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A B S T R A C T

The present review discusses a well-established method for characterizing resting-state activity of the human
brain using multichannel electroencephalography (EEG). This method involves the examination of electrical
microstates in the brain, which are defined as successive short time periods during which the configuration of the
scalp potential field remains semi-stable, suggesting quasi-simultaneity of activity among the nodes of large-scale
networks. A few prototypic microstates, which occur in a repetitive sequence across time, can be reliably iden-
tified across participants. Researchers have proposed that these microstates represent the basic building blocks of
the chain of spontaneous conscious mental processes, and that their occurrence and temporal dynamics determine
the quality of mentation. Several studies have further demonstrated that disturbances of mental processes asso-
ciated with neurological and psychiatric conditions manifest as changes in the temporal dynamics of specific
microstates. Combined EEG-fMRI studies and EEG source imaging studies have indicated that EEG microstates are
closely associated with resting-state networks as identified using fMRI. The scale-free properties of the time series
of EEG microstates explain why similar networks can be observed at such different time scales. The present review
will provide an overview of these EEG microstates, available methods for analysis, the functional interpretations
of findings regarding these microstates, and their behavioral and clinical correlates.

Introduction

Recent research using whole-brain imaging methods has led to
important paradigm shifts in the understanding of higher cognitive
functions, and of how such functions are affected by different brain pa-
thologies. While previous research supported the notions that brain
functions are localized in hierarchically distinct areas and information is
processed in a feed-forward manner (Posner et al., 1988; Price, 2000),
more recent studies have indicated that individual brain functions
involve massive parallel processing in distributed brain networks (see
reviews by (Bressler and Menon, 2010; Fries, 2005; He et al., 2007;
Meehan and Bressler, 2012; Mesulam, 2008)). In addition, a radical shift
has occurred in the understanding of brain states at rest: The prevailing
hypothesis states that, rather than simply remaining inactive until
incoming stimuli prompt a reaction, the brain is inherently active in an
organized manner at rest to be optimally prepared for stimulus pro-
cessing (Fox and Raichle, 2007; Fox et al., 2005; Greicius et al., 2003).

This new view of how the brain processes information led to a vast

amount of studies that investigated large-scale brain networks at rest:
their spatial organization, temporal dynamics, associations with cogni-
tive states, and alterations due to different cognitive disorders and
neurological diseases (Cabral et al., 2014; Foster et al., 2016; Fox and
Greicius, 2010; Mitra and Raichle, 2016). Various methods are used to
reveal these networks, leading to different interpretations regarding their
spatial and temporal organization. Functional magnetic resonance im-
aging studies of brain networks aim to demonstrate correlations among
BOLD fluctuations in different brain regions (Biswal et al., 1995), while
those involving electro- or magnetoencephalography (EEG/MEG) typi-
cally evaluate correlations among fluctuations in the amplitude of
oscillatory activity in different brain regions (de Pasquale et al., 2010;
Fries, 2015). Researchers have proposed that the resting-state networks
(RSNs) measured using fMRI (rsfMRI) reflect a sort of “constant inner
state of exploration” that optimizes the system for a given impending
input, thus influencing perception and cognitive processing (Deco et al.,
2011). While this idea appears intuitive, the fluctuations observed using
rsfMRI occur too slowly to be associated with preparation for a given
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unpredictable input and allow for a fast and adequate reaction. In order
to mediate complex mental activities and optimally respond to rapidly
changing input, networks must undergo reorganization into different
spatial patterns on a sub-second time scale (Bressler, 1995). EEG/MEG
can record fluctuations on this time scale and are thus better suited for
investigating the temporal dynamics of resting states and their influence
on stimulus processing.

In this review, we discuss an increasingly utilized method for inves-
tigating the spatial and temporal properties of RSNs using multichannel
EEG. The method is based on the concept of EEG microstates, which are
defined as global patterns of scalp potential topographies recorded using
multichannel EEG arrays that dynamically vary over time in an organized
manner (Lehmann et al., 1987). More concretely, broad-band sponta-
neous EEG activity at rest can be described by a limited number of scalp
potential topographies (maps) that remain stable for a certain period of
time (60–120 ms) before rapidly transitioning to a different topography
that remains stable again. These discrete epochs of topographic stability
have been referred to as “microstates”, highlighting the notion that the
scalp potential field reflects the momentary state of global neuronal ac-
tivity, and that changes in the topography of this field indicate changes in
the global coordination of neuronal activity over time. The present re-
view will provide an overview of the “look and feel” of electromagnetic
microstates in the brain, available procedures for the analysis of these
microstates, functional interpretations of recent findings, similarities
between conclusions derived via investigation of EEG microstates and
other concepts associated with brain dynamics, and the known behav-
ioral correlates of EEG microstates.

The phenomenology and history of EEG microstates

EEG directly measures the dynamic, synchronous polarization of
spatially aligned neurons in extended gray matter networks, with post-
synaptic excitatory or inhibitory potentials being the main sources of
the signal ( Lopes da Silva and Van Rotterdam, 2012). Other types of
membrane potentials, such as action potentials or displacement currents,
do not or to a much lower extent contribute to EEG signals in the most
commonly analyzed frequency range (Gratiy et al., 2017; Pettersen and
Einevoll, 2008). Based on the far-field theory, such neuronal currents are
usually modeled as an electrical current dipole composed of a current
source and sink, separated by a small distance relative to that between
the source and the scalp electrodes.1 By means of volume conduction,
these potentials induce passive current flow, which eventually passes
through the skull and reaches the scalp to produce instantaneous scalp
electric potentials. Any electrode on the scalp measures a portion of this
field. This effect of volume conduction has two important consequences:
First, an electrode at a given scalp location not only detects neuronal
activity in areas directly below, but may also simultaneously record ac-
tivity from potentially remote sources. Second, the activity of a single
source will simultaneously affect all scalp electrodes, resulting in an
intrinsic correlation among the signals recorded at these electrodes.
While these are trivial notions based on Helmholtz, theorem, they are
often ignored, leading to over-interpretation of the spatial location of
neuronal activity underlying an observed phenomenon.

Using multi-channel recording arrays with electrodes distributed
across the scalp, the spatial distribution of the potential field can be
determined and plotted as three-dimensional (3D) potential maps. As
demonstrated by Helmholtz (1853), many different current density dis-
tributions in a 3D volume can produce a given electric potential distri-
bution on a surface enclosing this volume. This implies that any EEGmap

(even those produced using a large number of electrodes) can be
explained by many different distributions of generators, leading to the
so-called inverse problem. However, differences in the spatial configu-
ration (i.e., topography) of the potential maps imply by the same physical
laws that different distributions of neuronal generators are active in the
brain (Lehmann, 1987; Vaughan, 1982). Thus, the present review high-
lights the need to examine differences in the topography of the scalp
potential fields, which indicate changes in global network activity.

At first glance, the temporal series of scalp potential maps for spon-
taneous EEG activity gives the impression of a rather unorganized suc-
cession of maps with variable topography. However, when short time
segments are analyzed, one can observe that a few topographic config-
urations dominate. This concept was discussed in a seminal paper by
Dietrich Lehmann and colleagues in 1987 (Lehmann et al., 1987): By
examining the time series of potential maps for alpha-filtered EEG and
determining the positions of the maximal and minimal potentials on the
electrode array, they noted that these extreme points remain at the same
electrode location for a certain period of time and then rapidly switch to a
new electrode location, where they remain stable again. However, during
each stable period, shifts in the polarity of these extreme values (i.e., the
sign of the maximum/minimum) can be observed. This polarity inversion
follows the dominant frequency of the EEG oscillation. Since neuro-
electric oscillations reflect rhythmic fluctuations of excitation and inhi-
bition in neuronal ensembles (Lopes da Silva, 1991), oscillations of the
same generators in the brain lead to inversions of the polarity of the scalp
potential field.2 When ignoring the polarity inversion, it becomes clear
that periods of stable spatial configuration within the potential field not
only exceed a full cycle of oscillation but can last for several oscillations
and, conversely, can change within an ongoing oscillation (Fig. 1). Such
findings indicate that the duration of these stable periods is independent
of the power of the frequency at which the generators of the brain
operate, a fact later discussed by (Britz et al., 2010).

Most of the initial studies in the 1990's used these global map de-
scriptors to parameterize the topography of each momentary map (i.e.,
the location of the negative and positive extremes or the location of the
negative and positive centroids in 2D or 3D electrode space). By defining
certain spatial windows around the descriptors, moments during which
one such descriptor significantly changed position were detected and
defined as significant changes in topography (Lehmann et al., 1993; Strik
and Lehmann, 1993; Wackerman et al., 1993). These studies consistently
confirmed that, even in broad-band EEG, segments during which these
map extrema remain stable are observed, separated by fast transitions.
On average, the duration of these segments is approximately 60–150 ms.
Random permutation of the data destroyed these epochs of stability,
indicating that the segmentation procedure revealed real properties of
the EEG data and were not artifacts associated with the methods of
investigation (Wackermann et al., 1993). Interestingly, by applying an
agglomerative clustering procedure to determine the most dominant
classes of centroid locations, previous studies revealed that most seg-
ments belonged to a small number of classes (range: 2–6 classes; mean:
3.7 classes for 90% of analysis time) (Wackermann et al., 1993). This
finding was the first indication that only a few dominant topographies
characterize the ongoing broad-band EEG.

The map extrema positions used to parametrize the potential field in
these initial studies work rather well with dipolar fields but fail in cases

1 While the current dipole is the most popular (albeit simplified) model of the EEG
source and is used in most source localization approaches, higher-order source models
such as the quadrupole have also been proposed to represent neural electric sources (Jerbi
et al. (2004). Additional evidence has indicated that monopolar components also
contribute to field potentials (Riera et al. (2012).

2 Because these stable maps often exhibit a dipolar shape (i.e., one maximal and one
minimal potential at certain sites that invert every half-cycle of the alpha-frequency),
Lehmann attributed this antiphase condition between the two extrema positions to a
dipolar configuration of neuronal activity at a given area in the brain (Lehmann, 1971).
Hebert et al. (2005). interpreted such patterns as fixed-end standing waves. Standing
waves are zero-lag oscillations that have been proposed to be a fundamental characteristic
of the EEG (Nunez and Srinivasan, 2006). Sivakumar et al. (2016). demonstrated that
principal component analysis of standing waves over a sphere leads to spherical harmonics
with multiple poles exhibiting maximal amplitude, partly resembling the typical micro-
state patterns. The relationships among standing waves, zero-phase oscillations, and mi-
crostates are discussed in (Hebert et al., 2005).
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of more complex fields with more than one positive and/or negative
potential maximum. In addition, the definition of the window size
around the extrema positions remained a controversial issue (Strik and
Lehmann, 1993).

Computation of microstates and temporal descriptors

Spatial cluster analysis

In 1995, Pascual-Marqui and colleagues (Pascual-Marqui et al., 1995)
proposed a statistical approach that directly considers the topography of
the whole map, rather than reducing it to the position of the extrema.
This method is based on a k-mean cluster analysis that groups maps with
high spatial correlation in a nested iterative fashion and determines the
representative topography that best explains the variance in each cluster
(Fig. 2). Thereby, polarity of the map is ignored. In contrast to the
sequential approaches described above, this global approach does not
directly define microstates, it merely assigns all maps in the data to a few
classes (clusters). Microstates are determined post hoc by fitting the
cluster maps back to the data (see below). Several alternative methods for
cluster or factor analysis can be used to determine the most dominant
spatial components in map series, such as agglomerative hierarchical
clustering (Murray et al., 2008), principal component analysis (Pourtois
et al., 2008; Skrandies, 1989; Spencer et al., 2001), independent
component analysis (Makeig et al., 1999, 2004), a mixture of Gaussian
algorithms (De Lucia et al., 2007), or decomposition based on Markov
processes (Hadriche et al., 2013). These methods all aim to identify
subcomponents of the data that are considered to be unrelated, but they
differ with regard to the mathematical definitions of “unrelated.”
Whereas a lack of association is defined as the absence of first-order as-
sociations in principal component analysis, independent component
analysis eliminates also higher-order associations. Clustering algorithms
such as k-means or agglomerative hierarchical clustering impose an even

stronger criterion of non-relatedness between factors by allowing only
one factor to differ from zero at any moment in time, making them
mutually exclusive. Several tools are freely available for computing and
quantifying microstates, such as Cartool (https://sites.google.com/site/
cartoolcommunity/), a plugin for the BrainVision Analyzer (available
upon request to thomas.koenig@puk.unibe.ch), and a plugin for
EEGLAB.

Defining the number of clusters

The crucial question of all these spatial decomposition methods is the
number of clusters necessary for capturing the informative features of the
data and avoid over- or underfitting, a question that is similarly debated
in fMRI resting state research using independent component analysis (e.g
(Li et al., 2007).). Originally, Pascual-Marqui and colleagues (Pascual--
Marqui et al., 1995) proposed a cross-validation criterion for selecting
the optimal number of cluster maps, which optimizes the ratio between
the global explained variance and the degrees of freedom for a given set
of cluster maps. However, this criterion is influenced by the dimension-
ality of the data (i.e., the number of electrodes and time points). Murray
and colleagues (Murray et al., 2008) introduced a criterion based on a
suggestion by (Krzanowski and Lai, 1988) that works well in evoked
potential segmentation but often results in several prominent peaks for
spontaneous EEG data. Many other criteria exist, such as those described
by (Milligan and Cooper, 1985) and (Charrad et al., 2014). In our own
current method for EEG microstate segmentation (freely available soft-
ware Cartool (https://sites.google.com/site/cartoolcommunity/), we
propose a meta-criterion based on several different criteria taken from
the literature. First, each criterion is individually ranked from lowest to
highest based on the relative positions of the values. The meta-criterion is
then calculated by maximizing the average ranking and favoring una-
nimity (i.e., the highest signal-to-noise ratio of all criteria) (for details see
(Custo et al., 2017)).

Fig. 1. Map stability over time. A. A 12-s resting-state EEG with eyes closed showing periods of strong alpha activity lasting roughly 1 s. B. Close-up of EEG
activity during an alpha burst. C. Potential maps at successive time points of global field power peak during the 2-s EEG shown in B. Polarities were inverted in
each second map since polarity is ignored in the microstate analysis: Periods of stable map topography with different durations become apparent. They are marked
in different colors, which are also superimposed on the EEG in B.
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Several initial studies that used the k-mean clustering approach and
determined the optimal number of clusters by the cross-validation cri-
terion revealed that the optimal number of maps across subjects is four
(Britz et al., 2010; Brodbeck et al., 2012; Koenig et al., 1999). The
amount of global variance that these four cluster maps explain varies
between different reports, ranging from 65 to 84% (see Fig. 3). Seitz-
mann and colleagues (Seitzman et al., 2017) performed a systematic
analysis of the explained variance of the cluster maps under different
conditions, revealing that four cluster maps in their dataset explained
only 69% and 62% of the variance in eyes-closed and eyes-open condi-
tions, respectively. Fifteen clusters were required to explain approxi-
mately 80% of the variance. On the other hand, Tomescu et al. (2014).
found that only four cluster maps explained 80% of the variance. In our
recent study that included 164 subjects recorded with 204-channel EEG
during 3–7 min eyes-closed, a meta-criterion consisting of 11 individual

optimization criteria was used to define the number of clusters. It
revealed seven cluster maps as optimally explaining the data (shown in
Fig. 6). They explained 84.4% of the variance across all subjects (Custo et
al., 2017).

In our opinion, the optimal number of clusters should be estimated for
each dataset individually using robust optimization criteria, rather than
determining a fixed number. However, this becomes complicated if one
aims to compare the temporal characteristics of microstates between
groups. In such a case, one ideally wants to have a set of cluster maps that
represent the recordings of all subjects and then fit these common maps
to the individual data to test for differences in the presence and temporal
dynamics of these maps. A straight forward way to achieve this goal is to
apply the cluster analysis to the data of both groups and determine the
global optimal cluster maps. This entails that the definition of particular
microstate classes must be precise enough to separate functionally

Fig. 2. Illustration of the EEG microstate segmentation method: A. 10-sec eyes-closed EEG recording from 204 electrodes. B. Global Field Power (GFP) curve of
the first 5 s of this EEG file. The GFP peaks are marked by vertical lines. C. Topographic maps at consecutive GFP peaks. D. Spatial k-means cluster analysis of the
maps at GFP peaks of the whole EEG file (30 s duration). A meta-criterion (see text) revealed that 5 cluster maps optimally explained this data. These maps are
then fitted to the original EEG in A and each time point is labeled with the cluster map that correlated best. The time period that each of the cluster maps covered
is indicated in A by color bars.
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different states, yet allow enough leeway for accommodating interindi-
vidual differences of no interest. Thus, the most appropriate choice for
the number of cluster maps may not necessarily correspond to the “true”
number of clusters, but may instead result from a pragmatic compromise
between the needs for specificity—which typically benefits from
increasing the number of maps—and generalizability, which typically

benefits from a relatively low number of maps. Such a compromise is
likely to depend on the amount of interindividual variance, and on the
structure of the systematic variance that must be taken into account.
Cross-validation methods for optimizing the compromise between spec-
ificity and generalizability within a study have been proposed for event-
related potential microstate analyses (Koenig et al., 2014). In addition, a
beta version of procedures that assess intra vs inter-class variance to
identify this optimal compromise is currently implemented in an EEGLAB
plugin available from the second author.

Besides comparing the temporal dynamics of the “same” microstates
between groups or conditions, one might also want to know whether
there are microstate maps that are specific for a certain group or condi-
tion. In order to do so, the cluster analysis needs to be performed sepa-
rately and the number of optimal maps needs to be defined
independently for each group. Statistical topographic correlation analysis
can then be applied to distinguish maps that belong to the same class
from those that are specific for a certain group or condition (Koenig et
al., 1999; Koenig and Melie-Garcia, 2010; Lehmann et al., 2005; Nishida
et al., 2013; Strelets et al., 2003).

Another issue concerns the comparison of the microstate analysis
between studies. Many experimental and clinical studies fixed the
number of clusters to the four initially determined (Koenig et al., 1999),
arguing that four clusters were used to remain consistent with the ma-
jority of previous studies. While such an argument is justifiable and al-
lows for comparisons among studies, it is obvious that this low number of
clusters leaves a good part of the data unexplained (up to 30%) and may
therefore eliminate a good portion of significant differences between
experimental conditions or groups.

Nevertheless, it is impressive that the four cluster maps retained in
most previous studies exhibited highly similar topographies, strongly
resembling the maps initially described by Koenig and colleagues (Koe-
nig et al., 1999). Fig. 3 shows the four mean cluster maps from a series of
studies. Koenig labeled these maps as class A, B, C, and D, and all sub-
sequent studies retained this labeling, based on spatial similarity with the
original cluster maps. Microstate map A exhibits a left-right orientation,
map B exhibits a right-left orientation, map C exhibits an
anterior-posterior orientation, and map D exhibits a fronto-central
maximum. Even if more cluster maps are selected, these four maps
seem to consistently dominate the data across different age ranges,
conditions (e.g., sleep and hypnosis), and pathological states (Khanna et
al., 2015).

However, Fig. 3 also indicates that the maps assigned to a given class
differ to a certain extent among studies, particularly with respect to
microstate classes C and D, questioning the validity of the label that were
assigned to them. This issue is explicitly demonstrated in (Custo et al.,
2017) where a split of microstate map C in two distinct maps is proposed,
besides adding two more maps (Fig. 6). If only four maps are retained in
order to allow comparison with the literature, it may be necessary to
examine both spatial and temporal characteristics to determine the most
appropriate class of a given cluster map. For example, many studies have
demonstrated that microstate map C is significantly more present than all
other maps.

Determining microstates: Fitting the cluster maps to the data

Once the cluster maps have been determined, they are fitted to the
individual participant's EEG data to define the microstates, extract the
different temporal parameters for each of them, and comparing these
parameters between experimental conditions or between participant
groups. Usually, the following temporal parameters of microstates are
calculated: (1) the average duration that a given microstate remains
stable, (2) the frequency of occurrence for each microstate independent
of its individual duration, (3) the fraction of total recording time for
which a given microstate is dominant (i.e., coverage), (4) the global
variance explained by each microstate, and (5) the transition probabili-
ties of a givenmicrostate to any other microstate (see reviews by (Khanna

Fig. 3. Illustration of the topography of the four canonical microstate maps
determined in several independent studies with different numbers of elec-
trodes, participants, and filter settings. While the four microstate maps are
very distinct from one another, they are highly reproducible across studies.
Nevertheless, the similarities of the maps labeled with the same class (and
consequently interpreted to exhibit similar functional significance) are not
always obvious, particularly for maps C and D. In addition, the global variance
(GEV) that these four maps explain varies substantially across studies
(NR ¼ not reported). Note that polarity (blue vs. red) is ignored in the
microstate definition (Pipinis et al., 2017; Schlegel et al., 2012).
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et al., 2015; Michel et al., 2009). If the cluster analysis is performed
separately for conditions or groups, the topographical shape of the
different microstate maps can also be compared across conditions or
groups (Nishida et al., 2013; Santarnecchi et al., 2017; Zappasodi et al.,
2017). The boxplot in Fig. 4 illustrates the different steps of microstate
analysis.

Unsurprisingly, different pre-processing strategies, data selection
methods, and smoothing parameters used in different studies may also
influence the results of microstate analysis. However, a test-retest reli-
ability study by Khanna and colleagues (Khanna et al., 2014) revealed
that the results remain highly stable, independent of the methods used to
determine the cluster maps and the number of recording electrodes.
Naturally, maps at the moment of phase inversion exhibit low amplitude
and high noise, leading to frequent segment changes if no smoothing
parameters are introduced, and thus to shorter global durations of the
microstates. Some studies have therefore been solely based on data
observed at momentary GFP peaks, where the signal-to-noise ratio is
optimal. In such studies, class assignments are often interpolated be-
tween these peaks, which may also affect microstate duration. However,
how this influences the results when comparing temporal parameters
between conditions or groups remains to be systematically investigated.
Importantly, it should be noted that the transition probabilities between
microstate class assignments of maps at GFP peaks cannot simply be
taken as proxies for the transition probabilities among microstate as-
signments in general. This remains a topic of controversy in current
research (Gartner et al., 2015; Gschwind et al., 2015; Koenig and Bran-
deis, 2016).

Basic assumptions of the EEG microstate model

Any scientific analysis of EEG data requires an a priori rationale for
decomposing the data into uniquely defined entities that can then be
quantified (Koenig and Wackermann, 2009). In the aforementioned
microstate analysis procedure, the crucial a priori assumption is that only
one spatial map configuration entirely defines the relevant global state of
the brain at each moment in time. This important a priori constraint is
applied when fitting the representative cluster maps back to the recorded
data: A spatial correlation is calculated between each cluster map, and
the momentary recorded map and time points are assigned (labeled)

based on the highest correlation. Thus, while the measured voltage dis-
tribution may in principle be accounted for by a weighted sum of
different voltage vectors, the microstate model assumes that all but one
of these vectors is zero (Koenig and Wackermann, 2009; Pascual-Marqui
et al., 1995) and considers the residuals as noise. A series of arguments
are typically employed to justify this assumption:

a) Some researchers have argued that, if the object of investigation is the
global brain state, there is one such global state that includes, by
definition, all of its sub-states. Any sufficient change in one of these
sub-states will thus simply result in a new global state, both in terms
of its potential functional significance and physiological manifesta-
tion. This argument corresponds to functional theories that assume
that only one global functional state occurs at any given moment in
time (Baars, 2002a; Efron, 1970). Similar arguments are used to
justify spatial clustering procedures in other brain imaging modalities
such as fMRI (Cordes et al., 2002), in intracranial animal studies
(Stopfer et al., 2003), and even in vitro (Wagenaar et al., 2006),
embedding the application of the microstate methodology into an
overarching framework used to explain particular functional features
of brain activity (discussed in detail in the section below).

b) The most intriguing observation when applying this winner-take-all
strategy to the data is that the cluster maps do not appear randomly
in time. Each map remains dominant during a short time period,
rapidly shifting to a new topography that again remains dominant for
a certain duration. Pragmatically, since comprehensive statistics
effectively reduce the dimensionality of the data, time periods with
sufficiently similar, spatially defined clusters can be packaged
together, following which the properties of these clusters can be
quantified.

c) While the primary advantage of brain electromagnetic data is its
excellent temporal resolution, this feature has not been used to
temporally resolve resting-state data into elements that have the po-
tential to represent basic steps of information processing. However,
these elements can be achieved by modeling the data using a
sequence of non-overlapping, quasi-stable states. This global,
extremely simple, and data-driven method can be used to extract
unique features such as the duration of these states.

d) Scalp field maps that remain stable over a certain duration entail
important conclusions with regard to the temporal organization of
functional brain networks: If we assume that brain activity accounting
for a particular microstate is generated by a network of approximately
simultaneously active sources, these different sources must have
exhibited the approximately same temporal dynamics during the
microstate, as differences in the time course of these sources would
result in continuous changes of the scalp field generated. This
observation can be expressed in the frequency domain as an
assumption of approximately zero (or 180�)-phase differences among
the sources during the microstate. The microstate model implies that
the dynamics of the involved sources differ only by a scaling factor. If
we express these dynamics in the frequency domain in terms of a set
of amplitudes and phases, this scaling factor can only affect the
amplitude of the dynamics, but cannot introduce any differences in
phase, other than phase reversals when the scaling factor is negative.3

This notion is in accordance with prevailing theories regarding
standing waves, as discussed earlier. An important body of empirical
data in animals (Fries et al., 2002; Singer and Gray, 1995) and
humans (Engel et al., 1999; Kottlow et al., 2012) indicates that
important cognitive functions such as feature binding are mediated
by oscillatory patterns of the involved brain regions, among which a
similar close alignment of phase among neuronal groups can be

Fig. 4. Boxplot detailing the different steps of the microstate analysis.

3 Note that, at the level of scalp measurements, the issue of phase reversals between
electrodes also depends on the lead-field matrix, which defines how the activity of each
source manifests at the scalp as a function of the location and orientation of the sources.
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observed. While such synchronization phenomena have predomi-
nantly been described in the gamma range, additional studies have
reported similar phenomena in lower frequency bands (e.g., theta,
alpha, and beta) (O'Neill et al., 2013; Palva and Palva, 2007). Thus,
the microstate model shares an important property with empirically
well-established frequency domain correlates of such cognitive
functions. Moreover, the microstate model also assumes that, if the
frequency domain representation of the microstate dynamics is based
on more than one oscillatory element, the weights through which
these elements define the dynamics of each of the involved sources do
not change between these elements. In other words, a microstate is
composed of a bundle of temporally overlapping and spatially syn-
chronized oscillatory events that putatively originate from the same
sources. We further discuss the relationships between microstates and
frequency domain EEG models in the section on oscillations.

e) Beyond these technical and phenomenological arguments, the
microstate model receives at least partial support from an important
current model of neuronal communication (Fries, 2005). While this
model argues that because the existence of conduction delays
necessarily implies that there must be phase differences in the firing
of neuronal groups, these delays are typically much smaller than the
length of the typical, “spontaneous” cycles of excitability of these
neuronal groups. For different neuronal groups to effectively transmit
signals, it is thus important that theses cycles of excitability are suf-
ficiently time locked if the input of one neuronal group shall not fail to
affect another neuronal group because that group happens to be in a
transient trough of excitability (Fries, 2005). From this perspective,
the phase locking of scalp EEG data as accounted for by microstates
and related models may probably better be considered as signatures
of transient large-scale processes that organize neuronal excitability
rather than the signatures of neuronal communication within these
cycles of excitability itself. One may further argue that these latter
processes that implement communication itself may take place on
spatial scales that are mostly below the resolution of scalp EEG data
and typically need to be resolved by recording local field potentials
(van Kerkoerle et al., 2014). The fact that combined EEG-fMRI data
has shown that the topographic appearance of specific transient states
of EEG synchronization (that are assumingly cortical) covaried with
the spatial distribution of thalamic activity (Schwab et al., 2015) may
further support this view, since the thalamus is a well-known pace--
maker for cortical cycles of excitability (Hughes et al., 2004) and may
thus have the capacity to cause that a series of local cortical cycles
align in phase.

In summary, the functional microstate model contains no constraints
on the spatial distribution of brain activity for which it accounts, and
does not imply that only one area in the brain is active at a given moment
in time. However, the microstate model constrains the activity of all the
sources contributing to a single microstate to a common time-course.
Thus, many different areas can be active during each microstate, but
all simultaneously active neuronal populations in the brain during each
microstate generate one and only one global potential map on the scalp
surface. Admittedly, only sources that produce sufficiently large fields
that can propagate to the scalp surface contribute to the microstate.
Accordingly, during the life-time of a microstate only increases/de-
creases in strength and polarity reversals of this global potential map are
accounted for by a particular microstate, whereas the definition of mi-
crostates does not allow for the neural subsystems that contribute to the
microstate to exhibit temporal shifts in dynamics. Consequently, ap-
proaches that attempt to explain functional brain interactions that yield
the observed microstates based on phase-lagged connectivity during the
microstate (Hatz et al., 2016) are fundamentally incompatible with the
basic assumption used for the determination of EEG microstates. How-
ever, the microstate model does explicitly account for lawful temporal
sequences of events as systematic biases in the transitions between
microstates.

Microstates and the phenomenon of discrete epochs of cognition

The microstate concept arose from a purely phenomenological
description of EEG map series, along with the observations that micro-
states can be chunked into segments of quasi-stable topographies—each
lasting for a certain amount of time in the sub-second range—and that
fast transitions occur between stable states. Interestingly, such a
description of the temporal dynamics of brain processes aligns well with
several theoretical concepts that suggest that conscious cognition is
temporally discontinuous and parsed into series of stable intervals or
‘‘perceptual frames” (Efron, 1970). This concept is further supported by
the results of numerous electrophysiological and imaging studies,
although counter-examples of continuity exist (see reviews by (Fingel-
kurts and Fingelkurts, 2006; Grossberg, 2000).

In 1980, William James postulated that the stream of consciousness is
not continuous, but parsed in a series of states of mind–or “pulses of
consciousness”. He claimed that each such state represents a certain
thought with uniform content, however complex it may be. That is, the
theory suggests that only one conscious thought occurs during each state,
and that this thought is distinctly different from the thought in the pre-
vious or following mind state (James, 1890).

Based on the concept of series of conscious states, Dehaene and
Changeux formulated the neuronal workspace model (Dehaene and
Changeux, 2004; Dehaene et al., 1998, 2003), which posits that so-called
workspace neurons from multiple brain areas become spontaneously
co-activated and form discrete spatio-temporal patterns of global activity.
Only one such episode of coherent activity is thought to occur at any
given time, and episodes are separated by sharp transitions. Similar
models were proposed by Baars and colleagues (Baars, 1997, 2002a),
who concluded the following: “If conscious events are associated with
global states of the dynamic core, such that only one such event can
prevail at any one time, it follows that global states of the core appear
serially” (Seth and Baars, 2005). In accordance with the neuronal
workspace model—and with Dietrich Lehmann's theory that EEG mi-
crostates represent the basic building blocks of consciousness (“atoms of
thoughts”) (Koukkou and Lehmann, 1987; Lehmann, 1992; Lehmann et
al., 1998)—we proposed that EEG microstates are the “electrophysio-
logical correlates of a process of global, ‘conscious’ integration at the
brain scale level”. That is, EEGmicrostates represent the neural correlates
or elementary building blocks of the contents of consciousness
(Changeux and Michel, 2004). A similar analogy between microstates
and William James' theory regarding the stream of consciousness has
been discussed by Baars (2002b).

Additional researchers have suggested that consciousness itself can be
parceled into sequential episodes. For example, Rabinovich and col-
leagues proposed the concept of “heteroclinic channels” based on the
chunking principle (Rabinovich et al., 2001, 2015), which refers to the
division of mental activity and cognition into a chain of transient,
metastable states that are reflected in the brain as quasi-stable patterns of
spatio-temporal activity. From a neurophysiological perspective, the
stability of such patterns is due to phase-locked synchronization of ac-
tivity, which has been regarded as a key mechanism of information
integration in the brain (Fries, 2005; Singer, 1999; Varela et al., 2001).
At the sensor level, such phase-locked activity leads to stable topography
(Tognoli and Kelso, 2014). As explained earlier, phase-locked synchrony
produces a stable microstate over time. Therefore, the phenomenological
observation of microstates aligns well with the concept of chunking dy-
namics proposed by Rabinovich and colleagues. This intriguing similarity
has been discussed in detail by (Meehan and Bressler, 2012).

Intense discussion has surrounded the topic of how transitions be-
tween states occur, and what prevents states of sustained synchronization
in the brain. Researchers have proposed the concept of metastability to
account for such transition dynamics (Bressler and Kelso, 2001; Friston,
1997; Haken, 1988; Kelso and Fuchs, 1995). Based on this concept, a
theory of “coordination dynamics” has been developed, which states that
systems can flexibly switch from one coordination state to another (Fuchs
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and Jirsa, 2007; Kelso, 2010; Tognoli and Kelso, 2014). Transitions can
be evoked by external stimulation (Jirsa et al., 1998; Schoner et al.,
1986)) or by noise (during resting conditions) (Deco and Jirsa, 2012)
(Ghosh et al., 2008). Importantly, metastable coordination dynamics
enable a system to change itself even in the absence of input or noise. As
Tognoli and Kelso stated, “For a brain that is not purely reflexive and
stimulus driven but endowed with temporally structured intrinsic ac-
tivity, this is an important property to have: Changes in brain spatio-
temporal patterns that occur spontaneously at rest naturally belong to the
intrinsic dynamical repertoire of the metastable brain.” (Tognoli and
Kelso, 2014).

A fundamental principle of such transition behavior is criticality,
which reflects the border between stability and instability. Criticality is a
property of dynamical systems that display scale-free temporal dynamics,
also referred to as fractal dynamics. Scale-free dynamic systems follow an
organizing mechanism in which the system is constantly close to the
critical state that allows it to flexibly control the incessant information
flow from multiple sources with a high degree of responsiveness (Peng et
al., 2000). Fractal behavior has been observed in many physiological
systems and has been hypothesized to aid systems in coping with a
constantly changing environment (Goldberger et al., 2002). Interest-
ingly, mono-fractal behavior has been observed in EEG microstate time
series (Dinov et al., 2016; Gschwind et al., 2015; van de Ville et al., 2010)
(see further details in Section 6). Van de Ville and colleagues (van de Ville
et al., 2010) utilized wavelet-based fractal analysis and Hurst-index
calculations of the microstate time-series to demonstrate that micro-
state sequences are scale-free over six dyadic scales covering a range
between 256 ms and 16 s. It remains an open question whether and how
these scale-free properties of EEG microstate time courses are related to
the well-known 1/f spectral properties of EEG that are indicative of scale
invariance (He, 2014).4

Jirsa and colleagues have proposed a model that explicitly discusses
the different time scales of brain network organization (Huys et al.,
2014; Perdikis et al., 2011). Acknowledging the parcellation of brain
functional dynamics in discrete states, they propose that elementary units
be modeled as “structured flows onmanifolds,”which are influenced on a
faster time scale by instantaneous inputs to the system, and on a lower
time scale by a mechanism that selects the dominant elementary unit.
While the EEG microstates in such a model represent the “structured
flows on manifolds”, it remains unclear which system is responsible for
the dominance of a certain microstate over all others within a given
period, and which mechanisms underlie the abrupt end of a microstate
and the beginning of the next microstate. Thus, further studies are
required to elucidate the association between EEG microstate dynamics
to activities in different (e.g., very fast and very slow) frequency bands
(Koenig et al., 2005) (see Section on oscillations for further details).

Previous studies have consistently reported that EEG microstates
range in duration from 60 to 120 ms (Koenig et al., 2002); for a review
see (Khanna et al., 2015), in accordance with previous findings regarding
the duration required for conscious experience. For example, sequen-
tially presented stimuli are not perceived as separate when they follow
each other within less than 80 ms (Efron, 1970). Furthermore, masking a
stimulus is efficient when presented with a latency of less than 100 ms
(Libet, 1981); see also (Dehaene et al., 2003). Additional studies have
reported similar durations for episodes of synchronous thalamo-cortical
activity (Llinas and Ribary, 1998), sequences of alpha bursts (Wil-
liamson et al., 1996), and EPSP-IPSP sequences in mammalian forebrain
neurons (Purpura, 1972) reviewed in (John, 2001). Using multivariate
autoregressive modeling of multisite cortical ERPs recorded in a monkey
during a visuomotor pattern discrimination task, Ding et al. (2000).

discriminated three different coordination states, each lasting around
100 ms, with short transitions of 25–50 ms between states. Coordination
patterns lasting approximately 200 ms have been observed during EEG
face-recognition tasks in humans (Rodriguez et al., 1999). In addition,
spontaneous MEG and laminar studies have demonstrated that transient
beta bursts typically last for approximately 150 ms in animals (Lundqvist
et al., 2016), and that such bursts are associated with memory encoding
and decoding (Sherman et al., 2016). Overall, such findings indicate that
there is ample evidence that brain activity is parceled into blocks of
stable activity patterns that last roughly 100 ms, similar to EEG
microstates.

The temporal structure of EEG microstates

Given that there are only a few microstate topographies and that they
alternate in discrete chunks of approximately 100 ms in duration, it is
then necessary to discuss whether the temporal structure of such alter-
nations follows certain rules. More metaphorically, if the microstates
represent the atoms of thought, does the sequence of microstates
(“microstate syntax”) determine the content of the momentary
daydream. That is, does the manner in which the words (the microstates)
are organized yield something akin to a sentence that contains more
information than its elements in isolation, and will the organisation of
several sentences determine how the story is built? The principal ques-
tion is thus not only whether the transitions of microstates are non-
random, but also whether this non-randomness is observable on
different time scales. Several previous studies have investigated transi-
tion probabilities (Lehmann et al., 2005;Wackerman et al., 1993), clearly
demonstrating that these probabilities are non-random. Interestingly,
these transition preferences are altered in patients with schizophrenia
(Lehmann et al., 2005; Tomescu et al., 2015). To date, only patients with
Alzheimer-type dementia have exhibited transition probabilities indis-
tinguishable from a random process (Nishida et al., 2013). As Koenig et
al. stated, “There are not only connectivity structures that facilitate the
coactivation of brain regions within a microstate, but there is another
sequential connectivity where one type of brain state or mental operation
facilitates the appearance of another” ((Koenig et al., 2005), page 1019).
Therefore, the time-course of the information flow between different
brain states is crucial for ensuring the perception of incoming stimuli,
proper cognitive processing, and adequate action in a conscious manner.
As discussed earlier, microstates follow one another on a sub-second time
scale, resulting in the formation of a well-organized (though not yet
understood) syntax. Several research groups have aimed to determine
whether the time series of these microstates are random or completely
predetermined (Gschwind et al., 2015; van de Ville et al., 2010). Such
studies have demonstrated that EEG microstate sequences exhibit
scale-free mono-fractal dynamics over six dyadic scales (from millisec-
onds to several seconds), indicating that EEG microstate time series are
perfectly self-similar in the sense that observing them at various time
scales reveals the same information. Microstate time series thus have a
clearly structured temporal organization that is neither random nor
predetermined, but cannot be predicted. As explained earlier, such
scale-free dynamics can only emerge when a system operates near a
critical point, indicating that the brain operates under conditions far from
homeostasis at rest to ensure a high degree of responsiveness and the
flexible management of continuous information flow from multiple
sources. Notably, previous studies have revealed that the long-range
dependency of the microstate sequence crucially depends on the vari-
ability of the individual microstate duration and not on the microstate
sequence itself: Shuffling the microstate sequence does not destroy the
fractal properties, while fixing the duration of the microstates does (van
de Ville et al., 2010). These findings highlight the importance of the
temporal dynamics of EEG microstates. Interestingly, changes in the
duration of specific microstates represent critical markers for several
neuropsychiatric diseases, indicating that changes in microstate duration
and eventually changes of the scale-free properties of the microstate

4 While 1/f power-law properties appear ubiquitous in a large number of natural
phenomena including EEG and ECoG signals and local field potentials, the question
whether 1/f scaling property is evidence for the existence of neuronal critical states still
remains controversial (Bedard et al., 2006; He, 2014).
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sequences may characterize changes in mental processes associated with
neurological and psychiatric conditions (see section on diseases for
further details).

In summary, analysis of the temporal sequence of microstates pro-
vides an ideal macroscopic window for observing the temporal dynamics
of spontaneous brain activity. In the light of the evidence for scale-free
properties of microstate sequences, further modeling of microstate se-
quences must extend beyond step-by-step, short-term interactions of the
states using hidden Markov models (Gschwind et al., 2015).

EEG microstates and oscillatory brain states

As previously noted, the microstate model allows for any type of
temporal dynamics within a particular microstate, as long as these dy-
namics are the same for all sub-processes contributing to that microstate.
Accordingly, microstates have typically been regarded as broad-band
phenomena. Microstates may thus take into account the broad range of
frequency components observable in the human brain (Groppe et al.,
2013). Furthermore, the typical features extracted from microstate ana-
lyses, such as mean durations and percentages of time covered, are in-
dependent of signal amplitudes. Thus, it is not surprising that some
studies have reported no associations between inter-individual variance
of EEG spectral amplitudes and inter-individual variance in microstates
(Britz et al., 2010; Koenig et al., 2002). However, within-subject fluctu-
ations in the spatial and temporal distribution of dominant EEG spectral
power have been systematically associated with the momentary presence
of particular microstates (Milz et al., 2017).

The presence of within-subject but not between-subjects spectral
correlates for microstates highlights a major concern in EEG research: the
non-stationarity of EEG data. In the context of microstate analyses, the
effects of non-stationarities in the EEG data should be discussed on two
levels. At the microscopic level, the microstatemodel makes no particular
assumptions regarding the dynamics of brain activity within a particular
microstate. Non-stationarity of the data is thus by definition unprob-
lematic. However, at the broader level, the often rapid and systematic
changes in the frequency domain of EEG data—as observed for extraction
using Kalman smoothers (Tarvainen et al., 2004)—are likely to be
accompanied by similar systematic changes in microstate features (e.g.,
duration or transition probabilities). Thus, the spontaneous variance of
these microstate features may be smaller within periods with fixed
dynamical parameters, which can be identified using segmentation pro-
cedures that detect sudden changes in these parameters (Latchoumane
and Jeong, 2011).

Conceptually, the discussion of microstates in the context of non-
stationarities thus emphasizes two very different and mathematically
independent ways of defining the term “state”:

a) The microstate understanding defines “state” in a spatial manner.
Each state is regarded as an in toto activation of a particular set of
sources with temporally similar dynamics. As argued in the rsfMRI
literature, the spatial specificity of this definition emphasizes the
modality (sensory, motor, verbal, etc.) and thus the content of what
mental processes the state may represent.

b) The dynamic understanding defines “state” in a temporal manner, as
the period of time during which EEG dynamics meet certain criteria of
stationarity. Traditionally, this definition conveys information
regarding the mode (awake, drowsy, sleeping, etc.) of access to some
mental contents, whereby the spectral distribution of the activity may
determine whether a particular state may activate or block informa-
tion processing (Klimesch, 2012).

Unsurprisingly, several methodological developments have aimed to
unify these two very different aspects of “state” definitions into a com-
mon framework. This is particularly important for clarifying the issue of
inhibitory vs. activating roles of the functional networks represented by
microstates or similar models. The topographic time frequency

decomposition of the EEG (Koenig et al., 2001) parses the data into brief
transient oscillatory events. Each of these events is again constrained to a
single spatial field configuration, and thus to a stable network of brain
sources. Thus, the spatial and dynamic criteria are considered for each
state. A recent study by Schwab et al. provided empirical evidence for the
functional significance of both spatially and dynamically defined brain
states (Schwab et al., 2015), indicating that different classes of states of
synchronized cortical oscillation exhibited BOLD correlates in partially
separate sub-regions of the thalamus. However, other researchers have
criticized this approach, as the use of wavelets may alleviate but not
eliminate non-stationarities in the data. Based on such criticisms, the
methodology has been extended to include dictionary learning algo-
rithms, which tailor the oscillatory elements used to decompose the data
such that they optimally cover time-frequency ranges that are
quasi-stationary (Studer et al., 2006).

Many EEG studies have employed frequency domain measures of
lagged interactions to assess brain connectivity (Pascual-Marqui et al.,
2011), and there is good electrophysiological evidence that these lags
exist and play a functional role (van Kerkoerle et al., 2014). However, the
microstate model contains a strong and a priori constraint on simulta-
neity, which excludes the existence of significant lags within a micro-
state. We believe that this is conceptually unproblematic because (a) the
sequential aspects of electrical brain activity can be accounted for using
sequences of microstates and the laws that govern the transitions be-
tween them, and because (b) lagged activity may be accounted for by the
portion of the data for which the microstate model cannot account.
Finally, the time frequency analyses mentioned above achieve decom-
position of the data by postulating that each component complies with
simultaneity, and that all components are separated by time, frequency,
or phase. Fig. 2 of (Koenig et al., 2001) shows one component (the final
component) that overlaps with the other components in time and fre-
quency but exhibits differences in phase. Such accounts may also be
useful for explaining the phenomenon of traveling waves.

Brain sources underlying EEG microstates

As both fMRI and EEG can be used to identify RSNs, several studies
have aimed to determine the association between the two measures. The
most direct method for investigating such associations involves the use of
simultaneous EEG-fMRI (Laufs et al., 2008; Michel and He, 2011; Mulert,
2013; Rosenkranz and Lemieux, 2010). Using such methods, several
studies have examined the association between fluctuations in the fre-
quency power of spontaneous EEG activity and BOLD signals obtained
using fMRI (Goldman et al., 2002; Jann et al., 2009; Laufs et al., 2003;
Mantini et al., 2007; Tyvaert et al., 2008). These studies have revealed
that oscillations in the different frequency bands contribute differentially
to the BOLD signal. However, strong positive cross-correlations were
observed between the different frequency bands, indicating that the
neuronal assemblies of the different nodes of the fMRI RSNs oscillate at
different frequencies (Bruns et al., 2000; Mantini et al., 2007).

Simultaneous EEG-fMRI has also been used to investigate correlations
between EEG microstates and fMRI resting states. Two independent
studies regarding this matter were published in the same issue of Neu-
roimage (Britz et al., 2010; Musso et al., 2010) and accompanied by two
editorial comments (Laufs, 2010; Lehmann, 2010). Unfortunately, the
methodological approaches of the two studies were very different,
making it difficult to compare the results. Musso and colleagues (Musso
et al., 2010) performed k-means cluster analysis of the EEG data for each
participant, identifying a fixed number of 10 clusters (microstate maps)
per participant with individually different topographies. The presence of
each of these 10 maps in the individual EEG was then marked and
convolved with the hemodynamic response function (HRF) in an
event-related, generalized linear model (GLM) design. This analysis
revealed significant correlations between BOLD fluctuations and spatial
patterns for approximately half of the microstate maps in each partici-
pant. Factor analysis was used to identify similar topographies across all
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participants. Seven aggregation factors were identified at the group level,
although only one of these factors was able to elicit significant BOLD
activation in brain regions within the visual and default mode networks.
Britz and colleagues (Britz et al., 2010) utilized a different approach
more closely related to the conventional method for EEG microstate
analysis. Using a cluster analysis, four EEG microstates were identified
for each participant. A second cluster analysis of all individual clusters
identified four microstate maps across participants that were very similar
to the four maps reported in previous studies. A spatial correlation
analysis of these group template maps allowed the researchers to label
each individual map with the most appropriate group template. These
individual maps were then fitted to the corresponding EEG data, and the
spatial correlation was calculated for each map at each time point,
resulting in a time course for the goodness-of-fit of each microstate.
These time courses were convolved with the HRF in single-participant
and multi-participant GLM analyses. The multi-participant GLM
revealed distinct brain areas exhibiting significant correlations with the
time-courses for each of the four microstates (Fig. 5): Microstate A was
correlated with negative BOLD activation in the bilateral superior and
middle temporal lobe, while microstate B was correlated with negative
BOLD activation in the bilateral occipital cortex. Microstate C was
correlated with positive BOLD activation in the dorsal anterior cingulate
cortex, the bilateral inferior frontal cortices, and the right insular area.
Microstate D was correlated with negative BOLD activation in
right-lateralized dorsal and ventral areas of the frontal and parietal
cortices. Comparison with 15 components defined by traditional inde-
pendent component analysis of the fMRI data revealed that each of these
GLM maps best correlated with one of these components, which have
been attributed as follows in the fMRI literature: auditory network
(microstate A), visual network (microstate B), saliency network (micro-
state C), attention network (microstate D) (Fig. 5).

Subsequently, Yuan and colleagues (Yuan et al., 2012) reported a
third approach for identifying BOLD correlates of EEG resting-state scalp
topographies. They identified EEG resting state maps using a temporal
independent component analysis, rather than a spatial cluster analysis. A
subset of independent EEG components was compared with those esti-
mated from fMRI independent component analysis. Among the 13
selected EEG components, six were associated with one or two fMRI
RSNs, while the remaining seven were associated with more than two

fMRI networks.
In conclusion, the three studies that utilized combined EEG-fMRI to

identify fMRI correlates of EEG microstates produced different findings.
However, due to fundamental differences in methodological approaches,
it is difficult to compare the results among the three studies. Neverthe-
less, the findings of these studies strongly indicate that EEG microstates
are closely associated with RSNs as defined using fMRI. The scale-free
properties of microstate time series, which span the timescales charac-
teristic of EEG microstate changes and fMRI BOLD oscillations, explain
how information that can be observed at such different timescales is
intertwined (van de Ville et al., 2010). Several studies have referred to
(Britz et al., 2010), who utilized a more conventional approach, when
interpreting the significance of specific microstate changes in different
states and pathologies (see review by (Khanna et al., 2015). However,
given recent discussions regarding the anatomical overlap of various
fMRI RSNs in time and space (Karahano�glu and Van De Ville, 2015; Smith
et al., 2012) and the subdivisions of these networks (particularly the
default mode network) (Andrews-Hanna et al., 2010; Andrews-Hanna,
2012), such one-to-one attributions of microstates to brain functions
based on fMRI-correlations must be made with caution.

While the networks underlying EEG microstates can be indirectly
determined based on correlations with BOLD fluctuations, it is in prin-
ciple also possible to directly estimate the (electrophysiological) neural
networks that generate resting-state scalp topographies by applying
source localization methods to the multichannel data. To date, only a few
groups have utilized this direct approach (Custo et al., 2017; Milz et al.,
2017; Pascual-Marqui et al., 2014). Using k-means clustering (Pascual--
Marqui et al., 2014), determined the four microstate maps of narrowly
filtered (2–20 Hz) EEG data across a group of 109 participants. The in-
dividual labels were used to compute the microstate topography for each
participant, following which the source distributions of the individual
maps were computed using a distributed inverse solution (eLORETA) and
tested for non-zero means at each solution point across participants. This
analysis revealed that the source distributions of the four microstates
exhibited a high degree of overlap, primarily for the anterior and pos-
terior cingulate cortices and the left and right occipital/parietal areas.
The posterior cingulate was active in all four microstates. The authors
concluded that the four microstates represent different aspects of the
default mode network, and that the resolution of EEG allows for temporal

Fig. 5. Combined EEG-fMRI recording of resting-
state activity. The EEG data were analyzed using the
EEG microstate approach (k-means clustering),
resulting in four cluster maps that best explained the
data across participants. The time course of the cor-
relation of these four maps with the individual EEG
data was convolved with the fMRI BOLD time course
at each voxel using a generalized linear model (GLM).
The group GLM revealed distinct BOLD activation
patterns for each microstate. These activation pat-
terns were then spatially correlated with the fMRI
resting state networks of each participant, which
were determined using independent component
analysis. This comparison revealed that each of the
four canonical microstates is best correlated with one
of the known fMRI resting states. Figure modified
from (Britz et al., 2010).
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separation of these microstates.
In a recent study (Milz et al., 2017), the same group demonstrated

that such activation primarily occurred within the alpha frequency range.
However, in contrast to the EEG-fMRI studies described earlier (Pas-
cual-Marqui et al., 2014), and (Milz et al., 2017) did not distinguish the
microstate networks based on their temporal signature, but rather
focused on the spatial characteristics of the potential fields. Custo and
colleagues (Custo et al., 2014) utilized a source localization approach
that more closely resembled the GLM approach used in the EEG-fMRI
study by Britz and colleagues (Britz et al., 2010). This method, known
as topographic electrophysiological state source-imaging (TESS) uses a
set of map topographies in a design matrix that has been fitted to each
participant's EEG data using a GLM, which results in a time course of
coefficients for each map topography for each participant. In parallel, a
distributed linear inverse solution is applied to each time point of the
individual EEG to estimate the time course of the source activity. A
second temporal GLM fits these two time-courses, resulting in a set of
active voxels for each map. Thus, similarly to combined EEG-fMRI
analysis, the time courses of the maps are correlated with the time
courses of the sources. However, the times courses of estimated current
density rather than those of BOLD changes are used for this analysis,
which preserves the temporal resolution of EEG. Custo and colleagues
(Custo et al., 2017) used this method to estimate the sources of the mi-
crostates, which were determined via k-means clustering of 256-channel
EEG data for 164 participants. As described in Section 3 a meta-criterion
applied to the k-means clustering revealed an optimum at seven cluster
maps, which explained 84.8% of the global variance (Custo et al., 2017).
While the four canonical maps were among these seven maps, microstate
C was divided into two maps, and two additional maps were included.
TESS analysis of these seven microstates revealed a set of brain regions
active in the majority of microstate networks: These common areas
corresponded to the main hubs described in several studies regarding
structural and functional brain networks (e.g., anterior and posterior
cingulate cortices, precuneus, superior frontal cortex, supramarginal
gyrus, dorsal superior prefrontal cortex, and insula) (Hagmann et al.,
2008; van den Heuvel and Sporns, 2013; Collin et al., 2014). In addition
to these common hubs, areas specific to each of the seven microstates
were found, partly resembling the BOLD correlates described by (Britz et
al., 2010) (Fig. 6).

The functional significance of EEG microstates

If EEG microstates indeed reflect the elementary building blocks of
consciousness or the “atoms of thought”, one would expect that such
states are modulated by the content of the thoughts. Evidence in support
of this notion was provided by Lehmann and colleagues (Lehmann et al.,
1998), who investigated spontaneous, conscious experience in healthy
participants under task-free conditions. Participants were placed in a
dark room and asked to keep their eyes closed and let their minds
wander. In a random interval between 20 s and 2 min, a tone prompt was
presented, and participants were asked to report what went through their
minds just prior to the cue. These verbal responses were recorded on an
audio tape, transcribed off-line, and then classified by two independent
raters as either visual imagery or abstract thoughts. Microstate analysis of
the 2-s EEG data revealed significant differences in microstate topogra-
phies between the two classes of spontaneous thought immediately
preceding the reports, but not 2 s earlier. Interestingly, the topography
related to imagery thoughts resembled the second of the four canonical
microstates (microstate B), which has been suggested to reflect the visual
resting state network (Britz et al., 2010).

Seitzman and colleagues (Seitzman et al., 2017) attempted to alter the
temporal features of the four canonical microstates via behavioral
manipulation. They hypothesized that the temporal parameters of
microstate B would change when participants transition from an
eyes-closed state to an eyes-open state, due to increased visual input.
Indeed, they observed significant increases in the coverage and occur-
rence of microstate B, supporting the assumption that microstate B is
associated with the visual system. However, Milz and colleagues (Milz et
al., 2016) observed no such increases for microstate B when participants
were asked to visualize images that had been presented on the screen
during eyes-closed conditions. Rather, the coverage and occurrence of
microstate B increased when participants were asked to define a visually
presented noun to an imaginary partner, which was designed to represent
the least visual condition of their study. In contrast, the occurrence of
microstate C decreased during the visualization conditions when
compared to levels observed during resting conditions. Britz and col-
leagues (Britz et al., 2010) associated microstate C with activity in
cognitive control networks, primarily the salience network, and with
activation of the anterior cingulate and insula (Seeley et al., 2007).

Fig. 6. Source localization of seven EEG microstates based on correlations between the time course of EEG microstates and the time course of the current densities
estimated using a generalized linear model (Custo et al., 2014). Note the split of microstate C in two separate microstates (see Fig. 3). In addition to several areas
of activation common to each microstate (common hubs), each of the seven microstates was reliably associated with state-specific brain areas. Data were obtained
from 164 participants using 256-channel EEG. For details see (Custo et al., 2017). N. Subj. ¼ Number of participants (out of 164) in which the microstate was
observed. GEV ¼ Global variance explained by each microstate across participants.
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Previous studies have referred to this network as the cingulo-opercular
system (Coste and Kleinschmidt, 2016), which is thought to be associ-
ated with task performance. Thus, decreases in this microstate during
visualization tasks appear to be counter-intuitive. Seitzman and col-
leagues (Seitzman et al., 2017) also reported decreases in the duration
and occurrence of microstate C during a serial subtraction task relative to
the resting condition, which also contradicts the notion that microstate C
supports cognitive control.

These authors proposed that microstate C rather reflects a portion of
the default mode network, a task-negative network in which activity
decreases during the performance of cognititve tasks. The anterior
cingulate is indeed a prominent hub of the default mode network, and
fMRI studies of episodic memory retrieval have reported robust func-
tional dissociation within the default mode network: Posterior regions
(angular gyrus, posterior cingulate/precuneus) were active during
memory retrieval, whereas anterior regions (prefrontal cortex) were
inactive (Sestieri et al., 2011). Additional fMRI studies provided further
evidence in support of these findings regarding the default mode network
(Damoiseaux et al., 2008; Lei et al., 2014). Xu and colleagues (Xu et al.,
2016) demonstrated that the anterior regions of the default mode
network are associated with self-referential mental thoughts, while the
posterior regions are associated with episodic memory retrieval. Simi-
larly, Andrews-Hanna and colleagues reported that the dorsal medial
cortex subsystem of the default mode network is responsible for inter-
nally guided cognition, while the medial temporal subsystem is respon-
sible for memory-guided imagery (Andrews-Hanna, 2012;
Andrews-Hanna et al., 2010). These findings suggest that, if such a
distinction of the default mode network had been used in (Britz et al.,
2010), microstate C would have been associated with the anterior default
mode network, rather than the salience network. Further studies are
required to determine the association between microstate C and under-
lying functional networks. Such work is critical for determining whether
alterations in microstates are associated with psychiatric conditions such
as schizophrenia.

The last of the four canonical microstates (microstate D) increased in
duration and occurrence relative to levels observed under resting con-
ditions when participants were asked to perform a serial subtraction task,
independent of whether their eyes were open or closed (Seitzman et al.,
2017). In accordance with the findings of (Britz et al., 2010), these
findings indicate that microstate D is associated with the dorsal attention
network. However, in the behavioral manipulation study by Milz and
colleagues (Milz et al., 2016), the duration and occurrence of microstate
D increased during rest when compared to levels observed during
goal-directed tasks (object-visualization, spatial-visualization, verbal-
ization). The authors suggested that microstate D reflects reflexive as-
pects of attention, focus switching, and reorientation that occur more
frequently during rest than during single-goal-directed tasks. As changes
in microstates C and D are often observed in patients with schizophrenia,
further studies regarding the functional significance of this network are
required.

Researchers have also examined changes in EEG microstates during
different states of consciousness. Brodbeck and colleagues (Brodbeck et
al., 2012) compared EEG microstates during different sleep stages with
those observed in waking states. Using the conventional clustering
approach and cross-validation, they identified the four canonical
microstate maps in all stages (awake, N1, N2, N3). They then examined
the temporal characteristics of these microstates, observing that micro-
state map C was most dominant in waking states and sleep stages N1 and
N3, but that microstate B dominated in sleep stage N2. In contrast, the
duration of all microstates increased in sleep stage N3, which can be
partly explained by the incidence of slow waves in the EEG data. Notably,
even if the optimal number of microstates for explaining the EEG data
was identified as four, the topography of some microstate maps was
rather dissimilar. Katayama and colleagues (Katayama et al., 2007)
evaluated changes in EEG microstates in participants undergoing hyp-
nosis. An experienced hypnotist induced hypnotic states in seven

volunteers during 19-channel EEG. EEG microstates were compared
among rest, light hypnosis, deep hypnosis, and recovery. The study
revealed strikingly similar topographies of the four canonical microstates
across conditions. Analysis of the temporal characteristics of the four
microstates revealed decreases in the duration and occurrence of mi-
crostates B and D during hypnosis relative to rest, as well as increased in
these parameters for microstates A and C. These results support the
notion that microstate D is associated with attention and decreases in
cognitive control during hypnosis, while microstate C is associated with
the anterior default mode network (i.e., self-referential mental thoughts)
(Xu et al., 2016)—activity in which may increase during hypnosis.
However, this is highly speculative, and further studies are required to
determine the association between various mental activities and micro-
states. Taken together, these findings indicate that EEG microstates may
be necessary yet individually insufficient for the presence of conscious
experiences, and that these microstates may result from evolutionary
determined, brain-intrinsic biases toward particular patterns of
co-activation particularly suited to represent environmentally relevant
information. This assumption corresponds to observations in fMRI
resting state studies, which have indicated that spontaneous brain con-
nectivity is altered but not eliminated in patients with no signs of con-
sciousness (Boly et al., 2008).

Modulation of EEG microstates by disease

Numerous studies have investigated changes in EEG microstates in
patients with neuropsychiatric disorders (see review by Khanna et al.,
2014). Fig. 7 summarizes these studies and their main findings with re-
gard to the temporal properties of the four microstates. In the present
review, we focus on those studies that used k-mean cluster analysis to
determine the number of microstates and those that fixed the number of
states to the canonical four maps. Earlier studies using different ap-
proaches for analysis (Dierks et al., 1997; Kinoshita et al., 1995; Strik et
al., 1995, 1997) are not listed. The most prominent pathology studied
using this approach is schizophrenia. Six studies have examined EEG
microstates in drug-free patients with schizophrenia or those experi-
encing their first episodes (Irisawa et al., 2006; Kikuchi et al., 2007;
Koenig et al., 1999; Lehmann et al., 2005; Nishida et al., 2013; Strelets et
al., 2003), while two studies have investigated microstates in patients
receiving medication (Andreou et al., 2014; Tomescu et al., 2015). Two
studies have also investigated patients at high risk for developing
schizophrenia (Andreou et al., 2014; Tomescu et al., 2014), while an
additional study examined differences in EEG microstates in patients
with schizophrenia who reported hallucinations (Kindler et al., 2011)
(discussed in (Lehmann and Michel, 2011). Seven of these studies were
included in a recent meta-analysis by Rieger and colleagues (Rieger et
al., 2016). This analysis revealed medium-sized effects for microstate C
and D, reporting that microstate C occurred more frequently in patients
with schizophrenia, while microstate D was consistently shorter in
duration. Notably, the effect sizes were larger than those typically re-
ported in frequency domain resting-state studies, suggesting that the
particular decomposition of the EEG data as obtained using microstate
analyses may indeed isolate brain networks that exhibit psychiatric
relevance. Microstate B was also often reported to decrease in duration,
although this effect was not significant in the meta-analysis.

Based on the findings of microstate studies regarding altered states of
consciousness (e.g., sleep, hypnosis, andmeditation), the authors of these
previous studies argued that there may be a functionally relevant balance
between microstates C and D, and that a preponderance of microstate C
may result in a progressive detachment of mental states from environ-
mental input. Such an interpretation was also put forward in a study
describing negative correlations of microstate C occurrence and fluid
intelligence (Santarnecchi et al., 2017). Tomescu and colleagues
(Tomescu et al., 2014, 2015) examined patients with 22q11 deletion
syndrome, who have a 30% increase in the risk of developing schizo-
phrenia relative to healthy controls. Similar alterations were observed for
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microstates C and D, indicating that these microstates may represent
early markers for the risk of developing schizophrenia. In addition,
Kikuchi et al. (2007). showed that successful antipsychotic treatment
normalizes the patterns of microstates C and D in patients with schizo-
phrenia, and Sverak et al. (2017)., showed that intensive repetitive TMS
over the left dorsolateral prefrontal cortex decreased the occurrence of
microstate C in those schizophrenic patients who responded positively to
the treatment. These EEG microstate parameters may thus not only be
relevant for monitoring the vulnerability of patients at risk for schizo-
phrenia and the effects of treatment, but also for examining the efficacy
of treatment in patients with schizophrenia. Diaz and colleagues (Diaz
Hernandez et al., 2016) recently proposed that EEG microstate neuro-
feedback can be used to up-regulate the duration of microstate D in pa-
tients with schizophrenia. In a feasibility study involving healthy
volunteers, the authors reported that participants successfully increased
the duration of microstate D when this parameter when feedback
regarding this parameter was provided in a closed-loop system.

The microstate approach has also be used to investigated conditions
such as dementia (Nishida et al., 2013; Grieder et al., 2016), narcolepsy
(Drissi et al., 2016), panic disorder (Kikuchi et al., 2011), multiple
sclerosis (Gschwind et al., 2016), head injury (Corradini and Persinger,
2014), diplegia (Gao et al., 2017), and stroke (Zappasodi et al., 2017). In
contrast to schizophrenia, decreased occurrence of microstate C and
changes in microstate A and B have been observed in patients with most
of these other conditions, indicating that imbalances in microstate C and
D may be specific to schizophrenia. Gschwind and colleagues (Gschwind
et al., 2016) investigated 53 patients with relapsing-remitting multiple
sclerosis using high-density EEG, observing increases in the duration and
appearance of microstate A and B. Using stepwise multiple linear

regression models, the authors demonstrated that these two microstate
changes predicted several clinical variables such as disease duration, and
annual relapse rate as well disability, depression, and cognitive fatigue
scores. These findings suggest that multiple sclerosis affects the “sensory”
networks (visual, auditory) rather than the higher-order functional net-
works, as observed in schizophrenia (Fig. 7).

Open questions and outlook

Microstate analysis has typically been presented as an alternative and
independent approach for analyzing resting-state EEG data, although
recent evidence indicates that microstate features and more classical
quantifiers of EEG resting state activity exhibit some associations and
similarities. Topographic time-frequency decomposition is based on
wavelet-transformed multichannel data (Koenig et al., 2001), which as-
sumes that all processes contributing to a particular state share the same
temporal dynamics. In addition, this method replaces the constraint that
prohibits temporal overlap with the constraint that prohibits overlap in
time, phase, or frequency. In this case, EEG is regarded as the super-
position and sequence of synchronous oscillations of potentially wide-
spread networks at specific frequencies. When such methods are
augmented by dictionary-learning procedures, one may again obtain a
discrete set of transiently active functional brain states, which are now
defined in time, frequency, and phase (Koenig et al., 2005; Studer et al.,
2006). Interestingly, a recent study based on combined EEG and fMRI
measurements indicated that the activity of particular transient networks
integrated by synchronous oscillations of cortical neurons was correlated
with the BOLD signal in particular sub-regions of the thalamus in a
frequency-specific manner (Schwab et al., 2015). The involvement of

Fig. 7. Summary of published studies regarding EEG microstate changes in neuropsychiatric diseases using the conventional k-means clustering approach and
restricting the analysis to the four canonical microstate maps. Dur ¼ Duration, Occ ¼ Occurrence, Cov ¼ Coverage, GEV ¼ Global Explained Variance, Topo
¼ Topography.
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thalamo-cortical loops (Lopes da Silva, 1991) may thus be an important
link between the typical oscillations observed using EEG, the overarching
pattern of synchronization as assessed via microstate analyses, and the
cognitive correlates of spectral and microstate features of resting-state
EEG data.

In addition, different assumptions underlying the quantification of
brain connectivity must be clarified to improve the analysis of resting-
state connectivity based on EEG data. Some of these assumptions are
incompatible and should not simply be combined, while studies to date
have proposed incomplete solutions to the issue of volume conduction by
regarding the signals obtained using particular electrodes as proxies for
the activity of underlying brain regions, or by taking instantaneous cor-
relations of signals as a direct index of connectivity among two regions
without taking potential confounders of volume conduction into account.
Even if such issues are fully considered (e.g., by basing connectivity an-
alyses solely on the imaginary part of the coherence of source estimates),
“microstate-type connectivity” remains incompatible with such lagged
measures of connectivity, as the former assumes simultaneity of activity
among the involved nodes, whereas the later excludes such simultaneity.
However, this difference in methodology leads to the interesting question
of whether such time delays exhibit functional or dysfunctional roles
with regard to neuronal interactions. In addition, analyses of lagged
connectivity become difficult if more than two nodes interact with one
another, as one node (i.e., in the thalamus) simultaneously affecting two
other nodes is likely to induce approximately simultaneous oscillations in
these two target nodes. The activity of these two target nodes would
thereby be non-lagged, and not be considered in measures of lagged
connectivity, regardless of its potential functional significance. Our
proposal for integrating both lagged and non-lagged connectivity into a
common framework is thus to first collapse all variance of the signal that
can reasonably be explained by a common phase, which captures all
instantaneous interactions, and all effects of volume conduction.
Following this initial step, it is then possible to study the time-delayed
interactions among these states. In the classical microstate analysis,
this involves examining transition probabilities. If microstate-type time-
frequency analyses are applied, the classical measures of lagged in-
teractions, such as coherence or measures of causality, can be also be
used.

Conclusion

The present review has attempted to show that EEG microstate
analysis is based on observable phenomena that correspond well with a
series of theoretical arguments and experimental evidence that suggest
that ongoing mental activity can reasonably be parsed into series of
stable intervals in time in the sub-second range. We suggest that the EEG
microstates are the currently best available electrophysiological mani-
festations of these intervals. Whether or not each microstate reflects a
distinct conscious mental brain state in the sense of William James, posit
awaits further experimental evidence. The challenge will be to design
experiments that are capable to establish direct causal relations of the
EEG microstates to certain contents of thoughts.

EEGmicrostate methodology is increasingly used in experimental and
clinical studies. It is therefore important that the analysis procedures and
objective quantifiers are well defined so that studies can be compared.
While we offer a standard analysis pipeline in this review, we also discuss
some key issues are still not fully solved, in particular the number of
microstates and the way to define them. Fixing the number of microstates
to the 4 canonical map topographies can make sense, particularly in
group comparisons. However, the attribution of these 4 maps to the ca-
nonical maps simply based on visually identified topographic similarities
is rather problematic and can lead to misinterpretation of the results. We
made clear in this review that the optimal number of clusters should be
defined in each dataset individually and we proposed global criteria to
define this number. In addition, rigorous statistical topographic corre-
lation analysis has to be applied if a fixed number is used in order to

compare conditions or groups.
Another issue concerns the sources underlying the different micro-

states. Several studies interpreted their findings of changes in the tem-
poral dynamics of a certain microstate on the basis of the combined EEG-
fMRI study by Britz and colleagues (Britz et al., 2010). This might be
problematic given the still open issue of the relation between broad-band
EEG activity and BOLD fluctuations, the different time-scale in which
these phenomena are observed, and the ongoing debate about the sub-
division and the functional significance of fMRI resting state networks.
Direct EEG source imaging methods are more promising but work still
needs to be done to establish a stable, replicable and externally validated
attribution of brain networks to the microstates.

Finally, an open question concerns the relation between functional
connectivity analysis and the concept of EEG microstates. Since a stable
topography over a certain amount of time excludes phase-lagged activity,
connectivity analysis methods that look for time-lagged connections are
incompatible with the definition of connectivity within a microstate, but
may have systematic links to microstate transitions. Methods that
explicitly and separately encompass both instantaneous and lagged
manifestations of network dynamics in EEG are in principle available, but
will certainly benefit from further developments, and still await to be
systematically put to work and validated in relevant experimental data.

In sum, EEG microstate analysis is a promising tool to study the
temporal dynamic of ongoing mental activity in health and disease. We
are confident that future studies will establish a more stable methodo-
logical approach to define these states and will reveal the relation be-
tween these electrophysiological phenomena and the underlying mental
activity of the human brain.
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