 5, we report the average results (over 5 runs) obtained with
DivAdvTabu-(P (k)) on the DIMACS instances. The columns indicate: the name of
the DIMACS graph G, and the percentage gap G(k̂ + r) between the costs associated
with the targeted number of time periods and the costs associated with k̂ + r time
periods, with r ∈ {−8, . . . ,8} − {0}. We give average gaps in the last lines. We can
remark that the larger k is, the smaller the costs are. If we have a closer look at the
average variation of the costs with respect to k (see also Fig. 1, where the horizontal
axis indicates the number of periods, and the vertical axis gives the associated costs
(average over 5 runs)), we can observe that the cost function is convex, with an almost

Fig. 1 Average variation of the costs according to the number k of periods

Table 6 Comparison of Tabu-(P (k)) and Exact-(P (k)) on the random(n;k) instances when optimal val-
ues are known

Value of k: 2 3 4 5 6 7 8 9 10

n = 10 f opt 1727 719 496 396 254 254 263 185 174

topt 0 0 0 0 0 0 0 0 0

tTabu 0 0 0 0 0 0 0 0 0

n = 20 f opt 8475 4429 2498 1526 1123 946 656 546 444

topt 0 1 1 0 0 0 0 0 0

tTabu 0 0 0 0 0 0 0 0 0

n = 30 f opt 21183 10612 6127 3731 2556 1828 1543 1224 1026

topt 4 408 752 303 98 11 2 1 0

tTabu 0 0 0 0 10 24 0 2 0

n = 40 f opt 35330 – – – – 2606 1957 1535 1428

topt 177 – – – – 12311 373 59 34

tTabu 0 0 0 4 34 11 12 3 29

n = 50 f opt 59821 – – – – – – – –

topt 17306 – – – – – – – –

tTabu 0 0 1 6 48 32 41 414 10

1250 N. Zufferey et al.

Table 7 Comparison of Tabu-(P (k)) and Exact-(P (k)) on the random(n;k) instances when optimal val-
ues are not known

Value of k: 2 3 4 5 6 7 8 9 10

n = 40 LB – 16089 8326 4800 3536 – – – –

UB – 17734 9571 6108 4044 – – – –

f Tabu 35330 17717 9360 5979 4039 2606 1957 1535 1428

tTabu 0 0 0 4 143 11 12 3 29

n = 50 LB – 18452 8710 5139 2666 2989 2379 2311 2029

UB – 32844 20666 12296 8632 6322 4519 2817 2148

f Tabu 59821 30474 17649 10713 7268 5004 3680 2738 2148

tTabu 0 0 1 6 48 32 41 414 10

n = 60 LB 70206 21817 8955 5499 4229 3438 2987 2583 2431

UB 88047 50330 30998 19139 14045 9073 6280 5167 3460

f Tabu 86457 44355 26723 16688 10944 7273 5635 4083 3249

tTabu 0 1 7 1 24 105 475 376 16

n = 70 LB 82687 21788 9439 5894 4799 3811 3182 2898 2611

UB 122888 75272 46783 31536 21120 16568 11448 9459 7421

f Tabu 121072 65576 40015 25863 17552 12304 8794 6428 4860

tTabu 0 2 9 123 154 36 6 720 146

n = 80 LB 89364 21164 8604 6363 5007 4240 3771 3252 2908

UB 162689 95846 64983 42757 31632 21915 16220 13156 10012

f Tabu 157858 85365 52166 34294 23597 16692 11595 8273 6693

tTabu 1 8 9 117 452 245 797 832 516

n = 90 LB 96816 22264 9889 6700 5441 4777 4108 3688 3182

UB 209894 126620 81835 61229 44075 30432 24502 20001 16265

f Tabu 199230 107039 67012 44092 29635 20712 15374 11816 8599

tTabu 0 144 28 30 171 337 77 878 475

n = 100 LB 105529 23668 9600 6834 5384 4745 4106 3529 3305

UB 271573 170754 112305 80882 58494 42405 36536 28319 16160

f Tabu 256040 142070 90039 60588 42417 30544 22554 16552 12423

tTabu 0 15 26 161 240 819 573 147 442

asymptotical behavior when k tends to infinity (due to the fact that the contribution
of the incompatibility costs tends to zero). Remember that for k̂, each incompatibility
cost is in [1,1000], and each assignment cost is in [1,200]. With a small number
of time periods, there are many conflicts and the associated incompatibility costs
compose the main part of the total costs, whereas the assignment costs are small; on
the contrary, with a large number of time periods, most conflicts can be removed and
the assignment costs increase, but not enough to increase the total costs.

In Tables 6 and 7, we compare Tabu-(P (k)) (with a time limit of 15 minutes)
with Exact-(P (k)) (with a time limit of 10 hours) on the random(n; k) instances. In
Table 6, we present results on the instances for which Exact-(P (k)) was able to find an
optimal solution. On all these instances, Tabu-(P (k)) was also able to find an optimal
solution. We indicate the value f opt (which is hence equal to f Tabu) of the optimal

Heuristics for a project management problem with incompatibility 1251

solution, the times (in seconds) topt and tTabu respectively needed by Exact-(P (k))

and Tabu-(P (k)) to find an optimal solution. We observe that tTabu is much smaller
than topt, which is very encouraging for our heuristic. In Table 7, we present results
on the instances for which Exact-(P (k)) was not able to find an optimal solution. On
such instances, CPLEX provided however two values: a lower bound LB and an upper
bound UB. Such bounds are indicated in Table 7, as well as the value f Tabu. Such a
solution was obtained in tTabu seconds. We can remark that the upper bound provided
by f Tabu is never worse than UB. On the basis of its accuracy as shown in Table 6,
we can expect it to be close to the optimal value.

6 Conclusion

In this paper, we tackle a new project management problem (P) for which assign-
ment costs and incompatibility costs are taken into account. The goal is to assign a
time period to each job while minimizing the total costs, considering that the dura-
tion of the project is also a decision variable. The methods we propose (namely tabu
search and adaptive memory algorithm) are shown to provide good solutions in a
reasonable amount of time, hence to be an excellent compromise between simplicity
and efficiency.

We also propose some variations of the problem, such as the considerations of for-
bidden time periods for some jobs, as well as precedence constraints. We can remark
that our heuristics are still appropriate for such extensions, because we were able to
adapt the model (instead of the methods) to such situations. It is important to notice
that the consideration of precedence constraints within the methods is a very different
(and interesting) avenue of research. For example, the neighborhood structure which
consists in changing the period assigned to a job would not be relevant anymore. In
such a case, it seems better to deal with partial but legal solutions, as proposed in [7].

Another relevant avenue of research would be to consider other type of costs or a
specific duration for each job. Finally, as showed in [18], there is still a lot of research
possibilities in project scheduling under uncertainty.

References

1. Bloechliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu
scheme. Comput. Oper. Res. 35, 960–975 (2008)

2. Chams, D., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs.
Eur. J. Oper. Res. 32, 260–266 (1987)

3. Charon, I., Hudry, O.: The noising method: a new method for combinatorial optimization. Oper. Res.
Lett. 14, 133–137 (1993)

4. Davis, L.: Handbook of Genetic Algorithms. Reinhold, New York (1991)
5. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. Kluwer Acad-

emic, Norwell (2002)
6. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–

278 (2005)
7. Dupond, A., Vasquez, M., Habet, D.: Consistent neighbourhood in a tabu search. In: Metaheuristics:

Progress as Real Problem Solvers, vol. 17, pp. 367–386. Springer, Berlin (2005)
8. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–

133 (1995)

1252 N. Zufferey et al.

9. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63(3),
437–461 (1996)

10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4),
379–397 (1999)

11. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33,
2547–2562 (2006)

12. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the graph coloring problem.
Discrete Appl. Math. 156, 267–279 (2008)

13. Gamst, A., Rave, W.: On the frequency assignment in mobile automatic telephone systems. In: Pro-
ceedings of GLOBECOM IEEE, Miami, United States, 29 November–2 December 1982, pp. 309–315
(1982)

14. Garey, M., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco (1979)

15. Glass, C.: Bag rationalisation for a food manufacturer. J. Oper. Res. Soc. 53, 544–551 (2002)
16. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Boston (1997)
17. Herrmann, F., Hertz, A.: Finding the chromatic number by means of critical graphs. ACM J. Exp.

Algorithmics 7(10), 1–9 (2002)
18. Herroelen, W., Leus, R.: Project scheduling under uncertainty: survey and research potentials. Eur. J.

Oper. Res. 165(2), 289–306 (2005)
19. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351

(1987)
20. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math.

156, 2551–2560 (2008)
21. Icmeli, O., Erenguc, S.S., Zappe, C.J.: Project scheduling problems: a survey. Int. J. Oper. Prod.

Manag. 13(11), 80–91 (1993)
22. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing:

an experimental evaluation, Part II: Graph coloring and number partitioning. Oper. Res. 39, 378–406
(1991)

23. Kerzner, H.: Project Management: A Systems Approach to Planning, Scheduling, and Controlling.
Wiley, New York (2003)

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.: Optimization by simulated annealing. Science 220(5498),
671–680 (1983)

25. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling. Omega 29(3),
249–272 (2001)

26. Lancaster, J., Ozbayrak, M.: Evolutionary algorithms applied to project scheduling problems—a sur-
vey of the state-of-the-art. Int. J. Prod. Res. 45(2), 425–450 (2007)

27. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Nat. Bur. Stand. 84,
489–505 (1979)

28. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. IN-
FORMS J. Comput. 20(2), 302–316 (2008)

29. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS J. Comput.
8(4), 344–354 (1996)

30. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100
(1997)

31. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, New York (2002)
32. Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adaptation to graph colour-

ing. J. Oper. Res. Soc. 61, 819–826 (2010)
33. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local search for vehicle

routing. J. Heuristics 1, 147–167 (1995)
34. Stecke, K.: Design planning, scheduling and control problems of flexible manufacturing. Ann. Oper.

Res. 3, 3–12 (1985)
35. Voudouris, C., Tsang, E.: Guided local search. Eur. J. Oper. Res. 113(2), 469–499 (1999)
36. Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling

problem. J. Sched. 11(4), 263–277 (2008)

	Heuristics for a project management problem with incompatibility and assignment costs
	Abstract
	Introduction
	Presentation of the problem
	Formal description of the problem
	Difficulty of the problem
	Variations of the problem
	Practical relevance of the problem

	Tabu search for (P(k)) and (P)
	Search space
	Neighborhood structure
	Tabu tenures
	Incremental computation
	Advanced tabu tenures
	Diversification strategy

	Adaptive memory algorithm for (P(k)) and (P)
	Initialization of M
	Recombination operator
	Intensification operator
	Memory update operator

	Obtained results
	Comparison with other methods
	A greedy constructive heuristic for (P)
	A descent local search heuristic for (P)
	An exact method using CPLEX for (P)

	Generation of the instances
	Generation of the costs
	Presentation of the results

	Conclusion
	References

