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ARTICLE

Determinants of HIV-1 reservoir size and long-term
dynamics during suppressive ART
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The HIV-1 reservoir is the major hurdle to a cure. We here evaluate viral and host char-
acteristics associated with reservoir size and long-term dynamics in 1,057 individuals on
suppressive antiretroviral therapy for a median of 5.4 years. At the population level, the
reservoir decreases with diminishing differences over time, but increases in 26.6% of indi-
viduals. Viral blips and low-level viremia are significantly associated with slower reservoir
decay. Initiation of ART within the first year of infection, pretreatment viral load, and ethnicity
affect reservoir size, but less so long-term dynamics. Viral blips and low-level viremia are
thus relevant for reservoir and cure studies.
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ARTICLE

ombination antiretroviral treatment (ART) represents a

unique success of modern medicine and reduces mor-

bidity and mortality in the majority of human immuno-
deficiency virus type 1 (HIV-1)-infected individuals’-2. However,
lifellong ART is required, because effective treatment does not
clear the HIV-1 reservoir, which is the major hurdle to cure.
Thus, the search for therapeutic interventions that can eliminate
or functionally control the HIV-1 reservoir has high priority.
Understanding how HIV-1 persists is crucial for the development
of cure strategies.

The latent HIV-1 reservoir is generally accepted as long-lived
cells harboring replication-competent HIV-1 in a latent state*-8.
More broadly and in accordance with the terminology used
herein, the HIV-1 reservoir consists of all HIV-1 infected cells
independent of the replication competence of the integrated virus
genome’.

The HIV-1 reservoir is established early during primary HIV-1
infection!®. While the first rapid decay of the HIV-1 reservoir
after initiation of ART has been studied extensively!!-15, the
decay of the HIV-1 reservoir in individuals on ART and its
association to residual viremia has so far only been examined in a
few small studies with 30-101 individuals!®-20, The latent HIV-1
reservoir half-life was estimated to be 44 months, measured by
limiting dilution culture assay, in a cohort of 62 individuals who
had undetectable viremia for up to 7 years (<50 HIV-1 RNA
copies/ml plasma). In the same cohort, the decay of the latent
HIV-1 reservoir was slowed down by viral blips (but the effect of
blips was not statistically significant)!”. A cohort of 101 indivi-
duals, on ART and virally suppressed for at least 4 years, revealed
that total HIV-1 DNA declined slowly with a half-life of 13
years!8, Another study showed that 31% of individuals did not
show a negative slope in the years 4-7 after initiation of ART°.

Despite suppression of viremia, there is a high interindividual
variability in the number of latently HIV-1 infected cells>®10:21,
They can intermittently be activated by antigen recognition or as
bystanders in a local inflammatory process®. However, the asso-
ciation of low-level viremia and activation of latently HIV-1
infected CD4+ cells has been questioned?2. “Shock and kill”
strategies to deplete the latent HIV-1 reservoir have been
explored as a curative approach with the aim of targeting path-
ways involved in maintaining HIV-1 latency with pharmacolo-
gical compounds. The underlying assumption is that under
suppressive ART, activating the latent HIV-1 reservoir will ulti-
mately result in the destruction of the reactivated cells either by
the immune system, additional compounds, or by the cytotoxic
effects of HIV-123, However, this approach contradicts the
intuition that residual viremia may decelerate the depletion of the
latent HIV-1 reservoir by infecting new target cells.

We measure total HIV-1 DNA in longitudinal peripheral blood
mononuclear cells (PBMC) samples; a marker for the HIV-1
reservoir found to be sensitive, clinically relevant, and feasible in
larger populations®24. Levels of total HIV-1 DNA in PBMC were
shown to strongly correlate with the levels of inducible
virions?>2¢ and viral rebound after treatment interruptions27-28,
Furthermore, during the first 6 months of ART a dispropor-
tionate amount of nonintegrated HIV-1 DNA genomes is lost,
suggesting that levels of total HIV-1 DNA after prolonged virus
suppression largely represent integrated HIV-1 genomes?.

We aim to identify the determinants associated with HIV-1
reservoir size and long-term dynamics in the nationwide Swiss
HIV Cohort Study (SHCS) by including 1057 individuals on
suppressive ART for a median of 5.4 years. We find that, at the
population level, the reservoir decreases with diminishing dif-
ferences over time, but increases in 26.6% of individuals. Viral
blips are at the same time significantly associated with a
high HIV-1 reservoir and a slow reservoir decay, while low-level

viremia is associated with a slow reservoir decay. Thus, viral blips
and low-level viremia are relevant parameters to monitor in
future reservoir and cure studies.

Results

Population wide survey of HIV-1 reservoir during suppressive
ART. To investigate viral and host characteristics that steer HIV-
1 reservoir size and long-term dynamics in HIV-1 infected
individuals who received suppressive combination antiretroviral
therapy (ART) for a median duration of 5.4 years, we analyzed
longitudinal total HIV-1 DNA levels of 1057 well-characterized
individuals enrolled in the SHCS (Fig. la). We focused on
the later phases starting after ~1.5 years of ART using system-
atically collected, stored PBMC.

From the 18,688 individuals enrolled in the SHCS as of
December 2014, 1382 individuals fulfilled all inclusion criteria
(Fig. 1a). We received 23 PBMC samples from 1166 individuals
and successfully quantified total HIV-1 DNA in at least the first
three time points from 1057 individuals (Fig. 1a). Since technical
problems, for instance, failed DNA isolation, were the reason for
all unsuccessful quantifications of total HIV-1 DNA, failures to
measure total HIV-1 DNA are very unlikely to have introduced a
bias to our study population of 1057 individuals. These 1057
individuals represent a real-world setting and are diverse in both
their demographics and HIV-1 infection characteristics (Table 1).
Notably, we included a substantial number of individuals infected
with HIV-1 non-B subtypes (n=253), women (n=254), and
individuals of nonwhite ethnicity (n =217, for a breakdown of
regions of origin see Supplementary Fig. 1). At initiation of ART
the median CD4+ cell count was 203/pl blood (IQR: 94-287) and
the median logl0 HIV-1 RNA copy number was 4.9/ml plasma
(IQR: 4.4-5.4).

To characterize the HIV-1 reservoir size and long-term
dynamics beyond the first year of suppressive ART, we measured
total HIV-1 DNA in PBMC at 3-4 time points per individual.
The median time after initiation of ART was 1.5 years (IQR:
1.3-1.7) at the first sample, 3.5 years (IQR: 3.3-3.7) at the second
sample and 5.4 years (IQR: 5.2-5.7) at the third sample. An
additional fourth sample was provided by 412 individuals with
median 10.0 years (IQR: 8.9-11.5) after initiation of ART.

The median HIV-1 reservoir size 1.5 years after initiation of
ART was 2.75 (IQR: 2.40-3.02) logl0 total HIV-1 DNA copies/1
million genomic equivalents (copies/mge) (Fig. 2a). On the
population level, logl0 total HIV-1 DNA levels significantly
decreased with diminishing differences over time to 2.59 (IQR:
2.30-2.85; n=1057), 2.53 (IQR: 2.23-2.77; n=1057), and 2.52
(IQR: 2.22-2.7; n = 412) median log10 total HIV-1 DNA copies/
mge at 3.5, 5.4, and 10.0 years after initiation of ART, respectively
(Fig. 2a, ¢). A subgroup analysis of the 412 individuals with four
available total HIV-1 DNA quantifications yielded qualitatively
equivalent results excluding the possibility of a cohort effect
(Supplementary Fig. 2). The median decay slope during the years
1.5-5.4 after initiation of ART in the 1057 individuals, calculated
using a linear regression, was —0.054 (IQR: —0.109 to 0.002)
logl0 total HIV-1 DNA copies/mge per year ranging from
—0.565 to 0.362 (Fig. 2b), which corresponds to a median half-life
of 5.6 years on the linear scale (total HIV-1 DNA copies/mge)
assuming first order decay kinetics. However, the reservoir did
not reach 50% of its size at the first measurement within the half-
life period, since the HIV-1 reservoir decay slowed down over
time. Of note, in 281 individuals (26.6%) the total HIV-1 DNA
level increased (Fig. 2b). Further, we found that in 66.7% (88/132)
of cases a positive increase between the first and second total
HIV-1 DNA measurement was followed by an increase between
the second and third total HIV-1 DNA measurement. Applying
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a
18,688 individuals (Swiss HIV Cohort Study, 19/12/2014) |
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« HIV-1 infection
* Receiving ART for >5 years

.

No treatment interruption of >7 days

No virological failure defined as two consecutive
measurements > 200 HIV-1 RNA copies/ml plasma
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Time on ART

ART

PBMC available for three time points: =

1.5 +/- 0.5 years, 3.5 +/- 0.5 years, and }

5.5 +/— 1 years ater initiating first-line ART
)
}
[}
|
[}
|

4th PBMC sample, latest time point available
if receiving ART for >8 years (optional)

932 individuals

Total HIV-1 DNA

—— HIV-1 RNA

Time of untreated
HIV-1 infection
|
Time to viral

|

Exclusion criteria:

« Start on less potent ART regimens, i.e., mono- or dual
therapy, less potent/unboosted PI (NFV, SQV etc.)

|

382 individuals
Received >3 PBMC samples (mandatory 15! — 3 time point)

166 individuals

|

Successful total HIV-1 DNA quantification in >3 PBMC samples
(mandatory 1% — 3 time point)

1057 individuals

<«
S
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[Years after initiation of ART] individuals I
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iral b ips or low- pre-ART
level viremia
X /
Plasma HIV-1 Transmission
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Fig. 1 Study design. a Individuals' selection flow-chart. b Overview of the viral and host characteristics considered for an association with HIV-1 reservoir
size and long-term dynamics during suppressive ART. ART antiretroviral therapy, PBMC peripheral blood mononuclear cells; time of untreated infection
was calculated using estimated dates of infection; time to viral suppression was the time taken for viral load to drop below 50 HIV-1 RNA copies/ml

plasma; Pl protease inhibitor

this analysis to the 412 individuals providing an additional
sample on median 10.0 years after initiation of ART, we
calculated a median decay slope of —0.026 (IQR: —0.052 to
—0.001) logl0 total HIV-1 DNA copies/mge per year ranging
from —0.258 to 0.162, which corresponds to a median half-life of
11.8 years on the linear scale (total HIV-1 DNA copies/mge)
assuming first-order decay kinetics. Again, in 100 individuals
(24.3%) with four measurements available the total HIV-1 DNA
level increased (Supplementary Fig. 2c). In summary, there
was overall a significant decrease in HIV-1 reservoir size 1.5-5.4
years after initiation of ART. This decrease approached a plateau
thereafter.

To study the association of HIV-1 reservoir size and long-term
dynamics with various viral and host factors we fitted generalized
additive regression models3? assuming first-order decay dynamics
and a Gaussian error distribution. We focused on two distinct
characteristics: (i) the total HIV-1 DNA level 1.5 years after
initiation of ART, i.e., the HIV-1 reservoir size (Fig. 3a) and (ii)
the decay of total HIV-1 DNA from 1.5 to 54 years after
initiation of ART, i.e., the HIV-1 reservoir long-term dynamics
(Fig. 3b).

Determinants of HIV-1 reservoir size. To assess the association
of various host and viral factors on HIV-1 reservoir size, we
focused on the 1.5 years after ART initiation. Viral blips 0.5-1.5
years after ART initiation occurred in 130 (12.5%) individuals
(Table 1) and were associated with a larger HIV-1 reservoir 1.5
years after ART initiation (p=0.0068, Fig. 3a). Numerically
combining viral blips and low-level viremia as cumulative plasma
HIV-1 RNA divided by the number of viral load measurements
enhanced the significance of the association with a larger HIV-1
reservoir size 1.5 years after initiation of ART (p =0.0011, Sup-
plementary Fig. 3). We next tested the impact of the height of
viral blips on the HIV-1 reservoir size. Viral blips between 50 and

199 HIV-1 RNA copies/ml plasma occurred in 126 individuals
within 0.5-1.5 years after initiation of ART and were significantly
associated with a larger HIV-1 reservoir size (p =0.0037, Sup-
plementary Fig. 4).

In addition to viral blips, high viral load pre-ART (p = 0.0087)
and slower time to viral suppression (p = 0.0062) were found to be
independently associated with a larger HIV-1 reservoir size (Fig. 3a).
The opposite effect of CD4+- cell counts pre-ART was observed in
the univariable model (Fig. 3a). Even though the median time on
ART was 1.5 years and variations were only of small magnitude
(IQR: 1.3-1.7), longer time on ART was a significant predictor of a
small HIV-1 reservoir (p = 0.023, Fig. 3a).

We also found that initiation of ART within the first year of
HIV-1 infection (n =173 (16.4%), Table 1) was associated with
smaller HIV-1 reservoir size 1.5 years after initiation of ART (p =
0.0001, Fig. 3a). For a subset of 16 individuals with known Fiebig
stages’! at the day of initiation of ART, the median HIV-1
reservoir was lower for individuals in Fiebig stages II and IV-VI
as compared to the population level median (Supplementary
Fig. 5). In particular, the HIV-1 reservoir was strikingly low for
two individuals in Fiebig stage II. Initiation of ART beyond the
first year after HIV-1 infection was associated with larger HIV-1
reservoir size, independent of the time period of untreated HIV-1
infection analyzed (Supplementary Fig. 6).

Next, we investigated the influence of HIV-1 subtype and host
ethnicity on the HIV-1 reservoir size 1.5 years after initiation of
ART. HIV-1 subtype was determined by population sequencing in
the context of routine genotypic HIV-1 drug resistance testing or
retrospective sequencing of stored plasma samples. 253/880 (28.8%)
individuals with available HIV-1 subtype information were infected
with HIV-1 non-B subtypes (Table 1). HIV-1 subtype was available
for 166/217 (76.5%) individuals with nonwhite ethnicity. Of those,
120 (72.3%) individuals were infected with HIV-1 non-B subtypes.
Nonwhite ethnicity was significantly associated with a smaller
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Table 1 Individuals' characteristics

Total number of individuals
Number individuals with n 3
samples (%) 4
Age at first HIV-1 DNA

sample in years (median

[IQRD

Ethnicity (%) White
Non-white

Sex (%) Male
Female

Transmission group by MSM

sex (%) HET male
HET female
PWID male
PWID female
Other male
Other female

Time of untreated HIV-1 <1

infection in years (%) 1-3
3-5
5-7
>7

Time on ART at first HIV-1

DNA sample in years

(median [IQR])

Time from ART initiation to

below <50 HIV-1 RNA

copies/ml in years

(median [IQR])

CD4+ cell count pre-ART/pl

blood (median [IQR])

Log 10 HIV-1 plasma RNA

pre-ART/ml plasma

(median [IQR])

HIV-1 RNA (180 days after <50 copies/ml

ART initiation - 1st HIV-1 Viral blips

DNA sample) (%) Low-level
viremia

HIV-1 RNA (first to third HIV- <50 copies/ml

1 DNA sample) (%) Viral blips
Low-level
viremia

First ART regimen (%) NNRTI based

Boosted Pl based
HIV-1 subtype available (%)
HIV-1 subtype (%) B
O1_AE
02_AG
A
C
Recombinant
D
F
G
06_CPX
11_CPX
18_CPX
12_BF
19_CPX
20_BG
H

1057

645 (61.0)

412 (39.0)

41.0 [35.0, 48.0]

840 (79.5)
217 (20.5)
803 (76.0)
254 (24.0)
524 (49.6)
209 (19.8)
196 (18.5)
54 (5.1
28 (2.6)
2221
24 (2.3)
173 (16.4)
285 (27.0)
123 (11.6)
280 (26.5)
196 (18.5)
1.49 [1.28, 1.70]

0.33 [0.22, 0.49]

203.0 [93.5, 287.0]

4.91 [4.38, 5.39]

822 (78.8)
130 (12.5)
91 (8.7)

712 (67.4)
260 (24.6)
85 (8.0)

555 (52.5)
502 (47.5)
880 (83.3)
627 (71.2)
65 (7.4)
41(4.7)
39 (4.4)
36 (4.1
27 3D

12 (1.4)

12 (1.4)

12 (1.4)
2(0.2)
2(0.2)
1(0.1)
1(0.1)
1(0.1)
1(0.1)
1(0.D

The time of untreated HIV-1 infection was calculated using the estimated HIV-1 infection dates.
Pre-ART log10 HIV-1 RNA copies/ml plasma and pre-ART CD4+ cell count/pl blood refer to
the last laboratory values available before initiation of ART. Transmission group stratified by sex
indicates the self-reported route of infection (men who have sex with men (MSM), heterosexual
(HET), people who inject drugs (PWID), and other (including unknown, and transfusions)). The
HIV-1 subtypes were determined using population sequencing. ART antiretroviral therapy, NNRT/
nonnucleoside reverse-transcriptase inhibitors, boosted Pl boosted protease inhibitor

HIV-1 reservoir size (p = 0.02), while HIV-1 non-B subtype only
showed a significant association with a small HIV-1 reservoir in the
univariable model (Fig. 3a). Using Wilcoxon rank sum test we
observed that individuals infected with HIV-1 subtype C showed
lower total HIV-1 DNA levels than individuals infected with HIV-1
subtype B (p = 0.002, Supplementary Figs. 7a and 8a). Furthermore,
the effect of HIV-1 non-B subtypes was still present when we
restricted our analysis to individuals with white ethnicity (p = 0.017,
Supplementary Fig. 7b) and even in a multivariable analysis a trend
of a lower HIV-1 reservoir size in individuals infected with HIV-1
non-B subtypes persisted (p =0.059, Supplementary Fig. 9a). We
excluded PCR artifacts for this observation by analyzing primer and
probe binding sites of the droplet digital PCR assay for 512/1057
individuals for which HIV-1 full-length sequences representing all
HIV-1 subtypes were available and no droplet digital PCR-
impairing mismatches were detected.

In terms of transmission groups, people who inject drugs
(PWID) are associated with smaller HIV-1 reservoir size 1.5 years
after initiation of ART (p = 0.0057 for female, p = 0.0012 for male,
Fig. 3a). PWID are associated with a higher incidence of hepatitis C
virus (HCV) infection3?, and subsequent interferon treatment
might have an impact on HIV-1 reservoir size33-36, Therefore, we
corrected for interferon treatment for HCV infection (given to 11
individuals prior to the first sampling time point) prior to the
measurement of the HIV-1 reservoir size. The smaller HIV-1
reservoir size in the PWID group remained significant after
correction for interferon treatment (p=0.0051 for female, p =
0.0008 for male, Supplementary Fig. 10). Of note, a substantial
fraction of the PWID group was HIV-1 infected years before potent
ART became available (Supplementary Fig. 11). Thus, the
association PWID with smaller HIV-1 reservoir size 1.5 years after
initiation of ART might reflect a survival bias, ie, an over-
representation of long-term nonprogressors among the PWID
group, known to have smaller HIV-1 reservoir sizes>’.

Determinants of HIV-1 reservoir long-term dynamics. The
association of viral and host factors with HIV-1 reservoir long-
term dynamics was explored within 1.5 and 5.4 years after
initiation of ART. Linear regression slopes of the first three
longitudinal total HIV-1 DNA measurements were calculated and
corrected for the total HIV-1 DNA level 1.5 years after initiation
of ART using a spline to allow for more flexibility (Fig. 3b). The
most prominent predictors of a slow decay of total HIV-1 DNA
were viral blips and low-level viremia observed within 1.5 and 5.4
years after initiation of ART (p < 0.0001 and p = 0.0074, Fig. 3b),
which occurred in 260 (24.6%) and 85 (8.0%) individuals,
respectively (Table 1). Numerically combining viral blips and
low-level viremia enhanced the significance of their association
with a slower HIV-1 reservoir decay (p < 0.0001, Supplementary
Fig. 3). Viral blips as low as between 50 and 199 HIV-1 RNA
copies/ml plasma, occurring in 236 (22.3%) individuals, were
significantly associated with a slower HIV-1 reservoir decay (p =
0.0022, Supplementary Fig. 4). Viral blips of 200-499 HIV-1 RNA
copies/ml plasma within 1.5-5.4 years after initiation of ART
were observed in 48 (4.5%) individuals and were also associated
with a slower HIV-1 reservoir decay (p = 0.0068, Supplementary
Fig. 4). This supports the robustness of viral blips as a predictor of
reservoir long-term dynamics.

Considering the established proxies of disease progression, we
found that high CD4+ cell counts pre-ART were associated with
a faster reservoir decay (p =0.0202, Fig. 3b). Although time to
viral suppression was associated with HIV-1 reservoir size, no
association was observed with the subsequent HIV-1 reservoir
long-term dynamics (Fig. 3).
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Individuals initiating ART within the first year of HIV-1
infection (n =173, 16.3%, Table 1) showed a trend toward a
faster decay of the HIV-1 reservoir in the univariable model than
individuals starting after the first year of HIV-1 infection (n=
884, 87.6%, Table 1). This was not observed in the multivariable
analysis (Fig. 3b).

Next, we investigated the influence of HIV-1 subtype and host
ethnicity on the HIV-1 reservoir long-term dynamics. HIV-1
non-B subtype was associated with a faster decay of the HIV-1
reservoir in the multivariable analysis (p = 0.0485, Fig. 3b). The
effect was not only driven by individuals infected with HIV-1
subtype C (p = 0.1186, Supplementary Fig. 8). Notably, nonwhite
ethnicity showed a trend towards slower decay of the HIV-1
reservoir (p=0.075, Fig. 3b) and was at the same time
significantly associated with having a positive slope in a logistic
regression model (OR = 1.657, p = 0.036, Supplementary Fig. 12).

We further verified our findings of viral and host factors and
their association with HIV-1 reservoir long-term dynamics using
mixed effect models (Supplementary Fig. 13). Additionally, we
showed that our findings were neither driven by the respective
ART regimen of the individuals (Supplementary Fig. 14), which
was changed frequently (Supplementary Fig. 15), nor by the self-
reported adherence (Supplementary Fig. 16).

Interplay of residual viremia with HIV-1 reservoir size and
decay. Our data reflect a highly complex interplay between residual
viremia during suppressive ART and HIV-1 reservoir size and long-
term dynamics. On the one hand, viral blips or low-level viremia
during suppressive ART were associated with slower decay of the
HIV-1 reservoir (Fig. 3b). The predicted logl0 total HIV-1 DNA
slope is 1.79-fold and 1.93-fold less steep in individuals with viral
blips and low-level viremia, respectively, compared to individuals
with viral loads constantly below 50 HIV-1 RNA copies/ml plasma
(Fig. 4a). Furthermore, we analyzed the predictive value of the
degree of residual viremia on HIV-1 long-term dynamics. We
observed a strong association between the conditional predicted

| (2019)10:3193 | https://doi.org/10.1038/541467-019-10884-9 | www.nature.com/naturecommunications

of the distributions (filled in pink) and the median is depicted by a black line.
total HIV-1 DNA levels with median 1.5-5.4 years after initiation of ART.
wing the 95% confidence intervals in blue and sampling times after initiation
for respective number of individuals; ART antiretroviral therapy

logl0 total HIV-1 DNA slope and each individual’s mean logl0
plasma HIV-1 RNA (Fig. 4b). On the other hand, we observed that
the HIV-1 reservoir size 1.5 years after ART initiation was strongly
predictive for viral blips or low-level viremia during the follow-up
period (Fig. 4c). Interestingly, the frequency of viral blips was
decreasing with time after initiation of ART and was generally lower
in individuals initiating ART within the first year of HIV-1 infection
(Supplementary Fig. 17).

These findings highlight the complex interplay between the size
and long-term dynamics of the HIV-1 reservoir and residual
viremia. The HIV-1 reservoir size is associated with both,
subsequent residual viremia and the subsequent HIV-1 reservoir
decay, while simultaneously residual viremia inhibits the HIV-1
reservoir decay (Fig. 4c). Given these observations, residual
viremia could potentially replenish the HIV-1 reservoir levels
while individuals are on long-term ART via two conceivable
biological mechanisms as depicted in Fig. 4d.

Discussion

This study examined the HIV-1 reservoir size and its long-term
dynamics over extensive follow-up periods in a well-characterized
population-based cohort of more than 1000 individuals. We found
a small but continuous decay of the HIV-1 reservoir from years 1.5
to 10 after initiation of suppressive ART. The decay slowed down
over time and seems to approach a plateau. Interestingly, 26.6% of
our study population exhibited a positive slope of total HIV-1 DNA
levels over a median of 5.4 years of suppressive ART. Our study
design allowed us to perform a detailed analysis of various viral and
host factors. In particular, we assessed the relationships of residual
viremia under successful ART with HIV-1 reservoir size and long-
term dynamics. Our analysis showed that (i) the presence of viral
blips during the first 1.5 years of suppressive ART correlated with
HIV-1 reservoir size 1.5 years after initiation of ART and (ii) the
presence of viral blips between 1.5 and 5.4 years of suppressive ART
or low-level viremia were associated with a slower decay of the
HIV-1 reservoir.
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The interplay of viral blips and total HIV-1 DNA levels is
complex, and the origin of viral blips is thought to be multifactorial.
(i) It could reflect intermittent virus production of activated latently
HIV-1 infected cells?8. (ii) It might indicate transient episodes of
increased viral replication, e.g., by increased availability of activated
target cells that could be infected by virus replicating at low levels in
sanctuary sites such as lymphatic tissues that have been suggested to
be less permissive to antiretroviral drugs®-40, or by periods of
diminished adherence*!#2. (iii) Viral blips could signify clonal
expansion of temporarily virus-producing, but otherwise latently
HIV-1 infected cells*34°, (iv) Assay and sample preparation
variability may potentially account for a fraction of the viral blips
observed*2. In our study, lack of adherence is unlikely to be a major
driver of viral blips since virologic failure and treatment interrup-
tions were exclusion criteria and self-reported adherence was high
in the study population as 920/1051 (87%) individuals never
reported to have missed more than 1 pill in the previous month at
all bi-annual SHCS follow-up visits between the first and third time
point. Despite being self-reported (and hence subject to potential
biases), the adherence measure reported in the SHCS is a validated
prediction marker for important clinical outcomes such as

virological failure and mortality*®. Furthermore, we found that
upon adjusting with the proxy of adherence, the effect-sizes for
viral blips and low-level viremia changed only margin-
ally (Supplementary Fig. 16). Notably, the HIV-1 reservoir size 1.5
years after initiation of ART was also associated with prior viral
blips and predictive for viral blips thereafter, and subsequently
associated with a slower decay of the HIV-1 reservoir. This argues
for a biological relationship of these factors and rules out a major
impact of assay variability. Are viral blips a consequence of the
HIV-1 reservoir size? Are they a reason for slowing down the decay
of latently HIV-1 infected cells, i.e., are they contributing towards
the persistence of HIV-1? Initiation of ART within the first year of
HIV-1 infection reduces the HIV-1 reservoir significantly when
compared to treatment initiation during chronic HIV-1
infection!31>20:47-30_ Consistently, we also observed this effect in
our study. The HIV-1 reservoir size and the frequency of viral blips
during suppressive ART in the first 1.5 years and thereafter were
significantly lower in individuals treated within the first year of
HIV-1 infection when compared to individuals initiating ART after
the first year of HIV-1 infection. This suggests that the HIV-1
reservoir size can explain the frequency of viral blips. This finding
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supports the possibility that viral blips (i) may partially reflect
transient episodes of viral replication, which may intermittently
refill the HIV-1 reservoir or (ii) mirror the expansion of clones of
latently HIV-1 infected cells exhibiting intermittent virus produc-
tion®l. The absence of viral evolution in most studies, which
investigated HIV-1 genomes from latently infected cells from the
peripheral blood, argues against the first hypothesis in well-
suppressed individuals®2. However, whether evolutionary processes
may be ongoing in sanctuary sites is less well studied®!. A possible
effect of viral blips on the latent HIV-1 reservoir has been assessed
in two studies, which reported decay differences in groups of
individuals with and without blips!®17. Furthermore, there is evi-
dence that viral blips may be biologically meaningful, since a dose
response of viral blip magnitude and virologic failure in fully
adherent individuals has been reported2,

The size of the latent HIV-1 reservoir at 1.5 years after
initiation of ART as measured by total HIV-1 DNA in our large
cohort was also strongly governed by time of ART initiation.
However, there was no significant effect of time of initiation of
ART on the total HIV-1 DNA decay. This confirms previous
results, which showed that, although earlier ART was associated

with a faster total HIV-1 DNA decay during the first 8 months,
this effect was lost on the decay rate of HIV-1 DNA at the sub-
sequent phase!®.

An interesting finding of our study was the independent and
significant effect of nonwhite ethnicity on the size of total HIV-1
DNA levels 1.5 years after initiation of ART. This result is con-
sistent with Miiller et al.>> who reported lower viral set-points in
people from African origin and Gossez et al.>* who found a
higher probability of virological remission following treatment
interruption among female Africans compared to female non-
Africans. Although not significant, we observed trends of lower
HIV-1 reservoir size and faster HIV-1 reservoir decay in indivi-
duals infected with HIV-1 non-B subtypes even after controlling
for ethnicity. These findings accentuate the need to further
explore viral subtype- and ethnicity-dependent pathogenetic
mechanisms®~>7. Notably, total HIV-1 DNA levels did not
decrease in 281/1057 (26.6%) individuals during the years 1.5-5.4
after initiation of suppressive ART. This is in agreement with
Besson et al.1?, who reported that 9 out of 29 (31%) individuals
did not show a negative HIV-1 DNA slope in the years 4-7 after
initiation of ART.
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Our study is not without limitations. As with any observational
study, the reported associations cannot be assumed to reflect
causal relationships. They must be interpreted cautiously because
of the potential for unmeasured confounding factors. However,
the extensive data of the underlying SHCS did allow us to correct
for many known and suspected confounding factors. This study
examined over 1000 well-characterized HIV-1 infected indivi-
duals with 3-4 samples per individual. The number of cells per
sample, however, was insufficient for further dissection of the
various CD4+ cell subsets®®>°. We modeled the HIV-1 reservoir
decay as linear on the logl0 scale based on three time points.
Together with potential assay and within-subject sample varia-
bility, this indicates some uncertainty around individual slopes.
Despite these and other potential limitations (e.g., not differ-
entiating between replication competent- and -defective viruses),
our study shows that total HIV-1 DNA measured in PBMC is a
robust proxy for the latent HIV-1 reservoir size after the first
rapid decay following initiation of ART for several reasons. It
correlates independently with time to initiation of ART, with
pretreatment viral load, pretreatment CD4 count, and with viral
blips. In addition, the decay of the latent HIV-1 reservoir is in line
with smaller studies using either viral outgrowth assays or total
HIV-1 DNA1719, Furthermore, if slopes were due to within-
subject sample variability, a lower fraction of consistent within-
subject increase/decrease would have been observed.

A significant strength of our study is that it reflects individuals
enrolled in a highly representative cohort study, as 75% of all
treated HIV infected individuals in Switzerland are enrolled in the
SHCS®. Utilizing this unique cohort of >1000 individuals, we
demonstrate an interplay between total HIV-1 DNA levels, viral
blips and low-level viremia, and the decay of total HIV-1 DNA in
well suppressed patients. This suggests that viral blips and low-
level viremia are relevant parameters to monitor in future
reservoir and cure studies. The very slow and decelerating HIV-1
DNA decay after on median 5.4 years also reiterates the need for
targeted new interventions to reduce the HIV-1 reservoir, because
long-term ART seems not to substantially affect it.

Methods

Study design and study participants. The SHCS is a nation-wide, prospective
observational study founded in 1988 enrolling HIV-infected adults of all trans-
mission groups. Clinical and laboratory data are collected every 3-6 months and
plasma and cell samples are stored every 6-12 months. More than 75% of all HIV-1
infected individuals living in Switzerland and receiving ART are enrolled in the
SHCS®. The current study participants were included when they fulfilled the
following inclusion criteria: (1) start on potent ART regimen (i.e., no mono- or
dual therapy, no less potent/unboosted PI (NFV, SQV, etc.), (2) no treatment
interruption of >7 days, (3) no virologic failure as defined by two consecutive viral
load measurements >200 HIV-1 RNA copies/ml plasma, and (4) available cell
samples during ART (Fig. 1a). The SHCS has been approved by the ethics com-
mittee of the participating institutions (Kantonale Ethikkommission Bern, Ethik-
kommission des Kantons St. Gallen, Comite departemental d’ethique des
specialites medicales et de medicine communataire et de premier recours, Hopitaux
Cantonale de Geneve, Kantonale Ethikkommission Ziirich, Repubblica e Cantone
Ticino—Comitato Ethico Cantonale, Commission cantonale d’étique de la
recherche sur I'étre humain, Canton de Vaud, Lausanne, Ethikkommission beider
Basel) and written informed consent had been obtained from all participants.

Cells. Cryopreserved PBMC from 3 to 4 longitudinal time points from each
individual during ART were collected from the SHCS biobank: first time point ~1.5
years, second time point ~3.5 years, third time point ~5.5 years, and an optional
fourth time point >8 years after the initiation of ART.

As negative controls, PBMC from HIV-1 negative donors or Sup-T1 cells were
used. As HIV-1 positive controls, negative controls were spiked with ACH-2 or J-
Lat (clone 10.6) cells in a 1000:1 ratio. Batches of negative and positive controls
were cryopreserved before genomic DNA extraction. All cell lines were obtained
through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH. PBMC
were derived from buffy coats obtained from healthy blood donors, as
anonymously provided by the Blood Donation Service Zurich, Swiss Red Cross,
Schlieren, Switzerland. Written consent for the use of buffy coats, which were not

required for medical treatment, but for research purposes was obtained from blood
donors by the Blood Donation Center.

Genomic DNA extraction and fragmentation. Total genomic DNA was extracted
from approximately 2-3 x 10° cells. DNA extraction was performed manually or by
means of the QIAcube using the DNeasy Blood & Tissue Kit (QIAGEN) according
to the manufacturer’s instruction using a customized protocol as the following:
DNA on columns were washed twice with buffer AW?2, centrifuged twice after the
last washing step, and eluted with H,O preheated to 70 °C. DNA concentration was
measured by the A260/A280 absorptivity ratio using a NanoDrop 1000 spectro-
photometer (Thermo Scientific). Totally, 50 ul DNA was sheared to mean size
fragments of 1kB using a M220 Focused-ultrasonicator (Covaris) according to the
manufacturer’s instructions.

Quantification of total HIV-1 DNA by droplet digital PCR. The RainDrop™
digital PCR system (RainDance Technologies Inc.) was used for the quantification
of total HIV-1 DNA. Briefly, approximately 3.3 ug DNA in 33 ul water was added to
17 ul PCR master mix, i.e., the final PCR contained 1x PCR buffer (Sigma-Aldrich),
3 uM MgCl, (Sigma-Aldrich), 0.4 uM PCR-grade dNTP mix (QIAGEN), 1x Droplet
stabilizer (RainDance Technologies Inc.), 0.8 uM each of the oligonucleotides
(Microsynth) mf51_655 5'-TGCAGCTCTCATTTTCCATAC-3’ (nt 586-606,
CCRS5 gene, Genbank accession number U54994), mf52 5'-GAGTTTTTAGGATT
CCCGAGTA-3’ (nt 694-715, CCR5 gene), HIVw4924 5-ACTTTGGAAAGGAC
CAGC-3' (nt position 4928-4945, HIV-1yxp,, Genbank accession number
K03455), HIVrev5004 5'-CTTTTCTYCTTGGYACTAC-3’ (nt position 5004-5022,
HIV-1gxs2), 0.2 uM PrimeTime® LNA-ZEN probe (Integrated DNA Technologies)
Mf73tq 5'-TET/CCGCTGCTT/ZEN/GTCATGGTCATCTG/3'TABKFQ (nt
668-692, CCR5 gene), 0.13 uM PrimeTime® LNA-ZEN probe aHIVas 5'-6FAM/
TGCCCCTTC/ZEN/ACCTT + TCCA/3'TABKFQ (nt position 4956-4973, HIV -
1pxg2)> 0.06 uM PrimeTime® LNA-ZEN probe aHIV2nd 5'-6-FAM/CA+ G+ T
+ A+ G TAA TAC AA + G ATA ATA + GTG /3'IABKFQ (nt position
4972-4995, HIV-1pxp,), and 0.05 units/pl JumpStart™ Taq DNA Polymerase
(Sigma-Aldrich).

Up to eight samples were loaded in parallel on a RainDance Source chip. All
three to four samples of each individual were processed and analyzed in the same
run. Automated emulsion-based droplet generation was performed in the
RainDance Source instrument according to the manufacturer’s instructions. PCR
was performed using the ABI 2720 thermal cycler (Applied Biosystems) with the
following thermal cycling conditions: 95 °C for 10 min; 50 cycles of 95 °C for 40s,
62 °C for 30s, and 60 °C for 2 min followed by 98 °C for 10 min and an indefinite
hold at 12 °C. After amplification, fluorescence signals of each droplet were
measured by the RainDance Sense instrument according to the manufacturer’s
instructions. Data were analyzed using the RainDrop Analyst software (RainDance
Technologies Inc., version 10.0.7r2).

HIV-1 near full-length genome sequencing. Plasma samples from the last lab
visit before the initiation of ART were available for 512/1,057 individuals. If it was
previously known from Sanger sequencing for genotypic resistance testing that the
individual was infected with HIV-1 subtype B, sequencing was done according to
the protocol published by Di Giallonardo et al.%!, while in the case of non-B or
unknown HIV-1 subtype sequencing was performed according to the protocol
published by Gall et al.52.

Regression analysis. For the definition of determinants of HIV-1 reservoir size
and long-term dynamics, we used a generalized additive regression analysis using
the R package MGCV?’ to include smooth functions of explanatory variables,
namely total HIV-DNA at the first time point. As the smoothing function for total
HIV-1 DNA at time point 1 we chose a thin plate regression spline with dimension
26 of the basis used to represent the smooth term. Model selection was performed
to choose the dimension of the spline by minimizing the Akaike information
criterion. Additionally, we used the R package LME4 to perform a mixed-effect
model sensitivity analysis®’. The regression analysis represents a complete case
analysis. As a sensitivity analysis, we performed an equivalent regression analysis
utilizing multiple imputation for missing values (98 log10 HIV-1 plasma RNA pre-
ART values, 34 CD4+4- cell count pre-ART values, and 14 individuals had no HIV-1
RNA measurement between 180 days after initiation of ART and the time point of
the Ist total HIV-1 DNA measurement) using the R package mice®3. A sensitivity
analysis can be found in the supplementary material (Supplementary Fig. 18).
Results of the multivariable analysis remained qualitatively unchanged, apart from
(i) the association of nonwhite ethnicity with a slow HIV-1 reservoir decay, for
which the p value changed from 0.075 to 0.034 and (ii) the association of female
PWID with the decay of the HIV-1 reservoir, which lost significance.

Explanatory variables. We defined viral load to be suppressed when all mea-
surements were <50 HIV-1 RNA copies/ml plasma. We defined viral blips to be
present when there were measurements =50 HIV-1 RNA copies/ml plasma, which
were preceded and followed by measurements <50 HIV-1 RNA copies/ml plasma.
Any subsequent viral load measurement >50 HIV-1 RNA copies/ml plasma within
30 days of a viral blip was considered to be part of the same viral blip#2. Individuals
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who had multiple consecutive viral load measurements >50 HIV-1 RNA copies/ml
plasma (without experiencing virological failure as defined by two consecutive viral
load measurements >200 HIV-1 RNA copies/ml plasma) were considered to
exhibit low-level viremia. If an individual exhibited both, viral blips and low-level
viremia, we classified this as low-level viremia for our analysis. Sensitivity analysis
was performed for these definitions and different viral blips categories (Supple-
mentary Figs. 3 and 4).

We used a hierarchical approach to estimate the HIV-1 infection date on the
basis of indicators of varying reliability according to Rusert et al.>’. The following
methods were used with decreasing priority to yield the maximal accuracy for HIV-
1 infection dates possible:

1. Defined HIV-1 primary infection: either seroconversion dates (negative and
positive HIV-1 screening tests less than 1 year apart) or a diagnosis of a
primary infection were available as previously described®. We used the
midpoint between the dates of the negative and positive tests or, if known, the
date of the primary infection as the estimated HIV-1 infection date for these
individuals.

2. Defined recent HIV-1 infection: genotypic HIV-1 drug resistance test within
the first year after diagnosis revealed low-HIV-1 diversity (less than 0.5% of
ambiguous nucleotides) and CD4+ cell counts were >200 cells/ul blood at
registration®-%7, we interpreted these as recent HIV-1 infections and used the
diagnosis date as an estimate for the infection date.

3. HIV-1 infection date estimates based on a back-calculation method using
CD4+ cell counts and their slopes when available®s.

4. For the remaining individuals, no accurate dating was available. For these
individuals the date of diagnosis was used as substitute for the HIV-1
infection date, which allowed us to define at least the minimum length of
HIV-1 infection.

Time to viral suppression was defined as the time from initiation of ART until
the first viral load below 50 copies/ml HIV-1 plasma RNA. If this was not reached,
5.4 years was set as time to viral suppression.

HIV-1 subtype was determined by population sequencing using the REGA HIV-
1 subtyping tool in the context of routine genotypic HIV-1 drug resistance testing.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly
available due to privacy reasons, the sensitivities associated with HIV infections, and the
representativeness of the dataset. However, a coarse-grained version of the dataset is
published with the manuscript as Supplementary Data 1.

Code availability
All code generated during the current study can be made available from the
corresponding author on request.
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