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Preface to the First Edition

They throw geometry out the door, and it comes back through the win-
dow.
(H.G.Forder, Auckland 1973, reading new mathematics at the age of 84)

The subject of this book is numerical methods that preserve geometric properties of
the flow of a differential equation: symplectic integrators for Hamiltonian systems,
symmetric integrators for reversible systems, methods preserving first integrals and
numerical methods on manifolds, including Lie group methods and integrators for
constrained mechanical systems, and methods for problems with highly oscillatory
solutions. Structure preservation — with its questions as to where, how, and what for
— is the unifying theme.

In the last few decades, the theory of numerical methods for general (non-stiff
and stiff) ordinary differential equations has reached a certain maturity, and excel-
lent general-purpose codes, mainly based on Runge—Kutta methods or linear mul-
tistep methods, have become available. The motivation for developing structure-
preserving algorithms for special classes of problems came independently from such
different areas of research as astronomy, molecular dynamics, mechanics, theoreti-
cal physics, and numerical analysis as well as from other areas of both applied and
pure mathematics. It turned out that the preservation of geometric properties of the
flow not only produces an improved qualitative behaviour, but also allows for a more
accurate long-time integration than with general-purpose methods.

An important shift of view-point came about by ceasing to concentrate on the
numerical approximation of a single solution trajectory and instead to consider a
numerical method as a discrete dynamical system which approximates the flow of
the differential equation — and so the geometry of phase space comes back again
through the window. This view allows a clear understanding of the preservation of
invariants and of methods on manifolds, of symmetry and reversibility of methods,
and of the symplecticity of methods and various generalizations. These subjects are
presented in Chapters IV through VII of this book. Chapters I through III are of an
introductory nature and present examples and numerical integrators together with
important parts of the classical order theories and their recent extensions. Chapter
VIII deals with questions of numerical implementations and numerical merits of the
various methods.

It remains to explain the relationship between geometric properties of the nu-
merical method and the favourable error propagation in long-time integrations. This
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’ Backward error analysis ‘

Geometric integrators ‘ D ——

is done using the idea of backward error analysis, where the numerical one-step
map is interpreted as (almost) the flow of a modified differential equation, which is
constructed as an asymptotic series (Chapter IX). In this way, geometric properties
of the numerical integrator translate into structure preservation on the level of the
modified equations. Much insight and rigorous error estimates over long time in-
tervals can then be obtained by combining this backward error analysis with KAM
theory and related perturbation theories. This is explained in Chapters X through
XII for Hamiltonian and reversible systems. The final Chapters XIII and XIV treat
the numerical solution of differential equations with high-frequency oscillations and
the long-time dynamics of multistep methods, respectively.

This book grew out of the lecture notes of a course given by Ernst Hairer at
the University of Geneva during the academic year 1998/99. These lectures were
directed at students in the third and fourth year. The reactions of students as well
as of many colleagues, who obtained the notes from the Web, encouraged us to
elaborate our ideas to produce the present monograph.

We want to thank all those who have helped and encouraged us to prepare this
book. In particular, Martin Hairer for his valuable help in installing computers and
his expertise in Latex and Postscript, Jeff Cash and Robert Chan for reading the
whole text and correcting countless scientific obscurities and linguistic errors, Haruo
Yoshida for making many valuable suggestions, Stéphane Cirilli for preparing the
files for all the photographs, and Bernard Dudez, the irreplaceable director of the
mathematics library in Geneva. We are also grateful to many friends and colleagues
for reading parts of the manuscript and for valuable remarks and discussions, in
particular to Assyr Abdulle, Melanie Beck, Sergio Blanes, John Butcher, Mari Paz
Calvo, Begoiia Cano, Philippe Chartier, David Cohen, Peter Deuflhard, Stig Faltin-
sen, Francesco Fasso, Martin Gander, Marlis Hochbruck, Bulent Karasozen, Wil-
helm Kaup, Ben Leimkuhler, Pierre Leone, Frank Loose, Katina Lorenz, Robert
McLachlan, Ander Murua, Alexander Ostermann, Truong Linh Pham, Sebastian
Reich, Chus Sanz-Serna, Zaijiu Shang, Yifa Tang, Matt West, Will Wright.

We are especially grateful to Thanh-Ha Le Thi and Dr. Martin Peters from
Springer-Verlag Heidelberg for assistance, in particular for their help in getting most
of the original photographs from the Oberwolfach Archive and from Springer New
York, and for clarifying doubts concerning the copyright.

Geneva and Tiibingen, November 2001 The Authors



Preface to the Second Edition

The fast development of the subject — and the fast development of the sales of the
first edition of this book — has given the authors the opportunity to prepare this sec-
ond edition. First of all we have corrected several misprints and minor errors which
we have discovered or which have been kindly communicated to us by several read-
ers and colleagues. We cordially thank all of them for their help and for their interest
in our work. A major point of confusion has been revealed by Robert McLachlan in
his book review in SIAM Reviews.

Besides many details, which have improved the presentation throughout the
book, there are the following major additions and changes which make the book
about 130 pages longer:

— a more prominent place of the Stormer—Verlet method in the exposition and the
examples of the first chapter;

— adiscussion of the Hénon—Heiles model as an example of a chaotic Hamiltonian
system,

— a new Sect.IV.9 on geometric numerical linear algebra considering differential
equations on Stiefel and Grassmann manifolds and dynamical low-rank approxi-
mations;

— anew improved composition method of order 10 in Sect. V.3;

— a characterization of B-series methods that conserve quadratic first integrals and
a criterion for conjugate symplecticity in Sect. VL.8;

— the section on volume preservation taken from Chap. VII to Chap. VI,

— an extended and more coherent Chap. VII, renamed Non-Canonical Hamiltonian
Systems, with more emphasis on the relationships between Hamiltonian systems
on manifolds and Poisson systems;

— a completely reorganized and augmented Sect. VIL.5 on the rigid body dynamics
and Lie—Poisson systems;

— anew Sect. VIL.6 on reduced Hamiltonian models of quantum dynamics and Pois-
son integrators for their numerical treatment;

— an improved step-size control for reversible methods in Sects. VIII.3.2 and IX.6;

— extension of Sect. IX.5 on modified equations of methods on manifolds to include
constrained Hamiltonian systems and Lie—Poisson integrators;

— reorganization of Sects. IX.9 and IX.10; study of non-symplectic B-series meth-
ods that have a modified Hamiltonian, and counter-examples for symmetric meth-
ods showing linear growth in the energy error;
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— a more precise discussion of integrable reversible systems with new examples in
Chap. XI;

— extension of Chap. XIII on highly oscillatory problems to systems with several
constant frequencies and to systems with non-constant mass matrix;

— a new Chap. XIV on oscillatory Hamiltonian systems with time- or solution-
dependent high frequencies, emphasizing adiabatic transformations, adiabatic in-
variants, and adiabatic integrators;

— a completely rewritten Chap. XV with more emphasis on linear multistep meth-
ods for second order differential equations; a complete backward error analysis
including parasitic modified differential equations; a study of the long-time sta-
bility and a rigorous explanation of the long-time near-conservation of energy and
angular momentum.

Let us hope that this second revised edition will again meet good acceptance by our
readers.

Geneva and Tuibingen, October 2005 The Authors
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