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What can rodent models tell us about apathy and associated
neuropsychiatric symptoms in Parkinson’s disease?
R Magnard1,2,4, Y Vachez1,2,4, C Carcenac1,2, P Krack1,2,3, O David1,2, M Savasta1,2, S Boulet1,2,5 and S Carnicella1,2,5

In addition to classical motor symptoms, Parkinson’s disease (PD) patients display incapacitating neuropsychiatric manifestations,
such as apathy, anhedonia, depression and anxiety. These hitherto generally neglected non-motor symptoms, have gained
increasing interest in medical and scientific communities over the last decade because of the extent of their negative impact on PD
patients’ quality of life. Although recent clinical and functional imaging studies have provided useful information, the
pathophysiology of apathy and associated affective impairments remains elusive. Our aim in this review is to summarize and
discuss recent advances in the development of rodent models of PD-related neuropsychiatric symptoms using neurotoxin lesion-
based approaches. The data collected suggest that bilateral and partial lesions of the nigrostriatal system aimed at inducing reliable
neuropsychiatric-like deficits while avoiding severe motor impairments that may interfere with behavioral evaluation, is a more
selective and efficient strategy than medial forebrain bundle lesions. Moreover, of all the different classes of pharmacological
agents, D2/D3 receptor agonists such as pramipexole appear to be the most efficient treatment for the wide range of behavioral
deficits induced by dopaminergic lesions. Lesion-based rodent models, therefore, appear to be relevant tools for studying the
pathophysiology of the non-motor symptoms of PD. Data accumulated so far confirm the causative role of dopaminergic depletion,
especially in the nigrostriatal system, in the development of behavioral impairments related to apathy, depression and anxiety.
They also put forward D2/D3 receptors as potential targets for the treatment of such neuropsychiatric symptoms in PD.

Translational Psychiatry (2016) 6, e753; doi:10.1038/tp.2016.17; published online 8 March 2016

In addition to the cardinal motor symptoms of this progressive
neurodegenerative disorder, Parkinson’s disease (PD) is also
associated with a plethora of non-motor manifestations, such as
sleep disturbance, cognitive impairment, psychosis, anxiety,
depression, apathy and impulsive/compulsive disorders.1–6 This
cluster of symptoms, which was largely neglected in the past, and
which severely impairs patients’ quality of life, is now recognized
as a major contributor to morbidity.2,3

Apathy and affective disorders such as depression and anxiety
appear as major neuropsychiatric features of the disease.1,3,7

Apathy, which frequently presents in association with depression
and anxiety in PD, is a behavioral syndrome classically defined as a
lack of motivation.7–10 Its prevalence in PD varies from 17 to 70%
depending on the evaluation scale used and the population
studied,5,7 and it is now accepted that a large majority of PD
patients will develop apathy along the course of disease.1,7,11,12

Apathy is also viewed as a major side effect of deep brain
stimulation of the subthalamic nucleus (STN-DBS),11,13,14 limiting
its dramatic motor benefits in terms of patient-related quality of
life.15,16 Consequently, understanding the pathophysiology of
apathy and associated affective syndromes in PD has gained
increasing interest in the medical and scientific communities over
the last decade.
After a brief introduction on the phenomenology of apathy and

the questions raised by some clinical and imaging studies, we will

review and discuss recent advances in the development of rodent
models of PD-related neuropsychiatric symptoms. Most of these
animal lesion studies point toward the critical role of dopamine in
the pathophysiological mechanisms underlying apathy and
related affective impairments in PD. They may also provide useful
information for the pharmacotherapeutic management of such
symptoms.

APATHY AS A CORE SYMPTOM OF PD
Although apathetic symptoms were described very early in
PD,17,18 awareness of the importance of apathy in the manage-
ment of PD patients only arose a decade ago. The medical
community’s lack of interest in this psychiatric impairment was
perhaps owing to a lack of nosological clarity. In current
psychiatric classification systems, apathy in fact only appears as
a feature associated with dementia or with the negative
symptoms of schizophrenia, and as a predominant symptom of
major depression, overlapping with anhedonia.5,19 More recently,
apathy was also referenced as one of the features frequently
associated with major or mild neurocognitive disorder caused by
Parkinson’s or Huntington’s disease,20 in the same way as anxiety
and depression, two affective impairments commonly associated
with apathy in these neurodegenerative disorders.1,2,9,21,22 Apathy
could therefore be regarded as a nonspecific symptom, stemming
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from a general degradation of cognitive functions, with negligible
implications for clinical evaluation or treatment. However, some
evidence suggests that apathy is a true clinical construct,8,23 with
interesting transnosographic features.24–26 This led Robert Marin
to propose a clear operative definition of apathy and to create the
first rating scale in the early 1990s.8,27

Apathy can be defined as deficits in goal-directed behaviors
(The term ‘goal-directed behavior’ can be misleading and should
be viewed as a ‘behavior directed toward a goal’ and not as a
‘behavior directed by a goal’, as the second has a strong
theoretical connotation referring to a specific psychobiological
process and putative functional sub-compartmentalization of the
dorsal striatum.28,29) or a primary lack of motivation,27 character-
ized by strong deficits in self-initiation and maintenance of
voluntary and purposeful behavior, resulting in low levels of
activity, loss of socialization and interest in sources of
reinforcement.7,30–32 The observable phenomenon of apathy can
be related to emotional, cognitive and auto-activation subdo-
mains, that are underlined by different dysfunctions of the
corticostriatal circuits (the so-called basal ganglia limbic, associa-
tive and motor loops) involved in the complex chain of processes
that transforms an intention into an adapted action.7,30 Therefore,
multiple forms of apathy may exist, depending on the respective
contribution of each subdomain from one patient to another.
Interestingly, a study using an implicit incentive task, revealed that
apathy in PD and non-PD patients was associated with an inability
to translate an expected reward into effort and action, with no
change in the perception of reward value.31 The results of this
study are in line with recent clinical observations suggesting that
the apathetic state described in PD may be particularly linked to
the anticipatory subcomponent of anhedonia (which is the
absence of any association between pleasure and a specific
action), rather than to a change in consummatory responses,
which reflect an individual’s capacity to experience pleasure when
engaged in an enjoyable activity.33,34 Overall, this strongly
indicates that the core element of at least some forms of apathy
in PD, resides in the motivational preparatory processes respon-
sible for initiating and maintaining voluntary actions.
Apathy appears to be closely linked to anhedonia and

complaints of fatigue in PD,35,36 but it is also frequently associated
with depression and anxiety. Clinicians have recently regrouped
apathy, depression and anxiety into a category called hypodopa-
minergic behaviors, in opposition to impulsive/compulsive dis-
orders classified as hyperdopaminergic behaviors, to facilitate the
clinical management of behavioral complications in PD.9,37,38 In
PD, apathetic symptoms, such as fatigue and lack of interest or
initiative, together with depression and anxiety, are often reported
even before the onset of motor symptoms, or early in the disease,
in de novo PD patients.39–42 As already mentioned, apathy is also a
major complication of STN-DBS,11,13 particularly in the first
postoperative months, when dopaminergic medication has been
greatly reduced.9 Apathy can also occur later on, with the
progression of dysexecutive syndromes related to diffuse cortical
spread of alpha-synucleinopathy.7,43 Apathy and associated mood
disorders can, moreover, be alleviated at different stages of the
disease by dopaminergic treatments, particularly with dopami-
nergic D2/D3 receptor (D2/D3R) agonists, such as ropinirole,
rotigotine, pramipexole or piribedil.9,44–49 Apathy in PD therefore
appears to depend on patient’s dopaminergic state, suggesting
that dopamine has an important role in the pathophysiology of
these non-motor symptoms.3,5,7,50 Functional imaging studies in
humans have reported an association between PD-related apathy,
anxiety and depression, and the extent of dopaminergic
denervation in several brain regions, including the ventral and
dorsal striatum and the prefrontal cortex (reviewed in ref. 7).
Interestingly, similar dopaminergic dysfunctions have been found
in the putamen of apathetic Alzheimer disease and Lewy body
dementia patients,51 thereby strengthening the case for a

relationship between apathy and decreased striatal dopaminergic
activity.
Despite this useful information, the exact contribution of a

dopaminergic deficit to the development of such behavioral
impairments in PD, as well as the real therapeutic potential of the
different dopaminergic medications, still need to be determined.
For instance, it remains unclear whether apathy and associated
mood disorders intrinsically derive from the loss of dopamine in
the nigrostriatal system or from the diffusion of the lesion towards
more putative limbic areas.7,30 Similarly, the aforementioned
clinical data clearly suggest that postoperative apathy is the
expression of a pronounced hypodopaminergic state revealed by
a reduction in dopaminergic medication.9 However, STN-DBS may
also contribute to the occurrence or aggravation of this syndrome
by interfering with the neuronal activity of the non-motor
territories of the STN or by stimulating fiber tracts in close vicinity
to the STN.52–54 In addition, it has been shown that STN-DBS can
interfere directly with dopaminergic function in rats.55 Animal
models are clearly useful tools to demonstrate dopamine’s causal
contribution to the pathophysiology of apathy and associated
affective disorders in PD. They can also serve to disentangle the
respective implication of each potential factor.

PD-RELATED BEHAVIORAL IMPAIRMENTS IN RODENT MODELS
Because apathy is operationally defined as a motivational deficit
and is frequently associated with depression and anxiety, PubMed
and Scopus databases were searched for literature concerning
non-motor behaviors in PD-related rodent models (that is, mice
and rats) restricted to the evaluation of motivated, anhedonic-like,
depression-like or anxiety-like behaviors. References of the
publications selected were hand-searched carefully and cross-
referenced to find any additional potentially relevant studies. The
main information provided by these publications was summarized
according to the type of lesional strategy used (Table 1) and to the
type of pharmacological treatment used to reverse the behavioral
phenotypes induced by the dopaminergic lesions (Table 2). A
column was added in Table 1 to indicate the presence or absence
of motor impairment, as this may bias interpretation of behavioral
results.56,57

MOTIVATIONAL DEFICITS
Effects of bilateral and partial dopaminergic lesions of the
nigrostriatal pathway
Evaluating operant behaviors in rodents appears particularly
relevant for the study of the psychobiological mechanisms
underlying apathy, because it allows a fine and sophisticated
evaluation of motivational preparatory processes in both human
and non-human species (for review, see ref. 78). Partial
dopaminergic denervation, limited to the nigrostriatal system
(o80% tyrosine hydroxylase immunoreactivity loss within the
dorsal striatum and o20% tyrosine hydroxylase immunoreactivity
loss within the nucleus accumbens) and induced by the bilateral
stereotaxic infusion of the catecholaminergic neurotoxin
6-hydroxydopamine (6-OHDA) into the substantia nigra pars
compacta (SNc), dramatically impaired operant behaviors in rats
(Table 1).56,61,62 Specifically, diminished performance in a runway
task involving getting to and eating palatable food, and a
significant reduction in instrumental response to sucrose in an
operant self-administrating procedure were observed in 6-OHDA-
SNc-lesioned rats.56 Importantly, because the partial SNc lesion
altered neither sensorimotor coordination on a rotarod nor fine-
motor velocity in an automated laboratory gait analysis system,
these deficits cannot be attributed to motor impairments.56

Moreover, the ability of lesioned animals to press an operant lever
at short intervals was preserved.61 Similarly, these results cannot
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be attributed to an alteration of the rewarding/reinforcing
properties of the reinforcers because neither conditioned place
preference for the palatable food used in the runway, nor
preference for sucrose in a two-bottle choice procedure, were
impaired by the dopaminergic lesion.56 Therefore, a marked
motivational deficit was observed specifically when an instru-
mental preparatory action was required, a behavioral phenotype
that appears highly reminiscent of at least some forms of
apathy.7,30,31

These data also corroborate the observation that severe,
unilateral dopaminergic depletion, targeting, but not restricted
to, the dorsal striatum or bilateral dopaminergic depletion
restricted to the dorsal striatum, reduced operant performances
of rats in a choice reaction time task.79,80 Rats with bilateral partial
SNc lesions induced by 6-OHDA also exhibited increased latency
to complete the 100-pellet test.81 Although consummatory or fine-
motor deficits may contribute to these results,81 overall, the
aforementioned data56,79 suggest that increased latency in
reaching and eating a large number of food reward pellets, which
requires, as in the runway task, a high degree of behavioral
activation,82 reflects a real decrease in motivation.

Effects of bilateral and partial dopaminergic lesions of the
mesolimbic pathway
Some studies suggest that apathy and associated neuropsychiatric
symptoms in PD may stem from dysfunctions of the dopaminergic
mesocorticolimbic system.9,10 Partial and bilateral 6-OHDA lesions
affecting the medial ventral tegmental area (medial VTA) were
therefore also performed (Table 1 and ref. 56) in order to mimic
the partial dopaminergic denervation of the ventral striatum that
frequently occurs in PD patients, especially in the late stage of the
disease.83,84 Interestingly, none of the motivational deficits
described in the section ‘Effects of bilateral and partial dopami-
nergic lesions of the nigrostriatal pathway’ above were observed
with a 60–70% loss of dopaminergic innervation in the
nucleus accumbens56 (see also ref. 81). As the mesolimbic
dopaminergic system is a key player in reward-related and
goal-directed behaviors,85,86 this absence of effect may appear
counterintuitive. However, as we have known even since the early
days of 6-OHDA use,87 a complete, or near complete, loss of
dopamine in the mesolimbic pathway is necessary to obtain a
reduction in motivated behavior (for review, see refs 88,89). Thus,
this striking dissociation between the behavioral effects of a
partial dopaminergic lesion of the VTA or the SNc clearly
strengthens the case for the involvement of the nigrostriatal
system in the pathophysiology of apathy in PD on top of the
mesolimbic and mesocortical projection systems.

Pharmacological treatments
To further investigate the role of dopamine, different dopaminer-
gic agents classically used in PD were tested on the motivational
deficits induced by a partial and bilateral nigrostriatal lesion
(Table 2). The D2/D3R agonists ropinirole and pramipexole,
efficiently corrected the decrease in operant sucrose self-
administration induced by the SNc lesions, whereas the dopamine
precursor L-DOPA did not.56,61 Moreover, this deficit was not
reversed by subchronic administration of the selective serotonin
reuptake inhibitor (SSRI) citalopram. Using more selective
dopaminergic receptor subtype agonists, the motivational deficits
induced by the SNc lesions were specifically reversed by the D3R
agonist PD-128907, but not by the D1R agonists SKF-38393 and
SKF-82958, nor by the D2R agonist sumanirole.62 Taken together,
these data confirm the implication of dopamine and point toward
the targeting of D3R for reversing the motivational deficits
related to PD.Ta
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DEPRESSION-LIKE BEHAVIORS
Effects of bilateral and partial dopaminergic lesions of the
nigrostriatal pathway
In keeping with the high incidence of depressive symptoms in PD
patients, most of the studies found that partial and bilateral
dopaminergic denervation of the nigrostriatal pathway induces a
depression-like phenotype (Table 1). Indeed, anterograde and
retrograde dopaminergic lesions of the dorsal striatum increased
immobility, a classical behavioral index of depression-like state,90

in the forced-swim test (FST) as well as in the tail-suspension test,
in rats and mice, respectively. Importantly, motor impairments
cannot account for a reduction in swimming or climbing, as no
major motor deficits were identified with these partial-lesion
approaches.56,65,66,68

Effects of bilateral and partial dopaminergic lesions of the
mesolimbic pathway
Although the mesolimbic dopaminergic system has been shown
to be involved in the regulation of mood and depression-related
behaviors,91,92 partial dopaminergic lesion of the VTA did not
increase the time that rats spent immobile in a FST.56 However,
there is a lack of data and more studies are needed to determine
the potential impact of partial dopaminergic denervation of the
mesolimbic pathway on such behaviors.

Effects of MPTP and 6-OHDA medial forebrain bundle lesions
Studies on mice using systemic administration of MPTP (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine) toxin, and on rats using
unilateral or bilateral 6-OHDA medial forebrain bundle (MFB)
lesion usually result in extensive and non-selective dopaminergic
lesions affecting both the nigrostriatal and mesolimbic
pathways.69,71 As shown in Table 1, such lesion-based strategies
have yielded conflicting results: some studies showed increased
immobility in the tail-suspension test60 or increased latency in
terminating foot shock presentation during a learned helplessness
test,69 whereas others did not observe any depression-like
behaviors in rodents,72,77 even in the case of bilateral 6-OHDA-
MFB lesions.75 The absence of lesional selectivity and the presence
of motor impairments in these studies are likely to account for
these conflicting results, thereby revealing a strong limitation of
MFB and MPTP lesions in the study of non-motor behaviors in
rodents.

Pharmacological treatments
Regarding motivational deficits, dopaminergic agents were tested
to reverse depression-like phenotypes in rodent models of PD
(Table 2). Subchronic administration of L-DOPA has been shown to
correct the increase in immobility of lesioned rats in the FST56 and
to reduce latency in terminating the foot shock in a learned
helplessness procedure.69 However, other studies failed to show
any beneficial effect of L-DOPA on depression-like behaviors in
rats70,75 or mice.58 By contrast, D2/D3R agonists such as
pramipexole, consistently improved depression-like behaviors,
whatever the lesional or animal model used. Similar positive
results were obtained with selective D1R, D2R or D3R agonists.62

Surprisingly, inconsistent effects were found with SSRIs (Table 2)
and these mixed results may be a product of the behavioral tests
and/or the lesional model used. For instance, citalopram reduced
depression-like behaviors in unilateral MFB-lesioned rats in a
learned helplessness procedure,69 but not in bilateral SNc-lesioned
rats in the FST.56 Fluoxetine significantly decreased FST-immobility
in controls but not in rats with retrograde dopaminergic lesions of
the dorsal striatum.67 Finally, the serotonin/noradrelanine reup-
take inhibitor imipramine failed to improve depression-like
behaviors in the same study,67 whereas the noradrenaline
reuptake inhibitor reboxetine succeeded in 6-OHDA-lesioned

mice,58 as did sarizotan, a serotoninergic and dopaminergic
partial receptor agonist, in unilateral MFB-lesioned rats.73 It should
also be highlighted that these studies also differ in terms of
treatment duration, which is a critical factor to obtain efficient
antidepressant actions using SSRI. Indeed, the same dose of
fluoxetine has been found to significantly reduce depression-like
behaviors after 21 (ref. 93) but not 13 (ref. 67) days of subchronic
administration. More consideration should be given to this
methodological issue in the future.
Overall, these data strongly indicate the predominant involve-

ment of dopamine, and of the other monoaminergic systems, in
parkinsonian-related depression-like behaviors, and show that the
dopaminergic receptors are potential therapeutic targets for the
treatment of depression in PD.

ANHEDONIA-LIKE BEHAVIORS
Lesional effects
Hedonic processes can be divided into consummatory and
anticipatory subcomponents, at least from a psychological and
neurobiological point of view.33,34 In this part of the review, we
will use the term anhedonia to refer only to deficits in reward-
related processes accompanied by a failure to experience pleasure
leading to a reduction in consummatory behavior (that is, the
equivalent of ‘liking’ deficits, as termed by Berridge85). However,
because subjective feelings such as pleasure remain quite difficult
to apprehend in rodents, from an operational point of view, we
refer to anhedonia in preclinical studies as a behavioral
insensitivity to the rewarding or reinforcing properties of a
specific substance or event.
All the studies summarized in Table 1 used two-bottle choice

procedures with water and sucrose as the rewarding solution to
assess anhedonia. No clear results emerged from this literature,
irrespective of the type of lesional strategy used, which may be
due to behavioral protocol differences in these studies and due to
the difficulty in isolating and accurately assessing this psychobio-
logical subcomponent of motivated behaviors. Some studies used
food and water deprivation before testing,60,64,65,71 or short 1 h
(ref. 68) versus standard 24 h access to the sucrose solution, and
this may have interfered with the task by influencing motivational
processes. Moreover, all the studies did not use the same sucrose
concentration. For instance, partial and bilateral dopaminergic
lesions of the nigrostriatal pathway have been found to reduce
preference for a 0.5 or a 0.8%, but not for a 2% sucrose
solution.56,66,68 When preference was reduced, it was also unclear
whether this resulted from a decrease in sensitivity to the
rewarding properties of sucrose or from a metabolic confounding
factor because lesions of this type can interfere dramatically with
hypothalamic function.94 In order to exclude this potential bias,
one study replaced sucrose with saccharin and found that
preference for this non-caloric sweetener was preserved in SNc-
lesioned rats.56

A growing body of evidence suggests that dopamine is more
involved in motivational (‘wanting’ or anticipatory/preparatory)
behaviors than in rewarding or hedonic processes per se (‘liking’ or
consummatory behaviors).85,95 These studies do not, therefore,
make it clear whether or not dopaminergic lesions really can
induce anhedonia or emotional apathy in humans.

Pharmacological treatments
Very few drugs have been tested on these types of behavior
(Table 2). However, results suggest a specific involvement of
dopamine, as L-DOPA71 and apamin, a SK channel blocker
originally isolated from bee venom known to stimulate the
dopaminergic function, improved anhedonia-like behaviors,68

while the SSRI paroxetine and the noradrenaline/dopamine
reuptake inhibitor bupropion failed to do so.71
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ANXIETY-LIKE BEHAVIORS
Lesional effects
As is the case for depression-like behaviors, partial and bilateral
dopaminergic denervation of the nigrostriatal pathway consis-
tently induced anxiety-related behaviors (Table 1, but see ref. 65).
Anterograde and retrograde dopaminergic lesions of the dorsal
striatum reduced the amount of time spent in the open arms of an
elevated plus maze, a classical index of anxiety. Reduced latency
to enter into the dark side of a light/dark avoidance apparatus was
also observed in SNc-lesioned rats.56 Moreover, 6-OHDA SNc-
lesioned mice exhibited a pronounced increase in thigmotaxis, as
indicated by a reduction in time spent in the center of the open-
field apparatus.58 Again, no consistent results were obtained from
studies using 6-OHDA MFB lesions (Table 1).
Interestingly, bilateral and partial lesion of the VTA did not

induce an anxiety-like phenotype, either in the elevated plus
maze56,76 or in the light/dark avoidance test,56 thereby strength-
ening the implication of the dopaminergic nigrostriatal system in
the regulation of affective and emotional functions.

Pharmacological treatments
In keeping with the deleterious impact of nigrostriatal dopami-
nergic denervation on mood, anxiety-related behaviors in lesioned
animals have been shown to be responsive to dopaminergic
medication, especially to dopaminergic receptors agonists
(Table 2). For instance, anxiety-like behaviors in lesioned mice in
the elevated plus maze were reversed by pramipexole but not by
L-DOPA,58 suggesting a greater efficacy of direct receptor agonists.
Interestingly enough, while some agonists such as ropinirole,
pramipexole or the D3R agonist PD-128907 normalized anxiety-
related behaviors to the level of control animals,56,58,62 the D1R
agonist SKF-38393 and the D2R agonist sumanirole produced
striking anxiolytic effects on lesioned rats.62 Depending on the
dose used, SKF-38393 and sumanirole could increase the time
spent in the open arms of the elevated plus maze, in SNc-lesioned
rats specifically, to levels far above those obtained in their
respective control conditions, and promoted disinhibition and
risk-taking behaviors, as reflected by an increased number of head
dippings and reduction of risk assessments.62 Although these data
deserve further investigation, they already provide useful informa-
tion about the iatrogenic mechanisms of dopaminergic medica-
tions that may lead to the development of impulsive/compulsive
disorders in PD.
In addition to the dopaminergic system, preclinical studies

suggest that targeting the other monoaminergic systems may also
be a valuable strategy for the treatment of anxiety in PD. For
instance, systemic administration of serotoninergic or noradre-
nergic reuptake inhibitors efficiently improved anxiety-related
behaviors in lesioned animals56,58 (but see refs 67). Similar
beneficial effects were obtained with intra-amygdala or -prelimbic
infusion of the 5-HT1A receptors agonist 8-OH-DPAT.74,96

CONCLUSIONS AND FUTURE DIRECTIONS
Models based on 6-OHDA-lesioned rats constitute the most widely
used and best-characterized experimental approach for PD.97

Initially developed to study motor symptoms (for review, see ref.
97), all 6-OHDA models are not equivalent and relevant when it
comes to mimic and examine the neuropsychiatric symptoms
observed in PD, that is, apathy, depression, anhedonia and
anxiety. The recent studies reviewed here tend to show that a
selective, partial and bilateral lesion of the nigrostriatal dopami-
nergic pathway (with a retrograde or an anterograde strategy) is
probably the most suitable approach in the investigation of the
neurobehavioral mechanisms that underlie neuropsychiatric
symptoms in PD using 6-OHDA. There is now a large body of
evidence highlighting the critical role of the dopaminergic

nigrostriatal system—the major neuronal group known to
degenerate in PD—in motivational, affective and cognitive
impairments. Although this role was previously largely neglected
and mainly attributed to the dopaminergic mesoaccumbal
pathway,98 these data are consistent with pioneering studies
supporting a role of nigrostriatal dopamine in motivation99–102 or
with more recent evidence based on electrophysiological record-
ings in monkeys103,104 (for review, see ref. 86) and selective
optogenetic modulation of nigral dopaminergic neurons.105,106

Furthermore, partial and selective lesion of this nigrostriatal
pathway allows the circumvention of motor symptoms, a major
bias in the study of non-motor symptoms.57 Such an advantage is
not found in more widespread lesional models such as MFB
lesion.60,64,69,71,72

In addition, the relevance of rodent models based on partial
and selective degeneration of the nigrostriatal pathway is
strengthened by their important predictive value concerning the
pharmacological treatment used to reverse neuropsychiatric
symptoms in clinic. Interestingly, the pharmacological studies
summarized in this review show that medications which produce
positive results on motivational deficits are also effective on
depression- and anxiety-like behaviors, and on anhedonia-like
behaviors, potentially indicating some common mechanisms
between these neuropsychiatric symptoms in PD.56,59,61,62,68,69,71

Even if these mechanisms remain elusive, these data, overall,
highlight the major implication of dopamine and clearly indicate
that dopaminergic receptors constitute promising therapeutic
targets. On this last point, the literature presented here suggests
that direct agonists such as pramipexole or ropinirole may be
more efficient to reduce neuropsychiatric symptoms of PD than a
more global modulation of dopaminergic neurotransmission with
L-DOPA. More precisely, it indicates that pharmacological inter-
ventions on D3R are especially appropriate for the reversal of
these deficits, as can be seen from the fact that the D3R-prefering
PD-128907 reversed motivational deficits in PD models, whereas
the D2R selective agonist sumanirole did not (Table 2). Impor-
tantly, the D3R is suspected to be a key player in the control of
affective and motivated behaviors and as such, has been
identified as a potential target for the treatment of neuropsychia-
tric symptoms in several disorders.107,108 D3R expression is
particularly high within the ventral striatum, but is also detectable
in the dorsal striatum,109–111 where it has been shown to
significantly participate in the control of motivated
behaviors.111,112 In accordance with the existing overlap between
VTA and SNc dopaminergic projections113 and the emerging role
of the dorsal striatum in non-motor behaviors (for review, see also
refs 86), this distribution challenges the oversimplified vision of
perfectly segregated systems which serve specific functions (that
is, limbic, associative and motor). This appears even more relevant
in PD, where dopaminergic denervation in combination with
dopaminergic treatments can lead to complex and widespread
postsynaptic redistribution of D3R, with notably a strong increase
of its expression in the dorsal striatum.109,114 Because of this
interesting predictive and potential face and construct validity,
these rodent models could also serve to determine the relative
psychotropic potencies of the different dopaminergic
medications.115 It corresponds to a clinical need,116 namely to
avoid a potential source of hypo- and hyperdopaminergic
psychiatric side effects in the management of PD, as L-dopa
equivalent dosages of different dopamine agonists are only
known for motor effects.
Some studies in non-human primates also confirm a major

involvement of dopamine in the pathophysiology of apathy in PD.
For instance, MPTP lesions in monkey can lead to a decrease in
behavioral activity117 and goal-directed behaviors,118,119 and to
social behavioral changes.120 However, because of the lack of
neuroanatomical selectivity of systemic MPTP administration, and
despite in-depth multi-correlational and neuroimaging analyses, it

Rodent models of PD-neuropsychiatric symptoms
R Magnard et al

7

Translational Psychiatry (2016), 1 – 11



has yet to be determined from these studies whether these
behavioral impairments result from a loss of dorso- or ventro-
striatal function.
Although the dopaminergic system seems to have a crucial role

in the physiopathology of neuropsychiatric symptoms in PD, it
does not exclude the implication of the other monoaminergic
systems, particularly when the strength of their interconnections is
taken into consideration. The noradrenergic and serotoninergic
systems are also affected in PD72 and some of the
neurochemical,66 behavioral and pharmacological
studies56,58,69,72,121 reviewed here support their potential implica-
tion in non-motor impairments. Affective-related impairments in
lesioned animals can indeed be reduced by SSRIs or noradrenergic
reuptake inhibitors (Table 2). Moreover, affective-related behaviors
in rats with unilateral dopaminergic lesions may emerge only in
combination with serotoninergic and/or noradrenergic
depletion72 and the degree of depression-like behaviors in 6-
OHDA-lesioned rats has been recently shown to correlate with
hippocampal and striatal serotoninergic dysfunctions.63,122 Func-
tional imaging studies in humans and other clinical evidence also
suggest that depression and fatigue in PD are associated with
alterations of the serotonergic system (reviewed in ref. 123), and,
in addition to dopamine, anxiety, depression and apathy in PD
patients may also be associated with a greater loss of noradrena-
line in the locus coeruleus and noradrenergic innervation in the
ventral striatum and other limbic areas.10 Although more studies
are needed to decipher the specific role of these different
neurotransmitter systems, it might indicate that PD ought to be
considered as a monoaminergic pathology. Combining pharma-
cotherapies, to target the three monoaminergic systems, may
therefore be a particularly valuable strategy in the treatment of
neuropsychiatric symptoms related to the neurodegenerative
process in PD.
Taken together, the preclinical results reviewed here clearly

favor the hypothesis that postoperative apathy rather results from
the reduction of the dopaminergic medication following DBS -
thereby revealing a strong hypodopaminergic state related to
non-motor functions - than by STN-DBS per se. How dopaminergic
denervation of a putative motor system interferes so strongly with
motivated and affective-related behaviors remains, however,
unclear. As already aforementioned, the three so-called limbic,
associative and motor cortico-striato-cortical loops are not fully
segregated, with an ascending striato-midbrain-striatal spiraling
circuitry,28,124–126 that functionally interconnects the different
corticostriatal regions and associated structures,127,128 and a high
degree of overlap and convergence between these functional
territories within the STN.14,129 One can therefore speculate that
loss of nigrostriatal dopamine might influence non-motor func-
tions through these subcortical interactions, thereby disrupting
the complex chain of events that bridges emotions to actions. A
similar scenario can be envisaged within the framework of the
actor-critic model of the basal ganglia,130,131 with a functional
disconnection of the actor (the dorsal striatum) and the critic (the
ventral striatum). Depending on the studies, it is suggested that
STN-DBS can induce either hypomania and euphoria132–135 or
apathy.52,53 The STN is a small nucleus quite difficult to target and
differences in electrode localizations may partly account for these
discrepancies. Specifically, induction of hypomania may be
associated with stimulation of ventral, that is, limbic, parts of the
STN,134,135 whereas inaccurate electrode placements or exagger-
ated current wide-spreading to surrounding areas, such as the
substantia nigra pars reticulata,136 or pallidothalamic fiber tracts54

may exert opposite actions. It may, therefore, be of great interest
to investigate how the dopaminergic lesion and DBS may interact
agonistically or antagonistically, by dissecting the effects of STN-
DBS on the three cortico-striato-cortical loops using, for example,
optogenetics tools.137

In conclusion, toxin-induced lesions of the nigrostriatal DAergic
neurons that have been used to model PD in rodents since the
1960s have recently been re-evaluated for their ability to model
some non-motor symptoms and neuropsychiatric symptoms in
particular. Thus, efforts have begun to shift away from models that
induce destruction of the vast majority of the DA cells of the SNc
to more gradual and specific models that allow for the analysis of
non-motor symptoms. Nevertheless, in the future, the study of
non-motor symptoms in PD will need to be extended to recently
developed genetic- or AAV α-synuclein-based rodent models, as
interesting complementary approaches to study the occurrence of
neuropsychiatric symptoms throughout the progressive neurode-
generative process characteristic of PD. Viral vector-induced
overexpression of wild-type human α-synuclein in nigral dopami-
nergic neurons of rats, for instance, induced a depression-like
phenotype.138 Transgenic mice expressing human α-synuclein
also showed early and severe olfactory deficits,139 reproducing
one of the most prominent non-motor, and premotor, symptoms
of PD.2,3 These studies highlight how relevant genetic and viral
approaches are in the quest to unravel the mechanisms under-
lying neuropsychiatric symptoms in PD, to screen drugs and to
test the efficiency, or to reveal potential side effects, of
neurosurgical approaches such as DBS on such non-motor
symptoms.64,140,141
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