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Supplemental Material 

 

Metal artefact reduction techniques  

Overall, MAR approaches can be classified into two categories: implicit and explicit [1]. Implicit 

methods commonly manipulate the acquisition parameters prior to the scanning procedures [2]. 

Explicit methods are divided into: (i) correction methods for physical effects, (ii) interpolation and 

non-interpolation approaches in the projection domain, (iii) iterative image reconstruction algorithms, 

(iv) hybrid approaches which combine any of the above mentioned techniques [3], and (v) image-

based approaches wherein the affected pixels are replaced with constant values instead of 

manipulating raw CT data [4]. Correction for physical effects, such as beam hardening [5] and photon 

starvation [6] could directly reduce artifacts in CT images. However, the signals loss/distortion are so 

severe due to the presence of highly attenuating metallic implants that these corrections would not 

achieve satisfactory results. In the projection domain, metal-affected bins could be assumed as missing 

signal/information, wherein linear interpolation (LI) is broadly employed to approximate the missing 

information through exploiting the neighboring unaffected projection bins [7]. The LI approach is not 

able to fully recover the missing signals and may introduce new artifacts or distortion of structures in 

the proximity of the metal implants [8]. This issue was partly compensated through employing a priori 

information in the forward projection, leading to a more accurate substitute for missing signals [9].  

 

Metal artefact simulation  

To ensure a realistic metal-artifact simulation, instead of using phantom imaging, metal implants, 

representing typical shape and size of prostheses and dental implants encountered in clinical studies 

were manually segmented from patients’ CT images. Given the binary masks of metallic objects, 

metal-inserted CT images were generated through superimposition of the metallic objects on the 

metal-free CT images in different locations, orientations, sizes (slightly larger or smaller) and 

materials. Then, the pixel values were converted from Hounsfield Units (HUs) to linear attenuation 

coefficients. To generate polychromatic projection data, the metal-inserted images were segmented 

into water, bone and metallic implants using a thresholding-based classification approach [10]. Pixels 

with values below 100 HUs were considered as soft-tissue (or water-equivalent) whereas pixel values 

above 1500 HUs were considered as bone. Pixels with values between these two threshold levels were 

linearly weighted to create a mixture of water and bone. For metal artifact simulation, binary masks of 

metallic objects were placed into corresponding/possible anatomical locations to generate metal-

inserted images. The most likely and significant metal implants, such as dental fillings, spine fixation 

screws, hip and shoulder joint prostheses were simulated followed by assignment of linear attenuation 

coefficients of iron, copper, gold and titanium. 
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Deep learning algorithm 

A unique capability of deep learning approaches is image-to-image translation enabling the prediction 

of different representations of the input images or inter-modality translation. This capability can be 

used to estimate the original/uncorrupted/corrected version of the input images affected by certain 

degrading factors. Metal artifact reduction (MAR) in CT images is a suitable target for deep learning-

based solutions wherein the corrected images could be predicted from the corrupted input images in an 

end-to-end fashion. To this end, the deep learning network would extract the underlying image 

features from the input data, based on which an optimized solution is derived to synthesize the 

original/uncorrupted images. The ability of the deep learning approach to identify/decode the 

discriminative/underlying features from the input data, which provide sufficient/adequate information 

to estimate the original/uncorrupted images, plays a key role in the development of an optimal MAR 

solution. Besides, the network should be able to construct an efficient model to generate/predict the 

corrected images based on the extracted features. These two cores of the deep learning network should 

be jointly trained/optimized to reach an overall dependable solution. The HighResNet network 

selected for this task offers a high-resolution feature extraction scheme (to develop a rich feature map) 

and a powerful image formation ability which is ideal for application in MAR. The HighResNet 

network relies on several residual blocks to achieve an efficient training process without increasing the 

computational cost. Residual or shortcut connections are intended to skip certain layers in a network to 

form a fluid/uniform propagation of the information across the entire layers (avoiding gradient 

vanishing). The residual connections would transmit signals (concerning the extracted features or 

estimated errors or feedback from the ground truth) forward and backward within the blocks. In this 

regard, a network with n residual blocks would create 2n different paths creating an effective large 

receptive field.  

This network consists of 20 convolutional layers, where residual connections are employed to link 

every two convolutional layers. Each convolutional layer is also linked to an element-wise rectified 

linear unit (ReLU) and a batch normalization (BN) layer. In the initial layers, 3×3×3 filters/kernels are 

employed, which guarantees high-resolution feature extraction from the input image. The layers 

residing deeper in the network employ dilated kernel with factors of two and four to create larger 

receptive fields. The output of the network is a fully connected softmax layer having the same matrix 

size as the input image. 
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Supplemental Figure 1. Representative examples of metal artifacts simulation and correction. (A) 

Original metal-artifact free CT images. (B) Original CT images after forward-projection and FBP 

reconstruction. (C) Metallic implants. (D) CT images after inserting metallic implants (standard of 

reference). (E) Metal-affected images. CT images after applying MAR using (F) NMAR, (G) deep 
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learning algorithm operating in the projection domain (DLP-MAR), and (H) deep learning algorithm 

operating in the image domain (DLI-MAR).  
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Supplemental Figure 2. Example of scatter correction underestimation due to metallic artifacts. 

Original CT image before correction (A) and after MAR using NMAR (B) and DLI-MAR (C) 

methods. The corresponding attenuation corrected PET images are displayed in (D), (E) and (F), 

respectively. Horizontal profiles drawn on PET images compare PET signals before and after 

application of MAR methods. 
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