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GOLOMB'’S SELF-DESCRIBED SEQUENCE AND
FUNCTIONAL DIFFERENTIAL EQUATIONS

Y.-F.S. PETERMANN AND JEAN-LUC REMY

A sequence (word) W of positive integers is self-described or self-generating if
(W) = W, where t(W) is the sequence consisting of the numbers of consecutive
equal entries of W. A famous self-generating bounded sequence is Kolakoski’s

1, 2,2,1,1, 2, 1, 2,2,--- (see [Ch]). In this paper we consider Golomb’s
e e S S S e~

o2 L L2

sequence F, which is the only nondecreasing self-generating sequence taking all

positive integral values, 1, 2,2,3,3,4,4,45,5,5,6,6,6,6, ---. Let ¢ denote the
N N o N N e e e

L2 2 3 3, 4,
golden number. We prove that

¢=!  (loglogn n-!
Fn)=¢**n®' + —h 0 Z——loglogn ),
(n) == "n" "+ logn log ¢ + log?n oglogn

where the real function 4 is continuous and satisfies 4(x) = —h(x + 1) (x > 0). The
method of proof is intimately connected with the more general problem of character-
ising the solution E; of an approximate functional integral equation of the type

19!
E|(u)du + 0 (—2> ,
log“ ¢

P

E\(t) = —¢' %172 f
2

which we discuss in the second part of the paper.

1. Introduction

In the problem section of the American Mathematical Monthly in 1966,
S.W. Golomb [Go] considered the unique nondecreasing sequence {F(n)},>; =
{1,2,2,3,3,4,4,4,5,5,5, 6,6,6,6,7...} ’self-described” by the two conditions
F(1) =1and F(n) = |{m : F(m) = n}| (n > 1). At the time he only requested an
asymptotic expression for F'(n) as n — co. We have

F(n) =cn® ' + E@n), (1.1
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GOLOMB’S SELF-DESCRIBED SEQUENCE 421

where ¢ = ¢> %, ¢ = (/5 + 1)/2 is the golden number, and E(n) = o(n®™").
The first published complete proof of (1.1) is due to N.J. Fine [Fi]; D. Marcus [Ma]
proposed a clever heuristical argument: see [Pé2] for a proof based on Marcus’ idea.

More recently, 1. Vardi [Va] asked for a more precise estimate for the error term
E(n) of (1.1). On the one hand he could establish

¢—1
E(n) =0 (" ); (1.2)
logn

on the other hand he conjectured that estimate (1.2) is optimal.

CONJECTURE 1. We have

61
E() = Q. (" ) (1.3)

logn

Vardi’s Conjecture 1 is based on a heuristic argument, which led him to be more
precise.

CONJECTURE 2. Forn > 2 we have

—1y, {loglogn
E(n>=n¢ (%) +0(n¢;I ) (1.4)
logn log”n
where h(x) satisfies
hix +1)=—h(x) forx >0, (1.5)
and
[A(x)| >0 forx e (0, 1). (1.6)

However, as Vardi himself pointed out, he was “not even able to show that
limsup,_, o, | E(n)| = 0o”. This was proved by Y.-E.S. Pétermann [P¢é1], who showed
that E(n) = Q4 (n?~'~¢) for every € > 0. Recently J.-L. Rémy [Ré] succeeded in
verifying the truth of Conjecture 1.

In this paper we are concerned with Conjecture 2. We prove:

THEOREM 1. We have

n¢_|h log logn o1 loo |
E(n)zmw(w), (1.7)
logn log”n
where h(x) satisfies
h(x +1) = —h(x) forx >0, (1.5)

and

h is continuous (1.8)
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Remark 1. Conjecture 1, which we know is true from Rémy’s result [Ré€], implies
that the function / in Theorem 1 is not identically zero. It should also be noted that
assertion (1.6) in Conjecture 2 is false: we can indeed prove that #(0) # O (see
Remark 2 in Section 3), and this shows with (1.5) and (1.8) that there is a number o
with0 <o < 1 and () = 0.

Hence we propose to modify assertion (1.6).
CONJECTURE 3. Ifh is as in Theorem | there is a number o with0 < o < 1 and
lh(x)] >0 forx € (o, 1 + ). (1.6")

The rest of Section 3 is devoted to four other remarks.
The proof of Theorem 1 contains in fact an almost complete treatment of the
approximate functional integral equation

E@t) = —c %1% f

2

ct!

o1
E(u)du+0<t 5 ) (1.9)
log~ ¢

and its summatory counterpart (2.1) in Section 2 just below: this is discussed in
Remarks 3 and 4.

But the error term bound of Theorem 1 is not as good as the bound conjectured in
Conjecture 2: we extensively discuss in Remark 5 the exact and non trivial functional
equation

¢!
d@t) = —t¢_2f dwydu +1, (1.10)
0

which is of a type similar to (1.9), and for the solution of which the better error term
bound holds. (By ”non trivial” we mean that the function & associated to the solution
is not identically zero).

In Theorem 2 of Remark 3 we show that the solution of an equation of type (1.9)
satisfies (1.7), with (1.5) and (1.8): a sort of restricted converse to this is obtained in
Theorem 4 of Remark 6, showing that a function E(t) = t¢~'h(loglogt/log ¢)/ logt
satisfies (1.9) for many choices of the function 4.

Notation. 1In the sequel we shall frequently appeal without comment to classical
properties of the golden number ¢. Although all these properties can easily be inferred
from the definition of ¢, we state below a few of them for convenience.

Pr=0+1, Plop-D=1,  (p-1)=2-9¢, (p-1)>=2¢0-3.
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invited professor granted to the first author by the Université Henri Poincaré-Nancy I.
Both authors are very grateful to this institution for this opportunity to work together.
They also wish to thank Ilan Vardi for his thorough reading of the manuscript and his
useful comments and suggestions.
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2. Proof of Theorem 1
Our starting point is the heuristic formula that led Vardi to his Conjecture 2.

LEMMA 1. We have

o—1
Em =—c*n*2 Y Em)+0 (l'(’)gzn) . Q2.1

m<cn®-!

Proof. Every n > 1 can be written uniquely asn = G(m) —r, where 0 < r <
F(m), and where G (m) denotes the position of the last occurence of the integer m in
the sequence F'. We have

Fn)=F(G@m)—r)=m. 2.2)

Now if we put R(m) := stm E(k), then, from Vardi’s result (1.2), we clearly have

[
R(m) = 0( n ) 2.3)

logm

Moreover,

E() = E(G(m) — r) = _c’;('”) (1 +0 ('R(’")')) Lo, @4

¢—1 mo

(Equation (2.4) can easily be derived from Vardi’s paper [Va]: see (10) of that paper;
or see Lemma 3 in [Pé1].) Thus, with (2.3), (2.2) and (1.2), we may write

E(n)=_£(_’ﬂ+o( m )= R(F(n)) +0( F(n) )

cm#1 log?m) — c(F(n)*! log?(F (n))
. R(cn?®~' + On®~'/logn)) ( nt-! )
T c(end' 4+ 0(n%-1/ logn))®-! log?n

n¢-!
= —c’n*R(n*H+0 ( 5 ) .
log“n

This proves Lemma 1. Now we replace the sum in the approximate functional equation
of Lemma I by an integral, which is smoother (differentiable) and thus easier to handle.
For this we use a result of Segal’s [Se]. O

LEMMA A. Let f(n) be a function of a positive integral variable, and suppose

> fm) =z(x) + E(x),

n<x
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where z(x) is twice continuously differentiable, and 7" (x) is of constant sign for
x > 1. Then

X

1 R
ZE(n) = EZ(X) + (= {xhEX) +f E@®)dt + 0(z'(0)]) + O(1).

n<x 1

LEMMA 2. Ifthe definitions of the functions F and E of (1.1) are extended to the
real arguments t > 1 by putting F(t) := F([t]) =: ct?~! + E(t), then we have

“qﬁ—l ¢_|
E(t) = —c—#972 / E(u)du + 0 (l’ 2;) . 2.5)
2 og

Proof. 1If we put f(m) = 1| whenm = 1 orm = G(k) + | for some k, and
f(m) = 0 otherwise in Lemma A, then F(x) =Y, _, f(m) = z(x) + E(x) where
z(x) := cx?~!. The hypotheses of Lemma A are satisfied and Lemma 2 is proved.

Now if we let

cr®!
Dy(t) :== —c %1972 / E(u)du, (2.6)
2
we have of course
191
E(t) = Dy(t) + O ( 5 ) , 2.7
log~ ¢
so that from (2.6) and (2.7) we have
ct! 19!
Dy(t) = ——C_¢t¢‘2/ Do(u)du + O ( > ) . 2.8)
2 log” ¢t
Similarly if we put
cr?!
D(t) := —c ?1?72 f Do(u) du, (2.9)
2
we may write
191
D(t) = Dy(t) + O ( 5 ) (2.10)
log” ¢
and
ct?-! t¢—|
D) = —c—¢t¢*2f D(u)du + O (—2) : @11
2 log~ ¢

We shall work with the approximate functional-differential equation (2.11), rather
than with (2.5) or (2.8), which are “functional” but not “differential”. By (2.7) and
(2.10) it is indeed sufficient to prove the theorem for D instead of E. If we write
1!
D)= —K(1), 2.12)
logt
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this defines a function K (t) = O(1) which is differentiable for every ¢+ > 2. If
similarly we write

¢—1

t
Dy(t) = T_KO(t)’ (2.13)
ogt
then by (2.10) we have
Ko(t) = K(t) + O(l/log?). 2.14)
O
LEMMA 3. We have
tK'()+ K@) + Kty = 0(1/logt). (2.15)
Proof. First we differentiate expression (2.12).
(-1 192 (-2
D(t)_—K()+—(¢—1)K(t)— —K (). (2.16)
log? log” ¢
Then we differentiate (2.9).
cr®!
D'(t) = —c % -3 f Do(u) du
2
—1yp—1
52 (c1®D) o1 92
—c 't WKQ(CI Ye(p — Dt
D $-2 142
= (¢ - Z)ﬁ—ut Ko(ct?™ ')+0( ) 2.17)
logt log? ¢

Equating (2.16) and (2.17) (with a use of definition (2.12)) yields

,¢—2 192 192 192
()+—K(t)+—1<o(ct¢ h=0 ( 5 )
log logt log ¢ log“ ¢

and a division by t#~2/log t with an appeal to (2.14) finishes the proof. [

A key step in the proof of Theorem 1 is to ensure now that K (¢) is sufficiently near
K (ct®~"). This will be done by an induction argument on m for ¢ in intervals of the
form [N,,, Nyu+1], where Ny, N, N, ... is a sequence of positive real numbers with

thatis Nyyi = — N9, (2.18)

m+1° ¢ m

for m > 0. We need a lower bound on N,,.

N, = cN®!
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LEMMA 4. If Ny is chosen large enough we have

Ny > 3", 2.19)
Proof. If Q := ¢?~2 = 1/c we have
C

N, = aN(‘f =¢'"*NJ = (¢*2No)* = (QNo)*,

and in general, if Qg := Q%" (= 1/¢), we have
Nu = (ONpy_1)? = (QON, )?)? = ... = QF+¢™+-+" N&"
= 0N = 0l N > oo > ()
provided Ny is chosen larger than 3%° /0 = $3?°. And we have
@ =) =¢"@ (1 —¢7") = ¢"

if m > 1. This concludes the proof if we note that since Ny > 3, (2.19) also holds
form=0. O

We are now in position to prove:

LEMMA 5. Fort > 3 we have

loglog ¢
KO+ K@) =0 ( 08 08 ) (2.20)
log ¢
Proof. Let Ny, Ny, N, ... be a sequence of positive real numbers satisfying

(2.18) for m > 0, and with N, large enough to ensure the validity of (2.19). We show
that there is an absolute positive constant C and a sequence of real positive numbers
My, My, M,, ... with

My = (C+ My) (l + Tog Nm) (m = 0) (2.21)
and
o-1y) < Mnm
K@)+ K(ct? )| = — (2.22)
log¢

for 2 <t < N,. The proof is by induction on m. Estimate (2.22) holds for m = 0
if we choose M, large enough. Assume it is satisfied for some m > 0, and let
N,, <5 < Np41. Then we have s = c¢~'t? and t = cs?®~! for some ¢ witht < N,,,.
And by (2.11) and (2.12) we may write

ub-1 s9-1

t
D(s) = —c_‘”s¢_2f K(u) du + 5
2 log u log”s

B(s), (2.23)
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where |B(s)| < B for an absolute constant B. First we show that there is an absolute
constant C; such that
C, )
+
logs

2.24)
for some function ¥, with |9, (s)| < 1. Integrating by parts in (2.23) and replacing
logt by ¢~'logs + O(1) we obtain

t w1 s
f (u) = g K — + 0( 3 )
log s log~ s
1 [ ut! K
— “ uk’'(u) — ) du,
¢ J, logu logu
and thus in order to obtain (2.24) it is clearly sufficient to show that
tyo-! |K(u)| s S Co
I .= K’ (u)| + du < ¢“c >—(Co+M,) |1+ —
2 log log u log” s

log s
(2.25)
for some absolute constant Cy. Now there are absolute constants A and A, with
|K(u)] < A (u = 2) and, by Lemma 3, with

t ¢—1
/ K(u)— du = g™ K (1) —— + 81 (s)pc ™' ——(C) + Myy) ( 1
2 logu log s log” s

A
K @) < ==+ K@) + K(u®H| (u>2).
log u
Thus on appealing to the induction hypothesis we have

du < (A\+A+M,) (¢2 - +0( . ))
log” s log” s

whence (2.25) and (2.24) follow. Now we use (2.12) and (2.24) in (2.23) and obtain

r 91
] 5 (AI+A+Mm)/ 2
2 lo

§¢—1 o1 g#—1

K ) =~ K () +9(9)
ogs log s

~(Ca+ M) (1 + 2) @26
log s

where Cj is an absolute constant and ¢ some real function with |¢#(s)| < 1. Thus

(C2+M,,,)( CZ) 3 (C2+Mm)(l +,—5§27) _ M

IK(s)+ K(cs®™h| <

log s log s ~ logs

provided C has been chosen with C > C,, whence the proof of the lemma will be
complete if we ensure that a sequence of numbers satisfying (2.21) also satisfies
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Indeed, by Lemma 4 we have t > 3% if N,,_; <t < N,, (m > 1), so that

m < loglogt/log¢ 4+ O(1), and thus with (2.27) we will have

M, loglogt
K@)+ K(er*) < = = 0 (2250
log ¢ logt
In fact we prove that
M, <m+DC [] 1 +Co™) (m=>0), (2.28)

O<i<m

where C3 denotes max(C, My). This is sufficient to ensure that (2.27) holds: the
product in (2.28) is bounded by an infinite product that converges, since ¢ > 1. We
prove (2.28) by induction on m. It holds for m = 0. Assume it is satisfied for some
m > 0. Then by Lemma 4 we have

C c
(C+Mm)(1+logNm) s(C+Mm)(1+$,;)
(I+m+1C; [T (0 +Co™)(1+Co™.

O<i<m

Mm+l

IA

The proof of Lemma 5 is now complete. [

Now we define the function k by

loglog?)
(o) =0

and we prove:
LEMMA 6. For x > 1 we have
k(x) +k(x — 1) = O(x¢p™). (2.29)

Proof. First note that

log log(ct?~! loglog ¢ 1
oglog(cr?) _ loglogt 0( )

log ¢ " log¢ logt
Then note that by Lemmas 3 and 5 we have
loglog¢
K'(t) = 0 ( oglog )
tlogt
which with
’ (log Iogt)
K'(t) = ——=2°

tlogtlog¢
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implies that

loglog ¢
k,(ogog

log ) = O(loglogt), (2.30)

whence, in particular,

loglog ¢ 1 loglogt logl
k(280 o —)) =k (B8 ) o (288
log ¢ logt log ¢ logt
Thus
loglogt loglogt loglogt
KO+ Kty =k (2280 | (B8 )y o (2220,
log ¢ log ¢ logt

An appeal to Lemma 5, and the change of variable x = loglog¢/log ¢, conclude the
proof. O

Let now x¢ > 0 be fixed, and consider the sequences
x; :=x9+2i and yi = k(x;j) (@(=0). (2.31)

With the help of Lemma 6, by adding and subtracting terms of the form (—1)/*'k(xo+
j) (j = 1), itis not difficult to see that {y;} is a Cauchy sequence and thus converges
to some real number, which we call h(xo). Similarly, for xo > 1, y! converges to
h(xo — 1), where y; := k(x; — 1) (i = 0). And again by Lemma 6 we see that

h(xp) +h(xo—1) = il—i>To(k(Xi) +k(x; — 1)) =0. (2.32)
We need a precise bound for the quantity |h(x) — k(x)|.
LEMMA 7. We have
k(loglogt) _a (loglogt) +0 (loglogt). (2.33)
log ¢ log ¢ log¢

Proof. Putx = xo = loglogt/log¢. Then with the notation (2.31) we have

|h(x) —k(x)| = il_ipolo lyi = yol.
Now with Lemma 6 we have

yi —yol < Iyt —yol +1ly2 =yl + -+ |y — yi-il

=0 (Z(x + 2i)e_("+2i)'°g¢)

i=0

— O(xe—x logq)),

and the lemma is proved. O
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In order to conclude the proof of Theorem 1 it thus remains to prove:

LEMMA 8. The function h is continuous.

Proof. Suppose on the contrary that 4 is not continuous at some x. Then there
is a sequence €; — 0 with

lh(x) —h(x +€)| = C >0,
where C is some positive constant. By (2.31), for every positive integer j we have
|h(x +2j) —h(x +2j +€)] > C.
Now if we write x + 2j = loglogt;/log ¢, then by Lemma 7 we have

log log ¢;

h(x +2j) —h(x +2j+¢€) =k(x +2j) —k(x+2j+¢)+ A, 1) logr,
J

where |A (¢, i)] < A for some absolute constant A. But we can choose j = jj such
that for t = t;, we have

loglogt
Aogog

C
<=
logt — 2

whence

(Sl He)

lk(x +2jo) —k(x + 2jo +€)| =

for every i, which contradicts the continuity of k.
The proof of Theorem 1 is now complete. O

3. Remarks

Remark 2. As we mentioned it in the introduction (Remark 1), Vardi’s assertion
in his Conjecture 2 that |h(x)| > O for x € (0, 1) is not correct, and this follows from
h(0) # 0. We very briefly indicate how this latter fact can be proved. If we write

¢! loglog ¢
E() = —k | —281),
log¢ log ¢

then Rémy proved in [Ré] that
ki@ >a (u€lm+a,m+Blim=>my),

where a, o and B are explicit real constants with ¢ < g and a > 0. By refining the
computations needed to achieve that, it is possible to choose the constants a, a and



GOLOMB’S SELF-DESCRIBED SEQUENCE 431

B in such a way that the additional condition ¢ < 0 < B be satisfied. (We obtain
a = —0.0018 and B = 0.2948, witha = 0.0007486.) Thus |k, (m)| > a form > my,
whence

|h(0)| = |h(m)| = lim |h(m)| = lim |k;(m)| = a > 0.
m—> 00 n—00

Remark 3. Itshould be noted that in Section 2 we prove more than just Theorem 1.
In fact we gave an almost complete proof of the following result.

THEOREM 2. Let E| be an integrable real function defined on [2, 00) which is a
solution of some approximate functional equation of the type

cr®! ¢—1
t
Ei(t) = —c—¢t¢—2f Ei(u)du + 0( > ) 3.1
2 log” t
Then the conclusions of Theorem 1 hold for E| instead of E.
Proof. We have to ensure that the proof of Theorem 1 is valid from equation
(2.6) on, if we replace E by E,;. From this point on the only property of E we use
(other than equation (2.5)) is Vardi’s result (1.2) (which is used in the derivations of

equations (2.17) and (2.24)). So we only need to show the following. [

LEMMA 9. If E| is a solution of an equation of type (3.1), then

1!
logt

Proof of the lemma. Let Ny, Ny, ... be a sequence of real numbers as in (2.18),
with Ny large enough to ensure the validity of Lemma 4. We prove by induction on
m thatif £ € [2, Ny ], then

A
|E\ (O] = Am—-—~l (3.3)
og?t
for some increasing sequence of positive real numbers exceeding 1, Ag, A4y, ... with

Am+l = An(l +C¢_m)

for an absolute constant C. This will imply that there is an absolute constant A with
A,, < A forevery m, whence the lemma. For Aq large enough, (3.3) holds form = 0
and m = 1. Suppose (3.3) holds for some m > 1, and let L € [N,,, Ny+1]. Then
L =c¢ 4% and ¢ = ¢L?"' for some £ € [N,,_i, N,y]. Note that from Lemma 4 we
can infer log £ > ¢™ 1. For some absolute constants B, B|, B, and B3 we have

o1

1 ¢ L
E,(L)| < — E d B——
E((L)] < m_,fz E@ldu+ Bl
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Am 1+ BI ) e¢ LB L¢_I
cptd—! log? ) log¢ log? L
ApL®! ( B, ) A L?! L)
< <

] B —m <A, _
log L log¢) — logL I+ B0 ™) = "+'logL

provided C has been chosen with C > Bj.

Remark 4. 1f a function E| of the positive integers satisfies a functional equation
of the type

6 b n¢-!
E (n) = —c on?? Z El(k)+0(log2n>, (3.4)

k<cn®-!

then it is not difficult to show, by an argument similar to that of Lemma 9, that

o1
Ei(n) =0 (" ) .
logn

It then easily follows that the extended function E (1) = E,([t]) satisfies a functional
equation of type (2.5), and thus that Theorem 2 applies to E;.

It should be noted at this point that if one replaces the error term of (3.4) by
O(n?"/1og'*< n) where 0 < € < 1, then Theorem 2 can still be proved for E|, the
only difference in its conclusions being that the error term in the expression of E| in
terms of & is now O (n?~'loglogn/log'* n).

In the remark on page 3 of [Va] a relation less precise than (3.4) (without er-
ror term and with the symbol & instead of =) is displayed, followed by an as-
sertion, the most natural interpretation of which appears to be that the function
n®~'h(loglogn/log$)/logn=: E»(n)isasolutionto(3.4)(possibly withalargerer-
rorterm) whenA(x+1) = —h(x). Butwe justsaw thatfor E;, withh(x+1) = —h(x),
to be an asymptotic solution of (3.4), it is at least necessary that 4 be continuous.

And in fact there are continuous functions 4 with h(x +1) = —h(x) such that E, is
not a solution of (3.4). In order to verify the latter, first note that a necessary condition
for a function E;(n) = O(n®~'/logn) tobe asolution of (3.4) is E»(n+1)— E(n) =

O(n*~'/log*n). Thus, if
=1 /logl
E2(n) _ n h oglogn ’
logn log ¢

a necessary condition is

N (loglog(n + l)) o (loglogn) _0 ( 1 )
log ¢ log ¢ logn

We can find a sequence of positive integers n; — oo (i — 00) such that the integral
parts [loglogn;/log ¢] are all of the same parity, and such that the fractional parts
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8; := {loglogn;/log¢} decrease to 0 as i — oo. By making the sequence sparse
enough we may also assume thate; 1| < §; < €;, where¢; := {loglog(n; +1)/log ¢}.
Thus if we put h(8;) = 1/n; and h(e;) = 1/n; + 1//logn;, we can complete the
construction of a continuous function 4 with A(x + 1) = —h(x) and such that

N (loglog(n + l)) P (loglogn) _ Q( 1 )
log ¢ logp ) Jlogn )’
Note that it is even possible to ensure that 4 be indefinitely differentiable (with the
restriction 1% (0) = oo fork = 1,2, ...).

Remark 5. The error term estimate O (t%~! log log ¢/ log t) we obtain in our The-
orem 1 is not as good as the error term asserted bound O (1~ / log t) of Conjecture 2.
Here we give an example of a (non trivial) functional equation of type (3.1) for which
the better error term bound holds. In this case we can exhibit an explicit expression
for the function £ (here: g), which in addition permits a rather easy (compared to the
argument in [Ré€]) derivation of an Q2-estimate as strong as that of Conjecture 1.

THEOREM 3. There is a unique solution for the exact functional-differential equa-
tion
19!

d(t) = —1*2 / d(u)du + 1. (3.5)
0
This solution satisfies an equation of type (3.1). Moreover, for u > e, we have
u®='  [loglogu ¢l
aw =g (PEE) o (). (3.6)
log u log ¢ log” u
where
glx)=—gx+1) (x=0) (3.7
and
g is continuous, 3.8)

and where in addition

g is not identically zero. 3.9

Proof. We first establish the existence of a solution. The argument is similar to
that in [Yo, Chapitre 4, p. 151-153]. We are looking for a solution of (3.5) of the
form

dit) =) e, (1), (3.10)

n>0
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where for the time being we assume that the sum converges absolutely and uniformly
in each bounded interval [0, ¢]. Then by using (3.10) in (3.5) we obtain

1#-!

— 1 _ ¢-2
deny=1-> 1t /O en(u) du.

n>0 n>0
We seek a solution satisfying

eo(t) =1

and
19!

en(t) = —t¢_2] en1()du (n>1), G.11)
0

with e, () = a,t?, and where a,, and g, are real numbers. An elementary computa-
tion yields

ap =1, Bp=0,

Br = Buoi + D@ =D+ (@ —=2)=(— DByt + (¢ — 1,
a = ——2=t
ﬁh1~| + 1
The sequence By, B, . . . satisfies a first degree recurrence relation whose solution is
1
ﬁk=—(¢—1>k+'+(¢—1)=(¢—1)<1—(—p7), (3.12)
whence

(——l n n 1
an =——]] . (3.13)

" (1 - 5,;';,)
Note that as n — oo the product in (3.13) remains bounded. Also note that 0 <
Bn < ¢ — 1. Now there remains to ensure that with these values of «,, and B, the sum
in (3.10) does indeed converges absolutely and uniformly in each bounded interval
[0, t]. This follows from

1+ ¢!
anth = 0 (2—) . (3.14)
Now we show that the solution of (3.5) is unique. Let d, and d, be two solutions

of (3.5) and consider their difference ¢ := d| —d,. Let#y > 0and M be the sup |&(u)|
foru € [0, ty]. Then if t < ty we have

le(t)] < t""2/
0

19! 9!

le(u)| du < Mt""zf du = M=% = pMr@—"*
0
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Now let
& = B+ and My = M|ag+1] (k= 0) (3.15)

Then it is easy to see by induction on k, with (3.14) and (3.15), that if # < ¢, then
le()] < Mit® = Mlayq 1P <

_W

for every positive integer k, where C is a positive constant depending only on #,.
Hence e(t) =0ift <tyandd, =d, =d.
Now we write

19! *='  /loglogt
dit) = —Juy = — j (228! (3.16)
log ¢ logt log ¢
and we show that
1
JOy+Je*H=o0 (—) . (3.17)
log ¢
Using (3.14) in (3.16) we may write
Ty =" aut™*" " logr, (3.18)
n>—1
where, by convention, «_; = 0. Hence we have

JOy+JaH =) (a,, + %) 1" logr =logt Y (=1)"y,  (3.19)

n>0 n>0
where on appealing to (3.15) we see that
vw=r1"",

and forn > 1,

I Iy I gt
w= gl () (1 (1-5m))r
1 & 1\
= pey n (l - ¢k+l) ¢ (3:20)

When t > (¢2)¢3, the sequence {y,} in (3.17) is unimodal; i.e., there is an integer ng
such that y,+1 > y, forn < ng and y,4| < y, forn > ny. Indeed yy < y, and for
n>1,

Y+l I x"

Vn EJ —u

=:v(u)
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where u = ¢"~2 and x = 1*~!; and for x fixed the function v(u) is strictly increasing
from ¢~ 2 to+oo foru € [0, 1). Itfollows that thereisa unique ug > Owithv(ug) = 1.
And thus ny is the smallest positive integer satisfying ¢"°2 < uy. Now with the
unimodality of {y, } and (3.19) we see that

(@) + J(@® )| < v, logt. (3.21)

The quantities ny and uo depend on ¢. As ¢ increases to +00, ng also increases to
400, and uq decreases to 0. Thus from the definition of ug, i.e. v(ug) = 1, we see
that #“0 remains bounded as t — oo, whence, since ug > 0, up = O(1/logt). With
(3.20) it follows that

—ngp—1

I
Yig L G727 g ud & ——

log?t’
and this with (3.21) implies (3.17).

Now we show that d satisfies an approximate functional-differential equation of
type (3.1). As in Lemma 3 we obtain

1
tIO+JO+Je*H=0 (—-——) , (3.22)
logt
and with (3.17) this implies
|
J@) =0 (———) , thatis, j'(u) = O(1). (3.23)
tlogt
With (3.5) we have
ct?!
d(c?
— P2 / dw)du = «n +0@*?) (3.24)
2 ¢

and, with (3.23) and (3.16),

d(c?t t*=!  [loglogt 1 !
2 (2o ) o i)
¢ logt log ¢ logt log” ¢

o1
dit)+ 0 ( 5 ) . (3.25)
log~ ¢

Thus Theorem 2 applies to e. But we must ensure that the better estimate (3.6)
holds, with (3.7) and (3.8). To that purpose we replace Lemma 5 by

JO+Jt* H=0 (——1—) , (3.26)
log ¢

which follows from (3.17) and (3.23). Then with (3.23) instead of (2.30) we replace
Lemma 6 by

JEO+jx — 1) = 0" (3.27)
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and (with g instead of #) Lemma 7 by

. (loglogry loglogt __l__
]( log¢ )_g( log ¢ >+0(10gt)' (3:28)

The continuity of g is obtained exactly as in Lemma 8.
There remains to prove (3.9). In fact we prove that

loglo
¢ (2 ;. loglogé
log ¢
We derive a closed formula for g(2 + loglog ¢/ log ¢). As in the proof of (3.17), we
show that the series (3.18) for J(¢) is an alternating series whose terms in modulus

constitute a unimodal sequence. The maximal value of the moduli |o, =% log |
of the terms in (3.18) is reached when ny is the smallest integer such that

] ¢n+]
ty, >t, where 1, = (¢ (l — W))

) = g(0.47998 - --) # 0. (3.29)

Now if we write u, := loglogt,/log ¢ we clearly have
logl
un = n 43+ 2888 L, (3.30)
log ¢

and we may write
> ——1
J) =J(t) = > an,* logt,
=0
o0

o0
= Z —aH"t_"’_'-”“la,, lOg t, =: Z (_1)"+ea{’,n (331)

n
[e7%

¢=—n ¢=—00

(where a¢, = 0if £ < —n). It is not difficult to see that

¢ Xegn 1 _p—t=n—t e
(=1 71"' = "57)‘4’."7 t,,d’ = ¢ ¢ Me.ns
[

and
(—=D"ay, logt, = Mg loggv,, where TI:= n (1- q)"‘"')—l ,
and where Ay, (¢, and v, converge, uniformly in £, to 1 as n — oo. It follows that

the terms ay , of (3.31) converge uniformly in £ to ﬂqb}_e_"’H log ¢, whence

o0
lim (—=1)"j () = N logp Y (—=D)'¢~*"" =0.001289257 - --.
n—00

{=—00
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Now by (3.28) we have j(u,) = g(u,) + O(1/logt,), and thus, with (3.30),

log|
0.001289257 - - = lim (—1)" j () = lim (—1)"g(uy) = —g (2 n M) :
n—00 n—>00 |0g¢
and (3.29) is proved. 0O

Remark 6. 1t is easy to see that if A is any real number the exact functional-
differential equation

to-!

dy (1) = —1972 / dy () du + A (3.32)
0

has exactly one solution, which is given by
d, (1) = Adi (1), (3.33)

where d; = d is the solution of (3.5). Returning to the error term E of (1.1), it
is tempting to hope that E behaves similarly as d, for some X, and in particular
that the functions / and g have the same zeros. But experimental data, although
supporting the conjecture that there is some 8 with 0 < 8 < | such that [g(x)| > 0
for x € (B, 1 4+ B), also strongly indicates that probably g is distinct from the o of
Conjecture 3. In the accompanying figure the dotted curve represents the function k;
of Remark 2 (approximating the function & of Theorem 1), and the continuous line
represents the function d,,, (¢) of (3.33), where Ao = 1.054559132 - - - ischosen in such
a way that the amplitudes of both functions are equal. Note that it appears unlikely
that the limit function A will be a translation of d,,,. In fact the following result shows
that many very different functions E| can satisfy an approximate functional equation
of type (3.1).

THEOREM 4. If f is a real or complex-valued function defined on the real num-
bers, satisfying

fa+Dh=—-f(x) x=0),

and if f has a Fourier series representation

f(x) — Z ake:rrikx

k odd
with the property that y_, .4 klak| < 0o, then the function
t*~! [loglogt
B = — f (228
logt log ¢

satisfies an approximate functional equation of type (3.1).
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Proof. Let E| be as in the theorem. Then

I := ~c'“"’t¢_2[
2

Now the last integral is

ct9!

u?® ik ™! 1
— (log u) s~ ——
2 ¢ )2

¢

'¢t ni
= 67(10g(ct¢_'))m_I +O0 (

('r")"
u-

k odd

log ¢

tk )
log?t

ik
t log 1\ iee# tk
=C¢_(£) ' +0( d )
logt \ ¢ log“t

=C¢_’_e""k("'.ilf§'—')+0( tk )
logt log?t
Thus
t¢"| i (loglogr f¢_l
[ S ) o (£
log ¢ et log” ¢t

.k Tl
! (l - 1)(|ogu)ﬁ“2du

)

439

cr®!
E\(u)du = —c"92 Z ak/ u‘ﬁ_'(logu)ﬁ_I du.
2
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¢—1 o ( loglog: ¢—1
_ t akenrk( lig:)-)_'_o(t )’

logtkodd logzt

and the theorem is proved. O
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